




Kurzfassung

WICHTIGE Hersteller von Mikroprozessoren verbessern seit der Einführung der 90 nm-
Technologien die Transporteigenschaften von Silizium durch den Einsatz von Techniken,

die mechanische Spannungen im Transistorkanal induzieren. Die gängigsten dieser neuen Tech-
niken, die entweder globale oder lokale Verspannungen am Silizium Wafer einprägen, werden in
dieser Arbeit behandelt.

Während sich bisher theoretische Arbeiten fast ausschließlich mit biaxial verspanntem Silizium-
substrat mit {001} Orientierung beschäftigten, sind die physikalischen Ursachen der Verbesse-
rung der Elektronenbeweglichkeit durch uniaxiale Verspannung noch nicht zur Gänze geklärt.
In dieser Arbeit wird der Einfluss allgemeiner homogener Verspannung – beschrieben durch den
Spannungstensor ε̂ – auf den Bulk-Transport und die Oberflächenbeweglichkeit von Silizium un-
tersucht. Als Grundlage der Analyse dient die Bandstruktur von verspanntem Silizium, welche
einerseits numerisch mittels der nicht-lokalen empirischen Pseudopotentialmethode mit Spin-
Bahn Kopplung und andererseits analytisch mit Hilfe der störungstheoretischen k · p Methode
berechnet wird. Zusätzlich zur Verschiebung der Leitungsbandtäler relativ zueinander läßt sich
aus den Berechnungen der Bandstruktur eine Änderung der effektiven Elektronenmassen ablei-
ten. Diese kann auf die Aufhebung der Entartung der zwei untersten Leitungsbänder im X-Punkt
zurückgeführt werden, die von einer Scherspannung hervorgerufen wird. Mittels der k·p Methode
werden auch analytische Gleichungen zur Beschreibung der Massenänderung hergeleitet.

Die Beweglichkeit in verspanntem Silizium wird durch das Lösen der Boltzmanngleichung mit
Hilfe einer Monte Carlo Methode berechnet, der sowohl eine analytische Bandbeschreibung
als auch die numerisch berechnete Bandstruktur zugrunde gelegt werden kann. Es zeigt sich,
dass nur im Fall von kleinen Scherverspannungen (< 0.5%) die Beweglichkeit bei niedrigen
Feldstärken aus Monte Carlo Simulationen mit einer analytischen Beschreibung der Bandstruk-
tur mit den Simulationsergebnissen übereinstimmen, die die numerische Bandstruktur verwen-
den. Dies unterstreicht die Wichtigkeit die gesamte Bandstruktur einer genauen Modellierung
des Ladungsträgertransports in verspannten Silizium zugrunde zu legen.

Durch das Aufkommen der Hybrid-Orientation Technologie haben die Substratorierungen {110}
und {111} an Bedeutung gewonnen. Da eine mechanische Verspannung zu einer Anisotropie
der Ladungsträgerbeweglichkeit führt, muss die Verspannung auf die Richtung des Kanals und
die Substratoberfläche abgestimmt werden, um den größten Beweglichkeitszuwachs zu errei-



chen. Um die Auswirkungen der Verspannung auf die Oberflächenbeweglichkeit zu bestimmen,
wird die Subbandstruktur durch selbstkonsistentes Lösen der Schrödinger-Gleichung und der
Poisson-Gleichung berechnet. Im zweidimensionalen Elektronengas bewirkt die Scherspannung
eine energetische Verschiebung der Subbandleitern und eine Änderung der effektiven Massen.
Beweglichkeitssimulationen zeigen, dass durch die inhärente Aufspaltung der Subbänder bei
starker geometrischer Quantisierung, wie etwa bei Dünnschichttransistoren, die Änderung der
effektiven Masse gegenüber der Verschiebung der Subbandleitern an Bedeutung gewinnt.

Des Weiteren wird in dieser Arbeit der Einfluss des Pauli-Verbots auf den Elektronenladungs-
trägertransport untersucht. Dies ist vor allem im zweidimensionalen Elektronengas von Bedeu-
tung, wo das Fermi-Niveau bei starker Inversion deutlich über dem Minimum des untersten
Leitungsbandes liegt.



Abstract

STARTING with the introduction of the 90 nm CMOS technology node many important mi-
croprocessor manufacturers improve the transport characteristics of silicon using techniques

that induce strain in the transistor channel. The most common techniques that produce strain
globally or locally on the wafer are being reviewed in this work.

While most theoretical work has been performed for biaxially strained Si with {001} substrate
orientation, a thorough theoretical analysis of electron mobility enhancement in arbitrarily
strained Si is missing. In this work the effect of a general homogeneous strain – described by the
strain tensor ε̂ – on the transport in bulk Si and Si inversion layers is analyzed. The band struc-
ture of strained Si is calculated numerically using the empirical pseudopotential method with
nonlocal and spin-orbit corrections. The results of band structure calculations reveal that shear
strain changes the effective electron masses in addition to the splitting of the six Δ-valleys. The
effective mass change can be attributed to the lifting of the degeneracy of the two lowest con-
duction bands at the X-point due to shear strain. Using the k·p method analytical expressions
for the effective mass change are derived.

The transport properties of strained Si are investigated by solving the semiclassical Boltzmann
equation using the Monte Carlo (MC) method employing fullband and analytical band models.
The low-field electron mobility resulting from MC simulations using an analytical description of
the electron bands and the fullband description coincide only for not too high shear strain (<
±0.5%). At larger shear strain the band deformation is so pronounced, that fullband modeling
is required.

The hybrid-orientation technology combines different silicon substrate orientations and channel
directions on the same wafer and can be used in conjunction with strain techniques. Since strain
yields an anisotropic mobility, the proper channel direction and substrate orientation have to be
chosen to obtain the maximum mobility enhancement. The effect of strain on the inversion layer
mobility of electrons is investigated by calculating the subband structure using a self-consistent
Schrödinger-Poisson solver. In the two-dimensional electron gas shear strain results in a shift
of the subband ladders and a change of the effective electron masses. From simulations of the
effective electron mobility in ultra-thin-body MOSFETs it can be concluded that the change of
the effective masses is the dominant effect leading to mobility enhancement, since the strong
geometrical confinement yields a large intrinsic splitting of the subband ladders, such that an



additional splitting induced by strain has only a little effect.

The effect of degeneracy both on the phonon-limited mobility and the effective mobility including
surface-roughness scattering is studied using a new MC algorithm developed in this work. By
comparison with results from MC simulations where the Pauli exclusion principle is neglected,
it is shown that a correct treatment of degenerate carrier statistics of the 2DEG of Si inversion
layers is important.
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Chapter 1

Introduction

For more than two decades the rapid progress in complementary metal-oxide-semiconductor
(CMOS) technology was accompanied by a tremendous pace of scaling, leading to an enor-

mous increase of the speed and functionality of electronic devices. This trend is expected to
continue in the coming decade as predicted and institutionalized by the International Technology
Roadmap for Semiconductors [SIA06].

The end of scaling has often been predicted in the past, but engineers’ ingenuity has regularly
proven wrong these predictions [Haensch06]. Two remarkable failures involve a predicted limit
for spatial resolutions of about 400 nm imposed by lithography [Hoeneisen72, Wallmark75] and
a lower bound of 3 nm for the gate oxide thickness, below which an unacceptable gate leakage
current was expected [Hu96, Stathis98].

However, when examining high-performance devices in recent technology generations, early signs
of scaling limits can be seen. Even though potential brick walls for scaling have been overcome,
it is becoming increasingly difficult to meet metal-oxide-semiconductor field-effect transistor
(MOSFET) performance gains with reasonable device leakage. To obtain the projected perfor-
mance enhancement of 30% per generation, device designers have been forced to relax the device
subthreshold leakage from one nA/ m for the 250 nm node to several hundreds of nA/ m for
the 65 nm node [Chang03]. Consequently, the gate leakage current constitutes a significant por-
tion of the power budget of microprocessors. Another critical scaling issue involves the increase
of the source-drain series resistance resulting from the need for ultra-shallow p-n junctions in
the source-drain region [Skotnicki05]. To keep the source-drain series resistance at a reason-
able fraction of the total channel resistance (∼10%), several alternative MOSFET structures
have been proposed, such as non-overlapped gate structures, which do not require ultra-shallow
source-drain junctions [Boeuf01, Lee02], or structures with metallic source and drain electrodes
to minimize the series resistance [Connelly03, Fritze04, Zhu04].

In the present time the scaling of the gate oxide thickness has halted [Haensch06]. Advanced
single gate structures, such as FinFETs, ultra-thin-body (UTB) MOSFETs, or multiple gate
MOSFETs might provide a path to scaling CMOS to the end of the ITRS roadmap. Additionally,
the material properties of a device are now being included in the scaling analysis. For example,
the permittivity constant of the gate insulator has only slightly participated in scaling in the
past. This is expected to change with the introduction of metal gates and hafnium-based high-κ
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INTRODUCTION

dielectrics in the 45 nm technology node, which will be in mass production this year [Intel07].

Another parameter not included in scaling in the past was the mobility of the channel material.
This fact was especially critical, since mobility tends towards lower values due to higher vertical
fields in down-scaled MOSFET devices. With the 90 nm technology node strain techniques have
been introduced that efficiently increased the transistor drive current by enhancing the mobility
of carriers in the channel [Rim02, Thompson04].

Strain engineering is a key element in current CMOS technologies and is widely believed to
take a key position also in the future, since the benefits caused by mobility enhancement in the
channel are comparatively big [Thompson06]. Furthermore, it has been demonstrated that this
technology can also be used in non-classical CMOS structures [Rim03, Andrieu06]. For example,
the advantages of a UTB MOSFET, such as the better electrostatic control of the channel by
the gate in the off-state, can be combined with enhanced carrier transport provided by strain.
Therefore, increasing emphasis is put on this technology to enhance chip performance. Since
the maximum performance enhancement this new technology can deliver is still not known, it is
convenient to do numerical simulations with accurate physical models in order to gain a better
understanding of the underlying mechanisms responsible for the observed mobility enhancement.
In this thesis, the effect of strain on the band structure of silicon (Si) and the electron mobility
enhancement in bulk MOSFETs and UTB MOSFETs is analyzed numerically.

The thesis is organized as follows: In Chapter 2 the reader is introduced to the short but
versatile history of CMOS strain engineering. After reviewing the most important global and
local strain techniques, several state-of-the-art technologies are outlined. In Chapter 3 the
bulk band structure of strained cubic semiconductors is discussed. A k·p method capturing the
effect of strain on the lowest conduction band of Si is developed. Additionally, the adaptation of
the empirical pseudopotential method (EPM) including spin orbit coupling to incorporate strain
effects is presented. In Chapter 4 the subband structure of strained Si inversion layers formed
at Si-SiO2 interfaces with various substrate orientations is discussed. The subband energies and
the wave functions of Si inversion layers are obtained by a self-consistent solution of the Schrö-
dinger equation and the Poisson equation. Chapter 5 is dedicated to the numerical modeling
of mobility. The transport properties of strained Si are investigated by solving the semiclassical
Boltzmann equation using the Monte Carlo (MC) method. The models for the scattering mech-
anisms used in the MC simulations of bulk Si and Si inversion layers are given. Additionally,
a MC method that includes degeneracy effects for small driving fields is presented. Simulation
results are summarized in Chapter 6. The analytical band structure obtained from the k·p
theory is compared to numerical calculations using the EPM. The subband structure of strained
Si inversion layers is presented for various strain configurations and substrate orientations. The
simulation results for the bulk electron mobility of strained Si are compared to measurements
and to phenomenological mobility models based on the piezoresistance coefficients. The electron
mobility is calculated using the MC method employing fullband (FBMC) and analytical band
models (ABMC). A comparison of the results allows the extraction of the limits of validity of
the analytical band model. Finally, the effect of strain and degeneracy on the effective mobility
in Si inversion layers for (001) and (110) substrate orientation is presented and the influence of
the Si body thickness on the effective mobility in ultra thin body MOSFETs is discussed.
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Chapter 2

Strain Engineering

The influence of strain on the intrinsic mobility of Si was first investigated in the early 1950’s
[Hall51, Smith54]. While this effect was not exploited initially, the idea was revived in the
early 1990’s [Fitzgerald91]. In 1992 it was first demonstrated that n-channel MOSFETs on
a strained Si substrate exhibit a 70% higher effective mobility (µeff) than those on unstrained
substrates [Welser92, Welser94]. Ever since semiconductor industry has adopted several different
technologies to introduce strain in the channel of a MOSFET.

Strain technologies are based on mechanically stretching and/or compressing the Si crystal lat-
tice by various means. Innovative techniques introducing stress in the Si channel have been
developed, which require only small modifications of some process steps, thus keeping the addi-
tional costs small. At the same time the integrability of strained Si in the CMOS manufacturing
process flow is retained.

A classification of strain techniques into two categories is possible. Strain is introduced across
the entire substrate in global strain techniques, whereas local techniques induce strain in selected
regions of the wafer. Some of the most prominent strain technologies that are currently used
in industry are given in Figure 2.1. A key challenge of all technologies is their ability to be
integrated into the CMOS manufacturing processes and to avoid significant increase in processing
costs. In this chapter several strain technologies and the current progress in high-mobility
strained MOSFETs are reviewed.

2.1 Global Strain Techniques

Most of the pioneering work on strained Si was focused on biaxial global strain generated by
epitaxial growth of a thin Si layer on a relaxed SiGe virtual substrate [Welser92, Welser94].
Because of the lattice mismatch between Si and SiGe, the lattice of the Si layer is biaxially
tensile strained in the plane of the interface. On {001} oriented substrates this deformation
results in enhanced carrier transport in the strained Si layer, and mobility enhancements of 110%
for electrons and 45% for holes have been demonstrated on sub-100 nm strained Si MOSFETs
[Rim02].
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global strain, the local techniques enjoy three main advantages: (i) strain can be indepen-
dently tailored to optimize performance enhancement for both n-channel- and p-channel MOS-
FETs, (ii) the threshold voltage shift is smaller in uniaxially stressed MOSFETs [Lim04], and
(iii) local stress techniques are cheaper and more compatible with standard CMOS technology
[Khamankar04].

The main challenge is to optimize process modules so as to maximize beneficial effects from
stressors while minimizing negative side effects. A drawback of process-induced strain tech-
niques is their strong device geometry dependence, making their scaling behavior less predictable
[Eneman05].

Four important stress-transfer techniques will be discussed in the following: (i) the contact etch
stop liner technique (CESL); (ii) the stress memorization technique (SMT); (iii) a technique
based on selective epitaxial growth (SEG) of the source/drain regions, and (iv) stress from
shallow trench isolation (STI).

2.2.1 Contact Etch Stop Liner Technique

In this technique a highly stressed liner is uniformly deposited on top of the wafer after the
silicide formation, transferring the stress from the liners to the channel. The stress-transfer
depends on the thickness and the material properties of the liner [Ito00]. Tensile liners have
been reported to improve the saturated drive current of n-channel and p-channel MOSFETs by
11% and 20%, respectively [Yang04].

If one single liner is used, only one type of stress can be introduced in both the n-channel and the
p-channel MOSFET. As a consequence, similar to global strain techniques, just one transistor
type is enhanced while the other might even be degraded. In order to achieve performance
enhancement in both n-channel- and p-channel MOSFETs, two types of stress liners have to be
processed. In a dual stress liner (DSL) process a highly compressive nitride is deposited on top
of the p-channel MOSFET, whereas a highly tensile nitride is deposited on top of the n-channel
MOSFET [Sheraw05, Yang04].

Si3Ni4 layers with more than 2.0 GPa tensile and 2.5 GPa compressive stress have recently been
reported. These films introduce more than 1.0 GPa stress in the MOSFET channel [Arghavani06]
being comparable in magnitude to stress-induced by selective epitaxial growth techniques (see
Section 2.2.3).

2.2.2 Stress Memorization

In a process using the stress memorization technique the conventional spike anneal for dopant
activation is performed after the deposition of a tensile stressor capping layer [Khamankar04,
Ota02, Chen04, Horstmann05]. This layer is subsequently removed before the salicide process.
Even though the stressor nitride layer is removed from the final structure, the stress has been
transferred from the nitride film to the channel during annealing and is memorized during
re-crystallization of source/drain and the poly gate amorphized layers. Improvements of the
on-current up to 15% were reported for n-channel MOSFETs using this technique [Chan05].
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process-induced stress.

Starting from the 90 nm node, companies such as IBM [Ouyang05], Intel [Thompson04], Texas
Instruments [Chidambaram06], and Freescale [Zhang05], incorporated the selective epitaxial
growth technique to transfer uniaxial compressive stress into the Si channel by growing a local
epitaxial film of SiGe in the source and drain region of p-channel MOSFETs. Depending on the
proximity of the SiGe to the channel and the Ge content, 500–900 MPa stress is created in the
channel [Mohta05]. Using this technique impressive saturation drain current enhancement up to
20%–25% have been demonstrated for p-channel MOSFETs [Thompson04, Zhang05]. A tensile
Si nitride-capping layer is used to introduce tensile uniaxial strain into the n-channel MOSFET,
which enhanced the drive current by 10% [Thompson04].

Alternatively, a less complex technique was jointly developed by AMD and IBM [Yang04]. Com-
pressive and tensile capping layers grown on top of the transistors were used as local stressors
instead of epitaxial films in the source and drain region [Pidin04, Sheraw05]. Si nitride (Si3N4)
was found to produce either tensile or compressive strain depending on its deposition conditions.
During the process, a highly tensile Si nitride layer is first deposited using thermal chemical va-
por deposition over the entire wafer. This layer is afterwards etched away selectively from the
p-MOS active areas. A compressive Si3Ni4 layer is then deposited using plasma-assisted chemical
vapor deposition. Then the nitride layer on the n-channel transistors is etched away, resulting
in wafers with n-channel transistors under tensile and p-channel transistors under compressive
uniaxial strain. This dual stress liner (DSL) approach resulted in drive current enhancement of
11% (20%) for n-channel (p-channel) MOSFETs [Yang04].

In future CMOS technology nodes various strain techniques may be combined to yield even larger
strain levels, as shown in Figure 2.3. P-channel MOSFETs with selective SiGe epitaxial layers
providing compressive strain, and n-channel MOSFETs that are uniaxially strained by tensile
cap films have been successfully combined on the same wafer recently [Jan05]. An optimized
stress integration on SOI CMOS was presented by [Horstmann05], where an embedded SiGe
process and a compressively stressed liner film were used to induce compressive strain in the
p-channel MOSFET, whereas a stress memorization process and a tensile stressed liner film were
used to induce tensile strain in the n-channel MOSFET. With optimization, the different stress
techniques were shown to be highly compatible and additive to each other, improving p-channel
and n-channel MOSFET saturation drive current by 53% and 32%, respectively.

2.3.1 Hybrid Orientation Technology

An alternative approach yielding mobility improvement in Si exploits the dependence of the car-
rier mobility in Si inversion layers on the crystal orientation and on the current flow direction.
For example, for holes the mobility is 2.5 times higher for (110) surface orientation than for stan-
dard (001) orientation depending on the applied effective vertical field. In the hybrid orientation
technology (HOT), which is based on wafer bonding techniques and selective epitaxy, the larger
carrier mobility of holes for (110) oriented substrate is exploited to enhance the performance of
p-channel MOSFETs [Ouyang05, Yang06, Sheraw05]. HOT seems promising because processes
are directly compatible with existing CMOS technology and strain engineering.
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Chapter 3

Strain Effects on the Bulk Band
Structure

THE band structure describes the states of energy in the crystal momentum space that
electrons and holes are allowed to have. It presents the electronic dispersion relation under

the influence of the potential of the solid. The band structure determines several important
characteristics, in particular its electronic and optical properties.

In this chapter, first the basic physical definitions are introduced, such as the strain and stress
tensors and how they are related in cubic semiconductors (Section 3.1 to Section 3.3).

The vast majority of semiconductors of interest for electronic and optoelectronic applications
have a diamond structure with an underlying face centered cubic (fcc) lattice consisting of two
atoms per basis. The basic properties of the diamond structure and the band structure of relaxed
Si are presented in Section 3.4.

The symmetry of the crystal in real space is directly reflected in the symmetry of the band
structure in momentum space. Using group-theoretic methods many properties of the band
structure can be obtained from these symmetries. Section 3.5 is devoted to the effect of strain
on the symmetry of the diamond structure. Special focus is put on the consequence of the
strain-induced reduction of symmetry for band structure calculations.

Hereafter, three different methods of calculating the effect of strain on the band structure are
presented:

 Historically, the first approach was developed by Bardeen and Shockley and is known as
the deformation potential theory. The perturbation caused by strain is attributed to an
additional Hamiltonian which is linearly proportional to the deformation potential operator
and to strain. First order perturbation theory is used to calculate the effect of strain on
the band structure and analytical expressions for the strain-induced energy shifts of the
conduction- and valence-bands can be obtained. The salient features of this theory and
relevant results are summarized in Section 3.6.

 Strain does not only shift the conduction and valence bands, but also changes the curvature
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of the energy bands. In Section 3.7 the main features of the k·p method are briefly outlined,
as this method is able to capture the deformation of the shape of the energy bands under
strain. It is frequently used to model the influence of strain on the valence bands. On
the contrary, the impact of strain on the curvature of the conduction band has often been
neglected. In Section 3.7.2 a k·p analysis capturing the effect of strain on the lowest
conduction band of Si is developed. It shows that shear strain can alter the curvature of
the conduction bands and thus can reduce the effective masses of electrons.

 The empirical pseudopotential method (EPM) [Chelikowsky76] including nonlocal effects
and spin orbit coupling is frequently used to calculate the band structure of semiconduc-
tors, as this method is efficient and requires only a small number of parameters. These
are usually calibrated to match energy gaps and effective masses determined from ex-
periments and are available for a large set of materials [Yu03]. The method can very
naturally be adapted to incorporate strain effects and has been used to investigate the
band structure of biaxially strained Si1−xGex grown on Si1−yGey for various surface orien-
tations [Fischetti96a, Van de Walle86, Rieger93]. In Section 3.8 it is shown how a general
strain tensor can be taken into account by this method for band structure calculation.
Special focus is put on the orthorhombic distortion of the crystal structure resulting from
uniaxial stress along the [110] direction. This type of stress is used in practice to enhance
the electron mobility in n-channel MOSFETs.

3.1 Strain

In this section the basic expressions and notations for strain in cubic crystalline solids are
established. A more detailed analysis can be found in textbooks [Bir74, Kittel96, Singh93].
Starting point for the definition of strain in a system is a set of orthonormal vectors x, y and
z embedded in an unstrained solid. These vectors are distorted to x′, y′, and z′ under the
influence of a uniform deformation

x′ = (1 + ǫxx)x + ǫxyy + ǫxzz ,

y′ = ǫyxx + (1 + ǫyy)y + ǫyzz ,

z′ = ǫzxx + ǫzyy + (1 + ǫzz)z , (3.1)

where the coefficients ǫij define the deformation of the system.

For a uniform deformation of a body point originally located at r = xx+yy+zz the displacement
to r′ = xx′ + yy′ + zz′ is defined as

R ≡ r′ − r = x(x′ − x) + y(y′ − y) + z(z′ − z)

= (xǫxx + yǫyx + zǫzx)x

+ (xǫxy + yǫyy + zǫzy)y

+ (xǫxz + yǫyz + zǫzz)z . (3.2)

More generally, the displacement for a non-uniform deformation can be defined by introducing
a position dependent vector function u(r),

R(r) = ux(r)x + uy(r)y + uz(r)z . (3.3)
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3.3 Stress-Strain Relations

Silicon Germanium Units

c11 166.0 126.0 GPa

c12 64.0 44.0 GPa

c44 79.6 67.7 GPa

Table 3.1: Elastic stiffness constants of Si and Ge [Levinshtein99].

3.3 Stress-Strain Relations

A mathematical expression of the stress-strain relation for the elastic deformation of materials
was first suggested by Robert Hooke

F = ku . (3.10)

Here, F is the applied force, u is the deformation of the elastic body subjected to the force
F , and k is the material dependent spring constant. Cauchy generalized Hooke’s law for three
dimensional elastic bodies

σij = Cijklεkl , (3.11)

where Cijkl is the elastic stiffness tensor of order four, which contains 81 entries. The number of
components can be reduced invoking symmetry arguments [Kittel96]. For a cubic semiconductor
such as Si, Ge or GaAs, there are only three independent components, namely c11, c12, and c44.
The elastic stiffness constants for Si and Ge are given in Table 3.1.

Exploiting the symmetry of a cubic semiconductor the elastic stiffness tensor can be written as
a 6 × 6 matrix, and generalized Hooke’s law reduces to a set of six equations����������

σxx

σyy

σzz

σyz

σxz

σxy

����������
=

����������

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

����������
·

����������

εxx

εyy

εzz

2εyz

2εxz

2εxy

����������
. (3.12)

If the stresses are known, the values for the strains are to be determined by inversion of (3.11).
Introducing the elastic compliance tensor Sijkl, the inverted equation becomes in the index
notation

εij = Sijklσkl , (3.13)
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or in matrix form����������

εxx

εyy

εzz

2εyz

2εxz

2εxy

����������
=

����������

s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44

����������
·

����������

σxx

σyy

σzz

σyz

σxz

σxy

����������
. (3.14)

The elastic compliance constants sij are related to the elastic stiffness constants cij via

s11 =
c11 + c12

c2
11 + c11c12 − 2c2

12

,

s12 =
−c12

c2
11 + c11c12 − 2c2

12

, and

s44 =
1

c44
.

Note that the stiffness constants are traditionally represented by the symbol cij , while sij is
reserved for the compliance constants.

3.3.1 The Miller Index Notation

The Miller indices can be used to specify directions and planes in a crystal [Ashcroft76, Kittel96].
The Miller indices of a plane are defined in the following way: First, three lattice vectors have
to be defined. For cubic crystal systems, the lattice vectors are chosen along the edges of the
crystallographic unit cell (unit cube). Any crystal plane intercepts the axes in certain points.
The Miller indices are the ratios of these points and are given as a triplet of integer values (hkℓ).
A Miller index 0 means that the plane is parallel to the respective axis. Negative indices are
indicated with a bar written over the number.

In the notation of [Ashcroft76], [hkℓ] with square brackets instead of round brackets, denotes
a direction in the basis of the lattice vectors. The notation {hkℓ} denotes all planes that are
equivalent to (hkℓ) by the symmetry of the crystal. Similarly, the notation <hkℓ> denotes all
directions that are equivalent to [hkℓ] by symmetry.

In cubic crystal systems the Miller indices of a plane are the same as those of the direction
perpendicular to the plane.

3.3.2 Strain Resulting from Uniaxial Stress

This section describes the calculation of the strain tensor resulting from a uniaxial stress of
magnitude P along an arbitrary direction.

Analysis begins by adopting a coordinate system (x′, y′, z′) in which the x′ axis is parallel to
the stress direction. This system is related to the coordinate system (x, y, z) of the primary
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By inserting 3.17 in 3.14 the strain tensors can be calculated:

¯
ε[100] = P

��
s11 0 0

0 s12 0

0 0 s12

�� ¯
ε[110] =

P

2

��
s11+s12 s44/2 0

s44/2 s11+s12 0

0 0 2s12

��

¯
ε[111] =

P

3

��
s11+2s12 s44/2 s44/2

s44/2 s11+2s12 s44/2

s44/2 s44/2 s11+2s12

�� ¯
ε[120] =

P

5

��
s11+4s12 s44 0

s44 s12+4s11 0

0 0 5s12

��
(3.18)

In the same manner the strain tensor resulting from a uniaxial stress in general directions [hkℓ]
can be obtained by applying the proper coordinate transformation (3.15).

3.3.3 Strain Resulting from Epitaxy

In techniques using global strain, biaxial strain is induced in the Si layer by epitaxial growth
on a relaxed virtual substrate with different lattice constant. The strain tensor depends on the
mismatch of the lattice constants and on the substrate orientation. The strain in the plane of
the hetero-interface can be determined from the lattice mismatch

ε|| =
as − a0

a0
, (3.19)

where a0 = 5.431 Å is the lattice constant of Si [Levinshtein99] and al that of the substrate
layer.

The strain tensor for arbitrary substrate orientations can be calculated according to [Hinckley90]
and is given here for some frequently used substrate orientations:

¯
ε(001) = ε||

���
1 0 0

0 1 0

0 0 −2c12

c11

���

¯
ε(110) = ε||

����
2c44 − c12

c11 + c12 + 2c44
− c11 + 2c12

c11 + c12 + 2c44
0

− c11 + 2c12

c11 + c12 + 2c44

2c44 − c12

c11 + c12 + 2c44
0

0 0 1

����

¯
ε(111) = ε||

�����
4c44

c11 + 2c12 + 4c44
− c11 + 2c12

c11 + 2c12 + 4c44
− c11 + 2c12

c11 + 2c12 + 4c44

− c11 + 2c12

c11 + 2c12 + 4c44

4c44

c11 + 2c12 + 4c44
− c11 + 2c12

c11 + 2c12 + 4c44

− c11 + 2c12

c11 + 2c12 + 4c44
− c11 + 2c12

c11 + 2c12 + 4c44

4c44

c11 + 2c12 + 4c44

����� (3.20)
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3.4 Basic Properties of the Diamond Structure

The diamond structure is invariant not only under translations, but also under several other
symmetry operations such as reflections, rotations, or inversion. These symmetry operations are
usually denoted as point operations, since they leave at least one point of the lattice invariant,
which is not the case for translations. The set of all point operations for a particular crystal
structure forms a group which is denoted as point group. The point group of the diamond
structure has 48 symmetry elements which are reflected in the symmetry of the first BZ. A
quick examination (see Figure 3.5) shows that the BZ is invariant under various rotations, for
example 90◦ rotations about the kx, ky, and kz axes and under reflections through certain
planes. A detailed examination of all 48 point symmetries of the unstrained diamond structure
will be given in Section 3.5.2.

The point symmetries of the crystal structure are mirrored in the crystal potential, and hence in
the one-particle Hamiltonian used for band structure calculations. Two important consequences
for the electron band structure arise:

 Wave functions can be expressed in such a form that they have definite transformation
properties under symmetry operations of the crystal. Certain matrix elements of operators
can be shown to vanish and selection rules can be deduced, when classifying the wave
functions according to their symmetry.

 The energy bands possess the full point symmetry of the point group of the crystal [Yu03,
Nowotny98]. The symmetries can be exploited to restrict the band structure calculation
to a fraction of only 1/48th of the first BZ. This fraction is called irreducible wedge of the
BZ.

The irreducible wedge of the fcc lattice is depicted in Figure 3.5b. It has six corners

Γ =
2π

a0

��
0

0

0

�� , X =
2π

a0

��
1

0

0

�� , L =
2π

a0

��
1
2

1
2

1
2

�� ,

W =
2π

a0

��
1

1
2

0

�� , K =
2π

a0

��
3
4

3
4

0

�� , U =
2π

a0

��
1

1
4

1
4

�� , (3.26)

connected via symmetry lines

Λ : Γ → L, Δ : Γ → X, S : X → U, K,

Σ : Γ → U, K, Q : L → W, Z : X → W. (3.27)

By convention upper case Greek letters are used for points and lines inside the first BZ, whereas
roman letters denote points and lines on the surface of the first BZ. Here, the points U and K
can be interchanged, since they are equivalent in the reciprocal space (see Section 3.5).

3.4.1 Band Structure of Relaxed Si

The band structure describes the variation of the energy E with the wave-vector k. The valence
bands contain the last filled energy levels at T = 0 K, whereas the conduction bands are empty
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projected onto itself or k + Glmn. For each vector k there exists a set of symmetry operations
α fulfilling

αk = k , or αk = k + Glmn . (3.32)

The number of symmetry operations α depends on the wave vector k and is denoted as the
symmetry group P (k) of the respective k vector

P (k) = {α |αk = k + Glmn} . (3.33)

Since the unity operation E always fulfills (3.33), the symmetry group P (k) contains one element
at least (α = E). If the symmetry group of a given vector k contains more elements than the
symmetry group of neighboring points, this specific vector k is referred to as symmetry point.

In Figure 3.5b the symmetry points (filled circles) and symmetry lines (open circles) of the fcc
lattice are shown. Strictly, the given points K and U are not symmetry points according to the
definition of (3.33), since they have the same symmetry as the points along the symmetry lines
Σ and S. Hence, they can be included in these symmetry lines.

Since the center point Γ of the BZ is mapped onto itself at any point operation α of the crystal
lattice, all symmetry operations of the lattice are included in the point group P (Γ). Thus, this
group determines the shape and volume of the irreducible wedge. The number of symmetry
elements of P (Γ) determines the volume of the irreducible wedge as [Nowotny98]

Ωirred = ΩBZ/|P (Γ)| , (3.34)

where |P (Γ)| is the number of elements of the symmetry group P (Γ).

3.5.1 Hierarchy of systems

The point group of the unstrained diamond structure is denoted by Oh according to the Schönfließ
notation, and contains 48 symmetry elements listed in Table 3.2 [Yu03]. The symmetry elements
are given in terms of rotations and rotations followed by the inversion operation (Ik = −k). The
following notation for the point operations is chosen:

E unity operation
n+

k clockwise rotation of angle 2π/n around axis ek

n−
k counter-clockwise rotation of angle 2π/n around axis ek

I inversion
n̄+

k clockwise rotation of angle 2π/n around axis ek followed by inversion
n̄−

k counter-clockwise rotation of angle 2π/n around axis ek followed by inversion

The rotation axes ek are grouped into five classes:

ei = (1, 0, 0), (0, 1, 0), (0, 0, 1)

ei′′= (0, 1, 0), (
√

3,−1, 0), (−√
3,−1, 0)

ej = (1, 1, 1), (−1,−1, 1), (1,−1,−1), (−1,−1,−1)
ep = (1, 1, 0), (−1, 1, 0), (1, 0, 1), (0, 1, 1), (−1, 0, 1), (0,−1, 1)
es = (1, 1, 0), (−1, 1, 0)
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3.5 Effect of Strain on Symmetry

point group symmetry elements |P (Γ)| stress direction

Oh E 2i 3+
j 3−j 2p 4+

i 4−i I 2̄i 3̄+
j 3̄−j 2̄p 4̄+

i 4̄−i 48 unstrained

D4h E 4+
z 4−z 2i 2s I 4̄+

z 4̄−z 2̄i 2̄s 16 stress along <100>
D3d E 3+

z 3−z 2i′′ I 3̄+
z 3̄−z 2̄i′′ 12 stress along <111>

D2h E 2i I 2̄i 8 stress along <110>
C2h E 2z I 2̄z 4 stress along <120>
S2 E I 2 other directions

Table 3.2: Point group and symmetry elements of strained lattices that originate when stress is
applied along various high symmetry directions to an initially cubic lattice Oh. The
Schönfließ symbol is used to specify the point group. |P (Γ)| denotes the number of
elements of the point group.

Of all the point symmetry groups P (Γ) of the crystal lattice, the group Oh possesses the highest
symmetry. The symmetry group P (Γ′) of the Bravais lattice of the strained crystal is a subgroup
of the symmetry group P (Γ′) of the unstrained crystal and does not generally belong to the same
crystal class as Oh. It contains only those symmetry elements which are preserved under strain.
The effect of a homogeneous strain on the symmetry of the Bravais lattice depends on the specific
form of applied strain.

By successively lowering the symmetry, one can go from Oh to point group S2 on two distinct
paths [Bir74]:

Oh → D4h → D2h → C2h → S2 (3.35)

Oh → D3d → C2h → S2 . (3.36)

The symmetry elements of the five specified point groups P (Γ′), namely D4h, D3d, D2h, C2h, S2,
which are subgroups of Oh are given in Table 3.2. The symmetry can be lowered by distorting
the crystal by applying uniaxial stress. If, for example, stress is applied along a fourfold axis,
the point group Oh reduces to D4h, which contains only 16 symmetry elements. In Table 3.2
five directions of uniaxial stress are given that yield a direct Oh → P (Γ′) symmetry reduction
for any of the five subgroups of Oh.

From (3.34) it can be concluded that the higher the point symmetry of the crystal lattice,
the smaller is the volume of the irreducible wedge. In the following, the symmetries of the
band structure and the shape of the irreducible wedge in terms of the irreducible wedge of the
unstrained crystal are given for the crystal systems Oh, D4h, D3d, D2h, C2h, and S2.

3.5.2 Oh symmetry

The point group Oh contains 48 symmetry elements: listed in

 the unity operation,

 clockwise rotation of 180◦ about the principal axes ei (three operations),
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 clockwise and counter-clockwise rotation of 120◦ about the four space diagonals (eight
operations),

 clockwise rotation of 180◦ about the axes ep representing the diagonals on the faces of a
unit cube (six operations),

 clockwise and counter-clockwise rotations of 90◦ about the principal axes ei (six opera-
tions).

In total these are 24 symmetry operations. Since the symmetry is preserved if any of these
operations are followed by the inversion operation, there are 48 symmetry operations in total.

The 48 point symmetries are reflected in the energy bands and can be shown to leave the energy
bands invariant under the following eight reflections

En(kx, ky, kz) = En(|kx|, |ky|, |kz|) (3.37)

and six permutations

En(kx, ky, kz) = En(kx, kz, ky) = En(ky, kx, kz) =

En(ky, kz, kx) = En(kz, kx, ky) = En(kz, ky, kx) . (3.38)

A possible choice for the irreducible wedge of unstrained Si is depicted in Figure 3.5b. It
should be noted that this specific choice is not unique, and other shapes for the irreducible
wedge, reflecting the symmetries of Oh, can be found [Stanley98]. The volume of the specified
irreducible wedge is ΩBZ/48 in accordance with the relation (3.34).

3.5.3 D4h symmetry

If stress is applied along a fourfold axis ei of a cubic lattice of symmetry class Oh, the unit cube
becomes a square cuboid (rectangular parallelepiped on a square base), representing the Bravais
parallelepiped belonging to symmetry class D4h [Bir74]. Note, that D4h is a member of the
tetragonal crystal system. A similar symmetry reduction is observed, if biaxial strain is present
in a {001} plane. According to Table 3.2 the point group D4h has 16 symmetry elements, since
only one fourfold axis and no threefold axis remains.

The strain tensor in the principal system yielding a Oh → D4h symmetry reduction has non-zero
elements in the diagonal (e.g. ε11 = ε22 /= ε33), whereas all off-diagonal elements vanish.

The symmetry operations yield invariance of the energy bands under reflections

En(kx, ky, kz) = En(|kx|, |ky|, |kz|) . (3.39)

and the invariance of the energy bands under the permutation of the indices perpendicular to
the direction of stress. If stress is applied along [100], the energy bands are invariant under the
permutation

En(kx, ky, kz) = En(kx, kz, ky) . (3.40)

From (3.39) it follows that the bands have to be calculated only in the first octant of the BZ. The
additional symmetry of (3.40) can be exploited to further reduce the volume of the irreducible
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or from biaxial strain in a {110} plane. The strain tensor has the form

¯
ε =

��
ε11 ε12 0

ε12 ε11 0

0 0 ε33

�� , (3.44)

where the components of the strain tensor can be related to stress according to (3.18).

This group has only eight symmetry elements (given in Table 3.2). The irreducible wedge with
a volume of ΩBZ/8 can be mapped onto six wedges of the unstrained lattice in the limit of
vanishing strain.

When dilating or compressing along two of the three fourfold axes ei (case 1), any octant of the
BZ can be chosen as the irreducible wedge. In the presence of uniaxial stress along [110] (case
2) a possible choice for the irreducible wedge is depicted in Figure 3.10. The six wedges labeled
in Figure 3.10 can be transformed into the first wedge by the transformations

¯
T 1 =

��
1 0 0

0 1 0

0 0 1

�� ,
¯
T 2 =

��
1 0 0

0 0 1

0 1 0

�� ,
¯
T 3 =

��
0 0 1

1 0 0

0 1 0

�� ,

¯
T 4 =

��
1 0 0

0 −1 0

0 0 1

�� ,
¯
T 5 =

��
1 0 0

0 0 1

0 −1 0

�� ,
¯
T 6 =

��
0 0 1

1 0 0

0 −1 0

�� .

3.5.6 C2h symmetry

Higher symmetry reduction results from deforming the base of the Bravais parallelepiped of the
orthorhombic system so that the angle between its edges is changed. In this way the invariant
parallelelided of the system C2h is obtained from the cubic lattice Oh [Bir74]. It contains four
symmetry operations given in Table 3.2 with only one twofold symmetry axis.

Uniaxial stress in [120] direction can achieve this kind of symmetry reduction. The strain tensor
has three different nonzero diagonal components and one off-diagonal component

¯
ε =

��
ε11 ε12 0

ε12 ε22 0

0 0 ε33

�� . (3.45)

A irreducible volume can be chosen according to Figure 3.11. The volume can be mapped onto
twelve wedges of the unstrained lattice in the limit of vanishing strain. The twelve wedges are
labeled in Figure 3.11 and can be transformed into the first wedge by proper transformations.
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try lines which are reflected in symmetries of the energy band structure and of the basis states.
Due to the symmetry of the basis states the deformation potential operator of a particular state
can be described in terms of two or three deformation potential constants [Herring56, Singh93].
The shift of the band edges can be calculated from these deformation potential constants.

In principle the deformation potential constants can be determined numerically using the empir-
ical pseudopotential method (see Section 3.8) or from ab initio calculations. However, it is com-
mon practice to fit deformation potentials to measurements using electrical, optical, microwave
techniques or by analyzing stress-induced indirect absorption edges. Although measurements
seem to verify theoretical predictions, the deformation potentials obtained by different methods
deviate from each other and different values can be found in literature [Fischetti96a].

3.6.1 Strain-Induced Conduction Band Splitting

In this section we give expressions for the strain-induced energy shifts of the nondegenerate
energy levels of the conduction band edges of the cubic crystal class Oh.

At the Γ and L point, and along the Δ symmetry line, the deformation potential operators
Dαβ are scalars and given by one ore two independent constants. Neglecting the strain-induced
splitting of the degenerate conduction bands Δ1 and Δ2′ at the X point for the moment, the
energy shifts of the conduction band edge of valleys along the <100> and <111> direction can be
calculated from two independent deformation potential constants [Balslev66]

δEvi

0 = Ξv
d Tr(

¯
ε) + Ξv

ua
T
i ¯
εai . (3.47)

Here, Ξv
d denotes the dilatation- and Ξv

u the uniaxial deformation potential constant for a valley
of type v = Δ, L, and ai is a unit vector parallel to the k vector of valley i. The valley shift of
the Γ′

2 conduction band minimum can be obtained from a single deformation potential constant

δEΓ
0 = ΞΓ

d Tr(
¯
ε) . (3.48)

The valley splitting from uniaxial stress along any direction can be obtained from the strain
tensor using the relations above. The strain tensors resulting from uniaxial stress are discussed
in Section 3.3.2. The analytical expressions for the energy shifts of the conduction band valleys
for three stress directions [100], [110], and [111] are given in in Table 3.4.

3.6.2 Strain-Induced Lifting of Degeneracy at X point

In the case of degenerate bands strain does not only shift the band as a whole, but may also split
bands as a result of partial or complete removal of degeneracy upon the reduction of symmetry.
In the diamond crystal structure, the lowest two conduction bands Δ1 and Δ2′ touch at the zone
boundary X due to a special symmetry of the diamond structure, namely the presence of three
glide reflection planes, given by x = a0/8, y = a0/8, and z = a0/8 [Yu03]. For example, the plane
z = a0/8 is a glide plane since diamond is invariant under a translation by a0

4 (1, 1, 0) followed
by a reflection on this plane. Whenever the strain tensor in the crystal system contains a shear
component εxy (for example, as a result from stress along the [110] direction), the strained lattice
belongs to an orthorombic crystal system (see Section 3.5.5). The shear component removes the
glide reflection plane z = a0/8 and consequently the degeneracy of the two lowest conduction
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stress direction valley valley direction δE/P

[100] Δ [100] ΞΔ
d (s11 + 2s12) + ΞΔ

u s11

Δ [010][001] ΞΔ
d (s11 + 2s12) + ΞΔ

u s12

L [111][111̄][11̄1][1̄11] ΞL
d(s11 + 2s12) + ΞL

u/3(s11 + 2s12)

Γ [000] ΞΓ
d(s11 + 2s12)

[110] Δ [100][010] ΞΔ
d (s11 + 2s12) + ΞΔ

u /2(s11 + s12)

Δ [001] ΞΔ
d (s11 + 2s12) + ΞΔ

u s12

L [111][111̄] ΞL
d(s11 + 2s12) + ΞL

u/3(s11 + 2s12 + s44)

L [1̄11][11̄1] ΞL
d(s11 + 2s12) + ΞL

u/3(s11 + 2s12 − s44)

Γ [000] ΞΓ
d(s11 + 2s12)

[111] Δ [100][010][001] ΞΔ
d (s11 + 2s12) + ΞΔ

u /3(s11 + 2s12)

L [111] ΞL
d(s11 + 2s12) + ΞL

u/3(s11 + 2s12 + 2s44)

L [1̄11][11̄1][111̄] ΞL
d(s11 + 2s12) + ΞL

u/3(s11 + 2s12 − 2/3s44)

Γ [000] ΞΓ
d(s11 + 2s12)

Table 3.4: Strain-induced energy shifts of the conduction band valleys of cubic semiconductors
when uniaxial stress P is applied along three high symmetry directions. The energy
shifts are divided by P .

bands Δ1 and Δ2′ at the symmetry points X = 2π
a0

(0, 0,±1) is lifted [Hensel65, Bir74] (compare
Section 3.5.5). It should be noted that the glide reflection symmetry is preserved in biaxially
strained Si layers grown on {001} Si1−yGey substrate, as well as in Si uniaxially strained/stressed
along a fourfold rotation axis <100>.
From k·p theory (see Section 3.7) including terms of third order Bir and Pikus found that by
lifting the degeneracy at a zone boundary X point a comparatively large change in the energy
dispersion of the conduction band minimum located close to this X point is induced [Bir74].
In Si this effect was verified experimentally by Hensel and Hasegawa [Hensel65], who measured
the change in effective mass for stress along <110>, and by Laude [Laude71] who measured the
indirect exciton spectrum.

Equation (3.47) has to be modified as follows when taking into account the lifting of the degen-
eracy of the two lowest conduction bands Δ1 and Δ2′ at the X points 2π

a0
(0, 0,±1) [Hensel65]δE0 δE1

δE1 δE0

ξ

ξ̂

 = δE

ξ

ξ̂

 , (3.49)

where

δE0 = ΞΔ
d Tr(

¯
ε) + ΞΔ

u εzz , (3.50)

δE1 = Ξu′exy = 2Ξu′εxy . (3.51)
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Here, a new deformation potential Ξu′ is introduced. The solutions of the eigenvalue problem
(3.49) are

δE = δE0 ± δE1 for ξ̂ = ±ξ . (3.52)

Thus, at the X points 2π
a0

(0, 0,±1) the bands shift by an amount of δE0, which is the shift given
by (3.47). Additionally, the degeneracy is lifted with a splitting of 2δE1. From (3.51) it follows
that the splitting is proportional to the shear strain εxy is given by

(EΔ1 − EΔ2′
)
///
X[001]

= 2δE1 = 4Ξu′εxy . (3.53)

For the shear deformation potential ΞX
u′ a value of 5.7±1 eV [Hensel65] has been predicted from

cyclotron resonance experiments. From measurements of the indirect exciton spectrum of Si a
similar value (7.5 ± 2 eV) has been obtained [Laude71].

Figure 3.12 shows the splitting for three levels of strain εxy. The splitting is very pronounced
even for relatively small strain (< 1%). One can also observe that the Δ1 conduction band
is deformed in the vicinity of the symmetry points X = 2π

a0
(0, 0,±1) due to the lifting of the

degeneracy.

In unstrained Si the constant energy surfaces of the six conduction band valleys have a prolate
ellipsoidal shape, where the semi-axes are characterized by ml and mt, denoting the longitudinal
and transverse electron masses, respectively. The minima of the three valley pairs are located
along the three equivalent <100> directions and have the same energies (see Section 3.4.1).

From Figure 3.12 it can be observed that a non-vanishing shear component εxy in the strain
tensor affects the energy dispersion of the lowest conduction band in three ways:

1. The band edge energy of the valley pair oriented along the [001] direction moves down
with respect to the four valleys oriented along [100] and [010].

2. Since the shape of the conduction band around its minima is considerably deformed, the
effective mass of the valley pair along [100] is expected to change as εxy grows.

3. The positions of the conduction band minima along [001] move towards the zone boundary
X points at 2π

a0
(0, 0,±1).

Within the presented model εxy has no effect on the conduction bands near the zone boundaries
X = 2π

a0
(1, 0, 0) and X = 2π

a0
(0, 1, 0) (compare Figure 3.12). A nonzero component εxz and εyz,

however, will lift the degeneracy at X = 2π
a0

(0,±1, 0) and X = 2π
a0

(±1, 0, 0), respectively.

If the splitting of the conduction bands is different at the different zone boundaries (for example,
εxy /= εxz /= εyz), the conduction band minima along the <001> axes have different energies. This
may result in a repopulation between the six conduction band valleys. Note that such an effect
cannot be explained via equation (3.47) alone, where a possible lifting of the degeneracy at the
X point induced by shear strain is neglected and application of shear strain yields no valley
repopulation.

An analytical expression for the valley shift along the Δ direction can be derived using a degen-
erate k·p theory at the zone boundary X point [Bir74, Hensel65]. A shear strain εxy causes an
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energy shift between the conduction band valleys along [001] with respect to the valleys along
[100] and [010]. The shift is given by

δEshear =

 −Δ
4 κ2εxy

2 , |εxy| < 1/κ

−Δ
4 (2κ|εxy| − 1) , |εxy| > 1/κ

(3.54)

Here, a dimensionless parameter κ = (4Ξu′)/Δ has been introduced, and Δ is the band separa-
tion between the two lowest conduction bands at the conduction band edge

Δ = (EΔ2′
− EΔ1)

///
k=kmin

. (3.55)

The position of the band edge in the unstrained lattice is kmin = 2π
a0

(0, 0, 0.85) (compare Fig-
ure 3.12). The derivation of (3.54) is given in Section 3.7.2 after outlining the basic framework
of the k·p method.

3.6.3 Strain-Induced Valence Band Splitting

The deformation potential theory for the valence bands is different from that for the conduction
bands because of the degeneracy of the valence bands at the valence band maximum. The
operators Dαβ are no longer scalars. Instead, they can be expressed as 3 × 3 matrices. Due to
symmetry the six independent operators have only three independent entries, usually labeled
l, m, n or a, b, d, depending on the used basis for the eigenfunctions [Cardona66].

In the basis |x, s>, |y, s>, |z, s> with s denoting the spin state (↑ for +z) and (↓ for −z), the
matrix of the perturbation Hamiltonian is

¯
Hstrain =

 ¯
H

¯
03×3

¯
03×3 ¯

H

 | ↑>
| ↓>

, (3.56)

with
¯
H denoting the 3 × 3 matrix

¯
H =

��
lεxx + m(εyy + εzz) nεxy nεzx

nεxy lεyy + m(εzz + εxx) nεyx

nεzx nεyz lεzz + m(εxx + εyy)

��
|x>
|y>
|z>

. (3.57)

In Section 3.6.1 and Section 3.6.2 it was shown that from deformation potential theory simple
analytical expressions can be derived for the conduction band shifts induced by an arbitrary
strain tensor εij . For the valence band the expressions for the strain-induced shifts of the heavy-
hole, light-hole, and split-off band are more complex, which limits their practical use [Balslev66].

3.7 The k·p method

Using the k·p method [Bir74, Yu03] one can obtain analytical expressions for the band dispersion
and the effective masses. It allows the extrapolation of the band structure over the entire
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Brillouin zone from the energy gaps and optical matrix elements at the zone center. While
the k·p theory has been frequently used to model the valence band of semiconductors, we will
additionally apply it to model the impact of strain on the conduction band minimum.

The k·p method can be derived from the one-electron Schrödinger equation

Hφn(r) =

(
p2

2m
+ V (r)

)
φn(r) = Enφn(r) . (3.58)

Here H denotes the one-electron Hamilton operator and V (r) the periodic lattice potential. The
wavefunction of an electron in an eigenstate labeled n and its energy are denoted by φn(r) and
En, respectively. In a periodic potential Bloch’s theorem applies, and the solutions of (3.58) can
be expressed as

φnk(r) = eik·runk(r) , (3.59)

where n is the band index, k a wave vector, and unk(r) has the periodicity of the lattice.
Assuming that the potential V (r) is local1, one can substitute φnk(r) into (3.58) to obtain an
equation for unk(r)(

p2

2m
+ V (r) +

hk · p
m

)
unk(r) =

(
Enk − h

2k2

2m

)
unk(r) . (3.60)

Considering any fixed wavevector k = k0, the above equation yields a complete set of eigen-
functions unk0 , which completely span the space of lattice periodic functions in the real space.
Hence, the wavefunction φnk(r) at k can be expanded in terms of unk0

φnk(r) =
∑
n′

Cn,n′(k, k0)e
ikrun′k0 . (3.61)

Once, Enk0 and unk0 are known, the functions φnk(r) and the eigenenergies Enk at any k vector
k0 + Δk in the vicinity of k0 can be obtained by treating the term hΔk · p/m in (3.60) as
a perturbation. Either degenerate or nondegenerate perturbation theory has to be used. The
method has been first applied by Seitz [Seitz35] and was later extended to study the band
structure of semiconductors [Luttinger55, Kane56, Cardona66].

This method for calculating the band structure is known as the k·p method. It works best for
small Δk and can be applied to calculate the band structure near any given point k0 provided
that the matrix elements of p between the wavefunctions (or the wavefunctions themselves) and
the energies at k0 are known. When using a sufficiently large number of unk0 to approximate
a complete set of basis functions, the band structure over the entire first Brillouin zone can be
calculated by diagonalizing (3.60) numerically [Cardona66].

In the following, a nondegenerate k·p theory will be used to derive the band dispersion and the
effective masses for the nondegenerate conduction band of Si. To analyze the effect of shear
strain on the lowest conduction band Δ1, a degenerate k·p method is adopted in Section 3.7.2,
since the Δ1 conduction band is expanded around the symmetry point X (zone boundary) where
it touches the Δ2′ conduction band.

1It depends only on one spatial coordinate r.
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3.7.1 Effective Electron Mass in Unstrained Si

The conduction band minima of Si lie on the <001> axes at points kmin distant 0.152π
a0

from
the X symmetry points. From the knowledge of the eigenenergies Enk0 and the wavefunctions
unk0 at the conduction band minima k0, the eigenvalues Enk at neighboring points k can be
expanded to second order in ki in terms of the unperturbed wavefunctions and eigenenergies
using nondegenerate perturbation theory

Enk = Enk0 +
h

2

2m0

∑
ij

kiδijkj +
h

2

m2
0

∑
ij

∑
n′ /=n

ki
<unk0 |pi|un′k0><un′k0 |pj |unk0>

Enk0 − En′k0

kj . (3.62)

Here, we used the index notation
∑3

i=1 kipi for k ·p and Dirac’s notation for the matrix elements

<unk0 |pj |un′k0> =
1

Ω

/
Ω

drunk0

h

i

∂

∂xj
un′k0 . (3.63)

Linear terms in ki vanish because Enk0 has been assumed to be a minimum. The dispersion
relation (3.62) can be rewritten in terms of the effective mass tensor m∗

n,ij of band n

1

m∗
n,ij

=
1

m0
+

2

m2
0

∑
n′ /=n

<unk0 |pi|un′k0><un′k0 |pj |unk0>
Enk0 − En′k0

. (3.64)

In crystals with diamond structure, the effective mass tensor for the lowest conduction band
Δ1 is diagonal and can be characterized by two masses. For the [001] valley one obtains in the
principal coordinate system

1

ml
=

1

m0
+

2

m2
0

∑
n′ /=Δ1

|<uΔ1k0 |pz|un′k0>|2
EΔ1k0 − En′k0

, (3.65)

1

mt
=

1

m0
+

2

m2
0

∑
n′ /=Δ1

|<uΔ1k0 |px|un′k0>|2
EΔ1k0 − En′k0

, (3.66)

where Δ1 denotes the band index n of the lowest conduction band. Thus, the energy dispersion
(3.62) can be written in the form of (3.28).

The derived equations show that because of the coupling between electronic states in different
bands via the k·p term, an electron in a solid has a mass different from that of a free electron.
The coupling terms depend on two factors

1. The separation in energy between two bands n and n′ determines the relative importance
of the contribution of band n′ to the effective mass of band n. The bigger the energetic
gap between two bands the smaller is the effect on the effective mass.

2. The matrix element theorem [Tinkham64] can be used to find all bands n′ that have
nonzero matrix elements <unk0 |k · p|un′k0> by applying group theoretical considerations to
determine all possible symmetries un′k0 can have.

Using the empirical pseudopotential method for band structure calculations (see Section 3.8) it
is possible to numerically evaluate the matrix elements and hence to obtain the effective masses
from (3.64).
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3.7.2 Strain Effect on the Si Conduction Band Minimum

Having discussed strain-induced shifts of the conduction bands in Section 3.6.1, here the effect
of strain on the effective electron mass in the lowest conduction band is analyzed.

Equation (3.47) neglects the lifting of the degeneracy of the lowest two conduction bands induced
by shear strain and describes the energy shift of the conduction bands as a whole. Apart from
the direction of the wavevector k indicating the location of the valley no information is required
in (3.47) to determine the shift of the valley minima. As a consequence, the shift of a valley is
independent of the exact value of the wavevector k, and all k points belonging to a particular
valley experience the same shift. As the effective mass relates to the curvature of the energy
band, which is not changed by an overall shift in energy, equation (3.47) implies that the effective
electron mass is not affected by strain.

There is clear experimental evidence that shear strain changes the effective masses of electrons
in the lowest conduction band [Hensel65] and also the exciton spectrum of Si [Laude71]. In
order to explain these experiments, the splitting of the two lowest conduction bands at the X
symmetry point induced by shear strain (see Section 3.6.2) has to be taken into account. From
(3.52) the lifting of the degeneracy at the X point can be calculated using the deformation
potential constant Ξu′ . However, since (3.52) is only valid for the symmetry point X, it cannot
be used to predict the effect of strain on the valley minima kmin. To determine the change of
the effective electron mass under shear strain, a degenerate k·p theory around the symmetry
point X must be applied, since the two conduction bands Δ1 and Δ2′ are degenerate in the
unstrained lattice.

Using the theory of invariants [Luttinger56] Bir and Pikus [Bir74] determined a suitable choice
of matrices describing the Hamiltonian at the points X = 2π

a0
(0, 0,±1)

H(ε̂, k) = λ +
¯
σx(A3kxky + D3εxy) + A4

¯
σzkz . (3.67)

Here,

λ = A1k
2
z + A2(k

2
x + k2

y) + D1εzz + D2(εxx + εyy) , (3.68)

A1 to A2 are scalar constants and
¯
σx and

¯
σz denote the spinor matrices given by

¯
σx =

0 1

1 0

 and
¯
σz =

1 0

0 −1

 . (3.69)

The scalars D1, D2, and D2 are related to the deformation potential constants Ξu, Ξd, and Ξu′

via

D1 = Ξu + Ξd , (3.70)

D2 = Ξd , (3.71)

D3 = 2Ξu′ . (3.72)

The energy dispersion of the first and the second conduction band can be determined as the
eigenvalues of (3.67)

E±(ε̂, k) = λ ±
√

A2
4k

2
z + (2Ξu′εxy + A3kxky)2 , (3.73)
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where E− describes the dispersion of Δ1 and E+ that of Δ2′ .

Assuming that this expansion around the X point is valid up to the minimum of the lowest
conduction band at kmin = 2π

a0
(0, 0,±0.85), the constant A4 can be related to A1

0 =
∂E−(ε̂ = 0, k)

∂kz

///
kmin

= 2A1k0 +
A2

4k0√
A2

4k
2
0

. (3.74)

Here, k0 = 0.152π
a0

denotes the distance of the conduction band minimum of unstrained Si from
the X point. From (3.74) the magnitude of A4 can be determined

|A4| = 2A1k0 . (3.75)

In the following the effect of shear strain on the shape of the lowest conduction band is derived
by two different methods.

Energy Dispersion of the Conduction Band Minimum of Strained Si: Method 1

The effect of strain on the spectrum near the lowest conduction band edge is estimated by
expanding the root in (3.73) and neglecting terms proportional to ε2 and k4. The spectrum
is expanded near the minimum of the conduction band Δ1 at kmin = 2π/a0(0, 0, 0.85) of the
unstrained lattice.

E(ε̂, k) = A1(kz −k0)
2 +A2(k

2
x +k2

y)+Ξuεxx +Ξd(εxx + εyy + εzz)− 2Ξu′A3εxy

|A4|k0
kxky . (3.76)

By comparing this equation with (3.28) the constants A1 and A2 are given by

A1 =
h

2

2ml
, (3.77)

A2 =
h

2

2mt
, (3.78)

which leaves only A3 undetermined.

At zero shear strain, the splitting between the two lowest conduction bands, which is denoted
as Δ (see (3.74)), can be related to A4 by evaluating (3.73) at k = kmin

Δ = 2|A4|k0 . (3.79)

Thus, the last term of (3.76) can be written as

4A3Ξu′

Δ
εxykxky . (3.80)

Since this term is proportional to εxy and kxky, it describes a change in effective mass propor-
tional to strain. A k·p theory capable of describing the change in the effective mass due to strain
must contain third order terms proportional to ε̂k2. It was shown by Bir and Pikus [Bir74] that
the dominating ε̂k2 correction to the spectrum E(ε̂, k) of the lowest conduction band at kmin is

δEε̂k2 =
4h

2Ξ′
u′

m′Δ
εxykxky , (3.81)
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where

1

m′ =
2

m2
0

∑
n /=Δ1

<Δ1|px|n><n|py|Δ2′>
En − EΔ1

, (3.82)

and Ξ′
u′ denotes the deformation potential constant Ξu′ evaluated at kmin.

The coefficient A3 can now be obtained by comparing (3.80) with (3.81). Assuming that the
deformation potential constant Ξu′ is the same at both points X and kmin, that is Ξu′ = Ξ′

u′ ,
A3 is given by

A3 =
h

2

m′ , (3.83)

and the energy dispersion (3.76) around the conduction band edge becomes

E(ε̂, k) =
h

2(kz − kmin)
2

2ml
+

h
2(k2

x + k2
y)

2mt
− 4h

2Ξu′εxy

m′Δ
kxky . (3.84)

Here, the diagonal entries of the strain tensor were assumed to be zero, since they do not cause
a change in the effective mass in this approximation. The impact of shear strain εxy on the
effective masses becomes clearer when changing the coordinate system

x′ → [110] y′ → [11̄0] z′ → [001] .

This coordinate system is rotated 45◦ about the z axis with respect to the principal coordinate
system, thus,

kx′ =
kx + ky√

2
ky′ =

kx − ky√
2

kz′ = kz . (3.85)

In the rotated coordinate system the effective mass tensor is diagonal

E(ε̂, k′) =
h

2(kz′ − kmin)
2

2ml
+

h
2k2

x′

2mt

(
1 +

2Ξu′mt

m′Δ
εxy

)
+

h
2k2

y′

2mt

(
1 − 2Ξu′mt

m′Δ
εxy

)
=

h
2(kz′ − kmin)

2

2ml
+

h
2k2

x′

2mt,x′(εxy)
+

h
2k2

y′

2mt,y′(εxy)
. (3.86)

Two transverse masses occur

mt,x′ = mt(1 + ηκεxy)
−1 , (3.87)

mt,y′ = mt(1 − ηκεxy)
−1 , (3.88)

that depend strain. Here, two parameters

κ = 4Ξu′/Δ and η = mt/(2m′) (3.89)

have been introduced.

Within this approximation the effect of shear strain on the transverse masses of Si can be
modeled. It was developed by Bir and Pikus [Bir74] and Hensel [Hensel65]. In the following, a
more rigorous model is presented, which is also able to predict the effect of shear strain on the
longitudinal mass, the splitting between conduction band valleys, and the change of position of
the conduction band minimum.
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Energy Dispersion of the Conduction Band Minimum of Strained Si: Method 2

The above formulae have been derived, assuming that the conduction band minima are located
at kmin = 2π/a0(0, 0,±0.85), which is a good approximation only for small shear strain. As
can be seen from Figure 3.12 the minimum of the conduction band is expected to move towards
the X point as the strain-induced splitting between the conduction band becomes larger. As
a direct consequence, the conduction bands shape is deformed and the previous assumption
kmin = 2π/a0(0, 0, 0.85) is not satisfied.

Thus, a more general model for the effect of shear strain on the effective masses needs to be
developed, which takes the movement of the conduction band minimum as a function of strain
into account. The effective masses are subsequently evaluated at the position of the conduction
band minimum kmin(εxy).

The position of the minimum can be found from (3.73) by setting kx = ky = 0:

E− =
h

2

2ml
k2

z −
√

h4k2
0

m2
l

k2
z + (2Ξu′)2εxy

2 . (3.90)

Here, relations (3.75) and (3.77) are used to replace A4 and A1, and k0 denotes the position of the
unstrained conduction band minimum measured from the zone boundary X, k0 = 0.15 · 2π/a0.
Setting

∂E−
∂kz

= 0 , (3.91)

the position of the conduction band minimum kz,min can be obtained

kz,min =

 k0

√
1 − κ2εxy

2 , |εxy| < 1/κ

0 , |εxy| > 1/κ
. (3.92)

It can be seen that for strain smaller in magnitude than 1/κ, the minimum position is shifted
towards the X point. For |εxy| = 1/κ, the position of the minimum is located at the X point,
thus kz,min = 0. The position is fixed, even when εxy is further increased. The changing position
of kz,min is visualized in Figure 3.12, where the impact of shear strain on the shape of the
conduction bands Δ1 and Δ2′ is plotted.

The strain dependent longitudinal mass ml(εxy) can be obtained from (3.73) by calculating

1

ml(εxy)
=

1

h2

∂2E−
∂k2

z

///
k=(0,0,kz,min)

. (3.93)

The following expressions can be derived after some algebraic manipulations

ml(εxy) =

��
ml

(
1 − κ2εxy

2
)−1

, |εxy| < 1/κ

ml

(
1 − 1

κ|εxy|
)−1

, |εxy| > 1/κ
. (3.94)

Similar to (3.92), the dependence of the longitudinal mass on strain is described by two expres-
sions, depending on whether the magnitude of strain is smaller or bigger than 1/κ. Note that

42



3.7 The k·p method

in the approximation of Section 3.7.2 the effect of shear strain was modeled by the expansion
(3.76) about the conduction band minimum of the unstrained lattice, such that the longitudinal
mass ml is not influenced by strain.

To derive the transverse effective masses that include the dependence on kz,min, first (3.73) is
transformed to the rotated coordinate system introduced in (3.85).

E±(ε̂, k) = λ ±
√

A2
4k

2
z +

(
2Ξu′εxy +

A3

2
(k2

x − k2
y)

)2

. (3.95)

The effective mass in the x′ = [110] and y′ = [11̄0] direction can be obtained from

1

mt,x′(εxy)
= h

2 ∂2E−
∂k2

x′

///
k=(0,0,kz,min)

(3.96)

and

1

mt,y′(εxy)
= h

2 ∂2E−
∂k2

y′

///
k=(0,0,kz,min)

. (3.97)

The strain dependence of the transverse masses is given by

mt,x′(εxy) =

 mt

(
1 + ηκεxy

)−1
, |εxy| < 1/κ

mt

(
1 + η sgn(εxy)

)−1
, |εxy| > 1/κ

(3.98)

for the [110] direction and by

mt,y′(εxy) =

 mt

(
1 − ηκεxy

)−1
, |εxy| < 1/κ

mt

(
1 − η sgn(εxy)

)−1
, |εxy| > 1/κ

. (3.99)

for the [11̄0] direction. Here, sgn denotes the signum function. For |εxy| < 1/κ the effective
masses derived in this way are consistent with equations (3.87) and (3.88). However, for |εxy| >
1/κ the transverse masses are constant and depend on the sign of the strain only.

Finally, an analytical expression for the valley shift induced by shear strain εxy, which was
given in Section 3.6.2, is calculated. According to (3.92), equation (3.90) has to be evaluated
at kz,min = k0

√
1 − κ2εxy

2 for |εxy| < 1/κ. For |εxy| > 1/κ the energy shift at the X point
determines the overall valley shift. The shift between the valley pair along [001] and the valley
pairs along [100] or [010] is obtained from

δEshear = E(εxy, kmin) − E(0, kmin) =

����
−Δ

4
κ2εxy

2 , |εxy| < 1/κ

−Δ

4
(2κ|εxy| − 1) , |εxy| > 1/κ

. (3.100)

This derivation shows that the valley splitting cannot be obtained if the spectrum of the strained
crystal is expanded around the conduction band minimum k0 of the unstrained crystal, as it was
assumed in Section 3.7.2.
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Discussion

In unstrained Si the constant energy surfaces of the conduction band valleys along [001] have
a prolate ellipsoidal shape, where one of the three semiaxes is characterized by ml and two
semiaxes by mt. At small shear strain εxy the constant energy surfaces take the form of scalene
ellipsoids characterized by three masses, ml,[001], mt,[110], and mt,[ 1̄10]. These masses change
under the influence of εxy and can be modeled using the equations (3.94), (3.98), and (3.99).
From Figure 3.13 it can be seen that under shear strain εxy, the lines of constant energies in the
kxky-plane develop into ellipses with their semiaxes rotated 45◦ about the kz axis. For levels
of shear strain that significantly change the location of the conduction band edge, εxy ≈ 1/κ,
a large deformation of the shape of the conduction band takes place. In principle equations
(3.94), (3.98), and (3.99) describe the change of the effective masses, but it will be shown in
Section 6.1 that a (non-)parabolic approximation for the conduction band minimum is not valid
in this case and full-band modeling is required for simulations of electron transport even at low
electric fields.

As pointed out previously a key advantage of the k·p method is that it allows one to derive
analytical expressions for the energy dispersion with the knowledge of only a small number of pa-
rameters. In the expressions derived in this section, the knowledge of only three parameters Δ, η,
and κ is required to characterize the energy dispersion around the conduction band minimum
under shear strain. These parameters can be calculated using the empirical pseudopotential
method, which is briefly described in the next section.

3.8 Empirical Pseudopotential Theory for Arbitrary Strain

The empirical pseudopotential method in its nonlocal relativistic version was developed by Che-
linkowsky and Cohen [Chelikowsky76, Cohen89]. It is frequently used to calculate the band
structure of semiconductors. The method is efficient, and requires only a limited set of fitting
parameters [Jungemann03, Fischetti96a, Rieger93, Bufler98]. These few parameters are usu-
ally calibrated in order to fit energy gaps, that can be determined from experiments, and are
available for a large set of materials [Yu03].

3.8.1 The Empirical Pseudopotential Method

The pseudopotential theory is based on an ansatz which separates the total wave function into an
oscillatory part and a smooth part, the so called pseudo wave function. The strong true potential
of the ions is replaced by a weaker potential valid for the valence electrons, the pseudopotential
V (r), which approaches the unscreened Coulomb potential of the Si4+ ion at large values of r
(see Figure 3.14). This replacement can be justified mathematically and shown to reproduce
correctly the conduction and valence band states [Cohen89].

The one-electron Schrödinger equation is replaced by a pseudo-wave equation(
p2

2m
+ V (r)

)
φk(r) = Ekφk(r) , (3.101)

with φk(r) denoting the pseudo wave function and V (r) the pseudopotential. This equation can
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which are frequently called form factors of the pseudopotential. If there is more than one atom
in the primitive unit cell, a structure factor is introduced which depends on the relative position
rn of the respective atom in the primitive unit cell. The structure factor SG is defined as

SG =
1

N

N∑
n

e−iG·rn , (3.106)

where N denotes the number of atoms in the primitive unit cell. The pseudopotential V (r) can
be expressed in terms of the structure factor and the form factors by

V (r) =
∑
G

VGSG exp (iG · r) . (3.107)

In crystals with a diamond structure there are two atoms at the positions r1 and r2 in the
primitive unit cell. By taking the midpoint between the two atoms in the unit cell as origin, the
positions of the atoms are given by r1 = a0

8 (1, 1, 1) = τ and r2 = −a0
8 (1, 1, 1) = −τ . Thus, the

structure factor is given by

SG =
1

2

(
exp(−iG · τ ) + exp(iG · τ )

)
= cos(G · τ ) . (3.108)

In unstrained diamond structures the reciprocal lattice vectors in order of increasing magnitude
are (in units of 2π

a0
):

G0 = (0, 0, 0)

G3 = (1, 1, 1), ( 1,−1, 1) , . . . , (−1,−1,−1)

G4 = (2, 0, 0), (−2, 0, 0), . . . , ( 0, 0,−2)

G8 = (2, 2, 0), ( 2,−2, 0) , . . . , ( 0,−2,−2)

G11 = (3, 1, 1), (−3, 1, 1) , . . . , (−3,−1,−1)

Form factors with reciprocal lattice vectors larger than G2 > 11(2π
a0

)2 are neglected, since typi-

cally VG decreases as G−2 for large G (see Figure 3.14). Assuming that the atomic pseudopo-
tentials are spherically symmetric V (r) = V (|r|), the form factors only depend on the absolute
value of the reciprocal lattice vector. The form factor belonging to G0 shifts the entire energy
scale by a constant value, and can therefore be set to zero. The form factors belonging to the
reciprocal lattice vectors G3 have an absolute value of

√
3 · 2π

a0
and are conventionally labeled V3.

Since the structure factor of the reciprocal lattice vectors G4 with magnitude 2 · 2π
a0

vanishes,

cos

(
2π

a0
τ · (±2, 0, 0)

)
= cos

(
±π

2

)
= 0 , (3.109)

the respective form factor V4 does not enter the pseudopotential (3.107). Thus, only three
pseudopotentials form factors V3, V8 and V11 are required to calculate the band structure.

In Table 3.5 the parameters employed in the empirical pseudopotential calculations are listed.
They consist of three local form factors V√

3, V
√

8, V
√

11, two parameters (A0, R0) to model
the nonlocal correction, and two parameters (µ, ζ) entering the spin-orbit interaction term.
The parameters coincide with the parameter set provided in [Rieger93] with the exception of
µ = 0.00023 Ry and ζ = 7.5589 Å−1, which have been adjusted in order to yield the desired
split-off energy of 44 meV in the unstrained Si band structure. In the expansion of the pseudo
wave function (3.102) plane waves with modulo |Glmn − k| < 5.7(2π/a0) were included, which
guarantees results converged to approximately 1 meV.
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Table 3.5: Parameters employed in the band structure calculation of Si and Ge [Rieger93].

Silicon Germanium Units

V√
3 −0.2241 −0.221 Rydberg

V√
8 −0.052 0.019 Rydberg

V√
11 −0.0724 0.056 Rydberg

Al 0.03 0.275 Rydberg

Rl 1.06 1.22 Å

µ 0.00023 0.000965 Rydberg

ζ 7.5589 10.0911 Å−1

3.8.2 Inclusion of Strain

To handle general strain conditions, four modifications in the band structure calculation have
to be taken into account:

(i) The direct lattice vectors ai
′ of the strained crystal are calculated by deforming the vectors

ai of the unstrained crystal according to (3.30). From the strained lattice basis vectors, the
strained reciprocal lattice vectors bi

′ can be obtained. These are used to calculate the strained
lattice vectors of the reciprocal lattice which are used in the expansion of the pseudo wave
function (3.102) and in the calculation of the normalizing volume of the strained unit cell Ω′

0 as
given in (3.31).

(ii) Since the local pseudopotential form factors enter the calculation at the strained reciprocal
lattice vectors, an interpolation of the pseudopotential is required (see Figure 3.14). Different
expressions have been proposed in [Friedel89, Rieger93]. In this work, the pseudopotential form
factors of the strained lattice are obtained by performing a cubic spline interpolation through
the pseudopotential form factors, V0, V3, V8, V11, and V3kF

. Following [Rieger93], V0 is set to
−2EF/3, and V3kF

= 0, where kF denotes the Fermi wave vector of the free electron gas.

(iii) In Figure 3.15 a schematic plot of the diamond structure with the primitive unit cell is
plotted. The latter has a tetragonal shape. The vertex atoms of the tetrahedron and the central
atom located at (a0

4 , a0
4 , a0

4 ) belong to a different fcc-lattice. While the position of the vertex
atoms of the tetrahedron (indicated in light-grey) can be calculated from macroscopic strain,
the absolute position of the central atom in the bulk primitive unit cell (dark grey) remains
undetermined. To obtain the exact position of the central atom an additional parameter for the
displacement has to be taken into account.

A schematic plot showing the change of atomic positions in the primitive unit cell under strain
is given in Figure 3.16. In the unstrained lattice, the central atom is positioned at the center of
the tetrahedron, which is indicated by a white circle in Figure 3.16a. Under strain the vertex
atoms change their positions and the central atom is displaced from the center of the distorted
tetrahedron (see Figure 3.16b). In order to minimize the nearest neighbor central force energy
of the system, the central atom moves towards the center of the four vertex atoms. However,
opposing this reduction of energy is the increase of nearest neighbor non-central force energy
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and far-neighbor energy [Kleinman62]. Thus, the central atom does not completely relax to the
center of the strained tetrahedron as indicated in Figure 3.16c.

In the case of general strain, the additional displacement of the central atom with respect to the
four vertex atoms of the unit tetrahedron in the diamond structure can be modeled in terms of
an internal strain parameter (displacement factor) ξ: First, the positions of the vertex atoms
and the central atom are derived from the macroscopic strain. Then the center of the four vertex
atoms is determined. If the internal strain parameter ξ is set to zero, the central atom retains
its position determined from the macroscopic strain only; if ξ = 1 the central atom moves to
the center of the four vertex atoms, and all four bonds are of the same length. As previously
discussed, neither of the two extrema occurs in a real crystal and a appropriate value 0 ≤ ξ ≤ 1
for the internal strain parameter has to be used.

For the determination of the internal strain parameter of Si we performed calculations with
the ab-initio total-energy and molecular-dynamics program VASP (Vienna ab-initio simulation
program) [Kresse93, Kresse94, Kresse96a, Kresse96b, Kresse99]. A value of 0.5 was extracted,
which is very close to previous theoretical calculations of Nielson [Nielsen85], who extracted a
value of 0.53, and the experimental result 0.54 ± 0.04 [Cousins87].

If stress is applied along a fourfold axis <100> no internal displacement occurs. In this case
the center of the deformed primitive unit cell coincides with the position of the central atom
determined from macroscopic strain and all four bonds are of the same length. For the stress
directions <110> and <111> analytical expressions for the internal displacement can be derived:

 For [110] stress the additional displacement along [001] is given by [Ungersboeck06a]

uz = −ξ

2

(1 + εxx)εxy

1 + εzz
a0 . (3.110)

 If the lattice is stressed along [111], the additional displacement is parallel to the stress
direction [111]

u = −ξ

2
εxya0(1, 1, 1) . (3.111)

(iv) Finally, strain-induced loss of symmetry gives rise to a change in shape and volume of the
irreducible wedge of the first BZ [Ungersboeck06a]. Irreducible wedges under various strain
conditions were identified in Section 3.5. Only if the proper wedge is identified, redundancy in
the band structure calculations can be avoided.
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Chapter 4

Quantum Confinement and Subband
Structure

CHARGE transport in the MOSFET channel is different from the bulk transport since the
carriers interact with the Si-SiO2 interface. Furthermore, a large electric field normal to

the Si-SiO2 interface causes the formation of a potential well, which confines charge carriers to a
region close to the Si-SiO2 interface. In the potential well a quasi two dimensional electron gas
(2DEG) or hole gas (2DHG) is formed. Carriers are free to move parallel to the interface, but
are tightly confined in the direction normal to the interface. This confinement leads to quantized
energy levels, thus the conduction or valence bands are split into subbands.

The calculations of the energy levels of carriers confined in a quantum well are commonly based
on three approximations:

 The Hartree approximation, stating that each electron moves in the average potential
produced by all other electrons, thus neglecting many-body effects.

 In the semiconductor, the effective mass approximation (EMA) is applied [Bastard81].

 For the calculation of the energy levels it can also be assumed that the barrier between
the insulator and the semiconductor is large enough that the envelope wave functions
vanish at the semiconductor-insulator interface which is reasonable for the Si-SiO2 inter-
face [Ando82].

While the bulk band structure and its modification under the influence of mechanical strain was
discussed in the previous chapter, this chapter is devoted to the subband structure of electrons
in the MOS inversion layer. The influence of strain on the subband structure is shown for various
orientations of the Si-SiO2 interface.
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4.1 Electron Confinement at the Semiconductor-Oxide Interface

In order to calculate the subband structure in the inversion layer the Schrödinger equation and
the Poisson equation have to be considered as a coupled system of differential equations, which
has to be solved self-consistently by numerical methods [Vasileska00]. The energy levels E and
envelope wavefunctions ψ are determined by a solution of the effective Schrödinger equation

[T − eΦ(z)]ψ = Eψ , (4.1)

where Φ(z) is the electrostatic potential and T is the operator for the kinetic energy. The
electrostatic potential determining the shape of the potential well is the solution of the Poisson
equation

∇2Φ = − e

κsi
[Ndop(z) + p(z) − n(z)] . (4.2)

Here, Ndop(z) is the doping profile in the semiconductor, and p(z) and n(z) denote the hole and
electron concentration, respectively. The boundary conditions for the potential are limz→∞ Φ(z) =
0 for the bulk interface and

κdiel
dΦ

dz

///
z=0−

= κsc
dΦ

dz

///
z=0+

, (4.3)

for the Si-SiO2 interface. In (4.3) κdiel denotes the dielectric permittivity of the insulating layer
and κsc that of the semiconductor. Assuming the effective mass approximation, the kinetic
energy operator T in (4.1) can be written as

T =
1

2

∑
i,j

νijpipj , i, j = x, y, z . (4.4)

where pj = −ih(∂/∂xj) denotes the momentum operator, and νij is the reciprocal effective mass
tensor. A coordinate system is chosen such that the z axis is normal to the semiconductor-
insulator interface.

The conduction band valleys of semiconductors are typically oriented along high symmetry lines
of the first Brillouin zone. To calculate the subband structure for any substrate orientation, it is
necessary to introduce a unitary transformation from the crystallographic system x′, y′, z′ to the
interface coordinate system. The momentum operator and the reciprocal effective mass tensor
in the interface coordinate system are transformed as

pj =
∑

k

ujkpk
′ , (4.5)

νij =
∑

k

uikujkνkk
′ . (4.6)

Here, ujk are the elements of a unitary matrix, νkk
′ = 1/mk

′, where mk
′ denote the principal

effective masses of the constant-energy ellipsoid in the semiconductor. The unitary transforma-
tion matrix from the crystallographic coordinate system to the interface coordinate system is
given by

¯
U =

��
cos φ cos θ − sin φ cos φ sin θ

sin φ cos θ cos φ sin φ sin θ

− sin θ 0 cos θ

�� , (4.7)
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The eigenfunctions being subject to the boundary conditions limz→∞ ζi(z) = limz→0 ζi(z) = 0
and the eigenvalues of (4.13) are labeled by a subscript i. The energy spectrum is given by

E(k1, k2) = Ei +
h

2

2

|(
ν11 − ν2

13

ν33

)
k2

1 + 2

(
ν12 − ν13ν23

ν33

)
k1k2 +

(
ν22 − ν2

23

ν33

)
k2

2

|
. (4.14)

and represents constant-energy ellipses above the minimum energy Ei. The fact that Ei is
independent of k1 and k2 is a result of the boundary condition ζ(0) = 0. The energy levels Ei for
a given value of m⊥ generate a set of subband minima called subband ladder. Since the value of
the quantization mass depends on the substrate orientation, so do the number and the degeneracy
of the subband ladders. Obviously, if conduction band valleys have the same orientation with
respect to the surface, these valleys belong to the same subband ladder. Because of the kinetic
energy term (4.4) in the Schrödinger equation the valleys with the largest quantization mass
m⊥ have the lowest energy. Following a widely used convention, the subbands belonging to the
ladder lowest in energy are labeled 0, 1, 2, . . ., those of the second ladder 0′, 1′, 2′, . . ., the third
ladder 0′′, 1′′, 2′′, . . ., and so on [Ando82].

The principal effective masses m‖,1 and m‖,2, associated with motion parallel to the surface can
be deduced from (4.14). This equation represents an ellipse whose principal axes are not parallel
to k1 and k2. Introducing the matrix

¯
M =

 ν11 − ν2
13/ν33 ν12 − ν13ν23/ν33

ν12 − ν13ν23/ν33 ν22 − ν2
23/ν33

 , (4.15)

equation (4.14) can be written as

E(k1, k2) = Ei +
h

2

2
kT

¯
Mk . (4.16)

The inverse effective masses m−1
‖,1 and m−1

‖,2 are the eigenvalues of
¯
M and can be calculated by

solving the secular equation

det
(
¯
M − m−1

‖  
)

= 0 , (4.17)

where  denotes the two dimensional unity matrix.

4.1.1 The Si-SiO2 Interface

In the following section the subband structure of electrons confined near the Si-SiO2 interface
is discussed. As shown in Section 3.4.1 the conduction band edge of Si is located along the Δ
direction and is located in the vicinity of the X symmetry point. Each valley is characterized
by a longitudinal mass ml and a transverse mass mt. In the following only the three valley pairs
along the equivalent Δ axes are considered, whereas the valleys at the L points are neglected.
In the principal crystallographic system the inverse effective mass tensors describing the energy
dispersion of the three valley pairs are given by

¯
ν ′(1) =

��
1

ml
0 0

0 1
mt

0

0 0 1
mt

�� ,
¯
ν ′(2) =

��
1

mt
0 0

0 1
ml

0

0 0 1
mt

�� , and
¯
ν ′(3) =

��
1

mt
0 0

0 1
mt

0

0 0 1
ml

�� . (4.18)
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two valleys (labeled 3 in Figure 4.3a) is m
(3)
⊥ = mt. Since 2mlmt/(mt + ml) > mt, the four

valleys with the larger quantization mass m
(1,2)
⊥ belong to the lowest (unprimed) subband ladder,

whereas the two valleys with m
(3)
⊥ = mt constitute the primed subband ladder. To calculate

the transport masses the eigenvalue problem given in (4.17) for
¯
Mv has to be solved. On (110)

oriented substrate
¯
Mv is given by

¯
M (1,2) =

 1
mt

0

0 2
mt+ml

 ,
¯
M (3) =

 1
ml

0

0 1
mt

 . (4.22)

Thus, the transport masses of the unprimed subband ladder

m
(1,2)
‖,1 = mt , m

(1,2)
‖,2 = (ml + mt)/2 , (4.23)

and the primed ladder

m
(3)
‖,1 = ml , m

(3)
‖,2 = mt , (4.24)

can be obtained. In Figure 4.3b the constant-energy lines of the subbands for a (110) oriented
substrate are shown. The unprimed ladder is fourfold degenerate, whereas the primed ladder
is twofold degenerate. This is opposite to the situation for (001) oriented substrate, where the
unprimed ladder was twofold degenerate and the primed ladder was fourfold degenerate. The
major principal axis of the unprimed subbands is [1̄10], whereas the major principal axis of the
twofold degenerate primed subband ladder is [001].

4.1.4 Substrate Orientation (111)

The substrate normal e
(111)
n for substrate orientation (111) is 1√

3
(1, 1, 1). Thus, the axes of the

principal crystallographic systems have to be rotated by the angles cos θ = 1/
√

3 (θ ≈ 54.74◦)
and φ = 45◦. The inverse effective mass tensor for the three valley pairs in the coordinate system
with the z axis perpendicular to the substrate surface are

¯
ν(1) =

���
mt+5ml
6mtml

ml−mt

2
√

3mtml

mt−ml

3
√

2mtml

ml−mt

2
√

3mtml

mt+ml
2mtml

ml−mt√
6mtml

mt−ml

3
√

2mtml

ml−mt√
6mtml

mt+2ml
3mtml

��� , (4.25)

¯
ν(2) =

���
mt+5ml
6mtml

mt−ml

2
√

3mtml

mt−ml

3
√

2mtml

mt−ml

2
√

3mtml

mt+ml
2mtml

mt−ml√
6mtml

mt−ml

3
√

2mtml

mt−ml√
6mtml

mt+2ml
3mtml

��� , (4.26)

¯
ν(3) =

��
2mt+ml
3mtml

0
√

2(ml−mt)
3mtml

0 1
mt

0√
2(ml−mt)
3mtml

0 mt+2ml
3mtml

�� . (4.27)
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surface orientation degeneracy m‖,1 m‖,2 m⊥ ladder

(001)
2 mt mt ml unprimed

4 ml mt mt primed

(110)
4 mt

mt+ml
2

2mtml
mt+ml

unprimed

2 ml mt mt primed

(111) 6 mt
2ml+mt

3
3mtml

mt+2ml
unprimed

Table 4.1: Principal effective masses of the six Si conduction band minima along Δ for three
surface orientations. Here, m‖,1, and m‖,2 denote the transport masses, and m⊥ is
the quantization mass.

4.2 Strain Effects

In this section the effect of strain on the subband structure of Si inversion layers is analyzed.
For this purpose we assume that the energy shifts of the individual subband ladders can be
calculated using the deformation potential theory. Furthermore it is assumed that the effective
mass change induced by shear strain in bulk Si is reflected in the subband structure as well.

Both strain and confinement breaks the cubic symmetry of bulk Si. As a result the degeneracy
among different pairs of valleys is lifted, while each of these pairs retain their twofold valley
degeneracy (Kramers degeneracy) [Ashcroft76].

The effect of strain on the subband structure is illustrated in Figure 4.5c. If strain is present, the
energetic position of the subband ladders with respect to each other is not completely determined
from their quantization masses. An additional shift of each subband ladder has to be considered
according to (3.47). Since this shift depends on the valley orientation, it may be different for
each valley and consequently the degeneracy between the subband ladders can be lifted.

Electron mobility in the inversion layer can be improved by preferentially populating the subband
ladder with smallest transport mass. This can be achieved by shifting ladders with larger
transport mass up in energy resulting not only in a smaller net effective transport mass, but
also in a reduction of intervalley scattering. However, since the density of states is reduced by
pushing subband ladders with large transport mass up in energy, the Fermi level accommodates
at higher values and the electron gas experiences more pronounced degeneracy effects. These
effects are crucial in the determination of the electron mobility and will be discussed in greater
detail in Section 5.4.

4.2.1 Substrate Orientation (001)

On (001) substrate the energy difference between the lowest subband of the unprimed ladder
and the lowest subband of the primed ladder stems from the different quantization masses.
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4.2 Strain Effects

The larger quantization mass of the unprimed ladder (ml=0.916 m0) as compared to the small
quantization mass of the primed ladder (mt=0.19m0) yields a smaller splitting between the
subband energies of the unprimed ladder than that of the unprimed ladder.

Electron transport in the inversion layer on (001) substrate can be improved by preferentially
populating the twofold degenerate unprimed ladder and depopulating the primed ladder which
is fourfold degenerate. A repopulation has two consequences for electron transport:

 A higher fraction of electrons has the smaller transport mass of the unprimed ladder.

 Additionally, by shifting the subbands of the primed ladder up in energy with respect to
the unprimed ladder, the scattering rate to this subband ladder is decreased. This also
contributes to the mobility increase.

The intrinsic splitting between unprimed and primed subband ladder can be increased by ap-
plying

 compressive stress along the interface normal,

 biaxial in-plane tensile strain (e.g. from epitaxially growing Si on Si1−xGex).

 tensile stress along the in-plane <110> direction.

Under the first two conditions the strain tensor only contains non-zero diagonal components
(εxx = εyy /= εzz). In the third case, where stress is applied along the <110> direction, additionally
εxy is non-zero and an effective mass change occurs. Under the strain conditions listed above the
degeneracy of the subband ladders is not changed. Thus, the unprimed ladder is still twofold
degenerate, and the primed ladder remains fourfold degenerate.

Using linear deformation potential theory the splitting of the unprimed subband ladders can be
calculated from (3.47). Under shear strain the additional shift between the primed and unprimed
subband ladder given in (3.54) and the effective mass change (see equations (3.98), (3.99), and
(3.94)) of electrons in the unprimed ladder has to be accounted for. As depicted in Figure 4.6,
the energy dispersion of electrons in the unprimed subband ladder is not longer isotropic in the
(001) plane and transport characteristics depends on the direction of transport.

Recent experiments suggest an enhancement of electron mobility if tensile stress is applied in the
[100] direction [Irie04]. Under such stress conditions εxx /= εyy, thus the fourfold degeneracy of
the primed subbands is lifted and three sets of twofold degenerate ladders are formed (compare
Figure 4.5).

4.2.2 Substrate Orientation (110)

On (110) substrate the energy difference between the two subband ladders formed in the un-
strained case (compare Table 4.1) can be increased by applying tensile stress along [001]. Com-
pressive stress along [1̄10] or biaxial in-plane tensile stress will also increase the intrinsic splitting
between the fourfold, unprimed and the twofold, primed subband ladder.
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Chapter 5

Physical Mobility Modeling

Carrier mobility is a key parameter for the numerical simulation of the electrical character-
istics of semiconductor devices. Many analytical models have been developed capturing

accurately the dependence of mobility on temperature, doping, and electric field [Lombardi88,
Selberherr89, Agostinelli91, Shirahata92, Darwish97, Kondo01, Reggiani02]. All these models
were originally developed for unstrained Si. To describe the mobility in strained Si they have to
be adapted accordingly [Dhar05].

In this work the electron mobility in bulk Si and Si inversion layers is analyzed by solving the
semi-classical Boltzmann transport equation. The latter is solved numerically using a Monte
Carlo (MC) method. For this purpose the Vienna Monte Carlo simulator VMC [VMC2.006] was
developed, offering simulation algorithms for both bulk semiconductors and one-dimensional de-
vices with models based on both analytical bands (ABMC) and the fullband structure (FBMC).
VMC provides a comprehensive set of scattering models including phonon scattering, ionized
impurity scattering, alloy scattering, and impact ionization.

The chapter is organized as follows: In Section 5.1, the basic features of the carrier mobility in
semiconductors and the concept of the universality of the effective mobility are described. In
Section 5.2 the validity of the Boltzmann transport equation as a fundamental equation for the
description of carrier transport in semiconductor devices is discussed. The simulation method
and an overview of the scattering models are given in Section 5.3. Finally, a new MC algorithm,
which allows the inclusion of degeneracy effects, is presented in Section 5.4.

5.1 Mobility

Mobility describes the relation between drift velocity of electrons or holes and an applied electric
field in a solid.

vd = µ̂E (5.1)

Here, vd is the drift velocity, E is the electric field, and µ̂ denotes the mobility tensor.

In a semiconductor the mobility of electrons is different from that of holes. The reason is the
different band structure and scattering mechanisms of these two carrier types. When one charge
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important, because there the device spends comparatively more time than in the high gate field
region [Mujtaba95].

5.2 Validity of the Boltzmann Transport Equation

As device dimensions in modern CMOS transistors are in the order of only several ten nanome-
ters, the question of the validity of the Boltzmann transport equation,

∂fn(r, k, t)

∂t
+ vn(k) · ∇rfn(r, k, t) +

1

h
F (r) · ∇kfn(r, k, t) =

(
∂fn

∂t

)
coll

, (5.5)

as a fundamental description of carrier transport arises. This equation was originally derived for
dilute gases. In the following some of the approximations of the Boltzmann transport equation
and their implications are addressed.

The solution of the Boltzmann transport equation with an external force F (r) provides the
distribution function fn(r, k, t) from which macroscopic quantities can be derived. The right-
hand side of (5.5) describes the changes to the distribution function induced by scattering.
The particle’s group velocity is determined from the semiconductor band structure En(k) as
vn(k) = h

−1∇kEn(k). In the parabolic band approximation, h
−1∇kEn(k) = hk/m̂∗, and the

particle’s group velocity can be calculated from the effective mass tensor m̂∗.

The distribution function fn(r, k, t)d3kd3r defines the probability density to find a particle in
d3kd3r at a given time t. Obviously, such a statistical description can only be appropriate when
the number of carriers is large. Extremely down-scaled devices may contain too few carriers to
justify this kind of statistical treatment.

Since carriers interact through their electric fields, the distribution function fn(r, k, t) at a
particular point in the six dimensional position-momentum (phase) space at a given time can
only be determined from the knowledge of fn in all other points. This would involve a treat-
ment using an N−particle system and an N−particle distribution function. However, if the
carrier-carrier correlations are weak, the N−particle distribution function can be contracted
to a one-particle distribution function [Harris04]. Alternatively, the influence of other carriers
can be treated through the self-consistent electric field [Venturi89] and schemes where the Pauli
exclusion principle is included [Bosi76, Lugli85, Yamakawa96, Ungersboeck06b].

A main assumption of the Boltzmann transport equation is that particles can be treated semiclas-
sically, obeying Newton’s law. Quantum mechanics enters the equation only through the band
structure and the description of the collision term. Since both the position and the momentum
of a particle are arguments of the distribution function, apparently the quantum mechanical
uncertainty principle ΔpΔr ≥ h/2 is violated. Assuming a spread in particle energy of kBT , one
finds that the spread in position is

Δr ≥ h/(2
√

2m∗kBT ) = λB/2 . (5.6)

Here, λB denotes the particle’s thermal average wavelength. Thus, one should not attempt to
localize the particle’s position exactly with respect to its thermal average wavelength. If the
potential varies sharply on the scale of λB, which is typically in the order of 10 nm to 20 nm
at room temperature, condition (5.6) is not satisfied, and instead of the Boltzmann equation a
wave equation must be solved to study the propagation of a carrier wave through the device.
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5.3 The Monte Carlo Method

5.3 The Monte Carlo Method

Numerical techniques allow a solution of the Boltzmann transport equation with a rigorous
treatment of the collision terms. Among them, the Monte Carlo (MC) method is well established
[Kosina00b]. In the MC method, trajectories of charge carriers undergoing scattering events are
calculated numerically both in real- and in momentum space under the influence of an external
electric field. The method uses random numbers to select a scattering event and to determine
the time of free flight. Because of its statistical nature, the calculation of a large number of
trajectories is required to determine the average values of interest with a certain precision. In
fact, this is the main disadvantage of the MC method as compared to deterministic solution
methods of the Boltzmann transport equation. However, especially for the simulation of hot-
carrier transport phenomena in two- or three dimensions MC is the method of choice, since
complex physical models can be taken into account.

After the pioneering work of Kurosawa in 1966 [Kurosawa66], who was the first to apply the MC
method to simulate carrier transport in semiconductors, a significantly improved MC method
was successfully applied to transport calculations in a variety of semiconductors [Jacoboni83].
For electrons in Si, the most thoroughly investigated case, it is believed that a satisfactory
understanding of the band structure and of the basic scattering mechanisms has been achieved
giving rise to a “standard model” [Fischetti96b].

For predicting performance of modern CMOS bulk and SOI devices an accurate MC evaluation
of carrier transport properties in inversion layers is of primary importance. Due to the strong
confinement of carriers in the inversion layer of MOSFETs or due to the geometric confinement in
multi-gate FETs the carrier motion is quantized in one or two confinement directions giving rise
to the formation of subbands. The MC approach may incorporate the subband structure to de-
scribe the quantized carrier motion in the direction orthogonal to the current. The subbands are
calculated by the self-consistent solution of the corresponding Schrödinger and Poisson equation.
The free carrier motion within each subband may still be considered semiclassical and therefore
can be well described by the corresponding Boltzmann equation for the subband distribution
function fn(r, k, t), where k is a 2D wave vector. Because of possible carrier scattering between
different subbands, the collision integrals on the right-hand-side of the Boltzmann equation have
to include the terms responsible for the intersubband scattering processes. The transport in the
inversion layer of a MOSFET is finally described by a set of Boltzmann equations for every
subband, coupled by the intersubband scattering integrals. The set of the subband Boltzmann
equations for fn(r,k, t) is conveniently solved by a MC method. Therefore, this approach com-
bines the advantages of a quantum description in confinement direction with a semiclassical
description in transport direction.

In the following, from the set of scattering models included in the simulator VMC only the
electron phonon scattering mechanisms and their adaptation for the 2DEG are discussed in
detail, whereas we refer to the documentation of VMC [VMC2.006] for a complete description of
implemented scattering models. Additionally, the models for surface roughness scattering and
dielectric screening of the 2DEG will be described.
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5.3.1 Bulk Scattering Mechanisms

The collision integral at the right hand side of Boltzmann’s transport equation is defined as the
rate of change of the distribution function(

∂fn

∂t

)
coll

=
Ω

(2π)3

∑
n′

/
BZ

(1 − fn(r, k, t))Snn′(k, k′, r, t)fn′(r, k′, t)

− (1 − fn′(r, k′, t))Sn′n(k′, k, r, t)fn(r, k, t)d3k′ . (5.7)

It describes the transition from an arbitrary state (n′, k′) into the state (n, k) and the reverse
process assuming that scattering does not change the particle’s spin. The probability density
rate for a transition from the initial state (n′, k′) to a final state (n, k) depends on position and
is proportional to the occupancy of the initial state fn′(r, k′), proportional to the transition rate
Snn′(k, k′, r, t), and to the probability that the final state is not occupied (1 − fn(r, k)). The
latter factor is a result of the Pauli Principle and will be discussed in more detail in Section 5.4.

Omitting time and position dependence for the sake of brevity, the scattering rates are defined
as

Sn(k) =
Ω

(2π)3

/
BZ

∑
n′

Sn′n(k′, k)d3k′ , (5.8)

where the integration can be performed over the first BZ or any primitive cell in the reciprocal
space. The scattering rate represents the rate at which particles are scattered out of the initial
state (n, k). From Fermi’s Golden Rule it follows that the scattering rates are proportional to
the final density of states per spin, gn (E), which is given by

gn (E) =
1

(2π)3

/
cell

δ(E − En(k)) d3k , (5.9)

In fullband MC simulations this integral is evaluated numerically. Using an analytical description
for the conduction bands, the minima of the conduction bands (valleys) are approximated using
the bandform function

γv(E) =
h

2

2

3∑
i,j=1

ki
1

m∗v
ij

kj =
(
Ev

nonpar(k) − Ev
0

) (
1 + αv(Ev

nonpar(k) − Ev
0 )
)

(5.10)

= E (1 + αvE) (5.11)

Note that the band index n was replaced by the valley index v, and E denotes the energy
with respect to the valley offset E0. m∗v

ij denotes the effective mass tensor, and αv the non-
parabolicity coefficient of the valley with index v. A parabolic band dispersion is obtained if the
nonparabolicity coefficient αv is zero.

The density of states of the analytical band structure evaluates to

gv (E) =
1√
2

{mv
dos}3/2

π2h3

√
γv (E)(1 + 2αvE) , (5.12)

where mv
dos denotes the density of states mass of the v-th valley

mv
dos = 3

√
{m∗

11}v{m∗
22}v{m∗

33}v , (5.13)
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which can be calculated from the effective mass tensor.

The transition rates from state (v, k) to state (v′, k′) for phonon scattering in a non-polar
semiconductor can be written as [Jacoboni83]

{S
abs
emi}v′v(k′, k) =

π

ρΩωq

(
Nq +

1

2
∓ 1

2

)
O|Dijqjξi|2δ[Ev′

(k′) − Ev(k) ∓ hωq] . (5.14)

Here, the upper and lower symbols refer to phonon absorption and emission, respectively. The
rate depends on the momentum transfer q = k − k′, the phonon number Nq, the deformation
potential tensor Dij , the mass density of the crystall ρ, the phonon angular frequency ωq , its
polarization ξi, and the overlap integral O,

O =

//////
/

BZ

u∗
k′(r)uk(r) exp(iG · r)d3r

//////
2

. (5.15)

The overlap factors depend on the type of transition. For intravalley transitions of electrons,
O is frequently set to unity, even though this is true only for exact plane waves or for wave
functions formed with pure s states [Jacoboni83]. Because the lowest conduction band of cubic
semiconductors is a mixture of a s and p-type state, an overlap factor less than unity is obtained.
Both for intra- and intervalley transitions O was found to be almost constant for each type of
scattering process [Reggiani73], thus the values for O may be included in the coupling constants.

Acoustic Intravalley Scattering

The expression for the scattering probability for electron intravalley scattering from acoustic
phonons can be simplified by using the elastic and equipartition approximation. Within this ap-
proximation, the energy transfer in a scattering process is neglected, and the phonon population
given by the Bose-Einstein statistics

Nq =
1

exp
(

hωq

kBTL

)
− 1

(5.16)

is represented by the equipartition expression Nq ≃ kBTL

hqus
− 1

2
. Thus, (5.14) becomes

{S
abs
emi
ac }v(k′, k) =

πq{Ξv
adp}2

Ωusρ

(
kBTL

hqus
∓ 1

2

)
δ[Ev(k′) − Ev(k)] , (5.17)

where v denotes the valley index, TL is the lattice temperature, Ξv
adp is the acoustic deformation

potential of the v-th valley, kB is Boltzmann’s constant, us denotes the average sound velocity,
and ρ is the mass density of the crystal.

Since in the elastic approximation no distinction is made between absorption or emission pro-
cesses, both transition probabilities can be added. In this approximation acoustic scattering is
isotropic: any state k′ belonging to the equi-energy surface has the same probability of occur-
rence, independent of the angle of the initial state k. Thus, the rate for acoustic scattering is a
function of energy only

{Sac}v (E) =
2πkBTL{Ξv

adp}2

hu2
sρ

gv (E) , (5.18)
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Table 5.1: Parameters for phonon scattering. The intervalley scattering parameters for the
Δ-valleys are taken from [Jacoboni83].

Silicon Units

Intra ρ 2.33a g/cm3

vs 9.05b cm/sec

ΞΔ
adp 9.0b eV

hωop 61.2c meV

DtKL 1.75c 108eV/cm

InterΔΔ hωg1 12.06 meV

DtKg1 0.5 108eV/cm

hωg2 18.53 meV

DtKg2 0.8 108eV/cm

hωg3 62.04 meV

DtKg3 11.0 108eV/cm

hωf1 18.86 meV

DtKf1 0.3 108eV/cm

hωf2 47.39 meV

DtKf2 2.0 108eV/cm

hωf3 59.03 meV

DtKf3 2. 108eV/cm

a [Jacoboni83], b [Jungemann03], c [Fischetti96b]

where gv (E) is the density of states per spin.

Optical Intravalley Scattering

The scattering probability can be written, starting from (5.14), by replacing Ξ2q2ξ2 with a
squared optical coupling constant {DtK

v}2 [Jacoboni83]. This constant can also include an
overlap factor O. The energy associated with the optical phonon hωop and the phonon number
Nq = Nop can be assumed to be constant. Hence, the resulting scattering probability is

{S
abs
emi
op }v(k′, k) =

π

ρΩωop

(
Nop +

1

2
∓ 1

2

)
{DtK

v}2δ[Ev(k′) − Ev(k) ∓ hωop] , (5.19)

The scattering rate for optical phonons is a function of the final energy E ± hωop

{S
abs
emi
op }v (E) =

π{DtK
v}2

ρωop

(
Nop +

1

2
∓ 1

2

)
gv (E ± hωop) . (5.20)
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From the matrix element theorem one can derive that this type of scattering occurs only in the
conduction band valleys along the <111> directions [Harrison56].

Intervalley Scattering

Both acoustic and optical phonons can cause electron transitions between states in different
conduction band valleys. This scattering can be formally treated in the same way as intravalley
scattering by optical phonons[Harrison56, Conwell67].

The scattering rate for intervalley scattering out of a valley v for a phonon mode η is given by

{S
abs
emi
η }v (E) =

∑
v′ /=v

π{DtK
v′v
η }2Zv′

ρωη

(
Nη +

1

2
∓ 1

2

)
gv′

(
Ev′ ± hωη − ΔEv′v

)
, (5.21)

where a summation over the final valleys is performed. The allowed final valleys v′ are determined
by the selection rules for a phonon mode η: g-type phonons can induce transitions between
valleys which are located on the same axis in the three dimensional k space, whereas transitions
among orthogonal axes are labeled f -type. The squared coupling constants {DtK

v′v
η }2 depend

upon the initial and final valley and the phonon branch η involved in the transition. Zv′

denotes
the number of possible final equivalent valleys, Nη is the phonon number, and ΔEv′v is the
difference between the energies of the minima of the final and initial valley. Since strain is able
to change ΔEv′v, the intervalley scattering rate can be efficiently reduced through strain.

The numerical values entering the bulk phonon scattering rates are summarized in Table 5.1.

5.3.2 Scattering Mechanisms in the 2DEG

In analogy with the 3D case, the scattering rates for electrons residing in subband n of valley v
are obtained from an integration over all possible two-dimensional k′ states after scattering

Sv
n(k) =

A

4π2

/
BZ

d2k′ ∑
n′,v′

Sv′,v
n′,n(k′, k) . (5.22)

Here, A denotes the area, and a summation over all subbands n′ and valleys v′ after scattering
is performed. The density of states per spin for the 2DEG is obtained as

gn (E) =
1

(2π)2

/
δ[E − En(k)] d2k . (5.23)

As in the three dimensional case the energy subband dispersion Ev
n(k) of subband n in a valley

v can be approximated close to its minimum using a nonparabolic relation [Ando82, Laux88]

E(1 + αv
nE) =

h
2

2

(
k2

1

mv
‖,1

+
k2

2

mv
‖,2

)
, (5.24)

where E = Ev
n(k)−Ev

n,0 denotes the energy with respect to the subband minimum Ev
n,0, and αv

n

is the nonparabolicity coefficient. The integration over the energy in (5.23) can be performed
analytically yielding

gv
n (E) =

{mdos}v
n

2πh2
(1 + 2αv

nE)Θ[E] , (5.25)
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for the density of states of the subband n of valley v. Here, Θ denotes the Heaviside step function,
and {mdos}v =

√
mv

‖,1m
v
‖,2 is the density of states mass. In Si the subband dispersion is frequently

assumed to be independent of the subband index n [Jungemann93, Fischetti02, Roldan96]. The
masses mv

‖,1 and mv
‖,2 for three substrate orientations of Si are listed in Table 4.1.

The bulk phonon scattering model for the six valleys along Δ has been adapted for the 2DEG fol-
lowing the treatment of Price [Price81]. The well accepted model for the bulk phonon spectrum
of Jacoboni [Jacoboni83] can be used for the Si inversion layer.

Acoustic Intravalley Scattering

In the 2DEG scattering with long-wavelength acoustic phonons causes intra- and intersubband
transitions within the same valley. The transition rate of electrons in the inversion layer due to
interaction with acoustic phonons is given by [Price81]

{Sac}v
n′n(k′, k) =

2π

h

kBTL{Ξv
adp}2

Aρu2
l

1

bvv
n′n

δ[Ev
n′(k′) − Ev

n(k)] . (5.26)

Here, n and n′ denote the subband indices, v the valley index, and ul is the longitudinal sound
velocity. In (5.26) an overlap integral occurs,

1

bv′v
n′n

=

∞/
0

|ζv′

n′(z)|2|ζv
n(z)|2dz , (5.27)

where ζv′

n′(z) denote the one dimensional envelope wave functions being solutions of the Schrö-
dinger equation (4.13). The parameters bv′v

n′n have the unit of length and are usually referred to
as effective widths. It can be understood as the effective extent of the interaction region between
electrons in different subbands and valleys in the z direction.

Using the nonparabolic density of states (5.25) the scattering rate can be written as

{Sac}v
n(E) =

2π

h

kBT{Ξv
adp}2

ρu2
l

∑
n′

1

bvv
n′n

gv
n′(E − Ev

n′) . (5.28)

Intervalley Scattering

In the 2DEG intervalley scattering causes transitions to valleys belonging to either the same or to
different subband ladders. Following Price’s treatment for intravalley optical phonon scattering
the transition rate for transitions between different valleys becomes

{S
abs
emi
η }v′v

n′n(k′, k) = (1−δv′v)
π(DtKη)

2
v′v

Aρωη

1

bv′v
n′n

(
Nη +

1

2
∓ 1

2

)
δ
⌡
Ev′

n′(k′) − Ev
n(k) ∓ hωη

⌡
, (5.29)

where v and v′ denote the valley index before and after the transition, respectively [Price81,
Jungemann93]. A summation is performed over all final valleys v′ which are determined by the
selection rules for phonon mode η.
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Using the effective mass approximation, the scattering rate for intervalley transitions from an
electron in valley v and subband n can be written as (5.22)

{S
abs
emi
η }v

n(E) =
∑
n′

∑
v′ /=v

h{DtK
v′v
η }2

ρωη

1

bv′v
n′n

(
Nη +

1

2
∓ 1

2

)
gv′

n′(E ± hωη − Ev′

n′) . (5.30)

Surface Roughness Scattering

The deviations of the interface from an ideal flat plane can be described by a two-dimensional
roughness fluctuation, Δ(r), where r is the two-dimensional position vector in the plane of
the interface [Ferry97]. The potential associated with the roughness Δ(r) can be viewed as a
combination of two effects:

 The boundary perturbation causes the envelope functions to be displaced from their un-
perturbed positions.

 The imposed fluctuation of the electric field and the charge density at the rough interface
give rise to an electrostatic contribution to the potential.

The original formulation of Prange and Nee [Prange68] of the unscreened matrix elements for
surface roughness scattering has been adopted. It can be applied for scattering at two inter-
faces [Esseni04]

|{Munscr
sr }v

n′n(q)|2 =
C(q)

A
{F v

n′n}2 , where F v
n′n =

h
2

2mv
q

dζv
n′(zint)

dz

dζv
n(zint)

dz
. (5.31)

Here, q = k−k′ is the momentum transfer, mv
q is the quantization mass of electrons in valley v,

and dζv
n(zint)/dz denotes the derivative of the envelope function with respect to z at the position

of the interface (for instance, zint = 0, and zint = Tsi for the front and back-interface of a thin
Si film). The spectral density C(q) is the 2D Fourier transform of the autocovariance function

C(r) = <Δ(r′)Δ(r′ − r)> , (5.32)

where the brackets denote the ensemble average of the roughness fluctuation Δ(r). The rough-
ness spectrum is frequently assumed to be Gaussian [Jungemann93, Esseni03, Esseni04]

C(q) = πΔ2
rmsL

2
c exp(−(qLc/2)2) , (5.33)

or of exponential shape [Goodnick85, Ferry97]

C(q) =
πΔ2

rmsL
2
c

(1 + (q2L2
c/2))3/2

. (5.34)

Here, Δrms is the root mean square value of the roughness fluctuations and Lc is the autoco-
variance length.

The transition rate for surface roughness scattering is

Sv
n′n(k, k′) =

2π

h

C(q)

A
{F v

n′n}2δ[Ev
n′(k′) − Ev

n(k)] , (5.35)
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where intersubband transitions due to surface roughness are restricted to the same valley [Esseni03,
Cheng71]. In the nonparabolic band approximation the scattering rate for a Gaussian spectrum
is given by

A

4π2

∑
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/
d2k′Sv
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Δ2
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2
c

2h

∑
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n′(k′) − Ev
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2
c

h

∑
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n′){F v
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2π/
0

dφ′ exp(−(qLc/2)2). (5.36)

Assuming isotropic bands mv = mv
‖,1 ≈ mv

‖,2 ≈ √
m‖,1m‖,2, the integral over the angle can be

written as

2π/
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2
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= exp
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c(k
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4

)
2πI0(y) , (5.37)

where y = −L2
ck

′k/2, and I0 denotes the modified Bessel function of the first kind.

Since the electrons in the inversion layer screen the scattering potential, the transition rate
for surface roughness scattering is reduced. The dielectric function relates the unscreened and
screened matrix elements of the scattering potential through the dielectric function ǫD

{M scr
sr }v

n′n(q) =
∑
w

∑
m′,m

{Munscr
sr }w

n′n(q)

ǫDvw
(n′n)(m′m)(q)

. (5.38)

Because surface roughness represents a static potential the dependence on the frequency ω can
be dropped. Since the number of relevant subbands can be of order 100 [Jungemann93], further
simplifications are required to numerically evaluate the impact of screening.

In the long-wavelength limit, q → 0, intersubband transitions are completely unscreened [Ferry97],
thus {M scr

sr }v
n′n(q) = {Munscr

sr }v
n′n(q). Furthermore, the multisubband dielectric function reduces

to a scalar function when neglecting the intersubband polarizabilities and the correction terms
due to the intrasubband polarizabilities of the other subbands [Ferry97]. This approximation is
frequently applied for transport simulations [Esseni03, Esseni04]. The scalar dielectric function
for intrasubband transitions can be given in terms of the polarization function Ln(q) and the
form factor Fn(q)

ǫD(q) = 1 +
∑

v

∑
n

e2

2κsiq
F v

n (q)Lv
n(q) , (5.39)

where κsi is the dielectric constant of Si [Ferry97]. The polarization function can be expressed
in terms of the Fermi-Dirac distribution function fFD

Lv
n(q) = 2

∑
k

fFD[Ev
n(k)] − fFD[Ev

n(k + q)]

Ev
n(k + q) − Ev

n(k)
. (5.40)
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Table 5.2: Parameters for scattering in the 2DEG for {001} and {110} substrate orientation.
For intervalley scattering the bulk parameters of Table 5.1 are used.

{001} {110} Units

ΞΔ
adp 14.8 13.0 eV

Lc 1.3 1.5 nm

Δrms 0.4 0.55 nm

The form factor can be calculated from

F v
n (q) =

/
dz

/
dz′|ζv

n(z′)|2|ζv
n(z)|2G(z, z′, q) . (5.41)

Here, G(z, z′, q) denotes the Green’s function. For a semi-infinite Si layer the Green’s function
evaluates to [Ando82]

G(z, z′, q) =
1

2

|(
1 − κsi

κsio2

)
e−q|z−z′| +

(
1 +

κsi

κsio2

)
eq|z−z′|

|
. (5.42)

For a Si layer sandwiched between two semi-infinite SiO2 films (from z = 0 to z = Tsi) it is given
by [Fischetti03]

G(z, z′, q) =
1

(1 − κ̃2e−2qTsi)

⌡
e−q|z−z′| + κ̃e−q|z+z′| + κ̃e−2qTsi

(
eq|z−z′| + κ̃eq|z+z′|

)⌡
, (5.43)

where κ̃ = (κsi − κsio2)/(κsi + κsio2).

Both the form factors and the polarization function are evaluated numerically from the wave
functions and are used to calculate the screened surface roughness scattering rate.

5.3.3 Coupling to the Schrödinger Poisson Solver

In this work the Schrödinger-Poisson solver SCHRED 2.0 [Vasileska00] was extended to allow
general strain conditions and arbitrary substrate orientation. The dependence of the subband
spectrum on the Si substrate orientation has been implemented by taking the proper masses
m‖,1, m‖,2, and m⊥ according to Table 4.1. Recently, a coupling with VSP [Karner06] has been
established.

The impact of strain is implemented by taking into account the strain-induced effective mass
change using the analytic expressions (3.94),(3.98), and (3.99). Furthermore, the energy shifts
of the subbands induced by strain are superimposed to the subband energies during the self-
consistent solution of the Schrödinger-Poisson system.

The tool flow for a transport simulation in Si inversion layers is depicted in Figure 5.3. First,
values for the input parameters of the Schrödinger-Poisson solver, such as Ndop, Vg or Tsi, have
to be specified in an according input file. These values, together with the strain and the sub-
strate orientation are passed to the Schrödinger-Poisson solver. In a postprocessing step the
eigenenergies and wave functions of the subbands and the Fermi level are used to calculate the
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5.4 MC Algorithm Including Degeneracy Effects

A new MC algorithm accounting for the Pauli exclusion principle is proposed which is less
sensitive to the error δ(k). The proposed algorithm is based on the following reformulation of
the collision operator

Q[f ]k =

/
f(k′)[1 − f(k)]S(k, k′) dk′ −

/
f(k)[1 − f(k′)]S(k′, k) dk′

=

/
f(k′)S(k, k′) − f(k)S(k′, k) + f(k)f(k′)[S(k′, k) − S(k, k′)]    

additional term

dk′ , (5.44)

where the band index n and the time dependence of the distribution are dropped. The last
term represents a nonlinear correction to the nondegenerate collision operator. To linearize the
scattering operator it is common to keep one factor of the product f(k)f(k′) constant and to
treat the other as the unknown.

Near thermodynamic equilibrium, the distribution function f can be approximated by the Fermi-
Dirac distribution function fFD. The key point of the new method is that a symmetric approx-
imation with respect to k and k′ is employed

f(k)f(k′) ≈ 1

2

(
f(k)fFD(k′) + fFD(k)f(k′)

)
. (5.45)

Using this approximation the scattering operator can be expressed in terms of a modified tran-
sition rate  S(k, k′) and scattering rate  λk as

Q[f ]k =

/
f(k′) S(k, k′) dk′ − f(k) λk .

with

 S(k′, k) = S(k′, k)

(
1 − 1

2
fFD(k′)

)
+ S(k, k′)

1

2
fFD(k′) , and (5.46)

 λk =

/  S(k′, k) dk′ . (5.47)

A simple error analysis shows the advantage of this formulation. Consider a highly degenerate
state k, characterized by f(k) ≈ 1. A direct approximation of the blocking factor [1− f(k)] can
give completely wrong results, because the approximation of the blocking factor is determined
by the error, 1− (fFD + δ) ≈ δ. In the formulation (5.46), however, because of δ ≪ 1 the effect
of the error will be negligible, 1 − (fFD + δ)/2 ≈ 1/2.

The modified transition rate (5.46) is given by a linear combination of the forward rate S(k, k′)
and backward rate S(k′, k). The latter can be expressed in terms of the forward rate by means of
the principle of detailed balance [Ashcroft76]. The modified scattering rates for phonon emission
and absorption become,

 λem = λem

(
1 − 1

2

fFD(Ef)

N0 + 1

)
, (5.48)

 λab = λab

(
1 +

1

2

fFD(Ef)

N0

)
, (5.49)
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where Ef denotes the final energy and N0 the equilibrium phonon distribution function,

N0 =
1

exp
(

hω0
kBT

)
− 1

.

To implement the Pauli principle in a conventional MC program for nondegenerate statistics the
only modifications necessary are the replacement of the classical scattering rates by the modified
ones.

For elastic scattering mechanisms the modified scattering rates do not change from the clas-
sical ones,  λk = λk. For the simulation of the 2DEG one can assume scattering with surface
roughness, impurities, and acoustic phonons to be elastic.

In Section 6.3.2 simulation results using the new MC method including the Pauli exclusion
principle are discussed. It is shown that in the low field limit the proposed algorithm yields the
same mobility as the Kubo-Greenwood formula, while other algorithms do not. We use the new
method to extract velocity profiles and to illustrate the large effect of degeneracy on the electron
system.
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Chapter 6

Simulation Results

In this chapter the results of band structure calculations and of electron mobility simulations
for Si under general strain conditions are presented. Special emphasis is put on shear strain

arising from stress along <110> because of its high relevance from a technological point of view.

The chapter is organized as follows: In Section 6.1 results from band structure calculations
using the empirical pseudopotential method are presented. Especially the impact of strain on
the Δ-valleys of the lowest conduction band is analyzed as the electron mobility is mainly
determined by electrons residing in these valleys. Band structure calculations are compared to
the analytical expressions derived using a degenerate k·p-theory at the zone boundary X point.
The effective mass change of electrons predicted by the calculations is verified by comparison
with experimental data. Next, the effect of strain on the subband structure of Si inversion layers
as obtained from the Schrödinger-Poisson solver is examined.

In Section 6.2 the Si bulk electron mobility is analyzed for various strain conditions. The
impact of the strain-induced valley shifts and the strain-induced effective mass change on the
mobility is evaluated. Section 6.3 contains the simulation results of the effective mobility in Si
inversion layers. Again, focus is put on substrate orientations and strain configurations that
are of technological relevance. Finally, the influence of degeneracy effects on the inversion layer
mobility is analyzed and simulation results are compared to experimental data.

6.1 Bandstructure Calculations

The parameters relevant for the modeling of strain effects on the conduction bands of Si were
extracted from EPM calculations and are given in Table 6.1. The value for the uniaxial de-
formation potential ΞΔ

u coincides with the value extracted by Rieger [Rieger93]. The value for
the shear deformation potential Ξu′ = 7.0 eV compares well with the values extracted from
experimental data: a value of 5.7±1 eV [Hensel65] has been predicted from cyclotron resonance
experiments. From more recent measurements of the indirect exciton spectrum of Si the value
7.5±2 eV has been obtained [Laude71]. By calculations based on a self-consistent perturbation
theory [Goroff63] the value 7.8 eV was obtained for the shear deformation potential. The effec-
tive masses and the band separation Δ = 0.53 eV between the two lowest conduction bands at
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6.1.2 Strain-Induced Change of the Shape of the Conduction Band Edge

In Figure 6.5 the energy dispersion of the two lowest conduction bands along the Δ symmetry
lines are given for 2 GPa uniaxial stress along four stress directions. The different splitting can
be interpreted from the strain tensor resulting from stress as given in (3.18):

 Since the off-diagonal elements of the strain tensor vanish if stress is applied along [100],
the degeneracy of the conduction bands at the X-points is not lifted. Stress shifts the
Δ[001]-valleys up in energy with respect to the other four valleys.

 For stress direction [110] the non-zero εxy component lifts the degeneracy of the conduction
bands at the [00±1] X-points. Thus, a noticeable effect of strain on the effective masses
and the mobility is expected.

 Stress along [111] is not expected to give rise to electron mobility enhancement. The non-
zero off-diagonal components equally lift the degeneracy of the conduction bands in all six
X-points, however, the valley degeneracy remains.

 For [120] stress all three valley-pairs are shifted with respect to each other. Additionally,
the Δ[001]-valley is affected by the splitting of the two conduction bands along [001] due
to the non-zero εxy component.

In Figure 6.6 the lifting of the degeneracy of the two lowest conduction bands is analyzed as
a function of εxy. The splitting is linear with εxy and can be approximated using the analytic
expression δE = 4Ξu′εxy using 7.0 eV for the shear deformation potential.

The change of position of the minima of the conduction band edge and the Δ-valley shifts
resulting from shear strain εxy are plotted in Figure 6.7, where results from EPM calculations
are compared to the analytical expressions (3.92) and (3.100).

The shear strain-induced effective mass change of the transverse and longitudinal mass char-
acterizing the Δ[001]-valley pair of Si is plotted in Figure 6.8. Again, results from the EPM
are compared to the analytical expressions, (3.94), (3.98), and (3.99). Good agreement can be
observed for εxy < 1.5%. For larger values of shear strain, the change of the effective masses as
obtained from k·p theory is smaller than that from the empirical pseudopotential method.

The calculated change of the effective mass induced by shear strain has been compared to values
extracted from cyclotron resonance measurements. Good agreement is achieved as can be seen
in Figure 6.9.

Finally, in Figure 6.10 the constant-energy lines in the plane kz = kmin are shown. For increasing
εxy the evolving ellipsoid is characterized by two different transverse masses given in (3.98) and
(3.99). The principal axes of the ellipses are [110] and [11̄0].
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6.1 Bandstructure Calculations

6.1.3 Subband Structure

Figure 6.11 shows the three lowest energy levels, Ev
n(k = 0), and the populations of the subband

ladders of Si inversion layers for substrate orientation (001), (110), and (111) as a function of
the inversion layer concentration at a substrate doping concentration of 1 × 1016 cm−3. The
energy levels are plotted relative to the lowest subband energy level. Two subband ladders
are formed in (001)- and (110)-oriented substrate, whereas in (111)-oriented substrate the six
Δ-valleys form only one subband ladder. It can be seen that the subband splitting increases
with the inversion layer concentration. Furthermore, the Fermi level crosses the lowest subband
level. This happens at an inversion layer concentration of 5 × 1012 cm−2 for (001) oriented
substrate and above 1×1013 cm−2 for (110) and (111)-oriented substrate. Therefore, the 2DEG
is degenerate and the Pauli exclusion principle has to be included in simulations.

The subband populations for the three substrate orientations are compared in Figure 6.11b. The
population of the primed ladder is the largest for (001)-oriented substrate. Keeping in mind that
for this substrate orientation the transport masses of the primed ladder are larger than for the
unprimed ladder, one can anticipate the large potential of strain to reduce the primed ladder
population.

In Figure 6.12 the three lowest subband levels and subband populations for a substrate with
(001)-orientation are given at three stress configurations. Figure 6.12a and 6.12b show that a
tensile stress along [100] causes the primed ladder, being fourfold degenerate in the unstrained
case, to split into two ladders with twofold degeneracy. A stress of 1 GPa is able to shift up in
energy one of these ladders (the unprimed one) such that the population of this ladder is below
2% at all inversion layer concentrations.

Stress along [110] does not change the degeneracy of the subband ladders. Figure 6.12d shows
that the population of the primed ladder decreases below 20% for this type of stress. Addition-
ally, the effective mass change induced by stress along the [110]-direction does not significantly
change the subband levels and subband populations at 1 GPa stress. The small effect of stress on
the unprimed ladder is not surprising since the subband energies and populations are determined
by the quantization mass m[001] and the density of states mass

√
m[110]m[11̄0], respectively, which

are not largely affected by the shear component εxy = 0.314% resulting from 1 GPa stress.

Biaxial tensile stress in the (001)-plane can be seen to be the most efficient configuration to
reduce the population of the primed subband ladder below 5% at 1 GPa (Figure 6.12f).

In Figure 6.13 the lowest subband levels and subband populations for a substrate with (110)-
orientation and 1 GPa tensile stress along [001] are shown. The stress moves the primed subband
ladder up in energy, thereby reducing its occupation below 2%.

89





























6.3 Electron Inversion Layer Mobility of Strained Si

higher energies and a decrease of its peak can be observed as compared to the mean velocity
resulting from nondegenerate simulations without the Pauli principle. The coincidence of the
mean velocities in the nondegenerate regime is a check of consistency that the algorithm with
the Pauli principle included converges to the classical algorithm for the nondegenerate 2DEG. At
high Eeff the different mean velocities can be interpreted as follows: In simulations neglecting the
Pauli principle electrons have an equilibrium energy of kBT whereas the mean energy resulting
from simulations with the Pauli principle can be more than twice as much. Since phonon
scattering is proportional to the density of states, which is an increasing step-like function for
the 2DEG, electrons at higher energies – as it is the case in simulations with the Pauli principle
– experience more scattering and thus the phonon-limited mobility is strongly decreased (see
right plots of Figure 6.23).

The plots of Figure 6.24 show the mean velocities and the effective mobilities at various effective
fields when surface roughness scattering is included in MC simulations. At low Eeff surface
roughness scattering does not play an important role, and the mean velocities compare well
with the simulation results for the phonon-limited mobility in Figure 6.23. However, now even
at high Eeff the mean velocities stemming from simulations with and without the Pauli principle
do not differ as much. The large peak that was observed in the nondegenerate phonon-limited
mean velocity at small energies is suppressed. This is a direct consequence of surface roughness
scattering, which is at small energies more effective than phonon scattering. Thus, the effective
mobility resulting from simulations with degenerate statistics are incidentally in close agreement
to those using classical statistics even though the phonon-limited mobility experiences a notice-
able reduction when using degenerate statistics. As previously discussed, this close agreement
can only be understood from the cancellation of two effects: Degeneracy leads to an increase of
the mean kinetic energy. This leads to an increase in phonon scattering and a decrease in the
mobility. At the same time electrons with larger kinetic energies experience less effective surface-
roughness scattering, thus the surface roughness limited mobility is increased. By coincidence,
in Si inversion layers at room temperature these two effects cancel each other at all effective
fields, and the difference between a simulation with nondegenerate and degenerate statistics is
very small.

As a final observation from Figure 6.23 and 6.24 one can see that due to degeneracy effects
electrons at energies below the Fermi level have smaller mean velocities, which corresponds well
to the general picture that highly occupied states have little contribution to transport.
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Chapter 7

Summary and Conclusions

STRAIN techniques are used by many prominent microprocessor manufacturers primarily
for their sub-130 nm CMOS technologies. The most prominent strain technologies were

outlined in this work. A revision of current strain technologies showed that shear strain induced
by uniaxial stress in <110> direction is widely used to enhance the electron mobility for {001} Si
substrate. Hence, in this work special emphasis was put on this strain configuration.

The effect of strain on the band structure of Si was investigated systematically using the linear
deformation potential theory and the k·p method. Shear strain lifts the degeneracy of the two
lowest conduction bands Δ1 and Δ2′ at the zone boundary X points. The change of the shape
of the lowest conduction band was quantified in terms of (i) an effective mass change, (ii) a
shear-strain-induced valley splitting, and (iii) a change in position of the valley minimum in
k-space. Additionally, the empirical pseudopotential method was adapted to incorporate strain
effects. The results from numerical band structure calculations were compared to the analytical
expressions derived using the k·p theory and good agreement was observed.

Furthermore, the effect of strain on the subband structure of Si inversion layers formed at the
surface between one or two Si-SiO2 interfaces with {001}, {110}, and {111} substrate orientation
was shown. The transport masses and the degeneracy of the subband ladders depend on the
substrate orientation and can be modified by strain. The strain configurations that enhance
carrier mobility were identified for each substrate orientation.

Fullband MC simulations were performed using VMC to analyze the effect of strain on the
electron mobility. MC simulations using an analytical description of the electron bands were
shown to be valid in a limited range of shear strain (< ±0.5%). At larger shear strain the
band deformation is so pronounced, that fullband modeling is required. Hence, for modeling of
transport in strained Si a fullband description is of particular importance. MC simulations and
a rigorous modeling of the strain effect on the electron band structure reproduce experimentally
observed mobility data for bulk Si and Si inversion layers on different substrate orientations.

A method for the inclusion of the Pauli principle in a Monte Carlo algorithm is presented to study
the effect of degeneracy both on the phonon-limited mobility and the effective mobility including
surface-roughness scattering in Si inversion layers. It is shown that at room temperature and for
{001} substrate orientation incidentally degeneracy has a minor effect on the effective mobility,
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SUMMARY AND CONCLUSIONS

despite non-degenerate statistics yields unphysical subband populations and an underestimation
of the mean electron energy. In general a correct treatment of the degenerate carrier statistics
of the 2DEG is important.
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