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Abstract

This dissertation tackles the approximation of partial differential equations (PDEs) with random
data, focusing on random coefficient PDEs and stochastic PDEs (SPDEs).

As a first result, we present and analyse an adaptive sparse grid-finite element approximation
of the random diffusion Poisson equation. The algorithm is based on the reliable a-posteriori error
estimator [Guignard, Nobile; SIAM J. Numer. Anal. (2018)]. Firstly, we examine a parametric
semidiscrete setting. We consider two possible parametric enrichment strategies and prove plain
convergence and convergence with rate (with respect to the number of refinement steps) for
both. Secondly, we present the fully discrete algorithm, which additionally incorporates finite
element adaptivity. We consider the use of the same or different meshes for distinct collocation
nodes in parameter space. We prove rate-optimality of the finite element refinement with tools
from [Carstensen, Feischl, Page, Praetorius; Comput. Math. Appl. (2014)]. Finally, combining
the convergence results leads to the plain convergence of the fully discrete algorithm.

As a second result, we present a novel numerical scheme for nonlinear SPDEs driven by
Gaussian noise. A surrogate of the random field solution is efficiently computed following these
steps:

1. Reduce the problem to approximating a parametric coefficient PDE through the Doss-
Sussmann transform and the Lévy-Ciesielski expansion of the Wiener process;

2. Prove four regularity properties, which ensure holomorphic regularity and sparsity of the
resulting parameter-to-solution map;

3. Use the sparsity information to design an a-priori sparse grid interpolation scheme, which
can overcome the curse of dimensionality.

We apply this method to the stochastic Landau–Lifshitz–Gilbert (SLLG) equation, a model
for micrometer-scale magnetic bodies whose magnetization is perturbed by heat fluctuations.
This SPDE is mathematically and computationally challenging due to its nonlinearity and the
presence of Gaussian noise. For SLLG, we prove the four regularity properties in two functional
settings: Either Hölder or Lebesgue integrable sample paths in time. The second setting leads to
algebraic, dimensions independent convergence of the sparse grid interpolation. Finally, we apply
the multilevel sparse grid-finite element scheme [Teckentrup, Jantsch, Webster, Gunzburger;
SIAM/ASA J. Uncertain. Quantif. (2015)] and demonstrate its superiority over the single-level
method.

The results are validated through numerical experiments, some of which are performed using
SGMethods, a Python implementation of sparse grid interpolation developed in conjunction with
this dissertation.





Kurzfassung

Diese Dissertation befasst sich mit der Approximation von partiellen Differentialgleichungen
(PDEs) mit Zufallsdaten, wobei der Schwerpunkt auf PDEs mit Zufallskoeffizienten und stocha-
stischen PDEs (SPDEs) liegt. Als erstes Ergebnis präsentieren und analysieren wir eine adaptive
Sparse Grid-Finite Element approximation des random diffusion Poisson Problems Der Algo-
rithmus basiert auf dem zuverlässigen a-posteriori Fehlerschätzer [Guignard, Nobile; SIAM J.
Numer. Anal. (2018)]. Zunächst untersuchen wir eine parametrische semidiskrete Einstellung.
Wir betrachten zwei mögliche parametrische Anreicherungsstrategien und beweisen für beide
einfache Konvergenz und Konvergenz mit Rate (in Bezug auf die Anzahl der Verfeinerungss-
chritte). Zweitens stellen wir den vollständig diskreten Algorithmus vor, der zusätzlich die
adaptive Verfeinerung der finiten Elemente einbezieht. Wir betrachten die Verwendung gleicher
oder unterschiedlicher Gitter für verschiedene Kollokationsknoten im Parameterraum. Wir be-
weisen die Ratenoptimalität der Finite-Elemente-Verfeinerung mit Methoden aus [Carstensen,
Feischl, Page, Praetorius; Comput. Math. Appl. (2014)]. Schließlich führt die Kombination der
Konvergenzergebnisse zur einfachen Konvergenz des vollständig diskreten Algorithmus.

Als zweites Ergebnis präsentieren wir ein neuartiges numerisches Schema für nichtlineare
SPDEs, die durch Gaußsches Rauschen gesteuert werden. Ein Surrogat der Zufallsfeldlösung
wird effizient in den folgenden Schritten berechnet:

1. Reduzieren Sie das Problem auf die Approximation einer parametrischen Koeffizienten-
PDE durch die Doss-Sussmann-Transformation und die Lévy-Ciesielski-Erweiterung des
Wiener-Prozesses;

2. Beweisen Sie vier Regularitätseigenschaften, die holomorphe Regularität und Sparsamkeit
der resultierenden Parameter-zu-Lösungs-Abbildung gewährleisten;

3. Verwenden Sie die Informationen über die Sparsamkeit, um eine a-priori Sparse Grid In-
terpolation zu entwerfen, die den Fluch der Dimensionalität überwinden kann.

Wir wenden die Methode auf die stochastische Landau-Lifshitz-Gilbert-Gleichung (SLLG) an,
ein Modell für magnetische Körper im Mikrometerbereich, deren Magnetisierung durch Wärme-
schwankungen gestört wird. Die SPDE ist aufgrund ihrer Nichtlinearität und des Gaußschen
Rauschens eine mathematische und rechnerische Herausforderung. Für SLLG beweisen wir
die vier Regularitätseigenschaften in zwei funktionalen Einstellungen: Entweder Hölder- oder
Lebesgue-integrierbare Stichprobenpfade in der Zeit. Die zweite Einstellung führt zu algebrais-
cher, dimensionsunabhängiger Konvergenz der spärlichen Gitterinterpolation. Schließlich wen-
den wir das multilevel Sparse Grid-Finite Element scheme [Teckentrup, Jantsch, Webster, Gun-
zburger; SIAM/ASA J. Uncertain. Quantif. (2015)] und zeigen seine Überlegenheit gegenüber
der Single-Level-Methode.

Die Ergebnisse werden durch numerische Experimente validiert, von denen einige mit SG-
Methods durchgeführt werden, einer Python-Implementierung der Sparse-Grid-Interpolation, die
in Verbindung mit dieser Dissertation entwickelt wurde.





Riassunto

Questa tesi affronta l’approssimazione delle equazioni differenziali parziali (PDE) con dati casu-
ali, concentrandosi sulle PDE a coefficienti casuali e sulle PDE stocastiche (SPDE).

Come primo risultato, presentiamo e analizziamo un’approssimazione adattiva con sparse
grid e elementi finiti dell’equazione di Poisson con diffusione casuale. L’algoritmo si basa sullo
stimatore a-posteriori e affidabile [Guignard, Nobile; SIAM J. Numer. Anal. (2018)]. In primo
luogo, esaminiamo il problema parametrico semidiscreto. Consideriamo due possibili strategie di
arricchimento parametrico e dimostriamo la convergenza semplice e con veloctà di convergenza
(rispetto al numero di passi di raffinamento) per entrambe. In secondo luogo, presentiamo
l’algoritmo discreto completo, che incorpora inoltre l’adattabilità per elementi finiti. Consideri-
amo l’uso della stessa o diverse mesh per nodi di collocazione distinti nello spazio dei parametri.
Dimostriamo la velocità ottimale del raffinamento degli elementi finiti per mezzo degli strumenti
di [Carstensen, Feischl, Page, Praetorius; Comput. Math. Appl. (2014)]. Infine, la combinazione
dei risultati di convergenza porta alla convergenza semplice dell’algoritmo discreto completo.

Come secondo risultato, presentiamo un nuovo schema numerico per SPDE non lineari per-
turbate da rumore gaussiano. Un surrogato della soluzione casuale viene calcolato in modo
efficiente seguendo i seguenti passaggi:

1. Ridurre il problema all’approssimazione di una PDE a coefficienti parametrici attraverso la
trasformazione di Doss-Sussmann e l’espansione di Lévy-Ciesielski del processo di Wiener;

2. Dimostrare quattro proprietà di regolarità, le quali implicano la regolarità olomorfa e la
sparsità della mappa parametri-soluzione risultante dal passaggio precedente;

3. Usare le informazioni sulla sparsità per definire uno schema di interpolazione sparse grid
a-priori, in grado di superare il Curse of Dimensionality.

Applichiamo questo metodo all’equazione stocastica di Landau–Lifshitz–Gilbert (SLLG), un
modello per corpi magnetici di dimensioni micrometriche la cui magnetizzazione è perturbata
da fluttuazioni di calore. Questa SPDE è matematicamente e computazionalmente impegnativa
a causa della sua non linearità e della presenza di rumore gaussiano. Per la SLLG, dimostriamo le
quattro proprietà di regolarità in due impostazioni funzionali: Campioni della soluzione Hölder
o Lebesgue integrabili nel tempo. La seconda impostazione porta alla convergenza algebrica,
indipendente dalle dimensioni, dell’interpolazione sparse grid. Infine, applichiamo lo schema
multilivello sparse grid-elementi finiti [Teckentrup, Jantsch, Webster, Gunzburger; SIAM/ASA
J. Uncertain. Quantif. (2015)] e dimostrano la sua superiorità rispetto al metodo a singolo
livello.

I risultati sono convalidati da esperimenti numerici, alcuni dei quali sono stati eseguiti utiliz-
zando SGMethods, un’implementazione Python dell’interpolazione sparse grid sviluppata insieme
a questa tesi.
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Chapter 1

Introduction

In this first chapter, we introduce results and notation needed in the following chapters as well
as additional facts that may be of interest to the reader. The chapter is organized as follows: In
Section 1.1, we introduce the theory of random coefficient partial differential equations (PDEs).
In particular, we give a rigorous definition of the problem, describe its connection to parametric
coefficient PDEs, discuss regularity, and show how some stochastic PDEs (SPDE) are, in a sense,
equivalent to random coefficient PDEs. In Section 1.2, we discuss the numerical approximation
of parameter-to-solution maps arising from parametric coefficient PDEs. We focus on sparse
polynomial approximation methods and in particular on sparse grid interpolation. We give a
through description of sparse grid interpolation with examples and review the literature. In
Section 1.3, we introduce the Stochastic Landau–Lifshitz–Gilbert equation, a SPDE model for
magnetic materials in a thermal bath. We discuss the physics, the mathematical model, space
and time approximation algorithm, and equivalence with a random coefficients PDE. Finally, in
Section 1.4, we list the original contributions of this thesis.

1.1 Random coefficient PDEs

In the present section we review the mathematical theory of PDEs with random coefficients. We
focus on forward uncertainty quantification, i.e. the task of producing approximations of the
random field solution either through a “surrogate model” or through approximate quantities of
interest such as moments and probability of events.

Most deterministic PDE models contain coefficients, which may be constants or space and/or
time dependent functions (e.g. boundary and initial conditions, material parameters, forcing
terms). In practical applications from engineering or physics, these coefficients are often mea-
sured, a process that entails a measurement error, or more generally are not known exactly. It is
often important to quantify how the uncertainty on the problem data propagates to the solution.
Applications include the study of structural vibrations [Eli99], groundwater flows [GKN+11], and
composite materials [BASL99].

The present section is structured as follows: In Section 1.1.1, we describe the problem class
and consider the random diffusion Poisson problem as an example. Suitable parametric expan-
sions of the random coefficient, such as the ones described in Section 1.1.2, allow us to turn the
problem into a parametric coefficient PDE, as described in Section 1.1.3. Since parameters are
often high dimensional, their approximation may be affected by the curse of dimensionality (cf.
Section 1.2.1). However, as discussed in Section 1.1.4, these maps are often regular (they admit
a holomorphic extension) and sparse (the importance of scalar parameters decreases quickly)
which may make the efficient approximation of these functions feasible.
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1.1.1 General setting and model problem

In the present section, we introduce random coefficient PDEs and present the random diffusion
Poisson problem.

Given appropriate Banach spaces A,U,F, a PDE problem can be written as: Given a ∈ A,
find u ∈ U such that

R(a, u) = 0 in F,

where we denote by R : A×U → F the residual, a ∈ A a problem coefficient, u ∈ U the solution,
and F the space of residuals.

Consider the probability triple (Ω, E ,P), where Ω is a set, E is a σ-algebra on Ω, and P is
a probability measure on the measurable space (Ω, E). (from now on, we write only “a.e. in
Ω” “a.e. ω ∈ Ω”). Substituting a in the problem above, we obtain a random coefficient PDE
problem: Find a random field u with u(ω) ∈ U for a.e. ω ∈ Ω such that

R(a(ω), u(ω)) = 0 in F, for a.e. ω ∈ Ω. (1.1)

Let us consider, as an example, the most popular model problem in uncertainty quantification
of PDEs.

Example 1.1 (Random diffusion Poisson problem). Consider d ∈ N, D ⊂ Rd a bounded Lip-
schitz domain, and again the probability triple (Ω, E ,P). Consider a scalar function f ∈ F =
H−1(D) and a scalar random field a : Ω×D → R such that a(ω, ·) ∈ A = L∞(D) for a.e. ω ∈ Ω.
The random diffusion Poisson problem consists of determining a random field u : Ω → U such
that, for a.e. ω ∈ Ω,


−∇ · (a(ω,x)∇u(ω,x)) = f(x) ∀x ∈ D,u(x) = 0 ∀x ∈ ∂D. (1.2)

We can consider the problem in weak form for the space variable: Find u : Ω×D → R such that
for a.e. ω ∈ Ω, u(ω, ·) ∈ H1

0 (D) satisfies*
D
a(ω, ·)∇u(ω, ·) · ∇v =

*
D
fv ∀v ∈ H1

0 (D). (1.3)

The precise notion of well-posedness depends on the properties of the random problem data. Let
us consider two important examples of random diffusion:

• Uniformly bounded random diffusion: Assume that there exist 0 < amin ≤ amax < ∞ such
that

amin ≤ a(ω,x) ≤ amax ∀x ∈ D, for a.e. ω ∈ Ω. (1.4)

We say that u ∈ L∞(Ω;H1
0 (D)) is a weak solution of (1.2) if (1.3) holds for a.e. ω ∈

Ω. The assumptions on a(·, ·) allow us to apply the Lax-Milgram theorem for a.e. ω ∈
Ω. Therefore, the previous problem has a unique random field solution that satisfies the
following stability estimate:

∥u(ω, ·)∥H1(D) ≤
C

amin
∥f∥L2(D) for a.e. ω ∈ Ω, (1.5)

where C > 0 depends only on problem data and is independent of ω (see [LPS14, Section
9.1]);

2



• Non-uniformly bounded diffusion: The assumption (1.4) can be weakened and still obtain
a notion of solution. Assume that for all ω ∈ Ω there exist 0 < amin(ω) ≤ amax(ω) < ∞
such that

amin(ω) ≤ a(ω,x) ≤ amax(ω) ∀x ∈ D, for a.e. ω ∈ Ω. (1.6)

In this case too, the solution u(ω, ·) ∈ H1
0 (D) exists for a.e. ω ∈ Ω (see [LPS14, Theorem

9.9]), however the uniform stability bound (1.5) is not available. Depending on the prop-
erties of a(·, ·), different estimates are available for u. A standard example is given by the
log-normal random field a = eZ , where Z : Ω ×D → R is a mean-zero Gaussian random
field such that there exist L, s > 0 so that

E
�
|Z(ω,x)− Z(ω,y)|2

�
≤ L ∥x− y∥22 ∀x,y ∈ D, for a.e. ω ∈ Ω.

In this case, it can be shown (see [LPS14, Theorem 9.12]) that a−1
min ∈ Lp(D) for any p ≥ 1,

u ∈ Lp(Ω;H1
0 (D)), and

∥u∥Lp(Ω;H1
0 (D)) ≤ C

KKa−1
min

KK
Lp(Ω)

∥f∥L2(D) .

Random coefficients need not appear in the differential operator. They may be part of the
boundary condition, initial condition, right-hand side, etc. There are special cases in which some
UQ tasks can be reduced to simple deterministic problems.

Example 1.2 (Expectation of solution to a linear problem). Consider the Banach spaces U and
F, the linear and invertible operator L : U → F, and the random field f : Ω → F. Consider then
the problem of determining the random field u such that, for a.e. ω ∈ Ω, u(ω) ∈ U and

L [u(ω)] = f(ω) in F.

Equivalently, the problem can be stated as (1.1) by setting R = L − f . To compute e.g. the
expectation E [u] =

+
Ω udP, we can exploit the linearity of L to obtain

E [f ] = E [Lu] = LE [u] in F.

In this way, we have reduced the classical UQ task of computing the expectation of the solution
to a problem to the approximation of its deterministic counterpart.

1.1.2 Parametric expansions of random fields

In the present section, we present two well-known random field approximate representations that
aim at splitting its dependence on the “physical” variables (space and time) from the random
component. This is done by fixing a basis for the physical variables and writing the random
field as a linear combination thereof, with independent scalar random coefficients.

The Karhunen-Loève expansion (KLE)

The present section is based on [LPS14, Chapter 5.4].
Let d ∈ N and D ⊂ Rd a bounded connected domain. Consider a random field Z : Ω×D → R

such that Z ∈ L2(Ω;L2(D)), i.e. a second order random field into L2(D). Denote its mean
function by E [Z] : D → R and its covariance function by c : D ×D → R, which we assume to
be symmetric. It holds that E [Z] ∈ L2(D),the realizations Z(ω, ·) ∈ L2(D) for a.e. ω ∈ Ω (see
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[LPS14, Lemma 5.27]), and c ∈ L2(D ×D) is symmetric. Consider the covariance operator, i.e.
the following integral operator with kernel c:

C : L2(D) → L2(D) C[f ](x) :=
*
D
c(x,y)f(y)dy. (1.7)

The properties of c imply (Proposition D.5) that C is a compact, self-adjoint operator (Defini-
tion D.4). The spectral theorem D.7 gives the existence of eigenvalues (λj)j∈N and eigenvector
(ϕj)j∈N of C (Definition D.6) . Moreover, (ϕj)j∈N form an orthogonal basis of L2(D).
The Karhunen-Loève expansion (KLE) of the random field Z is by definition:

E [Z] (x) +
D
j∈N

Yj(ω)
?
λjϕj(x), (1.8)

where the coordinates Yj are pairwise independent scalar random variables taking values each
in Γj ⊂ R. Moreover, they can be expressed as

Yj(ω) =
1?
λj

⟨Z(ω, ·)− E [Z] , ϕj⟩L2(D) ∀j ∈ N. (1.9)

The convergence properties of the KLE are summarized in the following

Theorem 1.3 (see [LPS14, Theorem 5.28, Theorem 5.29]). A second order random field Z ∈
L2(Ω;L2(D)) with mean E [Z] : D → R and covariance c(·, ·) : D × D → R is represented
by (1.8), where (λj , ϕj)j∈N are eigenpairs of the covariance operator (1.7), λ1 ≥ λ2 ≥ ... ≥ 0,
and the random variables (Yj)j∈N, defined by (1.9), have mean zero, unit variables, and are
uncorrelated. The series is understood to converge in L2(Ω;L2(D)).
Additionally, for real valued processes, compact D ⊂ R, and continuous covariance c(·, ·) the
KLE also converges uniformly.
Finally, if Z is a Gaussian random field, then the (zj)j∈N are i.i.d. standard normal random
variables.

For any J ∈ N, the J-terms truncated KLE is

ZJ(ω,x) = E [Z] (x) +
JD

j=1

Yj(ω)
?
λjϕj(x).

Since (ϕj)j is an orthonormal basis of L2(D), it is easy to quantify the L2(Ω;L2(D)) error of a
J-terms KLE:

E
�
∥Z − ZJ∥2L2(D)

�
= E

�D
j>J

Yj
?
λjϕj ,

D
k>J

Yk
?

λkϕk

�
=

D
j,k>J

?
λj

?
λkE [YjYk] ⟨ϕj , ϕk⟩

=
D
j>J

λj ,

so that

∥Z − ZJ∥L2(Ω;L2(D)) =

>D
j>J

λj .
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Another estimate which does not involve the whole spectrum (λj)j∈N is@
E
�
∥Z − ZJ∥2L2(D)

�
≤

@
E
�
∥Z − E [Z]∥2L2(D)

�
+

@
E
�
∥ZJ − E [Z]∥2L2(D)

�
=

>*
D

VarZ +

>*
D

VarZJ =

>*
D

VarZ +

>D
j≤J

λj .

This time only the first J eigenvalues and variance of Z are needed.

Quantifying the truncation error is an important task in numerical analysis because some
methods can handle only a finite number of scalar parameters (see also Remark 1.7 below).

To compute the KLE of a random field, it is in general necessary to approximate eigenvalues
and eigenvectors of the covariance operator. The Wiener process (see [Eva13, Chapter 3] for an
introduction, in particular Section 3.2.1 for the definition) is an exception for which eigenpairs
are known exactly.

Example 1.4 (KLE of the Wiener process). Simple computations show that the Wiener process
W : Ω× [0, 1] → R admits the KLE (1.8) with:

λj =

0
π

0
j − 1

2

77−2

, ϕj(t) =
√
2 sin

00
j − 1

2

7
πt

7
∀j ∈ N.

As stated in the previous theorem, the scalar random variables (Yj)j∈N are i.i.d. standard nor-
mals.

The KLE is optimal in the mean-square error sense as a consequence of it being constructed
with the leading eigenvalues of the covariance operator:

Proposition 1.5. Denote with (fj)j∈N an orthonormal basis of L2(D) and consider, for some
J ∈ N, the J-terms truncation of Z, ZJ,fj =

E
j≤J ⟨Z, fj⟩ fj. The mean square error

E ∥Z − ZJ∥2L2(D) is minimized when fj = ϕj, the j-th eigenvector of the covariance operator
C defined in (1.7), for all j > J .

However, this does not mean that the KLE is the “best” parametric expansion for every
application. As explained in [BCDM17], using the Lévy-Ciesielski expansion (see below) can in
some cases lead to an improved sparsity. Moreover, being optimal in the L2 sense may just be
not be relevant for problems in which other norms are of interest.

Let us also mention that often there is an intuitive interpretation of the rate of decay of
the eigenvalues (λn)n∈N: The faster the decay of the eigenvalues , the “smoother” the sample
paths of the random field look. Conversely, a slower decay gives “rough” sample paths. See
Figure 1.1. This intuitive picture is however only valid when the eigenvector (ϕn)n∈N of the
covariance operator are smooth.

The Lévy-Ciesielski expansion (LCE) of the Wiener process

The present section is based on [Eva13, Section 3.3.3].
The Haar family is a sequence of functions (hℓ,j)ℓ∈N0,j=1,...,⌈2ℓ−1⌉ with hℓ,j : [0, 1] → R defined
by using the “mother wavelet” h : R → R

h(t) :=

		
1
2 for t ∈ �

0, 12
 

−1
2 for t ∈ /

1
2 , 1

 
0 otherwise.
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Figure 1.1: Visual comparison of stochastic processes with different decays of absolute value of
eigenvalues {λj}j∈N and same eigenvectors ϕj(t) =

√
2 sin ((j − 1

2)πt), t ∈ [0, 1]. Left: λj =

(π(j − 1
2))

−2, i.e. the Wiener process; Right: λj = (π(j − 1
2))

−4.

In a wavelet fashion, we define:

h0,1 ≡ 1, and hℓ,j(t) = 2ℓ/2h
-
2ℓ−1t− j + 1

4
∀ℓ ∈ N, j = 1, . . . , 2ℓ−1.

The Haar basis is a complete orthonormal basis of L2(0, 1).
We may use it to write an expansion of white noise, i.e. a formal time derivative of the

Wiener process (see [Eva13, Section 3.2.3] for more details), as

Ẇ (ω, t) =
D
ℓ∈N0

⌈2ℓ−1⌉D
j=1

Yℓ,j(ω)hℓ,j(t),

where (Yℓ,j)ℓ,j are i.i.d. standard normal random variables. Since the Wiener process is a formal
anti-derivative of the white noise, it is reasonable to express it as the following Lévy-Ciesielski
expansion (LCE):

W (ω, t) =
D
ℓ∈N0

⌈2ℓ−1⌉D
j=1

Yℓ,j(ω)ηℓ,j(t), where

ηℓ,j(t) :=

* t

0
hℓ,j(s)ds, (Yℓ,j)ℓ,j i.i.d. N (0, 1).

(1.10)

The family (ηℓ,j)ℓ,j is called the Faber-Shauder basis and can be written as follows: First define
the “mother wavelet” η : R → R

η(t) :=

		
t t ∈ [0, 12 ]

1− t t ∈ (12 , 1]

0 otherwise.

In a wavelet fashion, we define:

η0,1(t) = t, ηℓ,j = 2−
ℓ−1
2 η(2−(ℓ−1)t− j + 1) ∀ℓ ∈ N, j = 1, . . . , 2ℓ−1.
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Figure 1.2: Top: The first eight Haar basis functions on [0, 1] split by level. Each function is
zero wherever it is not plotted. Bottom: The first eight Faber-Shauder basis functions on [0, 1]
split by level.
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See Figure 1.2 for a plot of the first Haar and Faber-Schauder basis functions. Observe that
∥η0,1∥L∞(0,1) = 1, supp (η)0,1 = (0, 1] and for all ℓ ∈ N, j = 1, . . . , 2ℓ−1, ∥ηℓ,j∥L∞(0,1) = 2−(ℓ+1)/2,

supp (ηℓ,j) =
-

j−1
2ℓ−1 ,

j
2ℓ−1

4
.

While this derivation above is formal, the LCE converges uniformly in t, almost surely to
a continuous function which coincides with the Wiener process everywhere (see [Ste01, Section
3.4]):

lim
L→∞

sup
t∈[0,1]

LLLLLLW (ω, t)−
LD

ℓ=0

⌈2ℓ−1⌉D
j=1

Yℓ,j(ω)ηℓ,j(t)

LLLLLL = 0 for a.e. ω ∈ Ω.

The main steps of a possible proof are:

1. If there exists L ∈ N such that the sequence (yℓ,j)ℓ,j ∈ RN satisfies: |yℓ,j | ≪ 2ℓ/2 for all
ℓ > L, j = 1, . . . , 2ℓ−1 , then

E
ℓ,j yℓ,jηℓ,j converges uniformly on [0, 1];

2. For (Yn)n∈N i.i.d. standard normal random variables, there exists a random variable C
such that |Yn(ω)| = O(

√
log n) for all n ≥ 2 and P(0 < C < ∞) = 1. The bound

can equivalently be written using the hierarchical indexing (see (1.11) below): |Yℓ,j | ≤
C(ℓ+ 1)1/2 for all ℓ ≥ 1.

3. As a direct consequence of the first point, the series (1.10) converges absolutely and uni-
formly in t ∈ [0, 1] and for a.e. ω ∈ Ω;

4. The resulting function W is a Wiener process, in particular W (0) = 0, increments W (t)−
W (s) are distributed N (0, t − s) for any 0 ≤ s < t ≤ 1 and disjoint increments are
independent. The first fact is trivially true, the second and third can be proved using the
notion of characteristic function of a random variable (see Definition C.1);

5. The sample paths t +→ W (ω, t) are continuous for a.e. ω. Indeed, they are uniform limit
of continuous functions.

The terms of the KLE can be indexed linearly, i.e. W (ω, t) =
E∞

n=1 Yn(ω)ηn(t), as opposed
to the hierarchical indexing used so far. The two indexing systems, hierarchical and linear, are
related via

ηℓ,j = ηn ⇐⇒ ℓ = ℓ(n) := ⌈log2(n)⌉ and j = n− ℓ(n). (1.11)

We note that the total number of parameters is N =
EL

ℓ=0⌈2ℓ−1⌉ = 1 +
EL

ℓ=1 2
ℓ−1 = 2L.

Remark 1.6 (Comparison of LCE and KLE of the Wiener process). The Wiener process, being
a second order stochastic process, admits a KLE as seen in Example 1.4. See Figure 1.3 for
a comparison of the first KLE and LCE expansion basis functions. An important difference
between the two expansions is that the Faber-Schauder basis functions have compact supports.
Moreover, basis functions belonging to the same level have disjoint supports.

It is also interesting to compare the truncation errors introduced by KLE and LCE in different
norms in time. Recall that the Faber-Schauder basis is not an orthonormal basis of L2(0, T ) so
it could, a priori, lead to a smaller error compared to the KLE with the same number of terms.
See in Figure 1.4 for a computational comparison. We see that the KLE performs better, but
only by a constant.
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Exact Gaussian random field sampling methods

Let us also briefly also mention the circulant embedding method [KTB11]. It allows us to compute
the square root of covariance matrices and, in particular, to sample stationary Gaussian random
fields exactly at finitely many discrete locations given their covariance there. The complexity
with respect to the number of samples is O(Nlog(N)) because the necessary operations can be
performed with the Fast Fourier transform.

Finally, we also mention [FKS18], where the authors use H-matrices to factorize covariance
matrices in linear complexity. This method ca be applied to sample non-stationary Gaussian
processes, on more general point sets than the ones admissible with circulant embedding.

1.1.3 Reduction of a random coefficient PDE to a parametric coefficient PDE

Recall the setting outlined in the beginning of Section 1.1.1, in particular the random coefficient
PDE (1.1). The random field a or a function thereof can be expanded with the KLE (or,
alternatively, the LCE if it is the Wiener process). So we may write the random field as a =
a(Y ) ∈ A, where Y = (Yn)n∈N is a vector of appropriate scalar pairwise independent random
variables taking values in Γ =

%
n∈N Γn. The map

a : Γ → A

is the parametric expansion of the random field. We define the parametric coefficient PDE
problem: Find u : Γ → U such that

R(a(y), u(y)) = 0 in F, for a.e. y ∈ Γ. (1.12)

The Doob-Dynkin lemma [Øks03, Lemma 2.1.2] proves that the solution u can be written as a
function of y.

Problem (1.12) is equivalent to the random coefficient PDE problem (1.1) in the following
sense: If the solution u : Γ → U of (1.12) is available, a solution of (1.1) is given by u(Y ),
where Y = (Y1, Y2, . . . ) are i.i.d. scalar random variables as in the KLE (or other parametric
expansion). In other words, once the solution u of the parametric coefficients PDE is available,
sampling the random field solution of the random coefficients PDE is just a matter of sampling
appropriate scalar random variables.

Remark 1.7 (Parametric truncation error). It is important to observe that the parameter y =
(yn)n∈N is a real sequence. For some numerical schemes, this assumption may be too weak. We
can consider the truncated parameter yN = (y1, . . . , yN ) ⊂ ΓN =

%N
n=1 Γn for some N ∈ N

and the corresponding truncated problem: Find uN : ΓN → U such that

R(a(yN ), uN (yN )) = 0 in F, for a.e. yN ∈ ΓN .

Substituting the original problem with this introduces a truncation error ∥u− uN∥, where the
norm depends on the setting. The rate of decay of the truncation error as N → ∞ is determined
by the properties of the solution operator, which maps a(y) to u(y), as well as the parametric
expansion (e.g. the KLE or LCE), which maps y to a(y).

Truncated parameters like yN ∈ ΓN can be identified with full sequences simply by appending
a tail of zeros: (y1, . . . , yN , 0, 0, . . . ) ∈ Γ.

The finite dimensional noise assumption consists of assuming the existence of N ∈ N such
that for any y ∈ Γ and n > N , a and u are independent of yn. This effectively allows us to
identify the set of sequences Γ with a subset of RN .
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Recall the random diffusion Poisson problem from Example 1.1 and let us now consider its
parametric counterpart.

Example 1.8 (Parametric diffusion Poisson problem). Consider again d ∈ N, D ⊂ Rd a bounded
Lipschitz domain, a probability triple (Ω, E ,P), and a scalar function f ∈ L2(D). A parametric
expansion of the random diffusion a(ω,x) leads to the parametric diffusion Poisson problem:
Find u : Γ×D → R such that�

−∇ · (a(y,x)∇u(y,x)) = f(x) ∀x ∈ D,y ∈ Γ

u(x) = 0 ∀x ∈ ∂D.
(1.13)

The problem in weak form for the space variable reads: Find u : Γ×D → R such that, for a.e.
y ∈ Γ, u(y, ·) ∈ H1

0 (D) satisfies*
D
a(y, ·)∇u(y, ·) · ∇v =

*
D
fv ∀v ∈ H1

0 (D). (1.14)

Depending on the type of random model for the diffusion, we obtain different notions of
well-posedness:

• Uniformly bounded random diffusion: An example of parametric diffusion that could arise
from a uniformly bounded random diffusion is the following:

a(y,x) = E [a] (x) +
D
n∈N

ynϕn(x) x ∈ D, (1.15)

where the sequence of real parameters y = (yn)n∈N ∈ Γ = [−1, 1]N represent uniform i.i.d.
random variables on Γ = [0, 1] and ϕn ∈ L∞(D) for all n ∈ N. For the Poisson problem
to be well-posed, we assume uniform ellipticity: There exist r > 0 such thatD

j∈N
|ψn| < E[a]− r on D.

Thus, suitable values of amin and amax in Example 1.1 are amin = E[a] − r and amax =
E[a] + r. The norm of the parametric solution u ∈ L∞(Γ;H1

0 (D)) is bounded analogously
to (1.5).

• Non-uniformly bounded diffusion: When for example the diffusion follows the log-normal
distribution (see Example 1.1), we apply the KLE (see Section 1.1.2) to log (a) to obtain

a(ω,x) = exp

.D
n∈N

Yn(ω)ϕn(x)

5

where Y1, Y2, . . . are i.i.d. standard normal random variables and ϕn ∈ L∞(D) for all
n ∈ N. This diffusion model, unlike the one in the previous example, is positive for any
choice of parameters. The parametric solution u ∈ Lp(Γ;H1

0 (D)) satisfies an analogous
stability estimate to its random counterpart for any p ≥ 1.

1.1.4 Regularity and sparsity of parametric PDEs

The optimal rate of approximation of a high dimensional function u : Γ → R with Γ ⊂ RN

is a highly problem-dependent quantity. It is not even clear a priori that the function can
be approximated with an algebraic rate and it is not clear how an optimal approximation can
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be built. As we will see below, the regularity of u can be leveraged to prove that certain
approximations do not suffer from the curse of dimensionality (see discussion in Section 1.2.1).
The precise meaning of “regularity” depends on the chosen approximation method. The efficacy
of an approximation method depends on how well it “matches” the regularity of the function u.

Below, we work with sparse polynomial approximations. In this case, “regularity” loosely
means a sufficiently fast decay of the partial derivatives of u. This is because sparse polynomial
approximation methods are based on a partition of unity decomposition:

id =
D
ν∈NN

0

Hν ,

where the definition of Hν : C0(Γ,U) → P(Γ,U) depends on the specific scheme in use. An
instance of the numerical scheme is uniquely determined by choosing an admissible (again the
concrete definition depends on the numerical scheme) and finite multi-index set Λ ⊂ NN

0 and
considering the approximation operator

IΛ :=
D
ν∈Λ

Hν : C0(Γ,U) → P(Γ,U).

A prominent example is sparse grid interpolation (see Section 1.2.3).
Because of this structure, the error can in general be estimated, for 1 ≤ p ≤ ∞, as

∥(id − IΛ)u∥Lp(Γ,U) ≤
D
ν /∈Λ

∥Hνu∥Lp(Γ,U) .

If an Lq(Γ,U) estimate of Hν for 0 < q < p is available, we can apply Stechkin’s lemma (see
Lemma D.1) to estimate the last sum and, in particular, the error.

Several strategies have proved to be effective at estimating the derivatives of the parameter-
to-solution map:

• Proving existence of a sparse holomorphic extension: This technique was studied in
[CDS11] and is also the strategy we adopt in Chapter 3;

• Induction argument : One derives equations for the partial derivatives of u with respect
tot the scalar parameters inductively. This technique was introduced in [GKN+15];

• Proving Gevrey regularity : This approach was recently introduced in [HSS23].

The first strategy often follows this line:

1. Define a complex extension u : Σ → U of u with Γ ⊂ Σ ⊂ CN;

2. Prove that the complex extension is holomorphic and uniformly bounded, i.e. there exists
C(Σ) > 0 such that supz∈Σ ∥u(z)∥U ≤ C(Σ);

3. Prove that there exists ρ = (ρn)n∈N such that for any y ∈ Γ, B(y,ρ) ⊂ Σ. Here we intro-
duced the polydisk B(y,ρ) =

%N
n=1B(yn, ρn), B(yn, ρn) := {z ∈ C : |z − yn| < ρn} ⊂ C

for all n ∈ N;

4. Apply Estimate (D.3) (consequence of the Cauchy’s integral formula D.8) to obtain, for
{y1 . . . ,yn} ⊂ {y1 . . . ,yN} and p ∈ Nn

0 ,

KK∂p1
y1 . . . . . . ∂

pn
ynu(y)

KK
U ≤ p!

n;
i=1

ρ−pn
n C(Σ) ∀y ∈ Γ; (1.16)
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5. The same estimate holds for the Lebesgue norm:

KK∂p1
y1 . . . . . . ∂

pn
ynu

KK
Lp
µ(Γ,U)

≤ p!
n;

i=1

ρ−pn
n C(Σ), (1.17)

where 1 ≤ p ≤ ∞ and µ : Γ → R is a probability measure. This is a trivial consequence
of the fact that the last right-hand side is independent of y.

Remark 1.9. In case ρ and C(Σ) actually depended on the point y ∈ Γ where (1.16) is computed
and there is no uniform bound from below (respectively above) of ρ(y) or C(Σ,y), an estimate
of the form (1.17) is still possible: Assume that y +→ <n

i=1 αn(y)
−pnC(Σ,y) is Lp

µ(Γ)-integrable,
where αn(y) ∈ R is such that ρn(y) = αn(y)ρ̂n for a constant (i.e. independent of y) sequence
ρ̂ ∈ RN

>0. Then,

KK∂p1
y1 . . . . . . ∂

pn
ynu

KK
Lp
µ(Γ,U)

≤ p!
n;

i=1

ρ̂−pn
n

*
Γ

n;
i=1

αn(y)
−pnC(Σ,y)dµ(y).

This argument is analogous to the one mentioned in Example 1.1 for the well-posedness of the
Poisson problem with non-uniformly bounded random diffusion.

The holomorphic regularity of parameter-to-solution maps arising from parametric PDEs
has already been extensively studied. In the seminal paper [BNT10, Section 3], bounded and
unbounded parameter spaces under the finite dimensional noise assumption are considered.
in [CDS11], the authors develop a theory for countably-many parameters taking values on tensor
product of bounded. In [BCDM17], the authors extend the theory to the Poisson problem with
lognormal coefficients, again with countably many unbounded parameters. Finally in [CCS15],
the authors go beyond the linear setting and prove holomorphy for a wider class of operators
employing the implicit function theorem.

1.1.5 Reduction of a SPDE to a random coefficient PDE

The present section is based on [ADF+24, Section 2.1].
Consider a spatial domain D ⊂ Rd of dimension d ∈ N and a final time T > 0. Denote

by ∂D the boundary and by ∂n the unit exterior normal derivative. The space-time cylinder is
denoted by DT := [0, T ]×D. Consider the initial condition U0 : D → Rm for m ∈ N, a drift
coefficient D : Rm ×DT → Rm and a noise coefficient N : Rm ×D → Rm. While a more general
noise coefficient can be treated with analogous techniques, we consider this simple case as it is
sufficient for the examples below. Given the probability space (Ω, E ,P), we consider the SPDE
problem:
Find a random field U : Ω×DT → Rm such that, a.e. in Ω,		

dU = D(U, ·, ·)dt+N(U, ·) ◦ dW on DT

∂nU = 0 on [0, T ]× ∂D

U(·, 0, ·) = U0 on D,

(1.18)

where by ◦dW we denote the Stratonovich differential (See Appendix C) applied to a Wiener
process W .

The Doss-Sussmann transform [Dos77, Sus78] of U is, by definition,

u : Ω×DT → Rm, u = e−WNU, (1.19)
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i.e. the exponential of the operator −WN applied to U . Let us now show that the random field
u solves a random coefficient PDE, a problem class we already discussed in Section 1.1.1.

We derive the random coefficient PDE formally and refer to the applications in Example 1.10
or Section 3.2.1 below for rigorous derivations in specific settings. First, invert (1.19) to obtain
U = eWNu. Then, by the Stratonovich chain rule Lemma C.3 (formally identical to the deter-
ministic one), we get

dU = eWN [du] +N
�
eWNu

�
◦ dW.

Equation (1.18) yields

eWN [du] +N(eWNu, ·) ◦ dW = D(U, ·, ·)dt+N(U, ·) ◦ dW.

The term with the stochastic differential vanishes and we obtain the following random coefficient
PDE driven by the Wiener process:

∂tu = e−WND(eWNu, ·, ·) on DT , a.e. in Ω.

This is clearly a special case of the random coefficient PDE we considered in Section 1.1.1:

R(W (ω), u(ω)) = 0 in F, for a.e. ω ∈ Ω,

where R : A×U → F denotes the residual operator of the PDE problem defined for appropriate
Banach spaces A, U, F for coefficients, solutions and residuals sample paths respectively. In
the present setting, R is a differential operator in time and space with respect to u ∈ U while it
does not contain Itô or Stratonovich differentials of the coefficient (a Wiener process) W ∈ A.

Given an approximation uapprox : Ω×DT → Rm of u, the Doss-Sussmann transform can be
inverted to yield an approximation Uapprox of the random field solution U of (1.18) as

Uapprox = eWNuapprox.

Fixed 1 ≤ p ≤ ∞, the Lp(Ω,U)-error on the solution to the SPDE is estimated by the Lp(Ω,U)-
error on the solution to the random coefficient PDE as long as eWN is a linear operator on
Lp(Ω,U) and into Lp(Ω,U). We have

∥U − Uapprox∥Lp(Ω,U) =
KKKeWN [u− uapprox]

KKK
Lp(Ω,U)

≤
KKKeWN

KKK
L(Lp(Ω,U))

∥u− uapprox∥Lp(Ω,U) ,

where, for a Banach space B, by L(B) we denote the Banach space of linear bounded operators
L : B → B. For example, a sufficient condition for eWN to have finite L(Lp(Ω,U))-norm is the

summability of the sequence
0∥WnN(n)∥L(Lp(Ω,U))

n!

7
n∈N

Example 1.10 (Example of Doss-Sussmann transform with a simple SDE). Given a final time
T > 0, appropriate coefficients a, b (either real constants, real functions on [0, T ], or stochastic
processes on [0, T ]), consider the following linear stochastic differential equation (SDE) with
unknown stochastic process U : Ω× [0, T ] → R:

dtU = aUdt+ bU ◦ dW, (1.20)

with initial condition U(0) = U0 ∈ R a.e. in Ω. The Doss-Sussmann transform of U and its
inverse read respectively

u = e−WbU, U = eWbu.
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The chain rule gives dtU = eWb∂tu + bU ◦ dtW . We obtain the following random coefficient
ordinary differential equation (RODE) with unknown stochastic process u : Ω× [0, T ] → R:

∂tu = −e−WbaeWbu.

With the corresponding initial condition u(0) = U0 a.e. in Ω. The solution u, when it exists, is
related to the solution U of (1.20) through the inverse Doss-Sussmann transform.

As we will see below (cf. Section 1.3.6), the Doss-Sussmann transform was already applied
to much more complex stochastic differential equations such as the the stochastic LLG equation
(a model in micromagnetics discussed in Section 1.3) in [GLT16].

1.2 Numerical approximation of parametric coefficient PDEs

In the present section, we review the numerical approximation of parameter-to-solution maps
arising from parametric coefficient PDEs. We start in Section 1.2.1 by highlighting the difficul-
ties of this problem class, in particular the curse of dimensionality. Nevertheless, as shown in
Section 1.2.2, a class of functions can be approximated with algebraic rates independently of
the number of parameters, i.e. free from then curse of dimensionality. We present the truncated
sparse Taylor expansion as a simple (but computationally impractical) example of such an ap-
proximation. We then introduce sparse grid interpolation (cf. Section 1.2.3) as a more practical
sparse polynomial approximation. We give a detailed definition of the method and present some
of its “flavors”. We review the history of the use of sparse grid interpolation for parametric PDEs
and we discuss the problem of selecting the sparse polynomial space through a “profit maximiza-
tion” approach. In Section 1.2.4, we discuss adaptive sparse grid interpolation. We close the
chapter with additional topics of interest: Alternative approximation methods (Section 1.2.5),
and the role of the finite elements approximation (Section 1.2.6).

1.2.1 The problem of high-dimensional approximation

In Section 1.1.3, we have seen how the problem of approximating the solution of a random
coefficient PDE (1.1) is equivalent to the approximation of a parameter-to-solution map u : Γ →
U for a parametric coefficient PDE (1.12), where Γ ⊂ RN. Notice that the domain Γ is “high-
dimensional” (in general, it can be a space of real sequences). We may attempt to circumvent
this issue by considering the truncation uN : ΓN → U for some N ∈ N as in Remark 1.7 but in
order for the truncation error to decrease, N may need to increase.

The term curse of dimensionality, introduced by Bellman [BK59], refers to the exponential
dependence of the cost of approximating a function with fixed accuracy ε > 0 on the dimension
N ∈ N of its domain. In other words, the complexity is O(ε−αN ) for a constant α > 0 dependent
on the function at hand.

The curse of dimensionality can appear in very simple problems as well, as we see in the
following example.

Example 1.11. Consider the sequence α = (αn)n∈N ∈ RN
≥0, and the function

f : RN → R, y → sin

.
ND

n=1

αnyn

5
.

Imagine now that its law is hidden and that we want to build an approximation based on collo-
cation samples. Depending on the values of α, the function is more or less easy to approximate.
For example:
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• αn ≡ 0 for all n > N “small” (e.g. N = 3): This is a classical low dimensional approxima-
tion problem that can be tackled e.g. with tensor product interpolation;

• αn ≥ α0 > 0 for all n > N and N ∈ N: The problem suffers from the curse of dimension-
ality because, intuitively, each of the infinitely-many variable yn has some importance;

• αn = O(n−(1+ε)), ε > 0: Again the domain is infinite-dimensional, but this time the
variable yn becomes less and less “important” at a sufficiently fast rate as n → ∞ because
of the corresponding decay of αn.

Knowing that a function can be approximated (with respect to a certain norm), does not
automatically give a construction of an effective approximation scheme. In the next sections,
we mention several options and focus on sparse grid interpolation.

Moreover, we stress that, especially in high-dimension, approximation is strictly harder than
computing scalar quantities of interest such as the expectation or the probability of an event.

1.2.2 Dimension-independent approximation of sparse maps

In this section, we show how, despite the fact that the parametric dimension may be high or
even infinite, it is still possible to approximate parametric problems with an algebraic rate of
convergence and, most importantly, independently of the dimension of the parameter domain.
This discussion is based on [CDS11].

Recall the residual function R : A× U → F we introduced in Section 1.1.1, where A,U and
F are Banach spaces for parameters, solutions, and residuals respectively. The problem consists
of approximating the solution operator U : A → U defined by the relation: For a ∈ A, U(a) ∈ U
is such that

R(a,U(a)) = 0 in F. (1.21)

Well-definiteness and appropriate continuity of U are linked to the well-posedness of the problem
(1.21).

The space of coefficients A is assumed to be parametrizable, i.e. that there exists a set of
sequences Γ ⊂ RN and a sufficiently regular map a : Γ → A such that A = {a(y) : y ∈ Γ}. The
map

u = U ◦ a : Γ → U

is called the parameter-to-solution map and may be expressed, analogously to the solution op-
erator, as follows: For any y ∈ Γ, u(y) is the unique element in U such that R(a(y), u(y)) = 0
in F.

Let us now follow [CDS11] to give an example of approximation that converges algebraically
and does not suffer form the curse of dimensionality. The key requirement is that the parameter-
to-solution map is sufficiently regular in a specific sense.

Consider the parameter set Γ = [−1, 1]N, i.e. sequences taking values in [−1, 1]. Consider
the set of finite-support multi-indices :

F :=


ν ∈ NN

0 : ∃N = N(ν) : νn = 0 ∀n > N
�
. (1.22)

For any ν ∈ F , define the support of ν as

supp (ν) := {n ∈ N : νn ̸= 0} . (1.23)
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Denote respectively the factorial (under the usual assumption that 0! = 1) and the monomial

ν! :=
;
i∈N

νi!, yν :=
;
i∈N

yνii ∀y ∈ Γ,

where both products are finite since supp (ν) is finite for any ν ∈ F . Finally, define the mixed
derivative operator ∂ν = ∂ν1 . . . ∂νn where {ν1, . . . , νn} = supp (ν). The Taylor expansion of
u : Γ → U is D

ν∈F
tνy

ν , where tν :=
∂νu(0)

ν!
. (1.24)

If there exists 0 < p < 1 such that

(∥tν∥U)ν∈F ∈ ℓp(F), (1.25)

then the series (1.24) converges unconditionally in L∞(Γ;U). By “unconditionally”, we mean
that for any sequence (Λn)n∈N that exhausts F (i.e. for any finite Λ ⊂ NN

0 there exists N0 ∈ N
such that Λ ⊂ ΛN for all N ≥ N0), there holds limn→∞

KKu−E
ν∈Λn

tνy
ν
KK
L∞(Γ,U) = 0.

The best-n-terms truncated Taylor series is by definition

Tn[u](y) :=
D
ν∈Λn

tνy
ν ,

where Λn ⊂ F is the set of multi-indices corresponding to the n largest ∥tν∥U .
The approximation error can be estimated with Stechkin’s lemma (see Corollary D.2): If

(∥tν∥U)ν∈F ∈ ℓp(F) for 0 < p < 1, then

∥u− Tn[u]∥L∞(Γ;U) =

KKKKKK
D
ν /∈Λn

tνy
ν

KKKKKK
L∞(Γ;U)

≤ KK(∥tν∥U )ν∈FKKℓp(F)
(n+ 1)

1− 1
p .

This is an example of how dimension independent, algebraic convergence can be achieved for
a “regular” parameter-to-solution map. In the present case, the specific regularity requirement
is ℓp- summability of the Taylor coefficients (1.25) for some 0 < p < 1.

The truncated Taylor expansion is not a very practical approximation method because ap-
proximating the derivatives ∂νu needed to determine tν is not always an easy task in general.

1.2.3 Sparse grid interpolation

In this section, we present sparse grid interpolation. Like the truncated Taylor expansion, sparse
grid interpolation produces a sparse polynomial approximation. An important difference is that
sparse grid interpolation coefficients are simply collocation samples, much easier to approximate
that Taylor coefficients for general parameter-to-solution maps.

A possible first appearance of sparse grid quadrature and interpolation dates back to the
1960s, in a work by Smolyak [Smo63]. After that, the method was rediscovered in different
settings (e.g. numerical approximation of high-dimensional PDEs) several times over in the
1990s, when the method gained its current name, for example by Griebel and Zenger [GSZ90].
The main idea behind sparse grid methods is always to write the approximation operator as a
telescoping expansion in a tensor product hierarchical basis. The result is a flexible method that
can exploit the regularity of the function to accelerate convergence or, in a high-dimensional
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setting, circumvent the curse of dimensionality. For a more complete historical note on sparse
grids and related concepts, we refer to the next subsection.

Consider f : Γ → U, defined on Γ ⊂ RN (a set of real valued sequences) and into a Banach
space U. The function f is assumed to be continuous, in the sense that for any y ∈ Γ f(y) is a
well-defined accessible element of U.

Let us begin with the case in which y2 = y3 = · · · = 0 for any y ∈ Γ, i.e. we can assume
Γ := Γ ⊂ R. A sequence (Yν)ν∈N0

⊂ Γ, is called a nodes family of Γ if

• Y0 = {0};
• The sequence in non-decreasing, in the sense that #Yν ≤ #Yν+1 for all ν ∈ N0.

We denote by m : N0 → N the level-to-knot function associated to the nodes family (Yν)ν , i.e
m(ν) = #Yν for all ν ∈ N0.

Consider a corresponding family of Lagrange basis, i.e. for any ν ∈ N0 a basis of function
{Ly}y∈Yν

such that Ly1(y2) = δy1,y2 for any y1, y2 ∈ Yν . Denote by Vν the linear space of
functions generated by (Ly)y∈Yν

. Finally, define the corresponding interpolation operator Iν :

C0(Γ) → Vν as

Iν [f ](·) =
D
y∈Yν

f(y)Ly(·) ∀f ∈ C0(Γ). (1.26)

This operator can be written as a telescoping sum Iν =
E

0≤j≤ν ∆ν , where the difference
∆j : C

0(Γ) → Vj is defined as

∆j = Ij − Ij−1 if ν > 0,

∆0 = I0.
(1.27)

Let us consider now the general case in which Γ ⊂ RN cannot be identified with a subset of
R. For any ν ∈ F , we define the tensor product nodes family

Yν := {y ∈ Γ : yi ∈ Yνi ∀i ∈ N} .
The corresponding tensor product linear space

Vν =
$
i∈ν

Vi (1.28)

is the linear space generated by the tensor product Lagrange basis {Ly}y∈Yν
, where Ly(x) =<

i∈N Lyi(xi) for all y ∈ Yν and x ∈ Γ. The corresponding tensor product interpolant Iν :
C0(Γ) → Vν is defined by

Iν [f ](·) =
D
y∈Yν

f(y)Ly(·) ∀f ∈ C0(Γ). (1.29)

The hierarchical surplus ∆ν : C0(Γ) → Vν is defined as tensor product of 1D difference operators:

∆ν =
$
νi∈ν

∆νi . (1.30)

The hierarchical surplus operator can be evaluated recursively: Denote ν = (ν1, ν̂) and y =
(y1, ŷ) with ν1 ∈ N0, y1 ∈ Γ and use the definition of difference (1.27) to evaluate

∆ν [f ](y) = ∆ν1 [∆ν̂ [f(·, ŷ)]] (y1).
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Consider a multi-index set Λ ⊂ F that is downward-closed, i.e.

∀ν ∈ Λ, ∃n ∈ supp (ν) ν − en ∈ Λ or ν = 0.

The sparse grid space associated to the downward-closed multi-index set Λ and the 1D-
interpolation method (Iν)ν∈N0 is

VΛ :=
&
ν∈Λ

Vν =

�D
ν∈Λ

fν : fν ∈ Vν

�
(1.31)

and the corresponding sparse grid interpolant is defined by

IΛ : C0(Γ) → VΛ, IΛ :=
D
ν∈Λ

∆ν . (1.32)

Let us list the most important properties of sparse grid interpolation:

• There exists a sparse grid, i.e. a set HΛ ⊂ J
ν∈Λ Yν ⊂ Γ such that each function f ∈ VΛ

is uniquely defined by the values {f(y) : y ∈ HΛ}, i.e. HΛ is unisolvent for VΛ [CCS14,
Theorem 2.1];

• As a consequence, there exists a Lagrange basis (Ly)y∈HΛ
for VΛ and the sparse grid

interpolant can be written as

IΛ[f ] =
D
y∈HΛ

f(y)Ly;

• Inclusion-exclusion formula: The sparse grid interpolant can be written as a linear com-
bination of tensor product interpolants:

IΛ =
D
ν∈Λ

ανIν , where αν :=
D

i∈{0,1}N:
ν+i∈Λ

(−1)|i|1 . (1.33)

To prove this, it is sufficient to apply the definition of hierarchical surplus (1.30) and the
multi-linearity of the tensor product.

• Assume that Iν is exact on the linear space Vν for all ν ∈ N0 and that V0 ⊂ V1 ⊂ ... Then,
for a downward-closed Λ ⊂ F , IΛ is exact on the linear space VΛ (cf. Definition 1.31).

• The Lebesgue constant of the sparse grid interpolant IΛ is defined as

LΛ := sup
f∈C0(Γ)

∥f∥C0(Γ)=1

∥IΛ[f ]∥C0(Γ) . (1.34)

The relevance of the Lebesgue constant in uniform approximation is that it allows us to
relate the interpolation error to the best uniform approximation error in VΛ:

∥f − IΛ[f ]∥C0(Γ) ≤ (1 + LΛ) inf
g∈VΛ

∥f − g∥C0(Γ) .

This is a consequence of the fact that IΛ is exact on VΛ (cf. previous point). It can be
proved (see [CCS14, Lemma 3.1]) that, if the Lebesgue constant of the 1D interpolant Iν
satisfies:

∃θ ≥ 1 : ∀ν ∈ N0 λν := ∥Iν∥L(C0(Γ)) ≤ (1 + ν)θ,

then for the sparse grid interpolant defined with Iν there holds

LΛ ≤ (1 + #Λ)θ+1 ∀Λ ⊂ F downward-closed;
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• A sparse grid interpolation method (or the corresponding family of sparse grids) is called
nested if, for downward-closed multi-index setsΛ1,Λ2 ⊂ F ,

Λ1 ⊂ Λ2 ⇒ HΛ1 ⊂ HΛ2 .

We see in Section 1.2.4 that nested sparse grid interpolation methods are particularly
suited for adaptive sparse grid refinement.

Remark 1.12 (Sparse grid interpolation method vs sparse grid interpolant). In this section, we
showed how a 1D interpolation method can be “upgraded” to an arbitrary number of dimensions
through the sparse grid construction. Let us be more precise on the vocabulary we use in the rest
of this work:

• A sparse grid interpolation method is uniquely defined by a 1D nodes family (Yν)ν∈N0

(that satisfied the assumptions listed in the beginning of this section) and a linear space
Vν of functions uniquely determined by their values on #Yν (usually piecewise or global
polynomials as seen above);

• A sparse grid interpolant is an instance of a sparse grid interpolation method once a
downward-closed multi-index set Λ is selected. It is an operator IΛ : C0(RN) → VΛ, where
VΛ is defined in (1.31) based on the 1D space Vν through (1.28).

History of sparse grids

The present short historical note is partially inspired by [BG04] and [Du23].
Already in the 1930s, Sobol studied functions f : [−1, 1]N → R for N ∈ N and under the

regularity condition

∥∂af∥Lp([−1,1]N ) ≤ 1,

where a = (a1 . . . , aN ) is such that |a|1 ≤ A ∈ N0. He obtained quadrature error estimates for
m ∈ N nodes formulas of order m−A/N .

In the end of the 1950s Korobov [Kor59] considered the class of functions satisfying the pre-
vious condition for all mixed derivatives corresponding to multi-indices with uniformly bounded
ℓ1 norm, i.e.


f : [−1, 1]N → R : ∥fa∥Lp([−1,1]N ) < 1 ∀a = (a1, . . . , aN ) ∈ NN
0 : |a|1 ≤ A

�
,

again for a given A ∈ N0. Korobov constructed a cubature method with accuracy m−A log (m)AN

with m ∈ N nodes.
Babenko (cf. [Bab60]) introduced in the 1960s the class of dominating mixed derivative

W r,p =

f ∈ Lp([−1, 1]N ) :
D

α∈NN
0 :|α|1≤r

∥∂αf∥Lp([−1,1]N ) ≤ 1


and studied their approximation with hyperbolic cross polynomials.

Sparse grid interpolation was first considered by Smolyak in the 1960s [Smo63]. Here, the
author considers only isotropic sparse grids, which is an improvement over classical tensor prod-
uct interpolation. In this work, the author already identified the now classical interpolation
error bound log (N)β (#H)−α with #H collocation nodes in N ∈ N dimensions.
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Figure 1.5: Left: Tensor product multi-index set ΛTP(3). Right: Corresponding collocation
nodes based on equispaced 1D nodes on [−1, 1].

Sparse grid interpolation is only an instance of the more general technique introduced
in [Zen91] that can combine a much wider class of operators than 1D interpolation, such as
discretization in time and space (e.g. finite element or finite difference methods).

Multilevel methods, such as multilevel Monte Carlo [Gil15], can also be understood as simple
sparse grid methods over two discretization schemes indexed by a scalar parameter. For example,
for the multilevel Monte Carlo method applied to a random coefficient elliptic problem, the two
schemes are: Monte Carlo quadrature (indexed by the number of sample); and the space/time
discretization (indexed by the number of mesh elements and/or timesteps).

In the review paper [BG04] a thorough description of the state of the art at the time of the
publication is given.

Examples of sparse grid interpolation methods

Let us give some examples of sparse grid interpolation methods.

Example 1.13 (Tensor product interpolation). Consider, given ν ∈ N0, the level-to-knot func-
tion

m(ν) =

�
1 if ν = 0,

2ν + 1 if ν ∈ N
, (1.35)

often called the doubling rule. Consider the family of m(ν) equispaced nodes on [−1, 1]:

Y0 = {0} ,

Yν =



−1 +

2(i− 1)

m(ν)− 1
: i = 1, . . . ,m(ν)

�
∀ν ∈ N.

(1.36)

Observe that this nodes family is nested. tensor product interpolation on [−1, 1]N , for N ∈ N
can be understood as a sparse grid interpolation scheme with multi-index set

ΛTP(w) =



ν ∈ NN

0 : max
n=1,...,N

νn ≤ w

�
∀w ∈ N0.

See Figure 1.5 for an example of tensor product multi-index set and corresponding sparse grid.
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Figure 1.6: Left: Total degree multi-index set ΛTD(4). Right: Corresponding collocation nodes
based on equispaced 1D nodes.

If u ∈ C2([−1, 1]N ), we can estimate the error using Taylor’s theorem. We obtain:KKKu− IΛTP(w)
u
KKK
L∞([−1,1]N )

≤ N

2
2−2ν ∥u∥C2([−1,1]N ) ∀w ≥ 0.

Observing that the method uses m(w)N nodes, the error estimate with respect to the number of
nodes reads:KKKu− IΛTP(w)

u
KKK
L∞([−1,1]N )

≤ 2N
-
#HΛTP(w)

4− 2
N ∥u∥C2([−1,1]N ) ∀w ≥ 0,

The convergence is algebraic with respect to the number of collocation nodes, but quickly degrades
as N → ∞.

Example 1.14 (Total degree). Consider again the 1D equispaced nodes (1.36) and the doubling
rule (1.35) as level-to-knot function. This time, we adopt the N ∈ N dimensional total degree
multi-index set

ΛTD(w) =

�
ν ∈ NN

0 :
ND

n=1

νi ≤ w

�
∀w ≥ 0. (1.37)

See Figure 1.6 for an example of multi-index set and corresponding sparse grid. For this choice
of multi-index set, (1.33) yields the following simplified formula for w ≥ N :

IΛTD(w) =
D

w−N+1≤|ν|1≤w

(−1)w−|ν|1
0

N − 1

w − |ν|1

7
Iν .

The corresponding sparse grid is
J

w−N+1≤|ν|1≤w Yν .
This choice of sparse grid parameters was studied e.g. in [BG04]. Consider, for q ∈ {2,∞}

and r ∈ N, the space

W q,r
mix([−1, 1]N ) :=

�
f : [−1, 1]N → R : ∂au ∈ Lq([−1, 1]N ) ∀a ∈ NN

0 : |a|∞ < r
�
.

The sparse grid interpolation error is bounded as (see [BG04, Lemma 3.13])KKu− IΛTD(w)u
KK
L2([−1,1]N )

≤ C log2
/
#HΛTD(w)

63(N−1) /
#HΛTD(w)

6−2 |u|
W 2,2

mix([−1,1]N )
,KKu− IΛTD(w)u

KK
L∞([−1,1]N )

≤ C log2
/
#HΛTD(w)

63(N−1) /
#HΛTD(w)

6−2 |u|
W 2,∞

mix,([−1,1]N )
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where the constant C > 0 is independent of N or Λ. Thus, convergence is algebraic in the
number of collocation nodes but degrades as N increases (although not as quickly as in the case
of tensor product interpolation).

Example 1.15 (Total degree with Clenshaw-Curtis nodes). For ν ∈ N0, the set of m(ν) (defined
with the doubling rule (1.35)) Clenshaw-Curtis nodes is given by the extrema of the degree m(ν)−
1 Chebyshev polynomial, i.e.

Y0 = {1}

Yν =



− cos

0
π(i− 1)

m(ν)− 1

7
: i = 1, . . . ,m(ν)

�
∀ν ∈ N.

(1.38)

This nodes family is again nested. Observe that these nodes differ from Chebyshev nodes, which
are roots of Chebyshev polynomials. For N ∈ N, we consider the total degree multi-index set
ΛTD(w) (1.37) for w ≥ 0.

In [NTW08b], the sparse grid interpolation scheme based on these parameters is used to
approximate maps u : [−1, 1]N → U into a Banach space of functions that admit a holomorphic
extension to ΣN

τ =
%N

n=1Στ , where Στ :=
�
z ∈ C : minx∈[−1,1] |z − x| < τ

�
for some τ > 0.

An example of such map is given by the parameter-to-solution operator of the random diffusion
Poisson problem for suitable choices of the random diffusion. The authors derive the following
convergence estimate: KKu− IΛTD(w)u

KK
C0([−1,1]N ;U) ≤ C1

/
#HΛTD(w)

6−µ1 ,

where µ1 = σ
1+log(2N) and σ = log

-
τ +

√
1 + τ2

4
> 0. C1 = C1(σ,N) is independent of

#HΛTD(W ) and diverges as N → ∞.
The follow-up work [NTW08a] investigates the more general case of a map u : [−1, 1]N → U

admitting a holomorphic extension to
%N

n=1Στn ⊂ CN for a vector τ = (τ1, . . . , τN ) ∈ RN
>0.

The regularity is allowed to differ from parameter to parameter and less regularity with respect
to one parameters corresponds to a smaller size of the domain of extension in that direction
(τn smaller). Consequently, the same direction requires more collocation nodes. The authors
use again Clenshaw-Curtis nodes (1.38) and the doubling rule (1.35). However this time they
employ an anisotropic multi-index set:

ΛTD(ρ, w) =

�
ν ∈ NN

0 :

ND
n=1

ρnνn ≤ w

�
∀w ≥ 0,

where ρ = (ρn)
N
n=1 ⊂ RN

>0 and ρn = 1
2 log(τn +

?
1 + τ2n). See Figure 1.7 for examples of multi-

index sets and corresponding sparse grids. The authors derive again algebraic convergence rates
of the error with respect to the number of collocation nodes:KKu− IΛTD(ρ,w)u

KK
C0([−1,1]N ;U) ≤ C2

/
#HΛTD(W )

6−µ2

where µ2 = min(ρ)(log(2)e−1/2)

log(2)+min(ρ)
�N

n=1 ρ
−1
n

and C2 = C2(ρ, N) in general diverge as N → ∞. However,

if
E

n∈N ρ−1
n < ∞, then C2 and µ2 are uniformly bounded with respect to N and convergence

is dimension-independent. As a consequence, this also allows us to treat parametric functions
defined on sequence domains (formally, N = ∞).

Example 1.16 (Hermite interpolation for non-compact parameter domains). Consider, for
ν ∈ N0, Yν =

�
y0, . . . , ym(ν)

� ⊂ R, the set of m(ν) := ν + 1 zeros of the Hermite polyno-
mial of degree m(ν). Observe that this nodes family is not nested. In [DNSZ23a], the authors
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Figure 1.7: Left: Total degree multi-index set ΛTD(4) (hollow squares) and anisotropic total
degree multi-index set ΛTD((

1
2 , 1), 4) (solid squares). Right: Corresponding collocation nodes

based on Clenshaw-Curtis 1D nodes, respectively in hollow and solid circles.

2 4 6 8

1

2

3

4

5

ν1

ν2

−4 4

−2

2

y1

y2

Figure 1.8: Left: Total degree multi-index set ΛTD((
1
2 , 1), 8). Right: Corresponding collocation

nodes based on Hermite 1D nodes.

apply this sparse grid interpolation method to a class of problem including the parametric log-
normal diffusion Poisson problem. There, it is assumed that the parameter-to-solution map u is
(b, ξ, δ,U)-holomorphic (see [DNSZ23a, Definition 4.1]). By definition, u admits a holomorphic
extension to S(ρ) = �

z ∈ CN : |ℑzj | < ρj ∀j ∈ N
�

and the U-norm of the holomorphic extension
is uniformly bounded by δ > 0. Here ρ > 0 is such that

E
j∈N bjρj < ξ. The multi-index set is

defined as

Λ(ε) =
�
ν ∈ F : c−1

ν > ε
� ∀ε > 0,

where cν =
<

j∈supp(ν)max {1,Kρj}2 νr−τ
j and in turn K > 0, τ > 0, r > max {τ, 1},

ρj =
bp−1
j ξ

4
√
r!∥b∥ℓp

for all j ∈ N. See Figure 1.8 for examples of multi-index sets and correspond-

ing sparse grids. If b ∈ ℓp(N) for 0 < p < 2
3 , then we have the following convergence (see

[DNSZ23a, Theorem 6.13])

∥u− IΛu∥L2(RN,U) ≤ C3

/
#HΛ(ε)

6− 1
p
+ 3

2 ,

where C3 > 0 is independent of #HΛ(ε).

24



Example 1.17 (Leja sequence). Leja sequences on [−1, 1], denoted here as Yn = (yi)
n
i=1 for

n ∈ N, are given by y0 ∈ [−1, 1] arbitrary, and the following n− 1 nodes recursively defined as

yi ∈ argmax
z∈[−1,1]

i−1;
j=1

|z − yj |

(this optimization problem may not have a unique solution, therefore the “∈” rather than simple
equality). For Leja sequences, the Lebesgue constant grows sub-exponentially with respect to the
number of nodes: limn→∞ (λn)

1/n = 0 [TT10]. This can be intuitively understood as a result of
the fact that Leja sequences are a greedy approximation of Fekete nodes (see [Tre19, Page 116]),
i.e. nodes with optimal stability properties (but hard to construct). Leja sequences can be proved
to be asymptotically distributed as Fekete nodes.

Leja sequences can be generalized to any measure and to non-compact domains (see [JWZ18]
and references within): Given a weight w : R → R, define w-Leja sequences on R as follows:
After choosing again y0 ∈ R arbitrarily, let

zi ∈ argmax
z∈R

w(z)
i−1;
j=1

|z − yj | ∀i ∈ N.

It was proved in [JWZ18] that when the weight is in the form w(z) = e|z|
α

, the Lebesgue constant
λn grows sub-exponentially in n ∈ N.

Leja sequences are not often used for a priori sparse grid approximation and their a priori
convergence theory seems not to be well understood. They are more popular in adaptive sparse
grid interpolation (see e.g. [CCS14] and Section 1.2.4 below for more details).

A review of sparse grid interpolation of parametric PDEs

The collocation type approximation of random coefficients PDE started at the end of the 20th
century and satisfactory results for the model problem (the random diffusion Poisson problem
presented in Section 1.1.1) were obtained at the beginning of the 21st century.

The work [XH05] is one of the first in which the authors suggest using sparse grid interpo-
lation to approximate PDEs with random coefficients. They use Clenshaw-Curtis nodes and a
total degree multi-index set as in Example 1.15. They discuss fundamental properties of the
scheme such as exactness over certain polynomial spaces and estimates on the cardinality of
the sparse grid as a function of the dimension N ∈ N and the scalar parameter w ≥ 0 which
determines the cardinality of the sparse grid. The error, estimated in the uniform norm, displays
a convergence behavior that depends weakly exponentially on the number of parameters. This
was still a large improvement over tensor product grids.

In [BNT10], the authors study a Poisson problem with random diffusion and forcing term
under the finite dimensional noise assumption (see Remark 1.7) for both compact and non com-
pact parameter spaces. They prove holomorphic regularity of the parameter-to-solution map
and derive exponential convergence estimates for tensor product approximation. The conver-
gence rate depends however on the number of parameters N , which allows them to treat only
problems with a moderate number of dimensions.

In the subsequent work [NTW08b], the authors consider the scheme we presented in Exam-
ple 1.14 based on Clenshaw-Curtis nodes and a total-degree multi-index set. Under the finite
dimensional noise assumption and when the parameter-to-solution map has holomorphic regu-
larity, the scheme converges exponentially. Convergence depends only mildly on the number of
dimensions, a clear improvement over tensor product interpolation.
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Another improvement was presented in [NTW08a], in which the second scheme we presented
in Example 1.15 was introduced. A stronger sparsity assumption on the diffusion coefficient
allows for a truly dimension-independent approximation under the condition that the multi-
index set, of anisotropic total degree form, is appropriately tuned.

In [NTT16], the approach presented in [NTW08a] is generalized further. The selection of
the sparse grid is based on a profit attached to each hierarchical surplus, so that the sparse
grid selection problem is recast into a Knapsack problem following the earlier work by Griebel
and co authors (see e.g. [BG04]). A convergence criterion is introduced to quantify the rate of
algebraic convergence with respect to the number of collocation nodes and the dependence on the
dimension of the parameter space. The approach is very general, as it makes few assumptions on
the structure of the problem or the 1D interpolation scheme on which sparse grid interpolation
is based. As an example, the authors apply the method to a Hilbert space valued function with
the classical sparsity structure found in solutions of the random elliptic PDEs and discuss both
a priori and adaptive methods. We will dive further into this result in Section 1.2.3.

Beyond the linear elliptic model problem, some works tackled time-dependent problems. In
[ZG12], the authors extend the methodology developed in [BNT10] and the related papers to
a liner parabolic problem with random coefficients under the finite-dimensional noise assump-
tion. They prove existence of a holomorphic extension and convergence of stochastic collocation
schemes for both a space semi-discrete and fully discrete approximations. In this work, holomor-
phy follows from estimates on the derivatives of the parameter-to-solution map together with
the linearity of the problem.

In [NT09], the authors study a linear parabolic problem with random diffusion under the
finite dimensional noise assumption. They prove existence of a holomorphic extension by ex-
tending the problem to complex parameters and verifying the Cauchy-Riemann equations. They
study convergence of stochastic Galerkin and stochastic collocation approximations. The con-
vergence of the latter family of schemes is an application of the convergence proofs found in
previous works.

In [GZ07], the authors consider a coupled Navier-Stokes and heat equation problem with
uncertainty. They opt for the adaptive sparse grid interpolation scheme from [GG03]. The
performance of the scheme is showcased in several examples, e.g. the Rayleigh-Bernard advection
under shape uncertainty of the bottom boundary.

Another important development was considering problems with unbounded parameters that
arise e.g. from Gaussian random field coefficients. In [BCDM17], the authors study the Pois-
son problem with lognormal diffusion, the benchmark problem in UQ with unbounded random
variables. They establish summability results for Hermite coefficients based on local-in-space
summability of the basis used to expand the logarithm of the diffusion.

In [EST18], the authors approximate functions with this property by means of sparse grid
interpolation built using global polynomials with Gauss-Hermite interpolate nodes, like the
ones presented in Example 1.16. They prove algebraic and dimension independent convergence
rates (Theorem 3.18) based on a certain summability properties of the Hermite coefficients
(Assumption 3.9). It is important to notice that this property is stronger than the estimates on
the derivatives one would obtain with the Cauchy’s integral formula. Therefore, generalization
to problems other than the lognormal diffusion Poisson looks problematic.

In the book [DNSZ23a], the authors study the regularity of a large class of problems depend-
ing on Gaussian random field inputs as well as the convergence of several numerical schemes.
Several examples of PDEs with Gaussian random coefficients are given e.g. elliptic and parabolic
PDEs with lognormal diffusion. The main regularity assumption, “(b, ξ, δ,X)-holomorphy” (Def-
inition 4.1), implies estimates on the Hermite coefficients of the parameter-to-solution map.
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These, in turn, can be used to study the convergence of Smolyak-Hermite interpolation and
quadrature (see also Example 1.16).

Finally, another important research path is going beyond the realm of linear PDEs. In
[CCS15], the authors deal with infinite-dimensional parametric problems with compact coeffi-
cient spaces, but go beyond the setting of affine parametric dependence. They prove the existence
of a holomorphic extension of the coefficient-to-solution map without extending the problem to
the complex domain (as is usually done for the random Poisson problem). Rather, they employ
the implicit function theorem for maps between Banach spaces (see Theorem 3.2). This allowed
them to prove parametric regularity for several non-standard problem. based on this regularity,
they prove convergence of Legendre polynomial chaos expansion and sparse grid approximations.

In [CSZ18], the authors use similar techniques in the setting of the stationary Navier-Stokes
equation with random domain. The random domain is described by a parametric transformation
of a reference domain. The countably-many parameters span a bounded domain, so that the
parameter space is compact. They then proceed to apply the result to prove convergence with
rate of approximation with truncated Legendre expansions and sparse grid.

Sparse grid selection through profit maximization and convergence

Above we presented the sparse grid interpolation method and remarked that the interpolation
operator requires a multi-index set Λ ⊂ F . Several explicit examples were also given. However
the choice of the multi-index set Λ is in general not obvious because of its high-dimensionality,
which equals the number of problem parameters. We now present a useful method to select
Λ based on attaching a profit, or “benefit-cost” ratio, to each multi-index and defining Λ as
a suitable set containing the profit maximizing multi-indices. The definition of “benefit” is
tightly bound to the regularity properties of the parameter-to-solution map u. This method was
originally introduce by Griebel and co authors (see e.g. [BG04]) and later used e.g. in [GG03,
BNTT11a, BTNT12] (for sparse grid quadrature) and in [EEST22, GN18] (for adaptive sparse
grid interpolation). The following discussion is based on the more recent application in [NTT16].

Fix a function u ∈ C0(Γ), a sparse grid interpolation method with 1D-nodes family Yνν∈N0
,

and a computational budget Q ∈ N, i.e. the maximum number of collocation samples allowed.
We look for a (quasi) optimal approximation, or equivalently for a downward-closed multi-index
set Λ ⊂ F with #HΛ ≤ Q such that

∥u− IΛu∥ ≲ min

KKu− IΛ̃u

KK : Λ̃ ⊂ F downward closed such that #HΛ̃ ≤ Q
�
, (1.39)

where the hidden constant is independent of Λ and ∥·∥ is an appropriate norm for parametric
maps u : Γ → U.

In [NTT16], the authors suggest to proceed as follows. A sequence (vν)ν∈F ⊂ R≥0 is called
a value for the sparse grid interpolation method applied to the function u if

∥∆ν [u]∥ ≲ vν ∀ν ∈ F . (1.40)

A sequence (wν)ν∈F ⊂ R>0 is called a work for the sparse grid interpolation method ifD
ν∈Λ

wν ≲ #HΛ ≲
D
ν∈Λ

wν ∀Λ ⊂ F downward-closed, (1.41)

where the symbol “≲” denotes an estimate up to a fixed constant independent of ν ∈ F (respec-
tively Λ ⊂ F). The multi-index Λ as in (1.39) solves the following knapsack problem:

max

�D
ν∈Λ

vν : Λ ⊂ F downward-closed and
D
ν∈Λ

wν ≤ Q

�
.
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Since the Knapsack problem is NP-hard, we consider its linear relaxation. Its solution is com-
puted as follows:

1. Define the profit

Pν :=
vν
wν

∀ν ∈ F . (1.42)

We can always assume that profits are monotone, i.e. Pν+en ≤ Pν for all ν ∈ F , n ∈ N.
This is because, in case they are not, we can always work with modified profits P̃ν defined
as P̃ν = maxµ≥ν Pµ. However, if the profit is estimated a-posteriori, this quantity may be
difficult to compute. Therefore the decay of the profits may need to be assumed (saturation
assumption).

2. Introduce the partial ordering of F induced by Pν :

νi ≥ νj ⇔ Pνi ≥ Pνj ∀i, j ∈ N.

If two multi-indices have the same profit, sort them in lexicographic order.

3. Let

Λn := {ν1, . . . ,νn} ∀n ∈ N, (1.43)

and find the largest M ∈ N such that #HΛM
≤ Q, and define Λ = ΛM .

The approximation error of the corresponding sparse grid interpolation is estimated as fol-
lows.

Theorem 1.18. [NTT16, Theorem 1] If there exists τ ∈ (0, 1] such that

Cτ :=

.D
ν∈F

Pτ
νwν

51/τ

< ∞,

then

∥u− IΛnu∥ ≤ Cτ#H1−1/τ
Λn

.

The previous theorem generalizes Stechkin’s lemma (cf. Corollary D.2), which corresponds
to the case wν = 1 for all ν ∈ F . In the original reference, the result is proved only under the
finite dimensional noise assumption (see Remark 1.7). However, the proof applies verbatim to
the infinite dimensional case since F is countable.

1.2.4 Adaptive sparse grid interpolation

In the previous section, we assumed we knew regularity and sparsity of the parametric map. We
used this information to allocate a suitable number of collocation nodes per tuple of parametric
direction in order to resolve the dependence of the solution on the corresponding scalar parame-
ters. If however the regularity and sparsity of the parametric map are unknown, it may a priori
not even be possible to produce an approximation algorithm that converges with a dimension-
independent rate. This is what often happens in practical applications, in which the random
coefficient PDE problem may be too complicated or beyond the known techniques to conduct a
regularity analysis. Adaptive approximation methods offer a possible solution to this problem.
Adaptive algorithms iteratively refine an approximation of increasing dimension and use it to
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choose with respect to which parameter (or parameter tuple) to refine it in order to improve
accuracy.

In general, adaptive numerical methods work by generating a sequence of numerical approx-
imation uℓ ∈ Vℓ, where Vℓ is a linear space of dimension d(ℓ) ∈ N, which in turn is an increasing
function of ℓ ∈ N0. The sequence of approximate solutions achieves smaller and smaller errors
∥u− uℓ∥ so that, for any fixed tolerance ε > 0 an ℓ∗ = ℓ∗(ε) ∈ N0 exists so that ∥u− uℓ∥ ≤ ε.
Adaptive algorithms often require a “refinement parameter” θ ∈ (0, 1). They often consist of the
following four steps, which are iterated in a loop for ℓ = 0, 1, . . . , L:

1. COMPUTE the discrete solution uℓ ∈ Vℓ. It is assumed that this can be computed based on
the knowledge of the discrete space Vℓ. This space is either given as an initial space V0 or
computed based on information obtained in the previous loop;

2. ESTIMATE the error: ∥u− uℓ∥ ≤ ζ(uℓ). The a-posteriori error estimator ζ(uℓ) ≥ 0 must
be computable given uℓ. Often finding a suitable definition of ζ(uℓ) is not trivial;

3. θ − MARK the “features” of Vℓ that need to be refined;

4. REFINE the space Vℓ based on the previous step to obtain Vℓ+1.

The spaces Vℓ and the precise definition of MARK and REFINE depend on the concrete problem
at hand. Often, the a-posteriori estimator ζ(uℓ) has a richer structure that is used in the steps
MARK and REFINE. The fact that adaptive algorithms produce (quasi)-optimal solutions and their
convergence is non-trivial and must be proved for the specific problem at hand (see [CFPP14]
for a fairly general theory that however can be applied mostly to Galerkin-type methods).

The adaptive approach to sparse grid selection has a number of advantages: There is no need
to derive a priori estimates to determine a suitable index set. Moreover, adaptive algorithms
tend to select a discrete space that is tailored to the function at hand, while a priori selection is
usually optimal for a whole regularity class of functions. This means that adaptive algorithms
often deliver more accurate approximations for a comparable computational cost.
On the other hand, when possible, selecting the sparse grid a priori also has advantages: All
collocation samples can be computed in parallel (if appropriate hardware is available). Moreover,
the use of non-nested nodes makes adaptive computation possibly redundant, while for a priori
sparse grid non-nested nodes are just as effective as nested ones. Finally, the theoretical analysis
of adaptive algorithms is more complex and fewer results are available.

To describe some popular adaptive methods we have to introduce:

Definition 1.19. Given a multi-index set Λ ⊂ F the margin of Λ is by definition

MΛ := {ν ∈ F \ Λ : there exists n ∈ supp (ν) : ν − en ∈ Λ} .
The reduced margin of Λ is by definition

RMΛ := {ν ∈ F \ Λ : for all n ∈ supp (ν) : ν − en ∈ Λ} .
Let us now briefly present some adaptive sparse grid interpolation methods.

In [GG03], the authors propose one of the first dimension-adaptive sparse grid quadrature
methods. The algorithm automatically selects the most relevant dimensions needed to achieve
an approximation error within the desired tolerance and neglects the others. Starting from the
trivial multi-index set, a nested sequence (Λℓ)ℓ∈N of multi-index sets is defined as

Λ0 = {0} , Λℓ+1 = Λℓ ∪ {ν} ∀ℓ ∈ N,

29



where ν ∈ RMΛℓ
(see Definition 1.19) is the maximizer of a given error indicator gν :

ν = argmax
ν∈RMΛℓ

gν

The error indicator gν is defined based on ∥∆νu∥L∞(ΓN ), which can be interpreted as a com-
putable estimate of the value (1.40), and the work (1.41) (always easy to compute) associated
to ν. For example, gν can be defined as the ratio of a-posteriori value and work, analogously to
the profit (1.42).

A heuristic error estimator is given by
E

ν∈MΛ
gν . However, the actual error is only bounded

by
E

ν /∈Λ ∥∆νu∥L∞(Γ) and there is in general no guarantee that the former sum bounds the lat-
ter, even up to an Λℓ-independent constant. This may be more easily proved if an appropriate
saturation assumption holds, i.e. if ∥∆νu∥L∞(Γ) decreases sufficiently fast with the magnitude of
the multi-index. This assumption excludes e.g. functions u with local peaks or discontinuities.
Nevertheless, this adaptive method almost always works well in concrete examples, which sug-
gests that a saturation assumption indeed holds true. Finally, let use mention that computing
gν requires additional samples of the parameter-to-solution map, therefore entailing a relatively
large computational cost of this step.

In [CCS14], an adaptive sparse grid interpolation method is defined. The authors use Leja
sequences (see also Example 1.17) to obtain a maximally granular sparse grid interpolant, i.e.
sparse grid and multi-index set have the same cardinality (each collocation node corresponds
to one multi-index). The multi-index set is selected greedily by looking at the multi-index in
the reduced margin that corresponds to the point with maximum pointwise interpolation error,
thus leading to naturally nested sparse grids. There is no guarantee of convergence because of
data oscillations, and lack of additional assumptions that would come from considering a more
specific problem. In Theorem 4.4 it is proved that, for the parametric affine diffusion Poisson
problem (Example 1.8 with diffusion 1.15) and 0 < p < 1 such that

-
∥ϕj∥L∞(D)

4
j∈N

∈ ℓp

(decay of the affine diffusion basis functions), a sequence of sparse grid interpolants leading to
optimal approximation rates O

-
(#H)1−1/p

4
, indeed exists. The adaptive sparse grid algorithm

behaves optimally in numerical experiments but convergence is guaranteed only after a possibly
sub-optimal modification of the algorithm.

In [GN18], the authors tackle the problem of sparse grid–finite element approximation of the
parametric affine diffusion Poisson problem (i.e. Example 1.8 with diffusion (1.15)). They first
define a reliable a-posteriori estimator for both the sparse grid and finite element approximation
error. They use it to define an adaptive algorithm under the assumption of a negligible finite
element error. u : Γ → U denotes the (exact) parameter-to-solution map from Problem (1.14),
where Γ = [−1, 1]N for N ∈ N (i.e. they work under the finite dimensional noise assumption,
see Remark 1.7) and U = H1

0 (D). The fully discrete sparse grid-finite element solution is
IΛ[U ] =

E
y∈HΛ

UyLy, where IΛ denotes sparse grid interpolation with respect to a given
downward-closed multi-index set Λ ⊂ NN

0 and U : Γ → U denotes the parameter-to-finite-
element-solution map which, to the parameter y ∈ Γ, associates U(y) = Uy ∈ Uy := S1

0 (Ty),
i.e. a conforming finite element approximation of u(y) in the space of piecewise linear functions
with respect to the shape-regular mesh Ty. The total estimator is composed of a parametric
estimator

ζSC,Λ :=
D

ν∈MΛ

ζν,Λ, ζν,Λ := ∥∆ν (a∇IΛ[U ])∥L∞(Γ,L2(D)) (1.44)
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(the gradient ∇ here acts exclusively on the space variable x ∈ D) and a finite element estimator

ηFE,Λ :=
D
y∈HΛ

ηy ∥Ly∥L∞(Γ) , ηy :=

 D
T∈Ty

η2y,T

 1
2

,

η2y,T := h2T ∥f +∇ · (a(y)∇Uy)∥2L2(T ) +
D
e⊂∂T

he

KKKK12 [a(y)∇Uy · ne]ne

KKKK2
L2(e)

,

(1.45)

where [·]ne denotes the jump over the edge (face) in normal direction ne. Their combination
yields a reliable upper bound (see [GN18, Proposition 4.3]) i.e.

∥u− IΛ[U ]∥L∞(Γ,U) ≤
1

amin
(CηFE,Λ + ζSC,Λ) , (1.46)

where amin > 0 appears in the equivalence relation between H1
0 (D) and energy norm

a
1/2
min ∥v∥H1

0 (D) ≤
KKKa(y) 1

2∇v
KKK
L2(D)

≤ a1/2max ∥v∥H1
0 (D) for a.e. y ∈ Γ for all v ∈ H1

0 (D)

and C > 0 depends only on the shape regularity of Tinit. The authors also discuss an adaptive
algorithm in the case of a negligible finite element error and support results with numerical
experiments.

In the sequence of papers [BSX22a, BS23, BS24], the authors suggest an alternative to [GN18]
that can tackle the non-affine case (but still compact parameter domain and under the finite
dimensional noise assumption). They employ a hierarchical a-posteriori error estimator, mean-
ing that the error is estimated by a difference of a refinement of the current approximation
and the approximation itself. Also this error estimator splits in a parametric and space contri-
butions. Reliability depends on the validity of a saturation assumption i.e., loosely speaking,
the approximation error (in parametric and physical space) contracts when both parametric
and space discretizations are refined. As for the adaptive algorithm, either parametric or space
approximation is carried out at each iteration, based a on comparison of the estimators. A
Dörfler-type refinement is carried out on the selected feature, based on a parameter θ ∈ (0, 1).
Numerical examples suggest a convergence rate of order 1

3 for the single-level method (i.e. same
finite element space in all collocation nodes). A more general strategy consists of allowing for
different meshes in different collocation nodes, called a “multilevel” strategy in this work. Again,
the method approximates the solution of the affine diffusion Poisson problem with order 1

3 . Only
on a “single peak” problem with parametric right-hand side the multilevel method has an im-
proved convergence order 1

2 compared to again order 1
3 for the single-level. Plain convergence

of the multilevel algorithm is proved under summation properties of the Taylor coefficients of
a semidiscrete approximation, implied for the Poisson problem by suitable growth conditions
on derivatives of the diffusion. The authors stress the difference between error estimators, used
exclusively to estimate the approximation error, and error indicators, used to guide refinement.
While a sum of error indicators bounds the estimator, it is not an efficient estimate itself, i.e.
the error decays at a faster rate. More recently, the related preprint [BPRS24] on goal oriented
sparse grid adaptivity appeared.

In the recent work [GS24], the authors approximate quantities of interest of the the lognormal
diffusion Poisson problem using an adaptive sparse grid technique that combines parametric,
spatial and truncation approximations. They define difference operators for the truncation,
finite element approximation (on a sequence of uniform meshes indexed by a scalar parameter),
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and quadrature (through sparse grid Gauss-Hermite quadrature) and combine them to define
hierarchical surpluses, which in turn form the sparse grid approximation when appropriately
summed. The error can be heuristically estimated with a sum of norms of hierarchical surpluses
over the margin:

E
ν∈MΛ

∥∆u∥. This is as in [GG03] not a reliable estimator and requires
additional samples. The sparse grid is enlarged greedily by iteratively enriching Λ with the
multi-index that maximizes a value-cost ratio ∥∆ν∥ /cν , where cν quantifies the added cost
if evaluating the refined sparse grid approximation. Convergence follows from a saturation
assumption, the proof of which is however out of reach in this setting. While convergence
and optimality are not proved, a number of numerical examples suggest that the bottleneck of
convergence is the space discretization.

Remark 1.20 (Comparison of adaptive methods).

• The estimator from [GN18] and [BSX22a, BS23, BS24] are reliable, while the one from
[GG03] and [GS24] may not be. Remember however that the first two algorithm are tailored
to the affine diffusion Poisson problem, while the last two are, in different aspects, more
general. The reliable estimator can be used to stop the adaptive procedure and ensure that
the error is below a given tolerance. Reliability also allows us to prove convergence of the
discrete solution by proving that the estimator vanishes;

• The estimator in [GN18] can be computed without further sampling of the parameter-
to-solution map, while the one in [GG03], [GS24], and [BSX22a, BS23, BS24] require
additional collocation samples;

• The fact that the reliable parametric estimator (1.44) is a finite sum (it is a sum over
the margin of the multi-index set MΛ, which is finite if the finite-dimensional noise as-
sumption holds) is a consequence of the choice of an affine random diffusion. For different
random models, such as the Poisson problem with lognormal diffusion, reliability is in gen-
eral possible only with an infinite sum of pointwise estimators. However, if a saturation
assumption holds, the infinite sum may again be bounded, up to a constant, by a finite sum
(e.g. on the margin);

• Neither [GG03] nor [GN18] or [GS24] prove convergence of the parametric adaptive pro-
cedures. In [EEST22], the authors prove plain convergence for the methods studied in the
first two papers. In [FS21], we prove plain convergence of the algorithm from [GN18] (see
also Theorem 2.15). We then define a fully discrete adaptive algorithm by adding finite
element refinement and prove convergence for this as well. As already mentioned, [BS24]
proves the same for the adaptive algorithms hierarchical estimators. These three proofs
are based on a technique introduced in [BPRR19] in the context of the stochastic Galerkin
method;

• Dimensional adaptivity is considered only in [GG03], [CCS14] and [GS24]. The other
algoirhtms rely on the finite dimensional noise assumption;

• An important aspect to consider to obtain optimal adaptive sparse grid methods is that
error indicators should not be directly used as error estimators. Efficient error estimators
are often bounded from above by sums of error indicators, an the last ones should only be
used to guide refinement (often in a greedy way, based on a cost-work ratio;

1.2.5 Other high-dimensional approximation and integration methods

In the present section, we mention a few (among the many) other high dimensional approxima-
tion and integration algorithms and compare them to sparse grid interpolation.
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Quasi-Monte Carlo quadrature

Quasi-Monte Carlo quadrature (QMC) (see the review [DKS13], the monograph [LP14] or the
upcoming monograph [Owe23] with draft available online) is an equal weights quadrature formula
with deterministic collocation nodes aimed at improving the O(N−1/2) convergence rate of Monte
Carlo quadrature. Given a function f : Γ → R, where Γ ⊂ RN with N ∈ N (or, as above, Γ may
come from truncating F , the space of sequences with finite support defined in Equation (1.22)),
a QMC formula with M ∈ N nodes (yi)

M
i=1 ⊂ Γ reads simply QM (f) = 1

M

EM
i=1 f(yi).

The quadrature error of any equal weight formula is bounded by the product of the dis-
crepancy of the points set and a norm of the derivatives of the integrand (the Koksma-Hlawka
inequality [Hic14]). For this reason, collocation nodes are chosen as low discrepancy sequences.
This means that they are well distributed on the integration domain without leaving large
empty areas. Some examples are: Sobol sequences [Sob67], lattice rules [DKP22], and digital
nets [DP10].

When no assumption on the sparsity of the integrand is made, usual results show dimension-
dependent convergence with estimates that present e.g. a multiplicative term log (M)N . Quadra-
ture methods can be informed about the sparsity of the integrand through weighted Sobolev
spaces. Weights {γu : u ⊂ {1, . . . , N}} ⊂ R≥0 quantify the relative importance of a parameter or
set of parameters. The basic setting is the one of a Reproducing Kernel Hilbert Space (RKHS)
defined via a weighted kernel. Such a kernel KN,γ(x,y) : Γ× Γ → R may be defined by

KN,γ(x,y) :=
D

u⊂{1,...,N}
γu

;
j∈u

η(xj , yj),

where η(x, y) is an appropriate 1D kernel of x, y ∈ R. It can be proved that the corresponding
scalar product reads

⟨f, g⟩N,γ =
D

u⊂{1,...,N}
γ−1
u

*
[0,1]|u|

.*
[0,1]N−|u|

∂uf(x)dxuc

5.*
[0,1]N−|u|

∂ug(x)dxuc

5
dxu, (1.47)

where uc = {1, . . . , s} \ u. If the weights vanish sufficiently fast (equivalently, they have suitable
summability properties), then a dimension independent convergence of the QMC formula is
possible for an appropriate choice of quadrature nodes which necessarily have low discrepancy
and depend on the weights γ. The choice of weights is crucial to describe the sparsity of the
integrand. An important example in the setting of random coefficient PDEs are Component by
component (CBC) weights [KSS12].

QMC has applications in several fields of science and engineering (especially in computational
finance [AG07]). In applied mathematics, QMC is a popular method to approximate integral
quantities of interest (such as moments or probabilities of events) of random coefficient PDEs
(see, among many other works, [KN16, GKN+11, KSS12]). The use of different low discrepancy
sequences has been explored and dimension-independent linear, polynomial, or exponential con-
vergence rates have been obtained depending on the regularity of the parametric map and choice
of quadrature nodes.

Remark 1.21 (Comparison of analytical properties and techniques for QMC quadrature and
sparse grid interpolation). While QMC quadrature and sparse grid interpolation are numerical
methods for different problems, the high-dimensionality setting and how both can circumvent the
curse of dimensionality allows for some interesting comparison:

• Sparse grid nodes are very far from being low discrepancy sequences (it is clear looking at
e.g. Figure 1.6). Moreover, sparse grid quadrature is not an equal weights formula;
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• When no assumption on the sparsity of the function is available, error estimates for both
methods present dimension-dependent factors;

• Sparsity, the assumption needed to obtain dimension-independent convergence, is under-
stood in two formally different but morally similar ways in QMC quadrature and sparse
grid interpolation:

– In QMC, the integrand f is assumed to belong to a RKHS with weighted scalar product,
where the weights vanish (in an appropriate sense). A finite RKHS norm (e.g. the
one associated to (1.47)) roughly means summability of appropriate integral quantities
of derivatives of the integrand function;

– In sparse grid interpolation, sparsity can ultimately be understood as the finiteness of
the constant Cτ (for some 0 < τ < 1) in Theorem 1.18. This in turn means weighted
summability of integral quantities of derivatives of the function to interpolate; A dif-
ferent method is analysed in [EST18], where convergence of a spectral-type sparse grid
interpolation is implied (again) by a weighted summability of integrals of derivatives
(see Assumption 3.9);

Therefore, the two concepts of sparsity are formally different but qualitatively similar. In-
deed, sparsity is often proved with similar methods, such as the existence of a bounded
holomorphic extension (with a sufficiently large domain of holomorphy) or through a re-
cursive argument (see the list in Section 1.1.4);

• QMC often has a dimension-independent convergence in a wider range of cases compared
to sparse grid. This can be intuitively understood since a surrogate model contains more
information than quadrature;

• Stability is an issue for sparse grid interpolation of “spectral type”, as well as for high-order
QMC quadrature;

• Several different strategies are available with both methods when dealing with unbounded
domains, e.g. RN for N ∈ N:

– The problem can be reduced to interpolation or approximation on the unit cube [−1, 1]N

by a change of variable. In QMC, this is done for example in [NS23], in which the
authors truncate the domain of integration RN to a high-dimensional cube [a, b] for
a, b ∈ RN and perform quadrature on [a, b] with scaled lattice rules on [0, 1]N . The
error is split in a quadrature and a truncation term. They so achieve high-order con-
vergence limited only by the integrand smoothness. As for sparse grid interpolation,
our approach in Chapter 3 is under some aspects similar: We build a sparse grid
interpolation method based on piecewise polynomial interpolation on an interval, and
extend outward using the polynomial defined on the first and last subinterval. See
Section 3.5 for additional details;

– When using high-order methods, a scaling is not always possible because of stability
issues. Hermite nodes, i.e. zeros of hermite orthogonal polynomials are a popular
choice for high order sparse grid approximation of functions of Gaussian random
variables, see e.g. [EST18, DNSZ23b] as well as Example 1.16 above. For QMC
integration, an approach in which the affine scaling strategy is still viable is given
in [DILP18]. Here, the authors approximate integrals in the form

+
RN f(y)µ(x)dx,

where f belongs to a RKHS based on Hermite polynomials, and µ is the N -dimensional
standard Gaussian density. High-order digital nets are mapped from the unit cube
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[0, 1]N to an appropriate cube in Rs to obtain optimal rate O(N−α) up to a logarithmic
term, where α > 0 corresponds to the regularity of the integrand.

Other high-dimensional approximation methods

Moving to the domain of approximation (also called reduced order modeling), methods that
produce a sparse polynomial approximation are presented in the review paper [CD15] and the
monograph [ABW22]. In particular, we have

• Truncated sparse Taylor polynomial : Already discussed in Section 1.2.2;

• Generalized polynomial chaos (gPC). The polynomial approximations is expressed in a
basis of orthogonal polynomials with respect to a fixed measure. The approximation is
often quasi-optimal in the least-square sense with respect to the product of these measures.
See [EMSU12, WK06, XE02];

• Stochastic Galerkin: As in the generalized polynomial chaos expansion (see above), the
parametric dependence is modeled with orthogonal polynomials, while the physical vari-
ables dependence is discretized with the classical finite element method. The problem
is so reduced to the solution of a large linear system with a block structure where each
block is comparable to a deterministic finite element matrix and the number of blocks is
determined by the cardinality of the parametric polynomial basis. Stochastic Galerkin
is an intrusive method since the problem can only be solved “all at once”. The method
requires the solution of large linear systems, whose size is a multiple of the size of the
corresponding deterministic finite element system dependent on the number of parametric
basis functions. On the positive side, being a projection-type method, Stochastic Galerkin
offers quasi-optimality properties. See [FST05, GS91, Gha99, MK05, XK03] for a priori
approximation and [BPR21, BPR22, EGSZ14, EGSZ15] for adaptive methods;

• Least Squares : A flexible method with good stability properties that achieves a quasi-
optimal approximation in the L2 sense. It allows for approximation with noisy samples.
Samples can (but need not to) be random Monte Carlo samples. The number of samples
needed for a stable approximation scales like the approximation space dimension plus a log-
dependent term. stability is only log-dependent on the number of parametric dimensions.
While the quasi-optimality leaves freedom in the choice of discrete space, sparse polynomial
spaces defined though downward-closed multi-index sets are often the preferred choice.
See [CDL13, CCM+15, CM17, CM23];

• Compressed sensing : A method to approximate sparse solutions of under-determined lin-
ear systems. By sparse here we mean small ℓ0 norm (number of nonzero components).
Since this problem is NP hard, it is often relaxed to an ℓ1 minimization problem. Com-
pressed sensing does not require exact knowledge of the multi-index set to use, rather
identifies it itself. Compressed sensing algorithms, such as Quadratically Constrained Ba-
sis Pursuit (QCBP) or Least Absolute Shrinking and Selection Operator (LASSO), can be
constrained to look for solutions on lower sets, to deal with measurement errors, and close-
to-sparse exact solution. The method is non-intrusive (requires only collocation samples).
See [BBRS15, BMP15, MG12].

Other methods that use sparsity but do not necessarily produce a sparse polynomial approx-
imation, are

35



• Reduced basis : The aim is to find an n-dimensional linear subspace Vn ⊂ V of the linear
space to which solutions belong. The dimension n should be as small as possible, but
Vn should also “approximates well” the solutions manifold (in the sense of Kolmogorov
widths, see [CD15, Definition 1.41]). Vn is build with linear combinations of snapshots
u(a1), . . . , u(an) form the solution manifold. While the computation of snapshots (offline
phase) may be time consuming, once Vn is available, it can be used (online phase) to carry
out fast queries of the surrogate model. The performance of the algorithm depends on
how the snapshots are chosen. Popular strategies belong to the family of greedy selection
algorithms (see [CD15, Section 8]). See also[CQR17] for a study of the method applied to
the classical random coefficient elliptic problem, and the monograph [QMN15];

• Low rank tensor representations : A family of nonlinear methods that can be understood
as a generalization of the classical separation of variables techniques. They provide a
compressed approximation of functions and allow for memory save and speed-up of linear
algebra operations. See [DKLM15, EHL+14, BCD17, Bac23]. Dynamical low-rank ap-
proximation methods proved to be very effective to approximate evolutionary problems
with high-dimensional parameters. See [Mus17];

• Artificial Neural Networks (ANN): A surrogate model of the parameter-to-solution map
can be given by an ANN. If appropriately trained, it can quickly provide accurate approx-
imate samples of the random PDE solutions. ANNs have been shown to be a powerful
approximation tool in a number of fields such as image classification, speech recognition,
time series analysis. The current evidence suggests that they can overcome the curse of
dimensionality (see Section 1.2.1). Despite the ever increasing number of successful appli-
cations, a comprehensive theoretical understanding is still missing and theoretical aspects
of neural network approximation is an active field of research. Let us mention a few results
in this direction: In [GHJvW23], the authors show that ANNs can effectively approximate
the solutions of Back-Scholes PDEs and circumvent the curse of dimension. In particular,
the number of ANN parameters scales linearly with the inverse of the prescribed approx-
imation accuracy and also linearly with the number of PDE dimensions. In [OPS20], the
authors use Deep Neural Networks to approximate functions on the interval and they prove
they achieve convergence rates comparable to “best in class” approximation schemes for
functions of the corresponding regularity. In the follow-up work [OS24], the authors prove
expressivity and stability results with respect to Sobolev norms for piecewise-polynomial
functions defined on a partition of the interval. They achieve this by a new construc-
tion based on Chebyshev coefficients, easy to compute given samples of the function over
Clenshaw-Curtis nodes. Again exponential expression rates are proved for analytic func-
tion. However, one should also mention negative results such as [GV23], which shows that
high rates of convergence is impossible in practice.

1.2.6 Finite element and fully discrete approximations

Consider u : Γ → U solution to a parametric boundary value problem. Recall that Γ ⊂ RN

is the parameter set, U is a Banach space of functions, and IΛ : C0(Γ) → VΛ denotes the
sparse grid interpolant defined by the downward-closed (and finite) multi-index set Λ ⊂ NN

0 and
appropriate 1D interpolation operator. However, IΛu is not a computable approximation of u,
since the collocation samples u(y) for y ∈ Γ are in general not explicitly available.

To this end, we introduce the parameter-to-finite-element-solution map U : Γ → Uh, i.e. for
any y ∈ Γ, U(y) is the finite element approximation of u(y) in the finite element space Uh, a
piecewise polynomial space on a triangulation of the domain with suitable boundary condition.
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We can then substitute the collocation samples u(y) for y ∈ HΛ with their finite element
approximations U(y) and obtain a sparse grid finite element approximation

IΛU =
D
y∈HΛ

U(y)Ly.

We estimate the approximation error by the triangle inequality:

∥u− IΛU∥Lp(Γ,U) ≤ ∥u− IΛu∥Lp(Γ,U) + ∥IΛ [u− U ]∥Lp(Γ,U) , (1.48)

where the first term accounts for the sparse grid error, while the second one for the finite element
approximation. To obtain a small approximation error, the multi-index set must be chosen to
capture the major features of the parameter-to-solution map, while the finite element space
should resolve the geometric features and related singularities in space. Observe that for p = ∞
this second contribution can in turn be estimated as

∥IΛ [u− U ]∥L∞(Γ,U) ≤ LΛ ∥u− U∥L∞(Γ,U) ,

where we recall that LΛ > 0 denotes the Lebesgue constant of the sparse grid interpolant IΛ
(cf. (1.34)).

Observe that an alternative splitting is possible:

∥u− IΛU∥Lp(Γ,U) ≤ ∥u− U∥Lp(Γ,U) + ∥U − IΛU∥Lp(Γ,U) .

However, this expansion is harder to analyze than (1.48) since bounding ∥U − IΛU∥Lp(Γ,U)
requires knowledge of the regularity of the parameter-to-finite element solution map, which in
general is not easier to study that the “exact” parameter-to-solution map. As we have seen in
Section 1.1.4, the parameter-to-solution map arising from parametric PDEs is often analytic
(admits a holomorphic extension) and sparse. This needs not be the case for the parameter-to-
finite-element-solution map. A notable exception is the Poisson problem when the same finite
element space corresponds to each collocation node. The proof of holomorphy can be carried
out verbatim from the one of the exact solution. The main reason is that the finite element
solution is also defined as the solution to a variational problem.

When instead different finite element spaces are used for different collocation nodes, the
regularity may “break” because the variational spaces corresponding to each collocation point
is not the same. A strategy that lies “in between” using different finite element spaces for each
collocation node and always using the same is using a multilevel method. This idea was introduced
by Giles (see e.g. [Gil15]) in he context of Monte Carlo quadrature. The high flexibility and
generality of the multilevel framework allows to apply it to a number of other methods such as
quasi-Monte Carlo quadrature [HS19, KSS15] and sparse grid interpolation [TJWG15, LSS20],
as well as different space and time discretization methods.
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1.3 The stochastic Landau–Lifshitz–Gilbert equation (SLLG)

In the present section, we introduce the stochastic Landau–Lifshitz–Gilbert equation, a random
model in micromagnetics, i.e. the study of magnetic bodies at sub-micrometer scale. We start
in Section 1.3.1 by giving a physical description of such materials. We then move to the de-
terministic LLG equation (cf. Section 1.3.2) and only afterwards (cf. Section 1.3.4) extending
the model to the stochastic case. In Sections 1.3.3 and 1.3.5, we present numerical methods for
the space and time approximation in the deterministic and stochastic problem respectively. In
Section 1.3.6, we show how the SLLG equation can be reduced to a random coefficient PDE and
in Section 1.3.7 we discuss a numerical scheme for its space and time approximation. Finally, in
Section 1.3.8 we list possible physics and engineering applications of a reduced order model of
the random field solution.

1.3.1 Physical observations on magnetic materials

The following short introduction to the physics of magnetic materials is based on [Rug20]. See
Appendix A for a list of physical units.
Simple experiments reveal that bodies made of particular materials react when subject to an
external magnetic field B (in T ). Such materials are called magnetic. They are subject to a
torque τ (in J) that causes the magnetic body to align with the magnetic field. The magnetic
moment µ (in J

T or equivalently Am2) of a body relates the torque to the external magnetic
field:

τ = µ×B.

The quantity of magnetic moment per unit volume is called magnetization m̃ (in A
m). In micro-

magnetics, one neglects the atomistic nature of the body and rather describes it in the framework
of continuum physics.
A body made of a magnetic material possesses a (non-zero) intrinsic magnetic moment.
Permanent (or spontaneous) magnets are bodies made of magnetic materials that can be mag-
netized and, as a consequence, spontaneously generate a magnetic field.
Permanent magnets can be either ferromagnetic or ferrimagnetic. The two categories differ in
their microstructure: For ferromagnets, the atomic magnetic poles are aligned in the same di-
rection. For ferrimagnets, neighbouring magnetic poles point in opposite directions, but their
contribution is different and the net magnetic moment is non zero.
A ferromagnet that easily demagnetizes after being magnetized is called magnetically soft. By
contrast, if it tends to remain magnetized it is called magnetically hard. Ferromagnets can be
demagnetized when subject to external magnetic fields. This susceptibility is called coercivity of
the ferromagnet. Soft materials have low coercivity while hard materials have high coercivity.
For a magnetic material, we have then the following local relation:

B = µ0(H + m̃),

where B (in T ) is the magnetic flux density, µ0 is the vacuum permeability (in N
A2 ) and H is

the magnetic field (in A
m). Magnetic materials can be classified based on the dependence of m

on H.
In linear magnetic materials there is a constant magnetic susceptibility χm ∈ R3×3 (dimen-
sionless) such that m̃ = χmH. If χm is positive definite, the material is paramagnetic. If χm

is negative definite, the material is diamagnetic. Paramagnetic and diamagnetic materials are
(unintuitively) called non-magnetic because they have no magnetization without an external
magnetic field.
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Beyond linear materials, it may even be impossible to write the magnetization as a function of
the magnetic field. This is the case of magnetic hysteresis, in which the magnetization depends
on the past time evolution of the magnetic field [BM05]. Concrete specimens of magnetic mate-
rials often present a domain pattern: Each domain has a relatively uniform magnetization and
they are separated by interfaces called walls. These structures have a width of order 10nm and
are classified based on how the magnetization transitions. For example, in Bloch walls, transition
proceeds perpendicularly to the transition axis. In Néel walls, the rotation proceeds in the plane
spanned by the transition axis. More complex wall structures are also known [KP06].

1.3.2 The (deterministic) Landau–Lifshitz–Gilbert equation (LLG)

Each magnetic material has a Curie temperature (in K), below which the magnetization has
constant modulus |m̃|2 =

?
m̃2

1 + m̃2
2 + m̃2

3 = Ms called the saturation magnetization. We
consider materials below their Curie temperature only and study the normalized magnetization
(adimensional) m = m̃

Ms
.

Consider a bounded, connected domain with Lipschitz boundary D ⊂ R3 representing the
magnetic body, and T > 0 the final observation time (not to be confused with T ∈ Th, i.e. a
mesh element, as will appear often in Chapter 2). We denote DT := [0, T ] ×D the space-time
cylinder and ∂D ⊂ R3 the boundary of D. The (normalized) magnetization of the magnetic
body is represented by the vector field

m : DT → S2, (1.49)

where S2 :=
�
x ∈ R3 : |x|2 = 1

�
denotes the unit sphere in 3D.

The behavior of the magnetic body D is governed by a Gibbs free energy E = E(m) (in J)
in the form:

E = Eex + Eani + Ems + Eext, (1.50)

where each summand accounts for a physical effect:

• Exchange energy : Eex = Cex
+
D |∇m|2, where Cex > 0 (in J

m) is the exchange stiffness
constant. This energy contribution penalizes non-constant magnetization configurations;

• Anisotropy energy : Eani =
+
D ϕ(m), which is related to the crystalline structure of the

magnetic body. ϕ : R → R+ ∪ {+∞} (in J
m3 ) attains its minimum in a zero measure

subset of §2. This energy contribution penalizes magnetization configurations that are not
aligned with one or several preferred directions called easy axis ;

• Magnetostatic energy : Ems =
µ0

2

+
R3 |∇u|2, where ∇u is the magnetic field solution of the

magnetostatic Maxwell equations:

div (−µ0∇u+mχD) = 0 on R3,

where χD is the characteristic function of D. Observe that ∇ ×∇u = 0 by construction
if u is twice differentiable. In this setting, ∇u is called stray field or demagnetizing field
because it tends to reduce the total magnetic moment;

• Zeeman energy : Eext = −µ0Ms

+
D Hext · m, where Hext (in A

m) is an external magnetic
field independent of the magnetization;
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• Antisymmetric exchange energy, or Dzyaloshinskii–Moriya interaction (DMI):
EDM =

+
D D : (∇m×m) where D : D → R3×3 is the spiralization tensor (in J

m2 ). This
energy contribution explains the formation of magnetic skyrmions, i.e. topologically pro-
tected vortex-like magnetization configurations (see [BY89] for their theoretical prediction
and [MBJ+09, RHM+13] for their observations in experiments).

The magnetostatics problem consists of determining a magnetization within an appropriate
functions class M of unit-modulus vector fields which minimizes the Gibbs free energy:

min
m∈M

E(m).

Recall that this model is valid at microscopic length scale, i.e. from 1 µm down to 10nm. For
the smaller atomic length scale, statistical physics models are used to describe the interaction
of spins. For the larger mesoscopic scale (up to mm size), the unknown averaged magnetization
is the solution of a degenerate convex, non-local, variational problem [KP06].

Another important task is the one of determining the time evolution of the magnetization.
If the Gibbs free energy presents several minima, the only way to predict the stationary configu-
ration reached by a magnetic system with a given initial condition is to simulate the dynamics.
In analogy to the equations of motions of the electron, in micromagnetics one may write

∂tm = −γ0m×Heff(m).

Here, γ0 > 0 (in m
As) is called rescaled gyromagnetic ratio and Heff (in A

m) is called effective field
and is defined by the relation

µ0MsHeff(m) =
δE(m)

δm
, (1.51)

i.e., up to a constant, the Frechet derivative of the Gibbs free energy (1.50). In the simplest form
of the equation, the small-particle limit, one considers E = Eex and obtains Heff(m) = 2Cex∆m.

However, this model does not describe the dissipation observed in experiments. In 1935,
Landau and Lifshitz introduced an additional dissipation term and defined what we now call
Landau-Lifshitz equation (LL) (cf. [LL35])

∂tm = −γ0m×Heff(m)− γ0λ̃m× (m×Heff(m)) , (LL)

where λ̃ > 0 is a non-dimensional phenomenological parameter. The additional term with the
double cross product is chosen for purely phenomenological reasons: The dissipation should
drive the magnetization towards the direction of the effective field (a configuration of minimal
magnetization energy) while the magnetization magnitude stays constant. One should note that
the last term has the physical behavior of a damping only if λ < 1, otherwise the relaxation
becomes faster as λ increases, which is in strong contradiction with the physical idea of damping.
Again, (LL) is an appropriate model for length scales from 10nm to 1µm (see [KP06, Section 1,
p. 444]).

The LL equation is equipped with the following boundary conditions and initial condition

∂nm = 0 on [0, T ]× ∂D,

m(0) = m0 on D.

The initial condition can be assumed without loos of generality to have unit modulus: For a.e.
x ∈ D,

LLm0(x)
LL
2
= 1.
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Elementary proprieties of the cross product imply that ∂tm(t,x) and m(t,x) are orthogonal,
i.e. ∂tm(t,x) ·m(t,x) = 0 for all (t,x) ∈ DT . This implies that

d
dt

|m(t,x)|2 = 2m · ∂tm = 0,

so that for all 0 ≤ t ≤ T , for a.e. x ∈ D, |m(t,x)|2 =
LLm0(x)

LL
2
= 1. This justifies m taking

values in S2 like m0. Therefore, the model is consistent with condition (1.49).
As example of exact solution to the LLG equation is given in [KP06, example 3.4] in the

form of a flat domain wall traveling at constant velocity along the x axis.
Equation (LL) has several useful equivalent forms. The Landau-Lifshitz-Gilbert equation

(LLG) was derived by Gilbert in 1955 (cf. [Gil55])

∂tm = −m×Heff(m) + λm× ∂tm, (LLG)

where λ > 0 is called Gilbert damping. For most materials of interest, λ < 10−2 [dSC+06]. This
formulation describes more effectively the damping effect by writing the corresponding term as
a function of ∂tm

The alternative form (LLA), important in numerical analysis, reads

λ∂tm+m× ∂tm = Heff(m)− (Heff(m) ·m)m (LLA)

The equivalence of the three formulations, LL, LLG, and LLA, is proved by the following impli-
cations:

• m solves (LLA) ⇒ m solves (LLG):
Apply the operator m× · to both sides of (LLA) to obtain

λm× ∂tm+m× (m× ∂tm) = m×Heff.

Then, use the triple cross product formula (B.2), the unit-modulus of m, and orthogonality
of m and ∂tm to get:

m× (m× ∂tm) = −∂tm. (1.52)

Substitution in the previous equation gives (LLG);

• m solves (LL) ⇒ m solves (LLA):
Apply the triple cross product formula (B.2) and the unit modulus of m to the last term
of (LL) to obtain

m× (m×Heff) = m (m ·Heff)−Heff. (1.53)

For (LL), this implies

∂tm = −γ0m×Heff(m)− γ0λ̃ (m (m ·Heff)−Heff) .

Applying the operator m× · gives

m× ∂tm = γ0m× (m×Heff) + γ0λ̃m×Heff.

Finally, multiply the second-to-last equation by λ and sum it to the last one to ob-
tain (LLA) with λ̃ = λ and γ0 =

1
1+α2 ;
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• m solves (LLG) ⇒ m solves (LL):
Apply the operator m× · to (LLG), followed by (1.52) to obtain

m× ∂tm = −m× (m×Heff)− α∂tm.

Then, multiply it by λ and sum it with (LLG) itself. We obtain (LL) with γ0 =
1

1+α2 and
λ̃ = λ.

Let us also rewrite the Landau-Lifshitz equation (LL) expressing the scalar coefficients as a
function of the Gilbert damping parameter λ:

∂tm =
1

1 + λ2
m×Heff(m)− λ

1 + λ2
m× (m×Heff(m)) .

We now obtain a weak formulation of the problem. From now on, Lebesgue and Sobolev
spaces of vector-valued functions are denoted e.g. L2(D) = L2(D)3 and H1(D) = H1(D)3.
Consider a test function ψ ∈ C∞

0 (DT )
3, i.e. an infinitely-differentiable vector field with compact

support. Testing equation (LLG) with ψ, we obtain* T

0
⟨∂tm,ψ⟩ =

* T

0
⟨−m×Heff + λm× ∂tm,ψ⟩ .

where by ⟨·, ·⟩ we denote the L2(D) scalar product: ⟨f , g⟩ = +
D f · g for all f , g ∈ L2(D).

Depending on the definition of Heff, different weak formulations can be considered. Let
us consider the so called small particle limit in which Heff = ∆m. The scalar triple product
(B.1) gives ⟨m×∆m,ψ⟩ = ⟨∆m,ψ ×m⟩. Integration by parts, recalling the homogeneous
Neumann boundary condition, gives ⟨∆m,ψ ×m⟩ = ⟨∇m,∇ψ ×m⟩. Another application of
(B.1) finally yields* T

0
⟨∂tm,ψ⟩ = −

* T

0
⟨m×∇m,∇ψ⟩+ λ ⟨m× ∂tm,ψ⟩ . (1.54)

Once a space for m is chosen, a density argument can be used to select ψ in a larger space than
the one of test-functions, as long as the previous quantities are finite. Adherence to initial and
boundary conditions must also be suitably defined. The following is a natural choice, as given
in [AS92].

Definition 1.22 (Weak solution of LLG in the small-particle limit). Given m0 ∈ H1(D) such
that

LLm0
LL = 1 a.e. in D, a function m : DT → R3 is a weak solution of the LLG equation if

and only if

• m ∈ H1(DT ) (i.e. m ∈ L2(0, T,H1(D)), ∂tm ∈ L2(0, T,L2(D))) and |m| = 1 a.e. in
DT ;

• m solves (1.54) for all ψ ∈ L2(0, T,H1(D));

• m(0, ·) = m0 on D and ∂nm = 0 on [0, T ]× ∂D both in the sense of traces;

• The following energy bound holds:

1

2
∥∇m(t)∥2L2(D) +

λ

1 + λ2

* t

0
∥∂tm∥L2(D) ≤

1

2

KK∇m0
KK2
L2(D)

∀t ∈ [0, T ]. (1.55)
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The well-posedness of the weak LLG equation has been discussed in several works and is
in some aspects not closed. Let us review some of the most important results. In the seminal
paper [AS92, Theorem 1.5], the authors prove existence of weak solutions in the small-particle
limit. In the same work (Theorem 1.6), a non-uniqueness result is also proved: There exists
m0 ∈ H1(D) with

LLm0
LL ≡ 1 a.e. in D such that there exist infinitely many (a continuum indexed

by a real parameter) distinct solutions in the sense of Definition 1.22. This fact and its proof
are analogous to the case of weak solutions of harmonic maps heat flows into the sphere (i.e.
equations in the form (LLG) up to the term m × ∆m). Non-uniqueness limits the available
convergence results of approximation schemes. Often finite elements approximations converge
only weakly and up to a subsequence.

For the LLG equation, singularities may arise at times t ∈ [0, T ] when ∥∇m(t)∥L∞(D)3 is not
finite (recall that by definition a weak solution is only L2 integrable in time). In physical terms,
finite time blow-ups translate into spatial energy concentrations and defects (see [KP06]).

From the mathematical point of view, the phenomenon of finite time blowup was studied e.g.
in [WZZ22]. Here, the authors construct a solution to the 2D LLG equation that blows up at
pre-determined points in space. In particular, they prove an asymptotic behavior ∥∇m∥L∞(D) ≈
|log (T−t)|2

T−t for times approaching the singular time T > 0.
In the work [CF01a], the authors prove existence and uniqueness of strong solutions of LLG

in
C0(0, T,H2(D)) ∩ L2(0, T,H3(D)) for small times. In 2 dimensions and under an additional
smallness assumption on the initial condition, the result holds globally in time.

In [FT17b], the authors prove existence and uniqueness of arbitrarily regular strong solution
of LLG (in the small particle limit) under the assumption that the initial condition is also regular
and sufficiently close to a constant. Solutions belong to parabolic Sobolev spaces Hk,2k(DT ) for
k ≥ 3 and the their norm depends continuously on the H2k(D) norm of the initial condition.

A weak-strong uniqueness principle was proved in [DFIP20, DS14]. This means that when
a problem admits both a weak and strong solution, then they coincide (for any time for which
both are defined).

Other well-posedness results are available for D = Rd and d ∈ {2, 3} or periodic boundary
conditions. See [CDG98, Mel05, Mos05, LLW15, Mel12, Cim07].

1.3.3 Numerical methods for LLG

Consider a mesh Th of the open, connected, and Lipschitz domain D ⊂ R3 with element size
h > 0. Denote by Nh ⊂ D the (finite) set its vertices. Denote by V h := S1(Th)3, the space of
continuous piecewise affine functions on Th. To approximate a function v ∈ C0(D)3 in V h we
can consider:

• Nodal interpolation Ih : C0(D)3 → V h: Ih[v] ∈ V h is the unique function such that

Ih[v](x) = v(x) ∀x ∈ Nh; (1.56)

• L2-projection Πh : C0(D)3 → V h: Πh[v] ∈ V h is the unique function such that

⟨v −Πh[v],ϕh⟩L2(D)3 = 0 ∀ϕh ∈ V h. (1.57)

Let J ∈ N and τ = T
J to define timesteps tj := jτ for j = 0, . . . , J .

We discuss all the following schemes for LLG in the small participle limit, i.e. Heff = ∆m. This
is done for simplicity and can always be generalized.
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Midpoint rule

We present the midpoint scheme as defined and analysed in [BP06].
Denote the mass-lumped scalar product

⟨u,v⟩h :=

*
D
Ih [uv] (1.58)

and the discrete Laplace operator ∆h : H1(D) → V h such that

−⟨∆hu,vh⟩h = ⟨∇u,∇vh⟩ ∀vh ∈ V h. (1.59)

Consider additionally the discrete time derivative and midpoint operators respectively

dtv
j :=

vj − vj−1

τ
∀j = 1, . . . , J, (1.60)

vj+ 1
2 =

vj+1 + vj

2
∀j = 0, . . . , J − 1. (1.61)

The midpoint rule is based on the Gilbert formulation (LLG) and reads:

Algorithm 1
-
mj

h

4J

j=0
← Midpoint rule(Th, m0, J , λ)

1: Compute m0
h = Πhm

0

2: for j = 0, 1, ..., J − 1 do
3: Find mj+1

h ∈ V h such that�
dtm

j+1
h + λmj

h × dtm
j+1
h ,ϕh

�
h
=

�
m

j+ 1
2

h ×∆hm
j+ 1

2
h ,ϕh

�
h

∀ϕn ∈ V h.

4: end for

Observe that the second term is linear i mj+1
h and motivated by the following identity:

mj
h × dtm

j+1
h =

0
m

j+ 1
2

h − τ

2
dtm

j+1
h

7
× dtm

j+1
h = m

j+ 1
2

h × dtm
j+1
h .

The method requires the solution of a nonlinear system at each timestep. This can be
done e.g. with a fixed-point iteration but convergence is guaranteed only under the CFL-type
condition τ = O(h2).

By testing with ϕh = mj+1
h (x)ϕx, where ϕx denotes the hat basis function of S1(Th)

corresponding to x ∈ Nh, one sees that
LLLmj+1

h (x)
LLL = LLLmj

h(x)
LLL for all x ∈ Nh and all 0 ≤ j < J ,

so that the scheme automatically produces numerical solution with unit modulus in the vertices.

Moreover, testing with ϕh = −∆hm
j+ 1

2
h + λdtm

j+1
h and summing over j = 0, . . . , J − 1 one

obtains the following discrete energy conservation:

1

2

KK∇mJ
h

KK2 + λτ
J−1D
j=0

KKKdtm
j+1
h

KKK2
h
=

1

2

KK∇m0
h

KK2 ,
which mimics the continuous energy estimate in Equation (1.55).
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Tangent plane scheme

We present the tangent plane scheme, proposed and analysed in [AJ06].
Consider the set of normalized discrete fields

Mh := {ϕh ∈ V h : |ϕh(x)|2 = 1 ∀x ∈ Nh}
and the discrete tangent plane to mh ∈ Mh defined imposing orthogonality on the mesh vertices
only:

Kh(mh) := {ϕh ∈ V h : ϕh(x) ·mh(x) = 0 ∀x ∈ Nh} . (1.62)

We start from the alternative formulation (LLA) and consider test functions that are in a sense
orthogonal to the magnetization at current time. Thus, it makes sense to ignore the nonlinear
term (∆m ·m)m.

The algorithm reads:

Algorithm 2
-
mj

h

4J

j=0
← Tangent plane scheme(Th, m0, J , λ)

1: Compute m0
h = Πhm

0

2: for For j = 0, 1, ..., J − 1 do
3: Find vj

h ∈ Kh(m
j
h) such that

λ
�
vj
h +mj

h × vj
h,ϕh

�
=

�
∇
-
mj

h + θτvj
h

4
,∇ϕj

h

�
∀ϕn ∈ Kh(m

j
h)

4: mj+1
h = Ih

�
mj

h+τvj
h

|mj
h+τvj

h|
!

5: end for

Observe that at each timestep only one linear problem in vj
h must be solved. The final

step is a renormalization (a nonlinear operation) to guarantee that the discrete solution satisfies
a discrete equivalent of the unit modulus condition:

LLLmj
h(x)

LLL = 1 for all x ∈ Nh. However,
this step can be omitted and the numerical solution will have unit modulus in the limit for
vanishing h and τ . If the normalization is included, then it was proved in [Bar05, Lemma 13]
that convergence holds under an angle condition on the mesh, i.e. if the off-diagonal terms of
the stiffness matrix are non-positive.

The scheme produces a sequence of approximations mi
h of m(ti, ·) for i = 0, . . . , J . These

can be interpolated to obtain an approximation for any time, thus yielding an approximation
mτ,h : DT → R3.

The sequence of the obtained solutions (mτ,h)τ,h converges weakly in H1(D), up to extraction
of a subsequence, to the weak solution of the LLG equation (cf. Definition 1.22) when both h
and τ vanish under the condition (see [Alo08, Theorem 2,3]):�

τ = O(h2) if θ ≤ 1
2 ,

no condition if θ > 1
2 .

In [FT17a], the authors prove convergence with rates of the whole sequence of discrete solutions
under additional regularity assumptions on the exact solution. In particular, they prove first
order convergence in h and τ for the L2(0, T ;H1(D)) error. Results are also extended to the
Maxwell-LLG system as well.
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High-order linearly implicit BDF scheme

We present the method from [AFKL21] as an example of one of few known high-order schemes
for LLG with a comprehensive convergence analysis (See the end of the section for another
possible scheme).

Consider the “projection-type” tangent plane to mn ∈ V h defined using the L2 projection
(cf. (1.57)).

K̂h(mh) := {ϕh ∈ V h : Πh [ϕh ·mh] = 0} . (1.63)

Observe that the orthogonality constraint is imposed weakly, as opposed to the condition used
to define Kh(mh) in (1.62). Define, for k ∈ N, k ≤ J , k ≤ j ≤ J , the following k-steps BDF-type
approximations of time derivative and extrapolation respectively:

ṁj
h :=

1

τ

kD
ℓ=0

δℓm
j−ℓ
h

m̂j
h :=

Ek−1
ℓ=0 γjm

j−ℓ−1
hLLLEk−1

ℓ=0 γjm
j−ℓ−1
h

LLL .
The constant δ1, . . . , δk and γ0, . . . , γk−1 are defined by

kD
j=0

δjx
j =

kD
ℓ=1

1

ℓ
(1− x)ℓ,

kD
i=0

γix
i =

1

x
(1− (1− x)k).

The algorithm is similar to the tangent plane scheme and reads:

Algorithm 3
-
mj

h

4J

j=0
← HOLIBDF(Th, m0, J , λ)

1: Compute m0
h = Πhm

0

2: Compute m1
h, . . . ,m

k−1
h

3: for For j = k, k + 1, J do
4: Find vj

h ∈ K̂(mj
h) such that for all ϕn ∈ K(m̂j

h)

λ
�
vj
h + m̂j

h × vj
h,ϕh

�
+

τ

δ0

�
∇vj

h,∇ϕh

�
=

1

δ0

�
∇
.

kD
ℓ=1

δℓm
j−ℓ
h

5
,∇ϕh

�
(1.64)

5: Compute mj
h = τ

δ0
vj
h − 1

δ0

Ek
ℓ=1 δℓm

j−ℓ
h

6: end for

The computation of m1
h, . . . ,m

k−1
h must be carried out with a lower order scheme. The

problem (1.64) is indeed a problem in vj
h since the occurrence of mj

h can be substituted using
vj
h = ṁj

h. The same consideration justifies the final step of the loop above. Convergence in
the C0([0, T ],H1(D)) norm is proved under regularity assumptions on the exact solution. For
k = 1, 2 the following discrete energy estimate is available because of the use of BDF time
integration:

γ−k
KKK∇mj

h

KKK2 + λτ

2

jD
ℓ=k

KKKṁℓ
h

KKK2 ≤ γ+k

k−1D
ℓ=0

KKK∇mℓ
h

KKK2 .
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with γ±1 = 1 and γ±2 = 3±2
√
2

4 . For k = 3, 4, 5, convergence is guaranteed only under the (mild)
CFL-type condition τ = O(h) as well as restrictions to how small the Gilbert damping λ is
allowed to be depending on the value of k. No discrete energy estimate is available in this case.

We also briefly mention the recent work [BKW23], in which harmonic map heat flows into the
sphere (a simplification of LLG with Heff = −∆m obtained neglecting the term m×∆m) are
discretized by an analogous method. An important difference is that the orthogonality constraint
is not imposed weakly through the projection-type tangent plane K̂h, but in a pointwise fashion
, i.e. using Kh(·) as in the “classical” tangent plane scheme (see Section 1.3.3). Analysis only for
order one in space and time, but convergence for order up to five in space and time (sung BDF
in time) can be proved.

1.3.4 Thermal noise perturbations the stochastic LLG equation (SLLG)

When a magnetic body is placed in a heat bath with temperature below the Curie temperature
of the magnetic material, the magnetization exhibits random fluctuations while preserving a
constant modulus. As a consequence, the magnetization may transition between equilibrium
states without any external force (e.g. external magnetic fields). Interest in modeling this
phenomenon increased in the physics community during the second half of the twentieth century,
see e.g. [BJ63, KH70] for some of the first works on the topic and [GPL98, KRVE05, SSF01,
Ber07, MBS09] for more recent treatments.

The relevance of modeling small-scale (sub-micrometer) magnetic bodies comes from engi-
neering applications e.g. magnetic storage devices (see also Section 1.3.8).

Let us introduce a mathematical model for micromagnetics with thermal noise. The following
is based on [BBNP14b, Chapter 2] and [BGJ12].
Denote again by D ⊂ R3 a bounded Lipschitz domain representing the magnetic body and T > 0
a final observation time. Consider a probability triple (Ω, E ,P). The contribution of random
noise to the governing equation is given by a space-time white noise dW , where W = W (ω, t,x)
denotes a space-time Wiener process and differentiation is understood in a formal sense. The
magnetization

M : Ω×DT → S2

is now a random field because of the thermal noise appearing in the governing SLLG equation:

∂tM = λ1M × (Heff + dW )− λ2M × (M ×Heff) , (1.65)

obtained from the Landau-Lifshitz equation (LL) by adding dW to the first occurrence of Heff
(this is not done for the second because λ2 is usually smaller than λ1). As in the LLG equation
(LLG), Heff = Heff(m) is the effective field defined as a sum of functions of m with leading
order term ∆m.

Appropriate boundary and initial conditions also have to be enforced:

∂nM = 0 on [0, T ]× ∂D,

M(0) = M0 on D.

We highlight the fact that the solution M of (1.65) still satisfies the unit modulus condition
|M(ω, t, x)| = 1 P-a.s. and for all (t,x) ∈ DT .

The precise mathematical model for the noise, i.e. the specific definition of W , is an ongoing
topic of research (see Remark 1.23 below). For simplicity, in what follows we use

W (ω, t,x) = g(x)W (ω, t), (1.66)
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where g : D → R3 is given and is assumed to be of unit modulus a.e. in D and W : Ω×[0, T ] → R
is a (scalar) Wiener process in t only. The regularity we require of g is:

g ∈ W2,∞(D),

∂ng = 0 on ∂D,

|g| = 1 on D.

(1.67)

Remark 1.23 (On noise modeling). The ansatz (1.66) is called scalar or 1-dimensional as
opposed to the multi-dimensional noise W =

E
n∈N anWn(t)gn(x) where (Wn(t))n∈N are inde-

pendent Wiener processes, (an)n∈N is a real sequence and (gn)n∈N is a sequence of functions of
x ∈ D. If for example W (ω, t, ·) ∈ L2(D), then (gn)n∈N could be chosen as an orthonormal
basis of L2(D).
It was argued in [Ber07, Sections 3.2, 3.3] that space-time white noise leads to a model that best
describes physical phenomenology. This corresponds to a noise that is uncorrelated in both space
and time, i.e. E [W (s, x)W (t, y)] = δ(s−t)δ(x−y) or, equivalently, to a sequence an = 1 for all
n ∈ N. However, the mathematical analysis relies on the sequence (an)n∈N vanishing sufficiency
fast. Negative examples are given in [RNT12, HRW12], where it is shown that even additive
space-time white noise with an ≡ 1 can cause a stochastic parabolic problem to have no solution.

We would like to give to the formal equation (1.65) a more precise meaning. Let us first
write it as a stochastic partial differential equation:

dM = [λ1M ×Heff − λ2M × (M ×Heff)] dt+ [M × g] ◦ dW. (1.68)

Observe that we used the Stratonovich integral (see Appendix C). This choice is dictated
by the modeling requirement that the solution M shall satisfy the unit-modulus condition
|M(ω, t,x)| = 1 for all t ∈ [0, T ], for a.e. x ∈ D and for a.e. ω ∈ Ω. Equation (1.68),
but with an Itô integral, would not satisfy this condition because of the Itô chain rule (see
Lemma C.2).

Remark 1.24 (Itô formulation of SLLG). An appropriate modification of the drift term allows us
to write an Itô problem that is equivalent to (1.68). As shown in [AdBH14], the Itô-Stratonovich
conversion formula (see Lemma C.4) gives

[M × g] ◦ dW = [M × g] dW +
1

2
(M × g)× gdt.

Together with the triple product expansion B.2 and the unit modulus condition, it gives the
following Itô SPDE

dM =

�
λ1M ×∆M + λ2 |∇M |2M + λ2∆M +

λ2

2
(M × g)× g

!
dt+ [λ1M × g] dW.

The Gilbert form of the equation is obtained by (formally) applying the operator (Id − 1
λM × ·)

to the previous equation

dM − 1

λ
M × dM =

�
1

λ

-
∆M + |∇m|2M

4
+

λ2

2

0
Id − 1

λ
M × ·

7
((M × g)× g)

!
dt

+

�0
Id − 1

λ
M × ·

7
(M × g)

!
dW

(1.69)

(setting λ = λ1 = λ2 = 1 gives the equation in [AdBH14]).
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Following [BGJ12], we give a definition of weak solution of the SLLG equation.

Definition 1.25 (Weak martingale solution of the SLLG equation). A weak martingale solution
to the SLLG equation is a tuple (Ω, (Et)t∈[0,T ], E ,P,W,M), where

• (Ω, (Et)t∈[0,T ], E ,P) is a filtered probability space;

• W : Ω× [0, T ] → R is a Wiener process adapted to (Et)t∈[0,T ];

• M : Ω× [0, T ] → L2(D) is a progressively measurable process;

such that:

• M(ω) ∈ C0([0, T ],H−1(D)) P-a.s.;

• E
�
esssupt∈[0,T ] ∥∇M∥2

�
< ∞;

• |M | = 1 a.e. in Ω and a.e. in DT ;

• for all t ∈ [0, T ] and ϕ ∈ C∞
0 (D;R)3 there holds, a.e. in Ω,

⟨M(t),ϕ⟩− �
M0,ϕ

�
= −λ1

* t

0
⟨M ×∇M ,∇ϕ⟩ ds

−λ2

* t

0
⟨M ×∇M ,∇ (M × ϕ)⟩ ds+

* t

0
⟨M × g,ϕ⟩ ◦ dW.

It was proved in [BGJ12] by means of the Faedo-Galerkin method that weak solutions to
the SLLG equation indeed exist. The result was extended to the case including the anisotropy
contribution in the effective field in [BL16].

Additional well-posedness results were obtained in the 1D case, i.e. the magnetic body
is assumed to have one dominant dimension (this has applications in the manufacturing of
nanowires). In [BGJ17], the authors prove existence of weak martingale solutions for the problem
for a larger class of coefficients compared to the previous works in 3D. They prove pathwise
existence and uniqueness of strong solutions. The also prove a large deviation principle and use
it to analyze the transitions between equilibria. In [BMM19] the 1D problem is treated using the
Doss-Sussmann transformation (see Section 1.1.5). They then prove existence, uniqueness and
regularity of solution of the last problem with a Faedo-Galerkin method based on the Wong-Zakai
approximation of the Wiener process [WZ65].

1.3.5 Space and time integration of the SLLG equation

In the present section, we list numerical methods for the approximation of sample paths of
the SLLG equation. For simplicity we consider the problem in the small particle limit, i.e.
Heff = ∆M .

Midpoint rule

We apply the midpoint rule proposed in [BBNP14a] (we already discussed this method for
the deterministic LLG equation in Section 1.3.3). Recall the definitions of mass-lumped scalar
product (1.58), discrete Laplace operator (1.59) and midpoint (1.61). The method reads:
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Algorithm 4
-
M j

h

4J

j=0
← Random midpoint rule(Th, m0, J , τ λ1, λ2)

1: Let M0
h = ΠhM

0

2: for For j = 0, 1, ..., J do
3: Sample δjW = W (tj+1)−W (tj) ∼ N (0, τ)

4: Find M j+1
h ∈ V h such that�

M j+1
h −M j

h

τ
,ϕh

�
h

=λ1

�
M

j+ 1
2

h ×∆hM
j+1
h ,ϕh

�
h

−λ2

�
M

j+ 1
2

h ×
0
M

j+ 1
2

h ×∆hM
j+1
h

7
,ϕh

�
h

+λ1

�
M

j+ 1
2

h × gδjW,ϕ

�
h

∀ϕn ∈ V h.

5: end for

This method is defined starting from the Landau-Lifshitz formulation (1.68) rather that the
Gilbert formulation as done in the deterministic case (see Section 1.3.3).

In [BBNP14a], the method is shown to produce discrete solutions that satisfy a discrete
energy bound and that preserve the modulus of the initial condition at the mesh nodes Nh.

Moreover, the sequence of discrete solutions obtained as the discretization parameters τ, h
vanish is shown to converge (up to extraction of a subsequence) to a weak solution of SLLG in
the sense of Definition 1.25.

In the follow-up work [BBP13], the scheme is applied to reproduce numerically relevant
phenomena such as finite-time blow-up of the solution and thermally-activated switching. A
method to solve the nonlinear system at each timestep is chosen and the overall numerical
feasibility of the scheme is demonstrated in the numerical experiments.

Tangent plane scheme

In [AdBH14], the authors consider a time semi-discrete approximation based on the tangent
plane scheme. We already discussed the application of this method to the deterministic LLG
equation in Section 1.3.3), where we also considered the finite element approximation in space.
Here, the sample paths of the SPDE in Itô form are approximated and stability and convergence
results analogous to the previous works are given.

The numerical scheme is defined starting from the SLLG equation in Itô form (see Re-
mark 1.24. Consider the following infinite-dimensional tangent plane, a natural analogue of
(1.63):

K(M j) :=
�
v ∈ H1(D) : M j · v = 0 a.e. in D

�
.

The time-semidiscrete algorithm reads:
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Algorithm 5
/
M j

6J
j=0

← Random tangent plane scheme(J , τ , M0, θ, λ1, λ2)

1: for For j = 0, 1, ..., J − 1 do
2: Sample δjW = W (tj+1)−W (tj) ∼ N (0, τ)
3: Find vj ∈ K(M j) such that�

vj −M j × vj ,ϕ
�
+ 2θτ

�∇vj ,ϕ
�
=− 2

�∇M j ,ϕ
�
+
�/

Id −M j × ·6 /M j × g
6
δjW,ϕ

�
+

1

2

�/
Id −M j × ·6 ((M × g)× g) ,ϕ

� ∀ϕ ∈ K(M j)

4: M j+1 = Mj+τvj

|Mj+τvj|
5: end for

In [AdBH14], the authors prove that, as the timestep τ vanishes, the sequence of discrete
solutions converges, up to extraction of a subsequence, to a weak martingale solution of the SLLG
equation. Convergence is understood in law, more precisely in the norm L2(Ω;L2(DT )). They
actually consider a more general ∞-dimensional noise but increase its regularity by applying to
each term a Hilbert-Schmidt operator Gi : L2(D) → H2(D).

1.3.6 Reduction of the SLLG equation to a random coefficient LLG equation

The present section is based on [GLT16], in which it was proved that the SLLG Equation (1.68)
(a SPDE) can be reduced to a random coefficient PDE.

The Doss-Sussmann transform of M , solution of (1.68), is the random field m : Ω×DT → S2
defined as

m(ω, t,x) := e−W (ω,t)G(x)M(ω, t,x) (1.70)

(we use the symbol m as done for the (deterministic) LLG equation for reasons that will become
clear soon). Here, G denotes the function Gu := u × g for any u ∈ R3 and by e−WG we
denote the exponential of the operator −WG, defined as the matrix exponential: e−WGu =E∞

i=0
(−W (t))i

i! G(i)u, where G(i) denotes the composition of G with itself i times (see also (D.2)).
It can be proved (see [GLT16, Lemma 3.1, Lemma 3.2]) that the operators G and esG satisfy

the following properties:

esGe−sG = id = e−sGesG (1.71)/
eWG

6∗
= e−WG (1.72)

esG(a× b) = esGa× esGb (1.73)

esGu = u+ sin(s)Gu+ (1− cos(s))G2u. (1.74)

The field m is itself solution of a PDE related to the SLLG equation. Let us first show this
formally. For M = eWGm, there holds

∂tM = ∂te
WGm = G

/
eWGm

6
∂tW + eWG∂tm = (M × g) ∂tW + eWG∂tm.

Recall that M solves (1.68), which we write here in the case Heff = ∆M :

dM = [λ1M ×∆M − λ2M × (M ×∆M)] dt+ [λ1M × g] ◦ dW.
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We identify ∂tM with dM as well as (M × g) ∂tW with [M × g] ◦ dW in order to write

eWG∂tm = λ1e
WGm×∆eWGm− λ2e

WGm× /
eWGm×∆eWGm

6
.

We simplify by applying (1.71) and (1.73) to obtain

∂tm = λ1m× e−WG∆eWGm− λ2m× /
m× e−WG∆eWGm

6
.

We denote

Ĉ(W,m) := e−WG∆eWGm−∆m (1.75)

in order to finally write

∂tm = λ1m×
-
∆m+ Ĉ(W,m)

4
− λ2m×

-
m×

-
∆m+ Ĉ(W,m)

44
. (1.76)

The last equation may be viewed as a LLG equation with effective field ∆m+Ĉ(W,m). However,
this is not a deterministic PDE, rather a random coefficient PDE since the Wiener process W
appears as problem data. The solution m is therefore a random field.

Integration by parts for u,v ∈ H1(D) with ∂nu = 0 gives (recalling the assumptions ∂ng =
0)�

Ĉ(s,u),v
�
=

�
e−WG∆eWGu−∆u,v

�
=

*
∂D

∂ne
WGu · eWGv − �∇eWGu,∇eWGv

�− 0*
∂D

∂nu · eWGv − ⟨∇u,∇v⟩
7

= ⟨∇u,∇v⟩ − �∇eWGu,∇eWGv
�
.

(1.77)

Another way to write Ĉ(s,u) is the following: Start from (1.75) and use (1.74):

Ĉ(s,u) =e−WG
/
∆eWGm− eWG∆m

6
=sin(s) (∆Gu−G∆u) + (1− cos(s))

/
∆G2u−G2∆u

6
.

By the chain rule, ∆(Gu) = ∆ (u× g) = ∆u× g + 2∇u×∇g + u×∆g, so that

∆Gu−G∆u = u×∆g + 2∇u×∇g.

The previous formula implies ∆G2u = ∆(Gu× g) = ∆Gu× g + 2∇Gu×∇g +Gu×∆g and

∆G2u−G2∆u = ∆G2u−G∆Gu+G∆Gu−G2∆u = CGu+GCu.
All in all, we obtained

Cu := u×∆g + 2∇u×∇g

E(s,u) := sin(s)Cu+ (1− cos(s)) (CG+GC)u
Ĉ(s,u) = e−WGE(s,u).

(1.78)

This makes it evident that Ĉ is actually a first order differential operator in u.
In [GLT16], an appropriate definition of weak solution to (1.76) is given.

Definition 1.26 (Weak solution of the random LLG equation). A weak solution of the random
LLG equation (1.76) is a tuple (Ω, (Et)t∈[0,T ], E ,P,W,m), where
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• (Ω, (Et)t∈[0,T ], E ,P) is a filtered probability space;

• W : Ω× [0, T ] → R is a Wiener process adapted to (Et)t;
• m : Ω× [0, T ] → L2(D) is a progressively measurable process;

such that:

• m(ω) ∈ H1(DT ) a.e. in Ω;

• E
�
esssupt∈[0,T ] ∥∇m∥2

�
< ∞;

• |m| = 1 in DT and a.e. in Ω;

• m(0, ·) = M0 in D and a.e. in Ω;

• for each t ∈ [0, T ] and ϕ ∈ L2(0, T,H1(D)) there holds, a.e. in Ω,

λ1

* t

0
⟨∂tm,ϕ⟩ + λ2

* t

0
⟨m× ∂tm,ϕ⟩ = µ

* t

0
⟨∇m,∇(m× ϕ)⟩

+

* t

0
⟨λ1F (t,m) + λ2m× F (t,m),ϕ⟩ .

(1.79)

where µ = λ2
1 + λ2

2 and F (t,m) = λ1m× Ĉ(W (t),m)− λ2m×
-
m× Ĉ(W (t),m)

4
.

The main result of [GLT16] is:

Theorem 1.27. If m is a weak solution of (1.76) in the sense of Definition 1.26, then M =
e−WGm is a weak martingale solution of (1.68) in the sense of Definition 1.25.

Proof outline. Let us summarize the main steps of the proof:

1. From Definition 1.26, m ∈ H1(DT ), |m| = 1 a.e. and it solves (1.76). Then, m also solves* t

0
⟨∂tm,ψ⟩+ λ1 ⟨m×∇m,∇ψ⟩+ λ2 ⟨m×∇m,∇(m×ψ)⟩ =

* t

0
⟨F (t,m),ψ⟩

∀ψ ∈ L2(0, T,W1,∞(D)), a.e. in Ω.

(1.80)

To obtain this, note that for each ψ ∈ L2(0, T,W1,∞(D)) there exists ϕ ∈ L2(0, T,H1(D))
such that λ1ϕ+ λ2ϕ×m = ψ.

2. The Itô chain rule (see Lemma C.2) applied to M = eWGm (understood as a function of
t and W ) gives

M(t) = M(0) +

* t

0

�
eWG∂tm+

1

2
G2eWGm

!
dt+

* t

0

�
GeWGm

 
dW.

From the relation between Itô and Stratonovich differentials (see Lemma C.4) and the fact
that G2u = G′(u)[Gu], we can write

M(t) = M(0) +

* t

0

�
eWG∂tm

 
dt+

* t

0
[GM ] ◦ dW.
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3. Multiplying by ϕ ∈ C∞
0 (D)3 and using (1.72), we get

⟨M(t),ϕ⟩ = ⟨M(0),ϕ⟩ +

* t

0

�
∂tm, e−WGϕ

�
dt+

* t

0
⟨GM ,ϕ⟩ ◦ dW.

We may now use Equation (1.80) with ψ = e−WGϕ to substitute the second term in the
right-hand side.

4. To prove that m satisfies (1.54), it is left to show that�
m×∇m,∇e−WGψ

�−�
m× Ĉ(W,m), e−WGψ

�
= ⟨M ×∇M ,∇ψ⟩ ,�

m×∇m,∇ /
m× e−WGψ

6�−�
m×

-
m× Ĉ(W,m)

4
, e−WGψ

�
= ⟨M ×∇M ,∇ (M ×ψ)⟩ .

The first equality is proved applying the triple product (B.1), the relation between m and
M (1.70), the property of Ĉ (1.77). The second is proved analogously.

5. The pointwise unit modulus of M follow from properties (1.72) and (1.71):

|M |2 = eWGm · eWGm = m · e−WGeWGm = |m|2 = 1.

6. Boundary conditions for M follow from: ∂nM = ∂n
/
eWGm

6
= eWG (∂nm) = 0 (we

assumed in (1.67) that ∂ng = 0 on ∂D) and continuity properties of eWG.

7. The fact that M(0) = M0 follows from: eW (0)G = id.

1.3.7 Space and time approximation of the random coefficient LLG equation

The random coefficient LLG equation (1.76) obtained in the previous section was discretized in
[GLT16]. The authors employ a suitably adapted tangent plane scheme (see also Sections 1.3.3
and 1.3.5.

The algorithm reads:

Algorithm 6
-
M j

h

4J

j=0
← Random tangent plane scheme (alt.)(Th, M0, J , τ λ1, λ2, θ)

1: Compute m0
h = ΠhM

0

2: for j = 0, 1, ..., J − 1 do
3: Find vj

h ∈ Kh(m
j
h) such that�

λ2v
j
h − λ1m

j
h × vj

h,ϕh

�
= −µ

�
∇
-
mj

h + θτvj
h

4
,∇ϕj

h

�
−

�
Rh,τ (tj ,m

j
h),ϕ

�
∀ϕn ∈ Kh(m

j
h)

4: mj+1
h = Ih

�
mj

h+τvj
h

|mj
h+τvj

h|
!

5: end for
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In the previous algorithm we denoted µ = λ2
1 + λ2

2, and Rh,τ (t,u) a suitably chosen discrete
version of R(t,u) := λ2

2u×
-
u× Ĉ(t,u)

4
− λ2

1Ĉ(t,u). More precisely,

Ghu = u× Ihg

Chu = u× Ih[∆g] + 2∇u× Ih(∇g)

Dh,τ (t,u) = (sin(Wτ (t))Ch + (1− cos(Wτ (t))(GhCh + ChGh))u

Ĉh,τ (t,u) =
-
id − sin(Wτ (t))Gh + (1− cos(Wτ (t))G

(2)
h

4
Dh,τ (t,u)

Rh,τ (t,u) = λ2
2u×

-
u× Ĉh,τ (t,u))

4
− λ2

1Ĉh,τ (t,u).

where Wτ (t) = W (tj) if tj ≤ t < tj+1.
The authors assume that M0 ∈ H2(D), g ∈ W2,∞(D), and |g| = 1 a.e. They show con-

vergence of a subsequence of the sequence of discrete solutions obtained as the discretization
parameters h, τ vanish. In particular, they prove weak convergence in H1(DT ) and a.e. in
Ω. Moreover, they show that the random field eWGmh,τ , obtained applying the inverse Doss-
Sussman transform, gives an approximation to the weak martingale solution of SLLG in the
sense of Definition 1.25.

In [GGL20], the authors generalize the approach based on the Doss-Sussmann transformation
to multi-dimensional (but with finitely many terms) noise (cf. Remark 1.23). Observe that this
requires a more general strategy to apply the Doss-Sussmann transform. Nevertheless, many
results generalize analogously to the 1-dimensional case.

1.3.8 Applications of the numerical approximation of the SLLG equation

In this short section, we highlight some engineering applications for which an efficient and reliable
approximation of SLLG could be useful. The fact that the model is valid for the sub-micrometer
length-scale made it very popular in the simulation of magnetic data storage devices such as
hard disk drives.

• Simulation of data corruption due heat fluctuations and stability of magnetic storage: In-
creasing the data storage density requires reducing the bit size. However, the resistance
of a magnetic body to perturbations is proportional to its size. Therefore, a point is
reached when the heat perturbation present at room temperature is sufficient to introduce
non-negligible errors. Unless different materials become available or the intensity of the
writing magnetic field can be increased (see HAMR below), this poses a physical limit to
magnetic storage density. It was estimated in [ECN+12] that the current density limit is
15 to 20 Tbit/in2. An efficient simulation method for SLLG could be used to estimate the
probability of an unwanted switching for a fixed bit size. However, in the regime of rare
event simulation, i.e. for small target probabilities, further developments, both in terms of
methods and of numerical analysis guarantees, would be needed to tackle this challenging
problem;

• Heat Assisted Magnetic Recording (HAMR): An emerging magnetic storage technology
which promises both higher storage density and resistance to noise-induced storage errors.
A magnetically hard material is selected because of its resistance to perturbations. At
room temperature, such material would need a strong magnetic field to cause a switch,
possibly incompatible with the small size required of writing heads. A possible solution is
to heat up the magnetic cell (e.g. with a laser) in order to reduce its coercivity and allow
a weaker magnetic field to write the bits [KGM+08, RBB+06, IH06, AMM+12]. At the
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time of writing, some of the first products based on this technology are already available
on the market1;

• Spin-transfer torque magnetoresistive random access memory (STT-MRAM): Another
emerging technology that leverages the spin-transfer torque effect: A spin-polarized cur-
rent (i.e. one where spins have a nonzero net orientation in a specific direction) passes
through a magnetic tunnel junctions (the equivalent of a bit) and a transfer of spin angular
momentum causes the magnetization to re-align. The electric control of the magnetization
guarantees high speeds, precision, scalability and, at the same time, lower power con-
sumption. See [AKW+13, LW21] for more details. At the time of writing, some of the
first products based on this technology are already available on the market2;

• Racetrack memory [PY15, BKF+20]: Another novel magnetic data storage technology.
It promises high reliability, capacity, and speed by storing data in the domain walls of
nanowires, induced by spin-polarized currents. Advantages are the fact that it is a solid
state drive (no moving parts) and it can be implemented as a 3D device.

1https://www.seagate.com/gb/en/news/news-archive/seagates-breakthrough-30tb-plus-hard-drive
s-ramp-volume-marking-an-inflection-point-in-the-storage-industry-pr/

2https://www.everspin.com/spin-transfer-torque-ddr-products#:~:text=Everspin’s%20Spin%2Dtra
nsfer%20Torque%20MRAM,use%20of%20supercapacitors%20or%20batteries.
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1.4 Contributions of this thesis

In Chapter 2, we consider the adaptive sparse grid algorithm for the random affine diffusion
Poisson problem from [GN18] and achieve the following results:

• Proof of plain convergence of the adaptive sparse grid algorithm (where the finite element
error is assumed to be negligible, Theorem 2.15);

• Definition of an adaptive sparse grid–finite element (ASGFE) algorithm which adaptively
refines both parametric and space approximations (Algorithm 7 and following listings).
We use adaptive finite elements with h-refinement for the space approximation;

• Proof of plain convergence of the ASGFE algorithm (Theorems 2.26, 2.29), as well as
anh-refinement optimality result (Theorem 2.24);

• Implementation and a number of numerical tests for the ASGFE algorithm.

Here we have to tackle a number of difficulties. Of particular relevance are:

• The fact that sparse grid is a collocation method and not a projection method (such as
e.g. stochastic Galerkin or polynomial chaos expansion). This makes the task of deriving
error estimates, both a priori and a-posteriori, more difficult;

• The interplay between parametric and finite element error and their effect of the respective
a-posteriori error estimators.

These results were also published in [FS21]

In Chapter 3, we are interested in approximating physical quantities described by nonlinear
SPDEs where the random noise, which models heat fluctuations, is a Gaussian process. We also
consider, as an example, the stochastic Landau–Lifshitz–Gilbert equation (SLLG) from micro-
magnetics, which describes the magnetization of sub-micrometer magnetic bodies immersed in
a heath bath. Our main achievements here are:

• Outline of a general strategy to study the parametric regularity of SPDEs driven by Gaus-
sian noise. We reduce the SPDE to a parametric coefficient PDE with infinite-dimensional
unbounded parameters using the Doss-Sussmann transform and the Lévy-Ciesielski ex-
pansion of the Wiener process. The theory is based on four “abstract” assumptions that
have to be verified for each concrete problem;

• Application to the SLLG equation (in particular, verification of Assumptions 1-4 in Sec-
tion 3.1 below). This is the first result on uniform holomorphic regularity of the parameter-
to-solution map for the SLLG equation. To the best of our knowledge, this is also the first
uniform holomorphic regularity result for unbounded parameter spaces and strongly non-
linear and time-dependent problems;

• A Hölder regularity result for the sample paths of solutions of SLLG assuming regular
initial conditions which are sufficiently close to constant;

• Definition of a sparse grid scheme tailored to SLLG regularity;

• Convergence analysis of the sparse grid approximation of SLLG. This is the first rigorous
convergence result for an approximation of a nonlinear and time-dependent parametric
coefficient PDE with unbounded parameter space. In particular, we show convergence
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of piecewise quadratic sparse grids for the stochastic LLG equation with order 1/2 and
dimension dependent constant (Theorem 3.25). Under some reasonable assumptions and
simplifications of the stochastic input, we show dimension independent convergence with
order 1/2 (Theorem 3.29);

• Definition of a multilevel approximation applied to SLLG with proof of improved conver-
gence rate under natural assumptions on the underlying finite element method;

• Numerical verification of the convergence of the above-mentioned numerical schemes.

To achieve these results, we have to overcome several challenges posed by the nonlinear nature
of the problem:

• Holomorphic parameter-to-solution map: This is well-understood for linear problems but
turns out to be technically challenging for nonlinear problems. While we apply the implicit
function theorem as in [CCS15], in our case the parameter space is not compact. To
overcome this problem, we control the growth of the extension by means of a Gronwall-like
estimate for small imaginary parts. The main challenge here is that there is no canonical
complex version of LLG which supports holomorphy. The main reason for this is that any
extension of the cross product is either not complex differentiable or loses orthogonality
properties which normally ensure L∞-boundedness of solutions of the LLG equation;

• Lack of parametric regularity: All mentioned works on uncertainty quantification require
strong summability of the coefficients which arise in the expansion of the stochastic noise.
Typically, ℓp-summability with p < 1 is required. Even with the holomorphic regularity
established, the present problem only provides summability in ℓp for p > 2. We propose
a simplification of the stochastic input which allows us to consider the problem in an
L1-setting in time. This increases the parametric regularity and results in dimension
independent estimates;

• Lack of sample path regularity: Regularity results for LLG are sparse even in the deter-
ministic setting. We refer to [CF01b, CDG98, Cim07, LLW15, Mel05, Mel12, Mos05] for
partial results in 2D and 3D. Sample path regularity directly influences holomorphic reg-
ularity via the implicit function theorem. To that end, we rely on Hölder space regularity
results for the stochastic LLG equation (Theorem 3.7).

These results were also published in [ADF+24]

Other results we document in this dissertation are the following:

• In Chapter 4, we give remarks on the implementation and use of SGMethods, an object
oriented Python implementation of sparse grid interpolation used to carry out numerical
experiment of Chapter 3;

• In Chapter 5, additional and partial results. In Section 5.1, we report on partial results
regarding optimality and convergence with rate of adaptive sparse grid interpolation, dif-
ferent marking strategies, dimension-adaptivity, cost reduction of the computation of the
a-posteriori estimator, and additional numerical results. In Section 5.2, a convergence
proof of the tangent plane scheme applied to the random coefficient LLG equation is pro-
posed. In the proof, we had to assumes the existence of a test functions with specific
properties.
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Chapter 2

Convergence of an adaptive sparse
grid–finite element scheme

In this chapter, we describe and analyses an adaptive sparse grid–finite element algorithm (AS-
GFE) for the approximation of the affine diffusion Poisson problem. The algorithm is based on
the reliable a-posteriori estimator from [GN18], consisting of a sum of parametric and finite-
element error estimators. We exploit the non-intrusive nature of sparse grid interpolation (a
collocation algorithm described in Section 1.2.3) to effectively decouple the two adaptive pro-
cedures. We then go on to suggest several variations of the algorithm. As for the analysis, we
prove plain convergence of the algorithm under the assumption that at each iteration of the
adaptive loop the finite element estimator is smaller than (a function of) the current parametric
estimator, which is proved to vanish. Results are confirmed by numerical experiments.

The chapter is structured as follows: In Section 2.1, we recall the definition of the parametric
diffusion Poisson problem (already mentioned in Example 1.8), sparse grid interpolant (see
Section 1.2.3) and introduce the adaptive sparse grid–finite elements algorithm (ASGFE). In
Section 2.2, we prove convergence of the adaptive algorithm proposed in [GN18] for the pure
parameter enrichment problem. Section 2.3 proves the convergence of the full adaptive algorithm
including spatial adaptivity (with one adaptive mesh per collocation point or one global adaptive
mesh). Section 2.4 presents some numerical experiments. Finally, in the final Section 2.5 we
draw some conclusions.

The following is, up to small stylistic changes and new cross-references, verbatim to [FS21].
To achieve a coherent presentation, we made the following changes to the notation:

• Tensor product parameter space Γ to Γ;

• Multi-index sets I to Λ;

• Sparse grid interpolant S to I;

• Multi-index i to ν;

• Hierarchical surplus operator ∆m(i) to ∆ν ;

• Tensor product interpolant Im(i) to Iν ;

• Tensor product interpolation nodes Ym(i) to Yν ;

• Denote by Pi the space of degree i polynomials and by Vν = Pm(ν)−1 the linear space
corresponding to the multi-index ν, where m : N0 → N is the level-to-knot function of the
nodes family in use;
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• Banach space of solutions of deterministic PDE V to U;

• Adaptive sparse grid–finite element algorithm name SCFE (Stochastic Collocation Finite
Element) to ASGFE (adaptive sparse grid–finite element);

• Adaptive sparse grid algorithm name SC (Stochastic Collocation) to ASG (Adaptive Sparse
Grid);

• Space variable x to x;

• Multi-indices in NN to NN
0 .

2.1 Problem and algorithm

2.1.1 Problem statement

Let us begin by recalling the problem setting, even if all concepts were already defined in
Chapter 1. Consider an integer d ≥ 2 and an open bounded domain D ⊂ Rd with Lipschitz
continuous boundary ∂D. Let (Ω, E ,P) be a complete probability spaces. Let Yn : Ω → R
be independent random variables with ranges Γn := Yn(Ω) and densities ρn : Γn → R for all
n ∈ 1, . . . , N . We assume that the ranges Γn are bounded subsets of R. Let Γ :=

%N
n=1 Γn ⊂ RN

and ρ :=
<N

n=1 ρn. This means that, in this chapter, we are working under the finite-dimensional
noise assumption (see Remark 1.7). The triple (Γ,B(Γ), ρ(y)dy) (B(Γ) the Borel σ-algebra on
Γ) is a probability space. Consider f ∈ L2(D) and a : Γ×D → R with the following properties:

• Uniform boundedness : There exist 0 < amin ≤ amax < ∞ such that

amin ≤ a(y,x) ≤ amax ρ-a.e. y ∈ Γ, ∀x ∈ D;

• Affine dependence on y ∈ Γ:

∀n = 1, . . . , N ∃an : D → R : a(y,x) = a0(x) +
ND

n=1

an(x)yn;

• Regularity in space: ∇a(y, ·)|T ∈ L∞(T ) for all elements T of a coarse initial mesh Tinit
of D.

We consider the energy space U := H1
0 (D) with norm ∥v∥U := ∥∇v∥L2(D) and the parametric

weak formulation of the Poisson problem:
Find u : Γ → U such that*

D
a(x,y)∇u(x,y) · ∇v(x)dx =

*
D
f(x)v(x)dx ∀v ∈ U, ρ-a.e. y ∈ Γ. (2.1)

Due to uniform ellipticity of the problem, the exact solution is unique and (see also, e.g., [BNT10,
Lemma 3.1]) there exists τ ⊂ RN

>0 such that u : Γ → U can be extended to a bounded holomor-
phic function on the set

Σ(Γ, τ ) :=
�
z ∈ CN : dist(zn,Γn) ≤ τn ∀n = 1, . . . , N

�
. (2.2)
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2.1.2 Sparse grid (stochastic collocation) interpolation

We aim at building an approximation of the parameter-to-solution map u : Γ → U of (2.1) in
the space

P(Γ,U) ∼= P(Γ)⊗ U, (2.3)

where P(Γ) is a finite-dimensional polynomial space on Γ and U may be substituted by a finite-
dimensional subspace of U. In order to do so, we fix a set of collocation nodes H ⊂ Γ and
denote by {Ly}y∈H the related Lagrange basis (i.e. the unique set of polynomials of minimal
degree over Γ such that Lz(y) = δy,z for any y, z ∈ H). By P(Γ), we denote the polynomial
space spanned by {Ly}y∈H. For any y ∈ H, we consider Ty, a shape-regular triangulation on
D depending on y, and Uy := S1

0 (Ty), the classical finite elements space of piecewise-linear
functions over Ty with zero boundary conditions. We denote by Uy ∈ Uy the finite element
approximation of u(y), i.e. Uy solves the variational problem*

D
a(x,y)∇Uy(x) · ∇v(x)dx =

*
D
f(x)v(x)dx ∀v ∈ Uy. (2.4a)

Finally, the fully discrete approximation of u takes the formD
y∈H

Uy(x)Ly(z). (2.4b)

The number of its degrees of freedom is
E

y∈H dim (Uy).
The set of collocation nodes H, the Lagrange basis {Ly}y∈H, and the polynomial space P(Γ)

are defined following the sparse grid construction , which we described in Section 1.2.3. Recall
that a sparse grid interpolation method is defined given a 1D interpolation method, which in turn
is defined by a 1D nodes family and a level-to-knot function. Here we consider Clenshaw-Curtis
(CC) nodes (as in Example 1.15):

Y0 = {1}

Yν =



− cos

0
π(i− 1)

m(ν)− 1

7
: i = 1, . . . ,m(ν)

�
if ν ∈ N.

As level-to-knot function, we employ the doubling rule:

m(ν) =

�
1 if ν = 0,

2ν + 1 if ν ∈ N.
(2.5)

We additionally make the formal assumption

m(−1) = 1.

It is easy to prove that the resulting nodes family {Yν}ν∈N0
is nested. We will stick with this

particular choice for the remainder of this work for simplicity, however that other choices are pos-
sible (see, e.g., [GN18]). The essential properties of Yn used in the proofs below are nestedness
Yν ⊆ Yν+1 and the fact that the Lebesgue constants of the associated interpolation operators
grow sub-exponentially.

As mentioned in the beginning of the section, we want a polynomial interpolation. Therefore,
we define

Vν = Pm(ν)−1(Γ) ∀ν ∈ N0,
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i.e. the linear space of polynomials on Γ = [−1, 1] of degree m(ν)− 1. The spaces Vν (1.28) for
ν ∈ NN

0 and VΛ for Λ ⊂ NN
0 remain defined as a function of Vν as in in Section 1.2.3.

A sparse grid interpolant IΛ 1.32 is defined once a downward-closed multi-index set Λ ⊂ NN
0 is

given (see Section 1.2.3 for more details).
Since the exact solution u is analytic in y, we may represent it with a sparse grid-type sum

over all multi-indices (see again [GN18]):

u(y) =
D

ν∈NN
0

∆νu(y) for a.e. y ∈ Γ. (2.6)

The sum converges absolutely in U.

2.1.3 The adaptive sparse grid–finite element algorithm (ASGFE)

In the present section, we define an adaptive algorithm that iteratively refines both sparse grid
and finite element approximation. An important ingredient is the reliable a-posteriori estimator
from [GN18], which we already described in Section 1.2.4 (in particular, the estimator was
defined in (1.44), (1.45) and the a-posteriori estimate in (1.46)). Here, we aim at controlling the
L∞(Γ,U) error of the fully discrete approximation, but the same can be done for the Lp

ρ norm
for any 1 ≤ p ≤ ∞ and measure ρ on Γ.
In [GN18, p. 3130] an algorithm is given to adaptively refine the parameter space only. We
extend it here to the following Adaptive Sparse Grid–Finite Element algorithm (ASGFE), which
also adaptively refines the finite element space.

Algorithm 7 uε ← ASGFE(ε, θ, α, Tinit)

1: Λ0 := {0}
2: Compute U0,y on Tinit for all y ∈ HΛ0

3: for ℓ = 0, 1, 2, . . . do
4: Uℓ ← Refine_FE_spaces (Λℓ, Uℓ, α, θ)
5: Compute (ζν,Λℓ

)ν∈MΛℓ
, ζSC,Λℓ

, ηFE,Λℓ

6: if a−1
min(ζSC,Λℓ

+ CηFE,Λℓ
) < ε then

7: return uε ← IΛℓ
[Uℓ]

8: end if
9: (Uℓ+1,Λℓ+1) ← Refine_parameter_space(Λℓ, Uℓ, (ζν,Λℓ

)ν∈MΛℓ
, Tinit)

10: end for

Algorithm 7 consists of alternating between enriching the polynomial space VΛ in Line 9
(Alg. 7) and refining the finite element spaces corresponding to each collocation point indepen-
dently from each other in Line 4 (Alg. 7). The intuitive idea behind this choice is the following:
In order for the parameter enrichment routine to make a meaningful choice, the finite element
solution should be a relatively good approximation of the exact solution for parameters coincid-
ing with the collocation nodes. The algorithm terminates when the a-posteriori estimator falls
below a given tolerance ε > 0 in Line 6 (Alg. 7). The reliable upper bound (1.46) guarantees
that the error of the discrete solution is also bounded by ε.

The sub-routine Refine_FE_spaces reads:
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Algorithm 8 U ←Refine_FE_spaces (Λ, U, α, θ)

1: Compute
/
ηy,Ty

6
Ty∈Ty ,y∈HΛ

, ηFE,Λ, ζSC,Λ

2: Tol ← α
-E

ν∈MΛ

<N
n=1 νn

4−1
ζSC,Λ

3: while ηFE,Λ > Tol do
4: Find minimal K ⊂ I

y∈H Ty such that
E

(y,Ty)∈K η2y,Ty
∥Ly∥L∞(Γ) ≥ θη2FE,Λ

5: for y ∈ H do
6: Refine Ty with Ky := {T ∈ Ty : (y, T ) ∈ K} as marked elements
7: Compute Uy over Ty
8: end for
9: Compute

/
ηy,Ty

6
Ty∈Ty ,y∈HΛ

, ηFE,Λ, ζSC,Λ

10: Tol ← α
-E

ν∈MΛ

<N
n=1 νn

4−1
ζSC,Λ

11: end while

The aim of this sub-routine is to refine the finite element solutions in the collocation points
until the finite element estimator falls below the tolerance defined in Line 2 (Alg. 8). We use
newest-vertex-bisection with mesh closure for mesh refinement (see, e.g., [Ste08] for further
details). Observe that, since the tolerance depends on the parametric estimator ζSC,Λ, which in
turn depends on the discrete solution, the tolerance needs to be re-computed after every finite-
element refinement. This is necessary as one parametric refinement might uncover new features
of the solution which need to be resolved in the finite-element refinement step. In practical
computations, this rarely happens after the first few iterations of the algorithm. Note also that
the linear convergence result in Proposition 2.22 shows that starting from the initial mesh does
not significantly increase the computational cost (at worst case, it contributes logarithmically).
In line 4 (Alg. 8), we considered the disjoint union:H

y∈H
Ty :=

G
y∈H

G
Ty∈Ty

(y, Ty). (2.7)

In Section 2.3 we will prove that the sub-routine terminates (i.e. that the finite element estimator
eventually falls below the tolerance) and that the choice of tolerance made in Line 2 (Alg. 8) is
a sufficient condition for convergence. It might be possible to prove convergence omitting the

scaling
-E

ν∈MΛ

<N
n=1 νn

4−1
in the tolerance in Line 2 (Alg. 8). The experiments in Section 2.4

indicate that it is not necessary, however with the present techniques a proof is still out of reach.
Finally, the sub-routine Refine_parameter_space reads:

Algorithm 9 (U ′,Λ′) ←Refine_parameter_space (Λ, U , (ζν,Λ)ν∈MΛ
, Tinit)

1: Compute Pν,Λ for all ν ∈ MΛ

2: ν ← argmaxν∈MΛ
Pν,Λ

3: Λ′ ← Λ ∪Aν,Λ

4: U ′ ← Update U by computing finite element solution Uy on Tinit for all y ∈ HΛ′ \ HΛ

The aim here is to enrich the polynomial space VΛ as done in [GN18, Algorithm 1]. At each
iteration, the algorithm enlarges the multi-index set Λ by adding multi-indices from the margin
of Λ depending on the values of the pointwise error estimators (ζν,Λ)ν∈Λ. More precisely, in
Line 2 (Alg. 9) we select a profit maximizer, i.e. a multi index in the margin that maximizes a
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given profit function Pν,Λ (see below for some examples):

ν = argmax
ν∈MΛ

Pν,Λ (2.8)

(in case more than one multi-index maximizes the profit, we pick the one that comes first in the
lexicographic ordering).
Then, in Line 3 (Alg. 9), Λ is enlarged by adding Aν,Λ, the smallest subset of MΛ containing
ν such that Λ ∪ Aν,Λ is downward-closed. Finally, in Line 4(Alg. 9), we compute the finite
element solution over the default mesh Tinit corresponding to each new collocation point, while
preserving the old ones.

We analyze two possible choices of profit:

• Workless profit :

Pν,Λ :=
D

j∈Aν,Λ

ζj,Λ (2.9)

• Profit with work :

Pν,Λ :=

E
j∈Aν,Λ

ζj,ΛE
j∈Aν,Λ

Wj
(2.10)

where the work is defined as Wj :=
<N

n=1 (m(jn)−m(jn−1)). This choice follows the
profit maximization strategy outlined in Section 1.2.3. In this case, the “value”, i.e. the
numerator of the profit (2.10), is determined a-posteriori as a function of the pointwise
error estimator ζj,Λ for j ∈ Aν,Λ.

2.2 Convergence of the adaptive sparse grid algorithm (ASG)

We examine the convergence properties of a simplified version of Algorithm 7, also discussed
in [GN18]. In the present case, we suppose to be able to sample the function u : Γ → U for
any fixed parameter y ∈ Γ. Thus, a discrete solution is given by the sparse grid interpolant
IΛ[u] ∈ VΛ(Γ,U), for a downward-close multi-index set Λ ⊂ NN

0 . Moreover, the a-posteriori
estimator, which in the fully discrete setting was the sum of parametric estimator (1.44) and finite
element estimator (1.45), simplifies to ζSC,Λ :=

E
ν∈MΛ

ζν,Λ (no additional term accounting for
the finite element discretization), where the pointwise estimator now reads

ζν,Λ := ∥∆ν (a∇IΛ[u])∥L∞(Γ,L2(D)) .

In this setting, the reliable upper bound (1.46) simplifies to: ∥u− IΛ[u]∥L∞(Γ,U) ≲ ζSC,Λ.
Workless-profit and profit with work are defined analogously to (2.9) and (2.10) respectively.
This simplified version of the algorithm reads:
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Algorithm 10 uε ← ASG(ε, u)

1: Λ0 ← {0}
2: Compute IΛℓ

[u]
3: for ℓ = 0, 1, 2, . . . do
4: Compute ζSC,Λℓ

5: if a−1
minζSC,Λℓ

< ε then
6: Return uε ← IΛℓ

[u]
7: end if
8: Compute Pν,Λℓ

for all ν ∈ MΛℓ

9: νℓ ← argmaxν∈MΛℓ
Pν,Λℓ

10: Λℓ ← Λℓ ∪Aνℓ,Λℓ

11: Compute IΛℓ
[u]

12: end for

The algorithm is given as input a tolerance ε > 0 and the permission to access point evalu-
ations u(y) for arbitrary y ∈ Γ. The output uε is an approximation of the exact parameter-to-
solution map such that ∥u− uε∥L∞(Γ,H1

0 (D)) < ε, which is guaranteed by the reliability of the
error estimator.

2.2.1 Preliminary results

Stability and convergence of the hierarchical surplus ∆ν

In this section, we recall basic results on the hierarchical surplus operator ∆ν (see for instance
[NTW08b]). The analysis is carried out in the L∞(Γ,U) norm as it is the most "stringent"
among the Lp(Γ,U) norms for p ∈ [1,∞]. We note that all the arguments below work for other
choices of p.

We first state 1D results (corresponding to the case N = 1). For ν ∈ N, the Lebesgue
constant λν of the interpolant Iν (1.26) satisfies the relation

∥Iνv∥L∞(Γ,U) ≤ λν ∥v∥L∞(Γ,U) ∀v ∈ C0(Γ,U). (2.11)

For CC nodes, it was proved in [DI83] that λν ≤ 2
π log(m(ν) − 1) + 1 for m(ν) ≥ 2 (obviously,

λ1 ≤ 1). Recalling the definition of m(·) with the doubling rule (1.35), we obtain

λν ≤ ν + 1 ∀ν ∈ N0. (2.12)

The estimate can be used to derive a stability estimate for the detail operator

∥(Iν − Iν−1) v∥L∞(Γ,U) ≲ λν ∥v∥L∞(Γ,U) .

Moving to the general case N ∈ N, we can now exploit the tensor product structure of Γ =
[−1, 1]N to bound the L∞(Γ) → L∞(Γ) operator norm of the hierarchical surplus operator:

∥∆νv∥L∞(Γ,U) ≲ λν ∥v∥L∞(Γ,U) ∀v ∈ C0(Γ,U), (2.13)

where

λν ≤
N;

n=1

λνn ≲
N;

n=1

(νn + 1). (2.14)

Observe that the same holds for the tensor product interpolant Iν .
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Let us now assume that u : Γ → U is analytic with respect to y and derive another estimate
of ∥∆νu∥L∞(Γ,U). The tensor product structure of Γ allows us again to start from a 1D results
and then generalize to N dimensions. We state a result that relates the best approximation
error in Pm(Γ) for m ∈ N to the size of the domain of the holomorphic extension of u (2.2).

Lemma 2.1 ([BNT10, Lemma 4.4]). If v ∈ C0(Γ) and it exists τ > 0 such that v admits a
holomorphic extension to Σ(Γ, τ) (cf. (2.2)), then, for m ∈ N,

Em(v) := min
w∈Pm(Γ)

∥v − w∥L∞(Γ) ≤
2

eσ − 1
e−σm max

z∈Σ(Γ,τ)
|v(z)| (2.15)

where σ := log
-

2τ
|Γ| +

=
1 + 4τ2

|Γ|2
4
> 0.

Since Iν is exact on Pm(ν)−1(Γ), its error can be expressed as (see [BNR00])

∥u− Iνu∥L∞(Γ) ≤ (1 + λν)Em(ν)−1(u).

Remembering (2.12) and the previous lemma, the error estimate for Iν can be simplified to

∥u− Iνu∥L∞(Γ) ≲ λνe
−σm(ν) max

z∈Σ(Γ,τ)
|u(z)| .

This estimate can be applied to the detail operator after a triangle inequality to obtain

∥∆νu∥L∞(Γ) ≲ λνe
−σm(ν−1) max

z∈Σ(Γ,τ)
|u(z)| ∀ν ∈ N0. (2.16)

Applying (2.16) to the multidimensional case (by considering one component at a time) leads
to the following estimate:

Lemma 2.2. Consider a function u : Γ → U admitting a holomorphic extension to Σ(Γ, τ) ⊂
CN (2.2). Its hierarchical surplus with multi-index ν ∈ NN

0 satisfies:

∥∆νu∥L∞(Γ,U) ≲ λνe
−σ|m(ν−1)|1 ,

where the hidden constant depends on u and N , λν is estimated in (2.14), m is the level-to-knot
function and

σ := min
n∈1,...,N

σn, σn := log

.
2τn
|Γn| +

>
1 +

4τ2n
|Γn|2

5
.

A simplified formula for ζν,Λ

In this section, we highlight elementary facts on the zeros of ∆νu and the kernel of ∆ν for some
ν ∈ NN

0 . These facts are combined to show that the operator ∆ν (a∇∆j) is identically zero
unless the multi-indices ν, j ∈ NN

0 are “close to each other" (see also [GN18, Proposition 4.3]
for partial results in this direction).

For two multi-indices i, j ∈ NN
0 , i < j means that for all n ∈ 1, . . . , N in < jn. Analogously,

i ≤ j means that for all n = 1, . . . , N in ≤ jn.
We denote by Rectν ⊂ NN

0 the axis-aligned rectangle with opposite vertices 0 and ν ∈ NN
0 :

Rectν :=
�
j ∈ NN

0 : j ≤ ν
�
. (2.17)

It clearly holds that the corresponding sparse grid interpolant is a tensor product interpolant
(1.29), i.e.

IRectν = Iν ∀ν ∈ NN
0 .
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Theorem 2.3. Let ν, j ∈ NN
0 and assume that

∃n ∈ 1, . . . , N : νn < jn, (2.18)

or that

∀n ∈ 1, . . . , N : j + en < ν. (2.19)

Then,

∆ν (a∇∆ju) ≡ 0 ∀u ∈ C0(Γ,U). (2.20)

Proof. Fix y ∈ Yν . By (2.18) and the nestedness of CC nodes, it exists n ∈ 1, . . . , N such that
yn ∈ Yjn−1. This implies that ∆ju(y) = 0, as yn is an interpolation point for both Ijn and
Ijn−1. Thus, recalling that ∇ acts on the space variable x only,

a(y)∇∆ju(y) = 0 ∀y ∈ Yν . (2.21)

Next, observe that a hierarchical surplus can be written as a linear combination of Lagrange
interpolants

∆ν =
D

α∈{0,1}N
(−1)|α| Iν−α.

Again by the nestedness of CC nodes, (2.21) implies that a∇∆ju is in the kernel of each of the
interpolants

�
Iν−α : α ∈ {0, 1}N�

, which in turn implies (2.20).
To show that (2.19) also implies (2.20), first observe that

a∇∆ju ∈
ND

n=1

Pm(j)−1+en ⊆ VRectν\{ν}, (2.22)

where the last inclusion is due to assumption (2.19). Next, observe that a hierarchical surplus
can be written as a difference of sparse grid interpolants:

∆ν = IRectν − IRectν\{ν}.

This implies that VRectν\{ν} is a subset of the kernel of ∆ν , as both IRectν and IRectν\{ν} are
exact on this space. Together with (2.22), this concludes the proof.

Remark 2.4. Consider a multi-index set Λ ⊂ NN
0 and ν ∈ MΛ. The previous theorem can be

used to simplify the computation of ζν,Λ. Define

Jν,Λ := {j ∈ Λ : ∃n ∈ 1, . . . , N : j = ν − en} .
Then, thanks to the previous theorem:

∆ν (a∇IΛ [u]) = ∆ν

a∇
D
j∈Λ

∆ju

 = ∆ν

a∇
D

j∈Jν,Λ

∆ju

 ,

so

ζν,Λ =

KKKKKK∆ν

a∇
D

j∈Jν,Λ

∆ju

KKKKKK
L∞(Γ,L2(D))

. (2.23)

See Figure 2.1 for a graphical representation.
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0

1
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ν1

ν2

ν

Jν,Λ

Figure 2.1: Graphical representation of the simplified computation of ζν,Λ from (2.23). We
consider N = 2 parameters, each point in the plot corresponds to an element ν = (ν1, ν2) ∈ N2

0,
where on the x-axis we represent ν1 and on the y-axis ν2. Filled dots represent Λ, the hollow
one is ν ∈ MΛ. The dashed line encircles the multi-indices in Jν,Λ, i.e. the only relevant ones
in Λ for the computation of ζν,Λ, as explained in Remark 2.4.

A-priori estimates for estimators and index sets

Proposition 2.5. Given u : Γ → U a function that admits a holomorphic extension to Σ(Γ, τ )
(cf. (2.2)), a multi-index set Λ ⊂ NN

0 , and ν ∈ MΛ, the pointwise error estimator can be
bounded as

ζν,Λ ≲ Nλ2
νe

−σ|m(ν−1)|1 ,

where λν is as in (2.13) and m is the level-to-knot function (for example (2.5)).

Proof. Observe that IΛ[u] : Γ → U is analytic but not uniformly bounded with respect to
Λ, so one cannot apply directly the convergence result for the hierarchical surplus. Recalling
Remark 2.4, we can simplify the expression of ζν,Λ as

ζν,Λ = ∥∆ν (a∇IΛ[u])∥L∞(Γ,L2(D)) =

KKKKKKKK∆ν

22a∇
D

n∈1,...,N
ν−en∈Λ

∆ν−enu

99
KKKKKKKK
L∞(Γ,L2(D))

.

Applying the stability estimate (2.13) of ∆ν , the uniform boundedness assumption (2.1.1) on a,
and the triangle inequality, we obtain

ζν,Λ ≲ λν

D
n∈1,...,N
ν−en∈Λ

∥∆ν−en∇u∥L∞(Γ,L2(D)) .

Observe finally that, since u is analytic, we can apply Lemma 2.2 to obtain

ζν,Λ ≤ λν

D
n∈1,...,N
ν−en∈Λ

λν−ene
−σ|m(ν−en−1)|1 ≲ Nλ2

νe
−σ|m(ν−1)|1 .

Remark 2.6. A direct consequence of the previous proposition is the uniform boundedness of
the sequence of a-posteriori estimators (ζSC,Λℓ

)ℓ produced by the adaptive Algorithm 10 driven
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by either workless profit (2.9) or profit with work (2.10). Indeed, we have the following bound
independently of the iteration number ℓ:

ζSC,Λℓ
=

D
ν∈MΛℓ

ζν,Λℓ
≲ N

D
ν∈MΛℓ

λνe
−σ|m(ν−1)|1 ≤ N

D
ν∈NN

0

λνe
−σ|m(ν−1)|1 < ∞.

Lemma 2.7. The profit maximizer νℓ ∈ NN
0 at iteration ℓ of Algorithm 10 satisfies

#Rectνℓ
=

N;
n=1

(1 + ⟨νℓ, en⟩) ≤
0
1 +

ℓ+ 1

N

7N

. (2.24)

In particular, there holds

#Aνℓ,Λℓ
≤

0
1 +

ℓ

N

7N

(2.25a)

and

#MΛℓ
≤ N

.
1 +

ℓ−1D
ℓ′=0

0
1 +

ℓ′ + 1

N

7N
5

≤ N

.
1 + ℓ

0
1 +

ℓ

N

7N
5
. (2.25b)

Proof. The identity (2.24) is trivial. The following inequality is a consequence of the arithmetic-
geometric inequality:

N;
n=1

(1 + jn) ≤
.EN

n=1(1 + jn)

N

5N

=

0
1 +

|j|1
N

7N

∀j ∈ NN
0 ,

and the fact that |νℓ|1 ≤ ℓ+ 1.
To prove (2.25a), simply observe that Aν,Λ = Rectν \ Λ.
To prove (2.25b), first note that #MΛℓ

≤ N#Λℓ. Then, an estimate of #Λℓ comes from
partitioning Λℓ = {0} ∪Jℓ−1

m=1Aνm,Λm and the estimate of #Aνℓ,Λℓ
(2.25a) obtained above.

Remarks on the algorithm driven by workless profit

In this section, we point out some elementary facts on the behavior of the algorithm when the
workless profit defined in (2.9) is used. Inspired by [CCS14], we give the following definition:

Definition 2.8. Given a downward closed multi-index set Λ ⊂ NN
0 , ν ∈ MΛ is maximal in MΛ

if and only if
∀j ∈ MΛ \ {ν} , ∃n ∈ 1, . . . , N : νn > jn.

The set of maximal points in MΛ is denoted by µΛ.

Example 2.9. If ν ∈ NN
0 and Λ = Rectν is an axis-aligned rectangle as defined in (2.17), then

µΛ = {ν + en, n ∈ 1, . . . , N} .

Lemma 2.10. Consider a downward-closed multi-index set Λ ⊂ NN
0 . The multi-index corre-

sponding to the largest workless profit (2.9) in MΛ is maximal:

argmax
ν∈MΛ

Pν,Λ ∈ µΛ. (2.26)
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In particular, the adaptive Algorithm 10 driven by workless profit always selects in Line 9 a
maximal multi-index:

νℓ ∈ µΛℓ
∀ℓ ∈ N0. (2.27)

Therefore, Λℓ is always an axis-aligned rectangle in NN
0 , i.e.

Λℓ = Rectνℓ−1
∀ℓ ∈ N. (2.28)

Proof. We prove (2.26) by contradiction. If ν∗ := argmaxν∈MΛ
Pν,Λ is not maximal, there

exists j ∈ MΛ \ {ν∗} such that for all n ∈ 1, . . . , N ⟨ν∗, en⟩ ≤ jn. Thus, ν∗ ∈ Aj,Λℓ
and by

definition of workless profit (2.9), we have the contradiction Pν∗,Λℓ
< Pj,Λℓ

.
The fact (2.28) can be proved by induction. For ℓ = 1, Λ1 = Rect0 = {0}. Assume that for

fixed ℓ ∈ N, Λℓ = Rectνℓ−1
. Example 2.9 and (2.27) imply that

νℓ ∈ µΛℓ
= µRectνℓ−1

= {νℓ−1 + en, n ∈ 1, . . . , N} .
Thus Λℓ+1 = Λℓ ∪Aνℓ,Λℓ

= Rectνℓ
.

To summarize, the use of the workless profit (2.9) implies that, for all ℓ ∈ N0,

• It exists a unique number n(ℓ) ∈ 1, . . . , N such that

νℓ+1 = νℓ + en(ℓ). (2.29)

• As a consequence, the norm of νℓ is given by:

|νℓ+1|1 = |νℓ|1 + 1 = ℓ. (2.30)

• Λℓ is a rectangle:
Λℓ+1 = Rectνℓ

. (2.31)

Therefore, the sparse grid interpolant is actually a tensor product Lagrange interpolant:

IΛℓ+1
= Iνℓ

=
N$

n=1

I⟨νℓ,en⟩.

• The multi-indices added at iteration ℓ are

Aνℓ,Λℓ
= Λℓ+1 \ Λℓ =

�
j ∈ Rectνℓ

: jn(ℓ) = ⟨νℓ, en(ℓ)⟩
�
. (2.32)

In other words, the evolution of the approximation space is determined by the sequence of
integers (n(ℓ))ℓ. This allows us to simplify the notation as follows

An,Λℓ
:= Aνℓ−1+en,Λℓ

(2.33)

Pn,Λℓ
:=

D
j∈An,Λℓ

ζj,Λℓ
(2.34)

Let us moreover denote the maximal n-th dimension of Λℓ as

rn,ℓ := max
j∈Λℓ

jn. (2.35)

See Figure 2.2 for a graphical representation.
The estimate for the pointwise error estimator from Proposition 2.5 can be improved as

follows: First observe that, due to (2.29) and (2.31), for any ν ∈ Aνℓ,Λℓ
,

Jν,Λℓ
= {j ∈ Λℓ : ∃n ∈ 1, . . . , N : j = ν − en} =

�
ν − en(ℓ)

�
.

Thus, #Jν,Λℓ
= 1 and we may reduce the dependence on N to

ζν,Λℓ
≲ Λ2

νe
−σ|m(ν−1)|. (2.36)
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0 1 2
0

1

2

3

j1

j2

νℓ−1 νℓ

A1,Λℓ

Figure 2.2: Example of approximation parameters at a generic step ℓ of the algorithm when the
workless profit (2.9) is used. We consider N = 2 parameters, each point in the plot corresponds
to a multi-index j = (j1, j2) ∈ N2

0, where on the x-axis we represent j1 and on the y-axis j2.
Filled dots represent Λℓ, hollow ones MΛℓ

. The multi-index selected by the algorithm at current
step, νℓ corresponds here to n(ℓ) = 1). The dashed rectangle encircles multi-indices in An(ℓ),Λℓ

.

2.2.2 Convergence of the parametric estimator

In the following two lemmata, we prove that Algorithm 10 driven by workless profit and profit
with work respectively forces the maximum profit over the margin to zero.

Proposition 2.11. If the workless profit (2.9) is used, then

lim
ℓ→∞

Pn(ℓ),Λℓ
= 0,

where we used the notation (2.34).

Proof. For fixed n ∈ 1, . . . , N , we estimate each pointwise error estimator appearing in Pn,Λℓ
by

(2.36) and the fact that for any ν in An,Λℓ
, νn = rn,ℓ + 1.

Pn,Λℓ
=

D
ν∈An,Λℓ

ζν,Λℓ
≲

D
ν∈An,Λℓ

λ2
νe

−σ|m(ν−1)|1

≲
D

ν∈An,Λℓ

N;
k=1

-
(νk + 1)2e−σ|m(νk−1)|1

4

≤ (rn,ℓ + 2)2 e−
σ
2
m(rn,ℓ)

D
ν∈An,Λℓ

(νn + 1)2e−
σ
2
m(νn+1)

N;
k=1,k ̸=n

-
(νk + 1)2e−σm(νk−1)

4
≤ (rn,ℓ + 2)2 e−

σ
2
m(rn,ℓ)

D
ν∈An,Λℓ

.
N;

n=1

(λn + 1)

52

e−
σ
2
|m(ν−1)|1 .

The last factor is uniformly bounded with respect to ℓ (but this bound depends on the number
of dimensions N)

D
ν∈An,Λℓ

.
N;

n=1

(λn + 1)

52

e−
σ
2
|m(ν−1)|1 ≤

D
ν∈NN

0

Λ2
νe

−σ
2
|m(ν−1)|1 < ∞.
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All in all, we have

Pn,Λℓ
≲ (rn,ℓ + 2)2 e−

σ
2
m(rn,ℓ)

and the right-hand side vanishes as ℓ → ∞ since limℓ→∞ rn(ℓ),ℓ = ∞.

For the profit with work, we can even show convergence to zero of the profit without using
the analyticity assumption on u. This is not relevant for the problem at hand, as the analyt-
icity follows immediately, but may be relevant for more complicated and less regular random
coefficients.

Proposition 2.12. Consider the profit with work (2.10). There holds limℓ→∞ Pνℓ,Λℓ
= 0.

Proof. As in the proof of Proposition 2.5, but without using any analyticity of u, we obtain
with (2.13) that

ζν,Λ ≲ λ2
νN ∥∇u∥L∞(Γ,L2(D)) . (2.37)

We observe that the use of the doubling rule (1.35) implies that

m(ν)−m(ν − 1) =

�
2ν if ν ≤ 1

2ν−1 otherwise.

Therefore,
2|ν|1−N ≤ Wν ≤ 2|ν|1 ∀ν ∈ NN

0 . (2.38)

Thus, using estimates 2.25a, 2.37 and 2.38, the profit can be estimated as:

Pνℓ,Λℓ
=

E
j∈Aνℓ,Λℓ

ζj,ΛℓE
j∈Aνℓ,Λℓ

Wj
≲

#Aνℓ,Λℓ
L2
νℓ
N

Wνℓ

≤ N

0
1 +

ℓ

N

7N

L2
νℓ
2N−|νℓ|1 .

Since λ2
νℓ

≤
-<N

n=1(⟨νℓ, en⟩+ 1)
42

is negligible with respect to 2|νℓ|1 , we conclude the proof.

The following result shows that, if a multi-index ν ∈ NN
0 stays in the margin indefinitely,

then it’s pointwise estimator vanishes. This result is valid for both workless profit and profit
with work.

Proposition 2.13. Let ν̂ ∈ NN
0 and suppose it remains in the margin indefinitely, i.e.,

∃ℓ0 ∈ N : ∀ℓ ≥ ℓ0, ν̂ ∈ MΛℓ
.

Then, the pointwise error estimator corresponding to ν̂ vanishes:

lim
ℓ→∞

ζν̂,Λℓ
= 0.

Proof. Let ν̂ ∈ NN
0 such that ν̂ ∈ MΛℓ

for all ℓ > ℓ0. Thus, ν̂ ̸= νℓ for any ℓ > ℓ0, which
means that Pν̂,Λℓ

≤ Pνℓ,Λℓ
∀ℓ > ℓ0. In case the profit with work (2.10) is used, since

limℓ→∞ Pνℓ,Λℓ
= 0 as proved in Proposition 2.12, we have that limℓ→∞ Pν̂,Λℓ

= 0 (otherwise )ν
would be selected at some point). Moreover, since

E
j∈Aν̂,Λℓ

Wj (i.e. the denominator in the
profit Pν̂,Λℓ

) is eventually constant with respect to ℓ, we have that limℓ→∞
E

j∈Aν̂,Λℓ
ζν̂,Λℓ

= 0,
and in particular we obtain the statement. The same holds if the profit without work (2.9) is
employed, as in Proposition 2.11 we have proved that also in this case limℓ→∞ Pνℓ,Λℓ

= 0.
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Remark 2.14. Recall the simplified formula (2.23) for ζν̂,Λℓ
, where the (non downward-closed)

multi-index is defined as Jν̂,Λℓ
⊂ {ν̂ − en : n ∈ 1, . . . , N}. Observe that

/
Jν̂,Λℓ

6
ℓ

is eventually
constant, i.e. it exists ℓ2 > ℓ0 (as defined in the previous proposition) such that for all ℓ > ℓ2
Jν̂,Λℓ

= Jν̂,Λℓ2
. Thus,

/
ζν̂,Λℓ

6
ℓ

is also eventually constant. Therefore,
/
ζν̂,Λℓ

6
ℓ

does not only
vanish in the limit, but is actually eventually zero:

∀ℓ > ℓ2, ζν̂,Λℓ
= 0.

We can finally prove the convergence of the parameter-enrichment algorithm with a technique
inspired by [BSX22b, Proposition 10].

Theorem 2.15 (Convergence of the parameter-enrichment algorithm). The adaptive sparse
grid interpolation Algorithm 10, driven by either workless profit (2.9) or profit with work (2.10),
leads to a vanishing sequence of a-posteriori error estimators. Due to the reliability of the error
estimator, it also leads to a convergent sequence of discrete solutions to the exact solution

lim
ℓ→∞

ζSC,Λℓ
= 0 = lim

ℓ→∞
∥u− IΛℓ

[u]∥L∞(Γ,U)

Proof. The a-posteriori error estimator at step ℓ ∈ N0 can be written as

ζSC,Λℓ
=

D
ν∈NN

ζν,Λℓ MΛℓ
(ν),

where MΛℓ
is the indicator function of the margin MΛℓ

. In order to prove that the se-
quence vanishes by dominated convergence, it is sufficient to prove that (i) for any ν ∈ NN

0 ,
limℓ→∞ ζν,Λℓ MΛℓ

= 0 and (ii) that the sequence (ζSC,Λℓ
)ℓ is bounded. The uniform bounded-

ness (ii) was proved in Remark 2.6. As for (i), observe that at least one of the following cases
applies:

• ν is eventually added to Λℓ, thus MΛℓ
(ν) is eventually zero;

• ν is never added to the margin (for all ℓ ∈ N0, ν ∈ NN
0 \MΛℓ

), thus ζν,Λℓ
is constantly

zero;

• it exists ℓ̄ ∈ N such that for any ℓ ≥ ℓ̄, ν ∈ MΛℓ
. In this case, due to Proposition 2.13,

limℓ→∞ ζν,Λℓ
= 0.

This concludes the proof.

2.2.3 Convergence of the parametric error

In this section, we denote by L(L∞(Γ,U)) the space of linear bounded operators T : L∞(Γ,U) →
L∞(Γ,U). It is well known that this is a Banach space when equipped with the usual operator
norm

∥T∥L(L∞(Γ,U)) := sup
u∈L∞(Γ,U)

u ̸=0

∥Tu∥L∞(Γ,U)

∥u∥L∞(Γ,U)
.

We have the following monotonicity property of the approximation error of IΛ[·] with respect
to Λ:

Lemma 2.16. Let u ∈ C0(Γ,U) and Λ, J ⊂ NN
0 downward-closed multi-index sets such that

J ⊂ Λ. Then

∥u− IΛ[u]∥L∞(Γ,U) ≤
-
1 + ∥IΛ∥L(L∞(Γ,U))

4
∥u− IJ [u]∥L∞(Γ,U) .
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Proof. The assumption J ⊂ Λ and the use of nested nodes imply IΛ [IJ [u]] = IJ [u]. As a
consequence, denoting by 1 the identity operator on C0(Γ,U),

u− IΛ[u] = (1− IΛ)u = (1− IΛ) (1− IJ)u.
The triangle inequality concludes the proof.

In this section, we provide error estimates for IΛℓ
, i.e. the sparse grid interpolant adaptively

generated after ℓ ∈ N0 steps, with respect to the number of iterations ℓ. We consider both the
possible definitions of profit (2.9) and (2.10).

Remark 2.17. The quantity ∥IΛℓ
∥L(L∞(Γ,U)) from Lemma 2.16 satisfies

• Workless profit: Λℓ = Rectνℓ−1
, i.e. IΛℓ

i.e. a tensor product Lagrange interpolant (recall
Section 2.2.1). Therefore,

∥IΛℓ
∥L(L∞(Γ,U)) =

KKKKK
N$

n=1

I⟨νℓ−1,en⟩

KKKKK
L(L∞(Γ,U))

≤
N;

n=1

(1 + ⟨νℓ−1, en⟩) ≤
0
1 +

ℓ

N

7N

,

(2.39)
where in the first inequality we used the stability bound for the Lagrange interpolant (2.11)
and in the second Lemma 2.7;

• Profit with work: Partitioning Λℓ with Λ0 and the sequence (Aνm,Λm)
ℓ−1
m=0 and using

Lemma 2.7 we obtain

∥IΛℓ
∥L(L∞(Γ,U)) ≤

D
ν∈Λℓ

∥∆ν∥L(L∞(Γ,U)) ≤ λ0 +
ℓ−1D
m=0

#Aνm,Λmλνm

≤ 1 + ℓ

0
1 +

ℓ

N

72N

.

(2.40)

We finally prove the parametric error estimates, first with workless profit, then with profit
with work with respect to the number of iterations.

Theorem 2.18. Consider Algorithm 10 with workless profit defined in (2.9). Denote by Λℓ

the downward-closed multi-index sets chosen by the algorithm at step ℓ ∈ N and by IΛℓ
[u] the

corresponding sparse grid approximation of the analytic function u : Γ → U. Then,

∥u− IΛℓ
[u]∥L∞(Γ,U) ≲

.
1 +

0
1 +

ℓ− 1

N

7N
5
Nℓ2e−

σ
2
m(1+ ℓ

N
) ∀ℓ > 0. (2.41)

Proof. Fix ℓ > 0. Recall the definition of rn,ℓ from (2.35) and consider the direction

n = argmax
n∈1,...,N

rn,ℓ.

With n(ℓ) from (2.29), define

ℓ′ := max
�
ℓ′ ∈ 1, . . . , ℓ : n(ℓ′) = n̄

�
,

and observe that with each iteration at least one side of the axis aligned rectangle Λℓ is increased
by one. Thus, from the definition of |oln, we have

rn(ℓ′),ℓ′ = rn̄,ℓ ≥ 1 +
ℓ

N
. (2.42)
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Applying Lemma 2.16 and estimate (2.39) form the previous remark, we bound

∥u− IΛℓ
[u]∥L∞(Γ,U) ≤

.
1 +

0
1 +

ℓ

N

7N
5KKu− IΛℓ′ [u]

KK
L∞(Γ,U) .

Te reliability of the error estimator proved in [GN18, Proposition 4.3] impliesKKu− IΛℓ′ [u]
KK
L∞(Γ,U) ≲

D
ν∈MΛℓ′

ζν,Λℓ′ .

Recalling the definition of An,Λℓ′ and Pn,Λℓ′ for n ∈ 1, . . . , N given in Section 2.2.1, we have

D
ν∈MΛℓ′

ζν,Λℓ′ =

ND
n=1

D
ν∈An,Λℓ′

ζν,Λℓ′ =

ND
n=1

Pn,Λℓ′ ≤ NPn(ℓ′),Λℓ′ .

The profit Pn(ℓ′),Λℓ′ can now be bounded as a function of rn(ℓ′),ℓ′ as we did in Proposition 2.11:

Pn(ℓ′),Λℓ′ =
D

j∈An(ℓ′),Λℓ′

ζj,Λℓ′ ≤
D

j∈An(ℓ′),Λℓ′

.
N;
k=1

jk + 1

52

e−
σ
2
|m(j−1)|1 ≲ r2n(ℓ′),ℓ′e

−σ
2
m(rn(ℓ′),ℓ′ ),

where in the first inequality we have applied the estimate (2.36) on ζj,Λℓ′ and in the second we
have exploited the fact that, for j ∈ An(ℓ′),Λℓ′ , jn(ℓ′) = rn(ℓ′),ℓ′ + 1. Recalling that 1 + ℓ

N ≤
rn(ℓ′),ℓ′ ≤ ℓ+1, we obtain

Pn(ℓ′),Λℓ′ ≲ ℓ2e−
σ
2
m(1+ ℓ

N
).

Let us now prove the analogous result for the algorithm driven by profit with work.

Theorem 2.19. Consider Algorithm 10 with profit with work defined in (2.10). Denote by Λℓ

the downward-closed multi-index sets chosen by the algorithm at step ℓ ∈ N0 and by IΛℓ
[u] the

corresponding sparse grid approximation of the analytic function u : Γ → U. Then,

∥u− IΛℓ
[u]∥L∞(Γ,U) ≲ ℓ5

0
ℓ

N

74N

2ℓ(1−
1
N )e

−σ
2
m

�
ℓ

1
N

�
∀ℓ > 0. (2.43)

Proof. For brevity, we write ζν , Aν and Pν instead of ζν,Λ, Aν,Λ and Pν,Λ respectively. Fix
ℓ ∈ N0 and consider r̄ := maxν∈Λℓ

|ν|∞ and n̄ ∈ 1, . . . , N such that, for some ν ∈ Λℓ, νn̄ = r̄.
Observe that #Λℓ ≥ ℓ, hence

r̄ ≥ ℓ
1
N .

Consider the last step ℓ′ in which Λℓ has been extended in direction n̄, i.e.,

ℓ′ := max
�
ℓ′ ∈ 1, . . . , ℓ : ⟨νℓ′ , en̄⟩ = r̄ and νℓ′ − en̄ ∈ Λℓ′

�
. (2.44)

Applying estimate (2.40) from Remark 2.17, we can bound

∥u− IΛℓ
[u]∥L∞(Γ,U) ≤

.
(2 + ℓ

0
1 +

ℓ

N

72N
5KKu− IΛℓ′ [u]

KK
L∞(Γ,U) . (2.45)
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In [GN18, Proposition 4.3], the reliability of the error estimator is proved:KKu− IΛℓ′ [u]
KK
L∞(Γ,U) ≲

D
ν∈MΛℓ′

ζν .

Recalling the definition of µΛℓ′ , the set of maximal elements in MΛℓ′ (Definition 2.8), the margin
can be represented (but in general not partitioned) as

MΛℓ′ =
G

j∈µΛℓ′

Aj . (2.46)

Thus, we can estimate

D
ν∈MΛℓ′

ζν ≤
D

j∈µΛℓ′

D
ν∈Aj

ζν =
D

j∈µΛℓ′

E
ν∈Aj

ζνE
ν∈Aj

Wν

D
ν∈Aj

Wν =
D

j∈µΛℓ′

Pj

D
ν∈Aj

Wν

≤Pνℓ′
D

j∈µΛℓ′

D
ν∈Aj

Wν =

 D
ν∈Aνℓ′

ζν

 1E
ν∈Aνℓ′

Wν

 D
j∈µΛℓ′

D
ν∈Aj

Wν

 ,

where in the second inequality we have used the fact that Pνℓ′ ≥ Pj for any j ∈ MΛℓ′ . Let us
now estimate each of the three factors separately.

•
E

ν∈Aνℓ′
ζν : As in the proof of Theorem 2.18 (using the estimate from Proposition 2.5

instead of (2.36)) we obtain with ℓ
1
N ≤ r̄ ≤ ℓ+ 1 that

D
ν∈Aνℓ′

ζν ≲ Nℓ2e
−σ

2
m

�
ℓ

1
N

�
. (2.47)

•
E

ν∈Aνℓ′
Wν : There holdsD

ν∈Aνℓ′

Wν ≥ Wνℓ′ ≥ m(⟨νℓ′ , en̄⟩)−m(⟨νℓ′ , en̄⟩ − 1) ≥ 2r̄−2 ≥ 2
ℓ
N
−2 (2.48)

•
E

j∈µΛℓ′

E
ν∈Aj

Wν : We observeD
j∈µΛℓ′

D
ν∈Aj

Wν =
D

ν∈MΛℓ′

#
�
j ∈ µΛℓ′ : ν ∈ Aj

�
Wν .

Thus, being #
�
j ∈ µΛℓ′ : ν ∈ Aj

� ≤ #MΛℓ′ , we can estimateD
j∈µΛℓ′

D
ν∈Aj

Wν ≤ #MΛℓ′
D

ν∈MΛℓ′

Wν ≤ /
#MΛℓ′

62
max

ν∈MΛℓ′
Wν . (2.49)

An estimate for #MΛℓ′ is given in (2.25b). For the second factor, use the bound on Wν

from (2.38) and the fact that for any ν ∈ MΛℓ
, |ν|1 ≤ ℓ+ 1 to obtain:

D
j∈µΛℓ′

D
ν∈Aj

Wν ≤
.
N +Nℓ

0
1 +

ℓ

N

7N
52

2ℓ. (2.50)
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Finally, the statement of the theorem is obtained combining (2.47), (2.48) and (2.50).

Remark 2.20. We note that the convergence rates in Theorems 2.18–2.19 above compare the
error to the number of adaptive steps ℓ. This is hard to compare to classical a priori results which
bound the error in terms of the number of collocation points (see, e.g., [NTW08a, BNT10]). Due
to the adaptive nature of the algorithm we have no knowledge about the shape of Λℓ and hence
the number of collocation points #HΛℓ

. Additionally, we do not assume any a priori information
about the anisotropy of the solution. Hence, the term ℓ1/N is the worst-case for a fully isotropic
solution. We point out that the observed rate of convergence is much better (see Section 2.4) and
further research is required to explain the performance of the adaptive algorithm.

2.3 Convergence of the adaptive sparse grid–finite element algo-
rithm (ASGFE)

In order to prove the convergence of Algorithm 7, it is sufficient to prove that:

• In Algorithm 8 (the finite element refinement sub-routine) the finite element error even-
tually falls below the tolerance prescribed in Line 2 (Alg. 8) and iteratively updated in
Line 10 (Alg. 8) (proved in Section 2.3.1);

• The parametric estimator ζSC,Λℓ
in Algorithm 7 vanishes (proved in Section 2.3.2).

Indeed, if this is the case, ηFE,Λℓ
will vanish with ζSC,Λℓ

because of the definition of the finite
element refinement tolerance and the reliability of the estimator will ensure the convergence of
the discrete solution to the exact one.

In the present section, we write ζSC,Λ(·), ζν,Λ(·) to denote the dependence on the function
explicitly. The same will be done for the finite element estimator ηFE,Λ(·). For instance, the
parametric estimator (1.44) is written as ζSC,Λ(U), if we denote by U the current discrete
finite element solution. In the previous section, in which we assumed to be able to sample the
parameter-to-solution map exactly, we were dealing with ζSC,Λ(u).

The following lemma is used in the next sections.

Lemma 2.21. Given a downward-closed multi-index set Λ ⊂ NN
0 , there holds

|ζSC,Λ(u)− ζSC,Λ(U)| ≲
 D

ν∈MΛ

λν

 ηFE,Λ(U).

Proof. The definition of parametric estimator and the triangle inequality give

|ζSC,Λ(u)− ζSC,Λ(U)| ≤
D

ν∈MΛ

|ζν,Λ(u)− ζν,Λ(U)|

≤
D

ν∈MΛ

∥∆ν (a∇IΛ[u− U ])∥L∞(Γ,L2(D)) .

Recall that λν as in 2.13 denotes the Lebesgue constant of ∆ν and that the diffusion coefficient
a is uniformly bounded by 0 < amax < ∞ to estimate

|ζSC,Λ(u)− ζSC,Λ(U)| ≲
 D

ν∈MΛ

λν

 ∥∇IΛ[u− U ]∥L∞(Γ,L2(D)) .
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Observe now that

∥∇IΛ[u− U ]∥L∞(Γ,L2(D)) ≤
D
y∈HΛ

∥∇ (u(y)− Uy)∥L2(D) ∥Ly∥L∞(Γ) .

Finally, the reliability of the residual-based error estimator in each collocation point y concludes
the proof.

2.3.1 Convergence under h-refinement

The ASGFE algorithm (Algorithm 7) delegates to Algorithm 8 the task of refining the finite
element solutions corresponding to the collocation points until the finite element a-posteriori
estimator (1.45) falls below a given tolerance. Recall that Algorithm 8 is given a multi-index
set Λ, or equivalently a sparse grid HΛ that will not change during its execution. Hence, we
will drop the index Λ in the following. In this section, the index ℓ ∈ N0 will denote the current
iteration of the adaptive loop starting at Line 3 (Alg. 8) (so Uℓ,y and ηℓ,y will denote respec-
tively the finite element solution and finite element estimator on the collocation point y ∈ H at
iteration ℓ and with respect to the mesh Tℓ,y).

From the theory of the classical h-adaptive finite element algorithm, we have the following
contraction property (see, e.g., [CKNS08, Ste07, CFPP14]) for all y ∈ H:D

T∈Tℓ+1,y\Tℓ,y
η2ℓ+1,y,T ≤ q

D
T∈Tℓ,y\Tℓ+1,y

η2ℓ,y,T + C ∥Uℓ+1,y − Uℓ,y∥2U , (2.51)

as well as- D
T∈Tℓ+1,y∩Tℓ,y

η2ℓ+1,y,T

41/2 ≤
- D

T∈Tℓ,y∩Tℓ+1,y

η2ℓ,y,T

41/2
+ C1/2 ∥Uℓ+1,y − Uℓ,y∥U (2.52)

for 0 < q < 1 and C > 0 independent of ℓ but depending on the shape-regularity of the mesh and
the regularity assumptions on the coefficient a(y, ·) on Tinit. Since we use newest-vertex-bisection
for mesh refinement, the shape regularity depends only on Tinit.

As in the deterministic setting, Dörfler marking together with (2.51)–(2.52) can be used to
prove a contraction property of the estimator (see also [BPRR19] for a similar argument with a
slightly different marking strategy).

Proposition 2.22. Given an arbitrary downward closed index set Λ ⊆ NN
0 , Algorithm 8 satisfies

D
y∈H

η2ℓ+k,y ≤ Clinq
k
lin

D
y∈H

η2ℓ,y (2.53)

for all ℓ, k ∈ N and some uniform constants 0 < qlin < 1, Clin > 0. In particular, we have:

lim
ℓ→∞

∥IΛ[u]− IΛ[Uℓ]∥L∞(Γ,U) = 0 = lim
ℓ→∞

ηFE,Λ(Uℓ).

Proof. We show with (2.51)–(2.52) that all δ > 0 satisfy (recall the definition of disjoint union
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I
in (2.7))D

y∈H
η2ℓ+1,y =

D
(y,Ty)∈

�
y∈H Tℓ+1,y\Tℓ,y

η2ℓ+1,y,Ty
+

D
(y,Ty)∈

�
y∈H Tℓ+1,y∩Tℓ,y

η2ℓ+1,y,Ty

≤ q
D

(y,Ty)∈
�

y∈H Tℓ,y\T≪+1,y

η2ℓ,y,Ty
+ (1 + δ)

D
(y,Ty)∈

�
y∈H Tℓ,y∩Tℓ+1,y

η2ℓ,y,Ty

+ C(2 + δ−1)
D
y∈H

∥Uℓ+1,y − Uℓ,y∥2U

≤ (q − 1)
D

(y,Ty)∈
�

y∈H Tℓ,y\Tℓ+1,y

η2ℓ,y,Ty
+ (1 + δ)

D
(y,Ty)∈

�
y∈H Tℓ,y

η2ℓ+1,y,Ty

+ C(2 + δ−1)
D
y∈H

∥Uℓ+1,y − Uℓ,y∥2U .

The Dörfler marking from Algorithm 8 ensures K ⊆ I
y∈H Tℓ,y \ Tℓ+1,y and hence

(q − 1)
D

(y,Ty)∈
�

y∈H Tℓ,y\Tℓ+1,y

η2ℓ,y,Ty
≤ θ(q − 1)

D
(y,Ty)∈

�
y∈H Tℓ,y

η2ℓ,y,Ty
.

Altogether, we obtain for κ := 1 + δ − θ(1− q) and FC := C(2 + δ−1) thatD
y∈H

η2ℓ+1,y ≤ κ
D
y∈H

η2ℓ,y + FC D
y∈H

∥Uℓ+1,y − Uℓ,y∥2U .

With the Galerkin orthogonalityD
y∈H

KKKa(y)1/2∇(Uℓ+1,y − Uℓ,y)
KKK2
L2(D)

=
D
y∈H

-KKKa(y)1/2∇(u(y)− Uℓ,y)
KKK2
L2(D)

−
KKKa(y)1/2∇(u(y)− Uℓ+1,y)

KKK2
L2(D)

4
we may follow [CFPP14, Section 4] verbatim in order to prove (2.53). Since #H is fixed, we
have

E
y∈H η2ℓ,y ≃ ηFE,Λ(Uℓ)

2 and reliability proves

lim
ℓ→∞

ηFE,Λ(Uℓ) = lim
ℓ→∞

∥IΛ[u]− IΛ[Uℓ]∥L∞(Γ,U) = 0.

This concludes the statement.

Remark 2.23. The previous proposition implies that Algorithm 8 terminates. In particular, the
algorithm will eventually satisfy the condition ηFE,Λ(Uℓ) < Tolℓ, where

Tolℓ := α
-E

ν∈MΛ
Λν

4−1
ζSC,Λ(Uℓ). Indeed, due to Lemma 2.21, we have that, as (ηFE,Λℓ

(Uℓ))ℓ
vanishes, ζSC,Λ(Uℓ) converges to ζSC,Λ(u) ≥ ε > 0. Therefore,

lim
ℓ→∞

Tolℓ = α

 D
ν∈MΛ

Λν

−1

ζSC,Λ(u) > 0.

Note that the convergence proof uses an ℓ2-type estimator instead of an ℓ1-type as in ηFE,Λ.
In this regard, the ℓ2-type might seem more natural and we refer to Section 2.3.3 for further
discussion.
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Theorem 2.24. Given an arbitrary downward closed index set Λ ⊆ NN
0 , Algorithm 8 converges

with the optimal rate in the following sense: Let T denote the set of all meshes which can be
obtained from Tinit by iterated newest-vertex-bisection with mesh closure. Let s > 0 such that

sup
N∈N

inf
Ty∈T�

y∈H #Ty≤N

- D
y∈H

KKu(y)− UTy
KK2
U +

KKhTy(1−ΠTy)f
KK2
L2(D)

41/2
N s < ∞, (2.54)

where hT denotes the local mesh-size function and ΠT is the L2(D)-orthogonal projection onto
T -elementwise constant functions. Then, there holds

sup
ℓ∈N

∥IΛ[u]− IΛ[Uℓ]∥L∞(Γ,U)

- D
y∈H

#Tℓ,y
4s

< ∞.

Proof. First note that standard upper/lower bounds for the residual error estimator together
with the regularity assumptions on a(y, ·) show ηy ≃

=KKu(y)− UTy
KK2
U +

KKhTy(1−ΠTy)f
KK2
L2(D)

and hence (2.54) is equivalent to

sup
N∈N

inf
Ty∈T�

y∈H #Ty≤N

- D
y∈H

η2y

41/2
N s < ∞.

With the error norm |||u − Uℓ||| :=
=E

y∈H
KKu(y)− UTℓ,y

KK2
U and (2.51)–(2.52), the estima-

tor ηFE,Λ satisfies (A1) and (A2) from [CFPP14, Section 3]. From the classical theory of h-
adaptivity [CKNS08], we immediately obtain discrete reliability (A3) in the sense

|||Uℓ+k − Uℓ|||2 =
D
y∈H

∥Uℓ+k,y − Uℓ,y∥2U ≤ Cdrel
D
y∈H

D
T∈ω(Tℓ,y\Tℓ+k,y)

η2ℓ,y,T ,

where ω(·) denotes the set of elements with non-empty intersection with (·). With these ingre-
dients and the linear convergence from Proposition 2.22, [CFPP14, Proposition 4.12 & Proposi-
tion 4.15] show optimal convergence of the error estimator

sup
ℓ∈N

>D
y∈H

η2ℓ,y

- D
y∈H

#Tℓ,y
4s

< ∞.

With constants depending only on the size of Λ, the quantity
=E

y∈H η2ℓ,y is equivalent to ηFE,Λ

and hence reliability concludes the proof.

2.3.2 Proof of convergence of the ASGFE algorithm

The tolerance for finite element refinement was defined in Algorithm 8 as:

Tol = Tol(Λ, ζSC,Λ(U);α) := α
1E

ν∈MΛ
λν

ζSC,Λ(U). (2.55)

where α ∈ (0, 1), Λν was defined in (2.14) and ζSC,Λ(U) is the parametric a-posteriori error
estimator. This choice is motivated by the following estimate: For fixed downward closed
Λ ⊂ NN

0 , Lemma 2.21 shows

ζSC,Λ(U) ≤ ζSC,Λ(u) +

 D
ν∈MΛ

λν

 ηFE,Λ(U) ≤ ζSC,Λ(u) + αζSC,Λ(U),
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and hence
ζSC,Λ(U) ≤ 1

1− α
ζSC,Λ(u). (2.56)

In the context of the adaptive algorithm, this implies that (ζSC,Λℓ
(Uℓ))ℓ is uniformly bounded

since (ζSC,Λℓ
(u))ℓ is. This last fact was proved in Remark 2.6 using the estimate on the pointwise

error estimator from Proposition 2.5.

Lemma 2.25. Consider Algorithm 7 with either workless profit (2.9) and 0 < α < 1 sufficiently
small, or profit with work (2.10) and arbitrary 0 < α < 1. Define the finite element refinement
tolerance as (2.55). The sequence of adaptive refinements is such that, denoting νℓ the profit
maximizer at step ℓ ∈ N0, limℓ→∞ Pνℓ,Λℓ

= 0.

Proof. We consider the two definitions of profit separately:

Profit with work: Pν,Λ :=

�
j∈Aν,Λ

ζj,Λ(U)�
j∈Aν,Λ

Wj
: The uniform boundedness of the parametric a-

posteriori error estimator, together with the fact that the work over Aνℓ,Λℓ
diverges, gives

Pνℓ,Λℓ
≤ ζSC,Λℓ

(Uℓ)E
j∈Aνℓ,Λℓ

Wj
≲ 1E

j∈Aνℓ,Λℓ
Wj

→ 0.

Workless profit: Pν,Λ :=
E

j∈Aν,Λ
ζj,Λ(U). We recall that, for the profit-maximizer νℓ ∈ MΛℓ

,
Pνℓ,Λℓ

≥ 1
N ζSC,Λℓ

(U) (2.46). Thus, Lemma 2.21 shows

Pνℓ,Λℓ
≤

D
j∈Aνℓ,Λℓ

ζj,Λℓ
(u) + α

E
j∈Aνℓ,Λℓ

λjE
j∈MΛℓ

λj
ζSC,Λℓ

(Uℓ)

≤
D

j∈Aνℓ,Λℓ

ζj,Λℓ
(u) + α

E
j∈Aνℓ,Λℓ

λjE
j∈MΛℓ

λj
NPνℓ,Λℓ

≤
D

j∈Aνℓ,Λℓ

ζj,Λℓ
(u) + αNPνℓ,Λℓ

,

so
Pνℓ,Λ ≤ 1

1− αN

D
j∈Aνℓ,Λℓ

ζj,Λℓ
(u) → 0 as ℓ → ∞.

Observe that this introduces the constraint on α with respect to the number of dimensions:
α < N−1. This constraint can be improved by replacing the crude estimateE

j∈Aνℓ,Λℓ
ΛjE

j∈MΛℓ
Λj

≤ 1,

with the better bound

α ≤
.
maxn∈1,...,N

E
j∈Aνℓ−1+en,Λℓ

ΛjE
j∈MΛℓ

Λj
N

5−1

.

This concludes the proof.

We can finally prove that the error estimator vanishes with a technique similar to that used
in Theorem 2.15 for the parametric algorithm.
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Theorem 2.26. Algorithm 7 with either workless profit (and 0 < α < 1 sufficiently small) or
profit with work (and arbitrary 0 < α < 1) and the tolerance (2.55) satisfies the following: The
sequence of parametric a-posteriori error estimators (ζSC,Λℓ

(Uℓ))ℓ vanishes

lim
ℓ→∞

ζSC,Λℓ
(Uℓ) = 0.

Thus, also the finite element error estimator vanishes

lim
ℓ→∞

ηFE,Λℓ
(Uℓ) = 0,

and the reliability of the a-posteriori error estimator implies error convergence

lim
ℓ→∞

∥u− IΛℓ
[Uℓ]∥L∞(Γ,U) = 0.

Proof. The a-posteriori error estimator can be expressed as

ζSC,Λℓ
(Uℓ) =

D
ν∈NN

0

ζν,Λℓ
(Uℓ) MΛℓ

(ν).

Since the sequence (ζSC,Λℓ
(Uℓ))ℓ is uniformly bounded (2.56), it is sufficient to prove that-

ζν,Λℓ
(Uℓ) MΛℓ

4
ℓ

vanishes for any fixed ν ∈ NN
0 . We can distinguish three cases:

• If ν is eventually added to Λℓ, then MΛℓ
(ν) is eventually zero;

• If ν is never added to the margin MΛℓ
, then ζν,Λℓ

(Uℓ) is constantly zero;

• Finally, if it exists ℓ̄ ∈ N0 such that for all ℓ > ℓ̄, ν ∈ MΛℓ
, then limℓ→∞ ζν,Λℓ

(Uℓ) = 0.
Indeed, because of Lemma 2.25, limℓ→∞ Pν,Λℓ

= 0 (for both workless profit and profit
with work), thus (ζν,Λℓ

(Uℓ))ℓ vanishes as in Proposition 2.13.

This concludes the proof.

2.3.3 Alternative finite element estimators

In the previous section we followed [GN18] to derive the estimator via

IΛ
�*

D
fv − a∇IΛ[U ] · ∇v

!
=

D
y∈HΛ

�*
D
fv − a(y)∇IΛ[U ](y) · ∇v

!
Ly

≤ C
D
y∈HΛ

ηy|Ly| ∥∇v∥L2(D) .

Choosing v = u−IΛ[U ] and taking the L∞(Γ) norm leads to the estimator we used above, i.e.,KKKKKK
D
y∈HΛ

ηy|Ly|
KKKKKK
L∞(Γ)

≤
D
y∈HΛ

ηy ∥Ly∥L∞(Γ) = ηFE,Λ(U).

Using the Hölder estimates with other combinations of (p, q) ∈ {(2, 2), (∞, 1)}, we obtainKKKKKK
D
y∈HΛ

ηy|Ly|
KKKKKK
L∞(Γ)

≤

KKKKKKK
 D

y∈HΛ

η2y

 1
2
 D

y∈HΛ

|Ly|2
 1

2

KKKKKKK
L∞(Γ)

= ηp,Λλq,Λ,

82



where

ηp,Λ :=


-E

y∈HΛ
η2y

4 1
2

p = 2,

maxy∈HΛ
ηy p = ∞,

and λq,Λ :=

		
KKK-Ey∈HΛ

|Ly|2
4KKK 1

2

L∞(Γ)
q = 2,KKKEy∈HΛ

|Ly|
KKK
L∞(Γ)

q = 1.

The perturbation result from Lemma 2.21 can be analogously modified to obtain:

|ζSC,Λ(u)− ζSC,Λ(U)| ≲
 D

ν∈MΛ

λν

 ηp,Λλq,Λ

From these results, the sufficient condition in (2.55) for convergence becomes respectively

ηp,Λ(U) ≤ α

λq,Λ

D
ν∈MΛ

λν

−1

ζSC,Λ(U).

With these ingredients, all the other results of the previous sections hold for the variants of the
finite element estimator discussed above.

2.3.4 Convergence of a single mesh version of the ASGFE algorithm

We also consider the ASGFE algorithm with the same adaptively refined mesh in all collocation
points. The idea is that, if the set of singularities of the solution u depends weakly on the value
of the parameter y ∈ Γ, one single adaptive mesh can resolve all of them simultaneously and thus
substantially reduce the computational effort. We employ the following estimator from [GN18,
Remark 4.4] for the finite element part:

ηFE,Λ(U) :=

.D
T∈T

η2T (U)

51/2

, ηT (U) := ∥ηT ( · ;U)∥L∞(Γ) ,

η2T (y;U) := h2T ∥IΛ [f +∇ · (a∇U)] (y)∥2L2(T ) +
D
e⊂∂T

hT
KKIΛ �

[a∇U · ne]ne

 
(y)

KK2
L2(e)

.

Since we use a single mesh for all collocation points y ∈ HΛ, we replace Ty in Algorithm 8
by T . We change the Dörfler marking in Line 4 (Alg. 8) to: Find minimal K ⊆ T such thatD

T∈K
ηT (U)2 ≥ θη2FE,Λ.

Moreover, we replace the refinement loop in Line 5 (Alg. 8) by a single refinement of the mesh
T with marked elements K.

Due to the fact that U : Γ → S1
0 (T ) admits a holomorphic extension to Σ(Γ, τ ) just like u

does (the same arguments work also for the discrete approximation), the convergence analysis
of the parametric enrichment algorithm remains unchanged (Section 2.2), we now have to show
convergence of the adaptive finite element subroutine. With this, we may analogously employ
the results of Section 2.3.2 to obtain convergence of the full algorithm. Note that we cannot
directly transfer the proof of Proposition 2.22 as the definition of ηFE,Λ in this section mixes
L2-norms and L∞-norms.
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In this setting, the multi-index set Λ ⊂ NN
0 is fixed. We denote by Tℓ the finite element mesh

at step ℓ > 0 (the same for every collocation point). Uℓ represents the discrete solution at step
ℓ and Uℓ,y ∈ S1

0 (Tℓ) its value on a collocation point y ∈ HΛ. We simplify the notation for the

estimator as ηℓ := ηFE,Λ(Uℓ), ηℓ(U) :=
-E

T∈Tℓ ηT (U)2
41/2

.
We first give a perturbation estimate localized on one element T of a mesh T , analogously
to [CKNS08, Proposition 3.3].

Lemma 2.27. Consider a shape-regular mesh T obtained by NVB from a mesh Tinit. There
holds for U,W ∈ C0(Γ,S1

0 (T )) that

ηT (U) ≤ ηT (W ) + C ∥IΛ∥L(L∞(Γ))max
y∈H

∥∇(U(y)−W (y))∥L2(ω(T )) ∀T ∈ T , (2.57)

where ω(T ) is the union of the elements sharing an edge with T , C > 0 depends only on a and
Tinit.

Proof. For any fixed y ∈ Γ, the linearity of IΛ and the triangle inequality yield

ηT (y;U) ≤ ηT (y;W ) + hT ∥IΛ [∇ · (a∇(U −W ))] (y)∥L2(T )

+h
1/2
T

D
e⊂∂T

∥IΛ [[a∇(U −W ) · ne]ne ] (y)∥L2(e) .

With the operator norm of IΛ, we obtain

∥IΛ [∇ · (a∇(U −W ))] (y)∥L2(T ) ≤ ∥IΛ∥L(L∞(Γ))max
y∈H

∥∇a(y)∥L∞(T )) ∥∇(U −W )(y)∥L2(T ) .

Analogously, for the jump terms [a∇(U −W ) ·ne]ne with e ⊂ ∂T , we obtain, following the same
steps as in [CKNS08, Proposition 3.3],D

e⊂∂T

∥IΛ [[a∇(U −W ) · ne]ne ] (y)∥L2(e)

≲ ∥IΛ∥L(L∞(Γ))max
y∈H

∥a(y)∥L∞(ω(T ))) ∥∇(U −W )(y)∥L2(ω(T )) .

This concludes the proof.

Proposition 2.28. The sequence of finite element estimators ηℓ obtained from the single mesh
adaptive algorithm satisfies

lim
ℓ→∞

ηℓ = 0.

Proof. With the perturbation estimate from Lemma 2.27, we may follow [CFPP14, Section 4.3]
to show estimator reduction: There exist 0 < q < 1, C > 0 such that

η2ℓ+1 ≤ qη2ℓ + C2 ∥IΛ∥2L(L∞(Γ))

D
T∈Tℓ

max
y∈H

∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(ω(T )) ∀ℓ ∈ N. (2.58)

To show that the second term in (2.58) vanishes, we first observe that (Uℓ(y))ℓ∈N converges
in U for all y ∈ H. Indeed, for any fixed y ∈ H, the nestedness of the finite element spaces
Uℓ guarantees the existence of U∞(y) ∈ U such that limℓ→∞ ∥U∞(y)− Uℓ(y)∥U = 0 by Céa’s
lemma (see, e.g., [CFPP14, Section 3.6]). This implies that

lim
ℓ→∞

∥∇(Uℓ+1 − Uℓ)(y)∥L2(D) = 0 (2.59)
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for all y ∈ H. Since #H is fixed in the finite element refinement loop of the adaptive algorithm,
we haveD

T∈Tℓ
max
y∈H

∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(ω(T )) ≤
D
T∈Tℓ

D
y∈H

∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(ω(T ))

≲
D
y∈H

∥∇(Uℓ+1(y)− Uℓ(y))∥2L2(D) → 0

as ℓ → ∞. Passing to the limit superior in (2.58) shows 0 ≤ lim supℓ→∞ ηℓ+1 ≤ q lim supℓ→∞ ηℓ
and thus concludes limℓ→∞ ηℓ = 0.

Altogether, we obtain the convergence result analogously to Theorem 2.26.

Theorem 2.29. The single mesh ASGFE algorithm discussed in this section satisfies the fol-
lowing: The sequence of parametric a-posteriori error estimators (ζSC,Λℓ

(Uℓ))ℓ vanishes

lim
ℓ→∞

ζSC,Λℓ
(Uℓ) = 0.

Thus, also the finite element error estimator vanishes

lim
ℓ→∞

ηFE,Λℓ
(Uℓ) = 0,

and the reliability of the a-posteriori error estimator implies error convergence

lim
ℓ→∞

∥u− IΛℓ
[Uℓ]∥L∞(Γ,U) = 0.

2.3.5 Cost of the ASGFE algorithms

Under the assumption that the pointwise estimators ζν,Λ(U) and ηy,T (U) can be computed
from the discrete solution in O(1), each step of the adaptive loop (all algorithms) is linear
with respect to the number of degrees of freedom of the current sparse grid and spatial meshes.
Indeed, a properly preconditioned iterative solver computes U in linear cost (depending on amin
and amax). The Dörfler marking in Algorithm 8 requires sorting when done in a naive way, but
can be improved to linear cost by binning [Ste07] or by a clever variation of the quick-select
algorithm [PP20]. Finally, the refinement of the finite element meshes Ty via newest-vertex-
bisection can be done in linear cost [Ste08].

As discussed in Section 2.4 below, the computation of the L∞(Γ) and L2(D)-norms for ζν,Λ
is done via a random sample/Monte-Carlo procedure. This results in constant cost O(1) and
the numerical experiments below show that the approximation error is negligible. A precise
convergence analysis of this procedure would be interesting but is beyond the scope of this work.
Each random sample requires the evaluation of the sparse grid interpolant. Theoretically, the
cost of the evaluation of the sparse grid interpolation operator is linear in terms of collocation
points, after a quadratic set-up cost. Practically, however, the cost of computing the discrete
solutions is expected to dominate significantly.

2.4 Numerical experiments

The Matlab implementation of Algorithm 7 used to produce the numerical results presented
in this section is based on two Matlab libraries. For sparse grid interpolation algorithms, the
Sparse Grids Kit [BNTT11b] was used. The implementation of the adaptive P1 finite element
methods is from the p1afem Matlab package [FPW11], which uses Matlab’s direct solver for
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sparse matrices. For further details about parameters and algorithm used within these libraries,
the reader is referred to the respective documentations. The parts of the algorithm that deal
with parameter enrichment (e.g. Algorithm 9) were implemented following the guidelines from
[GN18].

In order to compute the L∞(Γ) norm approximately, we consider a set Θ of 500 uniformly
distributed random points in Γ and approximate, for any g ∈ C0(Γ), ∥g∥L∞(Γ)≈maxy∈Θ |g(y)|.
The computation of the L2(D) norm is carried out with Monte Carlo integration: Given f ∈
L2(D), we denote by Π a set of 500 uniformly distributed random points in D and approximate
∥f∥2L2(D)≈ 1

#Π

E
x∈Π f(x)2. The reason Monte Carlo integration is used is that for a generic

y ∈ Γ the discrete solution IΛ[U ](y) belongs to the finite element space S1
0 (T ), where T is the

coarsest common refinement of the meshes {Ty : y ∈ HΛ}. Therefore, in order to compute the
exact L2(D) norm of the function, it would be necessary to compute T , which would lead to a
significant computational overhead. In numerical experiments, we have observed that increasing
#Π does not lead to a significant improvement in the approximation of the L2(D) norm, thus
suggesting that the approximation error can be neglected. In the numerical examples presented
in the next sections, we approximate the error between the exact solution u and a discrete
solution IΛ[U ] by ∥u− IΛ[U ]∥L∞(Γ,U) ≈ ∥uapprox − IΛ[U ]∥L∞(Γ,U), where uapprox is a discrete
solution obtained as the last iteration of the single mesh version of ASGFE. To approximate
the L∞(Γ,U)-norm appearing in the error, we use the same methods detailed above, but with
#Θ = #Π = 5000.

To drive parametric refinement, we employ only profits with work as defined in (2.10). As
observed in Section 2.2.1, workless profits lead to a tensor product interpolant and thus less
interesting results. In all examples, we consider the finite element estimator ηFE,Λ = η2,ΛΛ2,Λ

as defined in Section 2.3.3. The Dörfler parameter for refinement is chosen as θ = 0.7 and, as
default initial mesh Tinit, a quasi-uniform mesh with 512 triangles and 289 vertices.

In order to decrease the memory requirements of the program, the finite element refinement
tolerance from Section 2.3.3 is modified as follows:

Tol := αλ−1
2,ΛζSC,Λ, (2.60)

i.e. we neglect the term depending on the margin of Λ. In the experiments below, we observe that
this choice does not compromise convergence. Further investigations are needed to understand
whether or not the theoretical sufficient condition for convergence can be weakened. The constant
α appearing in (2.60) is chosen as α = 0.9. A value of α close to one shifts the balance between
finite element refinement and parameter enrichment towards the latter one. In order to improve
the computational efficiency, we use the following shortcut in the implementation of Algorithm 8:
Instead of re-computing the tolerance Tol at each iteration of the loop, we update it only at the
end and, if needed, keep refining the finite element solutions. We alternate these two steps until
the finite element estimator falls below the tolerance.

In the following two sections, we consider a physical domain D = (0, 1)2 and denote x =
(x1, x2) ∈ D. The parametric domain is Γ = [−1, 1]N for an integer N ∈ N representing the
number of parametric dimensions of the problem.

We recall that for a numerical solution IΛ[U ] obtained with ASGFE, its number of degrees of
freedom is proportional to M :=

E
y∈HΛ

#Ty, where #Ty is the number of vertices of the mesh
corresponding to the collocation point y (or equivalently the dimension of the finite element
space Uy up to boundary conditions).
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2.4.1 First example: Karhunen–Loève expansion with N = 5, 11 parameters

We consider a constant forcing term f ≡ 1 and the following diffusion coefficient with affine
dependence on the parameter y ∈ Γ:

a(x,y) = a0 +
1

3

.
a1(x)y1 +

ND
n=2

an(x)yn

5
, (2.61)

where a0 = 1, a1 =
-√

πL
2

41/2
and, for n > 1,

λn =
/√

πL
61/2

exp

.
−
/'

n
2

(
πL

62
8

5
,

an(x) =

�√
λn sin (nπx1) if n even√
λn cos (nπx1) if n odd,

where L ∈ (0, 1) is a constant. Such a diffusion coefficient is the result of the Karhunen–Loève ex-
pansion [ST06] of the random field a(x, ω) with mean a0 and covariance
Cov(x,x′) = 1

32
exp

-
− (x1−x′

1)
2

L2

4
, for x, x′ ∈ D. The constant L denotes the “correlation length”

of the stochastic parameter. We choose L = 0.5, which implies

a1 ≈ 6.7 · 10−1,

λ1 ≈ 6.9 · 10−1, λ2 ≈ 2.7 · 10−1, λ3 ≈ 5.8 · 10−2, λ4 ≈ 6.8 · 10−3, λ5 ≈ 4.2 · 10−4.

In the rest of this section, we truncate the expansion to N = 5 and N = 11 terms. The aim is
to study how the algorithm performs for different numbers of parametric dimensions N on an
anisotropic problem, where the first parameters are more relevant than the last ones.

In Figure 2.3, we use the problem with N = 5 parameters to provide the reader with
a concrete example of the steps of the algorithm. On the left, we plot the evolution of the
estimators with respect to the number of degrees of freedom. We plot the values of the estimators
any time they are computed (not only once per iteration). The algorithm alternates between
steps of parameter enrichment and mesh refinement. The spikes in the value of the finite element
estimator correspond to the parametric enrichment steps, when new collocation points are added
to the sparse grid with the initial (coarse) mesh Tinit. When finite element refinement is carried
out, the finite element estimator eventually decreases with order M−1/2, as has to be expected
for lowest order adaptive FEM (see also Theorem 2.24). On the right-hand side of Figure 2.3, we
plot the estimator only once per iteration. As prescribed in (2.60), the finite element estimator
is bounded from above by the parametric estimator after each finite element refinement loop.

In Figure 2.4 we compare the results for N = 5 and N = 11. On the left, the value of total
estimator and reference error are plotted as a function of the number of degrees of freedom.
The problem with N = 11 gives larger estimator and reference error. However, the difference
is marginal, suggesting that the algorithm successfully detects the anisotropy of the problem.
On the right, we plot the effectivity index (ratio between estimator and error). As observed
in [GN18], the number of problem dimensions affects the efficiency of the estimator. In view
of these facts, the algorithm may benefit from an adaptive dimension selection step as the one
proposed in [GN18, Section 7].

In Figure 2.5, we consider the problem with N = 11 and plot projections of the final multi-
index set Λ. The projections are obtained selecting pairs of parametric dimensions n1, n2 ∈
1, ..., N and plotting the 2D set {(νn1 , νn2),ν ∈ Λ}. Observe how larger values are achieved by
the first parametric dimensions, confirming that the algorithm manages to detect the anisotropy
of the problem.

87



10
3

10
4

10
5

10
6

number of degrees of freedom M

10
-1

10
0

parametric estimator

FE estimator

M
-1/2

10
2

10
4

10
6

10
8

number of degrees of freedom

10
-1

total estimator

parametric estimator

FE estimator

Figure 2.3: First results for ASGFE applied to the problem with Karhunen–Loève expansion
N = 5. Left: “detailed” evolution of the estimators, i.e. reporting their values any time they
are computed during the execution. Right: Total, parametric and finite element estimators at
every iteration.

10
2

10
4

10
6

10
8

number of degrees of freedom

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
0.2

estimator N=5

error N=5

estimator N=11

error N=11

10
2

10
4

10
6

10
8

number of degrees of freedom

1.3

1.4

1.5

1.6

1.7

1.8

1.9

E
ff

e
c
ti
v
it
y

in
d

e
x

N=5

N=11

Figure 2.4: Comparing ASGFE applied to the problem with Karhunen–Loève expansion for
N = 5 and N = 11. Left: Total estimator and error. Right: Effectivity index.

88



1 2

i
1

1

2

i 2

1 2

i
1

1

2

i 3

1 2

i
1

1

2

i 4

1 2

i
1

1

2

i 5

1 2

i
1

1

2

i 6

1 2

i
1

1

2

i 7

1 2

i
1

1

2

i 8

1 2

i
1

1

2

i 9

1 2

i
1

1

2

i 1
0

1 2

i
1

1

2

i 1
1

Figure 2.5: Projections of the final multi-index set from ASGFE applied to the the problem
with Karhunen–Loève expansion for N = 11.

2.4.2 Second example: Inclusion problem with N = 8 parameters

We consider an inclusion problem with N = 8 parameters similar to that in [GN18]. Within
D, we identify nine disjoint subdomains F and {Cn}8n=1 depicted in Figure 2.6. The diffusion
coefficient reads

a(x,y) = a0 +
8D

n=1

γnχnyn with a0 = 1.1, (2.62)

where (γn)
8
n=1 = (1, 0.8, 0.4, 0.2, 0.1, 0.05, 0.02, 0.01) are constants used to introduce anisotropy

in the problem and χn is the characteristic function of Cn, for all n ∈ 1, ..., 8. The forcing term
reads f(x) := 100χF (x), where χF is the characteristic function of F .

In order to highlight the importance of adaptive finite element refinement in space, we
present a comparison between the single mesh version of ASGFE from Section 2.3.4, where
the unique mesh is adaptively refined with Dörfler marking, and an analogous version where
only uniform refinement on the whole mesh is allowed. In Figure 2.7 (top left) we report for
both algorithms the value of the estimator and reference error. The adaptive version clearly
outperforms the one with uniform refinement. In Figure 2.6 (right) we show a density plot of a
mesh produced by the single mesh adaptive algorithm with ≈ 2 · 107 degrees of freedom. We see
that mesh refinement occurs along the boundary of the inclusions and is more pronounced for
the inclusions corresponding to larger anisotropy parameter γn, confirming that the algorithm
detects the parametric structure of the problem.

In Figure 2.7 (top right) we study the fully adaptive ASGFE algorithm and observe that
this is also markedly slower than the single mesh algorithm. Additional insight is given in the
plot on the bottom left of Figure 2.7. Here we show only the value of the parametric estimator
with respect to the number of collocation point for both the fully adaptive and single mesh
versions of ASGFE. This implies that the fully adaptive ASGFE algorithm seems to overrefine
the finite-element meshes. We suspect that this is due to the fact that in the derivation of
ηFE,Λ in Section 2.1.3, one is required to use the triangle inequality and thus sacrifices local
information of the sparse grid interpolant. This is not necessary in the single-mesh estimator
from Section 2.3.4.

Finally, we ran Algorithm 7 with fixed tolerance Tol (not depending on the parametric
estimator) and plot the results in Figure 2.7 (bottom right). We observe that the results are

89



x2

x10.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

C1 C2 C3

C4 F C5

C6 C7 C8

Figure 2.6: Left: Domain for the inclusion problem. Right: Logarithmic density plot of a mesh
of ASGFE with single adaptive mesh. The colors refer to the number of mesh elements within
one pixel of the plot.

very much comparable to the standard fully adaptive ASGFE algorithm, except for significant
over refinement in the early stages of the computation (see the flat line of the finite element
error estimator satisfying the tolerance). In terms of computational effort, the algorithms are
nearly identical, as the same spatial refinements are performed, only at different stages of the
algorithm.

We also tested the algorithms with respect to the L2(Γ)-norm instead of the L∞(Γ)-norm.
The necessary changes in the estimators are straightforward, essentially we replace the search for
the maximum by a Monte Carlo quadrature. The theoretical results of this manuscript all hold
verbatim for the L2(Γ)-norm. Figure 2.8 shows the results. Again the single mesh algorithm
outperforms the fully adaptive algorithm.

Distribution of computational cost

In Figure 2.8 (right-hand side) we compare the total number of degrees of freedom and collocation
points achieved by the three methods, i.e. the single adaptive mesh algorithm from Section 2.3.4,
adaptivity in the parameter space but uniform refinement in the spatial domain, and the fully
adaptive ASGFE algorithm (Algorithm 7). The adaptive strategy with a single adaptive mesh
performs parametric refinement more often than the other two, leading to a higher number
of collocation points and lower average number of degrees of freedom per collocation point. In
Figure 2.9 (compare also Figure 2.6) we provide logarithmic density plots of the meshes produced
by the multiple adaptive mesh algorithm (with ≈ 2·107 degrees of freedom). We observe that the
mesh corresponding to a collocation point is locally refined along the edges of the corresponding
inclusion. Furthermore, the intensity of the refinement around a certain inclusion is related to
the constant γn of the diffusion coefficient, confirming that the numerical methods detects the
anisotropy of the problem.

2.5 Conclusion

We analyses the adaptive sparse grid interpolations algorithm from [GN18] and prove conver-
gence of several different versions of the algorithm:
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Figure 2.7: Results for ASGFE on the 8D inclusion problem. Top left: Comparison between
adaptive and uniform space refinement with the single mesh algorithm from Section 2.3.4. Top
right: Total estimator and error for the fully adaptive algorithm. Bottom left: Parametric
estimator as a function of the number of collocation points, for both the fully adaptive and the
single mesh ASGFE. Bottom right: the fully adaptive ASGFE with fixed value for finite element
tolerance Tol.
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• Convergence of the parametric enrichment algorithm without finite element refinement
(Section 2.2);

• Convergence of the fully adaptive algorithm (Algorithm 7) even with optimal convergence
of the finite element loop (Theorem 2.24);

• Convergence of a single-mesh variant of Algorithm 7 (Section 2.3.4) proposed in [GN18].

The numerical examples clearly show the superiority of spatial adaptive refinement combined
with parametric enrichment over pure parametric enrichment algorithms. While the theoretical
results are strongest for the fully adaptive algorithm (linear convergence in Proposition 2.22 for
Algorithm 7) the single mesh algorithm from Section 2.3.4 seems to be more efficient. This is un-
derlined by the numerical experiments in the previous section, which clearly show an advantage
of the single mesh version over the fully adaptive version. Based on the theoretical results from
Theorem 2.24 and the experiments, we come to the conclusion that the finite element error esti-
mator of Algorithm 7 severely over-estimates the total error and hence leads to over-refinement
of the finite element meshes. This does not seem to happen for the single-mesh error estimator.
We suspect that the application of the triangle inequality in the derivation in Section 2.3.3 is
mainly responsible for this over-estimation and further research is required to see whether this
can be avoided.
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Figure 2.9: Density plot of the meshes produced by the fully adaptive ASGFE algorithm. The
corresponding collocation point is indicated below, ignoring the trailing components equal to
zero. The color-bar at the bottom indicates the base-10 logarithm of the density of elements.
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Chapter 3

Sparse grid approximation of nonlinear
SPDEs: The SLLG equation

In this chapter, we present a methodology to approximate the solution to (possibly) nonlinear
stochastic PDEs driven by Gaussian noise. To that end, we employ the Doss-Sussmann transform
(Section 1.1.5) and discretion the resulting Wiener process with the Lévy-Ciesielski expansion
(Section 1.1.2). This leads to a parameterized nonlinear time-dependent PDE with infinite
dimensional and unbounded parameter space, which can be approximated by using sparse grid
techniques (see Sections 1.2.3 for an introduction).

While the methods developed in the present work are fairly general and apply to different
model problems, we focus on the specific task of approximating the stochastic Landau-Lifshitz-
Gilbert equation (SLLG) as it contains many of the difficulties one encounters in nonlinear and
stochastic partial differential equations. The present work gives a first efficient approximation
of the probability distribution of the solution of the SLLG equation.

This chapter is structured as follows: In Section 3.1 we introduce a general framework for
the study of the parametric regularity of solutions of SPDEs. We first explain in Section 3.1.1
how to reduce a SPDE to a parametric coefficients PDE. Then, in Sections 3.1.2 and 3.1.3 we
prove that the parameter-to-solution map admits a sparse holomorphic extension. The result
is based on four main assumptions that have to be proved for each concrete problem. Finally,
we estimate the derivatives of the parameter-to-solution map with Cauchy’s integral theorem.
In Section 3.2, we consider the SLLG equation (already discussed in Section 1.3) as a concrete
example of nonlinear SPDE with noise given by a function of the Wiener process. We recall
how it can be reduced to a random coefficient PDE in Section 3.2.1 and further to a parametric
coefficient PDE in Section 3.2.2. In Section 3.2.3, we prove that, under regularity assumption on
the problem data, the solutions’ sample paths are Hölder-continuous and uniformly bounded with
respect to the Wiener process sample paths. In Section 3.3, we apply the regularity analysis from
Sections 3.1.2 and 3.1.3 to the parametric problem and prove that the parameter-to-solution map
is holomorphic under the assumptions that sample paths of random coefficients and solutions are
Hölder continuous. In Section 3.4, we do the same for a simplified version of the parametric LLG
problem obtained with additional modeling assumptions. This time, sample paths are assumed
to be Lebesgue integrable in time. The sparsity properties of the parameter-to-solution map in
the Hölder setting are weaker than in the Lebesgue setting. This is reflected by the convergence
of sparse grid interpolation discussed in Section 3.5. The results are confirmed by numerical
experiments. The final Section 3.6 derives the multilevel version of the stochastic collocation
method and provides numerical tests.

This chapter is verbatim to [ADF+24] up to stylistic changes and the following changes of
notation:
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• Sigma-algebra in the probability triple F to E ;

• Real parameter space XR to Γ;

• Complex parameter space X to Σ;

• SPDE drift and noise integrands µ, σ to D, N;

• Banach space of residual functions R to F;

• Imaginary parts Im to ℑ;

• Space of real solution functions UR to U(Γ);
• Space of real coefficient functions WR to W (Γ);

• Constant introduced in Assumption 1 Cr to CΓ;

• “LLG problem” and “SLLG problem” substituted respectively with (problem related to
the) “LLG equation” and (problem related to the)“SLLG problem”.

3.1 General derivation of parametric regularity of SPDEs

In the present section, we outline a general strategy to prove a regularity property of solutions
of stochastic partial differential equations (SPDE) driven by the Wiener process. The resulting
regularity properties can be used to tailor sparse grid approximation methods to the problem.
The problem formulation and arguments presented in this section are formal and need respec-
tively to be rigorously defined and verified for each concrete problem. The most important
assumptions are listed explicitly below.

3.1.1 Reduction to a parametric problem

Let us recall the Doss-Sussmann transform, which allows to reduced a stochastic PDE (SPDE)
and random coefficient PDE (see also Section (1.1.5)). We then also recall the Lévy-Ciesielski
expansion (see also Section 1.1.2) to obtain (from the random coefficient PDE) a parametric
coefficient PDE.

Consider a bounded, connected, Lipschitz domain D ⊂ Rd of dimension d ∈ N and a final
time T > 0. Recall the normal derivative ∂n and the space-time cylinder DT := [0, T ] × D.
Given the initial condition U0 : D → Rm for m ∈ N, a drift coefficient D : Rm ×DT → Rm, a
noise coefficient N : Rm ×D → Rm, and the probability triple (Ω, E ,P), we consider the SPDE
problem:
Find a random field U : Ω×DT → Rm such that, P-a.s.		

dU = D(U, ·, ·)dt+N(U, ·) ◦ dW on DT

∂nU = 0 on [0, T ]× ∂D

U(·, 0, ·) = U0 on D,

where by ◦dW we denote the Stratonovich differential applied to a Wiener process W .
Consider the Doss-Sussmann transform (see Section 1.1.5) of U , i.e. the random field u :

Ω × DT → Rm, u = e−WNU . It can be proved to be solution to a random coefficient partial
differential equation (PDE)

R(W (ω), u(ω)) = 0 in F, P-a.e. ω ∈ Ω. (3.1)
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The residual operator R : W × U → F is defined for Banach spaces W,U and F , representing
respectively coefficients, solutions, and residuals sample paths. Observe that this is an instance
of the framework described in Section 1.1.1, but we denote coefficients with W instead of A
because we work only with the Wiener process. In general, the residual map R is a differential
operator in time and space with respect to u ∈ U while it does not contain Itô or Stratonovich
differentials of W .

With the aim of making the distribution of u amenable to approximation, we parameterize
the Brownian motion. It turns out that a local wavelet-type expansion of W is very beneficial
as it reduces the number of active basis function at any given moment in time. Recall that the
Lévy-Ciesielski expansion (LCE) (see Section 1.1.2) of the Brownian motion W : Ω× [0, 1] → R
reads

W (ω, t) =
∞D
ℓ=0

⌈2ℓ−1⌉D
j=1

Yℓ,j(ω)ηℓ,j(t),

where the coefficients Yℓ,j are independent standard normal random variables and�
ηℓ,j : ℓ ∈ N0, j = 1, . . . , ⌈2ℓ−1⌉� denotes the Faber-Schauder hat-function basis.

We consider a parametric version of the random field W in the form W as W : RN×[0, 1] → R
so that

W (y, t) =
∞D
ℓ=0

⌈2ℓ−1⌉D
j=1

yℓ,jηℓ,j(t), (3.2)

where yℓ,j ∈ R for all ℓ ∈ N0, j = 1, . . . , ⌈2ℓ−1⌉. For L ∈ N0, we define the level-L truncation
of W by WL(y, t) =

EL
ℓ=0

E⌈2ℓ−1⌉
j=1 yℓ,jηℓ,j(t). We will sometimes also index the same sum as

WN (y, t) =
EN

n=0 ynηn(t). The two indexing systems, hierarchical and linear, are related via
(1.11).

The fact that the parameter domain is unbounded requires the use of appropriate collocation
nodes, a topic we treat in Section 3.5, below.

We denote by Γ an appropriate separable Banach space of real sequences such that if y ∈ Γ,
then W (y, ·) ∈ W, the desired Banach space of coefficient sample paths. The Banach space Γ
is assumed to be separable in order for u : Γ → U to be separably valued (i.e. its image u(Γ)
be separable) under the mild regularity assumption that u is continuous. As a consequence of
Pettis measurably theorem, the parameter-to-solution map is also measurable. Measurability is a
naturally important property because it is necessary for the well posedness of integral quantities
such as the moments of the random field.

Example 3.1. Consider the Banach space of sequences:

Γ :=


y = (yn)n∈N ∈ RN : ∥y∥Γ < ∞

�
, ∥y∥Γ := |y0,1| +

D
ℓ∈N

max
j=1,...,2ℓ−1

|yℓ,j | 2−(ℓ+1)/2.

Simple computations show that if y ∈ Γ, then ∥W (y)∥L∞(0,T ) ≤ ∥y∥Γ, then W (Γ) ⊂ L∞(0, T ).

Assume without loss of generality that T = 1. As explained in Section 1.1.3, by substituting
the random field W (ω, t) in the random coefficient PDE (3.1) with the parametric expansion
(3.2), we obtain a parametric coefficient PDE :
Find u : Γ → U such that

R(W (y), u(y)) = 0 in F, µ-a.e. y ∈ Γ, (3.3)

where µ denotes the standard Gaussian measure on RN, i.e. the product measure µ :=
%

n∈N µn,
where (µn)n∈N is a sequence of standard Gaussian probability measures on R (see, e.g., [Kak48]
and [DNSZ23b, Section 2.4] for details on infinite product measures).
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3.1.2 Holomorphic regularity of the solution operator

While holomorphic parameter regularity of random elliptic equations is well-known by now,
the literature is much sparser for nonlinear and time-dependent problems. In this section, we
follow an approach from [CCS15] which uses the implicit function theorem to obtain analyticity.
While the authors in [CCS15] can rely on a compact parameter domain to ensure a non-trivial
domain of extension and a uniformly bounded extension, we have to use intricate bounds on the
parametric gradient of the solution. A recent result on the implicit function theorem for Gevrey
regularity [HSS23] could also be used to achieve similar results in a less explicit fashion.

We require some assumptions to work in a general setting.

Assumption 1. For any y ∈ Γ there exists u(y) ∈ U such that R(W (y), u(y)) = 0 in F.
Moreover, there exists CΓ > 0 such that, for any y ∈ Γ, ∥u(y)∥U ≤ CΓ.

Assumption 2. The residual operator R : W×U → F admits an extension to complex Banach
spaces, which we again denote W, U, and F such that the extended residual (again denoted by
R) satisfies the following properties:

(i) R is Fréchet continuously differentiable;

(ii) ∂uR(W (y), u(y)) : U → F is a homeomorphism for all y ∈ Γ.

With this complex extension in mind, in the following for any W0 ∈ W and u0 ∈ U we
denote, for ϱ > 0,

Bϱ(W0) :=
�
W ∈ W : ∥W −W0∥W < ϱ

�
,

Bϱ(u0) :=
�
u ∈ U : ∥u− u0∥U < ϱ

�
.

(3.4)

Let us recall the implicit function theorem for maps between Banach spaces (see, e.g., [Die69,
Theorem 10.2.1]).

Theorem 3.2 (Implicit function). Let E,F,G be Banach spaces, A ⊂ E×F and f : A → G be
a Fréchet continuously differentiable function. Let (x∗, y∗) ∈ A be such that f(x∗, y∗) = 0 and
the partial derivative D2f(x∗, y∗) is a linear homeomorphism from F onto G. Then, there exists
a neighbourhood U∗ of x∗ in E such that, for every open connected neighbourhood U of x∗ in U∗,
there exists a unique continuous mapping U : U → F such that U(x∗) = y∗, (x,U(x)) ∈ A and
f(x,U(x)) = 0 for any x in U . Moreover, U is continuously differentiable in U and its derivative
is given by

U ′(x) = − (D2f(x,U(x)))−1 ◦ (D1f(x,U(x))) ∀x ∈ U. (3.5)

Invoking Theorem 3.2 for the operator R : W×U → F, with y ∈ Γ and u(y) ∈ U satisfying
R(W (y), u(y)) = 0, there exists ε(y) > 0 and a holomorphic map U : Bε(y)(W (y)) → U such
that U(W (y)) = u(y) and R(W,U(W )) = 0 for all W ∈ Bε(y)(W (y)) (recall (3.4)).

For any W ∈ Bε(y)(W (y)), the differential U ′(W ) belongs to L(W,U), the set of linear
bounded operator from W into U equipped with the usual norm.

Recalling (3.4), we make additional assumptions on the regularity of the derivatives of the
residual operator R.

Assumption 3. There exist εW , εu > 0 such that for any y ∈ Γ and any W ∈ BεW (W (y))
with U(W ) ∈ Bεu(U(W (y))), the operator ∂WR(W,U(W )) is well-defined and ∂uR(W,U(W ))
is homeomorphic with

∥∂WR(W,U(W ))∥L(W,F) ≤ G1(∥U(W )∥U),KK∂uR(W,U(W ))−1
KK
L(F,U) ≤ G2(∥U(W )∥U),
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where the functions G1,G2 are continuous and may depend on problem coefficients and εu, εW
but depend on W and U(W ) only through ∥U(W )∥U and are independent of y.

Together with (3.5) from Theorem 3.2, this assumption implies the existence of a continuous
increasing function G = G(∥U(W )∥U) > 0 such thatKKU ′(W )

KK
L(W,U) ≤ G(∥U(W )∥U) ∀W ∈ Bmin(ε(y),εW )(W (y)). (3.6)

3.1.3 Uniform holomorphic extension of solution operator

Since we cannot rely on a compact parameter domain, we show existence of a uniformly bounded
holomorphic extension through the application of a generalized version of Gronwall’s lemma.

As in the previous section, fix y ∈ Γ. We can assume, without loss of generality, that
ε(y) ≤ εW introduced in Assumtpion 3.

Definition 3.3. Fixed y ∈ Γ, consider an open set H(y) ⊆ BεW (W (y)) with the following
properties:

• Bε(y)(W (y)) ⊆ H(y);

• U(W ) ∈ Bεu(U(W (y))) for all W ∈ H(y);

• The solution operator U : Bε(y)(W (y)) → U extends holomorphically to H(y),

• H(y) is star-shaped around W (y), i.e. for all W ∈ H(y), 0 ≤ σ ≤ 1, we have σW + (1−
σ)W (y) ∈ H(y).

Recall that ε(y) > 0 is the radius of the holomorphic extension given by the implicit function
theorem (Theorem 3.2) and εu > 0 is defined in Assumption 3.

In contrast to [CCS15], the domain of real parameters W (Γ) may not be compact for relevant
choices of Γ. Therefore, ε(y) can be arbitrarily small and in turn H(y) might become very small
for certain parameters y. The goal of the next arguments is to show that there exists ε > 0 such
that for all y ∈ Γ H(y) = Bε(W (y)) is a valid choice. Instead of relying on compactness, we
exploit estimate (3.6) through the following nonlinear generalization of Gronwall’s lemma:

Lemma 3.4 ([Dra03], Theorem 27). Let 0 ≤ c ≤ d < ∞, φ : [c, d] → R and k : [c, d] → R
be positive continuous functions on [c, d] and let a, b be non-negative constants. Further, let
G : [0,∞) → R be a positive non-decreasing function. If

φ(t) ≤ a+ b

* t

c
k(s)G(φ(s))ds ∀t ∈ [c, d],

then

φ(t) ≤ G−1

0
G(a) + b

* t

c
k(s)ds

7
∀c ≤ t ≤ d1 ≤ d

where G is defined, for some fixed ξ > 0, as

G(λ) :=

* λ

ξ

ds
G(s) forallλ > ξ (3.7)

and d1 is defined such that G(a) + b
+ t
c k(s)ds belongs to the domain of G−1 for t ∈ [c, d1].
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Theorem 3.5. Assume the validity of Assumptions 1, 2, and 3. With CΓ > 0 given in As-
sumption 1, choose 0 < ε < εW such that G (CΓ) + ε belongs to the domain of G−1 (where G is
defined in (3.7) with the corresponding G given in (3.6)). Then, ε is independent of y and H(y)
from Definition 3.3 can be chosen as H(y) = Bε(W (y)) for all y ∈ Γ. Moreover, U is uniformly
bounded on Bε(W (y)) by a constant Cε > 0 that depends only on ε.

Proof. Fix y ∈ Γ.
Step 1: We first show that U is uniformly bounded on H(y) ∩ Bε(W (y)). To that end,

fix W ∈ H(y) ∩ Bε(W (y)) and let Wσ := σW + (1 − σ)W (y) for any 0 ≤ σ ≤ 1. We define
φ : [0, 1] → U by φ(σ) = U(Wσ). Since by definition U is differentiable in H(y), we may apply
the fundamental theorem of calculus to obtain

φ(t)− φ(s) =

* t

s
φ′(σ)dσ =

* t

s
U ′(Wσ)[W −W (y)]dσ for all s, t ∈ [0, 1]. (3.8)

In particular, with s = 0, the triangle inequality yields, recalling that W ∈ Bε(W (y)),

∥φ(t)∥U ≤ ∥φ(0)∥U + ε

* t

0

KKU ′(Wσ)
KK
L(W,U) dσ for all 0 ≤ t ≤ 1.

Assumption 1 and estimate (3.6) (consequence of Assumption 3) imply the estimate

∥φ(t)∥U ≤ CΓ + ε

* t

0
G (∥φ(σ)∥U) dσ for all 0 ≤ t ≤ 1.

Apply Lemma 3.4 to conclude (note that, in the notation of Lemma 3.4, we have d1 = d = 1
because of the definition of ε as well as k(s) = 1)

∥φ(t)∥U ≤ G−1(G(CΓ) + εt) ≤ G−1(G(CΓ) + ε) for all 0 ≤ t ≤ 1. (3.9)

Since ∥U(W )∥U = ∥φ(1)∥U ≤ Cε, where Cε := G−1(G(CΓ) + ε), we derive the uniform bound-
edness of U on H(y). Note that this bound is independent of y and H(y).

Step 2: We next show that φ defined in Step 1 is Lipschitz on [0, 1]. Equation (3.8) implies,
for 0 ≤ s < t ≤ 1,

∥φ(t)− φ(s)∥U ≤
* t

s

KKU ′(Wσ)
KK
L(W,U) ∥W −W (y)∥W dσ

≤
* t

s
G (∥φ(σ)∥U) ∥W −W (y)∥W dσ.

The desired results then follows from (3.9).
Step 3: We can without loss of generality assume that 0 < ε ≤ εW is such that W ∈

B2ε(W (y)) implies U(W ) ∈ Bεu(U(W (y)). This is possible due to the Lipschitz continuity of φ
proved in the previous step and by possibly making the ε chosen in Step 1 smaller. We now show
that H(y) can be chosen to be Bε(W (y)). Assume by contradiction that the maximal H(y)
(in the sense as there is no superset of H(y) with the properties specified in Definition 3.3) is a
proper subset of Bε(W (y)), i.e. H(y) ⊊ Bε(W (y)). Let W ∈ ∂H(y)∩Bε(W (y)) ̸= ∅. Lipschitz
continuity of φ in Step 2 shows that U can be extended continuously to H(y). Consequently,
U(W ) is well-defined and equals limσ→1− U(σW + (1 − σ)W (y)) ∈ U. Since R is continuous,
R(W,U(W )) = 0. By Assumption 3, ∂uR(W,U(W )) is a homeomorphism for any W in a
neighbourhood of W in W. We may therefore apply the implicit function theorem in W to show
that the domain of existence of a holomorphic extension of U can be further extended to an
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open neighbourhood B ⫌ H(y) of W in W. Clearly, the neighbourhood can be chosen such
that U(W ) ∈ Bεu(U(W (y))) for all W ∈ B. Since B can be chosen star shaped with respect to
W (y), this contradicts the maximality of H(y). Thus, we proved that Bε(W (y)) = H(y). The
argument used in Step 1 immediately implies the uniform boundedness.

Theorem 3.5 provides all the tools to estimate parametric regularity through Cauchy’s inte-
gral theorem. The Lévy-Ciesielski expansion (3.2) can be (formally) extended to the complex
parameters z ∈ CN. Thus, in view of Theorem 3.5, z +→ U(W (z)) is a holomorphic extension of
the parameter-to-solution map in y for all z such that W (z) belongs to the domain of holomor-
phy of U , which in Theorem 3.5 was proved to contain Bε(W (y)) (recall that ε is independent
of y). Such a set of parameters can be defined as follows: Let ρ = (ρn)n∈N be a sequence of
non-negative real numbers, and consider the complex polydisk

Bρ(y) := {z ∈ Σ : |zn − yn| < ρn ∀n ∈ N} , (3.10)

where Γ ⊂ Σ ⊂ CN is the set of complex parameters.

Assumption 4. For ε > 0, y ∈ Γ, there exists a real positive sequence ρ = ρ(ε) = (ρn)n∈N
such that,

z ∈ Bρ(y) ⇒ W (z) ∈ Bε(W (y)).

In conclusion, for any y ∈ Γ, U ◦W : Bρ(y) → U is holomorphic because it is a composition
of holomorphic functions. Moreover, U ◦ W is uniformly bounded by Cε (see Theorem 3.5)
independently of y.

Consider a multi-index ν = (ν1, . . . , νn) ∈ Nn
0 and denote by ∂ν the mixed derivative

∂ν1
1 . . . ∂νn

n where ∂
νj
j denotes the partial derivative of order νj with respect to yj (if νj = 0,

the j-th partial derivative is omitted). Cauchy’s integral theorem implies:

Theorem 3.6. Consider u : Γ → U, the parameter-to-solution map that solves the parametric
coefficient PDE (3.3). Let Assumptions 1, 2, 3 hold and fix ε > 0 as in Theorem 3.5. Finally,
consider a real positive sequence ρ = (ρn)n∈N as in Assumption 4. Then, for any n ∈ N,
ν = (νi)

n
i=1 ∈ Nn

0 , it holds that

∥∂νu(y)∥U ≤
n;

j=1

νj !ρ
−νj
j Cε ∀y ∈ Γ, (3.11)

where Cε > 0 from Theorem 3.5 is independent of ν or y. The same bound holds for the norm
∥∂νu∥L2

µ(Γ;U), where µ denotes a probability measure on Γ.

Proof. Apply Cauchy’s formula [Her89, Theorem 2.1.2] to each of the n variables y1, . . . , yn
recursively and then differentiate.

Note that Theorem 3.6 contains the crucial bound on the derivatives which justifies many
high-dimensional approximation (and quadrature) methods such as, e.g., sparse grids, polyno-
mial chaos, quasi-Monte Carlo.

3.2 Stochastic, random and parametric Landau–Lifshitz–Gilbert
equation

We begin by recalling the stochastic Landau–Lifshitz–Gilbert (SLLG) equation, already dis-
cussed in Section 1.3. We then also recall some facts from Section 1.3.6, in which the problem is
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reduced to solving a random coefficient PDE by means of the Doss-Sussmann transform. Finally,
we apply the Lévy-Ciesielski expansion of the Wiener process (already discussed in Section 1.1.2)
to obtain yet another equivalent problem, this time a parametric PDE. This two steps are an
instance of the general theory outlined in Section 3.1.1.

Consider a bounded connected Lipschitz domain D ⊂ R3 representing a ferromagnetic body
in the time interval [0, T ]. Recall that by DT := [0, T ] × D we denote the space-time cylin-
der and by ∂n the outward pointing normal derivative on ∂D. Consider M0 : D → S2 :=�
x ∈ R3 : x21 + x22 + x23 = 1

�
(the magnetization of the magnetic body at initial time), λ > 0

(called the Gilbert damping parameter) and λ1 =
1

1+λ2 , λ2 =
λ

1+λ2 .
The effect of heat fluctuations on the systems is described with a random model. Denote by

(Ω, E ,P) a probability triple and let dW : Ω × DT → R3 be a suitable space-time noise. For
simplicity, we assume a one-dimensional noise W (ω, t,x) = g(x)W (ω, t) for all ω ∈ Ω, (t,x) ∈
DT , where g : D → R3 is given and W : Ω× [0, T ] → R denotes a (scalar) Wiener process.

The problem associated to the SLLG equation reads: Find M : Ω×DT → S2 such that		
dM = (λ1M ×∆M − λ2M × (M ×∆M)) dt+ (λ1M × g) ◦ dW in DT , P-a.s.
∂nM = 0 on ∂D × [0, T ],

M(0) = M0 on D.

By ◦dW we denote the Stratonovich differential. Recall that solution has constant magnitude
in space and time. A meaningful notion of weak solution is given in Definition 1.25.

3.2.1 Random LLG equation by Doss-Sussmann transform

Let us recall some facts from Section 1.3.6, in which we explained how the SLLG equation can
be reduced to a random coefficient PDE through the Doss-Sussmann transform.

While in [GLT16] the random coefficient problem is considered for technical reasons, we are
mainly interested in obtaining an equivalent problem that is more amenable to collocation-type
approximation. Another advantage is (formally) gaining a full order of differentiability of the
solution.

Given g : D → R3, s ∈ R and v : D → R3 with suitable regularity, we recall the definition
of Ĉ(s,v) (1.75):

Gv = v × g,

Cv = v ×∆g + 2∇v ×∇g,

esGv = v + sin(s)Gv + (1− cos s)G2v,

E(s,v) = sin(s)Cv + (1− cos(s))(CG+GC)v,
Ĉ(s,v) = e−sGE(s,v) = E(s,v)− sin(s)GE(s,v) + (1− cos(s))G2E(s,v).

We can equivalently express it as a sum

Ĉ(s,v) =
6D

i=1

bi(s)Fi(v), (3.12)

where bi are uniformly bounded with bounded derivatives (let 0 < β < ∞ be a uniform bound for
both, which depends only on g) and the Fi are linear and globally Lipschitz with the Lipschitz
constant 0 < L < ∞ depending only on g.

The Doss-Sussmann transform (1.19) of the SLLG solution M reads m = e−WGM and
solves the following random coefficients LLG equation: Given M0 : D → S2, find m : Ω×DT →
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S2 such that for P-a.e. ω ∈ Ω										
∂tm(ω) = λ1m(ω)×

-
∆m(ω) + Ĉ(W (ω),m(ω))

4
−λ2m(ω)×

-
m(ω)×

-
∆m(ω) + Ĉ(W (ω),m(ω))

44
in DT ,

∂nm(ω) = 0 on [0, T ]× ∂D,

m(ω, 0, ·) = M0 on D.

(3.13)

It is shown in [GLT16, Lemma 4.6] that any weak solution m of (3.13) corresponds to a weak
martingale solution M = eWGm of (1.68) through the inverse Doss-Sussmann transform. Ex-
istence of solutions to (3.13) is shown in [GLT16] but uniqueness is open.

3.2.2 Parametric LLG equation by Lévy-Ciesielski expansion

Following Section 3.1.1, we derive a parametric coefficient PDE problem using the Lévy-Ciesielski
expansion of the Wiener process (see Section 1.1.2). The problem related to the parametric LLG
equation reads: Given M0 : D → S2, find m : Γ×DT → S2 such that for a.e. y ∈ Γ										

∂tm(y) = m(y)×
-
∆m(y) + Ĉ(W (y),m(y))

4
−m(y)×

-
m(y)×

-
∆m(y) + Ĉ(W (y),m(y))

44
in DT ,

∂nm(y) = 0 on [0, T ]× ∂D,

m(y, 0, ·) = M0 on D,

(3.14)

where we set λ1 = λ2 = 1 for simplicity. The precise definition of the Banach space of sequences
Γ will be given below in (3.30).

Applying the triple cross-product formula (B.2) on m(y) × (m(y)× (∆m(y))), together
with |m| ≡ 1, gives an equivalent equation valid again for a.e. y ∈ Γ:

∂tm(y) =∆m(y) +m(y)×∆m(y)− (∇m(y) : ∇m(y))m(y) (3.15)

+m(y)× Ĉ(W,m(y))−m(y)×
-
m(y)× Ĉ(W,m(y))

4
in DT . (3.16)

3.2.3 Space and time Hölder regularity of solutions of the random LLG equa-
tion

In the present section, we prove that the sample paths of solutions of the random LLG equation
(3.13) are Hölder regular.

We recall basic definitions and important facts about Hölder spaces. Let n ∈ N, D ⊂ Rn,
α ∈ (0, 1), v : D → C. The Hölder-seminorm reads |v|Cα(D) := supx,y∈D,x ̸=y

|v(x)−v(y)|
|x−y|α and

by Cα(D), we denote the Banach space of functions with finite Hölder-norm ∥v∥Cα(D) :=
∥v∥C0(D) + |v|Cα(D). Clearly, u, v ∈ Cα(D) implies uv ∈ Cα(D). Higher Hölder regularity
of order k ∈ N is characterized via the seminorm |v|Ck+α(D) :=

Ek
j=1 |Djv|Cα(D) and the corre-

sponding Banach space Ck+α(D) :=
�
v : D → C : Djv ∈ Cα(D) ∀j = 0, . . . , k

�
with the norm

∥v∥Ck+α(D) :=
Ek

j=0

KKDjv
KK
Cα(D)

. Again u, v ∈ Ck+α(D) immediately implies uv ∈ Ck+α(D).
In the parabolic setting, it is useful to define the parabolic distance between P = (t,x),
Q = (s,y) ∈ DT by

d(P,Q) :=
/|t− s|+ |x− y|261/2 .
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For a function v : DT → C, define the seminorm |v|Cα/2,α(DT ) := supP,Q∈DT
P ̸=Q

|v(P )−v(Q)|
d(P,Q)α . Define

the Banach spaces Cα/2,α(DT ) :=


v : DT → C : v ∈ C0(DT ) and |v|Cα/2,α(D) < ∞

�
with the

norm (see [WYW06, Section 1.2.3] for details) ∥v∥Cα/2,α(DT ) := ∥v∥C0(DT )+|v|Cα/2,α(DT ). Finally,

C1+α/2,2+α(DT ) :=


v : DT → C : ∂tv and Djv ∈ Cα/2,α(DT ), j = 0, 1, 2

�
(3.17)

is a Banach space when endowed with the norm

∥v∥C1+α/2,2+α(DT ) :=
2D

j=0

KKDjv
KK
Cα/2,α(DT )

+ ∥∂tv∥Cα/2,α(DT ) .

In what follows, we work with the Hölder seminorm

|v|C1+α/2,2+α(DT ) := |v|Cα/2,α(DT ) +
2D

j=1

KKDjv
KK
Cα/2,α(DT )

+ ∥∂tv∥Cα/2,α(DT ) . (3.18)

As above, if u, v ∈ C1+α/2,2+α(DT ) then also uv ∈ C1+α/2,2+α(DT ). In particular, it can be
proved that ∥uv∥Cα/2,α(DT ) ≤ ∥u∥Cα/2,α(DT ) ∥v∥Cα/2,α(DT ).

Definitions generalize to vector fields in the usual way. We use the same symbols for scalar
and vector spaces. In the remainder of this section, we adopt the short notation ∥·∥α = ∥·∥Cα(D),
∥·∥1+α/2,2+α = ∥·∥C1+α/2,2+α(DT ), and analogously for all other norms and seminorms.

To prove Hölder regularity of sample paths, we work with the following equivalent form of
(3.13), obtained analogously to (LLA) (see Section 1.3.2 for more on equivalent forms of the
LLG equation):

λ∂tm+m× ∂tm = ∆m+ |∇m|2m−m×
-
m× Ĉ(W,m)

4
, (3.19)

where we recall that λ > 0 is the Gilbert damping parameter, Ĉ was defined in (1.75), and we
wrote ∆m ·m = − |∇m|2 (a result of the a.e. unit modulus condition on m).

The main result of this section is summarized in the following theorem.

Theorem 3.7. Let 0 < α < 1. Assume that W ∈ Cα/2([0, T ]), M0 ∈ C2+α(D) and g ∈
C2+α(D). There exists ε > 0 such that if ∥M0∥2+α ≤ ε, ∥∆g∥α ≤ ε, and ∥∇g∥α ≤ ε, then the
solution m of equation (3.19) with initial condition m(0) = M0 and homogeneous Neumann
boundary conditions belongs to C1+α/2,2+α(DT ). Moreover,

∥m∥1+α/2,2+α ≤ CΓ, (3.20)

where CΓ > 0 depends on ∥g∥2+α, ∥M0∥2+α, λ, D and T but is independent of W .

The proof of the theorem is inspired by [FT17b]. The proofs in the mentioned work require
higher temporal regularity than is available for SLLG, which we circumvent by the use of Hölder
spaces instead of Sobolev spaces. In the following, we require some notation:

H(u,v,w) := u× (v × Ĉ(W,w)) ∀u,v ∈ Cα/2,α(DT ),w ∈ Cα/2,1+α(DT ), (3.21)

Ra(v) := λ∂tv + v × ∂tv − |v|2∆v − |∇v|2v +H(v,v,v) ∀v ∈ C1+α/2,2+α(DT ), (3.22)

Lv := Lx0v := λv +M0(x0)× v ∀x0 ∈ D,v ∈ Cα/2,α(DT ). (3.23)

We note that Ra is the residual defined from the alternative form (3.19) of the LLG equation;
confer (3.3).

We will require a couple of technical results.
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Lemma 3.8 (Continuity of the trilinear form H and of the LLG residual Ra). If u, v ∈
Cα/2,α(DT ) and w ∈ Cα/2,1+α(DT ), then H(u,v,w) ∈ Cα/2,α(DT ) and

∥H(u,v,w)∥α/2,α ≤ Cg ∥u∥α/2,α ∥v∥α/2,α ∥w∥α/2,1+α , (3.24)

where Cg :=
/
1 + ∥g∥1+α

63
(∥∇g∥α + ∥∆g∥α). Moreover, if v ∈ C1+α/2,2+α(DT ), then

Ra(v) ∈ Cα/2,α(DT ) and

∥Ra(v)∥α/2,α ≤
-
|v|1+α/2,2+α + |v|21+α/2,2+α

4-
λ+ ∥v∥1+α/2,2+α

42
+ Cg ∥v∥2α/2,α ∥v∥α/2,1+α .

(3.25)

In particular, ∥Ra(v)∥α/2,α vanishes when |v|1+α/2,2+α and ∥∇g∥α/2,α + ∥∆g∥α/2,α all vanish.

Proof. To prove (3.24), note the following elementary estimates

∥Cv∥α/2,α ≤ 2 ∥∇v∥α/2,α ∥∇g∥α + ∥v∥α/2,α ∥∆g∥α ,
∥CGv∥α/2,α ≤ ∥v∥α/2,α ∥g∥α ∥∆g∥α + 2(∥∇v∥α/2,α ∥g∥α + ∥v∥α/2,α ∥∇g∥α) ∥∇g∥α ,

∥E(s,v)∥α/2,α ≤ ∥Cv∥α/2,α + ∥CGv∥α/2,α + ∥g∥α ∥Cv∥α/2,α ,KKKĈ(s,v)KKK
α/2,α

≤
-
1 + ∥g∥α + ∥g∥2α

4
∥E(s,v)∥α/2,α ,

∥H(u,v,w∥α/2,α) ≤ ∥u∥α/2,α ∥v∥α/2,α
KKKĈ(W,w)

KKK
α/2,α

.

Putting these facts together, one obtains (3.24). To get the second inequality (3.25), estimate

∥Ra(v)∥α/2,α ≤ λ |v|1+α/2,2+α + ∥v∥1+α/2,2+α |v|1+α/2,2+α

+ ∥v∥21+α/2,2+α |v|1+α/2,2+α + |v|21+α/2,2+α ∥v∥1+α/2,2+α + ∥H(v,v,v)∥α/2,α
≤

-
|v|1+α/2,2+α + |v|21+α/2,2+α

4-
λ+ ∥v∥1+α/2,2+α

42
+ ∥H(v,v,v)∥α/2,α .

Using (3.24) to estimate the last term yields (3.25).

Additionally, we need some finer control over the boundedness of Ra. The point of the
following result is that all terms apart from the first one on the right-hand side of the estimate
in Lemma 3.9 below are either at least quadratic in w or can be made small by choosing v close
to a constant function. This will allow us to treat the nonlinear parts as perturbations of the
heat equation.

Lemma 3.9. For v,w ∈ C1+α/2,2+α(DT ) and x0 ∈ D, there holds

∥Ra(v −w)∥α/2,α ≤∥Ra(v)− (L∂t −∆)w∥α/2,α + ∥v −M0(x0)∥α/2,α ∥w∥1+α/2,2+α

+
KK/1− |v|26∆w

KK
α/2,α

+ ∥w∥1+α/2,2+α

-
|v|1+α/2,2+α + Cg

4-
1 + ∥v∥1+α/2,2+α

42

+ ∥w∥21+α/2,2+α

-
1 + (1 + Cg) ∥v∥1+α/2,2+α

4
+ ∥w∥31+α/2,2+α (1 + Cg),

where Cg > 0 is defined in Lemma 3.8.
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Proof. All but the last term in the definition of Ra are estimated as in [FT17b]. As for the last
term, observe that

H(v −w,v −w,v −w) =H(v,v,v)−H(w,w,w)

−H(w,v,v)−H(v,w,v)−H(v,v,w)

+H(v,w,w) +H(w,v,w) +H(w,w,v).

The term H(v,v,v) is absorbed in Ra(v). Then, by the previous lemma:

∥−H(w,v,v)−H(v,w,v)−H(v,v,w)∥α/2,α ≲ Cg ∥w∥α/2,1+α ∥v∥2α/2,1+α ,

∥H(v,w,w) +H(w,v,w) +H(w,w,v)∥α/2,α ≲ Cg ∥w∥2α/2,1+α ∥v∥α/2,1+α ,

∥−H(w,w,w)∥α/2,α ≲ Cg ∥w∥3α/2,1+α .

Altogether, we obtain the required result.

To prove Theorem 3.7, we use a fixed point iteration.

Proof of Theorem 3.7. Consider the initial guess m0(t,x) = M0(x) for all t ∈ [0, T ], x ∈ D,
and fix one x0 ∈ D (for the definition of L = Lx0). Define the sequence (mℓ)ℓ as follows: For
ℓ = 0, 1, . . .

1. Define rℓ := Ra(mℓ);

2. Solve 		
L∂tRℓ −∆Rℓ = rℓ in DT ,

∂nRℓ = 0 on ∂D × [0, T ],

Rℓ(0) = 0 on D;

3. Update mℓ+1 := mℓ −Rℓ.

Step 1. Well-posedness: By definition, we have m0 ∈ C1+α/2,2+α(DT ) as well as ∂nm0 = 0.
Assume that mℓ ∈ C1+α/2,2+α(DT ) and ∂nmℓ = 0. Then, Lemma 3.8 implies that rℓ ∈
Cα/2,α(DT ). The parabolic regularity result [LSU68, Theorem 10.4,§10, VII] yields Rℓ ∈
C1+α/2,2+α(DT ).

Step 2. Convergence: We show the Cauchy property of the sequence (mℓ)ℓ: Fix 0 ≤ ℓ′ < ℓ <
∞ and observe that ∥mℓ −mℓ′∥1+α/2,2+α ≤ Eℓ−1

j=ℓ′ ∥Rj∥1+α/2,2+α . By the previous lemmata,
we have

∥Rj+1∥1+α/2,2+α ≤ Cs ∥rj+1∥α/2,α = Cs ∥Ra(mj+1)∥α/2,α = Cs ∥Ra(mj −Rj)∥α/2,α , (3.26)

where Cs > 0 is the stability constant from [LSU68, Theorem 10.4,§10, VII], which only depends
on DT and L (particularly, it is independent of ℓ). We invoke Lemma 3.9 with v = mj and
w = Rj . By construction, Ra(mj)− (L∂t −∆)Rj = 0. What remains is estimated as

∥Ra(mj −Rj)∥α/2,α ≤ KKmj −M0(x0)
KK
α/2,α

∥Rj∥1+α/2,2+α +
KK/1− |mj |2

6
∆Rj

KK
α/2,α

+ ∥Rj∥1+α/2,2+α

-
|mj |1+α/2,2+α + Cg

4-
1 + ∥mj∥1+α/2,2+α

42

+ ∥Rj∥21+α/2,2+α

-
1 + (1 + Cg) |mj |1+α/2,2+α

4
+ ∥Rj∥31+α/2,2+α (1 + Cg).

(3.27)
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Let us estimate the first term in (3.27). For any (t,x) ∈ DT , the fundamental theorem of
calculus yields |mj(x, t)−M0(x0)| ≲ ∥(∂t,∇)mj∥C0(DT ) ≤ |mj |1+α/2,2+α. Analogously, we getKKmj −M0(x0)

KK
α/2,α

≤ 2 |mj |1+α/2,2+α .

Let us estimate the second term in (3.27). Since mj = m0 +
Ej−1

i=0 Ri and |m0| = 1 a.e., we

have |mj |2 = 1 + 2m0 ·
Ej−1

i=0 Ri +
-Ej−1

i=0 Ri

42
. Thus, the fact that Hölder spaces are closed

under multiplication and the triangle inequality imply

KK1− |mj |2
KK
α/2,α

≤ 2 ∥m0∥α/2,α
KKKKK
j−1D
i=0

Ri

KKKKK
α/2,α

+

.
j−1D
i=0

∥Ri∥α/2,α
52

.

All in all, we obtain

∥Rj+1∥1+α/2,2+α ≤ C̃Qj ∥Rj∥1+α/2,2+α , (3.28)

where C̃ > 0 is independent of j and

Qj := |mj |1+α/2,2+α + ∥m0∥α/2,α
KKKKK
j−1D
i=0

Ri

KKKKK
α/2,α

+

.
j−1D
i=0

∥Ri∥α/2,α
52

+
-
|mj |1+α/2,2+α + Cg

4-
1 + ∥mj∥1+α/2,2+α

42

+ ∥Rj∥1+α/2,2+α (1 + (1 + Cg) |mj |1+α/2,2+α) + ∥Rj∥21+α/2,2+α (1 + Cg).

It can be proved that for any q ∈ (0, 1) there exists ε > 0 such that C̃Qj < q for all j ∈ N. One
proceeds by induction, as done in [FT17b], using additionally the assumption on the smallness
of ∇g and ∆g. Therefore, ∥Rj+1∥1+α/2,2+α ≤ q ∥Rj∥1+α/2,2+α, which implies that (mℓ)ℓ is
a Cauchy sequence in C1+α/2,2+α(DT ). Hence, we find a limit m ∈ C1+α/2,2+α(DT ) and the
arguments above already imply the estimate in Theorem 3.7.

Step 3. m solves (3.19): m fulfills the initial condition m(0) = M0 (and thus |m(0)| = 1)
and boundary condition ∂nm = 0 on [0, T ] × ∂D by the continuity of the trace operator. The
continuity of Ra and the contraction (3.28) imply

∥Ra(m)∥α/2,α = lim
ℓ

∥Ra(mℓ)∥α/2,α ≲ lim
ℓ

∥Rℓ∥1+α/2,2+α ≤ lim
ℓ

qℓ ∥R0∥1+α/2,2+α = 0

The arguments of the proof of [FT17b, Lemma 4.8] show that Ra(m) = 0 implies that m
solves (3.19) and hence concludes the proof.

3.3 Holomorphic regularity of parameter-to-solution map with
Hölder sample paths

In this section we frequently work with complex-valued functions. If not mentioned otherwise,
Banach spaces of functions such as L2(D) are understood to contain complex valued functions.
To denote the codomain explicitly, we write e.g. L2(D;C) or L2(D;R).

We specify a possible choice of Banach spaces used in Section 3.1 for the case of the SLLG
equation. Fix 0 < α < 1 and consider the complex parameter set

Σ = Σ(α) :=


z ∈ CN : ∥z∥Σ,α < ∞

�
, where ∥z∥Σ,α :=

D
ℓ∈N0

max
j=1,...,⌈2ℓ−1⌉

|zℓ,j | 2−(1−α)ℓ/2.

(3.29)
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where we used the hierarchical indexing (1.11). For real parameters consider the subspace

Γ := Σ ∩ RN (3.30)

with the same norm. The definition of the Banach spaces for real and complex coefficients
sample paths follows from the Lévy-Ciesielski expansion (3.2):

W := {W : [0, T ] → C} ∃z ∈ X such that W (t) =
D
n∈N

znηn(t)∀t ∈ [0, T ],

WR := {W : [0, T ] → R} ∃y ∈ XR such that W (t) =
D
n∈N

ynηn(t)∀t ∈ [0, T ].

It is however interesting to identify classical spaces to which they belong.

Remark 3.10. In the regularity results used below, we have to work in Hölder spaces with
α ∈ (0, 1). For the Faber-Schauder basis functions on [0, 1] (see Section 3.1.1) we have

∥ηℓ,j∥C0([0,1]) ≤ 2−ℓ/2, |ηℓ,j |C1([0,1]) ≤ 2ℓ/2, and ∥ηℓ,j∥Cα([0,1]) ≤ 2 · 2−(1/2−α)ℓ.

Only for α ≪ 1, we obtain a decay of ∥ηℓ,j∥Cα([0,1]) close to 2−ℓ/2, which is what we expect for
a truncated Brownian motion. Hence, in the following we will assume that α > 0 is arbitrarily
small.

It can be proved that

W (Γ) ⊂ Cα/2([0, T ];R), (3.31)

W = W (Σ) ⊂ Cα/2([0, T ]), (3.32)

with the same techniques used in the proof of Lemma 3.14 below. This choice of parameter space
is motivated by the fact that the sample paths of the Wiener process belong to C1/2−ε([0, T ])
almost surely for any ε > 0. To define the space of solutions U, write the magnetizations as

m(ω, t,x) = M0(x) + u(ω, t,x) for a.e. ω ∈ Ω, (t,x) ∈ DT ,

where we recall M0 is the given unit-modulus initial condition, assume to belong to C2+α(D).
Consider then

u ∈ U = C
1+α/2,2+α
0 (DT ) :=



v ∈ C1+α/2,2+α(DT ) : v(0) = 0 in D, ∂nv = 0 on ∂D

�
. (3.33)

See Section 3.2.3 for the definition of the relevant Hölder spaces. Given a noise coefficient
g ∈ C2+α(D), we define the residual as:

R(W,u) := FR(W,M0 + u), whereFR(W,m) :=∂tm−∆m−m×∆m+ (∇m : ∇m)m−m× Ĉ(W,m)+

+m×
-
m× Ĉ(W,m)

4
.

(3.34)

Here, the cross product × is defined as in the real setting by

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ∀a, b ∈ C3.

Note that due to the sesquilinear complex scalar product this implies that ⟨a× b,a⟩ might not
vanish for complex valued vector fields a, b. Finally, the space of residuals is

F = Cα/2,α(DT ), (3.35)

so that R is understood as a function between Banach spaces:

R : W× U → F, (W,m) +→ R(W,m). (3.36)

Observe that we already proved Assumption 1 in Theorem 3.7.
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3.3.1 Proof of Assumptions 2 and 3

In order to apply the general strategy outlined in Section 3.1, we need to prove Assumption 2
and 3 for the problem defined by (3.34).

To this end, we apply the following lemma found in much more general form, e.g., in [LSU68,
Chapter VII, § 10, Theorem 10.3].

Lemma 3.11 (Well posedness of linear parabolic systems with Hölder coefficients). Consider
d ∈ N, 0 < α < 1, D ⊂ Rd bounded with ∂D ∈ C2+α/2, T > 0 and let DT := [0, T ] × D.
Denote by aij, ai, a for i, j = 1, . . . , d real scalar functions in C1+α/2,2+α(DT ). Let L =E3

i,j=1 ai,jDiDj+
E3

i=1 aiDi+aid denote a vector-valued, linear second-order operator. Assume
moreover that the system ∂t + L is strongly parabolic in the sense that the principal part L0 of
the elliptic operator satisfies: There exists δ > 0 such that for a.e. (t,x) ∈ DT ,

ℜ⟨L0(t,x)z, z⟩ ≥ |z|2 ∀z ∈ C3,

where ⟨·, ·⟩ and |·| denote the standard scalar product and norm on C3 (see also , e.g., [LSU68,
Chapter VII, § 8, Definition 7]). Consider f ∈ Cα/2,α(DT ). Then, the problem		

∂tu+ Lu = f in DT ,

u(0, ·) = 0 on D,

∂nu = 0 on [0, T ]× ∂D

has a unique solution u ∈ C1+α/2,2+α(DT ) with ∥u∥1+α/2,2+α ≤ Cstab ∥f∥α/2,α. The constant
Cstab depends on the respective norms of the coefficients aij , ai, a as well as on the ellipticity
constant.

Remark 3.12. Note that the compatibility conditions in [LSU68, Chapter VII, § 10, Theorem
10.3] of order zero (α < 1) are automatically satisfied in our case. This also takes care of the fact
that [LSU68, Chapter VII, § 10, Theorem 10.3] only works for small end times 0 < FT ≤ T as we
can restart the estimate at any time FT and get the estimate for the full time interval. Moreover,
while not stated explicitly, analyzing the proof of [LSU68, Chapter VII, § 10, Theorem 10.3] gives
the dependence of Cstab on the coefficients of the problem.

Lemma 3.13. Let α ∈ (0, 1), g ∈ C2+α(D) and M0 ∈ C2+α(D). Consider the spaces W,U,F
defined at the beginning of the present section. Then, the residual R (cf. (3.34), (3.36)) is a well-
defined function and Assumptions 2 holds true. More generally, it can be proved that ∂uR(W,u)
is a homeomorphism between U and F if

W ∈ W and u ∈ U satisfies ∥ℑu∥L∞(DT ) ≤
1

4
. (3.37)

Finally, Assumption 3 also holds true with εW > 0, εu = 1
4 , and

G1(s) = (1 + eεW (1 + εW ))2
-
1 + ∥g∥C2+α(D)

44 -
1 +

KKM0
KK
C2+α(D)

+ s
43

,

G2(s) = Cstab(s) ∀s ≥ 0,

and Cstab = Cstab(∥u∥U) > 0 is as in Lemma 3.11, i.e. it guarantees that for any f ∈ F, W ∈ W,
u ∈ U

KKK(∂uR(W,u))−1 f
KKK
U
≤ Cstab(∥u∥U) ∥f∥F.
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Proof that R is well-defined. Let us first show that the residual R is a well-defined function.
Clearly, M0 + u ∈ C1+α/2,2+α(DT ) if u ∈ C

1+α/2,2+α
0 (DT ). Observe that

G : C1+α/2,2+α(DT ) → C1+α/2,2+α(DT ) and C : Cα/2,1+α(DT ) → Cα/2,α(DT ),

so Ĉ(W,m) ∈ Cα/2,α(DT ). Thus, R(W,u) is a sum of functions belonging to Cα/2,α(DT ).
The fact that R is continuous can be easily verified by checking that each term of (3.34) is
continuous.

Proof of (i) in Assumption 2. The residual R is differentiable because it is a linear combination
of differentiable functions. We now prove that each partial derivative is continuous. For ω ∈
Cα/2([0, T ]),

∂WE(W,m)[ω] = (cos(W )Cm+ sin(W )(GC + CG)m)ω, (3.38)

∂W Ĉ(W,m)[ω] = eWG∂WE(W,m)[ω] +
/
cos(W )GE(W,m) + sin(W )G2E(W,m)

6
ω, (3.39)

∂W FR(W,m)[ω] = −m× ∂Ĉ(W,m)[ω] +m×
-
m× ∂Ĉ(W,m)[ω]

4
. (3.40)

Formally estimating the linear operator ∂WR(W,u) gives that for all ω ∈ Cα/2([0, T ])

∥∂WR(W,u)[ω]∥Cα/2,α(DT ) ≤
0
1 +

KKKeℑW
KKK
Cα/2([0,T ])

72 -
1 + ∥g∥C2+α(D)

44

-
1 +

KKM0 + u
KK
Cα/2,1+α(DT )

43 ∥ω∥Cα/2([0,T ]) .

(3.41)

The exponential dependence on ℑW comes from the exponential behavior of sine and cosine
in imaginary direction. However, the right-hand side is finite because ∥ℑW∥W ≤ ε impliesKKeℑW

KK
Cα/2([0,T ])

≲ eε(1 + ε). This is the case because
KKeℑW

KK
C0([0,T ])

= e
∥ℑW∥C0([0,T ]) ≤ eε and

LLLeℑW
LLL
Cα/2([0,T ])

= sup
s,t∈[0,T ]

s ̸=t

LLeℑW (s) − eℑW (t)
LL

|s− t|α/2

≤ sup
s,t∈[0,T ]

s ̸=t

LLeℑW (s) − eℑW (t)
LL

|ℑW (s)−ℑW (t)| sup
s,t∈[0,T ]

s ̸=t

|ℑW (s)−ℑW (t)|
|s− t|α/2

.

Because of the assumption on ℑW , we have that |ℑW (t)| ≤ ε for all t ∈ [0, T ] and
sups,t∈[0,T ]

s ̸=t

|ℑW (s)−ℑW (t)|
|s−t|α/2 ≤ ε. Thus,

sup
s,t∈[0,T ],s ̸=t

LLeℑW (s) − eℑW (t)
LL

|ℑW (s)−ℑW (t)| = sup
−ε≤a,b≤ε

a ̸=b

LLea − eb
LL

|a− b| ≲ eb,

where the last inequality is a consequence of the Taylor expansion ea = eb+eb(a−b)+O(|a− b|2).
All in all, we obtain

LLeℑW
LL
Cα/2([0,T ])

≲ eεε andKKKeℑW
KKK
Cα/2([0,T ])

≲ eε(1 + ε). (3.42)
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For v ∈ C1+α/2,2+α(DT ), we get

∂m FR(W,m)[v] =∂tv −∆v − v ×∆m−m×∆v + 2(∇v : ∇m)m+ (∇m : ∇m)v

−
-
v × Ĉ(W,m) +m× Ĉ(W,v)

4
−

-
v ×

-
m× Ĉ(W,m)

4
+m×

-
v × Ĉ(W,m) +m× Ĉ(W,v)

44
,

(3.43)

and continuity of ∂uR(W,u) = ∂m FR(W,M0 + u) follows by the same arguments used for
∂WR(W,m).

Proof of (ii) in Assumption 2. While we are only interested in the case of real coefficients W ∈
W (Γ), u ∈ u(Γ) such that R(W,u) = 0, let us consider the more general case (3.37) for future
use. Consider f ∈ F (the residuals space defined in (3.35)) and the problem		

∂uR(W∗, u∗)[v] = f in DT ,

∂nv = 0 on [0, T ]× ∂D,

v(0, ·) = 0 on D.

With the aim of applying Lemma 3.11, we note that the principal part of ∂uR(W,u)[v] is
−∆v − u×∆v. We now show that for any (t,x) ∈ DT and w ∈ C3,

ℜ⟨w + u(t,x)×w,w⟩ ≥ 1

2
∥w∥2 , (3.44)

where ⟨·, ·⟩ and ∥·∥ denote respectively the standard scalar product of C3 and the corresponding
norm. Indeed,

ℜ⟨w + u(t,x)×w,w⟩ = ∥w∥2 + ℜ⟨u(t,x)×w,w⟩
and algebraic manipulations lead to the identity

ℜ⟨u(t,x)×w,w⟩ = 2 ⟨ℑw ×ℜw,ℑu(t,x)⟩ ,
which implies the estimate

|ℜ⟨u(t,x)×w,w⟩| ≤ 2 ∥ℑu(t,x)∥L∞(DT ) ∥w∥2 .
Thus, by virtue of Assumption (3.37), we obtain (3.44). This shows that ∂uR(W,u) is parabolic
in the sense of Lemma 3.11 and hence, we obtain that ∂uR(W,u) admits a continuous inverse.
Together with its continuity, this implies that it is a homeomorphism. The norm of the inverse
can be estimated asKK∂uR(W,u)−1 [f ]

KK
C1+α/2,2+α(DT )

≤ Cstab(W,u) ∥f∥Cα/2,α(DT ) , (3.45)

where Cstab(W,u) > 0 is independent of f (but depends on W and u).

Proof of Assumption 3. The continuity bound for ∂WR(W,u) follows from (3.41) and (3.42)
with

G1(s) = (1 + eεW (1 + εW ))2
-
1 + ∥g∥C2+α(D)

44 -
1 +

KKM0
KK
C2+α(D)

+ s
43

,

where εW > 0. The bound on (∂uR(W,u))−1 is proved in (3.45) with εu = 1
4 and G2 = Cstab. The

fact that Cstab depends on U(W ) only through ∥U(W )∥U is implied by the sufficient condition
for well-posedness (3.37).
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We recall that, as shown in Section 3.1.2, the implicit function theorem (Theorem 3.2) and
Theorem 3.5 prove the existence of ε > 0 such that for any y ∈ Γ there exists a holomorphic
map U : Bε(W (y) → U such that R(W,U(W )) = 0 for all W ∈ Bε(W (y)). The function U is
bounded by a constant Cε > 0 again independent of y.

Moreover, Assumption 3 implies the bound (3.6) on the differential U ′(W ) as a function of
U(W ) through ∥U(W )∥U under the assumption that W ∈ Bmin(ε(y),εW )(W (y)) in W.

3.3.2 Proof of Assumption 4 and estimates of derivatives

Let us now estimate the derivatives of the parameter-to-solution map. While this is a standard
technique established already in [CDS11], it turns out this will not be quite sharp enough to
obtain dimension independent convergence of the sparse grid approximation. In Section 3.4, we
present a possible way to resolve this in the future.

Let us show that Assumption 4 holds for the present problem. Recall the definitions of
parameter spaces in (3.29) and (3.30).

Lemma 3.14. Assumption 4 holds in the present setting. In particular, it is sufficient to choose
ρ = (ρn)n∈N such that

∥ρ∥Σ ≤ ε

2
. (3.46)

Proof. Fix y ∈ Γ and z ∈ Bρ(y) (i.e.|zn − yn| < ρn for all n ∈ N). Let us prove that W (z) ∈
Bε(W (y)). By linearity, W (z, ·) − W (y, ·) =

E
n∈N(zn − yn)ηn(·). Recalling the hierarchical

indexing (1.11) and by a triangle inequality, we obtain

∥W (z, ·)−W (y, ·)∥Cα/2([0,T ]) ≤
D
ℓ∈N0

KKKKKK
⌈2ℓ−1⌉D
j=1

(zℓ,j − yℓ,j)ηℓ,j

KKKKKK
Cα/2([0,T ])

.

The terms on the right-hand side can be estimated by Banach space interpolation and the fact
that all basis functions ηℓ,j on the same level have disjoint supports, i.e.,KKKKKK

D
j

(zℓ,j − yℓ,j)ηℓ,j

KKKKKK
Cα/2([0,T ])

≤
KKKKKK
D
j

(zℓ,j − yℓ,j)ηℓ,j

KKKKKK
1−α/2

C0([0,T ])

KKKKKK
D
j

(zℓ,j − yℓ,j)ηℓ,j

KKKKKK
α/2

C1([0,T ])

≤/
max

j
|zℓ,j − yℓ,j | ∥ηℓ,j∥C0([0,T ])

61−α/2

/
max

j
|zℓ,j − yℓ,j | ∥ηℓ,j∥C0([0,T ]) +max

j
|zℓ,j − yℓ,j | |ηℓ,j |C1([0,T ])

6α/2
.

Recalling that
KKηi(ℓ)KKC0([0,T ])

≤ 2−ℓ/2 and
LLηi(ℓ)LLC1([0,T ])

≤ 2ℓ/2 (see Remark 3.10), we findKKKKKK
D
j

(zℓ,j − yℓ,j)ηℓ,j

KKKKKK
Cα/2([0,T ])

≤ max
j

|zℓ,j − yℓ,j | (2−ℓ/2 + 2−(1−α)ℓ/2).

With z ∈ Bρ(y), we obtain ∥W (z, ·)−W (y, ·)∥Cα/2([0,T ]) < ε, which gives the statement.

An example of valid sequence of holomorphy radii is

ρn = ε2
(1−α)⌈log2(n)⌉

2 ∀n ∈ N. (3.47)

Having so concluded that for any y ∈ Γ the parameter-to-solution map M◦W : Bρ(y) → U
is holomorphic and uniformly bounded, we can estimate its derivatives as done in Theorem 3.6.
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Proposition 3.15. Consider m = M0 + u : Γ → C1+α/2,2+α(DT ), the parameter-to-solution
map solution of the parametric LLG equation with Hölder spaces (Γ and C1+α/2,2+α(DT ) defined
in (3.30) and (3.17) respectively). Fix ε > 0 as in Theorem 3.5 and let ρ = (ρn)n∈N a positive
sequence that satisfies (3.46). Then, for any n ∈ N0, ν = (νi)

n
i=1 ⊂ Nn

0 , it holds that

∥∂νm(y)∥C1+α/2,2+α(DT ) ≤
n;

j=1

νj !ρ
−νj
j Cε ∀y ∈ Γ, (3.48)

where Cε > 0 from Theorem 3.5 is independent of ν or y.

Remark 3.16. Note that we essentially proved “(b, ξ, δ,X)-holomorphy” [DNSZ23b, Definition
4.1] for the SLLG equation in the case of a Hölder-valued parameter-to-solution map. However,
this regularity is not sufficient to apply the theory in [DNSZ23b], as the summability coefficient
is p = 2, which lies out of the range (0, 23) considered in [DNSZ23b]. This fact is analogous to
what happens in our analysis.

3.4 Holomorphy of a simplified parameter-to-solution map with
Lebesgue sample paths

In the present section, we aim at proving stronger regularity and sparsity properties of the ran-
dom LLG parameter-to-solution map again based on the general strategy outlined in Section 3.1.
A key observation is that these properties depend on the Banach spaces chosen for the sample
paths of the random coefficients (in our case, the Wiener process) and the sample paths of the
solutions (in our case, the magnetizations). In this case, we show that using Lebesgue spaces for
the time variable is superior to using Hölder spaces.

Because of the nonlinear nature of the SLLG equation, the results hold only for a simplified
version of the stochastic input. We make the following modeling assumptions:

• The sample paths of the Wiener process W are “small”. This is justified e.g. for small final
times T ≪ 1 with high probability;

• The gradient ∇g is “small”, meaning that the stochastic noise is spatially uniform. This is
justified for small domain sizes (samples in real-world applications are often in the nano-
and micrometer range).

This leads to the following simplifications in the random LLG residual (defined in (3.34)):

∇m×∇g ≈ 0, sin(W ) ≈ W, 1− cos(W ) ≈ W 2

2
≈ 0.

Consequently, we approximate Ĉ(W,m) defined in (1.75) with the first order expansion

C̃(W,m) := Wm×∆g, (3.49)

where g ∈ C2+α(D). This term appears in the simplified random LLG residual

Rs(W,u) := FRs(W,M0 + u), whereFRs(W,m) :=∂tm−∆m−m×∆m+ (∇m : ∇m)m−m× C̃(W,m)

+m×
-
m× C̃(W,m)

4
.

(3.50)

Observe that the magnetization corresponding to W (ω, ·) is m(ω) = M0 + u(ω) for any ω ∈ Ω.
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In order to define the space for the complex coefficients, we again start from the parameters:
Define, for 1 < q < ∞,

Σ = Σq :=


z ∈ CN : ∥z∥Σq < ∞

�
, where ∥z∥Σq :=

D
ℓ∈N0

|zℓ|ℓq 2−ℓ(1/2+1/q).

and we denoted zℓ = (zℓ,1, . . . , zℓ,⌈2ℓ−1⌉). We then define the space of complex coefficients
through the Lévy-Ciesielski expansion (3.2): W = W (Σ) = {W (z, ·) : [0, T ] → C : z ∈ Σ}.

For real parameters, we fix θ > 0 and let

Γ = Γ(α, θ) :=


y ∈ RN : ∥y∥Σ,α < θ

�
, (3.51)

where ∥·∥Σ,α was defined in (3.29).

Lemma 3.17. For fixed 1 < q < ∞ and θ > 0, there holds,

W ⊂ Lq(0, T ) and W (Γ) ⊂


W ∈ Cα([0, T ];R) : ∥W∥Cα([0,T ]) < θ

�
.

Proof. To prove the first inclusion, fix z ∈ Σ and estimate

∥W (z)∥Lq(0,T ) =

KKKKKK
D
ℓ∈N0

⌈2ℓ−1⌉D
j=1

zℓ,jηℓ,j

KKKKKK
Lq(0,T )

≤
D
ℓ∈N0

KKKKKK
⌈2ℓ−1⌉D
j=1

zℓ,jηℓ,j

KKKKKK
Lq(0,T )

.

Examine one summand at a time to get, using the fact that Faber-Schauder basis functions of
same level have disjoint supports,KKKKKK

⌈2ℓ−1⌉D
j=1

yℓ,jηℓ,j

KKKKKK
q

Lq(0,T )

=

* T

0

⌈2ℓ−1⌉D
j=1

yqℓ,jη
q
ℓ,j =

⌈2ℓ−1⌉D
j=1

yqℓ,j

* T

0
ηqℓ,j = |yℓ|qℓq ∥ηℓ,1∥qLq(0,T ) .

Finally, recall the definition of Faber-Schauder basis functions (cf. Section 1.1.2) to compute

∥ηℓ,j∥Lq(0,T ) = 2−ℓ(1/2+1/q)2−1/2
-

2
q+1

41/q
, so we get ∥W (z)∥Lq(0,T ) ≤ ∥z∥Σq , which implies the

first inclusion. The second inclusion follows with the methods of the proof of Lemma 3.14.

Intuitively, WR can be understood as the set of “small” real valued Wiener processes.
The space of solutions is chosen as

U =
�
u : DT → C3 : u ∈ Lq(0, T, C2+α(D)), ∂tu ∈ Lq(0, T, Cα(D)),

u(0, ·) = 0 on D, ∂nu = 0 on [0, T ]× ∂D} , (3.52)

and for solutions corresponding to real parameters, we have that

u(Γ) ⊂ �
u : DT → S2 : u ∈ U

�
. (3.53)

Finally the space of residuals is chosen as F := Lq(0, T, Cα(D)). The map Rs is understood as
a function between Banach spaces:

Rs : W× U → F. (3.54)

Observe that if u ∈ U for q > 1, then ∥u(t)∥Cα(D) ≤ ∥∂tu∥L1(0,T,Cα(D)) for all t ∈ [0, T ]. This
implies that u ∈ C0([0, T ], Cα(D)) and ∥u∥C0([0,T ],Cα(D)) ≤ ∥u∥U. In particular, interpolation
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shows that for any U ∈ U, ∥u∥L∞(DT ) + ∥u∥L2(0,T,C1(D)) ≤ ∥u∥U. Note that C̃ is bounded and
linear in both arguments: For all W ∈ W,m ∈ C0([0, T ], Cα(D)) it holdsKKKC̃(W,m)

KKK
Lq([0,T ],Cα(D))

≤∥W∥Lq([0,T ]) ∥m∥C0([0,T ],Cα(D)) ∥g∥C2+α(D) . (3.55)

The proof of Theorem 3.7 can be transferred to this simplified version of LLG and hence we
have that there exists CΓ = CΓ(θ) > 0 such that

∥U(W )∥U ≤ Cr ∀W ∈ WR. (3.56)

This gives the validity of Assumption 1 with CΓ = CΓ for the present problem.

3.4.1 Proof of Assumptions 2 and 3

In order to apply the general strategy outlined in Section 3.1.2, we need to prove Assumptions 2
and 3 for the spaces and residual chosen at the beginning of this section.

Remark 3.18. The proof of ii. in Assumption 2 requires the use of a Lq-regularity result for the
linear parabolic problem given by the operator ∂uRs(W,u) : U → F which coincides with (3.43)
but Ĉ replaced by C̃. For scalar problems, this can be found in [PS01, Section 4]. Strictly
speaking, however, Lemma 3.19 only holds under the assumption that [PS01] can be generalized
to the vector valued case.

We can prove, analogously to Lemma 3.13, the following result:

Lemma 3.19. Let α ∈ (0, 1), g ∈ C2+α(D), M0 ∈ C2+α(D) and 0 < θ < ∞. Consider the
spaces W,U,F defined at the beginning of the present section. Then, the residual Rs (3.50), (3.54)
is a well-defined function and Assumption 2 holds true. More generally, it can be proved that
∂uRs(W,u) is a homeomorphism between U and F if

W ∈ W, u ∈ U : ∥ℑu∥L∞(DT ) ≤
1

4
. (3.57)

Finally, Assumption 3 holds true with εW > 0 and εu = 1
4 and

G1(s) = ∥g∥C2+α(D)

/
1 +

KKM0
KK
U + s

63
G2(s) = Cstab(ε+ θ, s) ∀s ≥ 0,

where Cstab(∥W∥W , ∥u∥U) > 0 is as cp in [PS01, Theorem 2.5], i.e. it guarantees thatKKK(∂uR(W,u))−1 f
KKK
U
≤ Cstab(∥W∥W , ∥u∥U) ∥f∥F for any f ∈ F, W ∈ W, u ∈ U.

We recall that, as shown in Section 3.1.2, the implicit function theorem and Theorem 3.5
prove the existence of ε > 0 such that for any y ∈ Γ there exists a holomorphic map U :
Bε(W (y)) → U such that R(W,U(W )) = 0 for all W ∈ Bε(W (y)). The function U is bounded
by a constant Cε > 0 again independent of y. Moreover, Assumption 3 implies the bound (3.6)
on the differential U ′(W ) as a function of U(W ) through ∥U(W )∥U for all W ∈ Bε(W (y)) in W.

3.4.2 Proof of Assumption 4 and estimates of derivatives

Let us now estimate the derivatives of the parameter-to-solution map. To this end, let us find a
real positive sequence ρ = (ρn)n that verifies Assumption 4. Contrary to Section 3.3.2, here ρ
depends on which mixed derivative ∂ν is considered: Given a multi-index ν = (ν1, . . . , νn) ∈ Nn

0 ,
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0 < δ < 1
2 and 0 < γ < 1 consider a sequence of positive numbers ρ = ρ(ν, δ, γ) defined as

follows:

ρℓ,j := γ

				
1 if νℓ,j = 0

2(
3
2
−δ)ℓ 1

rℓ(ν)
if νℓ,j = 1

2(
1
2
−δ)ℓ otherwise

∀ℓ ∈ N0, j = 1, . . . , ⌈2ℓ−1⌉, (3.58)

where we used the hierarchical indexing (1.11) and rℓ(ν) := #
�
j ∈ 1, . . . , ⌈2ℓ−1⌉ : νℓ,j = 1

�
.

Lemma 3.20. Consider a multi-index ν = (ν1, . . . , νn) ∈ Nn
0 , δ > 0 and 1 < q < 1

1−δ/2 . There
exists 0 < γ < 1 such that defining ρ = ρ(ν, δ, γ) as in (3.58) verifies Assumption 4.

Proof. Let y ∈ Γ and z ∈ Bρ(y). (i.e. |zn − yn| ≤ ρn for all n ∈ N). A triangle inequality yields:
∥W (z)−W (y)∥Lq(0,T ) ≤

E
ℓ∈N0

E⌈2ℓ−1⌉
j=1 |zℓ,j − yℓ,j | ∥ηℓ,j∥Lq(0,T ) . For the Faber-Schauder basis

functions (cf Section 1.1.2), ∥ηℓ,j∥Lq(0,T ) ≤ 2−(1/q+1/2)ℓ for any ℓ ∈ N0 and j = 1, . . . , ⌈2ℓ−1⌉.
Together with the fact that z ∈ Bρ(y), this gives

∥W (z)−W (y)∥Lq(0,T ) ≤
D
ℓ∈N0

2−(1/q+1/2)ℓ

⌈2ℓ−1⌉D
j=1

ρℓ,j . (3.59)

By the definition of ρ, we may write

⌈2ℓ−1⌉D
j=1

ρℓ,j = γ

0
# {i : νℓ,i = 0}+ 2(

3
2
−δ)ℓ 1

rℓ(ν)
rℓ(ν) + 2(

1
2
−δ)ℓ# {i : νℓ,i > 1}

7
. (3.60)

Trivially, # {i : νℓ,i = 0} ≤ 2ℓ and # {i : νℓ,i > 1} ≤ 2ℓ. This, together with (3.59) and (3.60)
yields

∥W (z)−W (y)∥Lq(0,T ) ≤ γ
D
ℓ∈N0

/
2−(1/q−1/2)ℓ + 2−δℓ/2 + 2−δℓ/2

6
.

The last series is finite as long as 1 < q < 1
1−δ/2 . This implies that there exists γ > 0 such that

W (z) ∈ Bε(W (y)).

Having so concluded that for any y ∈ Γ the parameter-to-solution map M◦W : Bρ(y) → U
is holomorphic and uniformly bounded, we can estimate its derivatives as done in Theorem 3.6.

Proposition 3.21. Consider m = M0+u : Γ → M0+u(Γ), the parameter-to-solution map of
the parametric LLG equation defined in the beginning of this section, where Γ is defined in (3.51).
Fix ε > 0 as in Theorem 3.5, let δ > 0, 1 < q < 1

1−δ/2 . Fix a multi-index ν = (νi)
n
i=1 ∈ Nn

0 for
n ∈ N. Define the positive sequence ρ = (ρn)n∈N as in (3.58) and choose 0 < γ < 1 such that
Assumption 4 holds. Then, it holds that

∥∂νm(y)∥U ≤
n;

j=1

νj !ρ
−νj
j Cε ∀y ∈ Γ, (3.61)

where Cε > 0 from Theorem 3.5 is independent of ν or y.
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−4 −3 −2 −1 0 1 2 3 4
m = 1

−4 −3 −2 −1 0 1 2 3 4
m = 3

−4 −3 −2 −1 0 1 2 3 4
m = 7

−4 −3 −2 −1 0 1 2 3 4
m = 15

Figure 3.1: Examples of knots (3.62) for p = 2 on R. It can be seen that the knots span a wider
and wider portion of the real line and, at the same time, become denser. If the number of knots
is suitably increased (for example using (3.69)), the resulting knots family is nested.

3.5 Sparse grid approximation of the parameter-to-solution map

In the present section, we apply the sparse grid method (see Section 1.2.3) to approximate the
parameter-to-solution map of the parametric LLG equation (3.14) derived above from the SLLG
equation.

3.5.1 1D piecewise polynomial interpolation on R

In this section, we define appropriate interpolation nodes on R and the corresponding piecewise-
polynomial interpolant. We then prove algebraic convergence in the L2

µ(R) norm, where µ
denotes the Gaussian measure (in 1D).

Let µ(x;σ2) = 1√
2πσ2

e−x2/2σ2 denote the normal density with mean zero and variance σ2 > 0.
Let µ(x) = µ(x; 1) and µ̃(x) = µ(x;σ2) for some fixed σ2 > 1. Consider the error function
erf(x) = 2√

π

+ x
0 e−t2dt.

For m ∈ N odd, define the knot sequence Ym = {ym1 , . . . , ymm} ⊂ R by

ymi := ϕ

0
−1 +

i

m+ 1

7
i = 1, . . . ,m, (3.62)

where

ϕ(x) := α erf−1(x) ∀x ∈ (−1, 1), (3.63)

α = α(p, σ2) :=

>
4p

1− 1
σ2

, where p ∈ N, σ2 > 0 (3.64)

The m knots define m+ 1 intervals (the first and last are unbounded). See Figure 3.1.
We define a 1D piecewise polynomial interpolation operator as follows. When m = 1, let for

any u ∈ C0(R) and any p ∈ N, p ≥ 2

Ip1 [u] = I1[u] ≡ u(0),

i.e. the constant interpolation. When m ≥ 3, Ipm[u] is the piecewise polynomial function of
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degree p− 1 over the intervals defined by Ym. More precisely, for any u ∈ C0(R),

Ipm[u](yi) = u(yi) ∀i = 1, . . . ,m,

Ipm[u]|[yi,yi+1] ∈ Pp−1 ∀i = 1, . . . ,m− 1,

Ipm[u](y) polynomial extension of Ipm[u]|[y1,y2] if y ≤ y1,

Ipm[u](y) polynomial extension of Ipm[u]|[ym−1,ym] if y ≥ ym.

We assume that for each i = 1, . . . ,m − 1, the interval (yi, yi+1) contains additional p − 2
distinct interpolation nodes so that Ipm[u] is uniquely defined. Observe that in our case each
interpolation knot (3.62) is also an interpolation node because we require a globally continuous
piecewise polynomial interpolant.

The function ϕ is such that (ϕ′(x))2p µ̃−1(ϕ(x))µ(ϕ(x)) is constant and equals

Cϕ =
√
σ2

0
α
√
π

2

72p

, (3.65)

where α was defined in (3.64).
The following result is a standard interpolation error estimate on weighted spaces which, in

this precise form, we could not find in the literature.

Lemma 3.22. Consider u : R → R with ∂u ∈ L2
µ̃(R). Then,

∥u− I1[u]∥L2
µ(R) ≤ C̃1 ∥∂u∥L2

µ̃(R)
,

where C̃1 =
=+

R |y| µ̃−1(y)dµ(y). If additionally, ∂pu ∈ L2
µ̃(R) for p ≥ 2, then

∥u− Ipm[u]∥L2
µ(R) ≤ C̃2(m+ 1)−p

∥∂pu∥L2
µ̃(R)

p!
∀m ≥ 3 odd,

where C̃2 =
=
Cϕ

p
2 (m− 3 + 22p+1) and Cϕ was defined in (3.65).

Proof. For the first estimate, the fundamental theorem of calculus and Cauchy-Schwarz inequal-
ity yield u(y)−u(0) =

+ y
0 ∂u ≤ ∥∂u∥L2

µ̃(R)

=+ y
0 µ̃−1. Substitute this in ∥u− u(0)∥L2

µ(R) to obtain
the first estimate.

For the second estimate, let i ∈



m(ν)+1
2 , . . . ,m(ν)− 2

�
. Apply the fundamental theorem

of calculus p times and recall that Ipm[u] ∈ Pp−1([yi, yi+1]) to obtain:

(u− Ipm[u]) (y) =

* y

yi

* z1

ξ1

· · ·
* zp−1

ξp−1

∂pu ∀y ∈ [yi, yi+1] (3.66)

where ξj ∈ [yi, yi+1] is such that ∂j(u − Ipm[u])(ξj) = 0 for all j = 1, . . . , p − 1. The Cauchy-
Schwarz inequality applied to the last integral gives* zp−1

ξp−1

∂pu ≤ ∥∂pu∥L2
µ̃(ξp−1,zp−1)

>* zp−1

ξp−1

µ̃−1.

The monotonicity of the integral with respect to the integration domain and the fact that µ̃−1

is monotonically increasing on the positive semi-axis give* zp−1

ξp−1

∂pu ≤ ∥∂pu∥L2
µ̃(yi,yi+1)

µ̃−1(y)
?

zp−1 − yi.
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Applying this to (3.66) and after integration, we obtain

(u− Ipm[u]) (y) ≤ ∥∂pu∥L2
µ̃(yi,yi+1)

µ̃−1/2(y)
|y − yi|p−1+ 1

2

(p− 1)!
.

Then,

* yi+1

yi

|u− Ipm[u](y)|2 dµ(y) ≤
∥∂pu∥2L2

µ̃([yi,yi+1])

(p− 1)!

* yi+1

yi

|y − yi|2p−1 µ̃−1(y)dµ(y).

In order to estimate the last integral, change variables using ϕ defined in (3.63). We get* yi+1

yi

|y − yi|2p−1 µ̃−1(y)dµ(y) ≤
* xi+1

xi

|ϕ(x)− ϕ(xi)|2p−1 µ̃−1(ϕ(x))µ(ϕ(x))ϕ′(x)dx.

A Taylor expansion and the fact that ϕ′ is increasing give ϕ(x)− ϕ(xi) ≤ ϕ′(x)(x− xi). So we
get * yi+1

yi

|y − yi|2p−1 µ̃−1(y)dµ(y) ≤
* xi+1

xi

(x− xi)
2p−1

/
ϕ′(x)

62p
µ̃−1(ϕ(x))µ(ϕ(x))dx.

Recall now that (ϕ′(x))2p µ̃−1(ϕ(x))µ(ϕ(x)) ≡ Cϕ. Integration yields* yi+1

yi

|y − yi|2p−1 µ̃−1(y)dµ(y) ≤ (m+ 1)−2p

2p
Cϕ.

For the original quantity, we get

* yi+1

yi

|u− Ipm[u]|2 (y)dµ(y) ≤ Cϕ
p2

2p
(m+ 1)−2p

.∥∂pu∥L2
µ̃([yi,yi+1])

p!

52

. (3.67)

For i = m − 1,m, recall that Ipm is defined in [ym,+∞) as the polynomial extension from the
previous interval. Analogous estimates give

* +∞

ym−1

|u− Ipm[u]|2 (y)dµ(y) ≤ Cϕ
p2

2p
22p(m+ 1)−2p

.∥∂pu∥L2
µ̃([yi,yi+1])

p!

52

. (3.68)

Combine (3.67) and (3.68) with analogous estimates for i = 1, . . . , m−1
2 to finally obtain the

second error estimate in the statement.

Let us relate this to the notation introduced in Section 1.2.3: The level-to-knot function of
the nodes family introduced above is:

m(ν) := 2ν+1 − 1 ∀ν ∈ N0. (3.69)

Therefore, 1D nodes sequences and interpolants are expressed with respect to their index ν ∈ N0

as:

Yν = Ym(ν),

Iν = Ipm(ν).
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As mentioned above, since we use polynomial interpolation of degree p− 1 on each interval, the
1D interpolant Iν , ν ∈ N0, has (m(ν) − 1)(p − 1) + 1 interpolation nodes. This includes the
interpolation knots in order to give a globally continuous interpolant.

Observe that (Yν)ν∈N0
is nested, i.e. Yν ⊂ Yν+1 for all ν ∈ N0. The 1D interpolant defines

the detail operators ∆ν = Iν − Iν−1 for ν ∈ N0 and hierarchical surpluses ∆ν =
%

n∆νn for
ν ∈ F as explained in Section 1.2.3. We now apply the previous results to estimate 1D detail
operators.

Lemma 3.23. Consider u : R → R, a continuous function with ∂u ∈ L2
µ̃(R) and p ≥ 2. There

holds

∥∆1[u]∥L2
µ(R) ≤ C1 ∥∂u∥L2

µ̃(R)
,

where C1 = 23/2C̃1

@+∞
0

Ep
j=1

LLLl′jLLL2 dµ̃ 4

=+ y3
0 µ̃−1, C̃1 > 0 was defined in the previous lemma,

y1, y2, y3 delimit the intervals of definition of the piecewise polynomial Ip3 [u] and (lj)
p
j=1 denote

the Lagrange basis of Pp−1([y2, y3]) with respect to y2, y3 and other p−2 district points in (y2, y3).
If additionally ∂pu ∈ L2

µ̃(R), then we have

∥∆ν [u]∥L2
µ(R) ≤ C22

−pν
∥∂pu∥L2

µ̃(R)

p!
∀ν ≥ 1,

where C2 = C̃2(1 + 2−p) and C̃2 > 0 was defined in the previous lemma.

Proof. To prove the first estimate, recall that nodes are nested so I1[u] = I1 [I
p
3 [u]]. This implies

that

∆1[u] = Ip3 [u]− I1[u] = Ip3 [u]− I1 [I
p
3 [u]] = (1− I1) [I

p
3 [u]] .

The previous lemma gives

∥∆1[u]∥L2µ(R) ≤ C̃1 ∥∂Ip3 [u]∥L2
µ̃(R)

.

To estimate the last integral, first denote x1 = y2 < x2 < · · · < xp = y3 the interpolation nodes
on [y2, y3]. Observe that ∂Ip[u] = ∂Ip[u− u(0)] and estimate

* ∞

0
|∂Ip[u]|2 dµ̃ =

* ∞

0
|∂Ip[u− u(0)]|2 dµ̃ =

* ∞

0

LLLLLL
pD

j=1

(u(xj)− u(0))l′j

LLLLLL
2

dµ̃

≤ 2 max
j=1,...,n

|u(xj)− u(0)|2
* ∞

0

pD
j=1

LLl′jLL2 dµ̃

Since the second term is bounded for fixed p, let us focus on the first one. Simple computations
give

max
j=1,...,n

|u(xj)− u(0)| ≤
* y3

0
|∂u| ≤ ∥∂u∥L2

µ̃([0,y3])

>* y3

0
µ̃−1.

This, together with analogous computations on (−∞, 0], gives the first estimate.
To prove the second estimate, observe that

∥∆ν [u]∥L2
µ(R) =

KKKIpm(ν)[u]− Ipm(ν−1)[u]
KKK
L2
µ(R)

≤
KKKu− Ipm(ν)[u]

KKK
L2
µ(R)

+
KKKu− Ipm(ν−1)[u]

KKK
L2
µ(R)

The previous lemma and simple computations imply the second estimate.
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Recall the definition of finite-support multi-indices F (1.22). We can finally estimate hier-
archical surpluses as follows.

Proposition 3.24. Let u : RN → R, p ≥ 2 and ν ∈ F . Then

∥∆ν [u]∥L2
µ(RN) ≤

. ;
i:νi=1

C1

5 ;
i:νi>1

0
C22

−pνi

p!

7KKK∂{i:νi=1}∂
p
{i:νi>1}u

KKK
L2
µ̃(RN)

,

where µ̃ denotes the infinite product measure µ̃ :=
%

n∈N µ̃n and µ̃n = µ̃ for all N ∈ N, u is
understood to be sufficiently regular for the right-hand side to be well defined and C1, C2 > 0 are
constants defined in the previous lemma.

Proof. Assume without loss of generality that all components of ν are non-zero except the
first N ∈ N. Then, denoting by µN the N -dimensional standard Gaussian measure, by ν̂1 =
(ν2, . . . , νN ) and µ̂1 the (N − 1)-dimensional standard Gaussian measure,

∥∆ν [u]∥2L2
µ(RN) =

*
RN

|∆ν [u]|2 dµN =

*
RN−1

*
R
|∆1[y1 +→ ∆ν̂1

u]|2 dµ1dµ̂1.

We apply the previous lemma (assume that ν1 = 1, the other case is analogous) to get

∥∆ν [u]∥2L2
µ(RN) ≤

*
RN−1

C2
1

*
R
|∂1∆ν̂1

[u]|2 dµ̃1dµ̂1.

We now exchange the integrals as well as the operators acting on u to get

∥∆ν [u]∥2L2
µ(RN) ≤ C2

1

*
R

*
RN−1

|∆ν̂1
[∂1u]|2 dµ̂1dµ̃1.

We can iterate this procedure N − 1 additional times to obtain the statement.

3.5.2 Basic profits and dimension dependent convergence

In the present section, we discuss the convergence of sparse grid approximation built using
the profit-maximization technique explain in Section 1.2.3 when the sample paths of Wiener
processes and magnetizations are assumed to be Hölder-continuous. To this end, we apply the
results found in Section 3.3.

We estimate the derivatives appearing in the estimate from Proposition 3.24 with Proposi-
tion 3.15. We find

∥∆ν [u]∥L2
µ(RN) ≤

;
i∈supp(ν)

ṽνi , where ṽνi =

�
C1ρ

−1
i if νi = 1

C2 (2
νiρi)

−p if νi > 1

and ρi = ε2
(1−α)⌈log2(i)⌉

2 . Recall now the framework presented in Section 1.2.3. Given a multi-
index ν ∈ F , we define as its value and work respectively

ṽν =
;

i∈supp(ν)

ṽνi , (3.70)

wν =
;

i∈supp(ν)

p2νi . (3.71)

The definition of work is justified by the fact that the 1D interpolant is a degree p−1 piecewise-
polynomial interpolant (see above). So in the bounded intervals defined by the m(ν) = 2ν+1− 1
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(for ν ∈ N0) knots, there are p−1 additional interpolation nodes, which together with the knots
give enough collocation nodes to uniquely define the piecewise polynomial.

Recall that the profit is the ratio of value and work. In this case, it reads

P̃ν =
ṽν
wν

. (3.72)

We apply Theorem 1.18 to obtain a convergence rate that depends root-exponentially on the
number of approximated parameters. We skip the computations because they are a simplified
version of the ones presented in the next section.

Theorem 3.25. Let N ∈ N and denote by mN : RN → C1+α/2,2+α(DT ) the parameter-to-
solution map of the parametric LLG equation under the assumption that W (y, t) =

EN
n=1 ynηn(t)

for all t ∈ [0, T ] and all y ∈ RN. Let Λn ⊂ NN
0 denote the optimal multi-index set (1.43) with

#Λn = n defined using P̃ν (3.72). Let IΛn denote the corresponding piecewise polynomial sparse
grids interpolant of degree p−1 with knots (3.62) and p ≥ 2. Denote HΛn ⊂ RN the corresponding
sparse grid. Under the assumptions of Theorem 3.7, for any 2

(1+α)p < τ < 1,

∥mN − IΛnmN∥L2
µ(RN ,C1+α/2,2+α(DT )) ≤ Cτ,p(N) (#HΛn)

1−1/τ , (3.73)

where Cτ,p(N) is a function of τ , p, N defined as

Cτ,p(N) := (1 + P0)
1/τ exp

1

τ

.
Cτ
1 (2p)

1−τ

2

1−N (1−(1−α)τ/2)

1− 21−(1−α)τ/2
+

Cτ
2σ(p, τ)

2

1

1− 21−(1−α)pτ/2

5
,

where P0 = Cτ
1 (2p)

1−τ + Cτ
2 p

1−τσ(p, τ), σ(p, τ) = 22(1−τ(p+1))

1−21−τ(p+1) and C1, C2 were defined in
Lemma 3.23. In particular, the bound grows root-exponentially in the number of dimensions.

Proof. With the aim of applying the convergence Theorem 1.18, we estimate:

D
ν∈NN

0

Pτ
νwν =

D
ν∈NN

0

vτνw
1−τ
ν ≤

N;
i=1

D
νi≥0

vτνiw
1−τ
νi

=

N;
i=1

1 +
/
C1ρ

−1
i

6τ
(2p)1−τ +

D
νi≥2

/
C2(2

νiρi)
−p

6τ
(p2νi)1−τ

 .

The remainder of the proof consists of estimating the product under the condition on τ .

3.5.3 Improved profits and dimension independent convergence

In the previous section, we could prove only a dimension-dependent convergence. This may be
attributed to the slow growth of the holomorphy radii ρi ≲ 2

(1−α)ℓ(i)
2 . Let us consider the setting

from Section 3.4, in which we assumed small Wiener processes and a coefficient g with small
gradient. With these modelling assumptions, we proved that the holomorphy radii can be chosen
as (3.58). This will be sufficient to obtain dimension-independent convergence.

Again, we work within the “profit maximization” framework described in Section 1.2.3.
We need to define values that, for any ν ∈ F , bound ∥∆νu∥L2

µ(RN,U) from above. Recall that
here U, the Banach space of solutions sample paths, is defined as (3.52). In particular, it consists
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of Lebesgue integrable functions in time with index q ≈ 1. We estimate the derivatives appearing
in Proposition 3.24 with Proposition 3.21. This motivate the following choice of values:

vν =
;

i∈supp(ν)

vνi , where vνi =

�
C1ρ

−1
i if νi = 1,

C2 (2
νiρi)

−p if νi > 1,

and

ρi = ρℓ,j := γ

�
2(

3
2
−δ)ℓ 1

rℓ(ν)
if νℓ,j = 1

2(
1
2
−δ)ℓ otherwise.

.

Here, i and (ℓ, j) are related through the hierarchical indexing (1.11), δ > 0 is small and for any
ℓ ∈ N0, ν ∈ F , rℓ(ν) = #

�
j ∈ �

1, . . . , ⌈2ℓ−1⌉� : νℓ,j = 1
�
. With the work defined as in (3.71),

the profits now read

Pν =
vν
wν

. (3.74)

Let us determine for which τ ∈ (0, 1) the sum
E

ν∈F vτνw
1−τ
ν is finite. This setting is more

complex than the one in the previous section because the factors vνi that define the values vν
depend in general on ν rather than νi alone. Define

F∗ := {ν ∈ F : νn ̸= 1 ∀n ∈ N}
and for any ν ∈ F∗

Kν := {ν̂ ∈ F : ν̂i = νi if νi > 1 and ν̂i ∈ {0, 1} if νi = 0} .
The family {Kν}ν∈F∗ is a partition of F . As a consequence,D

ν∈F
vτνw

1−τ
ν =

D
ν∈F∗

D
ν̂∈Kν

vτν̂w
1−τ
ν̂

=
D
ν∈F∗

D
ν̂∈Kν

;
n:ν̂n≤1

/
vτν̂nw

1−τ
ν̂n

6 ;
n:ν̂n>1

/
vτν̂nw

1−τ
ν̂n

6
=

D
ν∈F∗

;
n:νi>1

/
vτνnw

1−τ
νn

6 D
ν̂∈Kν

;
n:ν̂n≤1

/
vτν̂nw

1−τ
ν̂n

6
.

(3.75)

Consider the following subset of F :

F {0, 1} := K0 = {ν ∈ F : νn ∈ {0, 1} ∀n ∈ N} .
Lemma 3.26. Let 0 < p < 1, p < q < ∞, and the sequence a = (aj)j∈N ∈ ℓp(N). Then,

(|ν|1! aν)ν∈F{0,1} ∈ ℓq(F {0, 1}).

Proof. Choose ε > 0 such that 1
1+ε ≥ p and q > p(1 + ε). We consider α > |a|1/(1+ε) and writeD

ν∈F{0,1}
(|ν|1! aν)q =

D
ν∈F{0,1}

-
|ν|1! α|ν|1

-a
α

4ν4q
.

There exists Cε > 0 such that α|ν|1 ≤ Cε (|ν|1!)ε for all ν ∈ F {0, 1}. Thus,D
ν∈F{0,1}

(|ν|1! aν)q ≲
D

ν∈F{0,1}

-
(|ν|1!)1+ε

-a
α

4ν4q
.
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Factorizing out the 1 + ε yields

D
ν∈F{0,1}

(|ν|1! aν)q ≲
D

ν∈F{0,1}

0
|ν|1!

-a
α

4 1
1+ε

ν
7(1+ε)q

.

Since ν! = 1 for all ν ∈ F {0, 1}, we can write

D
ν∈F{0,1}

(|ν|1! aν)q ≲
D

ν∈F{0,1}

0 |ν|1!
ν!

-a
α

4 1
1+ε

ν
7(1+ε)q

. (3.76)

Observe that
E

j(
aj
α )

1
1+ε < 1 because of the definition of α. Moreover, from the assumption on

a we have
/
a
α

6 1
1+ε ∈ ℓr(N) for any r ≥ p(1 + ε). Then, [CDS11, Theorem 1] implies that the

second sum in (3.76) is finite, thus proving the statement.

Lemma 3.27. If τ > 1
3
2
−δ

, there exists C > 0 such that for any ν ∈ F∗,D
ν̂∈Kν

;
n:ν̂n≤1

/
vτν̂nw

1−τ
ν̂n

6 ≤ C.

Proof. For this proof, we denote the level of i by ℓ(i). First observe that, from the definitions
of value and work, we may write;

n:ν̂n≤1

/
vτν̂nw

1−τ
ν̂n

6
=

;
n:ν̂n=1

-
C12

−( 3
2
−δ)ℓ(n)rℓ(n)(ν)

4τ
(2p)1−τ .

The factors in the right-hand side are independent of the components of ν for which νn ̸= 1.
Thus, we define

Dν =

�
d ∈ F :

�
dn = 0 if νn > 1

dn ∈ {0, 1} otherwise

�
⊂ F {0, 1}

and substituteD
ν̂∈Kν

;
n:ν̂n=1

-
C12

−( 3
2
−δ)ℓ(n)rℓ(n)(ν̂)

4τ
(2p)1−τ =

D
d∈Dν

;
i:di=1

-
C12

−( 3
2
−δ)ℓ(i)rℓ(i)(d)

4τ
(2p)1−τ .

From the definition of rℓ(n)(d), we estimate
<

n:dn=1 rℓ(n)(d) ≤
<

ℓ:∃j:dℓ,j=1 rℓ(d)
rℓ(d). Stirling’s

formula (see (D.1)) gives rℓ(d)
rℓ(d) ≤ rℓ(d)!e

rℓ(d). Denote dℓ =
-
dℓ,1, . . . , dℓ,⌈2ℓ−1⌉

4
for any

ℓ ∈ N0 and observe that rℓ(d) ≤ |dℓ|1. Together with an elementary property of the factorial,
this gives

<
ℓ:∃j:dℓ,j=1 (rℓ(d))! ≤

<
ℓ:∃j:dℓ,j=1 |dℓ|1! ≤

/E
ℓ∈N |dℓ|1

6
! = |d|1!. To summarize, we

have estimatedD
ν̂∈Kν

;
n:ν̂n≤1

/
vτν̂nw

1−τ
ν̂n

6 ≤ D
d∈Dν

(|d|1!)τ
;

n:dn=1

-
Cτ
1 2

−( 3
2
−δ)ℓ(n)τ (2p)1−τ eτ

4
.

Let cj := C12
−( 3

2
−δ)ℓ(j) (2p)(1−τ)/τ e for all j ∈ N to getD

ν̂∈Kν

;
n:ν̂n≤1

/
vτν̂nw

1−τ
ν̂n

6 ≤ D
d∈Dν

-
|d|1!cd

4τ
.

Simple computations reveal that c = (cj)j ∈ ℓτ (N) for all τ > (32 − δ)−1. We apply the previous
lemma and conclude the proof.
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Going back to (3.75), we are left with determining for which parameters p ≥ 3, τ > 1
3
2
−δ

the series
E

ν∈F∗
<

n:νn>1

/
vτνnw

1−τ
νn

6
is summable. By means of the product structure of the

summands, we can writeD
ν∈F∗

;
n:νn>1

/
vτνnw

1−τ
νn

6
=

;
n∈N

D
νn∈N\{1}

vτνnw
1−τ
νn

=
;
n∈N

1 +
D
νn≥2

-
C22

−p(( 1
2
−δ)ℓ(n)+νn)

4τ
(p2νn)1−τ

 .

Observe that the sum is finite if τ ≥ 1
p+1 and in this caseD

νn≥2

-
C22

−p(( 1
2
−δ)ℓ(n)+νn)

4τ
(p2νn)1−τ = Cτ

2 2
−p( 1

2
−δ)ℓ(n)τp1−τσ,

where σ = σ(p, τ) = 22(−(p+1)τ+1)

1−2−(p+1)τ+1 . To summarize, denoting Fℓ := Cτ
2 2

−p( 1
2
−δ)ℓτp1−τσ, so far

we have estimated
E

ν∈F∗
<

n:νn>1

/
vτνnw

1−τ
νn

6 ≤ <
n∈N

/
1 + Fℓ(n)

6
. We can further estimate,

recalling the hierarchical indexing (1.11),

;
n∈N

/
1 + Fℓ(n)

6 ≤ exp

.D
n∈N

log
/
1 + Fℓ(n)

65 ≤ exp

D
ℓ∈N0

2ℓ log (1 + Fℓ)

 ≤ exp

D
ℓ∈N0

2ℓFℓ

 .

The last sum can be written as
E

ℓ∈N0
2ℓFℓ = Cτ

2 p
1−τσ

E
ℓ∈N0

2(1−(
1
2
−δ)pτ)ℓ, which is finite for

τ > 1
p( 1

2
−δ)

and in this case equals Cτ
2 p

1−τσ
-
1− 21−(

1
2
−δ)pτ

4−1
.

Remark 3.28. When p = 2 the condition τ > 1
p( 1

2
−δ)

just above gives τ > 1 for any δ > 0. This

means that we are not able to show that piecewise linear sparse grids converges independently of
the number of dimensions (although we see it in the numerical experiments below). Conversely,
if p ≥ 3 there exists 2

3 < τ < 1 that satisfies all the conditions (remember that while δ cannot be
0, it can be chosen arbitrarily small).

Finally, Theorem 1.18 implies the following convergence.

Theorem 3.29. Consider the parameter-to-solution map m = M0+u solution of the parametric
LLG equation as in Section 3.4. Recall that M0 ∈ C2+α(D) is the initial condition such that
|M | = 1 a.e. on D and u : Γ → U, with Γ and U defined in (3.51) and (3.52) respectively.
Let Λn ⊂ F denote the multi-index set (1.43) with #Λn = n ∈ N defined using the profits Pν

(3.74). Let IΛn denote the corresponding piecewise polynomial sparse grids interpolant of degree
p− 1 for p ≥ 3 with knots (3.62). Assume that the corresponding sparse grid satisfies HΛn ⊂ Γ.
Under the assumptions of Theorem 3.7, for any 2

3 < τ < 1,

∥m− IΛnm∥L2
µ(Γ;U) ≤ Cτ,p (#HΛn)

1−1/τ ,

where Cτ,p is a function of τ , p but is dimension-independent. In particular,

Cτ,p = C
1
τ exp

.
1

τ
Cτ
2 p

1−τ 22(−(p+1)τ+1)

1− 2−(p+1)τ+1

1

1− 21−(
1
2
−δ)pτ

5
,

where in turn C is defined in Lemma 3.27 and C2 is defined in Lemma 3.23.
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Remark 3.30 (On optimality of the convergence rate −1
2). The best convergence rate with

respect to the number of collocation nodes predicted by the theorem is −1
2 and corresponds to

τ = 2
3 . This is the same as the convergence rate of the parametric truncation with respect to the

number of parameters: Denoting m(y) the parametric solution for y ∈ RN and by mN (y) :=
m((y1, . . . yN , 0, 0, . . . )), for any N ∈ N, its N -dimensional truncation, one can show that

∥m−mN∥L2
µ(Γ,L

2(0,T,H1(D))) ≲ N−1/2.

Since it is not possible to have less than 1 collocation node per dimension, the sparse grid algo-
rithm achieves the optimal approximation rate.

In particular, piecewise quadratic approximation (p = 3) has optimal convergence rate and
using p > 3 does not improve the convergence rate (but may improve the constant Cτ,p). For
the same reason, sparse grid interpolation based on other 1D interpolations schemes (e.g. global
polynomials) cannot give a better convergence rate (but may improve the constant).

Remark 3.31. Given an approximation mΛ(y) of the solution to the parametric LLG equation
(3.14), such as the sparse grid interpolant

IΛ[m](y)

defined and studied in this document, it is easy to sample an approximate random solution of
the random LLG equation (3.13) too: Sample i.i.d. standard normal random variables Y NΛ

=

(Yi)
NΛ
i=1 and evaluate mΛ(Y NΛ

). Here NΛ ∈ N denotes the number of active parameters in
the sparse grid interpolant IΛ, i.e. NΛ := min {n ∈ N : ∀ν ∈ Λ, supp (ν) ⊂ {1, . . . , n}}. The
root-mean-square error is naturally the same as the one we estimated in the previous theorem=

EY ∥m(Y )−mΛ(Y NΛ
)∥U = ∥m−mΛm∥L2

µ(Γ,U) .

We can also draw approximate samples from the random solution of the stochastic PDE (1.68):

1. Sample a Wiener process W (ω, ·);

2. Compute the first NΛ coordinates Y NΛ
= (Y1, . . . , YNΛ

) ∈ RNΛ of its Lévy-Ciesielski ex-
pansion W (ω, ·) = E∞

i=1 Yiηi(·) (see Section 1.1.2);

3. Compute mΛ(Y NΛ
), the approximate solution to the random LLG equation (3.13);

4. Finally compute the inverse Doss-Sussmann transform to obtain an approximation of the
SLLG solution: MΛ := eWGmΛ (recall the convenient expression (1.74) for eWG).

The approximation error is again comparable to the one found in the previous theorem. In-
deed, denoting ∥·∥ the root-mean-square error, the Doss-Sussmann transform implies the identity?

EW ∥M −MΛ∥U =
KKeWG (m−mΛ)

KK. Equation (1.74) followed by a triangle inequality then
give

∥M −MΛ∥ ≤
-
1 + ∥g∥L∞(D) + ∥g∥2L∞(D)

4
∥m−mΛ∥ . (3.77)

Remark 3.32 (Comparison with Monte Carlo quadrature). While the sparse grid interpolation
does not offer any rate advantages over Monte Carlo to compute statistical quantities, it provides
much more information on the solution. For example, it can be used to approximate minima and
maxima of scalar quantities of interest of the solution.
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3.5.4 Numerical tests

We numerically test the convergence of the sparse grid interpolation defined above. Since no
exact sample path of the solution is available, we approximate them with the high-order linearly
implicit BDF scheme we discussed in Section 1.3.3. We recall that this method is based on
the tangent plane scheme and has the advantage of solving one linear elliptic problem per
timestep with finite elements. The method is high-order for both the finite elements and BDF
discretization, but here we use for simplicity only order 1.

We consider the problem on the 2D domain D = [0, 1]2 with z = 0. The final time is T = 1.
The noise coefficient is defined as

g(x) =

−1

2
cos(πx1),−1

2
cos(πx2),

>
1−

0
1

2
cos(πx1)

72

−
0
1

2
cos(πx2)

72
 . (3.78)

Observe that ∂ng = 0 on ∂D and |g| = 1 on D. The initial condition is M0 = (0, 0, 1).
The space discretization is order 1 on a structured triangular mesh with 2048 elements and

mesh-size h > 0. The time discretization is order 1 on 256 equispaced timesteps of size τ > 0.
We use piecewise affine sparse grid, corresponding to p = 2. As for the multi-index selection, we
compare two strategies:

• The basic profit from Section 3.5.2, namely

P̃ν =
;

i:νi=1

2−
1
2
ℓ(i)

;
i:νi>1

-
2νi+

1
2
ℓ(i)

4−p

 ;
i:νi≥1

p2νi

−1

∀ν ∈ F ,

where ℓ(i) = ⌈log2(i)⌉. Compared to (3.72), we set C1 = C2 = ε = 1 and α = 0 for
simplicity.

• The improved profit from Section 3.5.3, namely

Pν =
;

i:νi=1

2−
3
2
ℓ(i)

;
i:νi>1

-
2νi+

1
2
ℓ(i)

4−p

 ;
i:νi≥1

p2νi

−1

∀ν ∈ F , (3.79)

where again ℓ(i) = ⌈log2(i)⌉. Compared to the profits in Section 3.5.3, we set C1 = C2 =
γ = 1 and neglected the factor rℓ(ν).

We estimate the sparse grid approximation error with the Monte Carlo sum
1
N

EN
i=1 ∥mτh(yi)− IΛ[mτh](yi)∥L2(0,T,H1(D)), where N = 1024, (yi)

N
i=1 are i.i.d. standard

normal samples of dimension 210 each and mhk(yi) denotes the corresponding space and time
approximation of the sample paths.

Observe that if the timestep is τ = 2−n, then the parameter-to-finite-element-solution map
depends only on the first n + 1 levels of the Lévy-Ciesielski expansion. In our case, n = 8, so
the maximum relevant level is L = 9, i.e. 512 dimensions. In the following numerical examples
we always approximate fewer dimensions, which means that the time-discretization error is
negligible compared to the parametric approximation error.

The results are displayed in Figure 3.2. In the top left plot, we observe that using basic
profits leads to a sub-algebraic convergence rate which decreases as the number of approximated
dimensions increases. Conversely, improved profits leads to a robust algebraic convergence of
order about 1

2 . Piecewise quadratic interpolation is optimal as predicted in Section 3.5.3 and it
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Figure 3.2: Approximation of parameter-to-solution map and multilevel approximation of full
unknown. Top left: Error vs. number of collocation nodes; Top right: Number of effective di-
mensions vs. number of collocation nodes; Bottom left: Comparison of convergence of the sparse
grid approximation (p = 3, i.e. piecewise quadratic) for different space and time discretization
parameters. In all cases timestep τ and mesh size h are related by h = 8τ . Bottom right:
Comparison of single- and multilevel approximations based on piecewise polynomial sparse grids
for the parametric approximation and the linearly implicit BDF-finite elements methods from
[AFKL21] for time and space approximation.
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delivers the same convergence rate as piecewise linear interpolation. Hence, the restriction in
Theorem 3.29 is possibly an artifact of the proof. In view of Remark 3.30, it seems unnecessary
to test higher polynomial degrees. In the top right plot, we observe that the number of active
dimensions (i.e., those dimension which are seen by the sparse-grid algorithm) grows similarly
for all methods, with the basic profit having a slightly higher value. Finally, in the bottom left
plot, we verify numerically that the approximation power of the method does not degrade when
space and time approximations are refined.

3.6 Multilevel sparse grid–finite element approximation

In the present section, we show how the sparse grid scheme defined and studied in this work
can be combined with a method for space and time approximation to define a fully discrete
approximation scheme. Here we employ again the high-order linearly implicit BDF scheme
discussed in Section 1.3.3.

Given τ > 0, consider Nτ = T
τ equispaced timesteps on [0, T ]. Given h > 0, define a quasi-

uniform triangulation Th of the domain D ∈ Rd for d ∈ N with mesh-spacing h. Denote, for any
y ∈ Γ, mτh(y) the space and time approximation of m(y). Assume that there exists a constant
CFE > 0 independent of h or τ such that

∥m−mτ,h∥L2
µ(Γ;U)

≤ CFE(τ + h).

Moreover, we assume that the computational cost (number of floating-point operations) of com-
puting a single mτh(y) is proportional to

Csample(τ, h) = τ−1h−d.

Indeed, the numerical scheme requires, at each timestep, solving a linear system of size propor-
tional to the number of elements of Th, which in turn is proportional to h−d. The latter operation
can be executed with empirical linear complexity using GMRES with multigrid preconditioning.
See [KPP+19], for a mathematically rigorous preconditioning strategies for LLG.

Theorem 3.29 shows that there exists CSG > 0 and 0 < r < 1
2 such that, denoting IΛ the

sparse grid interpolant and HΛ the corresponding sparse grid,

∥m− IΛ[m]∥L2
µ(Γ;U) ≤ CSG (#HΛ)

−r .

A Single-Level approximation of m can be defined as

mSL
Λ,τ,h := IΛ [mτ,h] .

The cost of computing the single-level approximation is CSL
Λ,τ,h := #HΛCsample(τ, h). The ap-

proximation accuracy can be estimated asKKm−mSL
Λ,τ,h

KK
L2
µ(Γ;U)

≤ ∥m− IΛ[m]∥L2
µ(Γ;U) + ∥IΛ[m−mτ,h]∥L2

µ(Γ;U)

≤ CSG (#HΛ)
−r + CstabCFE(h+ τ),

where Cstab = Cstab(p) > 0 is the stability constant of the sparse grid interpolation operator,
which depends on the degree p − 1 of piecewise interpolation. A quasi-optimal single-level
approximation requires balancing the three approximation parameters Λ, τ and h so that the
summands in the previous estimate have similar values. This choice leads to, as it can be proved
with simple computations, the following error estimate with respect to the cost CSL

Λ,τ,h:KKm−mSL
Λ,τ,h

KK
L2
µ(Γ;U)

≲
/
CSL
Λ,τ,h

6− 1
1
r+(d+1) . (3.80)
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A Multilevel approximation of m can be defined following [TJWG15]: Let K ∈ N0 and
consider a sequence of approximation parameters (Λk)

K
k=0, (τk)

K
k=0 and (hk)

K
k=0. Denote mk =

mτk,hk
for k = 0, . . . ,K and m−1 ≡ 0. Define the multilevel approximation as

mML
K :=

KD
k=0

IΛk
[mK−k −mK−k−1] .

The computational cost is proportional to CML
K =

EK
k=0#HΛk

Csample(τK−k, hK−k). To guar-
antee approximation, we make the following assumption on the sparse grid approximation of
differences: For any k = 0, . . . ,K,

∥mk −mk−1 − IΛ[mk −mk−1]∥L2
µ(Γ;U) ≤ CSG (#HΛ)

−r (hk + τk).

For the multilevel approximation to be quasi-optimal, all terms in the multilevel expansion shall
have similar magnitude to the K-th (finest) time and space approximation. To this end, we
choose the multi-index sets Λk so that/

#HΛK−k

6−r ≤ CFE (CSG(K + 1))−1 τK + hK
τk + hk

. (3.81)

As a consequence, the multilevel error with optimal sparse grids sizes (3.81) can be estimated
as

KKm−mML
K

KK
L2
µ(Γ;U)

≤ 2CFE(τK + hK). The error can be related to the computational cost
as done in [TJWG15]. We obtain the improved error-to-cost relationKKm−mML

K

KK
L2
µ(Γ;U)

≲
/
CML
K

6− 1
d+1 . (3.82)

We compare numerically single- and multilevel schemes on the following example of relaxation
dynamics with thermal noise. The domain is D = [0, 1]2 with z = 0. The final time is T = 1. The
noise coefficient g is set to one fifth of the coefficient defined in (3.78). The initial condition M0

coincides with (3.78). The time and space approximations are both of order 1. The sparse grid
scheme is piecewise linear and the multi-index sets are built using the improved profit (3.79)
from the previous numerical experiments. Observe that, in the following convergence tests,
refinement leads automatically to an increase of the number of approximated parameters and a
reduction of the parametric truncation error. We consider K = 0, . . . , 5 and define τk = 2−k−2,
hk = 2−k, and Λk using the same profit-maximization as in the previous section.

For the single-level approximation, we choose Λk minimal such that #HΛk
> 22k. The

last choice corresponds to assuming that the sparse grid approximation converges with order
r = 1

2 with respect to the number of collocation nodes. We compute a sequence of single-level
approximations mSL

Λk,τk,hk
for k = 0, . . .K and report the results in Figure 3.2, bottom right

plot.
For the multilevel approximation, we follow formula (3.81). The constants CFE ≈ 0.7510,

CSG ≈ 0.1721 and r ≈ 0.4703 are determined with short sparse grid and finite element conver-
gence tests. We obtain

K #HΛ0 #HΛ1 #HΛ2 #HΛ3 #HΛ4 #HΛ5

0 1
1 1 3
2 1 3 10
3 1 4 18 82
4 2 7 27 131 602
5 2 10 42 193 887 1500
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The cardinality of HΛ5 for K = 5 should actually be at least 4082 if formula (3.81) is used.
Here, we reduce it to 1500 in order to guarantee reasonable computational times.

Since the solution in closed form is not available, we approximate it with a reference solution.
We consider 128 Monte Carlo samples of W and approximate the corresponding sample paths
in space and time with timestep τref = 2−9 and mesh size href = 2−7. Computing the error for
the single- and multilevel approximation requires first sampling the interpolants on the Monte
Carlo sample parameters and then interpolating in the reference space. The convergence test
confirms that the multilevel method is superior to the single-level method.
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Chapter 4

SGMethods: A Python implementation
of sparse grid interpolation

In Chapter 3, we considered a sparse grid interpolation scheme for functions on RN. We based
the scheme on piecewise-polynomial interpolation (of fixed but arbitrary degree) with knots
defined according to a normal distribution. This is a somewhat non-canonical choice (it is more
common to work with interpolation in the zeros of orthogonal polynomials). In fact, we could
not find an implementation of sparse grid interpolation that allowed for the easy implementation
of this precise method.

This necessity sparked the idea of producing an in-house implementation of sparse grid
interpolation that allows the user to input their 1D interpolation method of choice. Together
with additional input, this is used by the library to produce a sparse grid interpolation operator,
with a sampling and interpolation method and other functionalities. The name SGMethods
stands for Sparse Grid Methods (plural), to highlight that the user is free to input any 1D
interpolation method (together with nodes and a multi-index set), and the library automatically
generates a corresponding sparse grid interpolant.

While SGMethods can be used to approximate any high-dimensional function, our main
application was in the context of approximation of parametric coefficient PDEs in Chapter 3.
To this end, we also needed to evaluate each collocation sample for fixed random parameters
with an implementation of the chosen time approximation and/or finite element method. To
this end, we chose finite elements as implemented in the library Dolfin [LW10], which offers a
user-friendly Python interface and efficient computations.

The code of SGMethods and the implementation from Chapter 3 (used to produce the numer-
ical experiments reported there) is available on the GitHub profile of the author1. The project
is growing and additional documentation, tests and functionalities, such as the adaptive method
from Chapter 2, will be added in the future.

The chapter is structured as follows: In Section 4.1, we list the main features of the library.
In Section 4.2, we clarify the structure of the project by giving an overview of the content of
each module. In Section 4.3, we present a commented example on the approximation of the
affine diffusion Poisson problem.

4.1 Main Features

Some of the main features of the library are:

1https://github.com/andreascaglioni/SGMethods
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• Python object oriented implementation, with documentation and tests;

• The user can define a tensor product interpolant class used for the sparse grid compu-
tation. This is possible because any sparse grid interpolant can be reduced to a linear
combination of tensor product interpolants through the inclusion-exclusion formula (1.33).
The user-defined tensor product interpolation class is given to the sparse grid interpolant
class upon initialization and must fit the interface defined by TPInterpolantWrapper. In
practice, it must be a class with the same visible attributes and methods of the class
TPLagrangeInterpolator and TPPwQuadraticInterpolator;

• A rich choice of implemented nodes, multi-index sets, and tensor product interpolation
methods is included (see respective modules description below);

• Efficient algorithms to enlarge the multi-index set by adding multi-indices to the margin. In
particular, the ability to increase its dimensionality by adding appropriated multi-indices;

• When computing a sparse grid interpolant, some operations can be implemented in such a
way that their complexity scales unfavorably with the number of parametric dimensions.
Here, we implemented these operations in a way that, where possible, avoids this problem.
An example is the computation of the combination coefficients {αν : ν ∈ Λ} (1.33) from
the inclusion-exclusion formula. The definition reads

αν :=
D

i∈{0,1}N :ν+i∈Λ
(−1)|i|1 . (4.1)

It is tempting to compute this quantity using the definition, i.e. through a loop over
i ∈ {0, 1}N . However, # {0, 1}N = 2N , so for example # {0, 1}N = 1024 for N = 10 and
# {0, 1}N > 1030 for N = 100. The complexity of this computation is affected by the
curse of dimensionality. This problem can be circumvented by computing αν with a loop
over the multi-indices in Λ instead:

Algorithm 11 αν ←compute_combination_coefficent(ν, Λ)

1: αν = 0
2: for ν̂ ∈ Λ do
3: i = ν̂ − ν
4: if i ∈ {0, 1}N then
5: αν ← αν + (−1)|i|1
6: end if
7: end for

This algorithm has complexity O(#ΛN) (because of the loop and of the property to check
in line 4), which is much smaller than 2N if the problem has a relatively weak sparsity.
Conversely, if #ΛN ≫ 2N , the definition in (4.1) should be used. In our experience,
this strategy brings a marked reduction in computational time compared to the use of
the naive algorithm. All in all, the result of this and other optimizations is that, when
approximating parametric PDEs, most of the computational time is spent sampling the
parameter-to-solution map;

• We implement recycling when sampling the function to interpolate on the sparse grid. This
means that the user is allowed to provide any saved values obtained e.g. from a previous
interpolation on a coarser sparse grid (see method SGInterpolant.sampleOnSG);
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• A similar recycling strategy is implemented in the computation of the a-posteriori para-
metric error (see compute_aposteriori_estimator.py), whose definition and theoretical
aspects are discussed in Chapter 2. Here, we recycle values of the pointwise estimator
when they are unchanged from a previous computation;

• Finally, we implement a multilevel sparse grid interpolation class MLInterpolant with the
structure analysed in [TJWG15]. This is a class initialized with a sequence of interpolants
with increasing resolution and a function to compute a finite element approximation at
any desired resolution (indexed by a scalar parameter). Therefore, it may be used for other
multilevel algorithms as well, possibly with small modifications.

4.2 Project structure

The project is structured in several directories or modules:

• SGMethods: Core functions for the defining the sparse grid interpolant and ancillary func-
tions;

• SLLG: Functions used to sample the SLLG parameter-to-solution map. It includes Fenics
code for the HOLIBDF method (see Section 1.3.3), functions to compute Karhunen-Loève
and Lévy-Ciesielski expansions of the Wiener process, functions to compute several error
metrics in parameter and physical space, and some example with the (parametric version
of the) SLLG equation;

• tests: Unit-test files for SGMethods;

• tutorials: Simple examples with detailed comments aimed at giving a practical intro-
duction to SGMethods;

• utils: Helper functions used in several scripts;

The functions within the SGMethods directory are contained in the following modules:

• ScalarNodes: Functions to generate 1D nodes families. It includes bounded nodes (eq-
uispaced on [−1, 1], equispaced on (−1, 1), Clenshaw-Curtis, Leja) and unbounded nodes
families on R (including Hermite interpolation nodes and Leja nodes with respect to the
Gaussian measure). Nodes families are either nested or non-nested;

• TPKnots: Simple function to generate tensor product nodes grids given 1D nodes;

• TPLagrangeInterpolator: Class for tensor product Lagrange interpolation on given tensor
product grid;

• TPPwCubicInterpolator: Class for tensor product piecewise cubic interpolation on given
tensor product grid;

• TPPwQuadraticInterpolator: Class for tensor product piecewise quadratic interpolation
on given tensor product grid;

• TPInterpolantWrapper: Wrapper class to unify the interface of several tensor product in-
terpolant classes (in particular the scipy.interpolate.RegularGridInterpolator piece-
wise linear interpolation, TPLagrangeInterpolator, TPPwCubicInterpolator,
TPPwQuadraticInterpolator);
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• MidSets: Functions to generate multi-index sets (tensor product, isotropic and anisotropic
simplex); a class MidSert to grow a multi-index set starting from {0} and adding multi-
indices in the (reduced) margin;

• SGInterpolant: Class for the sparse grid interpolant. The user gives the tensor product
interpolant and the class interpolates using the inclusion-exclusion formula;

• compute_aposteriori_estimator: Contain a function to compute the pointwise estimator
ζν,Λ (1.44) for a downward-closed multi-index set Λ and a multi-index ν ∈ MΛ;

• MLInterpolant: Class for the multilevel sparse grid interpolant as in Section 3.6.

4.3 Exemplary use

We conclude the section with a small example of use of the package and specific comments about
the most important commands.

Example 4.1 (Use of SGMethods). The aim of this example is to interpolate the parameter-
to-solution map associated to the (finite element discretization of) the affine diffusion Poisson
problem: Fix N ∈ N, consider y ∈ Γ := [−1, 1]N , i.e. the parametric domain. Consider
the physical domain D = (0, 1)2 ⊂ R2. The parametric affine diffusion reads a(y,x) = 1 +
1
C

EN
n=1 yn

sin (2πnx1)
n2 , defined for any y ∈ Γ, x ∈ D, where C > 0 is chosen to make a uniformly

bounded above 0. On D, we have the quasi-uniform triangular mesh Th with element size h > 0.
Denote Vh := S1

0 (Th) the finite element space of piecewise-affine functions on Th with 0 boundary-
condition. For any y ∈ Γ, U(y) ∈ Vh is the unique solution of the problem*

D
a(y, ·)∇U(y, ·) · ∇ϕ =

*
D
ϕ ∀ϕ ∈ Vh,

whose unique solvability is a consequence of the coercivity of a(y, ·) and regularity of the domain
D and forcing term (identically 1). The H1

0 (D) norm is the natural candidate to compute the
error.

In the module sample_affine_diffusion_Poisson, we define the following ancillary func-
tions to sample the parameter-to-finite-element-solution map and compute the error of a para-
metric sample respectively. We make large use of the finite element method implemented in the
Python package Dolfin.

1 from math import pi
2 import numpy as np
3 from fenics import set_log_level, DOLFIN_EPS, Constant, Expression,UnitSquareMesh, \
4 FunctionSpace, DirichletBC, TrialFunction, TestFunction, inner, grad, dx, solve, Function, norm
5

6

7 def sampleParametricPoisson(yy, nH, orderDecayCoefficients):
8 """Sample parameter-to-finite element solution map of parametric affine diffusion Poisson:
9 -\nabla \cdot (a(\by) \nabla u(\by)) = 1 on D

10 u = 0 on \partial D
11 Domain D is 2D unit square;
12 Diffusion a(\by) is affine in y, coercive on D
13 Parameters are in [-1,1], any length of yy is allowed
14 Mesh on D is structured with nH edges on each side
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15 Args:
16 yy (double array): Vector of scalar parameters in [-1,1]
17 nH (int): Number of mesh edges on each edge of square domain (structured mesh)
18 orderDecayCoefficients (positive int): Order of decay terms affine diffusion
19 Returns:
20 np.array: Corrdinates of the solution (w.r.t. selected hat functions basis)"""
21

22 assert(np.min(yy) >= -1 and np.max(yy) <= 1)
23 set_log_level(31) # reduce fenics logging
24 def boundary(x):
25 return x[0]<DOLFIN_EPS or x[0]>1.-DOLFIN_EPS or x[1]<DOLFIN_EPS or x[1]>1.-DOLFIN_EPS
26 u0 = Constant(0.) # boundary condition
27 f = Constant(1.) # right-hand-side
28 # Diffusion coefficient
29 C = pi**2/6 * 1.1 # make the diffusion uniformly positive
30 strA = "1."
31 for n in range(len(yy)):
32 strA = strA + "+" + "sin(x[0]*2.*pi*" + str(n+1) + ")/("+str(C)+"*pow(" + str(n+1) \
33 + ","+ str(orderDecayCoefficients) + "))" + "*" + str(yy[n])
34 a = Expression(strA, degree=2)
35 # Computational objects
36 mesh = UnitSquareMesh(nH, nH)
37 V = FunctionSpace(mesh, "Lagrange", 1)
38 bc = DirichletBC(V, u0, boundary)
39 u = TrialFunction(V)
40 v = TestFunction(V)
41 L = inner(a*grad(u), grad(v))*dx
42 rhs = f*v*dx
43 u = Function(V)
44 solve(L == rhs, u, bc) # solve linear system
45 return u.vector()[:]
46

47 def computeErrorSamplesPoisson(u, uExa, nH):
48 """Compute H^1_0(D) norm (see previous function) of difference of two functions
49 given through their coordinates in the hat functions basis
50 Args:
51 u (double array): Coordinates of fucntion 1
52 uExa (double array): Coordinates of Function 2
53 nH (int): Number of mesh edges on each edge of square domain (structured mesh)
54 Returns:
55 double: error in the H^1_0(D) norm """
56

57 assert(len(u) == len(uExa))
58 mesh = UnitSquareMesh(nH, nH)
59 V = FunctionSpace(mesh, "Lagrange", 1)
60 errSamples = np.zeros(len(u))
61 errFun = Function(V)
62 for n in range(len(u)):
63 errFun.vector()[:] = u[n] - uExa[n]
64 errSamples[n] = norm(errFun, 'H1')
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65 return errSamples

Then, in the main script, we define the sparse grid interpolant, interpolate the parameter-
to-finite-element-solution map defined above, and measure the error in parametric and physical
space. The number of parametric dimensions N = 10 is chosen. We consider the sparse grid
interpolation method with 1D interpolation given by Lagrange interpolation over Clenshaw-Curtis
nodes (1.38) and the doubling rule (1.35)) as level-to-knot function. The multi-index set is chosen
as Λα(w) for w ≥ 0 and α ∈ RN

>0 as in Definition 5.6, i.e. an anisotropic simplex that gives
optimal dimensions-independent convergence for the present problem. The error is estimated in
the L2(Γ, H1(D))-norm through a Monte Carlo estimate with 128 samples (without truncation).

Let us now read the code and give some comments:

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from math import pi, sqrt
4 import sys, os
5 sys.path.insert(1, os.path.join(os.path.expanduser("~"), 'workspace/SGMethods'))
6 from SGMethods.ScalarNodes import CCNodes
7 from SGMethods.TPLagrangeInterpolator import TPLagrangeInterpolator
8 from SGMethods.MidSets import anisoSmolyakMidSet
9 from SGMethods.SGInterpolant import SGInterpolant

10 from tutorials.sample_affine_diffusion_Poisson import sampleParametricPoisson, \
11 computeErrorSamplesPoisson

Lines 6-9: Importing from SGMethods respectively scalar nodes, 1D interpolant, multi-index
set, and sparse grid interpolant class;

12 """Tutorial on sparse grid interpolation with SGMethods.
13 We see how to use SGMethods to approximate the parametric affine diffusion Poisson problem."""
14

15 # Problem parameters
16 np.random.seed(36157)
17 N = 10 # number of parametric dimensions
18 C = pi**2/6 * 1.1 # normalization diffusion coefficient
19 a_min = 1-pi**2/(6*C) # minimum diffusion coefficient
20 nH = 16 # mesh resolution i.e. # edges per side of square domain mesh
21 def F(y): # target function sampler
22 return sampleParametricPoisson(y, nH=nH, orderDecayCoefficients=2)

Lines 20-21: Definition of the target function (i.e. the function to interpolate). SGMethods
accepts functions in the form used here, i.e. both input and input parameter are instance of 1d
array;

23 # Error computation
24 yyRnd = np.random.uniform(-1, 1, (128, 1000)) # Random parameters for MC error estimation
25 uExa = np.squeeze(np.array(list(map(F, yyRnd)))) # Random sample of exact function

Line 24: Random sample of target function for Monte Carlo estimation of the sparse grid
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error (consisting of truncation error to N dimensions and by approximation error in the first N
parameters). The value 1000 gives a practically exact (non-truncated) KLE;

26 # Sparse grid parameters
27 TPInterpolant = lambda nodesTuple, fOnNodes : TPLagrangeInterpolator(nodesTuple, fOnNodes)

Line 26: Definition of the 1D interpolant. It must be given through its tensor product version
on an arbitrary number of dimensions through a function with input: i. A Python tuple with the
“active” nodes (i.e. when a parameter/direction has only 1 collocation node, it can be left out
and is assumed to be 0); ii. Array of values of function to interpolate on the nodes;

28 lev2knots = lambda n: np.where(n==0, 1, 2**n+1) # doubling rule: 1 if n=0, 2^n+1 otherwise
29 knots = lambda n : CCNodes(n) # Clenshaw-Curtis nodes
30 # Anisotropy vector for parametric Poisson
31 gamma = lambda N : 1/(C*a_min*np.linspace(1, N, N)**2)
32 tau = lambda N : 1/(2*gamma(N))
33 anisoVec = lambda N : 0.5* np.log(1+tau(N))
34 midSet = anisoSmolyakMidSet(w=2, N=N, a=anisoVec(N)) # Anisotropic Smolyak multi-index set

Line 33: Definition of the multi-index set as an anisotropic simplex. We limit the dimension
to N = 10 (line 16). However, the dimension N can be left out maintaining the rest of the
signature and the function determines it automatically based on the anisotropy;

35 interpolant = SGInterpolant(midSet, knots, lev2knots, TPInterpolant, NParallel=8)

Line 34: Definition of the sparse grid interpolant instance. As explained in Section 1.2.3,
a sparse grid interpolant is defined by a multi-index set, and a 1D interpolation method (in
particular, nodes and level-to-knot function). Upon initialization, the class computes all relevant
parameters e.g. the sparse grid H ⊂ Γ and the inclusion-exclusion coefficients;

36 uOnSG = interpolant.sampleOnSG(F) # Sample the function on the sparse grid

Line 35: Sampling of the target function on the sparse grid giving a handle to the parameter-
to-solution map.

37 uInterp = interpolant.interpolate(yyRnd, uOnSG) # Compute the interpolated value

Line 36: Interpolation the target function on new parameter values. Here we choose to Monte
Carlo sample used to compute the error. Also the values of F on the sparse grid need to be given
as an input. This increases the flexibility of the method and allows to interpolate different a
quantity of interest using the same interpolant.

38 errSamples = computeErrorSamplesPoisson(uInterp, uExa, nH) # Compute error samples in H^1_0(D)
39 errorL2 = sqrt(np.mean(np.square(errSamples))) # L^2 error in parameter space
40 print("Error:", errorL2)
41 print("Sparse grid:\n", interpolant.SG)
42 # refine SG and compute refinement
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43 midSet2 = anisoSmolyakMidSet(w=4, N=N, a=anisoVec(N))
44 interpolant2 = SGInterpolant(midSet2, knots, lev2knots, TPInterpolant=TPInterpolant, \
45 NParallel=8)
46 print("Number of collocation nodes:", interpolant.numNodes)
47 # Sample on refined sparse grid and recycle old values
48 uOnSG = interpolant.sampleOnSG(F, oldXx=interpolant.SG, oldSamples=uOnSG)
49 uInterp = interpolant.interpolate(yyRnd, uOnSG,)
50 errSamples = computeErrorSamplesPoisson(uInterp, uExa, nH)
51 errorL2 = sqrt(np.mean(np.square(errSamples))) # L^2 error in parameter space
52 print("Error:", errorL2)
53 print("Sparse grid:\n", interpolant.SG)

Lines 42-51: Interpolation with a refined interpolant. The multi-index set is refined by in-
creasing w (line 42). Since the method is nested, we can recycle the previously computed in-
terpolation samples (line 46). This is done again with the method interpolate of the class
SGInterpolant, but additionally providing as input: i. a list of nodes; and ii. a list of the
corresponding parameter-to-solution map values.
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Chapter 5

Additional and partial results

In this chapter, we gather additional and partial results related to the topics discussed in the
previous two chapters.

In Section 5.1, we discuss optimality and convergence with rate of the adaptive sparse grid
algorithm discussed in Chapter 2. We additionally suggest and analyze possible variations
of the algorithm. In Section 5.2, we present additional results regarding the space and time
approximation of the stochastic Landau–Lifshitz–Gilbert equation, which we also considered in
Chapter 3.

5.1 Additional results on adaptive sparse grid interpolation of
random diffusion Poisson

In this section, we again adopt the notation introduced in Chapters 1 and 2 for the random
diffusion Poisson problem and the adaptive sparse grid (ASG) algorithm (Algorithm 10).

The section in structured as follows: In Section 5.1.1, we discuss the quasi-optimality of
the ASG algorithm and variations thereof. In Section 5.1.2, we derive a convergence with rate
result for the same adaptive algorithm driven by the simplified workless profit (introduced in
Section 5.1.1) and a sparse grid interpolant using Leja sequences. In Section 5.1.3, we present
a version of the ASG algorithm with a threshold-type marking that adds multi-indices to the
multi-index set more quickly to accelerate the execution. In Section 5.1.4, we define a dimension-
adaptive version of the ASG algorithm that adaptively increases the number of parameters
actively approximated by sparse grid interpolation. All results are supported by a number of
numerical experiments, documented in Section 5.1.5. In the same section, we also numerically
investigate some conjectures: The reliability of a simplified a-posteriori estimator, which is easier
to compute because it is a sum over the reduced margin (Definition 1.19) only; An alternative
estimator with improved efficiency properties; The special case of the L2(Γ, H1(D)) error; and
an alternative dimension-refinement strategy.

To prove this results, we need to study the cardinality of margins of nested multi-index
sets. Observe that, for downward-closed multi-index sets Λ,Λ′ ∈ NN

0 , nestedness does not imply
increasing margin cardinality, i.e.

Λ ⊂ Λ′ ̸⇒ #MΛ ≤ #MΛ′ .

A simple counterexample in 2D is given by Λ = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)} and Λ′ =
Λ ∪ {(1, 1)}. This example can be generalized to higher dimensions to show that the constant
C > 0 such that makes the following statement true:

For any N ∈ N, and any downward-closed multi-index set Λ ⊂ Λ′ ⊂ NN
0 , #MΛ ≤ C#MΛ′
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actually depends on N . The following is a positive bound of this type.

Lemma 5.1. Let Λ ⊂ Λ′ ⊂ NN
0 be downward-closed multi-index sets. Then, #MΛ ≤ N#MΛ′ .

Proof. Denote K0 := MΛ. Define for any n ∈ 1, . . . , N

Rn := {ν ∈ Kn−1 : ∀r ∈ N, ν + ren /∈ Kn−1} , Kn := Kn−1 \Rn.

The statement follows from : 1. MΛ =
JN

n=1Rn; and 2. #Rn ≤ #MΛ′ for all n = 1, . . . , N .
Let us prove them.

Proof of 1. While
JN

n=1Rn ⊂ MΛ is trivial, the converse requires more work. Suppose
by contradiction that ν ∈ MΛ but ν /∈ Rn for any n = 1, . . . , N . Then ν ∈ ,N

n=0Kn.
Thus, ν /∈ RN implies that there exists rN ∈ N such that ν(N) := ν + reN ∈ KN−1. Since
ν(N) /∈ RN−1 by definition, we may repeat this argument and obtain: There exists rn ∈ N such
that ν(n) := ν(n+1) + rnen ∈ Kn for all n = N, . . . , 1. All in all, we have proved ν < ν(1) =
ν +

EN
n=1 rnen ∈ K0 = MΛ. This is a contradiction to ν ∈ MΛ.

Proof of 2. Fix n = 1, . . . , N . The statement is equivalent to the injectivity of the function
f : Rn → MΛ′ defined for any ν ∈ Rn as f(ν) := ν +min {t ∈ N : ν + ten ∈ MΛ′}en. Suppose
that for ν,ν ′ ∈ Rn, f(ν) = f(ν ′). Thus, for t, t′ > 0, ν + ten = ν ′ + t′en or, rearranging the
terms, ν = ν ′ + (t′ − t)en. Because of the definition of Rn, t− t′ = 0 and so ν = ν ′.

5.1.1 Quasi-optimality

We define notions of (quasi)-optimality for the approximation of the parametric Poisson Problem
with sparse grid and prove them for the adaptive sparse grid algorithm (Algorithm 10). Recall
that the optimality of the finite element adaptive approximation was proved in Theorem 2.24.

Setting 1: Workless profit

We show that the adaptive parametric refinement Algorithm 10 with workless profit (2.9) gen-
erates a sparse grid approximation that is, in a sense, quasi-optimal.

Proposition 5.2. Consider for N ∈ N and ν ∈ NN
0 a rectangular multi-index set Λ = Rectν ⊂

NN
0 (2.17). Let ε > 0 such that ζSC,Λ = ε

N . Denote by Λε the multi-index set obtained running
Algorithm 10 with workless profit (2.9) and tolerance ε. It holds that Λε ⊂ Λ.

Proof. By contradiction, consider ℓ > 0 such that Λℓ ⊂ Λ, the profit-maximizing multi-index
νℓ = argmaxν∈MΛℓ

Pν,Λℓ
belongs to the margin of Λ, and ζSC,Λℓ

≥ ε. Since both Λ and Λℓ

are rectangles (for Λℓ this fact was proved in Section 2.2.1), Aνℓ,Λℓ
⊂ MΛ, where we recall that

Λℓ+1 = Λℓ ∪Aνℓ,Λℓ
. The contradiction is then found by estimating

ε ≤ ζSC,Λℓ
≤ N

D
j∈Aνℓ,Λℓ

ζj,Λℓ
= N

D
j∈Aνℓ,Λ

ζj,Λ ≤ NζSC,Λ,

where the first estimate is from the contradiction assumption, the second is a consequence of
the definition of workless profit (2.9), and the equality comes from the formula for the simplified
computation of the pointwise error estimator (see Remark 2.4), since Jj,Λℓ

= Jj,Λ.

Remark 5.3. We make some observations regarding the previous result.
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1. In the previous proposition, quasi-optimality is understood with respect to rectangular
multi-index sets (Λ = Rectν for ν ∈ NN

0 ) only, and not with respect to general downward-
closed multi-index sets. The reason is that Algorithm 13 driven by workless profit can only
generate rectangular multi-index sets itself (Lemma 2.10). It is therefore natural to have
an optimality result with respect to this family of approximations only;

2. The result is a useful statement about the optimality of the a-posteriori estimator only is
ε ≪ N−1. In other words, it can be understood as an asymptotic optimality statement
under the finite-dimensional noise assumption (Remark 1.7). Conversely, the result is of
little use when dimension-adaptivity is considered and the function has weak sparsity, i.e.
the number of dimensions N ∈ N is also determined adaptively (see Section 5.1.4 below)
and it grows rapidly. In this case, ε may not be smaller than N−1.

Setting 2: A simplified workless profit

Consider the following simplified workless profit :

Pν,Λ := ζν,Λ ∀ν ∈ MΛ, (5.1)

and use it to drive Algorithm 10. To state the next proposition, we need the following

Definition 5.4. Given N ∈ N, a multi-index ν ∈ NN
0 , and a downward-closed multi-index set

Λ ⊂ NN
0 , we call strengthened pointwise estimator and strengthened sparse grid a-posteriori

estimator respectively:

ζ̃ν := max
�
ζν,J : J ⊂ NN

0 downward such that ν ∈ MJ

�
, ζ̃SC,Λ :=

D
ν∈MΛ

ζ̃ν .

Proposition 5.5. Consider an arbitrary downward-closed multi-index set Λ ⊂ NN
0 . Let ℓ ∈ N0

be the unique iteration of Algorithm 10 such that Λℓ ⊂ Λ and νℓ /∈ Λ. Then,

ζSC,Λℓ
≤ N#MΛζ̃SC,Λ,

where ζ̃SC,Λ is the strengthened a-posteriori estimator (Definition 5.4).

Proof. Since νℓ /∈ Λ and Λℓ ⊂ Λ, νℓ ∈ MΛ. Then, we estimate

ζSC,Λℓ
≤ #MΛℓ

ζνℓ,Λℓ
≤ #MΛℓ

ζ̃νℓ
≤ #MΛℓ

ζ̃SC,Λ ≤ N#MΛζ̃SC,Λ.

In the first inequality we used the fact that νℓ is the profit maximizer on MΛℓ
, in the second the

definition of ζ̃ν,Λ, in the third the definition of ζ̃SC,Λ, and in the last one we used Lemma 5.1.

Let us finally recall that the the cost of adding a multi-index can be included in the profit
definition through a simplified profit with work inspired by the equivalence of the multi-index
set selection and the Knapsack problem (cf. Section 1.2.3):

Pν,Λ =
ζν,Λ
Wν

∀ν ∈ MΛ, (5.2)

where the work Wν denotes the number of collocation points added to the sparse grid HΛ when
ν is added to the multi-index set Λ. Here, we do not analyze the case of a general work definition.
We only observe that when Wν = 1 for all ν ∈ NN

0 , this profit coincides with the simplified
workless profit (5.1).
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5.1.2 Convergence with rate

We now want to estimate ζSC,Λℓ
with respect to #HΛℓ

, i.e. the number of collocation points
at step ℓ ∈ N0. This is a better quantitative measure of the convergence speed of the ASG
algorithm compared to the estimates from Theorem 2.18, 2.19. We work with Leja sequences
(see also Example 1.17), which we recall are defined as

Y1 = {y1} ,where y1 ∈ [−1, 1] arbitrary, (5.3)

Ym = Ym−1 ∪
argmax

y∈[−1,1]

;
z∈Ym−1

|y − z|
 ∀m ∈ N, (5.4)

and the level-to-knot function:

m(ν) = ν + 1 ∀ν ∈ N0. (5.5)

Leja sequences have properties that make them popular interpolation nodes:

• The sparse grid and multi-index set have the same cardinality, i.e. #HΛ = #Λ. As a
consequence, the simplified workless profit (5.1) coincides with the simplified profit with
work (5.2);

• Their Lebesgue constant (1.34) grows sub-exponentially [TT08]: limν→∞ (λν)
1/(ν+1) = 0.

Proposition 5.5 is not directly applicable here. However, it serves as a guideline for the proof of
Proposition 5.8. Consider the following family of multi-index sets, which in the next proposition
play the same role of Λ ⊂ NN

0 in Proposition 5.5.

Definition 5.6 (Anisotropic simplex multi-index set). Let N ∈ N, w ≥ 0 and a non-decreasing
sequence of positive real numbers α = (αn)

N
n=1. The anisotropic simplex multi-index set is by

definition

Λα(w) = Λα,N (w) :=

�
ν ∈ NN

0 :
ND

n=1

νnαn ≤ w

�
.

In order to choose α appropriately for the affine random diffusion Poisson problem, recall
the following regularity fact:

Lemma 5.7 (From [BNT10]). If for all n ∈ 1, . . . , N it exists γn ∈ R>0 such that for all
y ∈ Γ = [−1, 1]N ,

KKK∂yna(y)
a(y)

KKK
L∞(D)

≤ γn, then yn +→ u(y), the parameter-to-solution map of the

parametric affine diffusion Poisson problem (cf. Example 1.8), admits a bounded holomorphic
extension to the complex neighbourhood Σ(Γn, τn) := {z ∈ C : dist(Γn, z) < τn}, where τn ≤ 1

2γn
.

We use the result to define the vector g = (gn)
N
n=1 as

gn :=
1

2
log(τn +

?
1 + τ2n) ∀n = 1, . . . , N. (5.6)

The strengthened pointwise estimator (Definition 5.4) can be estimated a priori as done in
Proposition 2.5. We get

ζ̃ν ≤ C(u, a)Nλ2
νe

−g·ν ∀ν ∈ NN
0 , (5.7)
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where

C(u, a) := amax

N;
n=1

4

egn − 1
max

z∈Σ(Γ,τ )
∥u(z)∥V , (5.8)

λν :=
<N

n=1 2λνn , and λνn denotes the Lebesgue constant of the 1D interpolant of index ν ∈ N0.
The sub-exponential growth of the Lebesgue constant of Leja nodes (see above) implies:

∀ε ∈ (0, 1) ∃C(ε) > 0 : ∀ν ∈ NN
0 ζ̃ν ≤ C(u, a, ε)Ne−εg·ν , (5.9)

where C(u, a, ε) = C(u, a)C(ε) and C(ε) > 0 is independent of N . Finally, choose the anisotropy
vector α as

αn := εgn ∀n = 1, . . . , N. (5.10)

Let us now use Lemma 5.1 to obtain a useful a priori bound for the a-posteriori estimator
of Λℓ for ℓ ∈ N0.

Proposition 5.8. Let w ≥ 0, ℓ ∈ N0 such that the multi-index set produced by Algorithm 10 at
step ℓ, Λℓ ⊂ Λα(w) and the simplified workless profit (5.1) maximizer νℓ ∈ MΛα(w). Then,

ζSC,Λℓ
≤ C(u, a, ε)N2

D
ν /∈Λα(w)

e−α·ν ,

where C(u, a, ε) = amaxC(ε)
<N

n=1
4

eσ−1 maxz∈Σ(Γ,τ ) ∥u(z)∥V , and C(ε) was defined in (5.9).

Proof. Fix w ≥ 0, ℓ ∈ N0 as in the statement. Estimate

ζSC,Λℓ
≤ #MΛℓ

ζ̃νℓ
≤ N#MΛα(w)C(u, a, ε)Ne−α·νℓ ≤ C(u, a, ε)N2eαN

D
ν /∈Λα(w)

e−α·ν .

The first estimate is based on the fact that νℓ is the simplified workless profit maximizer. In the
second estimate, we use Lemma 5.1 to estimate the margin and (5.9) to estimate the pointwise
estimator recalling that α is as in (5.10). To justify the last estimate, first observe that for any
j ∈ MΛα(w), either j − eN ∈ Λα(w) or jN = 0. Thus, by definition of Λα(w) (Definition 5.6),
α · j − αN ≤ w ≤ α · j. Being in particular νℓ ∈ MΛα(w), we have that for all j ∈ MΛα(w),
e−α·νℓ ≤ e−w ≤ e−α·j+αN , which proves the last estimate in the chain above.

The series
E

ν /∈Λα(w) e
−α·ν appearing in the right-hand side of the estimate was studied

in [GO16, Corollary 2.7]. If w > N , it holds that

D
ν /∈Λα(w)

e−α·ν ≤ N
N;
j=1

eαj

eαj − 1
e−w wN−1

(N − 1)!
≤ D(N,α)e−wwN−1,

where D(α, N) is a constant depending only on N , α. The analogous estimate with respect to
#Λα(w) is also proved in the same reference:D

ν /∈Λα(w)

e−α·ν ≤ E(N,α) exp

0
−N

e
gm(α) (#Λα(w))

1
N

7
, (5.11)

where gm(α) :=
-<N

n=1 αn

4 1
N and E(α, N) is again a constant depending only on N , α.

This finally leads to a convergence with rate result for our adaptive algorithm:
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Corollary 5.9. Consider sparse grid interpolation with Leja sequences (5.3) and the affine level-
to-knot function (5.5), so that #Λ = #HΛ for any downward-closed multi-index set Λ ⊂ NN

0 . De-
note (Λℓ)ℓ∈N0

the nested sequence of downward-closed multi-index sets produced by Algorithm 10
with simplified workless profit (5.1). The a-posteriori estimator at step ℓ ∈ N0 admits the fol-
lowing estimate:

ζSC,Λℓ
≤ C ′(u, a, ε,N)N2 exp

0
−N

e
gm(α) (#Λℓ)

1
N

7
,

where C ′(u, a, ϵ,N) = C(u, a, ε)E(N,α), C(u, a, ε,α) was defined in Proposition 5.8, and
E(N,α) was defined just above.

5.1.3 Threshold-type marking of the margin

While the sparse grid interpolant produced by the adaptive algorithms described above may
have quasi-optimality properties (see the discussion in Section 5.1.1), the adaptive algorithm
as a whole may take a lot of time due to the small difference between subsequent multi-index
sets. A possible solution is to introduce a threshold-type marking on the margin, tuned by a
parameter θ ∈ (0, 1). We adopt again Leja sequences (5.3) and the level-to-knot function (5.5),
as well as the simplified workless estimator (5.1) (in this case, it coincides with the simplified
profit with work (5.2)).

Algorithm 12 uε ← TASG(ε, θ)

1: Λ0 := {0}
2: Compute IΛℓ

[u]
3: for ℓ = 0, 1, . . . do
4: Compute ζSC,Λℓ

5: if a−1
minζSC,Λℓ

< ε then
6: Return uε ← IΛℓ

[u]
7: end if
8: νℓ ← argmaxν∈MΛℓ

ζν,Λℓ

9: Find Kℓ := {ν ∈ MΛℓ
: ζν,Λℓ

≥ θζνℓ,Λℓ
}

10: Λℓ+1 ← Λℓ ∪Kℓ

11: Make Λℓ+1 downward-closed
12: end for

A quasi-optimality analogous to Proposition 5.5 holds:

Proposition 5.10. Consider an arbitrary downward-closed multi-index set Λ ⊂ NN
0 . Let ℓ ∈ N0

be the unique iteration of Algorithm 12 with marking parameter θ ∈ (0, 1) such that Λℓ ⊂ Λ and
Λℓ+1 ̸⊂ Λ. Then,

ζSC,Λℓ
≤ θ−1N#MΛζ̃SC,Λ,

where ζ̃SC,Λ denotes the strengthened sparse grid estimator (Definition 5.4).

Proof. As Λℓ+1 ̸⊂ Λ, it exists j ∈ Kℓ such that j ∈ MΛ. We then proceed as in Proposition 5.5:

ζSC,Λℓ
≤ #MΛℓ

ζνℓ,Λℓ
≤ #MΛℓ

θ−1ζj,Λℓ
≤ θ−1N#MΛζ̃SC,Λ,

where in the first estimate we use the fact that νℓ is the simplified workless profit maximizer,
in the second we use the definition of Kℓ, in the third the definition of strengthened a-posteriori
estimator and Lemma 5.1.
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As seen in Proposition 5.8, Algorithm 10 produces a sparse grid interpolant with expo-
nential accuracy with respect to its number of collocation points. We now prove the same of
Algorithm 12.

Proposition 5.11. For all w ≥ 0, there exists ℓ ∈ N0 such that Λℓ, the multi-index set produced
by Algorithm 12 with marking parameter θ ∈ (0, 1) at step ℓ, satisfies

ζSC,Λℓ
≤ θ−1C(u, a, ε)N2

D
ν /∈Λα(w)

e−α·ν ,

where C(u, a, ε) was defined in Proposition 5.8.

Proof. Fix w ≥ 0. It exists ℓ ∈ N0 such that Λℓ ⊂ Λα(w) and Kℓ ∩MΛα(w) ̸= ∅. Observe that,
for j ∈ Kℓ ∩MΛα(w),

ζSC,Λℓ
≤ #MΛℓ

ζνℓ,Λℓ
≤ θ−1#MΛℓ

ζj,Λℓ
≤ θ−1#MΛℓ

ζ̃j .

It is now sufficient to proceed as in Proposition 5.8, using j in place of νℓ.

As a consequence, also a statement analogous to Corollary 5.9 is valid for the current algo-
rithm:

Corollary 5.12. The downward-closed multi-index set Λℓ ⊂ NN
0 produced by Algorithm 12 with

marking parameter θ ∈ (0, 1) at step ℓ ∈ N0 is such that

ζSC,Λℓ
≤ θ−1C ′(u, a, ε,N) exp

0
−N

e
gm(α) (#Λℓ)

1
N

7
,

where C(u, a, ε,N) was defined in Corollary 5.9.

5.1.4 Dimension-adaptive parametric approximation

Rather than working under the finite dimensional noise assumption (Remark 1.7), we can adap-
tively determine the number of parameters approximated by the sparse grid interpolant.

Recall the definition of the finite-support multi-index set F (1.22) and of support of a multi-
index supp (ν) (1.23). Also recall that F is countable.

For a multi-index with finite support Λ ⊂ F , define its support size by

NΛ := max {N ∈ N : ∃ν ∈ Λ : νN ̸= 0} .

As proved in [GN18, Proposition 7.1], if dim(Γ) > NΛ, the a-posteriori estimate must be
modified as

∥u− IΛ[u]∥L∞(Γ,H1
0 (D)) ≲ ζSC,Λ + ζTR,Λ,

where the dimension truncation error estimator reads:

ζTR,Λ := ∥(a− aNΛ
)∇IΛ[u]∥L∞(Γ,L2(D)) . (5.12)

To define a dimension-adaptive algorithm, we add one parametric dimension at the end of
each iteration of Algorithm 12 if a marked multi-index ν ∈ MΛℓ

has nonzero last component
νNℓ

> 0. This way, we obtain an increasing sequence (Nℓ)ℓ∈N0
⊂ N0 of the number of approxi-

mated scalar parameters.
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The definition of margin (Definition 1.19) does not generalize in a a useful way to the present
setting. Consider instead:

M(Q)
Λ := {ν ∈ F \ Λ : ∃n ∈ 1, . . . , Q : either ν − en ∈ Λ or νn = 0} ∀Q ∈ N,

MΛ := M(NΛ)
Λ .

(5.13)

The Threshold Dimension Adaptive Sparse Grid algorithm (TDASG) with Leja sequences,
simplified pointwise estimator, threshold-type marking (as in in the previous section), and the
new dimension-adaptivity reads:

Algorithm 13 uε ← TDASG(ε, θ)

1: N0 ← 1
2: Λ0 ← {0}
3: Compute IΛℓ

[u]
4: for ℓ = 0, 1, . . . do
5: Compute (ζν,Λℓ

)ν∈MΛℓ
, ζSC,Λℓ

, ζTR,Λℓ

6: if a−1
min (ζSC,Λℓ

+ ζTR,Λℓ
) then

7: Return IΛℓ
[u]

8: end if
9: νℓ := argmaxν∈MΛℓ

ζν,Λℓ

10: Find Kℓ := {ν ∈ MΛℓ
: ζν,Λℓ

≥ θζνℓ,Λℓ
}

11: Λℓ+1 ← Λℓ ∪Kℓ

12: Make Λℓ+1 downward-closed
13: if ∃ν ∈ K : νNℓ

> 0 then
14: Nℓ+1 ← Nℓ + 1
15: Update Λℓ and MΛℓ

16: else
17: Nℓ+1 ← Nℓ

18: end if
19: end for

We consider g = (gn)n∈N ∈ RN
>0 with gn defined as in (5.6). In particular, limn→∞ gn = ∞.

For Λ ⊂ F downward-closed and ν ∈ MΛ, we can repeat verbatim the proof of Proposition 2.5
to obtain, now in a general number of parametric dimensions,

ζν,Λ ≲ #supp (ν)λ2
νe

−g·ν .

Additionally, the sub-exponential growth of the Lebesgue constant for Leja nodes implies that
for all ε ∈ (0, 1), it exists C(ε) > 0 such that

ζν,Λ ≲ #supp (ν)C(ε)e−εg·ν . (5.14)

Since gn → ∞, C(ε) is independent of ν or Λ. For a fixed ε ∈ (0, 1), define α = εg ∈ RN
>0 as

in (5.10).
The following lemma is a direct consequence of Lemma 5.1 (first estimate) and of the defi-

nition of margin (5.13, second estimate).

Lemma 5.13. Consider Λ, J ⊂ F downward-closed such that Λ ⊂ J . Then,

#MΛ ≤ NΛ#M(NΛ)
J ≤ NΛ#M(NJ )

J .
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We define the a-posteriori estimator in the infinite-dimensional parameters setting using the
definition of MΛ (5.13):

ζSC,Λ :=
D

ν∈MΛ

ζν,Λ. (5.15)

Proposition 5.14. Fix w ≥ 0. There exists ℓ ∈ N0 such that the multi-index set Λℓ produced
by Algorithm 13 at step ℓ ∈ N0 satisfies

Λℓ ⊂ Λα(w), ζSC,Λℓ
≤ C(ε)N2

ℓ eαNℓ

D
ν /∈Λα(w)

e−α·ν ,

where C(ε) > 0 depends only on ε, used to define α as in (5.10).

Proof. Fix w ≥ 0. Then, it exists ℓ ∈ N0 such that Λℓ ⊂ Λα(w) and Kℓ ̸⊂ Λα(w). The
parametric estimator ζSC,Λℓ

(5.15) is estimated using the definition of profit-maximizer νℓ and
θ-marking. There exists j ∈ Kℓ ∩ M(Nℓ)

Λα(w) such that ζSC,Λℓ
≤ θ−1#MΛℓ

ζj,Λℓ
. Estimate the

pointwise estimator ζj,Λℓ
with (5.14) and the margin cardinality with Lemma 5.13. We get

ζSC,Λℓ
≤ Nℓ#M(Nℓ)

Λα(w)θ
−1C(ε)#supp (νℓ) e

−α·j . (5.16)

Observe that #supp (νℓ) ≤ Nℓ, and that, as in Proposition 5.8, e−j·α < e−w ≤ e−ν·αeαN for
any ν ∈ M(Nℓ)

Λα(w). This implies

#M(Nℓ)
Λα(w)e

−α·j ≤ eαNℓ

D
ν∈M(Nℓ)

Λα(w)

e−α·ν .

Trivially, we can substitute MΛα(w) with the complementary of Λα(w) in the sum. Together
with (5.16), these two facts prove the statement.

To find a convergence result with respect to the number of collocation points #HΛℓ
, we

apply the estimate from [GO16, Theorem 3.2] to the sum in the right-hand side. We obtain

Corollary 5.15. If there exists β > 0 such that

M(α, β) :=
D
n∈N

1

eαn/β − 1
< ∞,

then the TDASG algorithm (Algorithm 13) satisfiesD
ν /∈Λα(w)

e−α·ν ≤ β−1eβM(α,β) (#HΛℓ
)−(β−1) .

However, in this case the factor N2
ℓ eαNℓ in the estimate obtain in Proposition (5.14) depends

on ℓ. In order to have optimal convergence (at least in the limit) this term has to grow at
most logarithmically in #HΛℓ

. However, numerical experiments (see Figure 5.3) suggest that
Nℓ = O (#HΛℓ

).
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5.1.5 Numerical experiments

We carry out a number of numerical experiments to confirm the statements made above. In the
following experiments, we always consider a parametric affine diffusion coefficient

a(y,x) = a0 +
1

ν

∞D
n=1

ynλnψn(x) ∀y ∈ [−1, 1]N, x ∈ D, (5.17)

where a0 > 0 is a constant (a function of x ∈ D is also possible), ψn(x) =
1
2(cos(πx1)+cos(2πx2))

for all x ∈ D, (λn)n∈N is a given absolutely summable sequence, ν := (a0 − amin)
−1

E∞
n=1 |λn|,

amin = min
�
a(y,x) : y ∈ [−1, 1]N, x ∈ D

� ∈ (0, a0). Indeed, for any y ∈ Γ, x ∈ D, a(y,x) ≥
a0 − 1

ν

E∞
n=1 λn ∥ψn∥L∞(D) = a0 − (a0 − amin) = amin. The decay of (|λn|)n∈N determines how

“smooth” the random field is (cf. Section 1.1.2). For example consider, for γ > 1,

λn = n−γ ∀n ∈ N, (5.18)

so that the random field becomes smoother and smoother as γ increases. In order to predict the
convergence rate of sparse grid interpolation methods, we have to estimate the regularity vector
g (5.6). Due to Lemma 5.7, for all n ∈ N ,KKKK∂yna(y)a(y)

KKKK
L∞(D)

≤
KKKKλnψn(x)

νa(y)

KKKK
L∞(D)

≤ λn

νamin
=: γn,

τn =
1

2γn
=

νamin

2
nγ , gn = log(τn +

?
1 + τ2n) ≈ log(2τn) = log(νaminn

γ).

Supposed that ε ≈ 1, so that the anisotropy vector in (5.10) can be chosen α ≈ g. Then, the
following series is summable for parameter β > 0:

∞D
n=1

1

eαn/β − 1
=

∞D
n=1

1

Cnεγ/β − 1
< ∞ ⇔ β < εγ,

where C = (νamin)
ε/β . Thus, the results in the previous sections predict e.g. that the dimension-

adaptive Algorithm 13 converges at least algebraically with order γ − 1 (with respect to the
number of collocation points). Observe that for γ ≤ 1 the sequence defined by λn = n−γ is not
summable, so not even the random diffusion would be well-defined.

In all the following examples, we use Leja sequences (5.3) and the corresponding level-to-
know function (5.5). Every adaptive algorithm is steered by the simplified workless profit (5.1).

Quasi-optimality (under the finite dimensional noise assumption)

We verify numerically the results from Sections 5.1.1 and 5.1.2 by comparing a priori and adap-
tive sparse grid interpolation applied to problems with a fixed finite number of dimensions.

The a priori method consists of a sequence of interpolations with multi-index set Λα(w)
for increasing values of w ≥ 0. For each a priori interpolant, we additionally compute the
a-posteriori estimator ζSC,Λα(w). We compare this to the fixed dimension, threshold marking
adaptive (Algorithm 12). We run both algorithms until we reach 200 collocation nodes. In
Figure 5.1, we plot results for N = 5, 10, 15. A qualitative comparison shows clearly that the
adaptive algorithm has smaller estimator and error that the sequence of a priori approximations.
This can be understood as a quasi-optimality property as suggested in Proposition 5.10. The
difference in performance seems to depend only mildly on the number of dimensions N . In all
cases, convergence rates seem at first algebraic, and then exponential. The transition happens
later and later as N increases and convergence gets slower and slower as N increases.
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# colloc. points M # Colloc. points M # Colloc. points M

Figure 5.1: Comparison of adaptive and a priori (in the legend “Simplex”) sparse grid construc-
tions under the finite dimensional noise assumption. Problem with diffusion (5.17), λn = n−3,
amin/a0 = 0.5. Left to right: N = 5, 10, 15.
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Simplex (228 colloc. points) Adaptive (207 colloc. points)

Figure 5.2: Comparison of multi-index sets correspond to about 200 collocation nodes from
adaptive and a priori sparse grid in N = 5 dimensions. Problem with diffusion (5.17), λn = n−3,
amin/a0 = 0.5. Left: Final multi-index set from a priori constructions (anisotropic simplex).
Right: Final multi-index set from ASG algorithm.
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In figure 5.2, we compare the adaptively-determined and a priori multi-index sets for N = 5
and the maximum number of collocation nodes (about 200). The adaptive algorithm produces
multi-index sets that are fairly different than simplexes, with more multi-indices in the “center”.

Dimension-adaptive sparse grind interpolation

Let us now test the TDASG algorithm (Algorithm 13) on the same problem as above. We
compare it to the finite-dimensional version and check whether the algebraic convergence pre-
dicted in Corollary 5.15 is achieved. See Figure 5.3. We observe that the estimator from the
dimension-adaptive algorithm coincides with the one of the fixed-dimension algorithm with di-
mension N ∈ N for the iteration ℓ ∈ N0 such that Nℓ = N .

It can also be seen that the TDASG algorithm adds a dimension at almost every iteration.
This can be understood observing that the pointwise estimator ζν,Λ for ν = en decreases only
algebraically in n (Figure 5.3 bottom right). More precisely, one proves (recall that for the
current numerical experiment ∥an∥L∞(D)

∼= n−3)

ζ0+en,{1} ≤ ∥an∥L∞(D) ∥∇u(0)∥L2(D) .

On the other hand, estimate (5.14) shows that adding multi-indices in the “bulk” of the margin
makes the pointwise estimators decrease exponentially.

The number of dimensions Nℓ seems to grow linearly with respect to both the number of
iterations ℓ and the number of collocation nodes #HΛℓ

(this is theoretically explained in the
previous paragraph). This suggest that the bound in Proposition 5.14 is not tight.

In Figure 5.4, we study how the convergence of the dimension-adaptive algorithm depends
on the problem regularity, by changing the decay parameter γ > 0 in (5.17). We also compare it
with a sequence of a priori solutions defined using the anisotropic simplex (Definition 5.6) with
maximum nonzero component NΛ = max {n ∈ N : αn ≤ w} (increasing for w ≥ 0 increasing).
For both a priori and adaptive discretizations, we compute the (total) a-posteriori estimator and
the reference error. We first observe that, as expected, in all cases the decay rate of estimators
and errors increase as γ increases and the difference is more pronounced if the regularity, pro-
portional to γ, is low. However, the estimator consistently converges at a slower rate than the
error. This can be attributed to the fact that the error estimator is a sum of error indicators
(i.e. pointwise estimators) obtained through a triangle inequality (see [GN18, end of proof of
Proposition 4.3]). This causes an over-estimation in the uniform norm because of a lack of or-
thogonality (more on this below). The adaptive method always has a marginal advantage over
the a priori one. This confirms the idea that the a priori approximation is quasi-optimal for
a whole class of parameter-to-solution maps sharing the same regularity, while the adaptively
determined approximation is always tailored to the function at hand.

A simplified a-posteriori parametric estimator on the reduced margin

Consider, for a downward-closed multi-index set Λ ⊂ F , the following heuristic a-posteriori
estimator defined as a sum over the reduced margin (Definition 1.19): ζSC,Λ :=

E
ν∈RMΛ

ζν,Λ.

Since the reduced margin is a subset of the margin, clearly ζSC,Λ ≤ ζSC,Λ =
E

ν∈MΛ
ζν,Λ.

We conjecture that, if the terms of the sparse grid expansions u =
E

ν∈F ∆νu decay suf-
ficiently quickly (in a specific sense), then there exists C > 0 independent of Λ such that the
opposite estimate holds: ζSC,Λ ≤ CζSC,Λ.

In Figure 5.5, we compare the reliable estimator ζSC,Λ the simplified estimator ζSC,Λ. In
the second case, we also alter the refinement routine: We look for a profit maximizer over the
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Figure 5.3: Tests for the dimension-adaptive sparse grid algorithm. Problem with diffusion
(5.17), λn = n−3, amin/a0 = 0.5. Top left: Comparison of parametric estimator between
adaptive-dimension algorithm and fixed dimensions N = 5, 10, 15. Top right: Growth of number
of dimensions Nℓ with respect to ℓ for the TDASG algorithm. Bottom left: Growth of number
of dimensions Nℓ with respect to number of collocation points Mℓ Bottom right: Decay of ζν,Λ
for ν = en as n → ∞.
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Figure 5.4: Comparison of dimension-adaptive (circles) and simplexes (crosses) discretization
for smoother and smoother problems defined by γ ∈ (2, 3, 4) and amin/a0 = 0.5 in the diffu-
sion (5.17). For each, we plot the total error estimator (continuous line) and the reference error
(dashed line).
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Figure 5.5: Comparison of adaptive algorithm steered by the a-posteriori estimator ζSC,Λ (“rig-
orous”) and by the simplified counterpart ζSC,Λ (“heuristic”). Problem with diffusion (5.17) and
λn = n−3, amin/a0 = 0.9, and a0 = 1. Left: Parametric and dimension estimators for the algo-
rithm driven by the reliable and simplified parametric estimators; Right: The same information
as in the previous plots, with computational time on the x axis (in seconds).
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Figure 5.6: Comparison of original and aggregated error estimator for the L∞(Γ, H1
0 (D))-error.

All quantities are computed over the sequence of solutions generated by the dimension-adaptive
Algorithm 13. Problem with diffusion (5.17) and λn = n−2, amin/a0 = 0.5. Left: Comparison
between original and aggregated parametric estimator. We also plot the dimension truncation
estimator ζTR,Λℓ

(5.12). Right: comparison of total a-posteriori estimator using either original
or aggregated parametric estimator. We also plot the reference error.

reduced margin only: νℓ ∈ RMΛℓ
. This has the added benefit of directly obtaining a downward-

closed multi-index set as Λℓ ∪ {νℓ}. The simplified estimator is very close to the reliable one
and their distance is uniformly bounded with respect to the number of collocation points. The
heuristic estimator seems to be a good approximation of the reliable one, but it is much faster
to compute.

Efficiency of an “aggregated” estimator of the parametric L∞(Γ) error

Numerical experiments (see e.g. Figure 5.4) clearly show that the parametric estimator ζSC,Λ

is not always an efficient estimator of the L∞(Γ, H1
0 (D))-error. This phenomenon becomes

more and more pronounced as the number of dimensions increases or as the regularity of
the problem decreases. Consider instead the following aggregated a-posteriori error estimator :
ζ̃SC,Λ :=

KKKEν∈MΛ
∆ν (a∇IΛ[u])

KKK
L∞(Γ,L2(D))

. We conjecture that it converges with the same

rate as the error, i.e. its efficiency is robust with respect to problem parameters such as number
of parametric dimensions. The aggregated estimator (up to addition of a truncation error esti-
mator (5.12)) can be proved to bound the error following the proof of [GN18, Proposition 4.3],
but skipping the triangle inequality at the end of the proof. The results in Figure 5.6 suggests
that the conjecture indeed holds (at least for the multi-index sets generated by the adaptive
algorithm).
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Estimator of the parametric L2(Γ) error

Let us now consider the L2(Γ, H1
0 (D))-error. Recall that the a-posteriori estimate introduced in

[GN18, Proposition 4.3] is valid for any p ∈ [1,∞]. We conjecture that the following ”ℓ2-type”
a-posteriori estimate (under the finite dimensional noise assumption):

∥u− IΛ[u]∥L2(Γ,H1
0 (D)) ≲

 D
ν∈MΛ

ζ2ν,Λ

1/2

. (5.19)

In other words, we claim that in the case of the L2 error, a valid estimator is given by an ℓ2 sum
of parametric error indicators (i.e. pointwise error estimators).

This is obtained from the estimator of [GN18, Proposition 4.3] by ignoring the scalar prod-
ucts ⟨∆ν (a∇IΛ[u]) ,∆j (a∇IΛ[u])⟩L2(Γ,L2(D)) when ν ̸= j. The numerical results in Figure 5.7
suggest that (unlike the case of the L∞(Γ, H1

0 (D))), this estimator is, up to constant, equivalent
to the aggregated L2 parametric estimator:

KKKKKK
D

ν∈MΛ

∆ν (a∇IΛ[u])
KKKKKK
L2(Γ,L2(D))

∼=
 D

ν∈MΛ

∥∆ν (a∇IΛ[u])∥2L2(Γ,L2(D))

1/2

, (5.20)

and a reliable and efficient estimator of the L2 parametric error.

Alternative dimension-adaptive strategy

When Algorithm 13 performs dimension refinement, the value of the dimension truncation esti-
mator ζTR,Λ (5.12) is not taken into account. We can modify the adaptive loop in the TDASG
algorithm (Algorithm 13) to perform either parametric or dimension refinement based on which
estimator is larger. The numerical experiments in Figure 5.8 suggest that the two strategies are
equivalent.
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Figure 5.7: Comparison between original, ”ℓ2”, and aggregated parametric estimators for the
L2(Γ, H1

0 (D))-error. All quantities are computed over the sequence of solutions generated by the
TDASG algorithm (Algorithm 13). Problem with diffusion (5.17) and λn = n−3, amin/a0 = 0.5.
Left: Comparison between original and aggregated parametric estimator. We also plot the
dimension truncation estimator ζTR,Λℓ

. Right: Comparison of total a-posteriori estimator using
either original or aggregated parametric estimator. We also plot the reference error.

159



Figure 5.8: Comparison of original and aggregated error estimators for the dimension-refinement
Problem with diffusion (5.17) and λn = n−3, amin/a0 = 0.5 in L2(Γ, L2(D)) norm. Top left:
Comparison between original and aggregated parametric estimator and dimensions truncation
estimator. We also plot the dimension truncation estimator ζTR,Λℓ

. Top right: Comparison of
total a-posteriori estimator, using either original or aggregated parametric estimator. We also
plot the reference error. Bottom left: As in the previous plot, but plotting the estimator and
reference error only after a parametric refinement.
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5.2 Additional results on the space and time approximation of
the SLLG equation

In this section, we give a partial proof of convergence of a tangent plane scheme applied to
sample paths of the random coefficients LLG equation introduced in Section 1.3.6. Importantly,
the Wiener process appears in the equation as a problem datum. One expects that the fact that
its sample paths are only Hölder continuous with exponent less than 1

2 reduces the convergence
of the tangent plane scheme. Nevertheless, numerical experiments consistently show the same
convergence rate of the classical tangent plane scheme applied to the deterministic LLG equation,
i.e. order one in both space and time, when the error is measured in the L∞(0, T,H1(D))-norm.
In Theorem 5.21, we motivate this by proving convergence in expectation (“strong convergence”
in SDE terminology) and in the L∞(0, T,H1(D))-norm for space and time. The section ins
structured as follows: In Section 5.2.1, we prove some technical lemmata needed later. In
Section 5.2.2, we consider a random coefficient ODE, which can be interpreted as a simplification
of the main problem and demonstrate how the proof strategy can be applied in this easier
setting. Finally, in Section (5.2.3), we state and give a partial proof of the mean convergence
of the tangent plane scheme for the random coefficient LLG equation. The validity of the proof
depends on the existence of an appropriate test function, which we could not prove.

For the rest of the section, let (Ω, E , |PP ) denote a probability triple, formed respectively by
a set, a sigma-algebra on Ω, and a probability measure on the measurable set Ω, E). Denote by
W : Ω × [0, T ] → R the Wiener process, where T > 0. Since we work with time discretization,
we also fix a notation for the time-stepping: Consider J ∈ N, the time step size k = T

J and time
steps tj := jk for all j = 0, . . . , J .

5.2.1 Technical results

We begin by proving some technical results.

Lemma 5.16. Denote by B : Ω× [0, T ] → R the Brownian bridge with B(T ) = B(0) = 0. Then* T

0
B(t)dt ∼ N

0
0,

T 3

12

7
,

* T

0
tB(t)dt ∼ N

0
0,

T 5

45

7
.

Proof. We prove the first fact. The proof of the second is analogous. Since the integral is
a linear operator and B is a Gaussian stochastic process,

+ T
0 B(s)ds is a Gaussian random

variable. Its expectation is E
+ T
0 B(s)ds =

+ T
0 EB(s)ds = 0 since the mean of the Brownian

Bridge is identically zero. As for the variance, first recall that the covariance of the Brownian
Bridge is E [B(s)B(t)] = min(s, t)− st

T . Then,

E
0* T

0
B(s)ds

72

=

* T

0

* T

0
E (B(s)B(t)) dsdt =

* T

0

* T

0
min(s, t)− st

T
dsdt =

T 3

3
− T 3

4
=

T 3

12
.

Remark 5.17 (Discrete Itô isometry). Consider (Xj)
J
j=1 random variables such that Xi and

W (tj+1)−W (tj) are independent if j ≥ i. Then,

E

 JD
j=0

Xj (W (tj+1)−W (tj))

2 =

JD
j=0

E
�
X2

j

 
(tj+1 − tj).
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Indeed,

E

 JD
j=0

Xj (W (tj+1)−W (tj))

2 = E

 ND
i,j=0

XiXj (W (ti+1)−W (tj)) (W (tj+1)−W (tj))

 .

Assume i < j. Then, because of the assumption on Xi, Xj and the independence of Wiener
process increments, we have

E [XiXj (W (ti+1)−W (ti)) (W (tj+1)−W (tj))]

= E [XiXj (W (ti+1)−W (ti))]E [W (tj+1)−W (tj)] = 0.

The same identity holds for i > j. Finally, if i = j,

E
�
X2

i (W (ti+1)−W (ti))
2
�
= E

�
X2

i

 
E
�
(W (ti+1)−W (ti))

2
�
= E

�
X2

i

 
(ti+1 − ti).

The two previous facts imply the following lemma, which we apply to the next two problems.

Lemma 5.18. Let (Xj)
J
j=0 be a sequence of (possibly dependent) random variables such that Xj

depends on W (t) only through W (t0), . . . ,W (tj). Then,

E

LLLLLL
D
j≤J

Xj

* tj+1

tj

W (s)−W (tj)ds

LLLLLL ≤ k

BCCCAE

kD
j≤J

X2
j

0
1√
6π

+
1

2

7
,

E

LLLLLL
D
j≤J

Xj

* tj+1

tj

(s− tj) (W (s)−W (tj)) ds

LLLLLL ≤ k2

BCCCAE

kD
j≤J

X2
j

.@
2

45π
+

1

2

5
.

Proof. We prove the first estimate. The proof of the second is analogous. By the law of iterated
expectations,

E

LLLLLL
D
j≤J

Xj

* tj+1

tj

W (s)−W (tj)ds

LLLLLL
= Eω

E
LLLLLL

D
j≤J

Xj

* tj+1

tj

W (s)−W (tj)ds

LLLLLL
LLLLLLW (tj) = ωj for j = 1, . . . , J

 ,

where we conditioned the value of the Wiener process at J discrete times. Observe that, assuming
the conditioning above,* tj+1

tj

W (s)−W (tj)ds =
* tj+1

tj

Lj(s) +Bj(s)ds =
k

2
(ωj+1 − ωj) +

* tj+1

tj

Bj(s)ds,

where Lj(s) is an appropriate affine function and Bj(s) is the Brownian bridge with value 0 at
tj and tj+1. The distribution of the last integral was determined in Lemma 5.16. Thus,

D
j≤J

Xj

* tj+1

tj

W (s)−W (tj)ds ∼ N /
µk(ω), σ2

k(ω)
6
,
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where

µk(ω) =
k

2

D
j≤J

Xj(ωj+1 − ωj), σ2
k(ω) =

k3

12

D
j≤J

X2
j

 .

The absolute value of the previous random variable has a folded normal distribution. Therefore,
we get:

E

LLLLLL
D
j≤J

Xj

* tj+1

tj

W (s)−W (tj)ds

LLLLLL
LLLLLLW (tj) = ωj for j = 1, . . . , J


= σk(ω)

@
2

π
exp

0
−µ2

k(ω)

σ2
k(ω)

7
+ µk(ω)

0
1− 2Φ

0
−µk(ω)

σk(ω)

77
.

Let us finally estimate the expectation with respect to ω. Observe that
LLLexp-−µ2

k(ω)

σ2
k(ω)

4LLL ≤ 1 andLLL-1− 2Φ
-
−µk(ω)

σk(ω)

44LLL ≤ 1. Also observe that

E |σk(ω)| ≤ k
1

2
√
3

BCCCAE

kD
j≤J

X2
j

.
By Cauchy-Schwarz, we estimate

E |µk(ω)| = k

2
E

LLLLLL
D
j≤J

Xj(ωj+1 − ωj)

LLLLLL ≤ k

2

BCCCAE

LLLLLL
D
j≤J

Xj(ωj+1 − ωj)

LLLLLL
2.

By Remark 5.17, we get

E |µk(ω)| ≤ k

2

>D
j≤J

E
�
X2

j

�
(tj+1 − tj) =

k

2

BCCCAE

kD
j≤J

X2
j

.
All in all, we have found

Eω

�
σk(ω)

@
2

π
exp

0
−µ2

k(ω)

σ2
k(ω)

7
+ µk(ω)

0
1− Φ

0
−µk(ω)

σk(ω)

77�

≤ k

BCCCAE

kD
j≤J

X2
j

0
1√
6π

+
1

2

7
.

5.2.2 Convergence of explicit Euler for a family of random ODEs

Consider the final time T > 0 and the following function with “separation of variables structure”:

f : R× R → R, f(x, z) = F (x)b(z). (5.21)
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We assume F : R → R to be globally Lipschitz with Lipschitz constant L > 0 and bounded with
constant 1 + L, i.e. for all x, y ∈ R,

|F (x)− F (y)| ≤ L|x− y|, |F (x)| ≤ (1 + L)|x|.
We assume b : R → R to be differentiable and uniformly bounded up to second order:

sup
x∈R

|b(x)|+ sup
x∈R

|b′(x)|+ sup
x∈R

|b′′(x)| = β < ∞.

Given the initial datum y0 ∈ R, consider the following Random Ordinary Differential Equation
(RODE): Find a stochastic process y : Ω× [0, T ] → R such that

y(ω, t) = y0 +

* t

0
f(y(ω, s),W (ω, s))ds ∀t ∈ [0, T ], for a.e. ω ∈ Ω. (5.22)

The specific form of the right-hand side is chosen so that Equation (5.22) encodes some of the
basic properties of the random LLG equation (1.76). it has, up to a sum, an analogous separation
of variables structure (3.12).

Gronwall’s lemma and the properties of f yield a stability estimate for y:

|y(t)| ≤ y0e
β(1+L)t ∀t ∈ [0, T ], for a.e. ω ∈ Ω. (5.23)

The explicit Euler approximation of the RODE (5.22) is a sequence of random variables
(yj)

J
j=0 ⊂ RJ such that

yj+1(ω) = yj(ω) + kf(yj(ω),W ((ω), tj)) ∀j = 0, . . . , J, for a.e. ω ∈ Ω. (5.24)

The aim is to prove that yj approximates y(tj) in the appropriate sense. Denote by y : Ω ×
[0, T ] → R the constant extension of (yj)Jj=0, i.e. for any t ∈ [0, T ],

y(t) = yj if tj ≤ t < ti+1. (5.25)

The assumptions on f implies

yj+1 ≤ (1 + k(1 + L)β) |yj | ∀j − 0, . . . , J − 1,

and the discrete Gronwall’s inequality gives the following discrete stability bound (analogous
to (5.23)):

|yj(ω)| ≤ eβ(1+L)tj ∀j = 0, . . . , J, for a.e. ω ∈ Ω (5.26)

The Euler approximation of the sample paths of the RODE is expected to converge with
order smaller than 1

2 since the right-hand side of Equation (5.22) is only Hölder regular with
exponent smaller than 1

2 . Nevertheless, numerical tests such as the one reported in Figure 5.9
clearly show convergence with order 1.

Proposition 5.19. Consider the final time T > 0, the probability (Ω, E ,P), the RODE (5.22)
with right-hand side (5.21) depending on the Wiener process W and deterministic initial datum
y0 ∈ R. Denote by y : Ω × [0, T ] → R its stochastic process solution. For J ∈ N, define
the timestep size k = T

J and the timesteps tj = jk for j = 0, . . . , J . Consider the Euler
approximation (5.24) of Equation (5.22). There holds

E |y(tj)− yj | ≲ k ∀j = 0, . . . , J,

where the hidden constant depends only on T , L, β.
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Figure 5.9: Convergence of the Euler scheme applied on y′(t) = y(t)2 sin(W (t)) for t ∈ [0, 1],
y(0) = 1 and decreasing timestep size k. Error computed with 100 Monte Carlo samples.
Reference solutions computed with reference timestep size kref = 2−14.

Proof. Recall that y denotes the piecewise constant extension of the Euler approximation (cf.
Equation 5.25). Analogously denote the piecewise constant extension of the Wiener process

W (t) := W (tj) if tj ≤ t < ti+j .

This allows us to rewrite the Euler approximation (5.24) as

y(t) = yi = y0 +

* tj

0
f(y(s),W (s))ds if tj ≤ t < ti+j

Taking the difference with the RODE (5.22) gives

y(t)− y(t) =

* ti

0

/
f(y(s),W (s))− f(y(s),W (s))

6
ds+

* t

ti

f(y(s),W (s))ds.

Add and subtract the mixed term f(y,W ) = F (y)b(W ) to get

y(t)− y(t) =

* ti

0
(F (y(s)− F (y(s))) b(W (s))ds+

* ti

0
F (y(s))

/
b(W (s))− b(W (s))

6
ds

+

* t

ti

f(y(s),W (s))ds.

The expectation of the absolute value can be estimated with a triangle inequality as

E |y(t)− y(t)| ≤E
LLLL* ti

0
(F (y(s)− F (y(s)) b(W (s))ds

LLLL
+E

LLLL* ti

0
F (y(s))

/
b(W (s))− b(W (s))

6
ds

LLLL + E
LLLL* t

ti

f(y(s),W (s))ds
LLLL .

We now aim at showing the following three estimates, where the constants C1, C2, C3 > 0 depend
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only on problem data:

E
LLLL* ti

0
(F (y(s)− F (y(s)) b(W (s))ds

LLLL ≤ * ti

0
C1(s)E |y(s)− y(s)| ds, (5.27)

E
LLLL* ti

0
F (y(s))

/
b(W (s))− b(W (s))

6
ds

LLLL ≤ C2k, (5.28)

E
LLLL* t

ti

f(y(s),W (s))ds
LLLL ≤ C3k. (5.29)

This, together with a Gronwall’s inequality, will give the statement in the form:

E |y(t)− y(t)| ≤ e
� t
0 C1(s)ds(C2 + C3)k.

We prove the estimates one by one:

• Estimate (5.27): Since F is globally Lipschitz with constant L and b is bounded by β > 0,
we get

(F (y(s)− F (y(s)) b(W (s)) ≤ Lβ |y(s)− y(s)| ∀s ∈ [0, T ], for a.e. ω ∈ Ω.

Therefore, (5.27) follows with C1 = Lβ.

• Estimate (5.29): Recalling the definition of f , the fact that F is bounded by 1 + L and
that b is bounded by β > 0, we get that

sup
s∈[0,T ]

|f(y,W )| ≤ β(1 + L) sup
s∈[0,T ]

|y(s)| for a.e. ω ∈ Ω.

Finally, recall the stability estimate on the exact solution (5.23). This implies the desired
estimate with C3 = β(1 + L)y0e

β(1+L)T .

• Estimate (5.28). First, by definition of y, we have

* ti

0
F (y(s))

/
b(W (s))− b(W (s))

6
ds =

i−1D
j=0

F (yj)

* tj+1

tj

b(W (s))− b(W (tj))ds.

From Taylor’s theorem, there exists ξ ∈ [min (W (s),W (tj)),max (W (s),W (tj))] such that

b(W (s)) = b(W (tj)) + b′(W (tj))(W (s)−W (tj)) + b′′(ξ)
(W (s)−W (tj))

2

2
.

This in turn gives

E
LLLL* ti

0
F (y(s))

/
b(W (s))− b(W (s))

6
ds

LLLL ≤E

LLLLLL
i−1D
j=0

F (yj)b
′(W (tj))

* tj+1

tj

(W (s)−W (tj))ds

LLLLLL
+E

LLLLLL
i−1D
j=0

F (yj)

* tj+1

tj

b′′(ξ)
(W (s)−W (tj))

2

2
ds

LLLLLL .
(5.30)
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We apply Lemma 5.18 to the first right-hand side term with Xj = F (yj)b
′(W (tj)) and get

E

LLLLLL
D
j<i

F (yj)b
′(W (tj))

* tj+1

tj

(W (s)−W (tj))ds

LLLLLL
≤ k

BCCCAE

kD
j≤i

(F (yj)b′(W (tj))
2

0
1√
3π

+
1

2

7
.

The uniform boundedness of b′, boundedness of F , and definition of y(s) imply

E

LLLLLL
D
j<i

F (yj)b
′(W (tj))

* tj+1

tj

(W (s)−W (tj))ds

LLLLLL
≤ kβ(1 + L)

=
E ∥y∥2L2(0,ti)

0
1√
3π

+
1

2

7
.

(5.31)

As for the second right-hand side term, we first estimate the integral using the boundedness
of b′′ and Hölder continuity of W (with exponent 1

2 and constant CW > 0 almost surely
finite), LLLLL

* tj+1

tj

b′′(ξ)
(W (s)−W (tj))

2

2
ds

LLLLL ≤ β

2

* tj+1

tj

C2
W (s− tj)ds =

βC2
W

4
k2.

A triangle inequality and the previous estimate imply

E

LLLLLL
i−1D
j=0

F (yj)

* tj+1

tj

b′′(ξ)
(W (s)−W (tj))

2

2
ds

LLLLLL ≤ βC2
W

4
kE

 i−1D
j=0

k |F (yj)|
 .

We bound the expectation with Cauchy-Schwarz inequality to get

E

D
j

kF (yj)

 ≤

BCCCAE

D
j

(kF (yj))
2

√J =

>D
j

kE [F (yj)2]
√
k
√
J

=

>D
j

kE [F (yj)2]
√
T .

The boundedness of F gives

E

LLLLLL
i−1D
j=0

F (yj)

* tj+1

tj

b′′(ξ)
(W (s)−W (tj))

2

2
ds

LLLLLL ≤ βC2
W

√
T (1 + L)

4
k
=
E ∥y∥2L2(0,ti)

. (5.32)

Finally, combining (5.30), (5.31), (5.32), and the stability estimate (5.26), we obtain in-
equality (5.28) with

C2 =

.
β(1 + L)

0
1√
3π

+
1

2

7
+

βC2
W

√
T (1 + L)

4

5
Teβ(1+L)T .
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5.2.3 Convergence of the tangent plane scheme for random LLG

In the previous section we showed that the Euler scheme applied to a random ODE with a
specific structure has convergence order 1 when the error is measured in the expectation of
the uniform norm. We did not use the consistency of the Euler method, which requires the
boundedness of y′′, the second time derivative of the exact solution. Rather, we considered the
problem in integral form and relied on: 1. The smallness of the timesteps (ti, ti+1), and 2. The
way the right-hand side depends on the Wiener process.

The previous section cannot be directly extended to the tangent plane scheme, but it might
be possible for the midpoint rule (see Section 1.3.5).

Let us recall some facts about the random coefficient LLG equation (See Section 1.3.6) and
its tangent plane approximation (see Section 1.3.5). We denote ⟨·, ·⟩ the L2(D) scalar product
and by ∥·∥ the corresponding norm. The spaces L2(·) and H1(·) etc. denote Banach spaces of
functions intro R3. We recall that the tangent plane to m : DT → S2 is, by definition,

K(m) :=
�
v ∈ L2(0, T,H1(D)) : m · v = 0textrma.e.inDT

�
.

Recall the definitions

Gv = v × g,

E(s,v) = sin(s)Cv + (1− cos(s))(CG+GC)v,
Cv = v ×∆g +∇v ×∇g,

Ĉ(s,v) = esGE(s,v) = E(s,v) + sin(s)GE(s,v) + (1− cos(s))G2E(s,v).
The random LLG equation in weak form (1.79) may be written:* T

0
⟨∂tm+m× ∂tm,ϕ⟩+ ⟨∇m,∇ϕ⟩ −

�
Ĉ(W,m),ϕ

�
= 0 ∀ϕ ∈ K(m),

Consider a quasi-uniform mesh Th with maximal element diameter h > 0 and vertices Nh.
Denote V h := S1(Th)3, a space of piecewise-linear functions on the elements of Th. Denote

Mh := {mh ∈ V h : |mh(z)| = 1 ∀z ∈ Nh} .
The discrete tangent plane to mh ∈ Mh reads:

Kh(mh) := {vh ∈ V h : vh(z) ·mh(z) = 0 ∀z ∈ Nh} .
Recall that Πh denotes the L2-orthogonal projection onto V h as defined in (1.57).

Let us consider here the following alternative form of the tangent plane scheme (see also
Algorithm 5) based on the alternative formulation (LLA).

Algorithm 14
-
mj

h

4J

j=0
← Random tangent plane scheme (alt. 2)(Th, M0, J , τ λ1,

λ2, θ)

1: Compute m0
h = ΠhM

0

2: for j = 0, 1, ..., J − 1 do
3: Find vj

h ∈ Kh(m
j
h) such that�

λ1v
j
h + λ2m

j
h × vj

h,ϕh

�
+
�
∇
-
mj

h + kθvj
h

4
,∇ϕh

�
=

�
Ĉ(W (tj),m

j
h),ϕh

�
∀ϕh ∈ Kh(m

j
h).

(5.33)

4: mj+1
h = mj

h + kvj
h

5: end for
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Remark 5.20 (Stability of the tangent plane scheme). Stability properties of the scheme we
proved in [GLT16, Lemma 5.4]:

KK∇mJ
h

KK2 + k
J−1D
i=0

KKKvj
h

KKK2 + k2(2θ − 1)
J−1D
j=0

KKK∇vj
h

KKK2 ≤ C P-a.s.

where the constant C > 0 is independent of h and k. This estimate mimics the continuous energy
estimate (1.55).

A time-continuous approximation is obtained by affine interpolation of the result of Algo-
rithm 14:

m̂hk(t) = mi
h + (t− ti)v

i
h if ti ≤ t < ti+1. (5.34)

Let us additionally introduce the following functions

m̄hk(t) = mi
h if ti ≤ t < ti+1,

v̄hk(t) = vi
h if ti ≤ t < ti+1.

Observe that, with this definitions, ∂tm̂hk(t) = v̄hk(t) for t ∈ [0, T ] \ {ti}N−1
i=1 .

We take inspiration from [AFKL21] to prove the following convergence result.

Theorem 5.21 (Mean convergence of the tangent plane scheme). Denote by m the random field
solution of the random coefficient LLG equation under the same assumption of Theorem 3.7.
Let m̂hk denote the piecewise-affine interpolation (5.34) of solution of the tangent plane scheme
(Algorithm 14). Assume that there exists a function ϕh ∈ Kh(m̄hk) such that

(A1) E sups∈[0,t] ∥ϕh∥2 ≲ E
+ t
0 ∥e∥2H1(D) + (h+ k)2 + E

+ t
0 ∥ė∥2;

(A2) The random variable ϕh depends on W (·) exclusively through (W (tj))
J
j=0;

(A3) qh := ė− ϕh is such that E
+ t
0 ∥qh∥2H1(D) ≲ E

+ t
0 ∥e∥2H1(D) + (h+ k)2.

If additionally 1
2 < θ ≤ 1, then there exists a constant C > 0 depending only on the problem

data such that

E ∥m(t)− m̂hk(t)∥H1(D) ≤ C
-
h+ k + E ∥m(0)− m̂hk(0)∥H1(D)

4
∀t ∈ [0, T ].

Proof. We divide the proof into several steps.

1. A time-continuous equation for m̂hk. Fix i = 0, . . . , N − 1 and ti ≤ t < ti+1. Multi-
ply (5.33) by the timestep k for j < i, and by t− ti for j = i. Sum them up to obtain* t

0
⟨v̄hk + m̄hk × v̄hk,ϕh⟩+ ⟨∇(m̄hk + kv̄hk),∇ϕh⟩ ds =

* t

0

�
Ĉ(W̄k, m̄hk),ϕh

�
ds

∀ϕh ∈ Kh(m̄hk).

Then, add equal terms on both sides to get: For all ϕh ∈ Kh(m̄hk),* t

0
⟨v̄hk + m̂hk × v̄hk,ϕh⟩ + ⟨∇m̂hk,∇ϕh⟩ ds

=

* t

0

�
Ĉ(W̄k, m̂hk),ϕh

�
ds+

* t

0
⟨(s− s·)v̄hk × v̄hk,ϕh⟩ − ⟨(s·· − s)∇v̄hk,∇ϕh⟩

−
�
(s− s·)Ĉ(W̄k, v̄hk),ϕh

�
ds,

(5.35)
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where we denoted s· = tj and s·· = tj+1 if tj ≤ s < tj+1 and

Kh(m̄hk) :=
�
vh : DT → R3 : vh(t) = vh(ti) if ti ≤ t < ti+1, vh(ti) ∈ Kh(m

i
h)
�
. (5.36)

As for the terms in the right-hand side, observe that

⟨(s− s·)v̄hk × v̄hk,ϕh⟩ = 0,* t

0
⟨(s·· − s)∇v̄hk,∇ϕhds⟩ ≤ k ∥∇v̄hk∥L2(DT ) ∥∇ϕh∥L2(DT ) ,* t

0

�
(s− s·)Ĉ(W̄k, v̄hk),ϕh

�
ds ≤ k

KKKĈ(W̄k, v̄hk)
KKK
L2(DT )

∥ϕh∥L2(DT ) .

Denote now* t

0
⟨Rh,ϕh⟩ :=

* t

0
⟨(s·· − s)∇v̄hk,∇ϕh⟩ −

�
(s− s·)Ĉ(W̄k, v̄hk),ϕh

�
ds.

Estimate the absolute value of the last quantity with Cauchy-Schwarz and Young inequal-
ities with constant ε > 0 to getLLLL* t

0
⟨Rh,ϕh⟩

LLLL ≤ k2

4ε
Cstab + ε

* t

0
∥ϕh∥2H1(D) . (5.37)

where Cstab :=
+ t
0

0
∥∇v̄hk∥2 +

KKKĈ(W̄k, v̄hk)
KKK27 is finite because of (1.78), the assumption

g ∈ C2+α(D)3, and the fact that v̄hk ∈ L2(0, T,H1(D)) (Remark 5.20).

2. “Consistency” of the Tangent plane scheme. We test the exact random coefficient LLG
equation (1.76) with a function in the discrete tangent plane:* t

0
⟨∂tm+m× ∂tm,ϕh⟩+ ⟨∇m,∇ϕh⟩ =

* t

0

�
Ĉ(W,m),ϕh

�
+ ⟨D(m)m,ϕh⟩
∀ϕh ∈ Kh(m̄hk),

(5.38)

where D(m) := |∇m|2 +m · Ĉ(W,m). By definition of discrete tangent plane (5.36),

⟨D(m)m,ϕh⟩ = ⟨D(m) (m− m̄hk) ,ϕh⟩ = ⟨D(m) (m− m̂hk + (t− t·)v̄hk) ,ϕh⟩ .
Young’s inequality implies

|⟨D(m)m,ϕh⟩ | ≤
1

4ε

* t

0
∥D(m) (m− m̂hk + (t− t·)v̄hk)∥2 + ε

* t

0
∥ϕh∥2 .

Moreover, simple estimates give* t

0
∥D(m) (m− m̂hk + (t− t·)v̄hk)∥2

≤ 2 ∥D(m)∥2L∞(DT )

0* t

0
∥m− m̂hk∥2 ds+ k2 ∥v̄hk∥2L2(DT )

7
All in all, we obtained* t

0
|⟨D(m)m,ϕh⟩ | ≤

1

2ε
∥D(m)∥2L∞(DT )

0* t

0
∥m− m̂hk∥2 ds+ k2 ∥v̄hk∥2L2(DT )

7
+ε

* t

0
∥ϕh∥2 .

(5.39)
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Observe that ∥D(m)∥L∞(DT ) is finite since

∥D(m)∥L∞(DT ) ≲ ∥∇m∥2L∞(DT ) +
-
1 + ∥g∥[C2+α(D)]3

44 -∥m∥L∞(DT ) + ∥∇m∥L∞(DT )

4
,

where g ∈ �
C2+α(D)

 3 by assumption, m ∈ �
C1+α/2,2+α(DT )

 3 as proved in Theorem 3.7,
and v̄hk ∈ L2(DT ) was proved above.

3. Error equation. We subtract (5.35) from (5.38) to obtain:* t

0
⟨∂tm− v̄hk +m× ∂tm− m̂hk × v̄hk,ϕh⟩+ ⟨∇ (m− m̂hk) ,∇ϕh⟩

=

* t

0

�
Ĉ(W,m)− Ĉ(W̄k, m̂hk) +D(m)m−Rh,ϕh

�
∀ϕh ∈ Kh(m̄hk).

(5.40)

Denote

e := m− m̂hk, ė := ∂te = ∂tm− v̄hk.

The previous equation can be rewritten as:* t

0
⟨ė+m× ė+ e× v̄hk,ϕh⟩+ ⟨∇e,∇ϕh⟩ =

* t

0

�
Ĉ(W,m)− Ĉ(W̄k, m̂hk),ϕh

�
+

* t

0
⟨D(m)m−Rh,ϕh⟩ ∀ϕh ∈ Kh(m̄hk).

(5.41)

4. Energy estimate. We would now like to test the error equation with ė. However, this does
not belong to the discrete tangent plane Kh(m̄hk). Instead, we test with ϕh ∈ Kh(m̄hk),
which satisfies assumptions (A1)-(A3) from the statement. We add

+ t
0 ⟨ė, ė⟩ + ⟨∇e,∇ė⟩

to both sides of (5.41). Recall that qh := ė− ϕh (A3) to obtain* t

0
∥ė∥2 + ⟨∇e,∇ė⟩ =

* t

0

�
Ĉ(W,m)− Ĉ(W̄k, m̂hk) +D(m)m−Rh − e× v̄hk,ϕh

�
+

* t

0
⟨ė−m× ė, qh⟩+ ⟨∇e,∇qh⟩ ,

where we observed that ⟨m× ė, ė⟩ = 0. Since ⟨∇e,∇ė⟩ = 1
2

d
dt ∥∇e(t)∥2, the fundamental

theorem of calculus gives* t

0
⟨∇e,∇ė⟩ =

1

2
∥∇e(t)∥2 − 1

2
∥∇e(0)∥2 .

We can finally take the the expectation both sides to obtain the energy equation

E
* t

0
∥ė∥2 + 1

2
E ∥∇e(t)∥2 = 1

2
E ∥∇e(0)∥2 + E

* t

0

�
Ĉ(W,m)− Ĉ(W̄k, m̂hk),ϕh

�
+E

* t

0
⟨D(m)m,ϕh⟩ − E

* t

0
⟨Rh,ϕh⟩

−E
* t

0
⟨e× v̄hk,ϕh⟩+ E

* t

0
(⟨ė−m× ė, qh⟩+ ⟨∇e,∇qh⟩) .

(5.42)

171



5. Estimating the right-hand side of the energy equation (5.42). Let us estimate one term at
a time.

Second term (5.42) : Recall that Ĉ(s,v) =
E6

i=1 Fi(v)bi(W ) (3.12). The functions bi
are uniformly bounded with uniformly bounded derivatives up to second order, and the
functions Fi are linear, globally Lipschitz with Lipschitz constants L > 0 and bounded
with constant 1 + L:

∥bi∥L∞(R) ≤ β,
KKb′iKKL∞(R) ≤ β,

KKb′′i KKL∞(R) ≤ β, ∥Fi(u)− Fi(v)∥ ≤ L ∥u− v∥H1(D) .

We rewrite the second term of (5.42) as

E
* t

0

�
Ĉ(W,m)− Ĉ(W̄k, m̂hk),ϕh

�
= E

* t

0

�D
i

Fi(m)bi(W )− Fi(m̂hk)bi(W̄k),ϕh

�
.

By adding and subtracting appropriate quantities, we get

E
* t

0

�D
i

Fi(m)bi(W )− Fi(m̂hk)bi(W̄k),ϕh

�

=
D
i

E
* t

0
⟨(Fi(m)− Fi(m̂hk)) bi(W ),ϕh⟩ +

D
i

E
* t

0

�
Fi(m̂hk)

/
bi(W )− bi(W̄k)

6
,ϕh

�
.

(5.43)

As for the first expectation in the right-hand side, apply Young inequality with constant
ε > 0 to get

E
* t

0
⟨(Fi(m)− Fi(m̂hk)) bi(W ),ϕh⟩ ≤εE

* t

0
∥ϕh∥2

+
1

4ε
E
* t

0
∥(Fi(m)− Fi(m̂hk)) bi(W )∥2 .

Use the boundedness of bi and Lipschitz continuity of Fi to bound the second term:

E
LLLL* t

0
⟨(Fi(m)− Fi(m̂hk)) bi(W ),ϕh⟩

LLLL ≤ εE
* t

0
∥ϕh∥2 +

β2L2

4ε
E
* t

0
∥e∥2H1(D) . (5.44)

As for the second expectation in the right-hand side of (5.43), a Taylor expansion gives:
For any s ∈ [0, T ], j ∈ N0 such that tj ≤ s ≤ tj+1 there exists ξ = ξ(s) ∈ [tj , s] such that

bi(W (s))− bi(W (tj)) = b′i(W (tj)) (W (s)−W (tj)) + b′′i (ξ)
(W (s)−W (tj))

2

2
.

Let J ∈ N such that tJ ≤ t < tJ+1, recall that m̂hk(t) = m̄hk + (t − t·)v̄hk (5.34), and
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that Fi is linear to obtain:

E
* t

0

�
Fi(m̂hk)

/
bi(W )− bi(W̄k)

6
,ϕh

�
≤E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
b′i(W (tj))

* tj+1

tj

W (s)−W (ti)ds

LLLLLL
+E

LLLLLL
J−1D
j=0

�
Fi(v

j
h),ϕh

�
b′i(W (tj))

* tj+1

tj

(s− tj) (W (s)−W (ti)) ds

LLLLLL
+E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
2

* tj+1

tj

(W (s)−W (ti))
2b′′(ξ(s))ds

LLLLLL
+E

LLLLLL
J−1D
j=0

�
Fi(v

j
h),ϕh

�
2

* tj+1

tj

(s− tj)(W (s)−W (ti))
2b′′(ξ(s))ds

LLLLLL
+E

LLLL* t

tJ

⟨(bi(W (s))− bi(W (tJ−1)))Fi(m̂hk),ϕh⟩ ds
LLLL .

We estimate one term of the right-hand side at a time.

• First expectation: Thanks to (A2), this falls in the setting of Lemma 5.18 with Xj =�
Fi(m

j
h),ϕh

�
b′i(W (tj)), which gives

E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
b′i(W (tj))

* tj+1

tj

W (s)−W (ti)ds

LLLLLL
≲ k

BCCCAE

k J−1D
j=0

-�
Fi(m

j
h),ϕ

j
h

�
b′i(W (tj))
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.
Observe now that there exists M > 0 such thatKKKmj

h

KKK
H1(D)

≤ KKm0
KK
H1(D)

+ ∥v̄hk∥L1(0,T,H1(D)) =: M ∀j = 0, . . . , J. (5.45)

This follows from the following facts: mj
h = m0

h + k
Ej

ℓ=1 v
ℓ
h, m0

h = Πhm
0 (the finite

element projection of m0), and ∥v̄hk∥L1(0,T,H1(D)) is uniformly bounded with respect to
h, k (a consequence of the fact that the same holds for the L2(0, T,H1(D))-norm). The
assumptions on bi and Fi give

J−1D
j=0

-�
Fi(m

j
h),ϕ

j
h

�
b′i(W (tj))

42 ≤ β2(1 + L)2M2
J−1D
j=0

KKKϕj
h

KKK2 .
These facts followed by a Young inequality with constant ε > 0 give

E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
b′i(W (tj))

* tj+1

tj

W (s)−W (ti)ds

LLLLLL
≲ kβ(1 + L)M

>
E
* tJ

0
∥ϕh∥2 ≤

(β(1 + L)M)2

4ε
k2 + εE

* tJ

0
∥ϕh∥2 .
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• Second expectation: Analogous computations, culminating in the use of the second
estimate in Lemma 5.18, give

E

LLLLLL
J−1D
j=0

�
Fi(v

j
h),ϕ

j
h

�
b′i(W (tj))

* tj+1

tj

(s− tj) (W (s)−W (ti)) ds

LLLLLL
≲k2

BCCCAE

k J−1D
j=0

-�
Fi(v

j
h),ϕ

j
h

�
b′i(W (tj))
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.
We apply again the uniform boundedness of bi and continuity of Fi. The definition of
mj+1

h in Algorithm 14 implies that vj
h =

mj+1
h −mj

h
k for any j = 0, . . . , J − 1. Thus,

max
j=0,...,J−1

KKKvj
h

KKK
H1(D)

≤ 2

k
max

j=0,...,J

KKKmj
hk

KKK
H1(D)

≤ 2

k
M. (5.46)

One of the two factors k can be simplified to obtain

E

LLLLLL
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�
Fi(v

j
h),ϕ
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h

�
b′i(W (tj))

* tj+1

tj

(s− tj) (W (s)−W (ti)) ds

LLLLLL
≲(β(1 + L)M)2

ε
k2 + εE

* tJ

0
∥ϕh∥2 ,

under the same regularity assumptions needed for the previous term.
• Third expectation:: We treat it using facts from the analogous term in the proof of
Proposition 5.19 and from the First expectation above. The uniform boundedness of b′′

and the Hölder continuity of the Wiener process sample paths implyLLLLL12
* tj+1

tj

(W (s)−W (tj))
2b′′(ξ(s))ds

LLLLL ≤ βC2
W

k2

4
,

This implies

E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
2

* tj+1

tj

(W (s)−W (tj))
2b′′(ξ(s))ds

LLLLLL
≤ βC2

W

4
k E

J−1D
j=0

k
LLL�Fi(m

j
h),ϕh

�LLL
 .

(5.47)

A Cauchy-Schwarz inequality gives

J−1D
j=0

k
LLL�Fi(m

j
h),ϕh

�LLL ≤
BCCAJ−1D

j=0

�
Fi(m

j
h),ϕh

�2
k2
√
J.

Observe now that
√
k
√
J =

√
T , recall the boundedness of Fi, and the bound on mj

h (5.45).
Another Cauchy-Schwarz inequality implies

J−1D
j=0

k
LLL�Fi(m

j
h),ϕh

�LLL
≤

√
T (1 + L)M

>* tJ

0
∥ϕh∥2.
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Returning to (5.47), we obtain,

E

LLLLLL
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�
Fi(m

j
h),ϕh

�
2

* tj+1
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(W (s)−W (ti))
2b′′(ξ(s))ds

LLLLLL
≤ βC2

W

√
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4
k E

>* tJ

0
∥ϕh∥2.

A Young inequality with constant ε > 0 implies

E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
2

* tj+1
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(W (s)−W (ti))
2b′′(ξ(s))ds

LLLLLL ≤
-
βC2
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√
T (1 + L)M
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64ε
k2

+εE
* tJ

0
∥ϕh∥2 .

• Fourth expectation:: We proceed analogously to the previous term. Let us highlight
the differences. From the boundedness of b′′ and Wiener process sample paths Hölder
continuity, we get.LLLLL12

* tj+1

tj

(s− tj)(W (s)−W (tj))
2b′′(ξ(s))ds

LLLLL ≤ βC2
W

k3

6
.

Recall the bound (5.46) of
KKKvj

h

KKK for any j = 0, . . . , J (we use it in place of the bound (5.45)

of mj
h). Analogously to the previous term, we estimate

E

LLLLLL
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k E

>* tJ

0
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Again, a Young inequality with constant ε > 0 gives

E

LLLLLL
J−1D
j=0

�
Fi(m

j
h),ϕh

�
2

* tj+1

tj

(W (s)−W (ti))
2b′′(ξ(s))ds

LLLLLL ≤
-
βC2
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√
T (1 + L)M
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36ε
k2

+εE
* tJ

0
∥ϕh∥2 .

• Fifth expectation: Apply Young inequality with constant ε > 0 to obtain

E
LLLL* t

tJ

⟨(bi(W (s))− bi(W (tJ+1)))Fi(m̂hk),ϕh⟩ ds
LLLL ≤

1

4ε
E
* t

tJ

KKK(bi(W (s))− bi(W (tJ+1)))Fi(m̂
j
hk)

KKK2 + εE
* t

tJ

∥ϕh∥2 .
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Estimate the first term using the Lipschitz continuity of bi (with constant β > 0), the
Hölder continuity of W (with exponent 1

2 and constant CW > 0 almost surely finite), the
continuity of Fi (with Lipschitz constant L > 0), and the boundedness of m̂hk:

E
LLLL* t

tJ

�
(bi(W (s))− bi(W (tJ)))Fi(m̂

j
hk),ϕh

�
ds

LLLL ≤ (βCWLM)2

8ε
k2 + εE

* t

tJ

∥ϕh∥2 .

All in all, we have obtained:

E
* t

0

�
Ĉ(W,m)− Ĉ(W̄k, m̂hk),ϕh

�
≤
2
-
β(1 + L)(1 +M)(1 + CW )(1 +

√
T )
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ε
k2

+εE
* t

0
∥ϕh∥2 .

Third term (5.42): Estimate as in (5.39) to obtain* t

0
|⟨D(m)m,ϕh⟩ | ≤

1

2ε
∥D(m)∥2L∞(DT )

0* t

0
∥e∥2 + ∥v̄hk∥2L2(DT ) k

7
+ ε

* t

0
∥ϕh∥2 .

Fourth term (5.42): Estimate as in (5.37) to obtain* t

0
⟨Rh,ϕh⟩ ≤

k2

4ε
Cstab + ε

* t

0
∥ϕh∥2 ≤

k2

4ε
Cstab + ε

* t

0
∥ϕh∥2 .

Fifth term (5.42): Apply a three-terms Hölder inequality and the continuity of the
embedding H1(D) �→ L4(D) to obtainLLLL* t

0
⟨e× v̄hk,ϕh⟩

LLLL ≤
>* t

0
∥e∥2H1(D)

>* t

0
∥v̄hk∥2H1(D) sup

[0,t]
∥ϕh∥ .

A Young inequality with constant ε > 0 givesLLLL* t

0
⟨e× v̄hk,ϕh⟩

LLLL ≤ 1

4ε
∥v̄hk∥2L2(0,T,H1(D))

* t

0
∥e∥2H1(D) + ε sup

[0,t]
∥ϕh∥2 .

Recalling the stability of the tangent plane scheme (Remark 5.20), we have that
∥v̄hk∥L2(0,T,H1(D)) is finite, uniformly with respect to h and k.

Sixth term (5.42): We apply a Young inequality with constant ε > 0 to get

E
* t

0
⟨ė−m× ė, qh⟩+ ⟨∇e,∇qh⟩ ≤εE

* t

0

-
∥ė−m× ė∥2 + ∥∇e∥2

4
+

1

4ε
E
* t

0

-
∥qh∥2 + ∥∇qh∥2

4
.

For the first term, observe that ∥ė−m× ė∥2 ≤ (1 + |D|)2 ∥ė∥2 from the unit-modulus
property of m. We estimate the second summand with Assumption (A3). Thus, we get

E
* t

0
(⟨ė−m× ė, qh⟩+ ⟨∇e,∇qh⟩) ≤ε (1 + |D|)2 E
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0
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+
1
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0

-
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4
.
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Finally, we put together all previous estimates and use Assumptions (A1), (A3) on the
test function ϕh to obtain: There exists constants C1, C2, C3 > 0 and ε > 0 such that
1− C1ε > 0 and

1

2
E
�
∥∇e(t)∥2

�
+ (1− C1ε)E

* t

0
∥ė∥2 ≤1

2
E
�
∥∇e(0)∥2

�
+ E

* t

0
C2 ∥e(s)∥2H1(D) ds (5.48)

+C3(h+ k)2. (5.49)

6. Conclusion. Observe now that

∥e(t)∥2 − ∥e(0)∥2 ≤ ∥e(t)− e(0)∥2 =
KKKK* t

0
ė(s)ds

KKKK2 ≤ * t

0
∥ė(s)∥2 ds.

So we can estimate the left-hand side of (5.48) from below to obtain

1

2
E
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�
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∥e(t)∥2

�
≤1
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E
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�
+ (1− C1ε)E
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�
+ E

* t

0
C2 ∥e(s)∥2H1(D) ds,+C3(k + h)2,

or

min

0
1

2
, 1− C1ε

7
E ∥e(t)∥2H1(D) ≤max

0
1

2
, 1− C1ε

7
E ∥e(0)∥2H1(D)

+ E
* t

0
C2 ∥e(s)∥2H1(D) ds+ C3(k + h)2.

Finally, Gronwall’s lemma gives the statement.

Let us conclude by making some remarks on the previous theorem and its proof.

Remark 5.22.

• In Assumption (A1), the supremum appearing in the left-hand side is needed to bound the
trilinear form

+ t
0 ⟨e× v̄hk,ϕh⟩ in Step 5 of the proof above. For all occurrences of ϕn, the

following weaker assumption would suffice:

(A1’) E
+ t
0 ∥ϕh∥2 ≲ E

+ t
0 ∥e∥2H1(D) + (h+ k)2 + εE

+ t
0 ∥ė∥2;

• Proving the existence of the test function ϕ satisfying (A1)-(A3) is not trivial (even if (A1)
is replaced by (A1’)). The following is a somewhat natural attempt that however fails.
Denoting Phk the L2-orthogonal projection onto Kh(m̄hk), the choice ϕh := Phk[∂tm] −
v̄hk ∈ Kh(m̄hk) does not work because (A2) is not satisfied. On the other hand, this choice
would give

∥ϕh∥L2(DT ) ≤ ∥ė∥L2(DT ) , (5.50)

since qh = ∂tm− Phk∂tm and ∥ė∥2 = ∥ϕh∥2 + ∥(1− Phk)∂tm∥2.
• Observe that the estimate in (5.48) motivates the choice of the specific form of Assump-

tion (A3): Had we assumed the presence of εE
+ t
0 ∥ė∥2 in the right hand side, we would have

ended up with a term 1
4εE

+ t
0 ∥ė∥2 that cannot be made arbitrarily small when multiplied by

ε.
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Appendix A

Physical units

Physical quantity Unit Note
Current Ampere A SI base unit
Distance Meter m SI base unit
Weight Gram g SI base unit
Time Second s SI base unit

Temperature Kelvin K SI base unit
Magnetic flux density Tesla T 1T = 1 kg

s2A
Force Newton N 1N = 103gms−2

Work, energy Joule J 1J = 1Nm

193



Appendix B

Algebraic identities and estimates

Consider a, b, c ∈ K3, with K a field. As usual, we define the dot and cross products of vectors
as

a · b = a1b1 + a2b2 + a3b3, a× b =

 a2b3 − a3b2
−a1b3 + a3b1
a1b2 − a2b1

 ;

We have the following elementary algebraic identities:

• Triple product for cross and dot product

(a× b) · c = (b× c) · a = (c× a) · b. (B.1)

• Triple product for the cross-product

a× (b× c) = b(a · c)− c(a · c). (B.2)

When working with the Landau–Lifshitz–Gilbert equation, it is useful to consider the fol-
lowing non-standard definitions: Given vector fields u,v : D → R3

• u×∇v :=
-
u× ∂v

∂x1
,u× ∂v

∂x2
,u× ∂v

∂x3

4
;

• ∇u×∇v :=
E3

i=1
∂u
∂xi

× ∂v
∂xi

;

• ⟨u×∇v,w⟩ = E3
i=1

�
u× ∂v

∂xi
, ∂w
∂xi

�
.

If a vector field m : D → R3 is such that |m| = 1 a.e., then

∆m ·m = − |∇m|2m. (B.3)

This is a consequence of the fact that ∆ |m| = 0 through the chain rule.
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Appendix C

Facts from probability theory

As above, let (Ω, E ,P) denote the classical probability triple made respectively of a set, a σ-
algebra on Ω, and a probability measure on the measurable space (Ω, E).

Characteristic function of a random variable

Definition C.1. Let X : Ω → R be a random variable. Its characteristic function ϕX : R → C
is ϕX(t) := E

�
eitX

 
.

It is a simple exercise to prove that the characteristic function of the normal random variable
X ∼ N (µ, σ2) of mean µ ∈ R and variance σ2 > 0 is ϕX(t) = eitµ−

1
2
σ2t2 . If instead X : Ω → [a, b]

is uniform on the real interval [a, b], then ϕX(t) = eitb−eita

it(b−a) . Some important properties of the
characteristic function of a random variable are:

• Two random variables X1, X2 have the same probability distribution if and only if they
have the same characteristic function: X1 ∼ X2 ⇔ ϕX1 = ϕX2 ;

• The characteristic function of the linear combination a1X1+· · ·+anXn of random variables
X1, . . . , Xn with real coefficients a1, . . . , an is ϕa1X1+···+anXn(t) = ϕX1(a1t) . . . ϕXn(ant);

• Two random variables X,Y are independent if and only if ϕX,Y (s, t) = ϕX(s)ϕY (t), where
ϕX,Y (s, t) is the characteristic function of the joint random variable (X,Y ) : Ω → R2.

Relation between Stratonovich and Itô differentials

We do not precisely define Itô and Stratonovich stochastic integrals. The interested reader can
find them e.g. in [Eva13, Sections 4.2 and 6.5 respectively].

The following are the Itô (respectively Stratonovich) chain rule, which, given a stochastic
process X = X(ω, t) through an Itô (respectively Stratonovich) SDE and a (sufficiently regu-
lar) function f = f(t, x), can be used to determine which Itô (respectively Stratonovich) SDE
f(t,X(ω, t)) obeys.

Lemma C.2 (Itô chain rule). Let T > 0, X : [0, T ] → R be solution of the following Itô SDE:

dX(t) = D(t,X(t))dt+N(t,X(t))dW (t) ∀t ∈ [0, T ], a.e. in Ω,

where D : [0, T ]×R → R and N : [0, T ]×R → R are sufficiently regular for the problem to have
solution. Let f : R×R → R be a twice-differentiable function. Then, f(·, X(·)) : Ω× [0, T ] → R
is solution of the following Itô SDE:

df =

0
∂f

∂t
+D

∂f

∂x
+

N2

2

∂2f

∂x2

7
dt+N

∂f

∂x
dW in [0, T ], a.e. in Ω,
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where for all functions we omitted the dependence on (t,X(t)).

See [Pav14, Lemma 3.2] for a proof.
The stochastic chain rule for Stratonovich SDEs is formally the same as for deterministic

functions:

Lemma C.3 (Stratonovich chain rule). Let T > 0, X : [0, T ] → R be solution of the following
Stratonovich SDE:

dX(t) = D(t,X(t))dt+N(t,X(t)) ◦ dW (t) ∀t ∈ [0, T ], a.e. in Ω,

where D : [0, T ]×R → R and N : [0, T ]×R → R are sufficiently regular for the problem to have
solution. Let f : R×R → R be a twice-differentiable function. Then, f(·, X(·)) : Ω× [0, T ] → R
is solution of the following Stratonovich SDE:

df =

0
∂f

∂t
+D

∂f

∂x

7
dt+N

∂f

∂x
◦ dW in [0, T ], a.e. in Ω,

where for all functions we omitted the dependence on (t,X(t)).

See [Pav14, Proposition 3.4] for a proof.
Another important fact is the “conversion formula” between SDEs formulated with respect

to one or the other stochastic integrals.

Lemma C.4. There holds the following identity involving Stratonovich and Itô differentials of
a sufficiently regular function f : R× R → R:

f(t,W ) ◦ dW =
1

2
∂W f(t,W )dt+ f(t,W )dW.

As a consequence, for T > 0, X : [0, T ] → R solves the following Ito SDE:

dX(t) = D(t,X(t))dt+N(t,X(t))dW (t) ∀t > 0, a.e. in Ω

if and only if it solves the following Stratonovich SDE (omitting the dependence on t,X):

dX =

0
D− 1

2
N′N

7
dt+N ◦ dW,

where D : [0, T ]×R → R and N : [0, T ]×R → R are sufficiently regular for the problems to have
solution.
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Appendix D

Facts from analysis

Stirling’s formula

For n ∈ N, there holds the asymptotic approximation

n! ≈
√
2πn

-n
e

4n
(D.1)

Exponential of an operator

Given a Banach space B, an linear operator A : B → B, the exponential of A is by definition

eA :=
D
n∈N0

A(n)

n!
, (D.2)

where A(n) denotes the composition of A with itself n times, i.e., A(0) := id, A(1) := A, and A(n) =

A(n−1) ◦ A for any n = 2, 3, . . . eA : U → U is a linear bounded operator if
-EN

n=0
A(n)

n!

4
N∈N

converges to one in the norm of L(U), i.e. the Banach space of linear operators U → U .

Sequence spaces and Stechkin’s lemma

Recall that by F we denote the space of sequences with finite support. The set of ℓp(F)-summable
sequences is by definition

ℓp(F) :=

�
a· : F → R :

D
ν∈F

|aν |p < ∞
�

if 0 < p < ∞,

ℓ∞(F) :=



a· : F → R : sup

ν∈F
|aν | < ∞

�
.

It is a Banach space for 1 ≤ p
leq∞. The following is a useful lemma to estimate the tails of ℓp-summable sequences.

Lemma D.1 (Stechkin). Let 0 < p ≤ q ≤ ∞, (an)n∈N a non-increasing sequence such that
(an)n ∈ ℓp(N). Then, .D

n>N

aqn

5 1
q

≤ ∥(an)n∥ℓp N
1
q
− 1

p .

Stechkin’s lemma can be extended to ℓp(F)-summable sequences since F is countable.
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Corollary D.2 (Stechkin lemma on F). Let 0 < p ≤ q ≤ ∞ and consider a sequence (aν)ν∈F
such that (aν)ν ∈ ℓp(F). Then, denoting Λn ⊂ F the set of multi-indices ν ∈ F with largest aν
we have  D

ν /∈Λn

aqν

 1
q

≤ ∥(aν)ν∥ℓp(N) n
1
q
− 1

p .

See [CDS11] for a proof.

Spectral theorem for compact self-adjoint operators

The following is based on [Ern14].
Let H,K be Hilbert spaces (on the real or complex field). Denote by ⟨·, ·⟩ : H × H → R the
scalar product of H and by ∥·∥ =

?⟨·, ·⟩ : H → R≥0. Denote by L(H) the linear space of linear
bounded operators on H and by L(H,K) the linear space of linear bounded operators from H
to K.

Definition D.3 ((Sequentially) compact subset of a Hilbert space). A subset A of a Banach
space B is (sequentially) compact if and only if every sequence (un)n∈N ⊂ A admits a convergent
subsequence (unk

)k∈N.

Definition D.4 (Compact, self-adjoint operator). L ∈ L(H,K) is called:

• Compact if and only if for any bounded subset B of H, L(B) is pre-compact (i.e. it has a
compact closure) in K;

• Self-adjoint if and only if ⟨Lu, v⟩ = ⟨u, Lv⟩ ∀u, v ∈ H.

The following is an example of compact, self adjoint operator:

Proposition D.5. Let D ⊂ Rn a smooth domain with n ∈ N and k ∈ L2(D × D). The
corresponding integral operator:

K : L2(D) → L2(D) Ku :=

*
D
k(x,y)u(y)dy ∀u ∈ L2(D).

is a compact operator. Moreover, if k is symmetric (i.e. k(x,y) = k(y,x) for any x,y ∈ D),
then K is self-adjoint with respect to the L2(D) scalar product.

Definition D.6. Let H be a Hilbert space and L ∈ L(H). λ ∈ C is called eigenvalue of L if
and only if there exists ϕ ∈ H \ {0} such that Lϕ = λϕ. In this case, ϕ is called an eigenvector
of L corresponding to λ.

Theorem D.7 (Spectral theorem for compact self-adjoint operators, [Bre11, Theorem 6.11]).
Let H be a separable Hilbert space, L ∈ L(H) a compact self-adjoint operator. Denote by λn,
n ∈ N the eigenvalues of L such that |λn| ≥ |λn+1| and denote ϕn ∈ H, n ∈ N the corresponding
eigenfunctions. Then,

• All eigenvalues are real and limn→∞ λn = 0;

• The set of eigenvectors {ϕn}n∈N can be chosen as a complete orthonormal basis of L(H)
(the range of L);

• In particular, for any u ∈ H, Ku =
E

n∈N λn ⟨u, ϕn⟩ϕn.
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Cauchy’s integral formula

The following classical theorem is very useful when proving approximation properties of sparse
polynomials. Let us begin by the basic case of a 1D complex domain.

Theorem D.8. Consider N, an open, connected domain in C, U a Banach space, and u : N →
U. Then, for any z0 ∈ N, k ∈ N0,

dku
dzk

(z0) =
k!

2πi

*
γ

u(z)

(z − z0)k+1
dz

for any rectifiable non self-intersecting closed curve γ ⊂ C around z0.

A direct consequence is the estimate obtained with γ such that supp (γ) = S2(z0, ρ) ⊂ Σ,
where ρ > 0: KKKKKdku

dzk
(z0)

KKKKK
U

≤ k!

ρk+1
max

z∈B(z0,ρ)
∥u(z)∥U .

When the function has a domain of dimension N ∈ N, u : Σ ⊂ CN → U, the Cauchy’s
integral formula generalizes easily to finitely-many partial derivatives:

Corollary D.9. Let u : Σ → U with Σ =
%N

n=1Nn ⊂ CN , and N ∈ N. Let U be a Banach
space. For any z0 ∈ Σ, k ∈ NN

0 ,

∂k1 . . . ∂kNu(z) =
k!

(2πi)N

*
γ1

· · ·
*
γN

u(z)

(z1 − z0,1)k1+1 . . . (zN − z0,N )kN+1
dz,

where k! =
<N

n=1 kn!, γ1 ⊂ Σ1, . . . , γN ⊂ ΣN are closed rectifiable non self-intersecting curves
around z0,1, . . . , z0,N respectively.

The corresponding estimate choosing γn such that supp (γn) = S(z0,n, ρn) for some ρn > 0
and taking the norm both sides gives

KKK∂k1 . . . ∂kNu(z)
KKK
U
≤ k!

N;
n=1

ρ−kn
n max

z∈B(z0,ρ)
∥u(z)∥U , (D.3)

where B(z0,ρ) =
%N

n=1B(z0,n, ρn) is called a polydisk of center z0 ∈ CN and radius ρ ∈ RN
>0.
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Appendix E

Notation and index of symbols

In the following tables we list the most important symbols defined and used in this document.
We do not include the most commonly accepted symbols (e.g. L2(D) for the Lebesgue space of
square-integrable functions).

Symbol Name First occurrence
A (or W) Banach space of PDE coefficients Section 1.1.1

U Banach space of PDE solutions ibid.
R Banach space of PDE residuals ibid.
R PDE residuals ibid.

(Ω, E ,P) Probability triple ibid.
D Space domain ibid.
∂D Boundary of domain D ibid.
c(·, ·) Covariance of stochastic process Section 1.1.2
C(·) Covariance operator (1.7)
Yj Scalar random variable Section 1.1.2
hℓ,j Haar basis function ibid.
N0 Non-negative integers ibid.
ηℓ,j Faber-Schauder basis function ibid.
Y Sequence of i.i.d. random variables Section 1.1.3
Γj Codomain of Yj ibid.
yj Scalar parameter, running in Γj ibid.
Γ Parametric domain ibid.
yN N -dimensional parameter Remark 1.7
ΓN N -dimensional parameter domain ibid.
R>0 Positive real numbers Section 1.1.4

Bρ(y) Complex polydisk ibid.
Σ, ΣN Complex extension domain ibid.
DT Space-time cylinder Section 1.1.5
D Drift coefficient in SPDE ibid.
N Noise coefficient in SPDE ibid.

L(B) Banach space of linear bounded operators ibid.
U Solution operator Section 1.2.2
ν Multi-index ibid.
F Multi-indices with finite support (1.22)

supp (ν) Support of a multi-index ν ∈ F (1.23)
Λ, Λℓ Multi-index set Section 1.2.2
Yν ,Yν Nodes family Section 1.2.3
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Symbol Name First occurrence
Ly Lagrange basis function ibid.

Vν , Vν Linear space of collocation type ibid.
Iν , Iν Lagrange interpolant (1.26)

∆ν (resp. ∆ν) Detail operator (resp. hierarchical surplus) Section 1.2.3
HΛ Sparse grid with respect to Λ ibid.
IΛ Sparse grid interpolant ibid.
LΛ Lebesgue constant of IΛ Equation 1.34
λν Lebesgue constant of Iν Section 1.2.3
m(·) Level-to-knot function ibid.
vν Value of the multi-index ν Equation 1.40
wν Value of the multi-index ν Equation 1.41
Pν Profit of the multi-index ν Equation 1.42
en n-th coordinate unit vector Section 1.2.3
MΛ Margin of the multi-index set Λ Definition 1.19
RMΛ Reduced margin of multi-index set Λ ibid.
Ty Mesh in collocation point y Section 1.2.4
Uy Finite dimensional space in y ibid.
ζν,Λ Pointwise estimator (1.44)
ζSC,Λ A-posteriori error estimator ibid.
ηy,T Element-wise finite element estimator (1.45)
ηy Parameter-wise finite element estimator ibid.

ηFE,Λ Finite element estimator ibid.
Ms Saturation magnetization Section 1.3.2
T Final time for parabolic problems Also mesh element
m (Adimensional) magnetization (1.49)
S2 Unit sphere in R3 Section 1.3.2
Heff Effective field (1.51)
λ Gilbert damping Section 1.3.2

L2(D), H1(D), etc. Banach spaces of vector valued function Section 1.3.2
⟨·, ·⟩ L2(D)-scalar product ibid.
∥·∥ L2(D) norm ibid.
h Mesh-size Section 1.3.3
Nh Mesh nodes ibid.
V h Vector-valued piecewise linear function ibid.
Ih Nodal interpolant onto V h (1.56)
Πh L2-projection onto V h (1.57)
τ Time-step Section 1.3.3

⟨·, ·⟩h Mass-lumped scalar product (1.58)
∆h Discrete Laplacian (1.59)
dt Backward finite difference (1.60)

mj+ 1
2 Midpoint operator (1.61)

Mh Discrete magnetizations space Section 1.3.3
K(mh) Discrete tangent space (1.62)
mτ,h Magnetization approximation Section 1.3.3
M Random magnetization Section 1.3.4

Hthermal Thermal noise ibid.
g Noise coefficient ibid.
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Symbol Name First occurrence
G Noise operator Section 1.3.6

Ĉ(s,u) (1.78)
C(s,u) ibid.
E(s,u) ibid.
ρ, ρN Densities of random variables Section 2.1.1
Uy Finite element solution for parameter y Section 2.1.2I

Disjoint union Algorithm 8
Aν,Λ downward-closure Section 2.1.3
θ Dörfler parameter Algorithm 8
λm Lebesgue constant w m nodes (2.11)

Rectν Multi-index rectangle in F Definition 2.17
Jν,Λ Set of relevant multi-indices Remark 2.4
µΛ Set of maximal multi-indices in margin MΛ Definition 2.8

∥·∥L(U,V ) Norm of linear operator U → V Section 2.2.3
T Set of admissible meshes Theorem 2.24

λq,Λ Section 2.3.3
WR (resp. W) Coefficients (resp. complex coefficients) space Section 3.1.1
UR (resp. U) Solutions (resp. complex solutions) space ibid.

XR, X Parameter space Section 3.1.1
D, µ Gaussian measure or density Section 3.1.1
Ra Alternative SLLG residual (3.21)
Rs Simplified SLLG residual (3.50)

H(u,v,w) Trilinear form SLLG (3.21)
C̃(s,u) Linearized term in simplified SLLG (3.49)
ζ̃ν Conservative pointwise parametric estimator Definition 5.4

Xα(w) Anisotropic simplex multi-index set Definition 5.6
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