

Kurzfassung

Wissenschaftliches Rechnen beschäftigt sich bereits seit langer Zeit mit Konzepten bezüglich der Kon-
vergenz von diskreten Näherungsverfahren von partiellen Differenzialgleichungen und deren effizienter
Umsetzung in computerimplementierten Anwendungen. Die große Breite von physikalischen Modellen,
welche z.B. in der Halbleiter-Bauelementmodellierung auftreten, und ihre unterschiedlichen numerischen
Modellierungsarten zusammen mit der sehr stark schwankenden Komplexität der Modelle erschweren
die Entwicklung von Simulationsanwendungen beträchtlich. Dazu wurde in den letzten Jahrzehnten eine
Reihe von numerischen Lösungsverfahren entwickelt, um diese Modellierung in verschiedenen Gebieten
so exakt wie möglich zu gestalten, und die effiziente Überführung in die digitale Welt des Computers zu
ermöglichen.

Unterstützt wurde diese Entwicklung durch die stark steigende Rechenleistung moderner Computersys-
teme. Dadurch können zwar immer komplexere Modelle berechnet werden, jedoch wird schlussendlich
wieder die komplette Rechenleistung benutzt. Deshalb ist es notwendig, auch im Anwendungsbereich die
neuesten Konzepte und Techniken einzusetzen, um damit die Rechenzeiten auch für komplexe Modelle
im Rahmen zu halten.

Diese Dissertation beschäftigt sich deshalb mit verschiedenen Konzepten für wissenschaftliches Rechnen
und dem Umstand, dass bereits eine Vielzahl an Konzepten existiert. Jedoch sind bis zum heutigen Zeit-
punkt weder zufriedenstellende und allgemeine Schnittstellen zur Anwendungsentwicklung noch einfach
wiederverwendbare Module verfügbar, welche in einem breiten Maßstab eingesetzt werden können. Des-
halb werden hier Konzepte gezeigt, welche sich auf die Umsetzung und Entwicklung von hochverfügbaren
und performanten Komponenten zur Anwendungsentwicklung beziehen. Dazu wird eine allgemein topol-
ogische Schnittstelle für Datenstrukturen und eine eingebettete funktionale mathematische Spezifizierungs-
sprache entwickelt. Diese Konzepte werden anschließend zu einer generischen Simulationsumgebung
zusammengefügt und eine konsistente Basis von Algorithmen abgeleitet, welche im Prinzip auf jeder
topologisch beschreibbaren Struktur arbeiten können. Dazu werden nicht nur die theoretischen Konzepte
präsentiert, sondern auch die entsprechenden Programmierparadigmen gezeigt, welche die Anforderungen
der Konzepte bestmöglich wiedergegeben.

Der letzte Teil beschäftigt sich mit einer Auswahl an Anwendungen basierend auf verschiedenen nu-
merischen Berechnungsmethoden. Diese sollen zeigen, dass die hier gezeigten Konzepte tatsächlich
eine effiziente Umsetzung erlauben. Eine Analyse des Laufzeitverhaltens dieser Anwendungen zeigt an-
schließend, dass diese Konzepte nicht nur eine effiziente Beschreibung von mathematischen Modellen
erlauben, sondern auch sehr leistungsstarke Anwendungen erzeugen, welche sogar manuell optimierte
Anwendungen übertreffen.

i

Abstract

Scientific computing has traditionally been concerned with concepts related to numerical issues, such as
the convergence of discrete approximations to partial differential equations and the computational effi-
ciency of software implementations of numerical methods. The great diversity of physical models, e.g.,
semiconductor device models, makes the development of simulation applications extremely challenging.
Each of the phenomena can be described by differential equations of varying complexity. The development
of several numerical solution techniques has been necessary in order to best model the underlying physics
and to accommodate the mathematical peculiarities of each of these equations when transfering them to
the discrete world of digital computing. While computer performance is steadily increasing, the additional
complexity of current mathematical models is easily outgrowing this gain in computational power. It is
therefore of utmost importance to employ the latest techniques of software development to obtain high
performance and to thereby ensure adequate simulation times, especially for complex problems.

Originating in the field of technology computer aided design, an important and complex area of scientific
computing, this dissertation is motivated by the fact that though a great number of separate concepts have
been developed during the last decades, up to now no common interfaces nor widely reusable modules
for application design have emerged which can be used in a broad variety of areas. Thus the concepts
for scientific computing given here are focused on components for generic and high performance library-
centric application design. Therefore, this dissertation introduces a common generic data model and an
embedded functional specification language to provide effective representations across a very wide range
of application areas. Finally, a generic scientific simulation environment that operates on virtually any
data is presented. Not only are generic concepts introduced, but also the corresponding programming
paradigms which model the necessary requirements for an orthogonal extension and enhancement are
expounded.

A concluding section presents various applications based on a wide variety of numerical calculation
schemes and illustrates that the concepts demonstrated are indeed functional. It is also shown that even
manually tuned high performance applications are outperformed by the generic scientific simulation envi-
ronment.

ii

Acknowledgments

Most of all I want to thank Prof. Selberherr for his support in many areas. The working environment,
from the hardware to the various people at the Institute for Microelectronics, is more than fabulous. Most
importantly I want to thank him for supporting my ideas from the beginning. I would like to thank Prof.
Grasser for giving me the opportunity to work at the institute and for his support in various areas and for
giving me the opportunity to learn a lot. I thank Prof. Purgathofer for his participation in the examining
committee on such short notice.

My special thanks go to Philipp Schwaha who is one of the most wonderful and brilliant people I have
ever worked with and from whom I have learned so much. I thank him for all the valuable discussions
and for always believing in our work, for his company on all the travels around the world, and for making
the hard days much easier. I also want to thank our former colleague Michael Spevak who introduced me
to his world of mathematics and to his special view of different topics. Many parts of my own work were
influenced by these two people, and so a deep gratitude will always be with you two. I want to express
my appreciation to Andreas Hössinger who introduced me to the C++ world at the institute, which was
the entry point to this work. Only chronologically last, I thank Franz Stimpfl for his support and fitting so
well into the generic group at the institute.

My thanks also go to Hubert Enichlmayer and Rainer Minixhofer (AMS) for valuable insights, real world
examples, and support from the company side; to Tatsumi-san and Kimura-san (Sony) for giving me the
chance to work on the forefront of technology; to Peter Fleischmann, Steven Cea and Stefan Halama (Intel)
for the great opportunity to work on the cutting edge and providing real examples; to Markus Schordan
from the Institute for Computer Languages for valuable support in the field of compiler optimizations and
insights into compiler technology.

I want to thank Werner Benger for introducing me to the fiber bundle concept and for being a great
source of inspiration in so many areas, Yaakoub El-Khamra, and the rest of the group at the Center for
Computation & Technology at Louisiana State University. Finally, I want to thank Joyce Visne for her
never ending help and support.

And most importantly I want to thank my parents for giving me the chance to see and become who I am.

iii

Contents

1 Introduction 1

1.1 Scientific Computing . 1

1.2 Technology Computer Aided Design . 2

1.3 Motivation . 3

1.4 Organization . 3

I Theoretical Concepts 5

2 Mathematical Concepts 6

2.1 Introduction . 6

2.2 Physical Fields and Electromagnetics . 7

2.3 Topological Toolkit . 11

2.3.1 Order Theory and Sets . 13

2.3.2 Cell Topology . 15

2.3.3 Complex Topology . 16

2.4 Computational Topology . 17

2.4.1 Chains . 17

2.4.2 Cochains . 19

2.4.3 Homology and Cohomology . 20

2.4.4 Duality between Chains and Cochains . 21

2.5 Fiber Bundles . 22

2.6 Fiber Bundles and Chains/Cochains . 27

2.7 Discrete Electromagnetics . 29

3 Numerical Discretization Schemes 32

3.1 Generic Discretization Concepts . 33

3.1.1 Domain Discretization . 33

3.1.2 Topological Equations . 34

3.1.3 Constitutive Relation Discretization . 35

iv

3.2 Finite Volumes . 36

3.2.1 Basic Concepts . 36

3.3 Finite Elements . 39

3.3.1 Basic Concepts for a Galerkin Method . 39

3.4 Finite Differences . 42

3.4.1 Basic Concepts . 42

3.4.2 Analysis of the Finite Difference Method . 45

3.4.3 Further Analysis . 46

II Practical Concepts 49

4 Overview 50

5 Programming Concepts 52

5.1 Data Model for Scientific Computing . 52

5.2 Evolution of Programming Paradigms . 53

5.2.1 Object-Orientation Programming . 55

5.2.2 Functional Programming . 57

5.2.3 Generic Programming . 58

5.2.4 Meta-Programming . 59

5.3 Domain-Specific Embedded Language . 60

5.4 Concept Development and Related Work . 61

5.4.1 STAP, SCAP . 62

5.4.2 Minimos-NT . 62

5.4.3 AMIGOS, FEDOS . 62

5.4.4 Wafer-State Server . 63

5.4.5 Boost Graph Library . 63

5.4.6 Computational Geometry Algorithm Library . 63

5.4.7 Grid Algorithms Library . 63

5.4.8 Further Related Work . 64

6 Application Concepts 65

6.1 Generic Data Structures . 65

6.2 Boundary Operation . 69

6.3 Data Structure Storage Mechanism . 70

6.4 Separation of Base and Fiber Space . 71

6.5 Library-Centric Software Design . 74

v

III Applied Concepts 76

7 Overview 77

8 A Generic Scientific Simulation Environment 79

8.1 The Generic Topology Library . 81

8.1.1 The 0-Cell Complex . 83

8.1.2 The 1-Cell Complex . 84

8.1.3 The 2-Cell Complex . 85

8.1.4 Higher-Dimensional Cell Complexes . 88

8.1.5 Data Access . 89

8.2 The Generic Functor Library . 90

8.2.1 Traversal Operators . 90

8.2.2 Data Accessors . 91

8.2.3 Arithmetic Functors . 92

8.2.4 Domain-Specific Embedded Language . 92

8.3 Additional Generic Components . 94

8.3.1 Generic Solver Interface, GSI . 94

8.3.2 Generic Orthogonal Range Queries . 95

8.3.3 Generic File Interface, GFI . 95

8.3.4 Finite Element Components . 96

8.4 Performance Analysis . 98

8.4.1 GTL’s Performance . 98

8.4.2 GFL’s Performance . 101

9 Generic Application Design 103

9.1 Visual Programming . 103

9.2 Wave Equation . 105

9.3 Diffusion Simulation . 107

9.3.1 The Equations . 107

9.3.2 Transformation into the GSSE . 107

9.3.3 Results . 108

9.4 Device Simulation . 111

9.4.1 The Equations . 111

9.4.2 Transformation into the GSSE . 111

9.4.3 Results . 112

10 Smart Analysis Package 116

10.1 Structure Modeling . 116

vi

10.2 Basic Equations and Discretization . 118

10.2.1 Capacitance Analysis . 118

10.2.2 Resistance Analysis . 119

10.2.3 Finite Element Solution Procedure . 119

10.2.4 Transformation into GSSE . 120

10.3 Applications . 121

10.3.1 Capacitance Analysis . 121

10.3.2 Resistance Analysis for Cu-DD Architecture . 123

10.4 Performance Analysis . 125

10.5 Application Design Concepts . 126

11 Summary and Outlook 128

A Common Mathematical Terms 129

B STL Iterator Analysis 132

C Cell Properties of Discretization Schemes 134

Bibliography 136

Own Publications 146

Curriculum Vitae 150

vii

List of Tables

5.1 Language comparison. 60

6.1 Classification scheme based on the dimension of cells. 68

6.2 Classification scheme based on the dimension of cells and the cell topology. 68

6.3 Classification scheme based on the dimension of cells, the cell topology, and the complex
topology. 69

viii

List of Figures

2.1 Top: internal orientation. Bottom: external orientation for geometric objects in three
dimensions. 8

2.2 Left: Integers form a chain, totally ordered by ≤. Middle: Incomparable items forming
an anti-chain. Right: The power-set of {a, b, c} ordered by ≤ as a partially ordered set. . . 14

2.3 Cell topology of a simplex cell in two dimensions. 15

2.4 Cell topology of a cuboid cell in two dimensions. 15

2.5 Cell topology of a 3-simplex cell. 16

2.6 Complex topology of a simplex cell complex. 16

2.7 Complex topology of a cuboid cell complex. 16

2.8 Representation of a 1-chain with boundary (left) and a 2-chain with boundary (right). . . . 18

2.9 Cochain complex with the corresponding coboundary operator: K1 δ
→ δK1 δ

→ δδK1 = 0 . 20

2.10 A graphical representation of (co)homology for a three-dimensional cell complex. 20

2.11 Illustration of cycles A,B,C and a boundary C . A,B are not boundaries. 21

2.12 Left: a fiber bundle with the homeomorphism f . Right: A homeomorphism into Ub × F ,
which does not preserve the projection, thus not revealing a fiber bundle [1]. 22

2.13 Zero section of a vector bundle [2]. 23

2.14 A hierarchy of concepts with partial specialization. The most general form is represented
by a sheaf concept. The concept of fiber bundles is obtained by using fibers with a certain
dimension. If the fiber space satisfies linear vector space properties, the concept of a
vector bundle is derived. Finally, by confining the dimension of the base and fiber space,
a tangent bundle is obtained. 25

2.15 Illustration of the correlation of tangent space and cotangent space. 26

2.16 The identification of the concept of fiber bundles and the chain and cochain concept as
dual spaces. 27

2.17 A representation of the intrinsic fiber bundles of the respective skeleton base spaces. 27

2.18 Overview of the mathematical concepts which have been introduced for the separation of
a physical field domain into a base space and fiber space related to the concept of fiber
bundles. The topological toolkit provides concepts to describe the internal structure of the
cells of the cell complex to enable a generic data structure specification as well as generic
traversal mechanisms. Concepts from computational topology such as chain and cochain
complexes to obtain vector space structures within the tangent and cotangent space, are
presented. Generic data access mechanisms are based on discrete field representations by
cochains with their corresponding geometrical orientation and dimension. 31

ix

3.1 Discretization concept for the primary and secondary cell complex with consistent orien-
tation. 33

3.2 Time stepping for the discretization concepts. 34

3.3 Space-time stepping for the discretization concepts. 34

3.4 Finite volume requirements for a primary and secondary cell complex. 36

3.5 Primary control volumes used in the finite volume method. Left: cell-centered. Right:
vertex-centered. 37

3.6 Finite volume and the rendered cell average value within each cell for a one-dimensional
cell complex. 37

3.7 Geometrical interpretation of the basis of the expanded solution variable uh for finite
elements for a one-dimensional cell complex. 40

3.8 Finite difference requirements for the mesh. 42

3.9 Different geometric interpretations of the first-order finite difference approximation re-
lated to forward, backward, and central difference approximation. 43

3.10 Approximation of two-dimensional mixed derivatives. 44

3.11 Boundary treatment for the finite difference scheme. The necessary grid points are not
available for all different types of approximation schemes. 44

5.1 A simplex representation of a data model and the corresponding interfaces. 52

5.2 Application design based on the object-oriented programming paradigm. Each of the inner
blocks has to be implemented, resulting in an implementation effort of O(D · A), where
D stands for the number of data structures and A for the number of algorithms. 56

5.3 Application design based on the generic programming paradigm. Only the topmost and
leftmost parts have to be implemented, which reduces the implementation effort to O(D+
A). 58

6.1 Complex topology of a singly linked list. 66

6.2 Complex topology of a doubly linked list. 66

6.3 Complex topology of a tree. 66

6.4 Complex topology of an array. 67

6.5 Complex topology of a graph. 67

6.6 Local cell complex (left), normally called mesh, and a 2-cell representation (right). Ver-
tices are marked with filled circles. 67

6.7 Global cell complex (left), normally called grid, and a 2-cell representation (right). 68

6.8 Boundary operator applied onto a 3-simplex poset. 70

6.9 Connection matrix Ci
j for a cell complex. 71

6.10 Left: a fiber bundle over a 0-cell complex. Right: a fiber bundle over a 2-cell complex. . . 72

6.11 Illustration of an index space depth of zero (left) and one (right). The base space is mod-
eled by a 0-cell complex. 73

8.1 Building blocks of the GSSE. 80

x

8.2 The generic topology library of the GSSE. 81

8.3 Example of the connection matrix Ci
j for a 3-simplex cell complex. 82

8.4 Representation of a 0-cell complex with a topological structure equivalent to a standard
container. 83

8.5 Representation of a 1-cell complex with cells (edges, C) and vertices (V). 84

8.6 Incidence relation and traversal operation. 85

8.7 The cell poset of a 4-simplex as implemented by the GTL. 88

8.8 Renderings of a 4-simplex (left) and a 4-cube (right). 88

8.9 The generic functor library of the GSSE. 90

8.10 Traversal methods induced by the incidence relation. The rows illustrate traversal schemes
of the same base element, whereas columns depict traversal schemes of the same traversal
element. 91

8.11 Topological traversal of vertices. 98

8.12 0-cell traversal on the P4 (left) and the AMD64 (right); the units are iterations per second. 99

8.13 0-cell traversal on the G5 (left) and the IBM (right); the units are iterations per second . . . 99

8.14 Topological traversal of cells for a one-dimensional cell complex. 100

8.15 Incidence traversal for the BGL and the GTL approach on the P4 (left) and the AMD64
(right); the units are iterations per second . 100

8.16 Incidence traversal for the BGL and the GTL approach on the G5 (left) and the IBM
(right); ; the units are iterations per second . 100

8.17 Evolution of compiler enhancements on the P4 for the DAXPY benchmark. Left: GCC
4.0.4; middle: GCC 4.1.2; right: GCC 4.2.1 . 101

8.18 Evolution of compiler enhancements on the AMD X2 for the DAXPY benchmark. Left:
GCC 4.0.4; middle: GCC 4.1.2; right: GCC 4.2.1 . 101

8.19 Best compiler performance for the Intel Core (left) and the AMD X2 (right), both using
the GCC 4.2.1. 102

8.20 Best compiler performance for the G5 (left) and the IBM (right), both using the system
compiler. 102

9.1 Potential of a PN diode during different stages of the Newton iteration. From initial (left)
to the final result (right). 104

9.2 Visualization of non-converging process. Here the potential is illustrated where small
oscillations can be observed from left to right. 104

9.3 Illustration of a complete breakdown of the solution procedure (from left to right). 104

9.4 The left figure depicts Faraday’s law by the corresponding projection onto a finite cell,
whereas the right figure illustrates Amperé’s law. 105

9.5 Illustration of the x-component of E with a harmonic oscillating source in the x-y plane
at two different time steps. 106

9.6 Wave equation with a harmonic oscillating source in the x-y plane where the source is
switched of (left figure). The y-component of E is depicted on the right side. 106

9.7 Two-dimensional structured grid with an initial doping profile (concentration in cm−1). . . 108

xi

9.8 Two-dimensional diffusion simulation for a structured grid after 200 time steps. 109

9.9 Two-dimensional diffusion simulation for a structured grid after 2000 time steps. 109

9.10 Three-dimensional device structure with an initial phosphorus doping profile (concentra-
tion in cm−1). 110

9.11 Three-dimensional diffusion simulation for a device structure with an initial doping pro-
file. Two subsequent simulation steps are depicted. 110

9.12 Domain for a two-dimensional PN-junction diode. 113

9.13 Netto doping concentration of the two-dimensional PN diode. Donors are given in red,
acceptors are blue; units are given in parts per cubic meter. 113

9.14 Two-dimensional diode with potential distribution for equilibrium mode; units given in Volt.114

9.15 Two-dimensional diode with potential distribution for reverse mode; units given in Volt. . . 114

9.16 Two-dimensional diode with potential distribution for forward mode; units given in Volt. . 114

9.17 Two-dimensional diode with charge distribution for reverse mode; units given in parts per
cubic meter. 115

9.18 Two-dimensional diode with charge distribution for forward mode; units given in parts per
cubic meter. 115

10.1 A comparison between the LAYGRID and VGM syntax. 117

10.2 Resulting structure from the given input specification. 117

10.3 A structure suitable for capacitance simulation, created by VGM. 121

10.4 The offset of the second layer of contact 1. Right: the corresponding mesh. 121

10.5 Illustration of isosurfaces of the potential distribution. 122

10.6 Interconnect structure for resistance analysis. 123

10.7 Interconnect structure for resistance analysis. 123

10.8 A comparison between the LAYGRID and VGM syntax. 124

10.9 Comparison of the structures created and the corresponding meshes for LAYGRID (left)
and VGM (right). With the VGM approach different rations between the interconnect
line (red) and the covering layer (blue) can be easily modeled. Here a ratio between the
thickness of the interconnect line and the covering layer is given by 1/10000. As can be
seen, the thin layer does not impose additional points for the interconnect line. 124

10.10Resistance progression related to the spatial expansion of the via part. 125

10.11Temperature distribution due to self-heating in a tapered interconnect line with cylindrical
vias. 125

10.12Comparison of the finite element assembly times in equations per millisecond, GSSE and
SAP. 126

A.1 A relation R of a set A and a set B. 129

A.2 The image of a under f . 130

A.3 The kernel of f . 131

xii

C.1 Geometrical interpretation of the basis functions for the (left) finite volume method and
(right) for the finite element method. The finite volume method describes consistent crisp
cells which can be interpreted as a cell complex, whereas the finite element method uses
spread cells which do not conform with the properties of a consistent cell complex. 135

xiii

Notation

Due to the wide variety of material in this work drawn from different fields in scientific computing, some
conflicts or ambiguitites in the notation cannot be avoided. The following table summarized the used
notations:

D
n n-dimensional closed unit ball {x ∈ R

n|�x� ≤ 1}
S

n n-dimensional unit sphere {x ∈ R
n+1|�x� = 1}

�a, b� scalar product ς of a, b

F field, e.g., R

V vector space
V∗ dual vector space
(X, T) topological space
M manifold
Ω domain, subset of R

n

Γ boundary of a domain ∂Ω
K cell complex
L linear operator
TP tangent space
TP

∗ cotangent space
O (globally) ordered set
P partially ordered set (poset)
(B × F,B, pr1) trivial fiber bundle
(F,B, pr1) fiber bundle
T (M) tangent bundle

Ci
j connection matrix

τ i
p i-th p-cell

cp p-chain
cp p-cochain
C∗ chain complex
C∗ cochain complex
∂ boundary operator, partial derivative
δ coboundary operator

E electric field
H magnetic field
D electric flux
B magnetic flux
J current flux density vector
A magnetic vector potential
ε dielectric permittivity
µ magnetic permeability
̺ electrical charge density

φ basis function for finite elements
u generic solution quantity

xiv

Chapter 1

Introduction

Scientific computing, a common term for various tasks in computational science, is concerned with con-
cepts which close the gap between theoretical and experimental science. This development is supported
by the exponential advancement of the brute force number-crunching possibilities of modern computer
systems, which have proved Moore’s prediction in 1965 that computational power would double every 18
months.

Hidden in the shadow of the number crunching, various other paradigms have emerged since then, es-
pecially in the field of scientific computing. One of them can be attributed to the rigorous shift of the
interaction between users and computer systems. In the early days of computer operation, a stack of
cards had to be used to access the resources available. Through the advent of terminals and the even
more drastic paradigm change of multi-terminals on one screen, the possibilities of computing have com-
pletely changed. Nowadays we can connect interactively from almost any location in any part of the
world to our computer systems. Work stations even offer complete virtual realities with real-time cal-
culation and multi-dimensional visualization capabilities. However, what can still be observed is that
software is implemented repeatedly in almost the same way as it was decades ago, sometimes with only
minor adaptations or a small change in the paradigms used. This repetition is also noticeable in the area
of computer languages, with the development of a great number of different languages, all of which are
currently not sufficient for the tasks of scientific computing [3–7] with the exception of a few outstanding
developments [8, 9].

The Institute for Microelectronics has a long history in the field of Technology Computer-Aided Design
(TCAD), the process of gaining insights into procedures and mechanisms in the area of semiconductor
manufacturing and advancement. Since this history goes back to the roots of computer simulation in the
field of semiconductor research, the institute is able to track the various changes in the field of computa-
tional science. Currently the scientific community, and even more the TCAD community, relies on either
domain-specific closed applications or on components tied very closely to particular representations which
were often built for very specific purposes and then tossed into a huge and monolithic toolkit. To this date,
data structures and algorithms are implemented in a heavily application-specific way, making their reuse
practically impossible. From an engineering perspective, interactions between theoretical scientific com-
puting concepts and their effective and efficient practical application are required, thereby shifting the
focus to high performance, library-centric application design.

1.1 Scientific Computing

Scientific computing is understood here as the collection of concepts which deal with large equation
systems by utilizing discretized partial differential equations from different fields of physics as well as

1

the computational efficiency of software implementations of these numerical methods. Different types of
partial differential equations and their discretization schemes, such as the finite element method or the
finite volume method, have to be considered for diverse types of problems. Types of topological cell
complexes, different dimensions, and various solving strategies, all with their appropriate algorithmic
description, have to be considered during application development.

The development of software for the numerical simulation of disparate physical phenomena, such as
electromagnetic wave propagation, heat transfer, mechanical deformation, fluid flow, and quantum effects,
is not straight-forward and is even today very complex. Early software in the field of scientific computing
consisted of a monolithic single application to deal with special problems. Due to the direct solution
process, these applications perform exceptionally well, as they are written by domain experts and tuned
manually. At this time, the domain expert, software designer, programmer, tester, and end-user is one
person, a situation which complicates and slows down the complete development process. The reuse of
components or the extension of such an application written by a domain expert usually requires a large
investment of time to get accustomed to the special domain and the internal mechanisms of the application.
The field becomes more complex, if couplings of various phenomena and different discretization schemes
are used to obtain a solution. Each of these schemes has its merits and shortcomings and is more or
less suited for different classes of equations. Therefore a multitude of software applications and tools,
which provide methods and libraries for the solution of very specific problem classes, has been developed.
However, they are mostly specialized for a certain type of underlying mathematical model, resulting in
a solution process which is highly predictable. Only in the recent past have environments for various
problems at hand been developed and published, all with their advantages and disadvantages. However,
it is important to note that applications not developed with interoperability in mind impose restrictions on
possible solution methods which can not be foreseen at the beginning of program development.

1.2 Technology Computer Aided Design

TCAD is the application of computational methods and software tools for the analysis and design of
integrated semiconductor devices and their fabrication processes. The computational methods deal with
the assembly of large equation systems by utilizing discretized partial differential equations from different
fields of physics. Special constraints related to high flexibility for the modeling are imposed [10]. The
great diversity of physical phenomena present in semiconductor devices themselves, and in the processes
involved in their manufacture, make the field of TCAD extremely challenging. Each of the phenomena
can usually be described by differential equations of varying complexity. The development of several
different discretization schemes has been necessary in order to best model the underlying physics and
to accommodate the mathematical peculiarities of each of these equations while transferring them to the
discrete world of digital computing.

With the steady evolution of software tools and languages, the shift of programming paradigms can be
clearly observed. During its first years our institute used only one- and two-dimensional data structures,
due to the limitations of computer resources. The imperative programming paradigm was sufficient for
this type of task [11]. With the improvement of computer hardware and the rise of the object-oriented
programming paradigm, the shift to more complex data structures was possible. The development of com-
plex applications for process [12] and device [13] simulation is an example of this evolutionary path. More
complexity is added when modeling requires a change in the underlying topological data structure, usually
from structured grids to unstructured meshes; the use of alternative linear or nonlinear solver mechanisms
[14, 15]; different types of quantities, e.g., vectorial quantities; or a change in the discretization scheme.
Not only does application development in TCAD require the utilization of up-to-date data structures and
algorithms, but it also demands an overall high performance.

2

1.3 Motivation

The motivation for reviewing and developing a variety of concepts for scientific computing is derived
from the need for flexibility in high performance applications in the field of scientific computing, espe-
cially in TCAD. With a growing number of simulation tools and various requirements on the underlying
data structures, the question arises: which part of an application can be reused if it is properly imple-
mented. This dissertation therefore introduces, analyzes, and unifies not only theoretical but also practical
concepts. Different programming paradigms and typically used idioms common to many different kinds
of applications in the field of scientific computing are introduced. The nature of dealing with mathemati-
cal models, with the inherent coupling of topological traversal and functional description, complicates the
use of libraries which are not designed in an orthogonal library-centric way. Significant advances have
been made here since the advent of the C++ standard template library (STL [16, 17]) or the Java library
collection [6]. The effort of application development is thereby greatly reduced. Particularly the formal
and abstract interface specification of the generic programming approach, implemented by means of static
parametric polymorphism in C++, offers a formal way of specification to the user, which the compiler can
verify. Reusability and orthogonality of the libraries is thereby accomplished without sacrificing overall
performance. This is a necessary constraint because the additional complexity of simulation models easily
outgrows the steadily increasing computational power. The overview given in Section 5.4 shows that, so
far, no approach can efficiently deal with the mathematical formulation of physical phenomena within a
programming language.

The concepts presented here also demonstrate how to deal with problems arising in scientific computing.
The method of programming applications and then patching them to fit the requirements of examples
is becoming more and more of a handicap. The required models, physical processes, and simulation
methodologies are expanding in an almost exponential manner. And as previous decades have shown, the
software engineering community has lagged behind most of the time.

Therefore, this work does not introduce another general-purpose kernel but instead provides and devel-
ops a comprehensive set of generic components and algorithms for scientific computing. The two basic
mechanisms are, on the one hand, a generic data structure specification language and, on the other hand, a
functional equation specification language. Based on these building blocks, the complete range of applica-
tion design, from small generic components to complete applications, is possible. The focus of developing
an application can be shifted to identifying generic components, using already existing modules, and im-
plementing the remaining functionality.

A possible implementation is presented here by the generic scientific simulation environment, which ex-
hibits formally defined interfaces as well as an overall high performance comparable to all manually tuned
applications including classical high performance Fortran applications.

1.4 Organization

Part I is based on the gradual shift of several concepts into an abstract form for scientific computing.
The starting point in Section 2.2 is given by a brief review of basic treatment of physical fields and in
particular Maxwell’s equations. The thereby given continuous formulations are then the basic motivation
to introduce concepts and mechanism for the transition to the finite regime of computational methods. A
basic topological toolkit (Section 2.3) is therefore introduced to enable structural properties of discrete
spaces and is based on the work of Jänich [2] for common topological terms, Berti [18] for cell complex
theory, and Zomorodian [19] for the computational topology (Section 2.4). Concepts of fiber bundles
(Section 2.5) are adopted to enable a separation for the concepts given based on the work of Butler [20, 21].
Algebraic topology [22] and differential forms [23–25] are established to analyze various discretization

3

schemes [26–30], given in Section 3, to numerically deal with the given continuous problems. The discrete
mapping is then given by concepts related to chains and cochains related to physical field theories and
follows mainly the works of Tonti [24, 31, 32], Mattiussi [33–36], and Hyman [37]. Furthermore, the
formal handling of field theory and the application of algebraic topology to identify the underlying space
describe the nature of different discretization methods.

Part II deals with the transformation of the presented theoretical concepts into generic and reusable soft-
ware components. An important step, the C++ STL, is presented and analyzed as the beginning of a
systematic development towards a reusable software component catalog [38]. Various programming
paradigms are presented in Section 5.2 and their related advantages and disadvantages [39–45] and perfor-
mance issues [46] are illustrated. To enable efficient algorithm specification, concepts for domain-specific
languages [45] are introduced in Section 5.3, whereas the focus of application design is shifted to the field
of active libraries [47–50]. Section 5.4 reviews various works and assembles a set of requirements for
generic software components. A topological generalization of data structures and a related common spec-
ification mechanism is then developed and introduced in Section 6. This part is heavily influenced by the
works of Berti [18, 51]. Utilizing the fiber bundle model a data model for application design is developed,
based on concepts from scientific visualization [1] but with a special focus on application design. Finally,
the remainder of Section 6 identifies necessary requirements for generic library-centric application design
in the field of scientific computing.

Based on these theoretical concepts and practical concepts, Part III introduces a set of generic components
that operate on any data represented in the given models, represented by a generic scientific simulation
environment, given in Section 8. A performance analysis is presented in Section 8.4 to highlight that
multi-paradigm library-centric application design can easily compete with highly specialized applications.
Concept-based programming and iterative refinement of algorithms is inspired by the work of Stepanov
[16]. Various applications present the applicability and feasibility of the presented approach of the generic
scientific simulation environment, given in Section 9 and Section 10.

4

Part I

Theoretical Concepts

5

Chapter 2

Mathematical Concepts

2.1 Introduction

One of the most fundamental concepts in scientific computing is the numerical and discrete treatment of
the transformation of physical field problems into mathematical problems and then into the finite and dis-
crete area of computational feasible algorithms and data structures. The reason for the following sections
and definitions is therefore to extract the relevant concepts for scientific computing based on mathematical
concepts to provide:
- a proven foundation
- a roadmap for application design
- great flexibility and longevity of resulting software

The foundation and roadmap for application design are initiated by the separation of two important con-
cepts based on the topic of algebraic topology. First, space or, in a more general way, space-time has to
be discretized into simple computable blocks, e.g., into a collection of cells describable by the theory of
cell complexes and their topological structure. An algebraic description is then presented by the concept
of chains. Second, concepts from (co)homology are introduced to handle the different types of physical
quantities with their respective dimension and orientation by algebraic structures and thus make computer
resources available for simulation. Selected concepts from topology and fiber bundles are then applied to
specify the transition between continuous space and the concept of differential forms and the finite regime
of computer simulation in a formal way. Topology, chains, and the fiber model, which are introduced in
this chapter, are axiomatic studies. This results in the fact that a large number of definitions is required.

The contribution of this section is the preparation of basic formal mechanisms for the methodology of
discretization schemes introduced subsequently. Structural information and guidelines for applied numer-
ical analysis can thus be obtained. The result of this chapter is a foundation for a formal language used
in the following chapters, which builds a framework to introduce the common concepts hidden under the
surface of a variety of physical and mathematical modeling concepts, commonly represented by equa-
tions of different types, thereby enabling new possibilities for specification and optimization of developed
algorithms.

6

2.2 Physical Fields and Electromagnetics

This section is dedicated to motivate the subsequent theoretical concepts, introducing a mapping of physi-
cal fields to a concise computational framework. One of the fundamental concepts of mathematical physics
is that of a field, a spatial distribution of mathematical objects representing a physical quantity [35]. Most
of the currently known physical theories build on a common structure [31] emphasizing the following:
- The existence of a natural association of many physical quantities with geometric objects in space-time.
- The necessity to consider the geometric object to which physical quantities are associated as oriented.
- The existence of two kinds of orientation for these geometric objects.
- The primacy and priority of global physical quantities associated with geometric objects over the corre-

sponding densities.

Therefore, it is necessary to equip the inherently discrete parts of a computer implementation with as
much information as possible about the continuous to be projected physical entity. Thereby not only the
dimension but also the orientation and information regarding a primary and secondary quantity have to be
transfered accordingly.

Here, Maxwell’s equations [52] are briefly introduced, which are extraordinarily important in a special
field of scientific computing. It was shown [24, 31] that most of the physical theories can be treated
similarly, sometimes called the Tonti-diagram, due to the intrinsic nature and structure of the physical
concepts. Here, the classic theory of electromagnetics and the macroscopic electric and magnetic phe-
nomena including their interactions are introduced. The following four space-time dependent vector fields
are considered:
- the electric field denoted by E [V/m]

- the magnetic field denoted by H [A/m]

- the electric flux D [As/m2]

- the magnetic flux B [V s/m2]

The sources of electromagnetic fields are electric charges and currents described by
- the charge density ̺ [As/m3]

- the current density J [A/m2]

where the SI units denote meter m, seconds s, Amperé A, and Volt V . The equations related to electro-
magnetics in integral formulation read:�

∂S
E · dl = −

d

dt

�
S
B · dS Faraday’s law (2.1)�

∂V
B · dS = 0 Gauß’s law for magnetic charge (2.2)�

∂S
H · dl =

d

dt

�
S
D · dS +

�
S
J · dS Amperé’s law (2.3)�

∂V
D · dS =

�
V

̺ dV Gauß’s law for electric charge (2.4)

where V represents a volume, S a surface, and l a line. If S is the boundary of a volume V in Amperé’s
law then the boundary of S vanishes (∂∂V = 0). The field vector can then be eliminated from Amperé’s
and Gauß’s law to obtain a statement about charge conservation:

0 =
d

dt

�
V

̺ dV +

�
∂V

J · dS (2.5)

7

oriented line segment, which means that the direction arrow is directly associated with the object under
consideration. See Figure 2.1 for an overview, where the top line depicts internally oriented objects and
the bottom line shows the externally oriented objects with their corresponding dimension. P states a
zero-dimensional object, a point with a source sink orientation, L a one-dimensional object (line) with
a direction, S a two-dimensional object (area) with a circulation direction, and finally rotation direction
for a three-dimensional object (volume) V . The corresponding externally oriented objects are given by
Ṽ , S̃, L̃, P̃ . As can be seen, the internal orientation can be described by directions within the given objects,
whereas the external orientation requires an additional direction outside the object.

The transition of this modeling step to the regime of the computer demands an additional approximation,
the reformulation of the given integral problem in discrete terms with additional orientation information.
Based on the given configuration of geometrical objects, the following table associates each physical
quantity with the corresponding dimension, orientation, and time attribute. In the following table, L × I
states that the line L is actually multiplied by a time interval I , where T means discrete time frames.

dimension physical quantity internally oriented object externally oriented object
1D E → (L × I) line
2D B → (S × T) area

2D J → (S̃ × I) area
3D ̺ → (Ṽ × T) volume

1D H → (L̃ × I) line
2D D → (S̃ × T) area

0D ϕ → (P × I) point
1D A → (L × T) line

The necessity of a primary and secondary cell complex can also be easily seen here. The requirement of
housing the global physical quantities of a problem implies that both objects with internal orientation and
objects with external orientation must be available. Hence, two logically distinct meshes must be defined,
one with internal and the other with external orientation.

For general field problems the given Maxwell’s equations are not sufficient to determine the electro-
magnetic field since there are six independent equations in twelve unknowns E,B,D,H. To obtain a
consistent equation system, so-called constitutive laws have to be introduced additionally. Then, the given
system of equations can be identified by two different classes, whereas the first class represents the struc-
ture of a given physical problem [32].

Definition 1 (Structural law) Structural laws are conservation, balance, and equilibrium laws.

They state a balance of global quantities whose validity does not depend on metrical or material properties
and is therefore invariant for very general transformations. This gives them topological significance and
the name topological equation was used [33] to express the idea of invariance under arbitrary transforma-
tions. The second class represents a constitutive law which acts as link between different orientations of a
structural law [31].

Definition 2 (Constitutive law) Constitutive laws link local field representations.

For the simple case of linear isotropic media, the constitute laws are given by:

D = εE (2.14)

B = µH (2.15)

9

Unlike topological laws, constitutive law representations imply the recourse to metrical concepts. This is
not apparent in Equation 2.14 because of the use of vectors to represent field quantities, which tends to hide
the geometric details of the theory. This leads to the important distinction of topological laws which are
intrinsically discrete [24] and constitutive relations which admit only approximate discrete renderings. For
a topological equation the discrete or global version appears as the fundamental one, with the differential
statement resulting from it if additional requirements are fulfilled.

The final step towards a complete discrete representation is the association of all given quantities by their
corresponding geometrical object. Starting with the global expression�

∂V
B · dS = 0 (2.16)

which can be written with the complete dimensional information as:�
T

�
∂V

B =

�
T

�
V

0 (2.17)

This expression can be stated by global quantities only and in a four-dimensional space-time where also
a four-dimensional geometrical depiction can be given, where Φ2 represents the associated quantity on a
∂V × T object:

Φ2(∂V × T) = 0(V × T) (2.18)

It must be mentioned that this expression does not use any material properties and is therefore not an
approximation, hence a representation of physical quantities by their intrinsic discrete nature. As an
introductory example and a static time frame the expression can be rewritten as:

Φ2(∂V) = 0(V) (2.19)

By using a, e.g., three-dimensional cell τ3, and the corresponding boundary of this cell ∂τ3, the expression
yields:

Φ2(∂τ3) = 0(τ3) (2.20)

To highlight the relation between the cell and the physical quantity, the following pairing �, � can be stated:

�∂τ3,Φ
2� = �τ3,0

3� (2.21)

which lists equivalences of global physical quantities, but still compares to different dimensional quan-
tities, the two-dimensional boundary of a cell ∂τ3 and the associated Φ2, and the three-dimensional 03

on a three-dimensional cell τ3. Another operator, the so-called coboundary operator acts similarly to the
boundary operator and can then be used to obtain the following expression:

�τ3, δΦ
2� = �τ3,0

3� (2.22)

As it can be seen, the geometrical dimensions of the given cells correspond to each other, and the final
expression states the identity of the two quantities δΦ2 = 03.

The following sections now introduce the necessary theoretical concepts to develop a complete and con-
cise framework for this topic. One the one hand, the topological and geometrical concepts are given to
handle the underlying discretization of space. On the other hand, concepts required for handling physical
quantities and their corresponding operations are introduced. The final goal of this section is to transfer
the given physical quantities to the finite regime of the computer without loss of information regarding
their dimension, orientation, and pairing with the corresponding geometrical object.

10

2.3 Topological Toolkit

To model space and time within the regime of a finite computer representation, the continuous domain has
to be projected onto finite domains or cells. This chapter describes how these cells can be introduced and
manipulated algebraically1 , and is mainly based on the work of Jänich [2] for common topological terms,
Berti [18] for the cell complexes, and Zomorodian [19] for the computational topology part. The most
basic property of topology is that it separates global space properties from local geometric attributes. Ad-
ditionally, and more importantly for this work, it provides a precise notation and language for discussing
and handling various properties.

Topological spaces offer several operations for sets and subsets. The formal definition of a topological
space is given next, where only the concept of a set is implied:

Definition 3 (Topology) A topological space (X, T) consists of a set X and a set T of subsets, called
open sets, of X such that:
- (T1) ∅ ∈ T and X ∈ T .
- (T2) a finite intersection of members of T is in T .
- (T3) an arbitrary union of members of T is in T .

The second property (T2) states that arbitrary intersections of subsets have to be in the topological space
again. Also the union (T3) of subsets has to be contained in the space. These properties are later used
to describe inter-dimensional elements for the complex, such as edges of a cell. An example is given in
the following which presents a basic set X = {a, b, c} and the corresponding topology. This pair of the
original set and the set of subsets generates the topological space. Vertices are modeled by the singletons
{a}, {b}, and {c}.

(X, T) = {∅, {a}, {b}, {c},

{a, b}, {a, c}, {b, c},

{a, b, c}}

To handle all subsets in a concise way, the concept of a subspace is introduced.

Definition 4 (Subspaces) Let (X, T) be a topological space. Any subset Y of X inherits a topology in a
natural way. It is given by:

TY := V ⊆ Y |V = U
�

Y for some U ∈ T (2.23)

To introduce the concept of a topological base, it is necessary to create a topology on a set X in which a
set S of subsets of X are open sets.

Definition 5 (Bases) If S is already closed under finite intersections, then T can be defined to be those
sets which are unions of sets in S . Then T satisfies (T1), (T2), and (T3) and S is said to be a basis for T .

In general, to obtain a topology containing S one has to first form B, the set of sets which are finite
intersections of members of S , and then define T to be all arbitrary unions of members of B. In this case
S is called a sub-basis for T .

Definition 6 (Homeomorphism) A homeomorphism f : X → Y is a 1 − 1 onto function, such that both
f, f−1 are continuous.

1Appendix A reviews necessary common terms.

11

Then, X is homeomorphic to Y , X ≈ Y . This means that X and Y have the same topological type.
Homeomorphisms are topological isomorphisms.

With these definitions, sets of subsets can be handled with additional properties in a common way. The
common definition for a topological space is very general and allows several topological spaces which
are not useful in the field of data structures, e.g., a topological space (X, T) with a trivial topology
T = {∅,X}. Therefore the basic mechanism of separation within a topological space is introduced.
Of a hierarchy of possible separation conditions augmenting the topological space axioms, an important
characteristic is the Hausdorff condition.

Definition 7 (Hausdorff spaces) The topological space (X, T) is said to be Hausdorff if, given x, y ∈ X
with x = y, there exist open sets U1, U2 such that x ∈ U1, y ∈ U2 and U1

�
U2 = ∅.

Common data structures in the field of scientific computing embody the separation characteristics of a
Hausdorff space. The assumption to be made is that all scientific data can be modeled by the concept of a
Hausdorff space. This can be seen as a generalization of Butler’s model, which is based on the assumption
that all scientific data can be modeled by trivial fiber bundles [21].

The concept of a cover is introduced to equip a topological space with a type of dimension.

Definition 8 (Cover) A cover of a set X is a set of nonempty subsets of X whose union is X.

A cover is an open cover if it is contained in the topology.

Definition 9 (Covering Dimension) A topological space has a (Lebesgue) covering dimension p if any
open cover C has a second open cover D, the refinement, where each element d ∈ D is a subset of an
element in the first cover such that no point is included in more than p + 1 elements.

If a topological space is homeomorphic to R
p with p ∈ N, then its dimension is p. If a space does not have

a Lebesgue covering dimension p for any p ∈ N, it is called infinite-dimensional. The dimension of the
empty set ∅ is defined as −1. It is important to note that the reverse it not always true, which means that a
topological space with dimension p is not necessarily homeomorphic to R

p.

Another fundamental topological concept is compactness, which may be regarded as a substitute for finite-
ness. It frequently compensates for the restriction to finite intersections in axiom (T2) by allowing arbitrary
sets of open sets to be reduced to finite sets of sets.

Definition 10 (Compactness) Let (X, T) be a topological space and let U := Uii∈I ⊆ T . The set U is
called an open cover of Y ⊆ X if Y ⊆

)
i∈I . A finite subset of U whose union still contains Y is a finite

sub-cover. It can then be said that Y is compact if every open cover of Y has a finite sub-cover.

An important part of the characterization of data structures is the possibility to identify the object with the
highest dimension, modeled by the concept of an open cell.

Definition 11 (Open Cell) A subset c ⊂ X of a Hausdorff space X is an open cell if it is homeomorphic
to the interior of an open p-dimensional ball D

p = {x ∈ R
p : |x| < 1}.

Collections of cells form larger structures, so-called complexes which are identified by the cell with the
highest dimension, e.g., a p-dimensional space contains p-cells.

Definition 12 (Decomposition) A decomposition E of a topological space X is a decomposition of X
into subspaces.

12

With the concepts already introduced, the concept of a cell complex can be formulated.

Definition: CW-Complex K [2]
A pair (T , E), with T a Hausdorff space and a decomposition E into cells is called a CW-Complex if and
only if the following axioms are satisfied:
- (C1) mapping function: for each p-cell c ∈ E a continuous function Φe : D

p → T exists, which
transforms D

p homeomorphically onto the cell c and S
p−1 in the union of maximal (p− 1) dimensional

cells. D
p represents an p-dimensional closed unit ball and S

p−1 represents the sides of c.
- (C2) finite hull: the closed hull(c) of each cell c ∈ E connects only with a finite number of other cells.
- (C3) weak topology: A ⊂ T is open if and only if each A ∩ hull(c) is open.

A CW-cell complex with the underlying space X guarantees that all inter-dimensional objects are con-
nected in an appropriate manner, such that X(p) is obtained from X(p−1) by attaching p-cells to each
(p− 1)-cell and X(−1) = ∅. The respective subspaces X(p) are called the p-skeletons of the cell complex.

A p-cell describes the cell with the highest dimension, e.g., 1-cell edges and 2-cell triangles. For this work
the most important property of a CW-complex can be explained by using different p-cells and consistently
attaching sub-dimensional cells to the p-cells. This fact is taken care of by the mapping function. For the
common case a p-cell can be described by the oriented collection of the 0-cells, e.g., for a simplex cell
τp = {v0, v1, .., vp}, vi ∈ K, which is introduced in more detail in Section 2.3.1.

So far all mechanisms to handle the underlying topological space of data structures have been introduced.
Each subspace can be uniquely characterized by its dimension. All subspaces are connected appropriately
by the concept of a finite CW-cell complex.

2.3.1 Order Theory and Sets

The following section introduces concepts of order theory to formalize the combinatorial structure of
cells and the global structure of cell complexes [54]. First, the most basic notion of a binary relation is
introduced which is a specialization of the relation concept, where two arguments are used.

Definition 13 (Binary relation) A binary relation R is a subset of the Cartesian product of two sets A
and B. That is, any R ⊆ A × B is a binary relation.

Based on this concept a partial order is defined. A partial order is required to create a hierarchy for our
subsets, which can then be used to create our traversal mechanisms.

Definition 14 (Partial order) A partial order is a binary relation that satisfies the following three prop-
erties:
- (PO1) Reflexivity: a ≤ a, ∀a ∈ A.
- (PO2) Antisymmetry: if a ≤ b and b ≤ a ∀a, b ∈ A, then a = b.
- (PO3) Transitivity: if a ≤ b and b ≤ c ∀a, b, c ∈ A, then a ≤ c.

Definition 15 (Partial order on a topological space) Let (X, T) be a Hausdorff space. For any x, y ∈
X, a binary relation ≤ on X: x ≤ y, if and only if x ∈ cl(y) is defined, where cl(y) represents the closure
for a set within a topological space, where a closure is the intersection of all closed sets containing y. Then
this binary relation is a partial order.

Definition 16 (Ordered Sets) Let P be a set and ≤ be a (partial) order on P . Then P and ≤ form a
(partially) ordered set.

13

2.4 Computational Topology

The previous sections introduced combinatorial concepts for CW-complex representations and abstract
classification mechanisms to manage scientific data. Compared to the theory of CW-complexes, this
section focuses more on the details of algebraic properties of linear mappings by a procedure to associate a
sequence of Abelian groups or modules with, e.g., a topological space. Only a few concepts are introduced
in this section [22, 55], because of the fact that computational topology [19, 56] is a complex and emerging
part of scientific computing in its own right.

The motivation for this section is to retain the structure of geometrical objects and even physical field
approximations for computational mechanisms, because the recovery of lost structural information of
objects has proven to be a very complex and difficult tasks.

2.4.1 Chains

To use the elements of a dimension of a cell complex, e.g., all edges, in a computational manner, a
mapping of the p-cells onto an algebraic structure is needed. An algebraic representation of the assembly
of cells with a given orientation is thereby made available. Whereas the cell topology is concerned about
the internal structure of a given cell, the chain concept acts on certain p-cells. A formal definition for a
p-chain (pth chain group) is given by:

Definition 20 (P-Chain) A p-chain cp defined over a cell complex K and a vector space V is a formal
sum

cp =

np&
i=1

wiτ
i
p τ i

p ∈ K, wi ∈ V (2.24)

respecting that the operation is closed under orientation reversal:

∀τ i
p ∈ cp there is − τ i

p ∈ cp (2.25)

All different topological parts are called cells, and the dimensionality is expressed by adding the dimension
such as a 3-cell for a volume, a 2-cell for surface elements, a 1-cell for lines, and a 0-cell for vertices.

Thus, two p-chains can be added, or a p-chain can be multiplied by a scalar. In addition, p-chains support
algebraic-topological operations, including the boundary and coboundary operations. Based on these
concepts, a cell complex can be seen as a formal structure where cells can be added, subtracted, and
multiplied. The cell complexes used in this work have a chain group in every dimension. Homological
concepts are applied here for the first time, due to the fact that homology examines the connectivity
between two immediate dimensions. A structure-relating map between sets of chains Cp is therefore
introduced2 .

Definition 21 (Boundary Homomorphism) Let K be a cell complex and τ i
p ∈ K, τ i

p = {k0, k1, .., kp}.
The boundary homomorphism ∂p : Cp(K) → Cp−1(K) is:

∂pτ
i
p =

&
i

(−1)i[k0, k1, .., k̃i, ...kn] (2.26)

where k̃i indicates that ki is deleted from the sequence.

2This map is restricted to simplex cells. A more general mechanism related to the boundary operation is given in Section 2.3.2
and the corresponding practical concept in Section 6.2

17

2.4.2 Cochains

Before the introduction of the concept of chains only the simple structure of a cell complex was available.
The cell complex only contains the set of cells and their connectivity. The introduction of the chain
concept provides the concept of an assembly of cells and the corresponding algebraic structure. Chains
can be seen as mappings from oriented cells as part of a cell complex to another space. This definition
establishes the algebraic access of computational methods to handle the concept of a cell complex.

In addition to cell complexes, scientific computing requires the notation and access mechanisms to global
quantities related to macroscopic p-dimensional space-time domains, introduced in Section 2.2. This
collection of possible quantities, which can be measured, can then be called a field, which permits the
modeling of these measurements as a field function that can be integrated on arbitrary p-dimensional
(sub)domains. An important fact which has to be stated here is that all quantities which can be measured
are always attached to a finite region of space. A field function can then be seen as the abstracted process
of measurement of this quantity [31, 35]. The concept of cochains allows the association of numbers not
only to single cells, as chains do, but also to assemblies of cells. Briefly, the necessary requirements are
that this mapping is not only orientation-dependent, but also linear with respect to the assembly of cells,
modeled by chains. A cochain representation is now the global quantity association with subdomains of a
cell complex, which can be arbitrarily built to discretize a domain. Physical fields therefore manifest on a
linear assembly of cells. Based on cochains, topological laws can be given a discrete representation.

Definition 24 (Cochains [25]) A linear transformation σ of the p-chains into the field R of real numbers
forms a vector space cp

σ
→ R and is called a vector valued p-dimensional cochain or short p-cochain.

The space of all linear mappings on cp is denoted by Cp, where the elements of Cp are called cochains.
Cochains express a representation for fields over a discretized domain K. Addition and multiplication by
a scalar are defined for the field functions and so for cochains. To extend the expression possibilities,
coboundaries of cochains are introduced.

Definition 25 (Coboundary) The coboundary δ of a p-cochain is a (p + 1)-cochain defined as:

δcp =
&

i

viτi, where vi =
&

b ∈ faces(τi)

σ(b, τi)cp(b) (2.33)

Thus, the coboundary operator assigns non-zero coefficients only to those (p + 1) cells that have cp as
a face. As can be seen, δcp depends not only on cp but on how cp lies in the complex K. This is a
fundamental difference between the two operators ∂ and δ. An example is given in Figure 2.9 where the
coboundary operator is used on a 1-cell. The coboundary of a p-cochain is a p+1 cochain which assigns to
each (p + 1) cell the sum of the values that the p-cochains assigns to the p-cells which form the boundary
of the (p + 1) cell. Each quantity appears in the sum multiplied by the corresponding incidence number.
Cochain complexes [22, 53] are defined similarly to chain complexes except that the arrows are reversed.

Definition 26 (Cochain Complex) A cochain complex C∗ = {Cp, δp} is a sequence of modules Cp and
homomorphisms:

δp : Cp → Cp+1 (2.34)

such that

δp+1δp = 0 (2.35)

Then, the following sequence with δδ = 0 is generated:

0
δ
→ C0 δ

→ C1 δ
→ C2 δ

→ C3 δ
→ 0 (2.36)

19

The neighborhood U is called Euclidean. κ is called a chart and assigns a set of values from R
n, commonly

called coordinates, to the points in the neighborhood U . This models the local Euclidean structure, where
the elements e are usually called points.

In non-empty intersections of two neighborhoods U1,U2 ⊆ H it is possible to define a transition from one
chart to another in the following manner:

κ1 ◦ κ−1
2 : κ2(U1 ∩ U2) → κ1(U1 ∩ U2) (2.43)

This expresses the agreement of different charts in overlapping regions. A union of Euclidean neighbor-
hoods that yields the topological space in combination with their respective charts is called an atlas. The
specification of a Hausdorff space and an atlas characterizes a topological manifold.

To be able to construct more complex algebraic structures, which allow an appropriate modeling of phys-
ical fields, additional requirements are imposed on the purely topological manifold to arrive at a differen-
tiable manifold.

Definition 35 (Differentiable Manifold) A differentiable manifold M is obtained by demanding that the
transition functions defined in Equation 2.43 be of differentiability class Ck4.

To use the well known concepts of integration and properties of functions, such as continuity and differ-
entiability, the concept of a pullback is introduced.

Definition 36 (Pullback) Let f : M → A be a map between a differentiable manifold M and a set A. By
using a chart κ related to an element e ∈ M with U , a pullback is given by:

f ◦ κ−1 : κ(U) → A (2.44)

Thereby the properties of f ◦ κ−1 in the open set U can be translated to f related to the chart κ(U).
Before this concept becomes useful, the concept of a space attached to an element of the manifold must be
introduced. A step towards such an attached space is the introduction of an abstract mechanism guiding
the coordinate axes.

A mapping γ of an interval [a, b] → M describes a curve in the manifold M. A curve is called smooth if
the composition γκ = κ−1 ◦ γ : [a, b] → R

n with an arbitrary chart κ is continuously differentiable with
respect to at least one component of R

n does not vanish.

Definition 37 (Tangent Vector) A tangent vector is the differential of a smooth curve γκ.

Different charts lead to different representatives of the same tangent vector. This concept finally allows
tangent spaces to be attached at each point.

Definition 38 (Tangent Space) A tangent space Tp(M) at a point p is defined as the union of tangent
vectors in this point p. The thus defined tangent space Tp(M) is a vector space of the same dimension as
M:

dim Tp(M) = dim M (2.45)

Finally a connection between a differentiable manifold and the attached tangent spaces, and fiber bun-
dles can be established by the concept of a tangent bundle T (M), formally expressed in the following
definition:

4The class Ck is composed by functions f which have continuous k-derivatives.

24

Definition 39 (Tangent Bundle) The union of all tangent spaces Tp(M) on a manifold M together with
the manifold is called the tangent bundle T (M):

T (M) := {(p, v) : p ∈ M, v ∈ Tp(M)} (2.46)

A fiber of a point p ∈ M is the tangent space Tp(M) with a special dimensional restriction of the tangent
space. The dimension of the bundle T (M) is twice the dimension of the underlying manifold M; its
elements are points in addition to tangent vectors.

Where this given dimensional restriction of a bundle is a very specific specialization of the fiber bundle
concept, several other identification can be obtained in a more general way by the amount of information
that is available on the data in the fiber space (Figure 2.14). The fiber space of a fiber bundle has a
certain dimension and thus an element has the same dimensionality at each point. If the dimensionality
is unknown or may vary at each point, then the generalization of fiber bundles to a sheaf with stalks is
modeled [57, 58]. If more information for an object with fixed dimension is available, e.g., some linearity
relationship, then a vector bundle is specified. In the special case of the same dimensionality of the fiber
space and the base space, a tangent bundle is obtained, and so it is a special case of the vector bundle that
is built directly from the derivatives.

Sheaf

Fiber bundle

Vector bundle

Tangent bundle

constant dimension

linearity

dimensional restriction

Figure 2.14: A hierarchy of concepts with partial specialization. The most general form is represented by a sheaf
concept. The concept of fiber bundles is obtained by using fibers with a certain dimension. If the fiber
space satisfies linear vector space properties, the concept of a vector bundle is derived. Finally, by
confining the dimension of the base and fiber space, a tangent bundle is obtained.

A hierarchy for various abstractions to deal with scientific data is thereby available, but all are confined
to one type of attached space. The following concepts now introduce spaces where additional attributes
can be specified in a separate space. The basic properties of combinatorial elements and attached physical
quantities are thereby possible. First, a non-degenerate mapping between two spaces is required.

Definition 40 (Scalar Product) A scalar product is a non-degenerate bilinear mapping of two vector
spaces into a field

ς : V × V∗ → R (2.47)

Non-degenerate means that ς = 0 for any fixed vector v from one of the vector spaces, for all elements of
the other vector space, except for the 0 element.

The scalar product is noted by �, � and enables the concept of a dual vector space.

Definition 41 (Dual Vector Space) A vector space V∗ is called dual if it is related to a vector space V by
a scalar product.

25

Related to this formulation of the fiber bundle concept, the chain concept uses the following concepts,
where K represents an arbitrary cell complex, as given in Section 2.4:

cp =

np&
i=1

wiτ
i
p τ i

p ∈ K, wi ∈ V (2.50)

So a chain can be described by the intrinsic relationship fiber bundle of a p-skeleton, whereas the τ i
p part is

mapped to a linear form within Tp / Tp∗∗. The additional weight property is normally degenerate, which
means that only the Z2 information is stored, e.g., only storing the cells of interest. These concepts can
then be used in combination by the following identifications:

- Cell identification: this is the linear form on Tp∗, here represented as τ i
p, an element of the n-skeleton.

- Incidence information: inherent fiber space property of the corresponding skeleton (not directly visible
in the definition).

- Weight concepts (optional) with wi: an additional inherent fiber space property.

The only difference for the cochain concept is the space under consideration for the linear form, in this
case the linear form on Tp. Then the linear forms on Tp and the linear forms on T ∗

p , which are identified by
multivectors and p-forms, can be transfered to the algebraic bodies of chain and cochains complexes. The
formal duality between vectors and covectors is also transfered to the duality between chains and cochains
�cp, c

p�.

28

2.7 Discrete Electromagnetics

Several issues related to the differential formulation of the Maxwell equations were presented in Section
2.2. Finally, this section introduces a concise way of formulating physical problems regarding the fiber
bundle and algebraic topology concepts. Starting with the integral formulation and partially reinserting
the geometrical objects expressed in vector calculus notation, but omitting the orientation reads:�

∂V
B · dS (2.51)�
V

̺ dV (2.52)

A better-suited representation, which directly references the oriented geometric object a quantity is as-
signed to, is given with the formalism of ordinary and twisted differential forms which can be seen as the
continuous counterpart of cochains, as introduced in Section 2.4. For a brief introduction of this topic, a
p-dimensional differential form, or short p-form, can be seen as the subject to integration on p-dimensional
domains [24, 60]. If the domain is internally oriented, then the p-form is called ordinary p-form which is
denoted by ωp and the corresponding externally oriented p-form is called twisted, denoted by ω̃p. By the
concept of a multivector (see Section 2.4), a p-form is given as a linear function on the space of multivec-
tors with values in an algebraic field. Then it follows that the pairing of a multivector, or p-vector vp, and
a p-form ωp gives a value like the pairing of a chain and cochain [35, 61], as given in Section 2.4.4. This
analogy suggests the following representation of the pairing of a p-vector and a p-form:

�vp, ω
p� (2.53)

The duality property, stated by �cp, c
p�, between chains and cochains transfers directly to the continuous

multivectors and p-forms, introduced in Section 2.5. This is an important step towards a formal, consistent,
and computationally manageable concept. A p-form ωp on a continuous domain Ω can then be correlated
to its discrete counterpart on a cell complex, a cochain cp, since it associates a value ci with each cell
τ i
p ∈ K

ci =

�
τ i
p

ωp (2.54)

Another correspondence between cochains and p-forms is given by the concept of the coboundary oper-
ator. As introduced in Section 2.4.2, the coboundary operator is defined to allow the transition from a
topological equation of the form

�∂cp+1, a
p� = �cp+1, b

p+1� (2.55)

to the following relation between cochains:

δap = bp+1 (2.56)

The continuous differential forms can then be related�
Dp+1

dωp :=

�
∂Dp+1

ωp ∀Dp+1 ∈ D ⊆ Ω (2.57)

where d is an operator transforming p-forms into p + 1-forms. This operator is called the exterior differ-
ential and mimics the property of the coboundary operator by transforming a topological equation given
in integral form �

∂Dp+1

αp =

�
Dp+1

βp+1 ∀Dp+1 ∈ D (2.58)

29

into

dαp = βp+1 (2.59)

Given the properties of the coboundary operator δ, the exterior differential d can be seen as the continuous
counterpart [53] of δ. The following table depicts the correspondence between discrete and continuous
concepts [35].

discrete setting continuous setting
p-cell τp Ωp p-dimensional domain

boundary of a p-cell ∂τp ∂Ωp boundary of a p-dimensional domain
p-chain cp vp weighted p-domain

p-cochain cp ωp p-differential form
pairing of p-chain and p-cochain �cp, c

p�
�
vp

ωp weighted p-integral of a p-form
coboundary operator δ d exterior differential operator

Based on these concepts, the local vector field representation B becomes an ordinary 2-form b2 and the
scalar field ̺ a twisted 3-form ˜̺3:

B → b2 (2.60)

̺ → ˜̺3 (2.61)

The numbers and orientation give the dimension on which these quantities are to be integrated. The adjoint
of the exterior differential as the boundary of a weighted domain is the generalized Stoke’s theorem:�

vp+1

dωp =

�
∂vp+1

ωp (2.62)

It has to be noted, that the given differential form expression is more general than the vector calculus
notation due to the fact that the expression is valid for div (), grad () , curl () and the discrete chain and
cochain representations automatically express the type of the dimension with the general notion of:

�c(p+1), δc
(p)� = �∂c(p+1), c

(p)� (2.63)

Examples of p-form complexes for differential operators encountered in different works [24, 62] for vector
analysis in three dimensions are denoted by:

0 → {scalar functions}
grad()
−−−−→ {field vector}

curl()
−−−→ (2.64)

{flux vectors}
div()
−−−→ {volume densities} → 0

The concept of constitutive links closes the gap between ordinary and twisted cochains with discrete links
between them. Two different types can be obtained:

L1 : Cp(K) → Cq(K̃) (2.65)

L2 : Cr(K̃) → Cs(K) (2.66)

The inherently discrete computer implementation can now be equipped with all the necessary information
and structure regarding the physical entities.

30

Chapter 3

Numerical Discretization Schemes

An important step in handling partial differential equations is to use and develop stable, consistent, and
accurate algebraic replacements where most of the global/continuous information of the original problem
and more importantly, the inherent structure, are retained. Several methods are currently in use, such as
the finite volume (FV), finite element (FE), and finite difference (FD) methods, each with specific ap-
proaches to discretization. Topological equations have an intrinsically discrete nature, compared to the
constitutive parts of the field equations, which are the central issues in the construction of effective dis-
cretization schemes and the only place where recourse to local representations is fully justified. Numerical
discretization schemes can be briefly represented as a model reduction, e.g.:

L(u) = f → Ax = b (3.1)

which transforms an infinite-dimensional operator equation into a finite-dimensional algebraic equation.
Here it can already be seen that this is always accompanied by an inevitable loss of information due to the
reduction of dimension. Briefly, the given discretization schemes address differently the task of replacing
the partial differential equation system with algebraic ones. Therefore, generic discretization concepts,
based on what has been called the reference discretization scheme [33, 35], are introduced first. These
concepts are then presented in the context of each of the other methods.

- The finite volume method is, with respect to the global and discrete formulation, based on topological
laws, the most natural. The method is based on the approximation of conservation laws directly in its
formulation and is therefore flux conserving by construction. The topological laws and time stepping
procedures can be integrated easily.

- The finite element method can be seen as a remarkably flexible and general method for solving partial
differential equations. Compared to the finite volume method, the spatial discretization can be much
more arbitrary with fewer quality constraints. The continuous problem with an infinite amount of de-
grees of freedom is reformulated as an equivalent variational problem with a finite dimensional space.
As described in the corresponding finite element section, this method is able to incorporate the consti-
tutive relations appropriately. The incorporation of topological laws and time-dependent problems is
more complex.

- The last scheme used in this work is the finite difference scheme, which addresses the problem of nu-
merical analysis from a quite different approach when compared to the preceding two. Instead of using
the conservation of the original problem (FV) or projecting the continuous problem into a finite dimen-
sional space (FE), the finite difference method uses a finite difference approximation for the differential
operators. Despite the fact that this method is simple and effective as well as easy to derive and im-
plement, this approach gives an optimal solution to a different problem than the originally intended
discretized field equation. This method is limited to structured grids or global cell complexes.

32

properties and is therefore invariant for very general transformations. This gives them topological signif-
icance and the name topological equation was used [33] to express the idea of invariance under arbitrary
homeomorphic transformations. For a topological equation, the discrete or global version appears as the
fundamental one, with the differential statement resulting from it if additional requirements are fulfilled.

3.1.3 Constitutive Relation Discretization

Discretizing constitutive relations determines the link between various cochains which represents the field
quantities approximated by the local constitutive equations. This step of discretization offers a great
number of different choices [35].

Field Function Reconstruction and Projection

For most of the finite volume and finite element schemes, a field projection is used by:

B = fµH (3.5)

In the discrete setting the field functions B and H do not belong to the problem’s variable. Instead the
magnetic flux cochain Φ2 and the magnetic field cochain Ψ̃2 are linked by the relation Φ2 = Fµ(Ψ̃2).

From the cochain Ψ̃2 a field function is derived by a reconstruction operator:

H = R2(Ψ̃
2) (3.6)

Next, the local constitutive link, Equation 3.5, is used to derive B. Then, the cochain Φ2 has to be obtained
by means of a projection operator P 2, which produces a cochain for each field function B:

Φ2 = P 2(B) (3.7)

The discrete constitutive link Fµ is then finally given by:

Φ2 = Fµ(Ψ̃2) = P 2(fµ(R2(Ψ̃
2))) (3.8)

A natural requirement for the reconstruction and projection operators is that for each cochain cp the fol-
lowing relation holds true [35]:

P ∗(R∗(c
p)) = cp (3.9)

To obtain a sparse matrix representation the reconstruction process is usually performed locally, so the
value of the reconstructed field function in a particular point depends only on the values of the original
cochain on the cells in a sufficiently small neighborhood of the point.

During the last decade a comprehensive framework for the reconstruction and projection operators, called
mimetic discretization [25, 37, 63–66], was derived. This framework analyzes in detail how these two
operators can be used to mimic the analytical and continuous nature of partial differential equation.

35

The numerical flux has to satisfy the following properties:
- Flux conservation: the flux resulting from adjacent control volumes sharing an interface has to cancel

exactly under summation:

gj,k(u, v) = −gkj(v, u) (3.14)

- Consistency: the numerical flux, evaluated with identical arguments, has to reduce to the true total flux
passing through the boundary elements fjk:

gjk(u, u) =

�
fjk

f(u) · dA (3.15)

Using Equation 3.12 and the previous interpretation of finite volumes for stationary meshes produces the
following evolution equation for cell averages:

d

dt

�
Vi

u dV = |Vi|
d

dt
ui (3.16)

One of the simplest finite volume schemes in a semi-discrete formulation can be obtained by utilizing
representations which are continous in time, t ∈ [0,∞], and piecewise constant in space, uh(t) ∈ V 0

h such
that:

uj(t) =
1

|Vi|

�
Vi

uh(xi, t) dV (3.17)

with initial data

uj(0) =
1

|Vi|

�
Vi

u0(xi) dV (3.18)

and the numerical flux functions gjk(uj , uk) given by the following system of ordinary differential equa-
tions:

d

dt
uj +

1

|Vi|

&
fjk∈∂V

gjk(uj , uk) = 0 ∀Vi ∈ V (3.19)

The final remaining issue is that the solution is available only at the computational nodes, the control
volume centers. Interpolation is needed to obtain the function values at the vertices.

Using an explicit or implicit time integration formula [67], e.g., a forward Euler scheme:

d

dt
uj ≈

un+1
j − un

j

Δt
(3.20)

produces a fully-discrete finite volume form:

un+1
j = un

j −
Δt

|Vi|

&
fjk∈∂V

gjk(u
n
j , un

k) = 0 ∀Vi ∈ V (3.21)

38

3.3 Finite Elements

The finite element method is a systematic approach to approximate the unknown exact solution of a partial
differential equation based on basis functions and the projection of a given domain onto a consistent finite
cell complex. The finite elements correspond to the p-cells of the complex.

The origin of the finite element method is in the solid mechanics of rigid bodies [29]. Some constraints
should be placed on the selection of the shape functions to guarantee the fact that with an arbitrary number
of shape functions the exact solution is approximated best, and in the limit, the exact solution should be
obtained.

A good approximation is obtained by a residual formulation where the residuum is formulated as the dif-
ference of the unknown exact solution and the calculated approximate solution. This residuum is weighted
over the simulation domain and integrated with the requirement that the integral vanishes with a set of lin-
early independent weighting functions. The other possible mechanism is the variational formulation of
the partial differential equation [28, 68].

One of the main advantages of the finite element method is the possibility to adapt the basis functions
to the eigenfunctions of the differential operators [28]. Thereby a high precision of this method can be
obtained with a moderate number of mesh elements. Different areas of materials as well as anisotropic,
inhomogeneous, and non-linear quantities can be treated. If no boundary conditions are declared, homo-
geneous/natural Neumann boundary conditions are implicitly given.

3.3.1 Basic Concepts for a Galerkin Method

In the following, a theoretical part of the finite element method is summarized, which is a special Galerkin
method [28, 29] based on the following construction of finite dimensional subspaces Vh:
- Ω is triangulated into a consistent cell complex
- Vh consists of piecewise polynomials
- Vh has a finite basis φ with local support

The main part of this section and the corresponding notation is based on [29, 69]. Galerkin’s method can
be briefly explained as a general technique for the construction of solution approximations not represented
by infinite space basis functions φi ∈ V but instead by a finite dimensional space Vh ⊂ V of variational
problems. The examples presented in this work are modeled by the following general form:

L(u) = f(x) (3.22)

which is defined on an arbitrary dimensional, single connected domain Ω with boundary ∂Ω. Equation
3.22 is fulfilled by functions of class C2

u = u(x) ∈ V (3.23)

The notation L() being a linear spatial differential operator. Additionally, it is assumed that the domain
Ω has a piecewise smooth boundary Γi ∈ Γ(∀i = j → Γi ∩ Γj = ∅,Γ =

)
i Γi). A general form of

boundary conditions can thereby be specified by:

Ai u + Bi∂nu = gi(u) on Γi (3.24)

where Ai and Bi are matrices consisting of functions sufficiently smooth on Γi and gi is a vector of con-
tinuous linear functionals. ∂nu denotes the outward normal derivative. A weak formulation of Equation
3.22 is obtained by using a test function v:

Find u ∈ V : �v,L(u)� = �v, f� ∀v ∈ C1(Ω) (3.25)

39

defined on the global vertices τ i
0, the 0-cells, only and are therefore called nodal basis functions. They can

be expressed as:

φi(τ
i
0) = δik, i, k = 1, .., n (3.32)

Based on this subdivision of the finite element space, the function ue can be expressed in local cell terms
by

uc =

np&
i=1

ui φi (3.33)

where i represents the local index of the element and np the number of element vertices. Now the operator
from Equation 3.30 can be defined locally for, e.g., a 3-simplex (tetrahedron):

Lc : R
4 → R

4 (3.34)

and the local residuum is then defined as:

Ri = Lc(u1, .., un) − �φi, f� (3.35)

To determine the operator given in Equation 3.35 for a particular cell type, the basic nodal functions have
to be calculated, e.g., for a 3-simplex cell (tetrahedron):

φk(x) = φk(x1, x2, x3) =
1

3V
(akx1 + bkx2 + ckx3 + dk) (3.36)

where the coefficients ak, bk, ck, dk are functions of the vertex coordinates and V is the volume of the
element. Next, the following integral has to be calculated:

Mpq =

�
τ i
3

φp(x) φq(x) dΩ, p, q = 1, 2, 3, 4 (3.37)

The key for an efficient practical realization is that global finite elements are defined as transformations
of a reference element in a normalized coordinate system. Each point of the cell (x1, x2, x3) ∈ τ i

3 can be
expressed as a bijective function onto a reference point (ξ, η, ζ) ∈ τ i

r,3:

x1 = x1
1 + (x2

1 − x1
1)ξ + (x3

1 − x1
1)η + (x4

1 − x1
1)ζ, (3.38)

x2 = x1
2 + (x2

2 − x1
2)ξ + (x3

2 − x1
2)η + (x4

2 − x1
2)ζ, (3.39)

x3 = x1
1 + (x2

3 − x1
3)ξ + (x3

3 − x1
3)η + (x4

3 − x1
3)ζ (3.40)

The nodal basis functions on the reference element τ i
r,3 are:

φ0
1(ξ, η, ζ) = 1 − ξ − η − ζ, (3.41)

φ0
2(ξ, η, ζ) = ξ, (3.42)

φ0
3(ξ, η, ζ) = η, (3.43)

φ0
4(ξ, η, ζ) = ζ. (3.44)

(3.45)

Equation 3.37 is then calculated by:

Mpq(τ
0
r,3) = det(J)

�
τ0
r,3

φ0
p(ξ, η, ζ) φ0

q(ξ, η, ζ) dξ dη dζ, p, q = 1, 2, 3, 4 (3.46)

41

3.4.2 Analysis of the Finite Difference Method

One method of directly transfering the discretization concepts (Section 3.1) is the finite difference time do-
main method. It is analyzed here related to time-dependent Maxwell equations, as was first introduced by
Yee [30]. It is one of the exceptional examples of engineering illustrating great insights into discretization
processes.

With this method, the partial spatial and time derivatives are replaced by a finite difference approximation.
This system is solved using an explicit time evaluation. One of the main advantages of this method is that
no matrix operations or algebraic solution methods have to be used.

The spatial domain is discretized by two dual orthogonal regular Cartesian grids based on cubes with
spatial subdivisions of Δx,Δy,Δz, whereas the time domain is subdivided into intervals of Δt. The
original formulation was based on half-step staggered grids in space and time. The quantities from the
second complex are denoted with Δx̃,Δỹ,Δz̃,Δt̃. It is important to highlight that two different grids are
necessary, due to the fact that different quantities with different orientation reside on these two distinct
grids, even if in this method the secondary quantities coincide numerically with the primary ones.

Maxwell’s equations, given in Section 2.2, if projected onto a regular Cartesian structured grid, yield the
following six coupled scalar equations:

∂tHx =
1

µ
(∂zEy − ∂yEz) (3.59)

∂tHy =
1

µ
(∂xEz − ∂zEx) (3.60)

∂tHz =
1

µ
(∂yEx − ∂xEy) (3.61)

∂tEx =
1

ε
(∂yHz − ∂zHy − γEx) (3.62)

∂tEy =
1

ε
(∂zHx − ∂xHz − γEy) (3.63)

∂tEz =
1

ε
(∂xHy − ∂yHx − γEz) (3.64)

These equations are the basic expressions for the finite difference time domain method (FDTD). The
divergence relations are fulfilled by this method implicitly.

The components of the electric and magnetic field E and H with their corresponding projections to the
coordinate axes are the variables used. These variables and the local values of material properties are
attached to the midpoints of the grid edges. The variable indexing scheme is also used consistently with
[30]

Ex(iΔx, j ± 1/2Δy, kΔz, nΔt) = En
x|i,j±1/2,k (3.65)

With this notation the following expressions are obtained with central difference approximation:

∂xEz(iΔx, jΔy, kΔz, nΔt) =
En

z|i+1/2,j,k − En
z|i−1/2,j,k

Δx
+ O(Δx)2 (3.66)

∂tEz(iΔx, jΔy, kΔz, nΔt) =
E

n+1/2
z|i,j,k − E

n−1/2
z|i,j,k

Δt
+ O(Δt)2 (3.67)

45

The time-stepping formulas for Hx are:

Hn+1
x|i+1/2,j,k = Hn

x|i+1/2,j,k+ (3.68)

Δt

Δz µ|i+1/2,j,k

�
E

n+1/2
y|(i+1/2,j,k+1/2) − E

n+1/2
y|(i+1/2,j,k−1/2)

−

Δt

Δy µ|i+1/2,j,k

�
E

n+1/2
z|(i+1/2,j+1/2,k) − E

n+1/2
z|(i+1/2,j−1/2,k)

and the time-stepping for Ex:

E
n+1/2
x|(i,j+1/2,k+1/2) = E

n−1/2
x|(i,j+1/2,k+1/2)+ (3.69)

Δt̃

Δz̃ ε|(i,j+1/2,k+1/2)

�
Hn

y|(i,j+1/2,k+1) − Hn
y|(i,j+1/2,k)

−

Δt̃

Δỹ ε|(i,j+1/2,k+1/2)

�
Hn

z|(i,j+1,k+1/2) − Hn
z|(i,j,k+1/2)

3.4.3 Further Analysis

As already introduced, the FDTD method does not use global quantities. Instead only local nodal values
of the corresponding vector values are used. Based on the initial problem formulation, it can be seen that
these local values are the projections of averaged field components onto 2-cells, and therefore are local
representatives of the global quantities. With local constitutive relations (only the x part is given):

Bn
x|(i+1/2,j,k) = µ|(i+1/2,j,k)H

n
x|(i+1/2,j,k) (3.70)

and

D
n+1/2
x|(i,j+1/2,k+1/2) = ε|(i,j+1/2,k+1/2)E

n+1/2
x|(i,j+1/2,k+1/2) (3.71)

the following expressions are obtained using global quantities:

ΔyΔzµ|(i+1/2,j,k)H
n+1
x|(i+1/2,j,k) = Φn+1

B,x|(i+1/2,j,k) (3.72)

ΔyΔtE
n+1/2
y|(i+1/2,j,k±1/2) = Φ

n+1/2
E,y|(i+1/2,j,k±1/2) (3.73)

ΔzΔtE
n+1/2
z|(i+1/2,j±1/2,k) = Φ

n+1/2
E,z|(i+1/2,j±1/2,k) (3.74)

and

ΔỹΔz̃ε|(i,j+1/2,k+1/2)E
n+1/2
x|(i,j+1/2,k+1/2) = Ψ

n+1/2
D,x|(i,j+1/2,k+1/2) (3.75)

Δz̃Δt̃Hn
z|(i,j+1,k+1) = Ψn

H,z|(i,j+1,k+1/2) (3.76)

Rewriting Equation 3.72 and Equation 3.76 yields:

Hn
x|(i+1/2,j,k) =

1

ΔyΔzµ|(i+1/2,j,k)
Φn

B,x|(i+1/2,j,k) (3.77)

Hn
x|(i+1/2,j,k) =

1

ΔỹΔt̃
Ψn

H,x|(i+1/2,j,k) (3.78)

which can be expressed for Φ and Ψ. For Φ it reads:

Φn
B,x|(i+1/2,j,k)

ΔyΔz
= µ|(i+1/2,j,k)

Ψn
H,x|(i+1/2,j,k)

Δx̃Δt̃
(3.79)

46

while the result for Ψ is:

Ψ
n+1/2
D,x|(i,j+1/2,k+1/2)

ΔỹΔz̃
= ε|(i,j+1/2,k+1/2)

Φ
n+1/2
E,x|(i,j+1/2,k+1/2)

ΔxΔt
(3.80)

Therefore this equation represents a discrete constitutive equation of the simplest type, obtained by extend-
ing the local constitutive equations B = µH, and D = εE with the assumption of planarity, regularity,
and orthogonality of the cells.

Examining the time-stepping formulae for Hx, the time-stepping for ΦB,x becomes:

Φn+1
B,x|(i+1/2,j,k) = Φn

B,x|(i+1/2,j,k)+ (3.81)

Φ
n+1/2
E,y|(i+1/2,j,k+1/2) − Φ

n+1/2
E,y|(i+1/2,j,k−1/2)−

Φ
n+1/2
E,z|(i+1/2,j+1/2,k) + Φ

n+1/2
E,z|(i+1/2,j−1/2,k)

and from the Ex and the corresponding ΨD,x is obtained:

Ψ
n+1/2
D,x|(i,j+1/2,k+1/2) = Ψ

n−1/2
D,x|(i,j+1/2,k+1/2)− (3.82)

Ψn
H,y|(i,j+1/2,k+1) + Ψn

H,y|(i,j+1/2,k)+

Ψn
H,z|(i,j+1,k+1/2) + Ψn

H,z|(i,j,k+1/2)

The expressions can then be transformed into equations depending only on two global values:

Φn+1
B,x|(i+1/2,j,k) = Φn

B,x|(i+1/2,j,k) +
ΔxΔt

ΔỹΔz̃
(3.83)�

1

ε|(i+1/2,j,k+1/2)
Ψ

n+1/2
D,x|(i+1/2,j,k+1/2) −

1

ε|(i+1/2,j,k−1/2)
Ψ

n+1/2
D,x|(i+1/2,j,k−1/2)−

1

ε|(i+1/2,j+1/2,k)
Ψ

n+1/2
D,x|(i+1/2,j+1/2,k) +

1

ε|(i+1/2,j−1/2,k)
Ψ

n+1/2
D,x|(i+1/2,j−1/2,k)

!

For the special case of a dominant magnetic system, TM-mode, the following expressions can be derived:

∂tHx =
1

µ
(∂zEy − ∂yEz) (3.84)

∂tHy =
1

µ
(∂xEz − ∂zEx) (3.85)

∂tEz =
1

ε
(∂xHy − ∂yHx − γEz) (3.86)

With these expressions the TM-mode at t = nΔt is discretized by:

∂tHx =
1

µ
(∂zEy − ∂yEz) (3.87)

∂tHy =
1

µ
(∂xEz − ∂zEx) (3.88)

H
n+1/2
x|i,j,k − H

n−1/2
x|i,j,k =

Δt

µΔy

�
En

z|i,j+1/2,k − En
z|i,j−1/2,k

(3.89)

H
n+1/2
y|i,j,k − H

n−1/2
y|i,j,k =

Δt

µΔx

�
En

z|i+1/2,j,k − En
z|i−1/2,j,k

(3.90)

47

For a dominant electric system, the TE-mode is given by:

∂tEx =
1

ε
(∂yHz − ∂zHy − γEx) (3.91)

∂tEy =
1

ε
(∂zHx − ∂xHz − γEy) (3.92)

∂tHz =
1

µ
(∂yEx − ∂xEy) (3.93)

With these expressions the TE-mode at t = (n + 1/2)Δt is discretized by:

∂tEz =
1

ε
(∂xHy − ∂yHx − γEz) (3.94)

En+1
z|i,j,k − En

z|i,j,k =
Δt

ε

H

n+1/2
y|i+1/2,j,k − H

n+1/2
y|i−1/2,j,k

Δx
−

H
n+1/2
x|i,j+1/2,k − H

n+1/2
x|i,j−1/2,k

Δy
− γE

n+1/2
z|i,j,k

(3.95)

As can be seen, the Ez values for the full time-steps and the Hx, Hy for half time-steps are already
available, and the the update for Hx, Hy can be done without any further calculation. On the contrary
E

n+1/2
z|i,j,k is not available and has to be approximated by:

E
n+1/2
z|i,j,k =

1

2

�
En+1

z|i,j,k + En
z|i,j,k

(3.96)

From this the following expression is finally obtained:

En+1
z|i,j,k =

1 − γΔt
2ε

1 + γΔt
2ε

En
z|i,j,k +

Δt
ε

1 + γΔt
2ε

H

n+1/2
y|i+1/2,j,k − H

n+1/2
y|i−1/2,j,k

Δx
−

H
n+1/2
x|i,j+1/2,k − H

n+1/2
x|i,j−1/2,k

Δy

(3.97)

As can be seen only the neighboring values Hx, Hy are used to evaluate the spatial derivative of Ez .
Also, only the neighboring elements of Hx, Hy and Ez are used to calculate the spatial derivatives of
Hx, Hy. Therefore this method calculates both fields, E and H, based on the curl () expressions with
special requirements on the given field. Note this discretization can also be derived by the global integral
discretization [33], which eases the evaluation of boundary conditions.

48

Part II

Practical Concepts

49

Chapter 4

Overview

This chapter serves as a catalyst to transform the theoretical Part I into applicable software engineering
concepts which are required to develop generic and reusable software components. Although the un-
derlying ideas were presented by McIlroy at the NATO conference in 1968 [70], several programming
languages were analyzed to implement reusable components, but no satisfactory language has been found
[16] since then. A possible realization was given by the advent of C++ and the template mechanisms and
the related generic programming paradigm. This trend met a milestone with the development of the C++
STL, the first generic template library where data structures have been separated from the algorithms. The
STL systematically developed a catalog of concepts [38], started with the work of Stepanov [16] by imple-
menting generic algorithms. The systematic study of algorithms and data structures and the possibilities
of combining programming paradigms, necessary for further development of generic programming, re-
quire not only a firm theoretical base but also sufficient support within a programming language. In 1995
several requirements [71] to enable the transition of imperative application design to a generic component
programming were noted:
- A software component industry is required. By standardizing the interfaces to data structures and algo-

rithms, different component vendors can provide software implementations for special areas. Applica-
tion vendors can then integrate these systems and build applications.

- One of the most fundamental questions in software design is whether design is a top-down or bottom-up
activity. Generic components are a partial solution, because they already constitute the bottom layer.
But the question remains when a component has to be developed.

- Another important issue is language design. A programming language suitable for a broad spectrum of
applications has to offer various, sometimes contradictory, options, e.g., high performance and abstract
formulation.

- Software engineering education: many of the principles of good and modern programming are, in fact,
difficult to demonstrate to a beginning student. Teaching component-based programming can ease this
introduction greatly.

Beside this catalog of requirements, which facilitates the identification and subsequent development of
orthogonal and reusable components, a design guide specifying how to efficiently assemble generic com-
ponents is needed for the development of complex applications. The benefits of orthogonal and therefore
decoupled and reusable components are self evident, the design of generic libraries has been difficult [71]
and has remained challenging although the STL has already demonstrated that all issues are resolvable.
The evolution of languages and software technology has enabled to take the goals one step further. The
quest for mathematical notations in programming languages, for example, was greatly advanced by the
efforts leading to the grid algorithm library (GrAL [18]), where algorithms were specified independently
of the underlying mesh. The theoretical contribution of this work was very powerful, but a complete and
efficient implementation of usable software components is still missing.

50

This chapter identifies and decouples generic components which are then assembled in Part III into the
generic scientific simulation environment. An important fact is that the identification process has not
been started from scratch, but is based on the work and concepts identified and implemented during many
years at our institute. The approach which has been developed and is presented here renders them in a
different context for multi-paradigm theoretically driven, generic component-based programming. The
building blocks are not based on low-level components, instead a small number of application-oriented
building-block components is sketched. The low-level components, such as the STL and various Boost
libraries [44, 72–75], are heavily used to build these blocks. Nevertheless, the deeper goal of transcending
the imperative line-by-line programming paradigm towards a component programming paradigm remains.
Only by relying on a component-based approach is it possible to educate the next generation of engineers
in the design and use of these components. A consistent minimal base for application design can thereby
be identified without restricting global applicability related to the following issues:

- The concept of mapping cell complex properties into algebraic structures using the concept of chains
and projecting the physical fields by means of cochains into a dual algebraic space translates to practical
concepts of generic data structures and generic quantity accessors. Generic traversal mechanisms and
the identification and unification of previously developed iteration mechanisms are also derived.

- The notion of fiber bundles is used to introduce the separation of the structural components of data
structures from the stored data. This is done in a neighborhood-preserving fashion. The main benefit of
applying this concept in the area of application design is a clean and consistent interface and therefore
a set of interoperable libraries.

- Each task requires a different programming paradigm for transformation, if an overall high performance
is required. By not relying on a single programming paradigm, each concept can be transfered to the best
suitable programming paradigm, and even domain-specific languages can be derived for these concepts.
The necessary amount of design and implementation can thereby be drastically reduced.

- Additionally, it can be shown that only a small set of generic algorithms is required to accomplish
different tasks such as discretization.

Before introducing the transition of cell complex and fiber bundle concepts, an important part of program-
ming has to be introduced: the concept of a data model which identifies and states the possible mechanism
for storing data within a computer as well as the necessary operations on them. Several programming
paradigms can thereby also be identified. After introducing these concepts for programming, the transi-
tion to applied concepts is finalized by stating several application concepts as well as reviewing related
work.

The language of choice is C++ for various reasons. Up to now only C++ can transform all of these con-
cepts into code which results in an overall high performance, while also exhibiting the smallest distances
between the specification of concepts and their realization [76, 77]. The STL has shown that genericity
and efficiency do not have to be contradictory requirements by the concept of meta-programming [45].
The application built with generic components has to provide the same performance guarantees as with
manually tuned source code. This is only realizable if each component guarantees its performance. The
STL has introduced run-time constraints for each of its components.

It is important to mention that in software engineering the discussion and comparison of concepts by
referal to the resulting code is necessary. Therefore code parts are not given in an abstract form but with
an actual implementation in C++.

51

The affinity to various programming paradigms can be identified by the respective couplings among each
of these abstraction layers, where each level intrinsically requires a special transformation into software
components. Therefore each link between these levels is classified by computational issues of scientific
computing. The details of each level of abstraction are reviewed next:

I.) The level of binary representation is the bottom most level of each computational design. An
important fact is that high-level applications must not depend on assumptions made within this
level, e.g., floating point numbers and their byte representation. For a modern application design
approach and the correlated rapid development in computer hardware and computer systems, it is
not even allowed for high performance calculations to depend on this layer.

II.) The semantic topological information of multiplicity must state how many atomic types are required
to describe the domain of interest, e.g., how many floating point values are required to numerically
describe the coordinates of a given domain.

III.) Mathematical semantics are related to the identification of the mathematical purpose of a certain
object, e.g., the separation of a tangent vector, a normal vector, or a coordinate location, which are
all represented numerically by the same number of atomic types. The mathematical properties for
the given objects are defined by their chart transition rules.

IV.) The final level of physical semantics represents the physical interpretation of a certain data set,
which has to be associated with data in order to determine its purpose, e.g., given a vector field and
its corresponding role in a differential equation.

While mathematical semantics (Level III) specify which operations are possible on a certain field, the
specification of which operations are meaningful (Level IV) are mostly user-driven and on the application
level. When the given levels of abstraction are used, the requirements for a data model are deployed. One
such possible data model was therefore suggested by Butler and Pendley [20, 21], who identified an ab-
straction for an object-oriented scientific data model of considerable generality based on the mathematical
concept of fiber bundles (see Section 2.5). Its adoption was, until now, restricted to scientific visualiza-
tion. Scientific visualization deals with results from large-scale simulations that generate a large amount
of numerical data. The analysis of data has become an increasingly important research task, and various
overviews and related implementations are available [1, 78, 80–82].

Butler’s approach was originally limited to vector bundles and implemented in Eiffel [21]. It was the first
step towards a data model for scientific computing, but not without practical issues [1]. In this approach
there was no concept of cell and complex topology (cells and skeletons) on a discretized manifold. The
use of different types of p-cells is a fundamental requirement for arbitrary p-cochains, e.g., the use of cells
instead of vertices is important when interpolating data at arbitrary locations.

5.2 Evolution of Programming Paradigms

The data model introduced in the last section shows that several tasks in the development of scientific
application inherently require different programming paradigms by definition to model the underlying
issues best.

In scientific computing there is a multitude of software tools available which provide methods and libraries
for the solution of very specific problems. It is clear that such tools impose restrictions in various ways.
The quest for highly reusable software components is still ongoing and demands different programming
paradigms for an efficient realization.

53

A software component is reusable if it can be used beyond its initial use within a single application or
group of applications without modification. The programming paradigms which are most widely used and
implemented by various programming languages are:
- Imperative programming
- Object-oriented programming (OO)
- Functional programming (FP)
- Generic programming (GP)
- Meta-programming (MP)

These various paradigms were developed to cope with the important issue of enabling an efficient transfor-
mation of algorithms and concepts into code. One of the main issues is related to the given code reusability
thereby identifying the concepts of monomorphic and polymorphic programming, one of the basic con-
cepts for code reuse and orthogonal program development. Classical languages, such as different types
of assembler or C, use a straight-forward monomorphic programming style based on the imperative pro-
gramming paradigm. In the field of scientific computing, only one- and two-dimensional data structures
were initially used to develop applications, due to the limitations of computer resources. The imperative
programming paradigm was sufficient for this type of task. Code which is developed this way supports
only single data types and cannot be reused at all.

With the improvement of computer hardware and the rise of the object-oriented programming paradigm,
the shift to more complex data models was possible. Modern high-level languages such as C++ or Java
[6] implement means for polymorphic programming which make code reuse possible, e.g., by inheritance.
Whereas several new programming languages such as Ruby [83] and other derivatives do not bother the
user with the data types and therefore offer various automatically casted types, statically typed program-
ming languages such as C, C++, or Java offer different strategies. Implications to application development
can be observed clearly by studying the evolution of the object-oriented paradigm from imperative pro-
gramming. The object-oriented programming paradigm has significantly eased the software development
of complex tasks, due to the decomposition of problems into modular entities. It allows the specification of
class hierarchies with its virtual class polymorphism (subtyping polymorphism), which has been a major
enhancement for many different types of applications. But another important goal in the field of scientific
computing, orthogonal libraries, cannot be achieved easily by this paradigm [39]. A simple example for
an orthogonal library is a software component which is completely exchangeable, e.g., a sorting algorithm
for different data structures. An inherent property of this paradigm is the divergence of generality and
specialization [84–86].

Thus the object-oriented programming paradigm is pushed to its limits by the various conceptual require-
ments in the field of scientific computing, due to problems with interface specifications, performance
issues, and lack of orthogonality. Even though the trend of combining algorithms and data structures is
able to provide generalized access to the data structures through objects, it is observable that the interfaces
of these objects become more complex as more functionality is added. The intended generality often re-
sults in inefficiency of the programs, due to virtual function calls which have to be evaluated at run-time.
Compiler optimizations such as inlining or loop-unrolling cannot be used efficiently, if at all. A lot of
research has been carried out to circumvent these issues [87], but major problems arise in the details [88].

Modern paradigms, such as the generic programming paradigm [16, 89], have the same major goals as
object-oriented programming, such as reusability and orthogonality. However, the problem is tackled
from a different point of view [90]. Together with meta-programming [45], generic programming ac-
complishes both a general solution for most application scenarios and highly specialized code parts for
minor scenarios without sacrificing performance [91–93] due to partial specialization. The C++ language
supports this paradigm with a type of polymorphism which is realized through template programming
[94], static parametric polymorphism. Combining this type of polymorphism with meta-programming,
the compiler can generate highly specialized code without adversely affecting orthogonality. This allows

54

the programmer to focus on libraries which provide concise interfaces with an emphasis on orthogonality,
as can already be found, e.g., in the the BGL [43]. Although Java has gained more functionality with
respect to a multi-paradigm approach [95, 96], its performance still cannot be compared to the run-time
performance of C++ [5]. Another comparison of high-level languages as well as scripting languages is
also available [97]. To give a brief overview, the simple problem of an inner product is used to demonstrate
the discussed issues of employing several programming paradigms:

v =
&

i

xi · yi (5.1)

A detailed performance comparison of the paradigms given here in C++ has been published [46].

5.2.1 Object-Orientation Programming

The object-oriented programming paradigm [98] introduced mechanisms required to obtain modular soft-
ware design and reusability compared to universal accessibility of implementations by imperative pro-
gramming. The main part of the object-oriented paradigm is related to the introduction of classes which
cover basic properties of concepts to be implemented. Based on this description of properties, an object
is created, which can be briefly explained by a self-governing unit of information which actively commu-
nicates with other objects. This is the main difference compared to a passive access as used in imperative
programming languages. The concept of inheritance was introduced due to the fact that a particular con-
cept, e.g., a mathematical n-dimensional vector, cannot be described in its generality by a single class. By
inheritance, semantically related concepts can be implemented in a class from which other classes can be
derived, which should enable means of code reusability.

The first source snippet presents an implementation of the given problem in a fully object-oriented lan-
guage, Java.

public class Vector
{
public int dimension = 0;
public double[] value;
public Vector(int i) { // }
public double getValue(int i) { return this.value[i]; }
public double inner_product(Vector vec)
{

double val = 0;
for(int i=0; i < this.dimension; i++)
tempval += this.getValue(i) * vec.getValue(i);

return val;
}

}
public class VectorTest extends Vector
{
public VectorTest(int i) { super(i); }
public static void main(String[] agrs)
{

VectorTest wvt1 = new VectorTest(3);
VectorTest wvt2 = new VectorTest(3);
System.out.println("output:"+ wvt1.inner_product(wvt2));

}
}

Object-oriented implementation in Java

55

5.2.2 Functional Programming

A different type of programming paradigm is functional programming, where computation is treated as
the evaluation of functions based on the following properties:
- Objects are provided only as constants or as expressions on objects.
- Functional programming avoids states of objects and mutable data. Loops therefore have to be replaced

by recursion.

An important part of functional programming related to high performance is the delayed or lazy evaluation.
This means that the moment in which a function is bound with some of its arguments can be separated
from the one in which it is evaluated, thereby supporting the following techniques:
- Partial binding and partial evaluation, e.g., a binary function where one of the arguments is already

bound to the function and only one parameter has to be specified to finally evaluate the function.
- Lambda expressions, based on the lambda calculus [99], use partial binding to define the expression

λxy.fxyz, with the reserved prefix λ, followed by the formal parameters, a dot, and the function defi-
nition.

- Currying, which creates unnamed lambda expressions automatically.

An implementation of the given problem is presented in the following source snippet using Haskell [7] as
the host language. This programming paradigm, with the corresponding purely functional programming
languages, such as Haskell, is currently widely used in the area of mathematical modeling. The static type
mechanism and the generic mechanism, e.g., the availability of return type deduction, which goes beyond
the capabilities of, e.g., C++, is an important feature and advantage of this language.

inner_product :: [[Integer]] -> Integer
inner_product = foldr (+) 0 . map (foldr (*) 1) . transpose

transpose:: [[a]] -> [[a]]
transpose[] = []
transpose([]:xss) = transpose xss
transpose((x:xs) : xss) = (x : [h | (h:t) <- xss]) :

transpose (xs : [t | (h:t) <- xss])
val = inner_product x

Functional programming in Haskell

As can be seen, this representation of the algorithm is completely generic for all different types of input
sequences, which can be added, folded, and transposed. The drawback of this mechanism is that it is
already detached from the conventional programming style of C, Java, C++, or C# [3]. The functional
modeling is fully reusable, because no assumptions about the used data types are made. Pure functional
programming languages, such as Haskell, are completely polymorphic, concept-based programming lan-
guages. However, the issues with these languages are briefly explained by two drawbacks. First, the
compiler has to do a lot of optimization work to reach the excellent performance of other programming
languages such as Fortran or C++ [46, 77, 100]. Second, some tasks, such as input/output operations are
inherently not functional and therefore difficult to model in such a programming languages. These parts
of an application are always given by different states due to the fact that data sources, e.g., hard-disk or
memory, are state-based. Functional programming does not support states from the beginning.

C++’s compile-time programming supports only the functional programming style. However, C++ is not
a functional programming language, e.g., operators are not functions and cannot be used as first-class
objects, but C++ allows the simulation of functional behavior. Functional programming therefore eases
the specification of equations and offers extendable expressions, while retaining the functional dependence
of formulae by lambda expressions (higher order functions). The C++ language uses additional libraries
to support this paradigm [44, 101, 102].

57

In contrast to the object-oriented programming paradigm, the generic programming paradigm supports an
orthogonal means for application design with the separation of algorithms and data structures, connected
by the concept of iterators, or more generally, by traversal and abstract data accessors.

The implementation effort-combined with functional programming, which is greatly supported by the
generic programming paradigm-is thereby reduced to O(D + A) and illustrated in Figure 5.3.

Generic modeling, together with the corresponding programming paradigm, supports both the derivation
and state model mechanisms of object-oriented modeling, with the fully polymorphic support of functional
programming. In other words, the generic paradigm supports the state-driven input/output with iterator
or traversal concepts and the functional specification mechanism of functional programming languages.
It can thereby be seen as the connector between the data sources and the specification. Not only can the
implementation effort be reduced by several orders of magnitudes, but also be used to implement run-time
code with the highest performance [46].

5.2.4 Meta-Programming

The paradigm of meta-programming can be briefly explained as writing a computer program that writes
or manipulates other programs or themselves. For programming tasks which have to be repeated a great
number of times, this paradigm can be used to obtain an efficient implementation [50, 100].

Template meta-programming is a type of meta-programming in which the template (parametric polymor-
phism) system of the host language is used. The compiler uses these templates to generate new source
code at compile-time. Template meta-programming is currently implemented by various programming
languages, such as C++, Haskell, or D [4]. Here, only the implementation of this paradigm in C++ is
used. C++ implements a Turing-complete template system, which means that any computation is express-
ible. In contrast to run-time programming, template meta-programming has non-mutuable variables and
therefore requires the functional programming paradigm, most often used by recursion patterns.

The main advantages and disadvantages of this paradigm in C++ are:
- The generic programming paradigm is supported through template meta-programming by automatic

code generation for various generic data structures or algorithms, e.g., the parametrization of data types
for a simple container structure. Thereby truly generic code, facilitating code minimization and main-
tainability, is available.

- Due to the processing of the template system at compile-time, compilation can take a large amount
of time. A careful selection of compile-time libraries and run-time libraries is therefore of utmost
importance to implement large software projects. The most important benefit of this tradeoff is that the
extended compile-times are used to obtain a highly efficient run-time code, sometimes superior even to
Fortran implementations. See Section 8.4 for more details.

- One of the most severe drawbacks is the poor readability of template meta-programms. The operator
overloading mechanism of C++ reduces this problem, but some operators cannot be overloaded, thus
different language elements which cannot be easily identified as C++ source code are generated.

- Another drawback of template meta-programming is the reduced portability. However, especially the
GNU compiler collection (GCC [104]) implementation of the C++ standard has significantly increased
the availability of C++ on various platforms thereby reducing the portability problem in the future.

Together with generic programming, C++ template meta-programming enables another important concept
for highly expressive code: domain-specific embedded languages.

59

5.3 Domain-Specific Embedded Language

Closely related to the programming paradigms which have been discussed above is an emerging concept
for high-level languages, such as C++, domain-specific embedded languages.

First, a domain-specific language (DSL) is defined by a set of symbols as well as by a well-defined set of
rules specifying how the symbols are used to build well-formed compositions [45]. The domain-specific
part of a DSL can then be employed by a simplified grammar and an increased expressiveness. The
possibility of writing code in terms close to the level of abstraction of the initial problem domain is the
characteristic property of DSLs.

The next relevant issue regarding a DSL is interoperability. A possible way of dealing with interoperabil-
ity is to integrate the domain-specific language into a host language, finally obtaining a domain-specific
embedded language (DSEL), e.g., YACC [105]. All software engineering tasks, such as designing, im-
plementing, and maintaining the DSL, are reduced to implementing and maintaining a library of the host
language. And more importantly, the interoperability can be enhanced to the highest level, due to the fact
that both concepts are now available in one host language. All the libraries already developed and their
functionality are available at the same time. To summarize, the advantages of domain-specific embedded
languages are:
- Abstracting the underlying language/system/compiler in the direction of the user/domain expert.
- The overhead of learning or adopting a new language is greatly reduced.
- Reduction of documentation due to expressive names and self-documentation.
- Validation of semantics, e.g., by a compiler.

The advent of having multiple paradigms available in a single programming language creates new possibil-
ities for domain-specific languages. The advantages and disadvantages of several programming paradigms
and the reduction of specification and implementation effort clearly suggest the use of domain-specific
embedded languages, such as reducing the stated implementation effort of the object-oriented and generic
programming paradigm to O(1 + 1). This means that the effort of building applications can be reduced
to a constant effort by utilizing a DSEL without additional transformation steps. Maintenance and further
development for an extra transformation tool is thereby greatly reduced, compared to, e.g., the transfor-
mation tool for Sophus [106]. But up to now, the implementation of a DSEL for non-trivial areas is far
from simple or user-oriented. Also, domain-specific languages require various mechanisms from the host
languages, where the following features are almost mandatory:

- operator overloading means that different operators, such as +,- can be overloaded.
- parametric polymorphism means that a kind of template system is available.
- functional mechanism means that higher order and lambda objects are available.
- time of evaluation means that program code can be specified for compile and for run-time.

Language operator overloading parametric polymorphism functional mechanisms time of evolution
C no partial (macros) no compile/run-time
D partial yes no compile/run-time
Java no partial (version) no run-time
C# no partial (version) no run-time
Haskell yes partial (version) yes run-time
C++ yes yes yes compile/run-time

Table 5.1: Language comparison.

As can be seen from the brief comparison of languages provided in Table 5.1, only a few languages are
available which allow an efficient modeling of operators. Languages such as Haskell were not developed

60

with an overall high performance approach, but they still offer the definition of new operators which ex-
tend the built-in language syntax. Based on this overview, the only language offering the best support for
DSELs with syntactic expressiveness as well as run-time efficiency is C++. In addition to the great pos-
sibilities of using C++ as a host language for a DSEL, the multi-paradigm approach offers a great degree
of freedom in the implementation of high performance scientific code and even applications [107, 108].
The main feature is the paradigm of template meta-programming of C++, introduced in Section 5.2, which
means that a DSEL can function as an extension to the general-purpose host language. Meta-programming
and DSEL are also actively developed areas [48, 49]. An example is given next which illustrates the em-
bedded nature of a grammar specification in C++. The first part yields the normal grammar specification
by YACC:

group ::= ’(’ expression ’)’
factor ::= integer | group
term ::= factor ((’*’ factor) | (’/’ factor))*
expression ::= term ((’+’ term) | (’-’ term))*

Next, an example of Spirit [75] is given, where Spirit is an object-oriented, recursive-descent parser and
output generation framework enabling target grammars written entirely in C++ as a DSEL.

group = ’(’ >> expression >> ’)’;
factor = integer | group;
term = factor >> *((’*’ >> factor) | (’/’ >> factor));
expression = term >> *((’+’ >> term) | (’-’ >> term));

Another advantage of the DSEL concept is the further development of compiler technology, which dras-
tically increases the performance of high-level code. Recent performance analysis has shown that each
compiler generation increases the overall run-time performance [109].

5.4 Concept Development and Related Work

In the last decade many approaches towards implementing a general purpose simulation environment for
the solution of partial differential equations have been taken. Most of the tools resulting from these at-
tempts use topological structures which are specialized to work with a particular discretization scheme.
This reduces resource use but comes at the cost of greatly diminishing the flexibility of topological traver-
sal. As an example, the finite volume method does not require vertex-face traversal. However, for some
reasons it might be advantageous to implement discretization schemes based on a mixed finite element/fi-
nite volume scheme which requires such traversal operations. The following brief overview shows some
significant steps towards a more flexible and generic application design:

- 1992: a generic data model based on the concept of fiber bundles [21]
- 1993: generic application for scientific visualization based on fiber bundles [80]
- 1995: multi-paradigm language’s run-time performance (C++) equal to Fortran [100]
- 1997: emergence of the generic programming paradigm by C++’s STL [17]
- 2002: generic data structure interface and generic traversal operations [51]
- 2002: generic graph library [43] with the introduction of the concept of a property map
- 2003: concepts for separation of traversal and data access [110]

Modern scientific computing requires a huge number of different physical models and numerical methods.
Increasingly complex physical formulations are required by todays simulation problems. Flexibility of
the definition of models as well as of numerical solution methods is required. But the transformation of a
physical model into a computer model can usually be seen as a very time-consuming procedure. Therefore
a great number of different applications have been developed during the last decades.

61

First, TCAD-related applications and environments that have been developed at the Institute for Micro-
electronics [11–13, 111, 112] are reviewed and the choices made with respect to the field of scientific
computing are investigated1 . Then generic libraries which are directly linked to this work are also re-
viewed.

5.4.1 STAP, SCAP

The SAP tools have been developed for high performance interconnect analysis for TCAD [113, 114],
especially for thermal (STAP) and capacitive (SCAP) problems. The finite element discretization scheme
is utilized to implement highly accurate capacitance extraction, resistance calculation, transient electric
and coupled electro-thermal simulations. Simple mesh generation packages for data layout as well as
visualization packages were additionally developed.

All algorithms and solving procedures were hand-optimized by experienced C specialists and domain ex-
perts. This yields excellent performance and portability but requires a considerable amount of maintenance
by the development group. The next generation of programmers or scientists faced an ever-increasing pe-
riod of adjustment and learning time, thereby strongly reducing the enhancement capabilities. The imper-
ative programming methods used do not support the concept of reuse by themselves; therefore reusability
considerations were almost completely left to the application designer, which results in missing expres-
siveness of the code and highly optimized code parts can barely be extended.

5.4.2 Minimos-NT

Minimos-NT [13, 115–117] is the successor to the well-known specialized Minimos [111] and imple-
ments concepts for a general-purpose, multi-dimensional semiconductor device simulator. Minimos-NT
provides steady-state, transient, and small-signal analysis of arbitrary device structures as well as mixed-
mode device and circuit simulations based on compact models.

Minimos-NT is a composition of the imperative and object-oriented paradigms. They were used, on
the one hand, to ease the rapid prototyping of new models, and, on the other hand, to facilitate code
reuse. Unfortunately the employment of these programming paradigms complicates a clean interface
specification and enforces a monolithic application design.

5.4.3 AMIGOS, FEDOS

The analytical model interface and general object-oriented solver (AMIGOS [118]) was developed to meet
the requirements of a general partial differential equation solver. A common kernel for physical modeling,
parameter and model hierarchies, grid-adaptation, a numerical solver, a simple front-end controller, and
geometry and boundary definitions were defined. AMIGOS can handle different discretization schemes,
such as finite elements and finite volumes.

FEDOS [69], the successor to AMIGOS, is a finite-element-based simulator, which uses a general nu-
cleus matrix assembly procedure. It is intended to deal with oxidation and diffusion phenomena and also
features integrated mesh adaptation capabilities.

AMIGOS and FEDOS are highly flexible and great achievements toward generic application design, es-
pecially AMIGOS with its integrated specification language can reduce development times significantly.
Investigations indicate [118] that the development time of a new application is reduced from days when
using SAP [113, 114] to hours when using AMIGOS. Therefore the approach of an embedded language

1A detailed related work presentation concerning currently available and state-of-the art tools in the area of TCAD’s process
and device simulation is given in Section 3 of [10]

62

is still an important feature for generic application design. Nevertheless, the object-oriented programming
paradigm which was used, as given in Section 5.2, greatly reduces reusability of the developed code and
drastically increases the effort necessary to develop and maintain source code.

5.4.4 Wafer-State Server

The Wafer-State Server aimed to define and implement concepts for a generic data model suitable to
TCAD’s device and process simulation [119], because there was no standard available for data transfer
between tools. All the solutions are based on a file format instead of a data format with a correspond-
ing data model, which has the major drawback of being easily semantically incompatible. Based on the
analysis of various approaches and the issues arising from coupling different kinds of process simula-
tors and to allow an efficient data exchange, the Wafer-State data model has been developed. The data
model also specifies various geometrical and topological operations, such as interpolation mechanisms
and consistency checks for simplex objects, especially in three dimensions. Additionally, optimization
tasks as they occur in the simulation of semiconductor devices were investigated and algorithms for the
Wafer-State-Server were introduced to aid complex high-level simulation tasks.

The focus on the object-oriented programming paradigm is again a major drawback, as it circumvents
library-centric application design. The single components of the Wafer-State server cannot be reused
directly. Modules always have to be transformed and partially rewritten, because interfaces are only
consistent within a class hierarchy, thereby reducing orthogonal application design. The overhead for
code development is also apparent.

5.4.5 Boost Graph Library

A major step towards a more flexible use of data structures was developed by the Boost Graph Library
(BGL [43]). This library implements a generic interface to enable access to arbitrary graph structures but
hides the details of the actual implementation. The interfaces make it possible for any graph library that
implements these interfaces to be interoperable with the BGL. The approach is similar to the one taken by
the C++ STL to ensure the interoperability of the various algorithms and containers. The property map
concept [43] was also introduced. Unfortunately the BGL was designed for graphs only and neither lower
nor higher dimensional data structures can be handled.

5.4.6 Computational Geometry Algorithm Library

The Computational Geometry Algorithm Library (CGAL [120]) is another important collection of reusable
components for a great number of geometrical algorithms and data structures in a generic library-centered
approach, such as two- and three-dimensional modules for mesh generation, Voronoi diagrams, and sur-
face mesh simplification. The main contribution of CGAL is the concept of an algebraically parametrized
kernel [121] related to the actual implementation robustness of mathematical operations.

5.4.7 Grid Algorithms Library

The Grid Algorithms Library (GrAL [18]) was one of the first contributions to the unification of data
structures of arbitrary dimensions for the field of scientific computing. A common interface for grids
with dimensionally and topologically independent access and traversal was designed. Mathematical con-
cepts for topological spaces were introduced and applied to grids. Applications for the field of solving
PDEs were presented, but no concrete implementation was given. Concepts of accessing data abstractly,
similarly to property maps, were also introduced and demonstrated in applications.

63

5.4.8 Further Related Work

Several research groups have put a lot of effort into the development of libraries for sub-problems occur-
ring in scientific computing.

FiberLib2 was inspired by Butler’s vector bundle data model [21] and OpenDX and is a reimplementation
of a data model which was originally conceived [1] for visualizing numerical data originating from general
relativity. Since the mathematics of general relativity require explicit treatment of otherwise implicitly
assumed properties of space and time, designing a data model to cover the issues of general relativity
improves its genericity.

The Sophus C++ library [122] aims at coordinate-free formulations. This library implements grid com-
ponents for sequential and parallel high performance computing. A field layer for numerical discretization
schemes, a tensor layer to handle various quantities related to a coordinate systems, and finally an applica-
tion layer with solver interfaces were developed. However, this approach suffers from severe abstraction
penalties and requires a code transformation tool [106].

Prophet [123] is an environment for the solution of PDEs. It introduces four different levels of abstraction.
The first and base library layer consists of a database for models of coefficients and material parameters,
macros for expressions, grid routines, and a linear solver. The PDE layer consists of an assembly con-
trol, discretizations, and modeling modules. The third layer consists of several modules, for example
modules for solving. The fourth layer is the user layer, which consists of an input parser and the visual-
ization mechanism. Prophet separates geometric and physical information and was originally developed
for semiconductor process simulation.

deal.II [124] provides a framework for finite element methods and adaptive refinement for finite elements.
It uses modern programming techniques of C++ and enables the treatment of a variety of finite element
schemes in one, two, or three spatial dimensions and of time-dependent problems. Modern finite element
algorithms, using, among other aspects, sophisticated error estimators, and adaptive meshes can be de-
veloped easily. This approach is specialized to finite element discretization schemes and cannot be used
easily for other schemes, e.g., finite volumes or finite differences.

Femster [125] is a class library for finite element calculations based on differential forms. This means that
users must provide their own code to assemble global FE matrices. In other words, Femster implements a
general finite element API.

The FEniCS project [126], which is a unified framework for several tasks in the area of scientific com-
puting, is a great step towards generic modules for scientific computing. Up to now most of the modules
are in a prototype state.

Various toolkits have also been developed which can be seen as related work as well. The Generative
Matrix Computation Library (GMCL [127]) is a framework based on expression templates, generative
C++ programming idioms, and many template meta-programming facilities, e.g., control structures for
static meta-programming. The Template Numerical Toolkit (TNT [128]) is a collection of interfaces
and reference implementations of numerical objects (matrices) in C++. The toolkit defines interfaces for
basic data structures, such as multidimensional arrays and sparse matrices, commonly used in numerical
applications.

These libraries are an important step towards library-centric application design. But most of these libraries
were not developed with interoperability as a necessary constraint. As a consequence, additional code has
to be introduced which slows the development process down and impedes the execution speed of the final
application. The environments reviewed here also completely veil the topological information through the
use of formalisms such as element matrices [129] and control functions [123].

64

Chapter 6

Application Concepts

The data model which has been introduced (Section 5.1) as well as the corresponding programming
paradigms (Section 5.2), are of utmost importance to develop application concepts where the theoreti-
cal concepts state what has to be implemented and the practical concepts given here guide the translation
of how these concepts can be implemented efficiently revealing and conserving the theoretical character.

The related work presented in Section 5.4 reviewed the developed and implemented concepts, where two
fundamental elements surfaced. The first part is related to a common classification of data structures
suitable for scientific computing. In order to allow an arbitrary number of nested traversal operations,
which is often required in applications, it is necessary to have appropriate data structures for traversal.
This has the added benefit of keeping the program code as concise as possible. The traversal mechanism
is derived from the given boundary (coboundary) operator. Therefore, the first part deals with a formal
interface to several data structures based on cell complex properties and topological attributes.

The second part deals with the implementation of the concept of fiber bundles suggesting the separation
of topological base space properties and quantity-related structure information. The base space properties
are thereby identified by the generic data structure and traversal capabilities (chain concept), whereas the
quantity properties are related to p-forms and their cochain counterpart. An identification with well-known
C++ concepts is given. The concept of a DSEL as a missing part from the given related work section is
used to enable highly expressive implementations. Finally, the library-centric software design approach is
introduced and a catalog of essential requirements is assembled.

6.1 Generic Data Structures

The concepts given in Section 2.3, especially the cell topology and complex topology, are used here to
derive a common specification of an interface to data structures. This specification is based on topological
properties only and thereby separates the actual data storage structure from the stored data. In terms of the
fiber bundle theory, generic data structures can be seen as modeling the base space. By the identification
of the chain and cochain concepts (Section 2.4) within the fiber bundle concept (Section 2.6), the concepts
presented here can also be seen as models for the chain concept with the intrinsic fibers of incidence
information. The here given approach collects the incidence numbers [31, 35] as well as the connection
matrix [53].

The first step towards a generic data structure is the integration of the various already existing data struc-
tures. For example, Figure 6.1 presents the structure of a singly linked list.

In terms of topological concepts, only locally neighboring cells can be traversed by this data structure,
which can be seen by the representation of the complex topology by the poset on the right side. The

65

Based on the formal concepts just defined, the classification scheme can be further refined using the
number of elements in the meta-cells. An overview is provided in Table 6.3. The complex topology uses
the number of elements of the corresponding meta-cells.

data structure cell dimension cell topology complex topology
array/vector 0 simplex global
SLL/stream 0 simplex local(2)
DLL/binary tree 0 simplex local(3)
arbitrary tree 0 simplex local(4)
graph 1 simplex local
grid 2,3,4,.. cuboid global
mesh 2,3,4,.. simplex local

Table 6.3: Classification scheme based on the dimension of cells, the cell topology, and the complex topology.

This final classification scheme introduces a unique classification scheme based on topological properties
only, where well-known and used data structures, e.g., a singly linked list, are also integrated. Thus the
internal structure of data and traversal is clearly distinct from all quantity storage mechanisms.

6.2 Boundary Operation

The concept of chains transforms the properties of a cell complex directly into a computationally manage-
able algebraic structure. The practical concepts in the subsequent sections use these mechanisms to derive
different relations between the cells, such as incidence, adjacence, and boundary operations. The essential
requirement for a generic data structure implementation of a cell complex is to satisfy the homological
concepts of a chain in a computational environment and thereby the concept of the boundary operator
thus obtaining, for a complex of dimension n, the sequence 0 ← C0 ∂1←− C1 ∂2←− C2 ∂3←− C3 ← 0. The
complete chain complex of K is defined by im ∂p+1 ⊆ ker ∂p, or less abstractly, ∂p∂p+1 = 0. This is of
particular interest because, while im ∂p+1 ⊆ ker ∂p, in general im ∂p+1 = ker ∂p and the part of ker ∂p

not in the inclusion contains useful information [53].

The given boundary operator, introduced in Section 2.4.1, lacks generality, because the cell topology (see
Section 2.3.2 for further details) can be arbitrarily complex, e.g., the given boundary homomorphism
already has to be extended if a cube cell is used instead of a simplex cell. Therefore, the given poset
notation of the cell topology is used to introduce a more general boundary mechanism which can be easily
converted into a computationally efficient operation. The boundary operator can then be used to traverse
the levels of the poset, e.g., a three-dimensional simplex, illustrated in Figure 6.8.

As can be seen, the boundary operator simply decreases the level of evaluation of the cell topology poset.
The boundary operator ∂ transforms p-chains into p−1-chains, which is compatible with the addition and
external multiplication of chains. By the linearity property of the boundary operator, a unique and simple
way of consistently deriving the boundary of a chain is given by:

&
i

wi(∂τ i
p) = ∂

�&
i

wiτ
i
p

!
(6.1)

69

6.5 Library-Centric Software Design

Libraries have become a central part of all major programming efforts connected to scientific computing,
as introduced in Section 5.4. As a consequence the possible library-centric software design can be regarded
as a methodology for designing applications as an assembly of single components with a low degree of
coherence and a high degree of orthogonality. However, the following basic principles are essential for
writing successful generic components [16]:
- Functions should not depend on the global status but only on the arguments.
- Every function is either general or application-specific.
- Every function that could be made general should be made general.
- The global state should be documented by describing both the semantics of individual variables and the

global invariants.

An important step towards library design is the definition of interfaces based only on concept require-
ments [93, 94] to avoid monolithic application development which always leads to redevelopment of parts
or complete applications. Instead already existing concepts and modules which have already proven suc-
cessful can be used. Essential requirements related to an optimal library development can be summarized
as follows:

- A set of libraries has to be complete and therefore must provide a systematic taxonomy [16, 71] to guide
the design of an application. Many different types of applications can be written using these libraries
and adaptors.

- Libraries should be generic that means that they are usable [17, 130] for a broad range of different
applications. Each of the software components is not only written for a very specific purpose, but for a
manifold of problems.

- Constraints on performance are required for each of the libraries [93] to obtain an overall high perfor-
mance application.

- The interoperability of a library is not adversely affected by its completeness [94]. Even if a library is
complete by itself, it provides standardized interfaces which guarantee compatibility for data structures
which have not been foreseen in its initial design.

In the past the main drawback related to library-centric design was the absence of programming paradigms
supporting this type of design. An example can be seen in one of the features most used in programming:
loops. The imperative style of using loops offers a great degree of flexibility during the development pro-
cess, with regard to maintainability and side-effects. Nevertheless, simple loops require local variables
to maintain a state, and only the imperative style of quantity access is available. These issues result in
codes that lack maintainability, scalability, and lead to unnecessarily error-prone implementation bodies.
Another issue which also does not support the concept of component resuse by itself is the object-oriented
programming paradigm (Section 5.2), which complicates the interoperability of its software modules.
An advantage of imperative and object-oriented programming is that no sophisticated programming tech-
niques have to be taught and learned for one to be able to understand or extend the code. But it also results
in an additional drawback, which directly results from the missing expressiveness of the code. Highly
optimized code sections can barely be extended by other developers.

Reusability, orthogonality, enhancement capabilities, and performance are all issues which can be eased by
using paradigms other than imperative and object-oriented programming. One of the most important issues
related to library-centric application design is the shift from these programming paradigms to generic
programming and the efficient implementation in programming languages which then offer generality and
specialization at the same time. The related work Section 5.4 shows that an important part of generic
library design is focused on the selection of the most suitable programming paradigms.

74

The combination of different programming paradigms fits the scenario of scientific computing exception-
ally well. The generic programming paradigm establishes homogeneous interfaces between algorithms
and data structures without sub-typing polymorphism. Functional programming eases the specification
of equations and offers extendable expressions while retaining the functional dependence of formulae by
higher order functions. Also, this type of specification of access, algebraic manipulation, and traversal
circumvents the problems of the imperative implementation. The features of meta-programming offer the
embedding of domain-specific terms and mechanisms directly into the host language as well as compile-
time algorithms to obtain optimal run-time. Developments toward an alternative compilation model and
active library design are also an important step [47, 49, 131]. However, reusability of traditional libraries
is often extremely limited due to the following issues:
- Numerical data types. There are numerous well-known numerical data types which also are often

optimized for special applications in order to yield high performance. Only with generic interfaces can
these performance-enhancing measures be used in different kinds of applications.

- Topologies. Numerical schemes often require different underlying topological data structures. While
some applications perform well using structured grids, other applications require unstructured meshes
with varying local feature sizes. Although the nature of these topologies is totally different, standardized
interfaces for all topological data types have to be provided.

- Different dimensions. Special symmetries that are encountered in many problems of scientific com-
puting can be used to reduce the effective dimension of a calculation. Even though all problems can
be treated in their full dimension, an enormous gain in performance by using lower dimensional data
structures can not be neglected.

- Equation system assembly. Most of the solver mechanisms require an initialization of the values of
their own interfaces. Therefore, an interface which abstracts these specialties and makes the solvers
accessible in a general manner is required. With such an interface the governing equations can be
formulated independently of the actual data structures of the solver.

- Solution of large equation systems. A lot of problems result in large equation systems which have
to be solved. There are solvers available for various special cases, which perform well under certain
circumstances but fail to converge sometimes. Therefore, interface design has to guarantee that different
solvers can be used.

To circumvent the stated issues, a set of requirements for library-centric application design in the field
of scientific computing is given in the following to allow the transformation of the concepts for scientific
computing into generically applicable and efficient software components. A transformation into applied
concepts has to comply with these concepts.

The fiber bundle concept is used as an organizing tool for a first part of this set of requirements. It
separates the application modules into base space and fiber space modules. Base space modules are used
for traversal within the cell complex and other cell complex issues, e.g., derivation of cell and complex
topology as well as an efficient data structure for storing the connection matrix. Fiber space modules
deal with the evaluation of quantities with respect to their differential form or cochain representation with
additional semantic information. This means that the appropriate combination and evaluation of cells and
their corresponding quantity has to be determined accordingly.

An additional requirement is related to an efficient use of programming paradigms for each of the given
tasks. A base layer is identified, which has to implement a formal topological interface for cell and com-
plex properties as well as for traversal, thereby establishing a consistent interface for data structures and
quantity storage. The object-oriented and generic programming paradigms are best suited to accomplish
this. On top of this base layer, functional expression specification facilities are required, which can be
modeled best by the functional programming paradigm. The concept of a DSEL in C++ requires the ad-
ditional concept of meta-programming resulting in an active library concept to implement and guarantee
an overall high performance.

75

Part III

Applied Concepts

76

Chapter 7

Overview

During the last decades, several software projects have been developed at our institute and by other re-
search groups (see Section 5.4 for a detailed overview), which have indicated that reuse of single al-
gorithms is difficult. Usually implementations of algorithms make certain assumptions about the way the
data they require is represented. But the spirit of generic programming, with its first realization in the STL,
has shown that the concept of iterators can enable reusable data structures and algorithms [16, 17, 71] even
with an overall high performance comparable to handwritten and hand-optimized implementations.

While the STL data structures are an excellent foundation for common programming tasks, the currently
encountered issues from the field of scientific computing call for more practically adapted realizations of
concepts. These are presented in this section in order to provide not only orthogonality and expressive-
ness but also efficiency by the means of a generic scientific simulation environment1 (GSSE). Usually,
orthogonality transcending the initial purpose is complicated by additional complexity of data structures.
This results in an increasing number of concepts which have to be met by the data structure, such as the
multitude of possible internal representations of graphs in the BGL. This leads to problems whenever
algorithms are reused outside the originally intended context, or if the context changes, e.g., a higher
dimensional simulation.

The evolution of complexity just described leads to a growing number of software packages for different
types of PDE solutions. In addition to this multitude of new packages, they are usually not organized in a
way that allows immediate algorithmic reusability. Different projects have contributed components to the
field of scientific computing, but up to now, no general set of generic data structures or algorithms suitable
for scientific computing in general has been developed. Some works have developed modules, e.g., for
generic grid components [18], which was a major contribution to software components for scientific com-
puting with an in-depth analysis of the problem related to algorithms operating on computational grids. It
analyzed the relationship between data and algorithms based on topological and combinatorial concepts.
A small set of kernel components were developed which greatly ease the specification of algorithms for
grid applications. But other issues, e.g., separation guidelines for concepts or functional description of
algorithms, were always neglected due to the various diverging requirements in scientific computing. An-
other important element, as introduced in Section 6.5, is related to the multi-paradigm approach, proposed
here that combines object-oriented, generic, and functional programming. To illustrate the chronologi-
cally evolution of paradigms, the development of applications at our institute and selected libraries are
reviewed.

1The GSSE uses an open source license (Boost [72]) and is available at http://www.gsse.at

77

Name Year Paradigm Further information
MINIMOS 1980 imperative [132]
S*AP 1989 imperative [112]
MINIMOS-NT 1996 imperative, OO [13]
AMIGOS 1998 OO [118]
WSS 2000 OO [12]
FEDOS 2004 OO [69]
GrAL 2000 OO, GP [18]
CGAL 2001 OO, GP [120]
BGL 2002 OO, GP [43]
GSSE 2006 OO, GP, FP

The current trend, however, is to combine several programming languages, resulting in multi-language
applications [133]. Different languages are utilized, each within the field where they perform best. Lan-
guages such as Python are used to connect different modules. But problems of interface specification
and implementation arise with the combination of several programming languages, further complicating
matters. Next, the handling of different languages on different platforms is even more difficult. In the
the field of scientific computing the performance aspects should be handled orthogonally to the develop-
ment of applications. Optimizations can thereby be treated separately. With the multi-language approach
performance aspects can not be considered orthogonally because of the use of compiled modules which
require an interface layer in order to build applications.

Following the guidelines for library-centric application design that have been introduced in Section 5.2
and in Section 6.5, the following sections present advances related to a reusable collection of libraries of
the GSSE. The library-centric design is facilitated, as the following criteria are met:
- The environment is complete, so all applications can be written exclusively using its libraries (as well as

standard libraries). Indeed, completeness increases usability enormously, because no components have
to be added while existing components can be adapted.

- The components of the environment are usable for a broad range of different applications.
- The interoperability of the environment is not affected by its completeness. Even though all the libraries

can be used by themselves, they provide standardized interfaces which guarantee compatibility for data
structures which have not been foreseen in the initial design.

The following sections deal with these concepts which have to be reflected in a computational approach.

78

Chapter 8

A Generic Scientific Simulation
Environment

The two building blocks which have become apparent are now introduced by two generic libraries accom-
panied by several additional components, thereby completing the GSSE. Here the most abstract form,
reduced to topological concepts, is used to introduce a comprehensive and generic topology library (GTL)
based on the object-oriented and generic programming paradigm. It encompasses:
- Properties of a CW-complex translated into mechanisms for cell and complex topology.
- The topological data structure mapped into an efficient implementation of the connection matrix.
- The implementation of the concept of cochains into quantity accessors.
- Implementation of the boundary operator by the means of abstract traversal mechanisms.

In Section 6.1, a common and generic topological classification mechanism was introduced to offer a con-
sistent interface to various types of data structures. All different types of data structures can thereby be
interpreted topologically as cell complexes of a certain dimension. The topological data structure require-
ments demand algebraic properties for collections of cells. The concept of a connection matrix has been
introduced to offer computational access to the operations of incidence and adjacence traversal as well
as to boundary operations to generate consistent subspaces, the skeletons. The GTL also provides inci-
dence and adjacence traversal operations for various topological elements. The traversal concept allows
the formulation of algorithms based on this interface independently of the actual implementation of the
topological data structure or the dimension considered. Such a consequent use of the topological interface
leads to dimensionally and topologically independent application design.

This approach of a generalized topology make a functional description for algorithms possible which are
a natural choice for reuse in the field of scientific computing. The functional specification of algorithms
thereby derived is used to develop and implement a minimal base of generic functors which make only
minimal assumptions about the structure they operate on, thereby recognizing an advanced equation pro-
cessing framework and providing high performance as well as high expressiveness by a generic functor
library (GFL):
- Functional specification of topological traversal.
- Quantity accessors.
- Functors suitable for discrete mathematics implementing basic arithmetic operations.

The GFL implements the building blocks (functors) for the domain-specific embedded language and is
connected to the GTL only by means of topological traversal interfaces and the quantity accessors, thereby
providing a clean and concise interface.

79

The given code can be used for both of the 2-cell complex types, the complex structured and
complex unstructured. During the loop, an edge-on-vertex traversal is created and initialized with
the evaluated vertex.

cell_iterator c_it = container.cell_begin();
vertex_on_cell_iterator voc_it = container.voc_begin(*c_it);
vertex_on_cell_iterator voce_it = container.voc_end(*c_it);

for (; voc_it != voce_it; ++voc_it)
{
edge_on_vertex_iterator eov_it = container.eov_begin(*voc_it);
edge_on_vertex_iterator eove_it = container.eov_end(*voc_it);

for (; eov_it != eove_it; ++eov_it)
{

//operations on edges
}

}

GTL’s traversal mechanisms

Traversal can be used independently of the dimension or type of cell complex. Only three topological
properties have to be met by the cell complex: vertices, edges, and cells. All cell complex types which
support these three objects can be used for this traversal.

To highlight the interoperability of the GTL, two examples are shown using an implementation of related
work of the CGAL and GrAL. The first example presents the traversal mechanisms of the CGAL compared
to the GTL. A traversal of all facets related to a cell is shown.

// Polyhedron P definition

Facet_iterator fit = P.facets_begin();
for (; fit != P.facets_end(); ++fit)
{

//operations on a facet
}

CGAL traversal for the cell topology

The special geometric object Polyhedron in terms of the GTL is implemented by a common container
type.

// container definition
facet_on_cell_iterator foc_it = container.foc_begin(cell);
facet_on_cell_iterator foce_it = container.foc_end(cell);

for (; foc_it != foce_it; ++foc_it)
{

//operations on a facet
}

GTL’s traversal for the cell topology

The CGAL can be used as a complete implementation of the concepts given by the GTL. An interface
layer is available to use all CGAL data types within the GTL.

86

The second example is related to the GrAL. The close relationship between the GrAL and the GTL makes
a complete interoperability between these libraries possible. Several different grid types can be used
in GrAL, similarly to the GTL container type. The main difference is the orthogonality of the cell types
and the complex types in the GTL.

typedef grid_types<Triang2D> gt;
Triang2D CC;

for(gt::CellIterator c(CC);!c.IsDone();++c)
{
// loop over all vertices vc of cell c
gt::VertexOnCellIterator vc;
for(vc = (*c).FirstVertex(); ! vc.IsDone(); ++vc)
{

// use *vc
}

// loop over all neighbors
for(gt::CellOnCellIterator cc(c); ! cc.IsDone(); ++cc)
{

// use cc
}

}

GrAL traversal

As can be seen, the traversal mechanisms are implemented very closely to the grid types. The
random access property cannot be used by all traversal operations. This complicates the optimization
and performance steps related to application design. The next code snippet presents the GTL implemen-
tation. It should be noted that the GTL interface can easily be implemented using the GrAL.

// container definition
cell_iterator c_it = container.cell_begin();
cell_iterator ce_it = container.cell_end();

for (; c_it != ce_it; ++c_it)
{
vertex_on_cell_iterator voc_it = container.voc_begin(*c_it);
vertex_on_cell_iterator voce_it = container.voc_end(*c_it);
for (; voc_it != voce_it; voc_it.increment())
{

// use *voc_it
}

cell_on_cell_iterator coc_it = container.coc_begin(*c_it);
cell_on_cell_iterator coce_it = container.coc_end(*c_it);
for (; coc_it != coce_it; ++coc_it)
{

// use *coc_it
}
}

GTL’s traversal

The interfaces can be exchanged easily and each of these libraries can be used with the GTL interface.
Therefore the reuse of source code due to the GTL approach is a major advantage.

87

8.1.5 Data Access

Separated by the fiber bundle approach, the stored data corresponding to the topological elements, such
as vertices or edges, is available orthogonally by an element identifier, e.g., element number. During
initialization, the quantity accessor q is bound to a specific domain with its quantity key. To access the
underlying data, the operator() is evaluated with a vertex of the cell complex as argument and returns
a reference to the stored value.

string key_quan = "user_quantity";
quan_t q = scalar_quan(domain, key_quan);

quan(vertex) = 1.0;

Quantity assignment

The implementation of the fiber bundle approach in the GTL follows:

value = container.get_value(base_index, quan_key);
value = container.get_value(*vertex_on_cell , quan_key);

Data accessors for the container

As can be seen, the base index selects the respective fiber, whereas the quan key selects the corre-
sponding fiber element. In contrast to the cursor and property map concept, the fiber bundle approach
allows traversal operations within fiber space as well:

fiber = container.get_fiber(base_index);
for (it = fiber.begin(); it != fiber.end(); ++it)
// ...

Fiber access

It is also possible to extract a section, which means that a whole data set attached to a base space can be
returned:

f_section = container.get_section(quan_key);
for (it = f_section.begin(); it != f_section.end(); ++it)
// ..

Section access

89

8.2.3 Arithmetic Functors

The discretization schemes, as well as several other methods, require standard arithmetic operations.
Therefore generic calculations are necessary which can be specified with the corresponding arithmetic
operation. The GFL implements comprehensive functor mechanisms. Using these mechanisms as a foun-
dation, the following two algebraic generic components were developed, which are sufficient for all dis-
crete representations of the operations of integration and differentiation. Additionally it is necessary that
this generic calculation automatically deduces the neutral element of the given operator for initialization.

gsse::calculate<std::plus, traversal_operation >()[]
gsse::calculate<std::minus, traversal_operation >()[]

Shortcuts are also available for these common operations:

gsse::sum < traversal >()[]
gsse::diff< traversal >()[]

8.2.4 Domain-Specific Embedded Language

A domain-specific embedded language based on the given building blocks of generic traversal, data ac-
cessors, and arithmetic functors, as introduced in Section 5.3, is available.

To illustrate the application of the GFL in detail, a simple equation
'

v→e(Δe→vu) = 0 is used where u
denotes the quantity located on a vertex and Δ denotes the difference, whereas v → e states the traversal
operation. To express the difference between imperative and functional programming, the example is
presented first without the GFL. For both programming paradigms it can be seen that this implementation
does not depend on the dimension or type of the cell complex.

for (vit = container.vertex_begin(); vit != container.vertex_end(); ++vit)
{
vertex_edge eovit(*vit)
for(; eovit.valid(); ++eovit)
{

edge_vertex voe_it(*eovit);
for(; voe_it.valid(); ++voe_it)
{
equation += lequ(u(*voe_it));

}
eq += equation;

}
}

The same functionality is obtained by using the functional programming paradigm. The main difference
is given by the absence of temporary variables within the functional style.

for (vit = container.vertex_begin(); vit != container.vertex_end(); ++vit)
{
eq = sum<vertex,edge>
[

sum<edge,vertex>() [u]
](*vit);
}

92

The complex resulting from this mapping is completed by specifying the current vertex object *vit at
run-time, which clearly demonstrates the compile-time and run-time border. For a comprehensive expla-
nation the specific parts are separated. The first part specifies a traversal of all vertices in an imperative
way.

for (vit = (*segit).vertex_begin(); vit != (*segit).vertex_end(); ++vit)
{
//...
}

The following bracket encompass the actual functional expression. The *vit represents the currently
evaluated terminal object, in this case a dereferenced vertex.

eq = sum<vertex,edge>
[

//
](*vit)

The heart of the equation is shown in the next code snippet. Here a sum is used as the discrete represen-
tation of the arithmetic operator. The topological traversal is given by the vertices incident to the edge.
This inner part receives the edge information from the sum<vertex,edge> and builds a traversal on
the vertices on this edge.

// ..
sum<edge,vertex>() [u]

// ..

The quantity accessor u supplies the sum algorithm with values stored on the vertices. Finally, the
summed value obtained from all operations within sum is stored in the object eq. To show maintain-
ability and scalability, an example of a discretized form of the Laplace equation is given:

Lell fv(u) ≡
&
v→e

(Δe→vu)
A

d
ε = 0 ,

where u denotes the solution quantity and Δ again denotes the difference. The geometrical factors A and
d, necessary for the finite volume discretization approach, denote the cross section of the flux and the
distance between the two edge points, respectively. The final source code reads:

eq = sum<vertex,edge>
[
sum<edge,vertex>() [u] * A / d * eps

]

With small changes the Laplace equation can be extended to a Poisson equation:

Lell fv(u) ≡
&
v→e

(Δe→vu)
A

d
ε = V ̺ ,

In the next code snippet, the functional character of the implementation approach and the resulting exten-
sibility, is given. Most of the source code remains unchanged; only minor parts have to be added.

eq = sum<vertex,edge>
[
sum<edge,vertex>() [u] * A / d * eps

] - V * rho

The non-zero right-hand side of the Poisson equation leads to a multiplication with the volume V when
the integration is performed using finite volumes.

93

8.3 Additional Generic Components

As stated, additional generic concepts are available within the GSSE to further ease application design.
They all deal with interfaces to various areas of scientific computing.

8.3.1 Generic Solver Interface, GSI

Access to algebraic solver systems requires different mechanisms, if used for a wide variety of discretiza-
tion schemes. Therefore the GSSE provides a generic solver interface which is based on the introduced
traversal and quantity accessors and linearization mechanisms.

The most important parts of the GSI are given in the following short code snippets. First, the compile or
run-time specification is illustrated:

#include "gsse/matrix_interface/trilinos_solver_interface.hpp"
#include "gsse/matrix_interface/petsc_solver_interface.hpp"
#include "gsse/matrix_interface/qqq_solver_interface.hpp"

typedef trilinos_solver_interface solver_t;

The generic matrix wrapper uses a bijective connection of the assembled quantities and the corresponding
domain to provide easy access, where msi represents the matrix-solver interface:

gsse::gsi::solver_traits<solver_t>::matrix_interface msi();
gsse::gsi::solver_traits<solver_t>::matrix_insert m_ins(msi);
gsse::gsi::solver_traits<solver_t>::matrix_rhs m_rhs(msi);

The given quantity accessors are then connected to the solver interface, illustrated in the following:

typedef gsse::gsi::solver_traits<solver_t>::type quan_entry_t;
string key_quan = "user_quantity";

quan_t u = scalar_quan(segment, key_quan);

quan_entry_t quan_user (msi, u);

thereby creating a quantity u which is directly connected to the matrix-solver interface msi by the object
quan user. The matrix-solver interface also handles the write-back of the solved quantity value. Each
quantity is attributed to a segment within a domain.

The use of the final solution procedure with different options is demonstrated in the next code snippet.

msi.prepare_solver(); // final instructions for solvers
msi.switch_to_full_output_mode(); // print the solver behavior
msi.set_options_pack4(); // use different types of options

bool solved = msi.solve(); // the solution process
msi.write_back(); // quantity write_back

Several algebraic solver software packages are accessible, such as the self-developed direct and iterative
solvers [14] and solver packages like Trilinos [15] and PetSc [141], thereby providing a multitude of
different solving procedures.

94

8.3.2 Generic Orthogonal Range Queries

Point location is a necessary requirement for efficient algorithms, such as interpolation, intersection tests,
or boundary operators, e.g., for TCAD [119]. Different types of point location mechanisms can be sum-
marized by the concept of orthogonal range queries. The interface of generic orthogonal range queries
presented here can be used completely orthogonally, which means that different range query algorithms
and libraries can be used. The example is based on the range query concepts and libraries of Mauch [142],

- Kd-trees, quadtrees and octrees: The kd-tree outperforms the octree methods in most cases. In addition
to the higher execution times, octree methods also have several times the memory footprint of a kd-tree.
This fact is due to the differences in how these methods organize their records [142]. Finally, kd-trees
can be used as a generic range query method in a wide range of applications.

- Cell and sparse cell methods: Sparse cell arrays have execution times that are almost as low as dense
cell arrays. Therefore, if the dense cell array has many empty cells, the sparse cell method reduces the
amount of required memory storage without affecting the execution time.

Due to the performance dependencies of orthogonal range queries, based on many parameters, such as
the dimension of the stored record, the number of records, their distribution, and the query range, it is
of utmost importance to have a wide variety of range query modules available. Finally, there is no best
method [142] for different application scenarios.

The application by the GSSE for all different types of range query methods is always given by:

domain_traits<domain_t>::point_container_t point_container;

point_container =
domain.query_pointcontainer(point_t(0,0,0), point_t(0.2, 0.5, 0.5));

8.3.3 Generic File Interface, GFI

The file interface is implemented by means of the fiber bundle data model [1, 136]. By the implementation
of fiber bundle within GSSE, the data structures map directly to the hierarchical file format. An example
is given by a file resulting from a numerical simulation which has to encompass the time-dependent output
of Maxwell’s equations, such as E,H. These fields live on different skeletons of the grid:
- Primary mesh edge fields: E

- Primary mesh face fields: H

Using the F5 layer the following output information is obtained:

/T=1.0/GSSE/Points Group

/T=1.0/GSSE/Points/Cartesian Group

/T=1.0/GSSE/Points/Cartesian/Positions Dataset {40457}

/T=1.0/GSSE/Edges Group

/T=1.0/GSSE/Edges/Points Group

/T=1.0/GSSE/Edges/Points/Positions Dataset {81317}

/T=1.0/GSSE/Edges/Cartesian/E Dataset {81317}

/T=1.0/GSSE/Faces Group

/T=1.0/GSSE/Faces/Points Group

/T=1.0/GSSE/Faces/Points/Positions Dataset {53965}

/T=1.0/GSSE/Faces/Cartesian/H Dataset {53965}

The file structure provides a grouping of the different simulation fields according to the topological rela-
tions of their skeletons, given here by the points, edges, and faces for one time step. A Cartesian
coordinate representation is used.

95

8.3.4 Finite Element Components

The assembly procedure of finite elements requires additional steps for efficient implementation, as given
in Section 3.3. Element-wise assembly is typically used in the finite element method, where all cells are
traversed and for each of the cells a local matrix is calculated. This matrix introduces coupling factors
between the basis functions. As each basis function is mapped to an element of the underlying cell
complex, couplings between functions can be seen as couplings between values on elements. The local
matrix entries are written into the global matrix according to a global vertex/cell-numbering scheme. The
following source snippet presents the important operations for finite element applications:

matrix_type local_m = coord_transformation(coordinates);

gsse::stencil (local_m);
assemble_stencil (stencil);

As stated in Section 3.3, the key for an efficient realization of the finite element method is the transforma-
tion of a reference element in a normalized coordinate system (Equation 3.38 - Equation 3.40). To support
this operation, GSSE contains a coordination transformation algorithm. C++’s partial specialization fea-
ture is used, as given in the following source snippet for a three-dimensional simplex cell.

template <typename MatrixType>
class coord_transformation<MatrixType, simplex, 3>
{
matrix_type operator()(matrix_type coordinates)
{

double J11 = coordinates(1, 0) - coordinates(0, 0);
double J12 = coordinates(1, 1) - coordinates(0, 1);
double J13 = coordinates(1, 2) - coordinates(0, 2);
double J21 = coordinates(2, 0) - coordinates(0, 0);
double J22 = coordinates(2, 1) - coordinates(0, 1);
double J23 = coordinates(2, 2) - coordinates(0, 2);
double J31 = coordinates(3, 0) - coordinates(0, 0);
double J32 = coordinates(3, 1) - coordinates(0, 1);
double J33 = coordinates(3, 2) - coordinates(0, 2);
//

double K11 = J22 * J33 - J23 * J32;
double K21 = J23 * J31 - J21 * J33;
double K31 = J21 * J32 - J22 * J31;
double K12 = J13 * J32 - J12 * J33;
double K22 = J11 * J33 - J13 * J31;
double K32 = J12 * J31 - J11 * J32;
double K13 = J12 * J23 - J13 * J22;
double K23 = J13 * J21 - J11 * J23;
double K33 = J11 * J22 - J12 * J21;

double detJ = J11 * J22 * J33 + J21 * J32 * J13 + J12 * J23 * J31
- J11 * J23 * J32 - J13 * J22 * J31 - J12 * J21 * J33;

// ...
}

};

96

The following pre-calculated element matrices for the Laplace operator are used [113], which are im-
plemented for two- and three-dimensional simplex and cuboid cells and partially given in the following
source snippet for a three-dimensional simplex example:

template <typename MatrixType>
class stencil<MatrixType, simplex, 3>
{

stencil()
{

Srl1(0, 0) = 1.0/6.0;
Srl1(1, 0) = -1.0/6.0;
Srl1(0, 1) = -1.0/6.0;
Srl1(1, 1) = 1.0/6.0;
// ...

}

MatrixType operator()(const MatrixType& local_m)
{

double ga = local_m(0, 0);
double gb = local_m(1, 1);
double gc = local_m(2, 2);
double gd = local_m(1, 0);
double ge = local_m(2, 1);
double gf = local_m(2, 0);

MatrixType result(4, 5);
result = Srl1 * ga + Srl2 * gb + Srl3 * gc +

Srl4 * gd + Srl5 * ge + Srl6 * gf;
return result;

}
};

By utilizing the GSI, the assembly of the local stencil matrix is then given by the following algorithm,
where the index list stores the transformation of local node indices to global ones:

void assemble_stencil(..)
{
for(int i=0; i<index_list.size(); ++i)
{

long line = index_list(i);

for(int j=0; j<index_list.size(); ++j)
{

long column = index_list(0, j);
mat_add(line, column, stencil(i, j)); // GSI interface

}
int rhs_pos = index_list.size();
rhs_add(line, stencil(i, rhs_pos)); // GSI interface

}
}

97

Chapter 9

Generic Application Design

Generic application design deals with the conceptual categorization of computational domains, the reduc-
tion of algorithms to their minimal conceptual requirements, and strict performance guarantees. Here,
the assembly of the given practical building blocks (see Part II) and the transformation of GSSE compo-
nents into actual applications are presented. Several examples are given to demonstrate that the proposed
concepts are functional and that the implementation effort is greatly reduced. The application areas are
divided into different areas, such as wave equation, diffusion simulation, and electrostatic simulation. A
system of coupled non-linear equations from the field of TCAD’s device simulation is used to demonstrate
the approach, and several results for the investigated equations are presented. All examples use automatic
model quantity evaluation, while communication is accomplished using the GFI module. Each of the
applications presented is implemented following the same patterns:
- Specification of required quantities by corresponding identifier, e.g., strings.
- Use of a linear or non-linear solution scheme by the selection of the appropriate solver scheme.
- Implementation of pre-processing sections.
- Implementation of the application code.
- Implementation of post-processing sections.
The actual application code requires normally not more than hundreds of source lines for each applica-
tion, and the pre-processing and post-processing facilities can be reused. Related to the finite element
scheme, GSSE contains pre-calculated stencil matrices for triangles, rectangles, tetrahedra, and cubes.
Cell topologies (posets) are stored for from one-dimensional up to four-dimensional simplices and cuboids
and can thereby be optimized at compile-time. Compile-time as well as run-time algorithms are available
to generate higher dimensional posets. Interpolation algorithms are available for linear, quadratic, and
exponential methods.

9.1 Visual Programming

Based on the concepts of topological manifolds, the separation facilities of the fiber bundle approach, and
the correlated programming concepts introduced in Section 5.2, new possibilities for implementing the
programming concepts can be derived. One of these concepts is visual programming, which is not only the
illustration of a final structure, but can also be used in abstract ways, such as a convergence analysis of non-
linear algebraic solver steps, or to define the model by identifying different types of boundary conditions.
In addition to a real-time interface to update the visualization at each time step, the following abstract
quantities are necessary, such as equation type, coupling coefficients, domain identifier, and boundary
conditions. Based on these abstract quantities, the application design can not only be simplified, but the
search for errors can also be enhanced by this type of programming.

103

A complete example of an abstract process which greatly benefits from the support of visual programming
is given next. Each step of the process of solving a non-linear equation is available to be examined for
errors in the implementation. The visualization of the calculation is available in real time, making it
possible to observe the evolution even of a non-linear solution process. It proved to be invaluable for the
adjustment of simulation parameters. The leftmost part of Figure 9.1 shows the initial potential, while the
rightmost depicts the final solution. The center image shows an intermediate result that has not yet fully
converged.

Figure 9.1: Potential of a PN diode during different stages of the Newton iteration. From initial (left) to the final
result (right).

In contrast, an equation system which does not converge is given in Figure 9.2, where small oscillations
can be observed. This problem can be caused by wrong input parameters, or by an inappropriate time
stepping procedure.

Figure 9.2: Visualization of non-converging process. Here the potential is illustrated where small oscillations can
be observed from left to right.

Figure 9.3 depicts the complete breakdown of the solution procedure. As can be seen, visual programming
greatly supports the development of applications.

Figure 9.3: Illustration of a complete breakdown of the solution procedure (from left to right).

104

The x-component and y-component of the final vector field E is depicted in Figure 9.5 and Figure 9.6 for
a three-dimensional calculation. The x-y plane with a spatial dimension of 10 × 10 units at the bottom
uses a simple harmonically oscillating quantity and is also used as a Dirichlet contact. Neumann boundary
conditions are applied to the remaining boundary planes.

Figure 9.5: Illustration of the x-component of E with a harmonic oscillating source in the x-y plane at two different
time steps.

Figure 9.6: Wave equation with a harmonic oscillating source in the x-y plane where the source is switched of (left
figure). The y-component of E is depicted on the right side.

106

9.3 Diffusion Simulation

The accurate simulation of the dopant atoms and their spatial distribution within devices is an important
issue in modern TCAD. The characteristics of the manufactured device is determined by these issues,
e.g., if devices rely on very shallow junctions to minimize the so-called short-channel effects [152]. Dif-
fusion does not only occur in place of the introduction of dopant atoms, the so-called ion-implantation
step, but also to electrically activate the implanted atoms. A comprehensive study of currently developed
diffusion simulation methods is given in [69]. The simulations given here use the finite volume discretiza-
tion method with very basic models to document the potential of GSSE as a mathematical framework
for generic parabolic PDEs. The transformation of the given equations into executable C++ code and
the corresponding alternative time discretization steps are the main parts, whereas the results show the
feasibility.

9.3.1 The Equations

This example introduces a parabolic type of a PDE. As introduced in Section 3.1, time can be modeled
by different numerical approximations. Here, an implicit and an explicit method are presented [67]. The
following differential equation is used to describe a generic parabolic PDE, e.g., a diffusion process with
boundary conditions:

div (u) + α∂tu = 0 on Ω (9.5)

∂nu = 0 on Γ1 (9.6)

u = f(x, y, z) on Γ2 (9.7)

By the use of the concepts presented the discretized formulation by the finite volume method is rendered
similar to a generic elliptic equation, extended by an additional time derivative

Lp fvm(u) ≡
&
v→e

(Δe→vu)
A

d
+

u − uold

Δt
= 0 ,

where Δt denotes the time step and uold stands for the solution function u in the prior time step. This
scheme is known as the implicit Euler time discretization. The explicit time discretization, which avoids
the solution of an equation system but becomes unstable if time steps are too large, is formulated analo-
gously:

Lp fvm(u) ≡
&
v→e

(Δe→vuold)
A

d
+

u − uold

Δt
= 0 .

The GSSE diffusion application is available for two and three dimensions, as well as for structured grids
and unstructured meshes, which are demonstrated in the following by two different examples.

9.3.2 Transformation into the GSSE

By using the finite volume method and the specification mechanism enabled by the GSSE, the next
code snippet shows a possible implementation. Here, the boundary evaluation is also shown where the
conditional statements are based on abstract quantities, as illustrated in Section 9.1. First, the implicit time
discretization and the corresponding specification is given. The domaintype tag is also available by the
GSSE .

107

if (domain.get_type(*vit) == domaintype_interior_neumann)
{
equation = (sum<vertex,edge>()

[
sum<edge,vertex>() [u] * area / dist

] + (u - u_old) / delta_t
)(*vit);

}
else if (domain.get_type(*vit) == domaintype_dirichlet)
{
equation = (u - u_bnd)(*vit);
}

The Dirichlet boundary condition is specified by the abstract boundary condition quantity u bnd. An
explicit time discretizaton is presented next, where the resuability of developed components can be easily
observed. Almost the entire implementation can be reused, whereas the functional paradigm enables the
exchange of only one quantity accessor.

equation = (sum<vertex,edge>()
[

sum<edge,vertex>() [u_old] * area / dist
] + (u - u_old) / delta_t

)(*vit);

9.3.3 Results

In two dimensions, a structured grid (see Figure 9.7) is used, and the influence of the boundary conditions
is shown. The left side of the simulation domain (x = 0) is used as a constant source of diffusion particles,
thereby creating a steady flow into the area. All other boundaries are modeled by a Neumann boundary
condition.

Figure 9.7: Two-dimensional structured grid with an initial doping profile (concentration in cm−1).

108

The simulation results for two subsequent time steps are given in Figure 9.8 and Figure 9.9.

Figure 9.8: Two-dimensional diffusion simulation for a structured grid after 200 time steps.

Figure 9.9: Two-dimensional diffusion simulation for a structured grid after 2000 time steps.

The three-dimensional unstructured mesh example, depicted in Figure 9.10, is based on an analytic ion-
implantation module, which also generated the point cloud automatically [153]. The corresponding mesh
generation, input preparation for the analytic ion implantation and dual mesh calculation, and simulation
times are given in the following table (AMD X2, see Section 8.4 for more details):

Task Number of points Time [s]
mesh generation 3 103 2.7
input preparation 18.1
diffusion simulation 18.2

109

Figure 9.10: Three-dimensional device structure with an initial phosphorus doping profile (concentration in cm−1).

Two subsequent diffusion steps are depicted in Figure 9.11, which are used as a rapid annealing step after
ion implantation [69].

Figure 9.11: Three-dimensional diffusion simulation for a device structure with an initial doping profile. Two
subsequent simulation steps are depicted.

110

9.4 Device Simulation

Semiconductor devices have become an ubiquitous commodity and one is used to expect a constant in-
crease of device performance at higher integration densities and falling prices. It is this quest for ever
decreasing device dimensions and faster switching speeds that results in ever growing requirements on
simulation methodology and thereby on the application design. While computer performance is steadily
increasing the additional complexity of these simulation models easily outgrows this gain. This example
presents a non-linear problem, discretized by the finite volume method, to show the high expressiveness
of the resulting application code.

9.4.1 The Equations

The drift diffusion model which can be derived from Boltzmann’s equation by applying the method of
moments [132] has been used very successfully in semiconductor device simulations. Equations 9.8 show
the resulting current relations. These equations are solved self-consistently by Poisson’s equation, given
in Equation 9.9.

div (Jp) = div (q p µp grad (ϕ) − qµp Uth grad (p)) = −q R

div (Jn) = div (qn µn grad (ϕ) + qµn Uth grad (n)) = q R (9.8)

div (grad (ε ϕ)) = −q (p − n + C) (9.9)

To this end, the equations are discretized using the Scharfetter-Gummel [154] scheme, resulting in a non-
linear equation system of the form [132]

Jn,ij =
q µn Uth

dij

�
njB(Λij) − niB(−Λij)

"
(9.10)

Λij =
ϕj − ϕi

Uth
B(x) =

x

ex − 1
(9.11)

The discretization of the given problem using finite volumes yields:

div (x) ≈
&
v→e

x
A

V
grad (x) ≈

1

d
Δ

e→v
x (9.12)

In order to make maintenance of the code as easy as possible and to achieve a maximum of flexibility, it
is important to keep the code expressive.

9.4.2 Transformation into the GSSE

The transformation of the presented equations into C++ code is presented in the following source snippet.

By this transformation a link between the still continuous formulation of the equation and a specific chain
complex of the simulation domain is formed. As can be observed, the implementation above makes no
assumptions about the dimension of the problem and is therefore suitable for arbitrary dimensions. It
should be noted that any scaling in the mathematical sense was not carried out in order to highlight the
expressiveness of GSSE in this simple example.

The Bernoulli function, given in Equation 9.11, is mapped to Bern, where the discretized differential
operators are easily recognized as the diff and sum constructs. This dimension-independent formulation
is made possible only by the combination of the separation of algorithms from data sources by the use of

111

// Poisson equation
//
equation_pot =
(
sum<vertex,edge>()
[

diff<edge,vertex>()
[

pot
] * area / dist

] + (p -n + C) * (vol * q / eps)
)(*vit);

// Continuity equation for electrons
//
equation_n =
(
sum<vertex,edge>()
[

diff<edge,vertex>
(
-n_quan*Bern(diff<edge,vertex>()[pot]/U_th),
-n_quan*Bern(diff<edge,vertex>()[-pot]/U_th)

) * q * mu_n * U_th * area/dist
]

) (*vit);

// Continuity equation for holes
equation_p =
(
sum<vertex,edge>()
[

diff<edge,vertex>
(

p_quan*Bern(diff<edge,vertex>()[-pot]/U_th),
p_quan*Bern(diff<edge,vertex>()[pot]/U_th)

) * q * mu_p * U_th * area/dist
]

) (*vit);

traversal mechanisms (Section 8.1) and by the employment of functional objects (Section 8.2). Here, it
is important to highlight that the entire application is available at compile-time and can thereby be highly
optimized at once. Calculation results based on the techniques presented are provided in the following
section.

9.4.3 Results

To demonstrate that the proposed computational scheme is indeed operational a two-dimensional PN-
diode is analyzed. Two neighboring regions of different doping, one doped with acceptors, the other
doped with donors, result in the well-known rectifying PN diode. Such a two-dimensional silicon PN-
diode is simulated based on the given code section. The complete application uses no more then 200 lines
of source code for all different dimensions and topological input structures. Figure 9.12 depicts the input
structure for two and three dimensions.

112

ΓD

ΓD

x

y

P-region

N-region

Figure 9.12: Domain for a two-dimensional PN-junction diode.

The concentration of acceptors has a maximum of NA = 1016cm−3, the donors concentration has a
maximum of ND = 1019cm−3. The netto doping profile (ND−NA) of the device presented in Figure 9.12
is illustrated in Figure 9.13.

Figure 9.13: Netto doping concentration of the two-dimensional PN diode. Donors are given in red, acceptors are
blue; units are given in parts per cubic meter.

The shape of the initial barrier present without external bias and for reverse mode can be seen in Fig-
ure 9.14. When operated in reverse the current is blocked, as is illustrated by the potential when the initial
barrier is increased, as shown in Figure 9.15. In forward operation mode, current can run freely, which
is reflected by the lowering of the initial potential barrier, as shown in Figure 9.16. The space-charge
distribution for reverse mode can be seen in Figure 9.17 and for forward mode in Figure 9.18.

113

Figure 9.14: Two-dimensional diode with potential distribution for equilibrium mode; units given in Volt.

Figure 9.15: Two-dimensional diode with potential distribution for reverse mode; units given in Volt.

Figure 9.16: Two-dimensional diode with potential distribution for forward mode; units given in Volt.

114

Figure 9.17: Two-dimensional diode with charge distribution for reverse mode; units given in parts per cubic meter.

Figure 9.18: Two-dimensional diode with charge distribution for forward mode; units given in parts per cubic meter.

115

Chapter 10

Smart Analysis Package

Downscaling of integrated circuits to the deep submicron regime and beyond increases the influence of
interconnects on circuit behavior drastically. Parasitic effects are becoming more and more important as
devices get faster and line widths smaller. These effects become the limiting factor for further improve-
ments of circuit speed. An important part of interconnect analysis is the extraction of parameters, e.g.
capacitance extraction [155], or resistance analysis.

The high performance SAP package [113, 114], reviewed in Section 5.4.1, has been developed for these
tasks, especially for thermal (STAP) and capacitive (SCAP) problems. This package was manually tuned
to yield excellent performance and portability but requires a considerable amount of maintenance by the
development group. The here presented approach is based on GSSE modules. Two examples from this
area are analyzed in the following sections. A comprehensive performance analysis is also given, whereby
the next section introduces an important extension of the smart analysis package known as structure mod-
eling.

10.1 Structure Modeling

To overcome the difficulties encountered in the modeling of three-dimensional structures, the Vienna
Geometry Modeler (VGM[137]) was developed. It enables an efficient means for structure generation for
interconnect simulation, and can be seen as a successor of LAYGRID [114] from the SAP-package. The
creation of objects is based on a constructive solid geometry (CSG) approach which models complex three-
dimensional shapes using simple objects. The agglomerations of these simple objects then provide suitable
simulation structures. To give a brief overview of the syntax and mannerism of VGM, a comparison of a
LAYGRID file and a VGM input file (Figure 10.1) are presented.

An additional feature of the VGM specification is that tapering angles of the given sidewalls can be easily
adjusted. Only the corresponding skewness parameters have to be adjusted, given in the following lines:

// xskew yskew
tapered { VB1 dummy { 4.6 2.6 0.9}{0.4 0.4 0.7} {0.0} {0.0}}

tapered { VB1 dummy { 4.6 2.6 0.9}{0.4 0.4 0.7} {0.2} {0.2}}

116

lengthunit { 1.0 um }

mask { MASK0
rectangle { FX0 SIOX { 0.0 0.0 } { 10.5 6.5 } }

}
mask { MASK1

rectangle { FX1 SIOX { 0.0 0.0 } { 10.5 6.5 } }
rectangle { FX2 ALX { 0.0 2.5 } { 6.0 1.5 } }
rectangle { FX2C ALX { 0.0 2.5 } { 1.0 1.5 } }

}
mask { MASK2

rectangle { FX3 SIOX { 0.0 0.0 } { 10.5 6.5 } }
rectangle { FX4 AVX { 4.6 2.6 } { 0.4 0.4 } }
rectangle { FX4 AVX { 5.5 2.6 } { 0.4 0.4 } }
rectangle { FX4 AVX { 4.6 3.5 } { 0.4 0.4 } }
rectangle { FX4 AVX { 5.5 3.5 } { 0.4 0.4 } }

}
mask { MASK4

rectangle { FX3 SIOX { 0.0 0.0 } { 10.5 6.5 } }
rectangle { FX4 AVX { 4.6 2.6 } { 0.4 0.4 } }
rectangle { FX4 AVX { 5.5 2.6 } { 0.4 0.4 } }
rectangle { FX4 AVX { 4.6 3.5 } { 0.4 0.4 } }
rectangle { FX4 AVX { 5.5 3.5 } { 0.4 0.4 } }

}
mask { MASK5

rectangle { FX9 SIOX { 0.0 0.0 } { 10.5 6.5 } }
rectangle { FX10 ALX { 4.5 2.5 } { 6.0 1.5 } }
rectangle { FX10C ALX { 9.5 2.5 } { 1.0 1.5 } }

}
mask { MASK6

rectangle { FX11 SIOX { 0.0 0.0 } { 10.5 6.5 } }
}
layerstructure {

origin { 0 0 0 }
plane { ------------ }
layer { MASK0 0.5 }
plane { ------------ }
layer { MASK1 0.5 }
plane { ------------ }
layer { MASK2 0.25 }
plane { ------------ }
layer { MASK4 0.25 }
plane { ------------ }
layer { MASK5 0.5 }
plane { ------------ }
layer { MASK6 0.5 }
plane { ------------ }

}

line { OB dummy { 0 0 0 }{10 6.5 2.5 } }
line { ODL dummy {-10 0 0 }{10 6.5 2.5 } }
line { OXR dummy { 10 0 0 }{10 6.5 2.5 } }
tapered { LB1 dummy {-1 2.5 0.5}{ 7 1.5 0.5}{0.0}{0.0}}
tapered { LB2 dummy { 4.5 2.5 1.5}{6.5 1.5 0.5}{0.0}{0.0}}

tapered { VB1 dummy { 4.6 2.6 0.9}{0.4 0.4 0.7}{0.0}{0.0}}
tapered { VB2 dummy { 5.5 2.6 0.9}{0.4 0.4 0.7}{0.0}{0.0}}
tapered { VB3 dummy { 4.6 3.5 0.9}{0.4 0.4 0.7}{0.0}{0.0}}
tapered { VB4 dummy { 5.5 3.5 0.9}{0.4 0.4 0.7}{0.0}{0.0}}

solid { LT1 dummy { OB & LB1 } }
solid { LT2 dummy { OB & LB2 } }

solid { O1 SiO2 { OB-LB1-LB2-VB1-VB2-VB3-VB4}}
solid { CF1 Al { ODL & LB1 } }
solid { CF2 Al { OXR & LB2 } }
solid { LF Al { LT1 + LT2 + VB1 + VB2 + VB3 + VB4}}

contact { Contact1 electric 1.0 V {CF1} }
contact { Contact2 electric 0.0 V {CF2} }

Figure 10.1: A comparison between the LAYGRID and VGM syntax.

Figure 10.2: Resulting structure from the given input specification.

117

10.2 Basic Equations and Discretization

Maxwell’s equations, given in Section 2.2, are the basic equations for the examples given here. For the
stationary electrostatical case, the time derivatives vanish and curl (E) = 0 is obtained. Such an equation
can be expressed by a scalar potential E = −grad (ϕ) which is subsequently used to derive the capacitance
and resistance analysis [114].

10.2.1 Capacitance Analysis

For the given stationary case with linear dielectric, the ratio of charge Q and voltage U of conductors is
constant and is called capacitance C = Q

U . Due to the fact that the inner part of the conductors is free of
electric field, the charge is distributed only on their surfaces. The charge distribution is derived from D

by means of a surface charge σ as given in Section 2.2 and Equation 2.13. By integration of the charge on
the surface of the conductor Γi the following is obtained:

Q =

�
Γi

σdA =

�
Γi

ε E · dA (10.1)

Then the capacitance C can be derived. Another way can be described by the energy method, where the
stored energy is given by W = C U2

2 expressed in local field terms:

W =
1

2

�
Ω

E ·D dΩ =
1

2

�
Ω

ε E ·E dΩ (10.2)

Here, the calculation domain covers the complete dielectric part and expands, theoretically, into infinite
space. Therefore it is important to emphasize that most of the field energy is contained near the conductors,
and so only a small part of the integration domain has to be covered [114].

Both of these calculation mechanisms require the calculation of the electric field E, where the charge
integration requires only the field at the surface of the conductor, which can be expressed by a scalar
potential ϕ. The Maxwell equation div (D) = ̺, and the fact that an isolator does not carry electric
charge (̺ = 0), the following equations are used to determine a potential distribution as well as for the
extraction of the capacity of a given domain:

div (ε grad (ϕ)) = 0 on Ω (10.3)

n · ε grad (ϕ) = 0 on Γ (10.4)

ϕ = ϕk on Γc,k (10.5)

where Ω is a bounded open domain with boundary Γ, and conductor boundaries Γc,k, and ϕk represent
conductor surface potentials .

As introduced in Section 3.3, the finite element formulation is represented by the following equation
system for N -elements:

N&
j=1

ϕj

�
τ i
3

grad (φp(x)) ε grad (φq(x)) dΩ =

N&
j=1

σj

�
∂τ i

3

φp φq dΓ (10.6)

where the following expression for the charge distribution is used σ =
'N

j=1 φq,jσj . This problem is
linear and the global system matrix is simply obtained by assembling Π with the corresponding node
index transformation into the global matrix.

118

10.2.2 Resistance Analysis

The electric resistance can be described by the global law R = U
I . The resistance of a conductor can

then be calculated by using a potential on the boundary of this conductor and calculating the current by an
integration of an area of conductor Γi:

I =

�
Γi

J · dA (10.7)

or by calculating the electrical power loss:

P =
U2

R
=

�
Ωi

E · J dΩ (10.8)

Similar to the capacitance calculation, the electric field E has to be calculated. The lack of sources of
the electrical current density div (J) = 0 in the electrostatic system is also retained. Then the following
equation for the current density is obtained, where Ω is the inside of a current-carrying conductor:

div (γ grad (ϕ)) = 0 on Ω (10.9)

n · γ grad (ϕ) = 0 on Γ (10.10)

ϕ = ϕk on Γk (10.11)

where Ω is a bounded open domain. Γ is identified by the part of the boundary of Ω which is fully covered
by isolators and not carrying any contacts, because there is no current flow from the conductor into the
isolator J ·n = 0. The contact areas Γk normally carry a potential ϕk. The finite element equation system
is given for N -elements by:

N&
j=1

ϕj

�
τ i
3

grad (φp(x)) γ grad (φq(x)) dΩ =
N&

j=1

Jj

�
∂τ i

3

φp φq dΓ (10.12)

10.2.3 Finite Element Solution Procedure

To obtain the global solution, a procedure where all the local matrices have to be inserted into the global
system matrix A is used, called assembly. Equation 10.6 as well as Equation 10.12 evaluated on all
elements of a domain can then be expressed by a matrix notation:

A x = b (10.13)

where A is the global system matrix, x the solution vector, and b the right-hand side. A transformation
of the local indices to global indices is required to obtain consistent system matrix entries.

The right-hand side matrix b is obtained by contributions of elements on the boundary of the domain,
thereby only containing values not equal to zero for boundary contact nodes. A detailed notation of
Equation 10.13 is given by [114]:

a11 · · · a1,NA
a1,NA+1 · · · a1,N

...
. . .

...
...

. . .
...

aNA,1 · · · aNA,NA
aNA,NA+1 · · · aNA,N

aNA+1,1 · · · aNA+1,NA
aNA+1,NA+1 · · · aNA+1,N

...
. . .

...
...

. . .
...

aN,1 · · · aN,NA
aN,NA+1 · · · aN,N

·

���������
���������

x1
...

xNA

xNA+1
...

xN

���������
���������

=

��������
��������

0
...
0

bNA+1
...

bN

��������
��������
(10.14)

119

where the upper half corresponds to the inner nodes whereas the lower half can be identified by the
boundary nodes. The unknown values are underlined. Expressed as block matrices the equation system
reads:

AA AB

AT
B AD

�
·

�
xA

xD

�
=

�
0

bD

�
(10.15)

To obtain the unknown values xA inside the domain, the equation system has to be solved:

AA xA = −AB xD (10.16)

The electric charge is then obtained by:

bD = AT
B xA + AD xD (10.17)

and solving:

B σ = b (10.18)

where B is built up from the local element matrices of the boundary elements.

10.2.4 Transformation into GSSE

The transformation of the given expression is supported by GSSE’s finite element components, given in
Section 8.3.4. The following set of operations is required to obtain the solution:

1. Computation of the stencil matrices Π(τ i
3) and matrix b.

2. Assembly of the global system matrix A and matrix b.

3. Solution of the algebraic equation system A x = b.

Where the first step is already implemented in the GSSE . The second and third step are given in the
following source snippet for two- and three-dimensional simplex and cuboid cell complexes:

for (cit = domain.cell_begin(); cit != domain.cell_end(); ++cit)
{
vertex_on_cell_iterator iter(*cit);
matrix_type coordinates;
for (i=0; iter.valid(); ++iter,++i)
{

coordinates(i) = domain.get_coordinate(*iter);
}
matrix_type local_m = coord_transformation(coordinates);

matrix_type stencil (local_m);

assemble_stencil(stencil, matrix_interface);
}

matrix_interface.solve();

Finite element assembly procedure

The final line invokes the solver using the generic solver interface. Because of the library-centric applica-
tion design approach of the GSSE and the derived applications, the matrix type can be implemented
by any matrix data structures, e.g., the high performance Blitz++ [150] matrices, or the C++ valarray.
A performance comparison is given in Section 8.4.

120

The potential distribution for the two contacts is given in Figure 10.5. A smooth potential is required
to extract the capacity correctly. Therefore care has to be taken in regard to spatial discretization of the
structure, as shown in Figure 10.4 on the right side.

Figure 10.5: Illustration of isosurfaces of the potential distribution.

A capacitance extraction analysis is given in the following table, where the left column always represents
the LAYGRID mesh and the right column the VGM mesh. The refinement column states the required
overall mesh refinement steps to obtain the targeted accuracy. The x marks examples, where no meshes
could be generated.

Refinement Capacity [pF] Number of points Calculation time [s] Relative error
0 5.58 6.51 4 104 1 104 7.70 1.10 5.08 22.59
2 5.35 5.44 2 106 9 105 2282 326 0.07 2.44
4 x 5.31 x 5 107 x 4920 x 0.0

122

To give a short overview of the new syntax and mannerism of VGM a comparison of a LAYGRID file and
a VGM input file (Figure 10.8) is presented.

lengthunit { 1.0 um }
mask { MASK0
rectangle { OX SiO2 { -4 0 } { 14 10 } } }

mask { MASK1
rectangle { CBLI TiN { 1.995 -1.005 } { 0.61 5.01 } }
rectangle { OX SiO2 { -4 0 } { 14 10 } } }

mask { MASK2
rectangle { BLI Cu { 2.0 -1.0 } { 0.6 5.0 } }
rectangle { CBLI TiN { 1.995 -1.005 } { 0.61 5.01 } }
rectangle { OX SiO2 { -4 0 } { 14 10 } }
rectangle { CT1 Cu { 2.0 4.0 } { 0.6 1.0 } } }

mask { MASK3
circle { VIA1 Cu { 2.3 4.5 } { 0.05 } }
circle { CVIA1 Cu { 2.3 4.5 } { 0.0525 } }
rectangle { OX SiO2 { -4 0 } { 14 10 } } }

mask { MASK4
rectangle { CTLI TiN { 1.995 3.995 } { 0.61 6.01 } }
rectangle { OX SiO2 { -4 0 } { 14 10 } } }

mask { MASK5
rectangle { TLI Cu { 2.0 4.0 } { 0.6 6.0 } }
rectangle { CTLI TiN { 1.995 3.995 } { 0.61 6.01 } }
rectangle { OX SiO2 { -4 0 } { 14 10 } }
rectangle { CT2 Cu { 2.0 10.0 } { 0.6 1.0 } } }

mask { MASK6
rectangle { CTLI TiN { 1.995 3.995 } { 0.61 6.01 } }
rectangle { OX SiO2 { -4 0 } { 14 10 } } }

mask { MASK7
rectangle { OX SiO2 { -4 0 } { 14 10 } } }

contact { CONT1 cap vol { CT1 } }
contact { CONT3 cap vol { CT2 } }
layerstructure {

origin { 0 0 0 }
plane { ------------ }
layer { MASK0 1 }
plane { ------------ }
layer { MASK1 0.005 }
plane { ------------ }
layer { MASK2 0.5 }
plane { ------------ }
layer { MASK3 0.695 }
plane { ------------ }
layer { MASK4 0.005 }
plane { ------------ }
layer { MASK5 0.5 }
plane { ------------ }
layer { MASK6 0.005 }
plane { ------------ }
layer { MASK7 1 }
plane { ------------ }

}

tapered {TL Cu {2.0 4.0 1.2 }{0.6 7.0 0.5}{-0.01}{0.0}}
pyramid {VIA1 Cu {2.3 4.5 0.503}{0.05 0.9} {26}{1.0}{0.0}}
tapered {BL Cu {2.0 -1.0 0.0 }{0.6 6.0 0.5}{-0.01}{0.0}}
tapered {CTL TiN {1.995 3.995 1.195}{0.61 7.01 0.51}{-0.01}{0.0}}
pyramid {CVIA1 TiN {2.3 4.5 0.45 } {0.0525 1 }{26}{1.0}{0.0}}
tapered {CBL TiN {1.995 -1.005 -0.005}{0.61 6.01 0.505}{-0.01}{0.0}}

line {OX1 SiO2 {-4 0 -1 } { 14 10 5 }}
line {OXC1 SiO2 {0 10 -1 } { 10 10 5 }}
line {OXC2 SiO2 {0 -10 -1 } { 10 10 5 }}

solid {LCM Cu {VIA1 + TL}}
solid {LF Cu {LCM & LCM - BL}}
solid {CCM TiN {CTL + CVIA1}}
solid {C1TM TiN {CCM - LCM - BL}}
solid {CB2TM TiN {CBL - BL}}
solid {OXCM SiO2 {OX1 - CCM - CBL - BL}}
solid {CVTL TiN {OX1 & C1TM}}
solid {FCVBL TiN {OX1 & CB2TM}}
solid {FBL Cu {OX1 & BL }}
solid {FTL Cu {OX1 & LF }}
solid {CT1 Cu {OXC1 & LF }}
solid {CT2 Cu {OXC2 & BL }}

contact {CONTACT1 electric 1.0 V { CT1 } }
contact {CONTACT2 electric 0.0 V { CT2 } }

Figure 10.8: A comparison between the LAYGRID and VGM syntax.

Figure 10.9: Comparison of the structures created and the corresponding meshes for LAYGRID (left) and VGM
(right). With the VGM approach different rations between the interconnect line (red) and the covering
layer (blue) can be easily modeled. Here a ratio between the thickness of the interconnect line and the
covering layer is given by 1/10000. As can be seen, the thin layer does not impose additional points
for the interconnect line.

124

To emphasize not only the high performance library-centric application design proposed here, but also to
demonstrate the difference of programming style with respect to extensibility, maintenance, and reusabil-
ity, a comparison of the finite element algorithms by the GSSE

void assemble_stencil(..) {
for(int i=0; i<index_list.size(); ++i) {

long line = index_list(i);

for(int j=0; j<index_list.size(); ++j) {
long column = index_list(0, j);
mat_add(line, column, stencil(i, j));

}
int rhs_pos = index_list.size();
rhs_add(line, stencil(i, rhs_pos));

}
}

and the corresponding matrix assembly section from SAP is given. The necessary combination of memory
management and program flow, e.g., assemble reset mat() can be clearly seen. This part of code
also lacks reusability due to the pre-conditions required by the algorithm.

static void assemble_elem(...) {
Finite *fin;
int k, therm_idx,j;
double *b;
Subproblem *sp;
//..
for(k=0; k<sp->region_n; k++) {

Region *r;
Gridelements *g;
ModelInfo *m;
AssElem ae;

if(sp->region_status[k]!=1) continue;
r=fin->region+k;
g=&r->grid;
m=t->modelInfo+k;
ae.region=k;
ae.node_map=sp->node_map[k];
ae.model=m;

for(j=0; j<g->elem_n; j++) {
assemble_reset_mat(t);
ae.elem=GridelementsGet(g,j);
get_elem_nodes(fin,&ae);
if(m->ass_S) {

m->ass_S(t,&ae);
matrix_entry(t,S,&ae);

}
if(m->ass_b) {

m->ass_b(t,&ae);
b_entry(t,S,&ae);

}
}

}
}

127

Chapter 11

Summary and Outlook

I have presented theoretical, practical, and applied concepts related to the field of scientific computing and,
therefore, introduced possible means to enable the reuse of data structures and algorithms. Customized
algorithms can be implemented easily where they prove most valuable with the corresponding program-
ming paradigm. By dimensional independent programming, not only is all relevant physics included, but
also the demand on computer resources is kept to a minimum. These concepts have been applied and
it was proven that this approach leads to a drastic reduction of the amount of newly developed modules
and application parts. The following table briefly summarizes the impact of the library-centric applica-
tion design approach by estimating the total number of lines of code for all developed applications at our
institute:

1980 100.000 lines of code imperative Fortran
1990 300.000 lines of code imperative C, Fortran
2000 600.000 lines of code imperative, OO C, C++
2006 20.000 lines of code OO, GP, FP, MP C++

Application maintenance is easily achieved by these few software components, whereby most of the ap-
plication code is reused by other applications, resulting in a great extensibility and stability.

The concepts collected, refined, and formalized here are a solid foundation for future work. The for-
malization of guidelines allows a clean decomposition of applications into general-purpose components.
Following precisely specified interfaces interoperability of the original modules as well as future devel-
opments adhering to the interfaces is guaranteed. Therefore, the basic building blocks supplied here can
serve as a crucial part for the rapid development of the state-of-the-art in scientific computing. The easy
extension of these building blocks to provide additional functionality of complex topics such as geometric
algebra calculus should also be counted among the major strengths of the presented environment. Besides
the development of extensions of the already extensive GSSE the assembly of generic modules containing
algorithms and data structures to form applications addressing a large variety of different problems will
be the focus of future work.

128

Appendix B

STL Iterator Analysis

The topological specification mechanisms of Section 6.1 and the separation properties of the fiber bundle
concept are used to analyze the C++ STL iterator concept in detail. With the advent of the C++ STL the
separation of access to data structures and algorithms by means of iterators has become one of the key
elements for the generic programming paradigm. Thereby the implementation complexity of algorithms
and data structures is significantly reduced. The value access requirements in existing iterator categories
are given by:

output iterator *iter = a
input iterator *iter is convertible to T
forward iterator *iter is T&
random access iterator iter[n] is convertible to T

Here, iter represents the iterator and T the corresponding data type of the evaluated iterator. But unfor-
tunately, it combines traversal and data access. An example of this problem of this iterator concept is, e.g.,
the well-known example of the std::vector<bool>which can actually be modeled by a random ac-
cess container [110] due to the container data structure. But the return type is not bool& and can thereby
only be modeled by the requirement of input and output iterators. An alternative approach was suggested
[110] by separating traversal and access, where the access hierarchy is described by:

- Readable iterator
- Writable iterator
- Swappable iterator
- Lvalue iterator

and by the traversal hierarchy:

- Incrementable iterator
- Single Pass iterator
- Forward Traversal iterator
- Bidirectional Traversal iterator
- Random Access Traversal iterator

But up to now this concept is not widely used. The proposed new iterator concept [156] and another
version [157] with a different focus on these problems, were accepted into the TR11 of C++. Additionally,
the backward and forward compatibility of the new iterator categories are a major problem [158] and are
not included in the new C++0x standard [159].

1Library Technical Report 1 (TR1) is a draft document specifying additions to the C++ Standard Library

132

This concept is briefly illustrated in the following source snippet:

vector<bool> container;
vector<bool>::iterator it;
property_map pm(container);

it = container.begin();
++it; //iteration
bool value = pm(*it); //data access

Separated iteration and data access

As explained in Section 6.1, there is a formal and distinguishable definition possible for all of these data
structural properties. Based on this formal classification the combination of traversal and data access is
analyzed in more detail. The following list gives an overview of the basic iterator traits [17] for the basic
STL iterators:

iterator category specification property
input/output data property

forward local(2) topological property
bidirectional local(3) topological property

random access global topological property

Problems are encountered if the new iterator categories [159] are integrated into the topological specifica-
tion.

iterator category specification property
incrementable local(2) topological property

single pass data property
forward local(2) data and topological property

The combinatorial property of the underlying space of these three categories is the same: a 0-cell complex
with a local topological structure such as:

data structure dimension cell type complex topology
single linked list / stream 0 simplex local(2)

Only the incrementable property can be described by a topological property, whereas the other two cat-
egories are data-dependent. The former iterator properties [17] only use two different categories which
specify the behavior of data, namely the input and output properties.

133

Appendix C

Cell Properties of Discretization Schemes

As introduced in Section 3, the finite volume and finite element methods use different cell types for their
approximations. Finite volumes write the balance equations in terms of global quantities, whereas finite
elements, making use of spread cells with spread boundaries, is forced to use field functions defined locally
over the whole domain. Despite this difference, neither finite volume nor finite element discretize the
operator representing the local version of the balance equation. Instead they both resort to a global version
since a topological equation directly applies to regions with finite extension. A detailed geometrical
analysis [33] based on the identification of the weighting functions was given.

The weighted residual formulation of the finite element method starts from the continuous formulation of
a weighted domain: �

wp+1

dωp =

�
∂wp+1

ωp (C.1)

The relationship between the two concepts, the continuous concept of p-differential forms (Section 2.7)
and the corresponding weighted domains, and the discrete concept related to chains and cochains (Section
2.4) can be used to algebraically handle the cells from a cell complex and the discrete projection of a
physical field. The weighted domain and the p-form are then directly related to the p-chains and p-
cochains. When d is used as a divergence operator, the following expression is obtained in the discrete
case:

�
τ
3

w div (D) =

�
∂τ

3

w D −

�
τ
3

grad (w) · D (C.2)

where the 3-cell τ3 can be taken as the support of the weight function w. With the expression for the
boundary of a weighted three-dimensional geometric object, the following formal definition can be ob-
tained: �

∂(w τ
3
)
D :=

�
∂τ

3

w D −

�
τ
3

grad (w) ·D (C.3)

where the w τ3 represents a weighted 3-cell. This ”boundary” includes actually an integral of the whole
3-cell τ3, and not only on ∂τ3, except in the particular case of a constant weight function on its supporting
cell. A corresponding interpretation of the weight function w as a continuous counterpart of a chain yields
a concept called spread cell, compared to a ”crisp” cell, considered so far by a constant weight function.
If a weight function is constant on a cell and zero outside, the second term of the equation vanishes and
the finite element method corresponds with a finite volume method. Due to the fact that these spread cells
overlap, this assembly of cells does not model the concepts introduced for a consistent cell complex.

134

Bibliography

[1] W. Benger, “Visualization of General Relativistic Tensor Fields via a Fiber Bundle Data Model,”
Dissertation, Freie Universität Berlin, 2004.

[2] K. Jänich, Topologie. Heidelberg: Springer, 2001.

[3] T. Archer and A. Whitechapel, Inside C#, 2nd ed. Redmond, WA, USA: Microsoft Press, 2002.

[4] W. Bright, “The D Programming Language,” Dr. Dobb’s J., vol. 27, no. 2, pp. 36–40, 2002.

[5] I. Kazi, H. Chen, B. Stanley, and D. Lilja, “Techniques for Obtaining High Performance in Java
Programs,” ACM Computing Surveys, vol. 32, no. 3, pp. 213–240, 2000.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, Third Edition.
Addison Wesley, 2005.

[7] S. P. Jones and J. H. (Eds.), “Haskell 98: A Non-strict, Purely Functional Language,” Tech. Rep.,
February 1999. [Online]. Available: http://haskell.org/onlinereport/

[8] B. Stroustrup, The C++ Programming Language. New York: Addison Wesley, 1995.

[9] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, and G. R. A. A. Lumsdaine, “Concepts: Linguistic
Support for Generic Programming in C++,” SIGPLAN Not., vol. 41, no. 10, pp. 291–310, 2006.

[10] R. Minixhofer, “Integrating Technology Simulation into the Semiconductor Manufacturing Envi-
ronment,” Dissertation, Technische Universität Wien, 2006.

[11] S. Halama, C. Pichler, G. Rieger, G. Schrom, T. Simlinger, and S. Selberherr, “VISTA — User
Interface, Task Level, and Tool Integration,” IEEE Trans. on Techn. Comp. Aided Design, vol. 14,
no. 10, pp. 1208–1222, 1995.

[12] T. Binder, A. Hössinger, and S. Selberherr, “Rigorous Integration of Semiconductor Process and
Device Simulators,” IEEE Trans. Comp.-Aided Design of Intl. Circ. and Systems, vol. 22, no. 9, pp.
1204–1214, 2003.

[13] IµE, MINIMOS-NT 2.1 User’s Guide, Institut für Mikroelektronik, Technische Universität Wien,
Austria, 2004, http://www.iue.tuwien.ac.at/software/minimos-nt.

[14] S. Wagner, T. Grasser, and S. Selberherr, “Performance Evaluation of Linear Solvers Employed
for Semiconductor Device Simulation,” in Proc. Conf. on Sim. of Semiconductor Processes and
Devices, 2004, pp. 351–354.

[15] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski,
E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and A. Williams, “An Overview
of Trilinos,” Sandia National Laboratories, Tech. Rep. SAND2003-2927, 2003.

136

[16] D. R. Musser and A. A. Stepanov, “Generic Programming,” in Proc. of the ISSAC’88 on Symb. and
Alg. Comp. London, UK: Springer, 1988, pp. 13–25.

[17] M. H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Tem-
plate Library. Boston, MA, USA: Addison-Wesley, 1998.

[18] G. Berti, “Generic Software Components for Scientific Computing,” Dissertation, Technische Uni-
versität Cottbus, 2000.

[19] A. J. Zomorodian, “Topology for Computing,” in Cambridge Monographs on Applied and Compu-
tational Mathematics, 2005.

[20] D. Butler and M. Pendley, “A Visualization Model Based on the Mathematics of Fiber Bundles,”
Computers in Physics, vol. 3, no. 5, pp. 45–51, September/October 1989.

[21] D. M. Butler and S. Bryson, “Vector Bundle Classes From Powerful Tool for Scientific Visualiza-
tion,” Computers in Physics, vol. 6, pp. 576–584, November/December 1992.

[22] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[23] G. Deschamps, “Electromagnetics and Differential Forms,” Proc. of the IEEE, vol. 69, no. 6, pp.
676–696, 1981.

[24] E. Tonti, “Finite Formulation of the Electromagnetic Field,” in Geometric Methods in Computa-
tional Electromagnetics, PIER 32, F. L. Teixeira, Ed. Cambridge, Mass.: EMW Publishing, 2001,
pp. 1–44.

[25] P. Bochev and M. Hyman, “Principles of Compatible Discretizations,” in Proc. of IMA Hot Topics
Workshop on Compatible Discretizations, vol. IMA 142. Springer, 2006, pp. 89–120.

[26] P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations. Wien-New York:
Springer, 1990.

[27] T. Barth and M. Ohlberger, “Finite Volume Methods: Foundation and Analysis,” 2004. [Online].
Available: citeseer.ist.psu.edu/barth04finite.html

[28] O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method. Berkshire, England: McGraw-
Hill, 1987.

[29] C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method.
Cambridge, UK: Cambridge University Press, 1987.

[30] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems involving Maxwell’s Equations
in Isotropic Media,” IEEE Trans. Antennas and Propagation, vol. 14, no. 1, pp. 302–307, 1966.

[31] E. Tonti, “The Reason for Analogies between Physical Theories,” Appl. Math. Modelling, vol. 1,
no. 1, pp. 37–50, 1976/77.

[32] ——, “On the Geometrical Structure of Electromagnetism,” in Gravitation, Electromagnetism and
Geometrical Structures. Bologna: Pitagora, 1996, pp. 281–308.

[33] C. Mattiussi, “An Analysis of Finite Volume, Finite Element, and Finite Difference Methods using
some Concepts From Algebraic Topology,” J. Comput. Phys., vol. 133, no. 2, pp. 289–309, 1997.

[34] ——, “The Finite Volume, Finite Element, and Finite Difference Methods as Numerical Methods
for Physical Field Problems,” Advances in Imaging and Electron Physics, vol. 113, pp. 1–146,
2000.

137

[35] ——, “The Geometry of Time-Stepping,” in Geometric Methods in Computational Electromagnet-
ics, PIER 32, F. L. Teixeira, Ed. Cambridge, Mass.: EMW Publishing, 2001, pp. 123–149.

[36] ——, “A Reference Discretization Strategy for the Numerical Solution of Physical Field Problems,”
Advances in Imaging and Electron Physics, vol. 121, pp. 143–279, 2002.

[37] J. M. Hyman and M. J. Shashkov, “Mimetic Discretizations for Maxwell’s Equations and Equations
of Magnetic Diffusion,” in Proc. of the Fourth Int. Conf. on Mathematical and Numerical Aspects
of Wave Propagation, Golden, Colorado, June 1-5, 1998, J. A. DeSanto, Ed. SIAM, 1998, pp.
561–563.

[38] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering. Upper Saddle
River, NJ, USA: Prentice-Hall, 1991.

[39] K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce, “On Binary Methods,” Theor.
Pract. Object Syst., vol. 1, no. 3, pp. 221–242, 1995.

[40] J. G. Siek and A. Lumsdaine, “The Matrix Template Library: A Unifying Framework for
Numerical Linear Algebra,” in ECOOP Workshop, 1998, pp. 466–467. [Online]. Available:
citeseer.ist.psu.edu/siek98matrix.html

[41] J. Siek and A. Lumsdaine, “Mayfly: A Pattern for Lightweight Generic Interfaces,” July 1999.
[Online]. Available: citeseer.ist.psu.edu/siek99mayfly.html

[42] J. G. Siek and A. Lumsdaine, “The Generic Graph Component Library,” Dr. Dobb’s J. of Software
Tools, September 2000.

[43] J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User Guide and Reference Man-
ual. Addison-Wesley, 2002.

[44] Boost Phoenix 2, Boost, 2006. [Online]. Available: http://spirit.sourceforge.net//

[45] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming: Concepts, Tools, and Tech-
niques from Boost and Beyond (C++ in Depth Series). Addison-Wesley, 2004.

[46] A. Priesnitz, “Multistage Algorithms in C++,” Dissertation, Universität Göttingen, 2005.

[47] T. L. Veldhuizen and D. Gannon, “Active Libraries: Rethinking the Roles of Compilers and Li-
braries,” in Proc. of the SIAM Workshop on Obj.-Oriented Methods for Inter-Operable Sci. and
Eng. Comp. (OO’98). SIAM, 1998.

[48] T. L. Veldhuizen, “Stage-Preserving Embeddings of Languages,” in The 16th Nordic Workshop on
Programming Theory (NWPT’04), October 2004, pp. 5–8.

[49] T. Veldhuizen, “Tradeoffs in Metaprogramming,” in Proc. of the 2006 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation. New York, NY, USA: ACM
Press, 2006, pp. 150–159.

[50] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools, and Applications.
New York, NY, USA: Addison-Wesley, 2000.

[51] G. Berti, “GrAL - The Grid Algorithms Library,” in ICCS ’02: Proc. of the Conf. on Comp. Sci.,
vol. 2331. London, UK: Springer, 2002, pp. 745–754.

[52] J. C. Maxwell, A Treatise on Electricity & Magnetism. New York: Dover Publications, 1873.

138

[53] P. Gross and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach.
Cambridge University Press, 2004.

[54] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order. Cambridge, 1990.

[55] J. Hocking and G. Young, Topology. Dover Publications, New York: Addison-Wesley, 1961.

[56] T. Dey, H. Edelsbrunner, and S. Guha, “Computational Topology,” in Advances in Discrete and
Computational Geometry, ser. Contemporary Mathematics, J. E. G. B. Chazelle and R. Pollack,
Eds., Providence, RI, USA, 1998.

[57] Y. Chow, “Fiber Bundles, Sheaf Theory, and Generalization of Differentiable Manifolds in
Physics,” Intl. J. of Quantum Chemistry, vol. 17, no. 1, pp. 85–97, 1980.

[58] K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Springer, 1986.

[59] J. A. Chard and V. Shapiro, “A Multivector Data Structure for Differential Forms and Equations,”
Math. Comput. Simulation, vol. 54, no. 1-3, pp. 33–64, 2000.

[60] H. Flanders, Diffferential Forms. New-York: Academic Press, 1963.

[61] K. Warnick, R. Selfridge, and D. Arnold, “Teaching Electromagnetic Field Theory Using Differen-
tial Forms,” IEEE Trans. on Education, vol. 40, no. 1, pp. 53–68, 1997.

[62] F. H. Branin, “The Algebraic-Topological Basis for Network Analogies and for Vector Calculus,”
in Symposium on Generalized Networks (12–14 April 1966). Polytechnic Institute of Brooklyn,
1966, pp. 453–491.

[63] J. M. Hyman and M. J. Shashkov, “Natural Discretizations for the Divergence, Gradient, and Curl
on Logically Rectangular Grids,” Comput. Math. Appl., vol. 33, no. 4, pp. 81–104, 1997.

[64] ——, “Adjoint Operators for the Natural Discretizations of the Divergence, Gradient, and Curl on
Logically Rectangular Grids,” Appl. Numer. Math., vol. 25, no. 4, pp. 413–442, 1997.

[65] J. M. Hyman, M. J. Shashkov, and S. Steinberg, “The Numerical Solution of Diffusion Problems in
Strongly Heterogeneous Non-Isotropic Materials,” J. Comput. Phys., vol. 132, no. 1, pp. 130–148,
1997.

[66] J. M. Hyman and M. J. Shashkov, “The Approximation of Boundary Conditions for Mimetic Finite
Difference Methods,” Computers & Mathematics with Applications, vol. 36, pp. 79–99, 1998.

[67] H. R. Schwarz, Numerische Mathematik. Stuttgart: B. G. Teubner, 1997.

[68] S. Larsson and V. Thomee, Partial Differential Equations with Numerical Methods. Springer,
2003.

[69] H. Ceric, “Numerical Techniques in Interconnect and Process Simulation,” Dissertation, Technische
Universität Wien, 2004.

[70] M. McIlroy, “Mass-Produced Software Components,” Proc. NATO Conf. on Software Engineering,
Garmisch, Germany, 1968.

[71] M. Jazayeri, “Component Programming - A Fresh Look at Software Components,” in Proc. Soft-
ware Engineering (ESEC’95). Berlin,: Springer, W. Schäfer and P. Botella, Eds., 1995, pp. 457–
478.

[72] Boost C++ Libraries, Boost. [Online]. Available: http://www.boost.org

139

[73] Boost Fusion 2, Boost, 2006. [Online]. Available: http://spirit.sourceforge.net/

[74] Boost Xpressive, Boost, 2006. [Online]. Available: http://www.boost.org/

[75] Boost Spirit, Boost, 2006. [Online]. Available: http://spirit.sourceforge.net/

[76] R. Garcia, J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock, “A Comparative Study of Language
Support for Generic Programming,” in Proc. of the 18th Annual ACM SIGPLAN. New York, NY,
USA: ACM Press, 2003, pp. 115–134.

[77] ——, “An Extended Comparative Study of Language Support for Generic Programming,” J.
of Functional Programming, vol. 17, no. 2, pp. 145–205, March 2007. [Online]. Available:
http://dx.doi.org/10.1017/S0956796806006198

[78] R. B. Haber, B. Lucas, and N. Collins, “A Data Model for Scientific Visualization with Provisions
for Regular and Irregular Grids,” in VIS ’91: Proc. of the 2nd Conf. on Visualization ’91. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1991, pp. 298–305.

[79] E. Codd, “A Relational Model of Data for Large Shared Data Banks,” Commun. ACM, vol. 13,
no. 6, pp. 377–387, 1970.

[80] IBM Visualization Data Explorer, 3rd ed., IBM Corporation, Yorktown Heights, NY, USA, Feb.
1993.

[81] E. Bethel, “Interoperability of Visualization Software and Data Models is Not an Achievable Goal,”
in VIS ’03: Proc. of the 14th IEEE Visualization 2003 Conf. (VIS’03). Washington, DC, USA:
IEEE Computer Society, 2003, p. 114.

[82] W. Benger, G. Ritter, and R. Heinzl, “The Concepts of VISH,” in Proc. of the 4th High-End Visual-
ization Workshop, Tyrol, Austria, June 18–22 2007, pp. 28–41.

[83] R. Wirdemann and T. Baustert, Rapid Web Development mit Ruby on Rails. München: Hanser,
2006.

[84] E. N. Volanschi, C. Counsel, G. Muller, and C. Cowan, “Declarative Specialization of Object-
Oriented Programs,” in Proc. of the Object-Oriented Programming Systems, Languages, and Ap-
plications Conf. New York, NY, USA: ACM Press, 1997, pp. 286–300.

[85] R. Affeldt, H. Masuhara, E. Sumii, and A. Yonezawa, “Supporting Objects in Run-Time Bytecode
Specialization,” in Proc. of the Symp. on Part. Eval. and Semantics-Based Prog. Manip. New
York, NY, USA: ACM Press, 2002, pp. 50–60.

[86] H. M. Andersen and U. P. Schultz, “Declarative Specialization for Object-Oriented-Program Spe-
cialization,” in PEPM ’04: Proc. of the 2004 ACM SIGPLAN Symp. on Part. Eval. and Semantics-
Based Prog. Manip. New York, NY, USA: ACM Press, 2004, pp. 27–38.

[87] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler Transformations for High-Performance
Computing,” in Proc. of the Object-Oriented Programming Systems, Languages, and Applications
Conf., vol. 26, 1996, pp. 345–420.

[88] D. Gay and B. Steensgaard, “Fast Escape Analysis and Stack Allocation for Object-Based Pro-
grams,” in CC ’00: Proc. of the 9th Conf. on Compiler Constr. London, UK: Springer, 2000, pp.
82–93.

140

[89] J. Järvi, D. Gregor, J. Willcock, A. Lumsdaine, and J. G. Siek, “Algorithm Specialization in Generic
Programming - Challenges of Constrained Generics in C++,” in PLDI ’06: Proc. of the ACM
SIGPLAN 2006 Conf. on Programming Language Design and Implementation. New York, NY,
USA: ACM Press, June 2006.

[90] T. Geraud and A. Duret-Lutz, “Generic Programming Redesign Pattern,” in Proc. of the 5th
Conf. on Pattern Lang. of Progr. (EuroPLoP 2000), Irsee, Germany, 2000. [Online]. Available:
citeseer.ist.psu.edu/geraud00generic.html

[91] J. Järvi, J. Willcock, and A. Lumsdaine, “Concept-Controlled Polymorphism,” in GPCE ’03: Proc.
of the 2nd Conf. on Generative Prog. and Comp. Eng. New York, NY, USA: Springer, 2003, pp.
228–244.

[92] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns Applied.
Boston, MA, USA: Addison-Wesley, 2001.

[93] D. Gregor, J. Järvi, M. Kulkarni, A. Lumsdaine, D. Musser, and S. Schupp, “Generic Programming
and High-Performance Libraries,” Intl. J. of Parallel Prog., vol. 33, no. 2, June 2005.

[94] J. G. Siek and A. Lumsdaine, “Concept Checking: Binding Parametric Polymorphism in C++,”
in Proc. of the First Workshop on C++ Template Programming, Erfurt, Germany, 2000. [Online].
Available: citeseer.nj.nec.com/siek00concept.html

[95] A. Dekker, “Lazy Functional Programming in Java,” ACM SIGPLAN Notices, vol. 41, no. 3, pp.
30–39, March 2006.

[96] M. Naftalin and P. Wadler, Java Generics and Collections. O’Reilly & Associates, 2006.

[97] L. Prechelt, “An Empirical Comparison of Seven Programming Languages,” Computer, vol. 33,
no. 10, pp. 23–29, 2000. [Online]. Available: citeseer.ist.psu.edu/article/prechelt00empirical.html

[98] P. Wegner, “Concepts and Paradigms of Object-Oriented Programming,” SIGPLAN OOPS Mess.,
vol. 1, no. 1, pp. 7–87, 1990.

[99] J. Backus, “Can Programming be Liberated from the Von Neumann style?: A Functional Style and
its Algebra of Programs,” Commun. ACM, vol. 21, no. 8, pp. 613–641, August 1978. [Online].
Available: http://portal.acm.org/citation.cfm?id=359579

[100] T. L. Veldhuizen, “Expression Templates,” C++ Report, vol. 7, no. 5, pp. 26–31, June 1995,
reprinted in C++ Gems, ed. Stanley Lippman.

[101] Boost Lambda Library, Boost. [Online]. Available: http://www.boost.org

[102] B. McNamara and Y. Smaragdakis, “Functional Programming in C++ using the FC++ Library,”
SIGPLAN, vol. 36, no. 4, pp. 25–30, Apr. 2001.

[103] K. Driesen and U. Hölzle, “The Direct Cost of Virtual Function Calls in C++,” SIGPLAN Not.,
vol. 31, no. 10, pp. 306–323, 1996.

[104] GNU Compiler Collection (GCC). [Online]. Available: http://gcc.gnu.org/

[105] S. C. Johnson, “YACC: Yet Another Compiler Compiler,” in UNIX Programmer’s Manual. New
York, NY, USA: Holt, Rinehart, and Winston, 1979, vol. 2, pp. 353–387.

[106] O. Bagge, “CodeBoost: A Framework for Transforming C++ Programs,” Master’s thesis, Univer-
sity of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, March 2003.

141

[107] J. Siek and A. Lumsdaine, “Software Engineering for Peak Performance,” C++ Report, pp. 23–27,
May 2000.

[108] T. Veldhuizen, “Guaranteed Optimization for Domain-Specific Programming,” in Domain-Specific
Program Generation, ser. Lecture Notes in Computer Science, vol. 3016. Springer, 2004, pp.
306–324.

[109] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser, “Performance Aspects of a DSEL for Scientific
Computing with C++,” in Proc. of the POOSC Conf., Nantes, France, July 2006, pp. 37–41.

[110] D. Abrahams, J. Siek, and T. Witt, “New Iterator Concepts,” ISO/IEC JTC 1, Information Technol-
ogy, Subcommittee SC 22, Programming Language C++, Tech. Rep. N1477 03-0060, 2003.

[111] S. Selberherr, A. Schütz, and H. Pötzl, “MINIMOS—A Two-Dimensional MOS Transistor Ana-
lyzer,” IEEE Trans. Electron Dev., vol. ED-27, no. 8, pp. 1540–1550, 1980.

[112] R. Sabelka and S. Selberherr, “A Finite Element Simulator for Three-Dimensional Analysis of
Interconnect Structures,” Microelectronics J., vol. 32, no. 2, pp. 163–171, 2001.

[113] R. Bauer, “Numerische Berechnung von Kapazitäten in dreidimensionalen Verdrahtungsstruk-
turen,” Dissertation, Technische Universität Wien, 1994.

[114] R. Sabelka, “Dreidimensionale Finite Elemente Simulation von Verdrahtungsstrukturen auf Inte-
grierten Schaltungen,” Dissertation, Technische Universität Wien, 2001.

[115] C. Fischer, “Bauelementsimulation in einer computergestützten Entwurfsumgebung,” Dissertation,
Technische Universität Wien, 1994.

[116] R. Klima, “Three-Dimensional Device Simulation with Minimos-NT,” Dissertation, Technische
Universität Wien, 2002.

[117] S. Wagner, “Small-Signal Device and Circuit Simulation,” Dissertation, Technische Universität
Wien, 2005.

[118] M. Radi, “Three-Dimensional Simulation of Thermal Oxidation,” Dissertation, Technische Univer-
sität Wien, 1998.

[119] T. Binder, “Rigorous Integration of Semiconductor Process and Device Simulators,” Dissertation,
Technische Universität Wien, 2002.

[120] A. Fabri, “CGAL - The Computational Geometry Algorithm Library,” 2001. [Online]. Available:
http://citeseer.ist.psu.edu/fabri01cgal.html

[121] S. Pion and A. Fabri, “A Generic Lazy Evaluation Scheme for Exact Geometric Computations,” in
Proc. of the Object-Oriented Programming Systems, Languages, and Applications Conf., Portland,
OR, USA, October 2006, pp. 75–84.

[122] M. Haveraaen, H. Friis, and T. Johansen, “Formal Software Engineering for Computational Mod-
eling,” Nordic J. of Computing, vol. 3, no. 6, pp. 241–270, 1999.

[123] C. S. Rafferty and R. K. Smith, “Solving Partial Differential Equations with the Prophet
Simulator,” Bell Laboratories, Lucent Technologies, 1996. [Online]. Available: http:
//www-tcad.stanford.edu/˜prophet/math.pdf

[124] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations Analysis Library,
Technical Reference. [Online]. Available: http://www.dealii.org/

142

[125] P. Castillo, R. Rieben, and D. White, “FEMSTER: An Object-Oriented Class Library of High-Order
Discrete Differential Forms,” ACM Trans. Math. Softw., vol. 31, no. 4, pp. 425–457, 2005.

[126] A. Logg, T. Dupont, J. Hoffman, C. Johnson, R. C. Kirby, M. G. Larson, and L. R. Scott, “The
FEniCS Project,” Chalmers Finite Element Center, Tech. Rep. 2003-21, 2003.

[127] K. Czarnecki and U. W. Eisenecker, “Components and Generative Programming,” in ESEC/FSE-7:
Proc. 7th ESEC. London, UK: Springer, 1999, pp. 2–19.

[128] R. Pozo, “Template Numerical Toolkit for Linear Algebra: High Performance Programming with
C++ and the Standard Template Library,” Intl. J. of High Performance Computing Applications,
vol. 11, no. 3, pp. 251–263, Fall 1997.

[129] W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II – A General Purpose Object-Oriented Finite
Element Library,” Institute for Scientific Computation, Texas A&M University, Tech. Rep. ISC-06-
02-MATH, 2006.

[130] J. A. Lewis, S. M. Henry, D. G. Kafura, and R. S. Schulman, “An Empirical Study of the Object-
Oriented Paradigm and Software Reuse,” in Proc. of the Object-Oriented Programming Systems,
Languages, and Applications Conf. New York, NY, USA: ACM Press, 1991, pp. 184–196.

[131] T. L. Veldhuizen, “Five Compilation Models for C++ Templates,” in 1st Workshop on C++
Template Programming, October 2000. [Online]. Available: http://oonumerics.org/tmpw00/

[132] S. Selberherr, Analysis and Simulation of Semiconductor Devices. Wien–New York: Springer,
1984.

[133] H. P. Langtangen and X. Cai, “Mixed Language Programming for HPC Applications,” in Proc. of
the PARA Conf., Umea, Sweden, June 2006, p. 154.

[134] Amira Advanced 3D Visualization and Volume Modeling, Mercury Computer Systems. [Online].
Available: http://www.amiravis.com/

[135] Paraview, Paraview. [Online]. Available: http://www.paraview.org/

[136] FiberHDF5, Fiber Bundle HDF5 Library. [Online]. Available: http://www.fiberbundle.net//

[137] R. Heinzl and T. Grasser, “Generalized Comprehensive Approach for Robust Three-Dimensional
Mesh Generation for TCAD,” in Proc. Conf. on Sim. of Semiconductor Processes and Devices,
Tokio, September 2005, pp. 211–214.

[138] P. Fleischmann and S. Selberherr, “Enhanced Advancing Front Delaunay Meshing in TCAD,” in
Proc. Conf. on Sim. of Semiconductor Processes and Devices, 2002, pp. 99–102.

[139] J. Schöberl, “NETGEN - An Advancing Front 2D/3D-Mesh Generator Based on Abstract Rules,”
Comput. Visual. Sci., vol. 1, pp. 41–52, 1997.

[140] H. Si, “On Refinement of Constrained Delaunay Tetrahedralizations,” 15th Intl. Meshing
Roundtable, September 2006.

[141] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Users Manual,” Argonne National
Laboratory, Tech. Rep. ANL-95/11 - Revision 2.3.2, September 2006. [Online]. Available:
http://www.mcs.anl.gov/petsc/docs

143

[142] S. Mauch, “Efficient Algorithms for Solving Static Hamilton-Jacobi Equations,” Dissertation, Cal-
ifornia Institute of Technology, Purdue, CA, 2003.

[143] L. Lee and A. Lumsdaine, “Generic Programming for High Performance Scientific Applications,”
in JGI ’02: Proc. of the 2002 joint ACM-ISCOPE Conf. on Java Grande. New York, NY, USA:
ACM Press, 2002, pp. 112–121.

[144] C. E. Oancea and S. M. Watt, “Parametric Polymorphism for Software Component Architectures,”
in Proc. of the Object-Oriented Programming Systems, Languages, and Applications Conf. New
York, NY, USA: ACM Press, 2005, pp. 147–166.

[145] T. L. Veldhuizen, “Using C++ Template Metaprograms,” C++ Report, vol. 7, no. 4, pp. 36–43,
May 1995, reprinted in C++ Gems, ed. Stanley Lippman.

[146] J. Siek and A. Lumsdaine, “The Matrix Template Library: Generic Components for High-
performance Scientific Computing,” Computing in Science and Engineering, vol. 1, no. 6, pp.
70–78, Nov/Dec 1999.

[147] R. Whaley and J. Dongarra, “Automatically Tuned Linear Algebra Software,” in Proc. of the 1998
ACM/IEEE Conf. on Supercomputing (CDROM). IEEE Computer Society, 1998, pp. 1–27, cD-
ROM Proc.

[148] Stream - Sustainable Memory Bandwidth in High Performance Computers, Boost. [Online]. Avail-
able: http://www.cs.virginia.edu/stream/

[149] J. G. S. Todd L. Veldhuizen, “Combining Optimizations, Combining Theories,” Indiana University,
Tech. Rep. 582, May 2003. [Online]. Available: http://www.cs.indiana.edu/cgi-bin/techreports/
TRNNN.cgi?trnum=TR582

[150] T. L. Veldhuizen, “Arrays in Blitz++,” in Proc. Symp. on Comp. in Obj.-Oriented Parallel Env., ser.
Lecture Notes in Computer Science. Springer, 1998.

[151] S. Schupp, M. Zalewski, and K. Ross, “Rapid Performance Prediction for Library Components,”
in Proc. 4th. ACM Workshop on Software and Performance (WOSP 2004), Redwood City. ACM
Press, 2004, pp. 69–73.

[152] T. Hiramoto, T. Nagumo, T. Ohtou, and K. Yokoyama, “Device Design of Nanoscale MOS-
FETs Considering the Suppression of Short Channel Effects and Characteristics Variations,” IEICE
Transactions on Electronics, vol. E90-C, no. 4, pp. 836–841, 2007.

[153] R. Heinzl, “A Three-Dimensional Analytical Ion Implantation Tool Using the Wafer-State-Server,”
Master Thesis, Technische Universität Wien, 2006.

[154] D. Scharfetter and H. Gummel, “Large-Signal Analysis of a Silicon Read Diode Oscillator,” IEEE
Trans. Electron Dev., vol. 16, no. 1, pp. 64–77, 1969.

[155] M. Kamon, S. McCormick, and K. Sheperd, “Interconnect Parasitic Extraction in the Digital IC
Design Methodology,” in ICCAD ’99: Proc. of the 1999 IEEE/ACM Intl. Conf. on Computer-Aided
Design. Piscataway, NJ, USA: IEEE Press, 1999, pp. 223–231.

[156] D. Abrahams, J. Siek, and T. Witt, “New Iterator Concepts,” ISO/IEC JTC 1, Information Tech-
nology, Subcommittee SC 22, Programming Language C++, Tech. Rep. N1550=03-0133, April
2006.

144

[157] D. Gregor, J. Willcock, and A. Lumsdaine, “Concepts for the C++0x Standard Library: Iterators,”
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++,
Tech. Rep. N2039=06-0109, June 2006.

[158] M. Zalewski and S. Schupp, “Changing Iterators with Confidence. A Case Study of Change Im-
pact Analysis Applied to Conceptual Specifications,” in Proc. of the Object-Oriented Programming
Systems, Languages, and Applications Conf., San Diego, CA, USA, October 2005.

[159] D. Gregor, J. Willcock, and A. Lumsdaine, “Concepts for the C++0x Standard Library: Iterators,”
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++,
Tech. Rep. N2039=06-0109, June 2006.

145

Own Publications

Book Editorships:

[E1] W. Benger, R. Heinzl, W. Kapferer, W. Schoor, M. Tyagi, S. Venkataraman, G. Weber (Eds.): Pro-
ceedings of the 4th High-End Visualization Workshop. Tyrol, Austria, July 2007, ISBN: 978-3-
86541-216-4

Contributions to Books:

[B1] H. Ceric, R. Heinzl, Ch. Hollauer, T. Grasser, S. Selberherr. Microstructure and Stress Aspects of
Electromigration Modeling. In Stress-Induced Phenomena in Metallization, American Institute of
Physics, Melville, 2006, ISBN: 0-7354-03104, 262 - 268.

Papers in Journals:

[J1] R. Heinzl, P. Schwaha, and T. Grasser. A High Performance Generic Scientific Simulation Envi-
ronment. In Lecture Notes in Computer Science, Springer, accepted.

[J2] M. Spevak, R. Heinzl, P. Schwaha, and T. Grasser. A Computational Framework for Topological
Operations. In Lecture Notes in Computer Science, Springer, accepted.

[J3] R. Heinzl, P. Schwaha, and S. Selberherr. A Generic Topology Library. In Science of Computer
Programming, Elsevier, submitted.

Publications in Conference Proceedings:

[P1] A. Sheikholeslami, E. Al-Ani, R. Heinzl, C. Heitzinger, F. Parhami, F. Badrieh, H. Puchner, T. Grasser,
and S. Selberherr. Level Set Method Based General Topography Simulator and its Applications in
Interconnect Processes. In Intl. Conf. on Ultimate Integration of Silicon, pages 139–142, Bologna,
Italy, July 2005.

[P2] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. A Novel Technique for Coupling Three-
Dimensional Mesh Adaptation with an A Posteriori Error Estimator. In Proc. 2005 PhD Research
in Microel. and Elect., pages 175–178, Lausanne, Switzerland, July 2005.

[P3] A. Sheikholeslami, F. Parhami, R. Heinzl, F. Badrieh, H. Puchner, T. Grasser, and S. Selberherr.
Applications of Three-Dimensional Topography Simulation in the Design of Interconnect Lines.
In Proc. Conf. Sim. of Semiconductor Processes and Devices, pages 187–190, Tokio, Japan,
September 2005.

146

[P4] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser. Coupling Three-Dimensinoal Mesh Adaptation
with an A Posteriori Error Estimator. In Proc. Conf. Sim. of Semiconductor Processes and Devices,
pages 235–238, Tokio, Japan, September 2005.

[P5] R. Heinzl and T. Grasser. Generalized Comprehensive Approach for Robust Three-Dimensional
Mesh Generation for TCAD. In Proc. Conf. Sim. of Semiconductor Processes and Devices, pages
211–214, Tokio, Japan, September 2005.

[P6] P. Schwaha, R. Heinzl, W. Brezna, J. Smoliner, H. Enichlmair, R. Minixhofer, and T. Grasser. Fully
Three-Dimensional Analysis of Leakage Current in Non-Planar Oxides. In 2005 Europ. Sim. and
Modeling Conf., pages 469–473, Porto, Portugal, October 2005.

[P7] E. Al-Ani, R. Heinzl, P. Schwaha, T. Grasser, and S. Selberherr. Three-Dimensional State of the Art
Topography Simulation. In 2005 Europ. Sim. and Modeling Conf., pages 430–432, Porto, Portugal,
October 2005.

[P8] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser. Adaptive Mesh Generation for TCAD with
Guaranteed Error Bounds. In Proc. 2005 Europ. Sim. and Modeling Conf., pages 425–429, Porto,
Portugal, October 2005.

[P9] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. Concepts for High Performance Generic Scien-
tific Computing. In Proc. of the MATHMOD Conf., volume 1, page 34 Vienna, Austria, February
2006.

[P10] M. Spevak, R. Heinzl, P. Schwaha, and T. Grasser. Simulation of Microelectronic Structures using
A Posteriori Error Estimation and Mesh Adaptation. In Proc. of the MATHMOD Conf., volume 1,
page 317, Vienna, Austria, February 2006.

[P11] M. Spevak, R. Heinzl, P. Schwaha, and T. Grasser. Process and Device Simulation with a Generic
Scientific Simulation Environment. In Proc. of the Intl. Conf. on Microelectronics, volume 2, pages
475–478, Belgrad, Serbia and Montenegro, April 2006.

[P12] P. Schwaha, R. Heinzl, W. Brezna, J. Smoliner, H.Enichlmair, R. Minixhofer, and T. Grasser. Leak-
age Current Analysis of a Real World Silicon-Silicon Dioxide Capacitance. In Proc. of the Intl.
Caribbean Conf. on Device, Circuits and Systems, pages 365–370, Playa del Carmen, Mexico,
April 2006.

[P14] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. Multidimensional and Multitopological TCAD
with a Generic Simulation Environment. In Proc. of the Intl. Caribbean Conf. on Device, Circuits
and Systems, pages 173–176, Playa del Carmen, Mexico, April 2006.

[P15] R. Heinzl, M. Spevak, and P. Schwaha. A Novel High Performance Approach for Technology
Computer Aided Design. In Proc. of the Electrical Engineering, Information and Communation
Technologies Conf., volume 4, pages 446–450, Brno, Czech Rep., April 2006.

[P16] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser A Generic Scientific Simulation Environment
for Multidimensional Simulation in the Area of TCAD. In Proc. of the NSTI., volume 4, pages
526–529, Boston, USA, May 2006.

[P17] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. High Performance Process and Device Simula-
tion with a Generic Environment. In Proc. of the 14th Iranian Conf. on El. Eng. ICEE 2006, pages
446–450, Teheran, Iran, May 2006.

147

[P18] A. Sheikholeslami, R. Heinzl, S. Hozler, C. Heitzinger, M. Spevak, M. Leicht. O. Häberlen, J. Fug-
ger, F. Badrieh, F. Parhami, H. Puchner, T. Grasser, and S. Selberherr. Applications of Two- and
Three-Dimensional General Topography Simulator in Semiconductor Manufacturing Processes. In
Proc. of the 14th Iranian Conf. on El. Eng. ICEE 2006, pages 446–450, Teheran, Iran, May 2006.

[P19] M. Spevak, R. Heinzl, P. Schwaha, and T. Grasser. A Computational Framework for Topological
Operations. In Proc. of the PARA Conf., page 57, Umea, Sweden, June 2006.

[P20] R. Heinzl, M. Spevak, P. Schwaha, and T. Grasser. A High Performance Generic Scientific Simula-
tion Environment. In Proc. of the PARA Conf., page 61, Umea, Sweden, June 2006.

[P21] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser. Advanced Equation Processing for TCAD. In
Proc. of the PARA Conf., page 64, Umea, Sweden, June 2006.

[P22] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser. Performance Aspects of a DSEL for Scien-
tific Computing with C++. In Proc. of the Parallel/High Performance Object-Oriented Scientific
Computing Conf., pages 37–41, Nantes, France, July 2006.

[P23] P. Schwaha, R. Heinzl, M. Spevak, and T. Grasser. A Generic Approach to Scientific Computing.
In Proc. of the Intl. Congress on Computational and Applied Mathematics, page 137, Leuven,
Belgium, July 2006.

[P24] M. Spevak, P. Schwaha, R. Heinzl, and T. Grasser. Automatic Linearization using Functional
Programming for Scientific Computing. In Proc. of the Intl. Congress on Computational and
Applied Mathematics, page 147, Leuven, Belgium, July 2006.

[P25] M. Spevak, R. Heinzl,P. Schwaha, T. Grasser, and S. Selberherr. A Generic Discretization Library.
In Proc. of the Object-Oriented Programming Systems, Languages and Applications, pages 95–100,
Portland, USA, October 2006.

[P26] R. Heinzl, M. Spevak, P. Schwaha, and S. Selberherr. A Generic Topology Library. In Proc. of the
Object-Oriented Programming Systems, Languages and Applications, pages 85–93, Portland, USA,
October 2006.

[P27] R. Heinzl, M. Spevak, P. Schwaha, and S. Selberherr. Performance Analysis for High-Precision
Interconnect Simulation. In Proc. of the European Sim. and Modelling Conf., pages 113–116,
Toulouse, France, October 2006.

[P28] P. Schwaha, R. Heinzl, G. Mach, C. Pogoreutz, S. Fister, and S. Selberherr. A High Performance
Webappliation for an Electro-Biological Problem. In Proc. of the European Conf. on Modelling
and Sim., pages 218–222, Prague, Czech Republic, June 2007.

[P29] R. Heinzl, P. Schwaha, C. Giani, and S. Selberherr. Modeling of Non-Trivial Data Structres with a
Generic Scientific Simulation Environment. In Proc. of the 4th High-End Visualization Workshop,
pages 3–11, Tyrol, Austria, June 2007.

[P30] P. Schwaha, C. Giani, R. Heinzl, and S. Selberherr. Visualization of Polynomials Used in Series
Expansion. In Proc. of the 4th High-End Visualization Workshop, pages 137–146, Tyrol, Austria,
June 2007.

[P31] W. Benger, G. Ritter, and R. Heinzl. The Concepts of VISH. In Proc. of the 4th High-End
Visualization Workshop, pages 26–39, Tyrol, Austria, June 2007.

[P32] R. Heinzl, P. Schwaha, and S. Selberherr. Modern Concepts for High-Performance Scientific Com-
puting. In Proc. of the Intl. Conf. on Software and Data Technologies, pages 100–107, Barcelona,
Spain, July 2007.

148

[P33] P. Schwaha, R. Heinzl, and S. Selberherr. Simulation Methodologies for Scientific Computing. In
Proc. of the Intl. Conf. on Software and Data Technologies, pages 270–276, Barcelona, Spain, July
2007.

[P34] R. Heinzl, G. Mach, P. Schwaha, and S. Selberherr. Labtool - A Managing Software for Computer
Courses. In Proc. of the European Sim. and Modelling Conf., accepted, St. Julian’s, Malta, October
2007.

[P35] R. Heinzl, G. Mach, P. Schwaha, and S. Selberherr. A Performance Test Platform. In Proc. of the
European Sim. and Modelling Conf., accepted, St. Julian’s, Malta, October 2007.

[P36] P. Schwaha, R. Heinzl, and S. Selberherr. Electro-Biological Simulation using a Web Front-End.
In Proc. of the European Sim. and Modelling Conf., accepted, St. Julian’s, Malta, October 2007.

[P37] F. Stimpfl, R. Heinzl, P. Schwaha, and S. Selberherr. A Multimode Mesh Generation Approach for
Scientific Computing. In Proc. of the European Sim. and Modelling Conf., accepted, St. Julian’s,
Malta, October 2007.

149

Curriculum Vitae

1997 High School Graduation
at the HTL Donaustadt, Wien

1997-1998 Military service
October 1998 Enrolled in Electrical Engineering

at the Technical University of Vienna

October 2003 Received degree of “Diplomingenieur” in Electrical Engineering
with a specialization in Computer Technology
from the Technical University of Vienna

November 2003 Entered doctoral program at the
Institute for Microelectronics, TU Vienna

September 2007 Finished doctoral program at the
Institute for Microelectronics, TU Vienna

150

