
D I P L O M A R B E I T

Data Analysis of the XBox-2
Radiofrequency Cavity at CERN using

Machine Learning Techniques

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Lorenz Fischl, BSc

Matrikelnummer 01625248

ausgeführt am Institut für Analysis und Scientific Computing
der Fakultät für Mathematik und Geoinformation

unter der Leitung von Ass. Prof. Dipl.-Ing. Dr.techn. Michael Feischl

Wien, Mai 2022

M A S T E R T H E S I S

Data Analysis of the XBox-2
Radiofrequency Cavity at CERN using

Machine Learning Techniques

submitted for the degree of

Diplom-Ingenieur

in the master program

Technical Mathematics

submitted by

Lorenz Fischl, BSc

Student ID 01625248

at the Institute of Analysis and Scientific Computing
Faculty of Mathematics and Geoinformation

under the supervision of Ass. Prof. Dipl.-Ing. Dr.techn. Michael Feischl

Vienna, May 2022

1 Abstract

This master’s thesis starts with an introduction to particle physics. Thereby,
the basic operating principles of high-gradient linear accelerators are explained.
One of the main limitations in these devices is the occurrence of breakdowns,
which is investigated in the experimental accelerating structure XBox-2 located
at CERN. An adaptable framework for data analysis using machine learning is
created with the goal of deriving analysis results from raw experimental data. A
strong focus lies on its optimized implementation, which is described in detail. The
framework is applied to the data of the XBox-2 accelerator with unsupervised and
supervised machine learning techniques. A hypothesis for breakdown indicators is
derived from the trained models and tested in the lab. However, further testing
on accelerating structures is required before the results of the analysis can be
validated.

I

2 Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated
research myself, using only literature cited in this volume. If text passages from
sources are used literally, they are marked as such.

I confirm that this work is original and has not been submitted elsewhere for any
examination, nor is it currently under consideration for a thesis elsewhere.

Vienna, May 2022
Lorenz Fischl, BSc

II

3 Acknowlegements

I would like to thank my supervisor Michael Feischl for his great support before,
during and after my semester abroad at CERN. This thesis would not be possible
without his support for my master thesis in cooperation with CERN.

I would like to thank my colleges at CERN for the work experience in the greatest
international collaboration environment I could ever imagine. I am especially
grateful to Christoph Obermair who helped and guided me during my whole stay.
Milosz Blaszkiewicz was not only a great work college but also became a friend
during my stay in Geneva. Lee Millar always helpfully answered my questions on
the engineering of particle accelerators.

I would like to thank my parents for their endless support in education financially,
emotionally, and by spending time with me. They truly embraced the importance
of their children’s intellectual development.

I would like to thank my partner who supported me throughout my whole studies
and my yet unborn child who gave me additional motivation to work hard on this
thesis.

I would like to thank my colleges at my weight lifting sports clubs Eiche Wien
Ottakring and Polizei SV with whom I was able to recover from long hours of
studying with physical training.

III

Contents

1 Abstract I

2 Affidavit II

3 Acknowlegements III

4 Introduction 1

4.1 Overview . 1

4.2 Relativistic Physics . 2

4.2.1 Classical Mechanics . 2

4.2.2 Special Relativity . 4

4.2.3 Relativistic Mechanics . 9

4.2.4 Electromagnetism . 9

4.3 Standard Model . 10

4.4 Particle Accelerators Design . 12

4.4.1 Fixed vs. Dynamic Target Particle Accelerator 14

4.4.2 Linear vs. Circular Particle Accelerator 16

5 Particle Accelerators at CERN 18

5.1 The Large Hadron Collider . 18

5.2 Future Accelerators . 20

6 X-Band Test Facilities at CERN 22

6.1 Radio Frequency Cavities . 22

6.2 The XBox-2 Test Stand at CERN 22

6.3 XBox-2 Dataset . 25

6.3.1 Tdms files . 27

6.3.2 Event data . 27

6.3.3 Trend data . 30

IV

7 Machine Learning 31

7.1 Training Techniques . 31

7.2 Neural Networks . 32

8 Data Analysis Framework 35

8.1 Introduction . 35

8.1.1 Abstract Framework . 35

8.2 Data Format . 36

8.2.1 Data Format Candidates . 37

8.2.2 Data Format Comparison 41

8.3 Transformation . 43

8.3.1 Convert Data . 44

8.3.2 Clean and Process Data . 45

8.4 Exploration . 47

8.4.1 Feature Calculation . 47

8.4.2 Unsupervised Machine Learning 49

8.5 Modeling . 52

8.5.1 Supervised Machine Learning 52

8.5.2 Explanation and Validation 54

8.6 Execution . 55

9 Conclusion 57

10 Appendix 63

10.1 Represent Tdms Files as a Database 63

10.2 Implementation . 68

10.2.1 Transformation . 74

10.2.2 Exploration . 80

10.2.3 Feature Definitions . 88

V

4 Introduction

4.1 Overview

The investigation of high energy phenomena in particle accelerators is the essential
part of modern particle physics. The research has improved the understanding of
the standard model, which is a model of the fundamental building blocks of matter.
Larger and more powerful machines for acceleration are needed in order to explain
additional phenomena. Additionally, this technology is used in other areas like
cancer treatment which benefit from the technological advances.

Data analysis with machine learning has proved to be effective for the analysis of
experimental data. In machine maintenance and protection at CERN, however,
machine learning is more novel. Often customized solutions are created for each
project, which is a tedious and time consuming process. Instead of individual
solutions a universal machine learning framework might increase the quality of
data analysis and its work flow. Furthermore, new machine learning features are
developed regularly. Analysis does not only have to be flexible to adapt to new
data but also reproducible to apply new machine learning techniques.

The primary source of information for the theoretical background in high energy
physics were the CERN Accelerator School courses, two books on the topic of spe-
cial relativity by Gunther Helmut and Woodhouse Nicholas [Gun13]; [Woo16] and
the book Particle Physics by Anwar Kamal [Kam14]. Plans of future accelerators
at CERN and the technology of linear accelerators are published by CERN in
press statements, the implementation plan and the summary report of the CLIC
project [Bur+18]; [Aic+18]. The second part of this thesis focuses on the effi-
cient implementation of the data transformation and manipulation of the machine
learning framework used in Explainable Machine Learning for Breakdown Predic-
tion in High Gradient RF Cavities by Christoph Obermair [Obe+22]. There, an
in-depth analysis of the experimental data, the device under test and the physical
explanation of the analysis results is done. Machine learning is currently a very
active field of research. Thus the techniques for the design of machine learning
models and their evaluations are a combination of suggested techniques and new
implementations. The tensorflow package by Google was used for neural networks,
the UMAP Algorithm by McInnes Leland was used for data exploration [MHM18],
and the shapely values by Lundberg Scott and Lee Su-In [LL17] were used for the
sensitivity analysis. The application of different machine learning models on the
same data is done in [Obe+22].

This thesis first presents a soft introduction into theoretical physics that is build on
a solid axiomatic basis. This enables a theoretical analysis of the relativistic me-

1

chanics of high energy physics experiments. A comparison of different accelerator
and collider designs is done on basis of those results. This thesis further compares
linear to circular accelerators and introduces the XBox-2 test stand, a klystron-
based high power test facility at CERN which has been established as part of the
CLIC (compact linear collider) project at CERN. Subsequently, a framework for
data analysis with machine learning is created and applied to XBox-2 test data.
It is designed to be reused for the application of machine learning techniques onto
other projects. A thorough comparison of data formats is done with an analysis of
their data structure and their implementation possibilities for the framework. The
required storage space and the read- and write-speeds are compared on example of
the XBox-2 data set. The framework comprises data cleaning, calculating machine
learning features, training a machine learning model to predict faulty behavior of
the accelerating unit, and analyzing its predictions with a sensitivity analysis.
Multiple graphical illustrations of structural or functional properties of the frame-
work help to visualize how the data is processed. Additionally, its implementation
is presented in the appendix.

4.2 Relativistic Physics

In this section classical mechanics are introduced on the basis of Newton’s laws
of motion. Together with the postulates of special relativity by Einstein, they
form relativistic mechanics. Finally, the Lorentz equation, which describes the
electromagnetic force, is introduced.

4.2.1 Classical Mechanics

A frame of reference or observer is referred to as the position in space and time
from which objects are observed. The observer is always the center of the Cartesian
coordinate system.

In Newton mechanics objects are referred to as bodies of matter that follow a
three dimensional path s : R+ → R3, with velocity v : R+ → R3 and acceleration
a : R+ → R3. This path depends on the frame of reference, the observer.

Newton’s first law of motion defines what an inertial reference frame is. It states:

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi
uniformiter in directum, nisi quatenus a viribus impressis cogitur sta-
tum illum mutare.
Law I: An object stays still or will continue to move in a straight line,
when the net sum of forces that act on it is zero. [New40]

2

According to the second law, which will be presented below, this is only true if the
observer is in a frame of reference where no acceleration and no rotation happens.
Such an observer is referred to as an inertial frame of reference. This axiom ensures
the existence of such a frame of reference.

Newton I Let there be a frame of reference Σ0. If each object that experiences
a net force F : R+ → R of zero experiences no acceleration a : R+ → R3, then
the frame of reference Σ0 is called inertial, i.e. F = 0 (constant and zero) implies
a = 0.

The first law of motion is often called the law of inertia.

The second law of motion is the most common one of the Newton’s laws. It defines
the relation of acceleration and force applied on objects.

Lex II: Mutationem motus proportionalem esse vi motrici impressae,
et fieri secundum lineam rectam qua vis illa imprimitur.
Law II: The change of motion of an object is directly proportional to
the net force that acts on it, the direction of change is equal to the
direction of the net force. [New40]

The change of motion is called acceleration. The factor with which the net force
and the acceleration are proportional depends on the units and the object’s mass.
The product of mass and velocity is called momentum and will help with the
formulation of the second law of motion.

Newton II Let the frame of reference be inertial and contain an object of mass
m : R+ → R+. Let the net force that acts on the object be given by F : R+ → R
and the velocity of it be given by the function v : R+ → R3. Then the momentum
p = mv satisfies F = dp

dt
.

The second law of motion is often shortened to F = mdv
dt

= ma if the mass of
an object is assumed to be constant. However, we will later need the concept of
variable mass or rather relativistic momentum.

The third law of motion is commonly known by the Latin phrase action et reaction
which means that every impulse of motion comes form a counter impulse within a
closed system.

Lex III: Actioni contrariam semper et aequalem esse reactionem, sive
corporum duorum actiones in se mutuo semper esse aequales et in
partes dirigi.

3

Law III: Every force acting on an object causes a counter force, which
is equally strong and points in the opposite direction. [New40]

The conservation of momentum can be directly derived from this law. It states
that the sum of all momentums stays constant. For each force applied on an object
there is a counter object on which an equally large force is applied.

Newton III Let Σ0 be an inertial frame of reference and A and B be two objects
in it. Let the force that acts on B by A be called FAB ∈ R and the force that acts
on A by B be called FBA ∈ R then it holds that FAB = −FBA.

We will now formulate Newton’s third law of motion for n different objects. Outer
forces of the i-th object are referred to as Fi. If all Fi are zero then a force that acts
on an object i is caused by another object j. For each of those interactions the third
law of motion applies so that for all i, j ∈ {1, . . . , n} the force Fij equals its counter
force −Fji. The sum of all entries of this anti symmetric matrix [Fi,j]i,j=1,...,n is∑n

j=0

∑n
i=1 Fij which is zero.

The sum over all particles momenta is called the total momentum P :=
∑n

i=0 pi.
Its derivative is the sum of all forces d

dt
P =

∑n
i=1

∑n
j=1 Fij+

∑n
i=1 Fi because of the

second law of motion. We assumed the outer forces Fi to be zero and calculated
that the sum of inner forces cancel each other out. Consequently, the derivative
of the total momentum d

dt
[P] is zero[New40, chapter 19].

Newton’s laws of motion describe classical mechanics for speeds v < c. They can
be summarized by

N1 : F = 0 =⇒ d

dt
[p] = 0,

N2 : F =
d

dt
[p]

d

dt
[mv],

N3 : FAB = −FBA or ∀i Fi = 0 =⇒ d

dt
P = 0.

4.2.2 Special Relativity

Time is the fundamental concept of the mathematical model of the universe. It
divides events into past, present and future. The position of an object is typically
given as a function from time to space and with it its velocity and acceleration.
In classical mechanics time is defined to be the same everywhere, regardless of
the position in space and to pass at a constant rate regardless of the movement
in space. In 1905 Albert Einstein published the theory of special relativity where

4

time is defined relative to the observer. The foundation of special relativity is
given by the two following postulates:

➜1 The laws by which the states of physical systems undergo change are
not affected, whether these changes of state be referred to the one or
the other of two systems of coordinates in uniform translatory motion.
➜2 Any ray of light moves in the “stationary” system of coordinates with
the determined velocity c, whether the ray be emitted by a stationary
or by a moving body. Hence velocity = light path

time interval
where time interval

is to be taken in the sense of the definition in ➜ 1. [Ein+05]

In the first postulate of special relativity Einstein states that laws of physics remain
true for each inertial frame of reference (see Section 4.2.1). We will later observe
that mechanics in special relativity follows an adapted version of Newton’s laws
of motion. The second postulate states that the speed of light c = 299792458m/s
is the same regardless of the motion of the observer relative to the source of light.
As a consequence time has to pass at a different rate (dilation) and space has to
be contracted for an object that moves relative to the observer.

In order to create a mathematical model for special relativity where the postulates
hold true, Einstein uses a different synchronization process for time than that
in classical mechanics: Let the observer A send light to an object B at time tA
located l away. When the light is detected at B the time is set to tB = tA + l

c
.

This synchronization process defines events to be simultaneous when the observer
A observes them as simultaneous events. This process is called the Einstein time
synchronization process while in the time of classical mechanics it is called the
classical time synchronization [Gun13, Chapter 4].

For the notation of tensors, the sums of vectors or matrix vector multiplications
the Einstein notation is used. Similar upper and lower indices represent a sum
over that index.

Definition 4.1 (Einstein notation). Let p and q be vectors of length n + 1 with
#–p = (p0, p1, . . . , pn) ∈ Rn+1 and g be a matrix of size (n + 1)2 with according
indices. Then the Einstein’s summation notation is given by

pµq
µ := <p, q> =

n∑
i=0

piqi

gµνp
µqν := <<g, p> , q> =

n∑
i=0

n∑
j=0

gi,jpiqj

Note that a vector v in a vector space of dimension n + 1 can be represented in
basis {b0, . . . , bn}. Thus it holds that v = vµb

µ.

5

In special relativity, a fourth dimension is added to the three space dimensions
in order to keep track of the time which depends on the observers location and
speed. Consider an object B located l away from the observer with a time tB
synchronized with the Einstein synchronization process with the observer’s time
tA. The time component that is assigned to B is given by ctB = ctA+l. The point
in time tB is stored in the 0-th component as the distance light travels from the
beginning of time 0 to tA plus the distance it travels from A to B.

The time coordinate and the space coordinates are given in length unit m (meters).
The time component is usually written as the multiplication of time in s (seconds)
and the speed of light c. Note that by storing the time component in meters, the
4-dimensional vectors have equal units in each component. The space of 4-vectors
(ct, x, y, z) is called Minkowski space. The metric tensor

gµν =

||
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

)|||
induces a pseudo Euclidean space M , which is a real vector space with an indefinite
inner product. The inner product of the Minkowski space of a = (cta, xa, ya, za)
and b = (ctb, xb, yb, zb) is thus given by g(a, b) = gµνa

µbν = a0b0 −
∑3

i=1 aibi =
c2tatb − xaxb − yayb − zazb [Gun13, Chapter 33].

According to the second postulate of special relativity the speed of light is the same
in every inertial system. From that we deduce that objects that move relative to
the observer experience space contraction and time dilatation. This means that
time goes by differently for moving objects and lengths appear contracted from
the viewpoint of the observer. The change from one reference frame or observer to
another is called a transformation. The transformations in this thesis will always
be between inertial frames of reference. The mathematical model for relativis-
tic transformations between Minkowski spaces is called Lorentz-Transformation.
Transformations in classical mechanics between classical vector spaces are isomet-
ric affine linear transformations and are referred to as the Galilei-Transformation.
Under the Lorentz-Transformation, however, time and lengths are contracted by
a factor that depends on the relative velocity of the first to the second observer.
The value of the Lorentz-Transformation factor will be calculated in the following
example as a scaled version of the Galilei-Transformation.

Example 4.2. Let there be two inertial systems Σ and Σ' both located at the
origin at t = 0 = t' that move with velocity v = (v1, 0, 0) relative to each other.
For simplicity we will only consider the first space coordinate x while y and z stay
zero. The system Σ observes the center of Σ' to be at x' = x + vt and the system

6

Σ' observes the center of the system Σ to be at x = x' − vt'. Transforming from
one frame of reference to another with the Galilei-Transformation, which is a good
approximation for v < c, yields

Σ' −→ Σ Σ −→ Σ'

t = t' t' = t
x = x' + vt' x' = x − vt.

The second postulate of special relativity states that the speed of light is the same
for every inertial system. Thus light that is sent away at the origin at the time
t = 0 = t' moves with the speed of light c, regardless of the system. Thus the
position of the light photons is given by

Σ Σ'

xp = ct x'
p = ct'

(1)

When using the Galilei-Transformation we realize that it violates the second pos-
tulate of special relativity. The speed of the light photon x'

p transformed into Σ has
speed c+v which is greater than c. This is why for faster speeds v we expect a time
dilatation by a factor l and space contraction by a factor k. We will first analyze
the space contraction factor k. We define the relativistic transformation of space
to be

Σ' −→ Σ Σ −→ Σ'

x = k(x' + vt') x' = k(x − vt).
(2)

We will now transform the position of the light photons from Σ to Σ' with the
relativistic transformation (2). First, we resolve the position of the photons in
Σ. Then the relativistic transformation is applied and finally the position of the
photons in Σ' is used.

ct = xp = k(x'
p + vt') = k(ct' + vt') (3)

Analogously the transition from Σ' to Σ is given by

ct' = x'
p = k(xp − vt) = k(ct − vt). (4)

We multiply both sides of (3) and (4) and obtain

c2tt' = k2(c − v)(c + v)tt'.

We divide by tt', simplify the equation to c2 = k2(c2 − v2), and finally solve the
equation for k, which yields

k =
1√

1− v2/c2
.

7

We will now analyze the time dilatation. We solve (3) for t and obtain t = k(1 +
v
c
)t'. By inserting (1) we get alternative version t = k(t' + v

c2
x'). Analogously we

obtain t' = k(t + v
c2

x).

The relativistic transformation is often referred to as the Lorentz-Transformation.
The factor (1− v2/c2)−

1
2 often appears in the transformation formulas. It is called

the Lorentz factor and abbreviated as γ = (1 − β2)−1/2 with β = v/c [Gun13,
Chapter 14].

Definition 4.3 (Lorentz-Transformation). Let Σ and Σ' be two inertial systems
that move relative to each other at the speed #–v = (v, 0, 0). The Lorentz-Transfor-
mation from one inertial frame of reference to another is given by

Σ' −→ Σ Σ −→ Σ'

t =
t'+ v

c2
x'√

1−v2/c2 = γ(t' + v
c2

x') t'=
t− v

c2
x√

1−v2/c2 = γ(t − v
c2

x)

x = x'+vt'√
1−v2/c2 = γ(x' + vt') x' = x−vt√

1−v2/c2 = γ(x − vt).

y = y' y' = y
z = z' z = z'

(5)

A relativistic path in the Minkowski space is given by a function from the observer’s
time to 4 dimensional vectors. The proper time of a relativistic path τ is the time
measured when following that path which implies its invariance of observer. For a
moving or accelerating object the 4-velocity or 4-acceleration-vector is the first or
second derivative of the Mikowski space path. Both have equal units for all four
dimensions: m/s (meters per second) or m/s2 (meters per second squared).

In special relativity the mass of a moving object is often said to depend on its
velocity. It can be divided into its rest mass, which is the mass at rest relative
to the observer, and its relativistic mass. An object with rest mass m0 moving at
velocity v relative to the observer has the relativistic mass m = m0√

1−v2/c2 = γm0.

After the publication of special relativity Albert Einstein discovered that special
relativity implies the equivalence of mass and energy. Instead of using the concept
of mass that changes with its velocity he later suggested only using the concept
of rest mass and relativistic kinetic energy in an object. This is possible due to
the mass-energy equivalence [Oku89]. This transforms the widely known formula
E = mc2 with relativistic mass m to the formula

E =
√

m2
0c

4 + p2c2 (6)

with rest mass m0.

8

The 4-momentum-vector #–p is the product of velocity v and the relativistic mass
m. It is given in kg ·m/s (kilogram times meter per second). The 4-energy-vector
is the product of the 4-acceleration times the relativistic mass and is given in
kg ·ms−2 (kilogram times meter per second squared).

4.2.3 Relativistic Mechanics

As seen above, time dilatation and space contraction influence the functions of
velocity, acceleration, and momentum. Consequently, Newton’s laws of motion
are also affected by relativistic physics. The chosen formulations, however, remain
true if interpreted the right way.

The first and second law of relativistic motion are similar when we consider the
relativistic 4-momentum-vector instead of the classic momentum. The first law of
motion, F = 0 then dp

dt
= 0, remains true when using the relativistic 4-momentum

p(t) = γ(v(t))mv(t). The second law of motion, F = dp
dt
, stays true and can be

simplified to

F =
dp

dt
=

dγ

dt
mv + γ

dm

dt
v + γm

dv

dt

= γ3 v

c2
· dv

dt
mv + γ

dm

dt
v + γm

dv

dt

= γm
dv

dt

(
γ2v

2

c2
+ 1

)
+ γ

dm

dt
v

= γm
dv

dt

2− c2

v2

1− c2

v2

+ γ
dm

dt
.

The original formulation of the third law of motion with two forces FAB and FBA

proves to be a complex model in special relativity. It requires the force FAB to
act on the object B at the location xB and the force FBA to act on A at the
location xA simultaneously. Timing the simultaneity for both A and B proves to
be complex whereas the alternative and equivalent formulation of the third law of
motion is simpler. For a number of n objects it holds that if no outer forces act
on the system, then d

dt
P = 0. The total momentum is given by the sum of all n

relativistic 4-momentum[Gun13, Chapter 21].

4.2.4 Electromagnetism

Particle accelerators use electromagnetic force to increase the particles’ momentum
and keep them on their trajectory. Electromagnetism at the macroscopic level is

9

described very well by Maxwell’s equations. However, in this thesis we will only
concentrate on the electric and magnetic fields that act on particles with the so
called Lorentz force [Woo16, Chapter 8].

Let there be a particle with charge e in an inertial frame of reference, a magnetic
field

#–

B : R+ → R3 and an electric field
#–

E : R+ → R3. The electric field and the
magnetic field act on the particle via the Lorentz force F given by the Lorentz
equation

F = e
(

#–

E + v × #–

B
)

where × denotes the cross product of v and B. This already shows that magnetic
fields can only deviate a particles flight path orthogonal to its momentum. Electric
fields, on the other hand, can apply any force. Therefore, in particle accelerators
magnetic fields are used only for particle path deflection while electric fields are
used for acceleration.

4.3 Standard Model

The standard model of elementary particles contains two main groups: fermions,
building blocks of matter, and bosons, the force carriers that are responsible for
the interaction between particles. All known matter in the universe is built from
these fundamental particles.

A visualization of the standard model is displayed in Figure 1. Each square with
rounded edges represents a fundamental particle. We refer to the legend in the
top right corner. In each square the name and its abbreviation are written in the
right bottom corner and on the right hand side. The mass-energy (see mass-energy
equivalence in Section 4.2.2) at rest is written in the top left corner and the charge
of the particle is located on the left hand side. The fermions are located in the three
columns on the left. The first column contains the first generation of fermions, the
second column the second, and the third column the third generation. Generation
has nothing to do with the decay of these particles. It characterizes similarities be-
tween same generation fermions. The fermions are further subdivided into quarks,
that are located in the top two rows in shades of green, and leptons located in the
bottom two rows in shades of blue. The intensity of the color correlates with the
stability of the fundamental particles. The bosons and the explanation field are
displayed on the right hand side of the figure. The bosons are depicted in shades
from red to yellow depending on their strength. The particles are further grouped
by their interaction with the fundamental forces. Again, the intensity of the color
signals the strength of the force. Additionally, the photon and the Z boson point
to the Higgs-Boson as it interacts with both forces via the electroweak interaction,

10

Standard Model
strong force

electromagnetic force

weak force

label

ch
ar

ge

name

mass

u 2
3

up

2.4MeV

c 2
3

charm

1.27GeV

t 2
3

top

171.2GeV

d − 1
3

down

4.8MeV

s − 1
3

strange

104MeV

b − 1
3

bottom

4.2MeV

e −1

electron

0.511MeV

µ −1

muon

105.7MeV

τ −1

tau

1.777GeV

νe 0

e neutrino

≤ 1eV

νµ 0

µ neutrino

≤ 0.2MeV

ντ 0

τ neutrino

≤ 19MeV

g 0

gluon

0eV

γ 0

photon

0eV

W ±1

W boson

80.4MeV

Z 0

Z boson

91.2MeV

H 0

Higgs

125.2GeV

Generation 1st 2nd 3rd

Q
ua

rk
s

Le
pt

on
s

Fermions Bosons
spin = 1

2 spin = 1 spin = 0

Figure 1: The standard model of particle physics

which is still and active field of research.

Fermions can be subdivided into three generations of particles. Matter that hu-
mans interact with contains only the first generation, which is most stable. It
contains the electron, the up quark, and the down quark. Two down quarks and
one up quark form a neutron and two up quarks and one down quark form a
proton. These subatomic particles are called hadrons. Atoms consist of protons,
neutrons and electrons. A higher generation fermion has more mass and is less
stable than its smaller generation version. The up quark has the charm and the
top quark as higher generation ancestors while the down quark has the strange
and the bottom quark. The particles in these two triples are called quarks, the
other two are called leptons. The first lepton triple is the electron with the muon
and tau as ancestors, while the second triple consists of their neutrino pairs.

Interaction with fermions is possible via the four fundamental forces: weak force,
strong force, electromagnetic force and gravity. The transmission of force on parti-

11

cles is done by bosons, the force carriers. The strong force has a very limited range
and only acts on quarks. It only acts on a subatomic level where it plays a big role
in keeping the atomic nuclei together. The strong force is carried by the gluon.
The weak force also solely acts on the subatomic level and is, as the name suggests,
much weaker than the strong force. The weak force is mediated by the W and Z
bosons. The gravitational force is the weakest by several orders of magnitude and
only acts on particles with mass. In high energy physics it is neglected because
of its weakness, even though it has an unlimited range. It is speculated that a
graviton, a force carrying particle for the gravitational force, exists. However, it
has never been detected. The electromagnetic force is the second strongest force
and has infinite range and therefore plays a big role in particle accelerators. Only
a charged particle, the most common one being the electron, interacts with the
electromagnetic force.

All fermions have mass, which makes them interact with the gravitational force.
The W , Z and the Higgs-Boson have mass while the gluon and the photon do not.
The origin of mass of the W and Z bosons was unsolved until the discovery of the
Higgs mechanism and the experimental proof of the existence of the Higgs-Boson.

Not all particles have an electric charge. Each of the up quark ancestor triples has
a charge of 2

3
and each of the the down quark triples a charge of −1

3
. Thus protons

have a charge of 1 and neutrons a charge of 0. Each of the electron ancestor triples
has a charge of −1 while their neutrino pairs have no electric charge.

Quarks come in one of three color charges: red, blue, and green. The gluon, the
particle responsible for the strong force that keeps the groups of particles together,
can only be exchanged if the colors of quarks are different. Protons and neutrons
need one of each color quark in order to be stable. Leptons and bosons have no
color charge.

The spin of a particle defines its angular momentum. All fermions have a spin of
1
2
and bosons a spin of 1 except for the Higgs-Boson that has no spin.

High energy physics explores the boundaries of the standard model and seeks to
verify underlying principles. Understanding the origin of the interaction between
particles and the electromagnetic force is essential for the analysis of particle ac-
celerators, where experiments in particle physics are conducted.

4.4 Particle Accelerators Design

The exploration of the smallest known particles and how they interact with each
other is investigated in high energy physics. The standard model describes the
fundamental building blocks of matter and the interacting forces. An overview can

12

be found in Section 4.3. Until further discovery those particles are assumed to have
no inner structure, they are viewed as being point like. The interaction between
particles is described by three major forces: the strong and the weak force and
electromagnetism. At high energies this theoretical construct can be brought to its
boundaries and potentially reveal the need for new additions. Moreover, some of
these particles decay in a very short time (e.g. Higgs-Boson has an average lifetime
of the order of 10−22s). In order to observe them and to prove their existence in
a controlled lab environment one needs to create them. Such creation of matter
is described via Einstein’s famous identity E = mrelc

2, which relates energy and
relativistic mass. Hence, high energy enables the creation of high-mass particles.
Transforming energy to mass is done by collision of particles. The collision releases
energy from the momentum of the collision particles which creates new mass. A
Higgs-Boson weighs approximately ∼ 125, 38 GeV [Sir+20] which translates to
the rest mass energy of 134 protons. This means that the energy gained by the
momentum has to be several times higher than the rest mass of the particles that
carry it [Tie+21]. The total mass energy E of a particle is given by formula (6) of
Section 4.2.2

E2 = ~m2c4 +
#–~p 2c2.

In this formula ~m ∈ R+ is the rest mass in kg,
#–~p ∈ R3 is the momentum in kg m/s,

and
#–~p 2 =

#–~p · #–~p denotes its Euclidean scalar product. Mass energy equivalence
can be used to simplify Einstein’s equation. Mass and momentum can be given in
the natural unit eV which needs no translation factor c2 and c4. Thus the above
can be rewritten with mass m and momentum #–p given in eV

E =
√

m2 + #–p 2. (7)

As pointed out in Section 4.2.3 the relativistic momentum of a particle is given by

#–p =
mv√

1− v2/c2
=

mv√
1− β2

= γmv,

where β = v2/c2 and γ = (1 − β2)−1/2. We can read from equation (7) that
accelerating a particle increases its momentum and thus increases its energy. On
impact the momentum of a particle is changed. Due to the law of conservation of
mass-energy, a large amount of energy obtained by the momentum is transferred
to mass in form of new particles. This creation process can be observed in particle
accelerators.

The 4-momentum vector p is given by its energy and space components (E, #–p) =
(E, px, py, pz) ∈ R4. For a given particle with the 4-momentum-vector p ∈ M we
can show with (7) that the inner product g of p

g(p,p) = E2 − #–p 2 = m2 + #–p 2 − #–p 2 = m2 (8)

13

is the reset mass squared which is independent of speed. From the independence
of speed, which is also called relativistic invariance, we can deduce the invariance
under the Lorentz transformation [Per00, Section 1];[LP96, Section 8].

Particle creation requires a lot of energy that is extremely concentrated in time
and space in order to be converted to mass. Such high concentrated energies are
achieved by acceleration of particles. The stored energy is liberated on collision
of an incident particle with a target particle. If the momentum relative to each
other is high enough, the mass-energy carried by the particles is released and new
matter might be created [Kam14, Chapter 2].

4.4.1 Fixed vs. Dynamic Target Particle Accelerator

In this section two basic particle collider designs will be compared: two particles
colliding where one is fixed in the lab system (one of them has momentum zero)
and two particles colliding head on (sum of both momenta is zero).

Let pI (pT) be a 4-momentum-vector of an incident (target) particle with rest mass
mI (mT), momentum pI (pT), and energy EI (ET). Particle creation happens in
the system of zero momentum ΣZ due to the conservation of momentum (third
law of motion in Section 4.2.3). It is called zero momentum system because the
momenta (incident and target particle) cancel each other out (# –pΣZ

= 0). After
particle creation the total momentum stays the same. ΣZ is also known as the
center of mass system.

The lab system ΣL does not necessarily coincide with ΣZ . The maximal energy
usable for particle creation is the total energy of the system ΣZ , which is given by
E2

ΣZ
= E2

ΣZ
− # –pΣZ

2 = g(pΣZ
,pΣZ

). As pointed out in equation (8) g(pΣZ
,pΣZ

) is
relativistic invariant. Consequently, it is the available energy for particle creation
independent of its observer. We can simplify the total energy squared to

E2
ΣZ

= g(#–p ΣZ
, #–p ΣZ

) =

lab system´ ´´ ´
g(#–p ΣL

, #–p ΣL
) = (EI + ET)

2 − (pI + pT)
2

= E2
I + 2EIET + E2

T − #–p 2
I − 2 #–p I · #–p T − #–p 2

T

(7)
= m2

I +
#–p 2
I + 2EIET + m2

T + #–p 2
T − #–p 2

I − 2 #–p I · #–p T − #–p 2
T

= m2
I + m2

T + 2(EIET − #–p I · #–p T). (9)

We can compare different arrangements of incident and target particles with the
total energy in ΣZ which in turn allows us to compare different particle collider
designs.

There are two particle arrangements which will be compared below: A target
particle at rest relative to the lab system and a target particle that moves head on

14

to the incident particle. We consider both particles to have the same rest mass m
and to only be able to move along the x-axis.

In the first model we consider a target particle at rest in the lab, which means
that its 4-momentum pT is zero in each component relative to the lab system. The
incident particle, however, moves along the x-axis at speed v. With equation (9)
the total energy observed by the zero momentum system ΣZ is given by

E2
ΣZ

= m2
I + m2

T + 2(EIET − #–p I · #–p T)

= 2m2 + 2EIm

Accelerators are typically designed to be operated with a chosen particle species.
Thus m is considered to be constant and given in natural units eV (electron volt).
High energy physics is the research of energies E2 = m2+ #–p 2 that are significantly
higher than that obtained by the rest mass m. We will describe the asymptotic
behavior of the total energy in ΣZ with the Landau notation with respect to the
energy of the incident particle and the asymptotic behavior of the energy of the
incident particle with the Landau notation with respect to its momentum.

EΣZ
=

√
2m2 + 2EIm = O

(√
EI

)
(7)
= O

(√
ǁ #–p ǁ2

)
(10)

Here ǁ #–p ǁ2 denotes the euclidean norm
√

#–p 2.

In contrast, consider a target particle on a trajectory head on with the incident
particle, i.e. with the momentum #–p = − #–p T = #–p I . Similar to above, we consider
the rest masses to be equal, i.e. m = mI = mT . Both particles are moving with
the same velocity relative to the lab system, which means that they have to have
the same relativistic invariant mass energy. This can also be observed by applying
equation (7) which yields E = EI = ET . The total energy in ΣZ from equation (9)
is given by

E2
ΣZ

= m2
I + m2

T + 2(EIET − #–p I · #–p T) = 2m2 + 2(E2 + #–p 2).

We can combine the particle’s mass and momentum to form another energy term
2E2 = 2m2 + #–p 2 and obtain

EΣZ
= 2E = O(E)

(7)
= O(ǁ #–p ǁ2

)
. (11)

Equation (10) and equation (11) show that the accelerator design has a huge impact
on the required momentum to obtain a target value EΣZ

. In an accelerator with a
fixed target, the energy EΣZ

increases only with the square root of the energy of
the incident particle. In contrast, in an accelerator with a dynamic incident and

15

target particle the available mass energy EΣZ
scales linearly with the mass energy

of both particles. An accelerator with a static target (10) is thus clearly inferior to
one with a dynamic target (11) in terms of the maximum required momentum per
particle. We can see that even with a clever accelerator design the mass energy
obtained by the momentum has to exceed mass by several orders of magnitude.
In some cases, however, being able to fixate the target is necessary. Research in
material studies, medical applications or isotope production all require the target
to be stationary to the lab system.

We now calculate the theoretical minimal required mass energy per particle to
produce a Higgs-Boson for both collider designs with Equation 9. As pointed out,
a Higgs-Boson is 125.38GeV. Therefore the minimal required energy in the zero
momentum system ΣZ is also 125.38GeV. In a particle accelerator that accelerates
protons, this would require a single proton to be accelerated to an energy level of
at least 8.363 TeV and hit a fixed target. When accelerating both incident and
target proton only an energy level of 62.69MeV is required for each proton before
the head on collision. This result is a theoretical lower bound on the required mass
energy per particle. Much more energy is needed in order to detect the production
of a Higgs-Boson in statistically relevant quantities. However, it shows that a
particle accelerator with particles moving in opposite direction is favorable to ones
with a fixed target. Consequently all modern accelerators for high energy physics
use particles colliding head on [Kam14, Chapter 2][Per00, Section 1].

4.4.2 Linear vs. Circular Particle Accelerator

The idea of using time-dependent electric fields for particle acceleration was intro-
duced by Gustav Ising in 1924 in the paper Prinzip einer Methode zur Herstellung
von Kanalstrahlen hoher Voltzahl (translation: Principle of a method for the pro-
duction channeled beams with high voltage)[Isi24]. The first linear accelerator was
realized by Rolf Widerøe in 1927 and his findings were published in 1928 in the
paper Über ein neues Prinzip zur Herstellung hoher Spannungen (translation: On
a new principle for the production of high voltages) [Wid28]. Particle accelerators
have evolved significantly since then. As pointed out in Section 4.2.4, the particles’
energy is increased by electromagnetic fields in all accelerators. In DC (direct cur-
rent) machines acceleration happens continuously, while AC (alternating current)
machines accelerate particles in bunches. In this thesis we will only analyze AC
accelerators as they are able to work with higher voltages. A series of accelerated
bunches is called a beam. In modern accelerators particles can be accelerated to
ultra relativistic speeds, v ≈ c with a Lorentz factor γ > 1. These accelerators
can be divided into two main groups, circular and linear accelerators. The syn-
chrotron is the modern representative of cyclic accelerators where the beam is held

16

on a circular flight path by strong magnetic fields. This makes particles pass re-
peatedly though the same instruments for acceleration, positioning, analysis, and
finally collision. In linear accelerators many high energy accelerating units are
placed consecutively. Each beam, however, is only used once for collision [Kam14,
Chapter 2].

Assume particles in a synchrotron on a perfect circular path s, velocity v, and
acceleration a with radius r and angular velocity ν:

s : R+ → R3 : t Ɨ→ r
(
sin

(ν

r
t
)

, cos
(ν

r
t
)

, 0
)

,

v : R+ → R3 : t Ɨ→ ν
(
− cos

(ν

r
t
)

, sin
(ν

r
t
)

, 0
)

,

a : R+ → R3 : t Ɨ→ ν2

r

(
− sin

(ν

r
t
)

,− cos
(ν

r
t
)

, 0
)

.

According to the second law of relativistic motion, a force is required to change
the particles’ flight path from a straight line to a circular path. This force is called
the relativistic centripetal force and is given by

F =
dp

dt
=

dmγv

dt
= γma(t) (12)

where m denotes the rest mass.

We will now calculate the required magnetic field for the particles’ flight path
deviation. We model the electric field E : R+ → R3 to be zero and the magnetic
field to be given by B : R+ → R3 : t Ɨ→ (0, 0, b). Consequently, the Lorentz force
from Section 4.2.4 acting on the particle is given by F = ev × B.

In order to find the required magnetic field strength for particles path deviation
we set the needed deviating force (12) equal to the Lorentz force.

γma = ev × B = ebν
(
sin

(ν

r
t
)

, cos
(ν

r
t
)

, 0
)
= −eb

r

ν
a

We can now calculate the magnetic field strength in the third direction by

b = −mvγ

er
. (13)

Both linear and circular particle accelerators are built in particle physics laborato-
ries. Each design has its advantages and disadvantages which will be pointed out
below by analyzing different accelerators at CERN.

17

5 Particle Accelerators at CERN

CERN is an international organization that specializes in the research of high en-
ergy physics. The dominant theory that explains physics of sub atomic particles
is the standard model (see Section 4.3). The W and Z boson were predicted by
studying the weak interaction or weak force of the standard model. Their existence
was proven at the SPS (Super Proton Synchrotron) at CERN. These discoveries
have improved the understanding of the weak force and thus the interaction of
quarks and leptons on a sub atomic level. The findings were awarded with the No-
bel Prize in Physics in 1984 [Nob84]. Furthermore, the Higgs-Boson was predicted
by use of the standard model and its existence was also validated at CERN. The
proof of existence enhanced the understanding of the origin of mass of elementary
particles and was awarded with the Nobel Prize in Physics in 2013 [Nob13].

5.1 The Large Hadron Collider

The modern accelerators at CERN that can produce the highest energy collisions
are dynamic target particle accelerators. The biggest ones are synchrotrons that
are of circular type. The particles are held on their trajectory by strong magnetic
fields. At the interaction points large detectors are placed in order to monitor the
particle creation of collisions. The largest particle accelerator at CERN is called
the LHC (Large Hadron Collider). Figure 2 shows a map of the area where the
LHC and SPS (Super Proton Synchrotron) tunnels are located.

The LHC has a circumference of 26.659km. At the LHC some sections of the accel-
erator are straight. For example, at the detectors particles are on a straight path.
However, we assume that the accelerator describes a perfect circle to calculate the
turning radius which is given by 26659

2π
= 4242.912m.

The hadrons accelerated for the highest energy experiment in the LHC are protons.
A proton consists of two up quarks with a charge of 2

3
e and one down quark with

a charge of −1
3
e (see Section 4.3). Thus the total charge of the proton is 1e which

is equal to 1.602e − 19C and has a rest mass m of 938.272eV = 1.673e − 27kg
[Tie+21].

The highest energy proton-proton collisions in the LHC release energies of 13TeV
[22]. With the help of the mass energy momentum formula in equation (7) in
Section 4.4.2 we can compute the composition of the total energy. A proton that
has a total energy of 6.5TeV has 0.0144% of its energy from its rest mass and
99.9856% of its energy from its momentum. We solve equation (7) for v in order

18

Figure 2: Map of the LHC (large circle) and SPS (smaller circle) at the French-
Swiss border [SCE22]

to calculate the speed at which the proton is traveling.

v =

√
1− m2

E2
= 299792454.877m/s

The speed v is 99.99999896% of the speed of light, which is just 3.123m/s shy of
c. The corresponding Lorentz factor is γ = (1 − v2/c2)−1 = 6927.627. Particles
that move at a speed of almost c are called hyper relativistic.

The magnetic field strength needed for a proton with 6.5TeV to be kept on a
circular path in the LHC is given by equation 13 which is

b = −mvγ

er
= −5.112T = −5.112

m kg

C s2
.

The magnetic field strength b is given in T (Tesla) and SI-units.

19

5.2 Future Accelerators

Creating heavier particles proves to be a challenge. The deviation of hyper rela-
tivistic particles with magnetic fields emits synchrotron radiation which is given
by

Pγ =
γ4q2a2(B × v)2

2πε0c3
= O(γ4(v × #–

B)2)

where γ is the Lorentz factor, B × v is the deviating force by the magnetic field,
q is the charge, c is the speed of light, and ε0 is the constant vacuum permittiv-
ity. For hyper relativistic particles the gamma factor scales quadratic with the
particles’ energy. This energy dissipation limits the performance of an accelerator
as the increase of particle energy by acceleration has to exceed the loss through
radiation. Additionally, the magnetic field strength is already at its limit in the
LHC. Currently the LHC uses superconducting niobium-titanium alloy magnets
that are already operating at their maximal safe power. Further improvements on
the magnets and the application of high temperature superconductors is part of
ongoing research. Alternatively a larger turning radius can be used to decrease
needed steering force B×v and thus the energy loss though radiation. An increase
of the turning radius r is considered within the FCC (Future Circular Collider)
project, which would require a new larger tunnel with ∼ 100km circumstance.
Both research on more powerful magnets and a research and development study
on the FCC are two main bullet points in the ESPP (European Strategy for Par-
ticle Physics)[Col+20, Section 3].

Circular accelerators make use of the same accelerating units multiple times at
the cost of time and the need of strong magnetic fields which are fragile and
expensive. During collision only a fraction of the incident particles collide with a
target particle. In the synchrotron the rest of the particles can be sent to collision
again, which saves the effort of accelerating the particles again at the cost of
the synchrotron radiation. Reusing accelerated particles increases the accelerators
performance which is measured in luminosity

L =
Nb NT NI f

A

where Nb is the number of bunches used for collision with a frequency f and NT

and NI are the number of particles per target and incident bunch. Reusing a beam
with multiple bunches Nb for collision with a frequency f gives a high luminosity.

In contrast, linear accelerators can accelerate particles to the target energy in a
single pass. This design circumvents the limitations associated with path bending
in circular machines. It, however, is limited in its luminosity as the frequency of
collision f is one. The CLIC (Compact Linear Collider) project at CERN aims

20

to build such a machine. The plan is to build an increasingly large linear collider
that accelerates protons to energies of first 380GeV, then 1.5TeV, and finally
3TeV. This increase in size is possible by concatenation of accelerators [Bur+18,
Section 2].

21

6 X-Band Test Facilities at CERN

6.1 Radio Frequency Cavities

In both circular and linear accelerators, specially designed metallic chambers
known as RF (radio frequency) cavities are used for particle acceleration. These
establish longitudinal electric field components that accelerate particles. This pro-
cess is described by the Lorentz equation in Section 4.2.4.

In DC accelerating machines the maximal voltage is limited before electrical arcs
are produced. Alternatively periodical switching of voltages reduces the probabil-
ity of the formation of arcs. As particles gain energy, their velocity increases and
thus they require an increased rate polarity switching. Limiting the radiation of
electrical waves produced by the fast switching is done by enclosing the structure
in a metal chamber. An RF cavity consists of such chambers that are connected
with holes where particles and the RF wave travels from one chamber to the next.

In cavities, an oscillatory electromagnetic field (radio frequent) is established and
used to impart energy on traversing particles. The cavity design and operating
frequency are largely determined by the application, however in the case of CLIC,
the use of multi-cell traveling wave linear accelerator cavities is proposed. A di-
agram showing the principle of operation is shown in Figure 3. When particles
enter the first chamber through the first cavity, they experience an electric field
between the first and second disk that accelerates them to fly through the second
cell’s cavity. Due to the oscillation of the electromagnetic wave, the electric field
changes polarity right when the particles enter the second chamber. Thus the par-
ticles are accelerated throughout every chamber surfing on waves of accelerating
electric fields [12].

In Figure 3 a diagram of a multi-cell cavity is displayed. Red arrows mark electric
fields accelerating the particles in the direction of their flight path and the blue
ones mark the electric fields that would decelerate them [12]. Figure 4 shows a
photo of a cavity disk on the hand left and on the right hand side a prototype of
the CLIC baseline design that consists of two TD26CC R05 structures.

6.2 The XBox-2 Test Stand at CERN

The XBox-2 test stand is an X-band radio frequency test facility that is used for
the development and improvement of the high gradient accelerating units that will
be used in the CLIC located at CERN. X-band radio frequency refers to the IEEE
(Institute of Electrical and Electronics Engineers) specification of the frequency of

22

Figure 3: diagram of a multi-cell cavity accelerating at consecutive times t1, t2,
and t3 [VM]

Figure 4: Photo of a single cavity disk that forms a cell (left) and a model of the
CLIC prototype structure (right) [VM, Figure 5.17]

the electromagnetic spectrum in the range of 8−13GHz. The XBox-2 accelerating
structure uses 12GHz electromagnetic waves. A picture of one of the XBox-2
accelerating structures is displayed in Figure 5.

23

Figure 5: The Xbox-2 test stand at CERN

Principal of operation: First, a low level RF signal of a few milliwatt is sent
to a solid state amplifier (SSA) which amplifies it to a few hundred Watt. The
SSA drives a klystron, a device that further amplifies the RF pulse to ∼ 20MW.
Figure 6 shows data measurements of two different pulses as a 2➭s time series
with 3200 samples. The power amplitude in Figure 6 (a) is measured after the
amplification of the klystron and shows a 1.125➭s (1800 samples) long pulse. A
specially designed device known as pulse compressor is filled with RF energy, then
discharged to provide a short, high-power RF pulse which is directed to the RF
structures or device under test. Figure 6 (b) shows a 0.125➭s (200 samples) short
pulse of 45MW.

The main limiting factor of high gradient and power RF cavities are breakdowns,
the occurrence of electrical vacuum arcs. Small deformations in the surface of the
device lead to local electric field enhancements which can ultimately lead to the
formation of plasma. Figure 6 compares a selections of signals measured during
breakdown and healthy events. During the arc formation, material of the surface
is melted and thus the vacuum is disturbed, which inhibits particle acceleration
and can even damage the RF cavities over time. The plasma formation disturbs
the electric fields which reflects the input RF power. The reflected wave is visible
in the breakdown pulse of Figure 6 (c) and the lack RF power after the structure
in a breakdown pulse can be seen in Figure 6 (d). Charged particles that disturb

24

the vacuum are accelerated by the electromagnetic waves. These particles can be
measured as spikes of dark current at the ends of the RF cavity in both directions
called upstream and down stream. Figure 6 (e) and (f) show the dark current that
is measured in breakdown events.

Investigating the occurrence of arcs is one of the primary objectives of the CLIC
test program, and so the XBox-2 test stand automatically monitors the occurrence
of arcs during operation. In the CLIC, where thousands of high gradient RF
cavities will be used consecutively, the number of breakdowns per unit and thus
the number of shutdowns of the whole structure has to be kept to a minimum. To
meet that target luminosity the CLIC project has a target breakdown rate of less
than 3 · 10−7 breakdowns per meter per beam pulse [Bur+18, Section 3].

Breakdowns generally occur in groups as opposed to isolated events. It is assumed
that the present deformations and the decreased quality of the vacuum increase the
chance of breakdowns [Wue+17]. The first breakdown is called primary breakdown
and the following ones follow up breakdowns. So far, no clear indicator has been
found to predict when primary breakdowns happen. The occurrence is assumed to
be stochastic. Finding evidence of practical precursors for follow up breakdowns
is a topic of current research [Obe+22].

6.3 XBox-2 Dataset

The XBox-2 data discussed in this thesis was recorded from 2018-03-26 to 2018-
09-25. Preliminary conditioning process in which the input power is gradually in-
creased over time took place, meaning that the machine parameters were changed
regularly. During that time the machine’s parameters were adjusted for stable op-
eration, this process is called conditioning. After that nine segments, that spanned
from a week to a month, were conducted where no settings were changed. These
segments are called runs. Generally, the conditions are fixed when operating with
a beam, and so breakdowns which occur during such runs are of interest in an
operational context. Therefore, only breakdown data during that time will be
analyzed.

In the case of the XBox-2 accelerating unit from Section 6.2 the recorded data is
given in a native NI (National Instruments) data format called tdms which will be
explained in detail below. All sensor data of one day is stored in two tdms files,
the so called event and trend data. The event data contains high resolution data
of single events, pulses of RF power that measure the power amplitude of the RF
waves. Whereas the trend data contains low resolution data of slowly changing
environment variables like the temperature of the structure or pressure in the wave
guides.

25

Figure 6: Example signals of healthy events (left) and breakdown events (right).
The displayed signals are: the forward traveling wave (F1, F2 and F3) measured
before (b) and after (d) the device under test and after the klystron (a), the power
amplitude of the reflected wave (B2) traveling backwards(c), and the Faraday cup
signals (FC1 and FC2) in both directions upstream (e) and downstream (f). The
signals (a), (b) and (d) are given in MW while the signals (c), (e) and (f) are given
relative to their maximal values. [Obe+22, FIG. 3]

26

6.3.1 Tdms files

The tdms (Technical Data Management Streaming) is a file format developed by
the company NI that can store technical data. It has been developed to save well
documented measurement data produced by lab software like LabVIEW. It is a
root tree graph based file format with a depth of two. A root tree is an oriented
graph in which any two vertices are connected by exactly one path consisting of
a series of connected edges. The root vertex is a distinct vertex that is called file
in this file format while the children of the file are called groups. The children of
the group vertices are channels. All vertices - files, groups, and channels - have
additional information stored in dictionaries called properties. The channels are
the leaves of the tree and contain data arrays. In Figure 7 a visual representation
of a tdms file graph is shown. Rectangles represent vertices in the file graph and
diamonds depict datasets or properties [Nat21b].

file

group

datachannel

datachannel

group datachannel

properties

properties

properties

properties

properties

properties

Figure 7: Visual representation of the tdms file structure

In the XBox-2 dataset groups contain data of one pulse of RF power. Each file
contains all groups of a specific day of the experiment. Each channel contains
data of a single sensor. On a single day of testing all pulses are recorded with
the same sensors and therefore, in one file all groups contain channel data of the
same origin. The channel properties list information of the corresponding sensors,
group properties contain information of the time segments of their channels’ data
and file properties store the date of recording.

6.3.2 Event data

The event data contains the RF wave forms of single pulses. For each day a
separate tdms file is created. Each event data file contains multiple groups. In

27

each group the segmented data of one pulse of the RF cavity is stored. In the
XBox-2 test stand the pulse frequency is set to 50Hz which means that each 20ms
a pulse of RF power is delivered to the cavity. The total recorded segment of time
has a length of 2➭s.

Ev
en

t D
at

a

st
or

ed
 fo

r f
ur

th
er

 a
na

ly
si

s

Ex
pe

rim
en

t
th

e
ph

ys
ic

al
 d

at
a

time

10
0

m
s

20
0

m
s

20
 m

s

0
m

s

30
0

m
s

Represents the physical experiment in the
XBox2 test stand

healthy pulse
breakdown pulse

141
sec time

+1
60

 m
s

+1
80

 m
s

+2
00

 m
s

+2
20

 m
s

+2
40

 m
s

+2
60

 m
s

+1
40

 m
s

time

0
s

60
 s

12
0

s

14
1,

2
s

20
1,

2
s

1 min 1 min

Figure 8: Storage intervals of the event data

In the test stand electric sensors are attached at different positions. The amplitude
of the incoming RF wave and the reflected RF wave are measured right before and
after the structure. In Section 6.2 a more detailed overview of the recorded signals
is given. The signals are delivered to the acquisition cards in the NI chassis via
coaxial cables. For the event data the acquisition cards NI-5772 and NI-5761 with a
sampling frequency of 1.6GS/s and 250MS/s are used to digitize the sensor signals.
These digitizers scan the signal at discrete points and convert those readings to
double precision values. Those values are then further processed in LabVIEW, a
software for labs developed by NI [Nat21c].

In each event data group there are 16 channels with 3200 or 500 data points. This
translates to the maximal sampling frequency of the above mentioned acquisition
cards in the given time window of 2➭s. The 3200 · 8 + 500 · 8 = 29 600 values with
16B each have a total size of 473.6 kB.

In Figure 6 some of the event data time series are displayed. The most reliable
signals for breakdown detection are the measurements of the up and down stream
Faraday cup in Figure 6 (e) and (f). These monitor dark current that results from

28

field emitted chard particles that are accelerated by RF waves (see Section 6.2). A
breakdown event is labeled as such when a certain dark current threshold, assigned
by experts, is reached [Luc+19][Kov10].

a digitizer converts the continuous time series
into discrete measurements

the values are then converted into double
precision float and is stored temporarily

labled as breakdown
labled as log

16 sensors that measure a continuous time
series of 2

a computer program decides which signals
are labeled as breakdowns and whether they
should be stored

Figure 9: Data storing process from the physical experiment to the labeled data

Figure 8 illustrates the data structure of the event data. In the upper box ev-
ery green square indicates a normal pulse of RF power. Each red square sym-
bolizes a breakdown pulse(see Section 6.2). The data flow from the sensors in
the accelerating structure to the tmds files is explained in Figure 9. Storing all
50 · 3600 · 24 = 4.32e6 values would require 4.32e6 · 473.6 kB = 2.046TB which
would overwhelm the system’s capacities. Hence, only a fraction of the available
pulses are stored.

The stored groups in the event data tdms files are separated in two different types,
log groups and breakdown groups. When a breakdown in an RF cavity is detected
the corresponding pulse is stored as a breakdown group. The two pulses prior to the
breakdown pulse are stored as log groups for comparative purposes. Additionally,

29

a log group is stored once every minute in order to monitor regular operation.
After each breakdown, the 60s saving cycle is restarted from zero.

6.3.3 Trend data

Trend data contains slowly changing data of the test environment. It describes
a multi dimensional discrete time series that has one sample point every ∼ 1.5s.
The exact storing intervals depend on the work load of the processor and thus
vary. In general, the data stored in the trend data only measures slow changing
values, also known as trends. In contrast, changes in the event data happen orders
of magnitude faster. All values of one day, in total about 57 600 entries, are stored
in a trend data tdms file spread over several groups. The used sensors and thus
also the channels are the same for all groups and recorded days.

30

7 Machine Learning

Let X and Y be two sets called input and output space. The hypothesis space
H is a subset of the set of all functions from the input space X to the output
space Y , i.e. H ⊆ {f : X → Y}. The function C : X × Y → R+ is called a
performance measure or cost function. The main subject of machine learning is
the minimization problem on X ⊆ X :

find g ∈ H such that C(x, g(x)) is minimal for all x ∈ X.

Every machine learning project starts with the data X ⊆ X and a performance
measure C. The data is separated into two disjoint sets called training set Xtrain

and test set Xtest. Searching for a good approximation of the minimizer of the
performance measure C on Xtrain is called training of the machine learning model.
It is considered successful, if the function does not only approximate the minimiz-
ing function of C on Xtrain but also approximates the minimizing function of C on
Xtest. This generalization of the minimization from the training set to the test set
is considered artificial knowledge gain [Fis20, Section 3].

The hypothesis spaces used for machine learning contain parameterized functions.
A parametrization uniquely identifies each function in H. Neural networks are
defined in Section 7.2. They are parameterized by their weights and biases. A
more detailed analysis of the parametrization of neural networks can be found
in the Bachelor Thesis FEM Triangulation for the Poisson Problem on Polygonal
Domains with Neural Networks by L. Fischl [Fis20]. Let the parametrization of
the functions in H be given by Rθ where θ ∈ Rl are the parameters and l is the
number of parameters. Then training is the process of altering parameters θ such
that the function Rθ yields the desired output.

7.1 Training Techniques

Let us now discuss different types of cost functions C. Let the function h : X → Y
be defined on the project data X. A machine learning project with a performance
measure C that is given by C(x, g(x)) = d(h(x), g(x)) is called a supervised model.
The function d describes the distance between h(x) and g(x). For continuous
output spaces Y a metric like the euclidean distance d(h(x), g(x)) = ǁh(x)− g(x)ǁ2
can be used, while a divergence like the cross-entropy measure is mainly applied for
discrete output spaces. A successfully trained function ĝ ∈ H is an approximation
of the supervising function h in the hypothesis space which is the minimum of
the cost function on the training set. A machine learning model with a cost
function that does not have this structure is called an unsupervised model. These

31

models do not use an optimal output h for the definition of their cost function. In
Section 8.4.2 a variety of unsupervised machine learning techniques are presented
and applied on data of the XBox-2 dataset.

The most prominent application of supervised machine learning techniques is ap-
plied on input datasets Z ⊆ X × Y , where the two parts are called data and
labels. With the data X := {x : (x, y) ∈ Z} and the cost function C defined with
∀(x, y) ∈ Z : h(x) := y by C(x, g(x)) := ǁh(x)− g(x)ǁ = ǁy − g(x)ǁ a supervised
machine learning project is built.

The machine learning model’s output on Xtest can be tested with the cost function.
The performance on Xtest is a measure of performance on the whole input space
X . Machine learning models that perform well on Xtest are therefore able to
extrapolate the information gained on the training set to new unlabeled data.
A common example is the MNIST-database1 of hand written digits where each
image of a digit is labeled with the respective integer number that can be seen.
The set X contains a vectorized encoding of the the fixed-sized images and the
set Y their integer labels. A successfully trained machine learning model can
extrapolate the labeling from the training to the test set. It real world use cases
a machine learning model is then applied on new input data X \ X where new
labels, integer numbers, are created. Note that these machine learning model
based labels of new, yet unlabeled data can not be validated with a cost function.
In Section 8.5 a supervised machine learning model is trained to detect faulty
behavior (breakdown) of a the XBox-2 accelerator before it occurs.

7.2 Neural Networks

A common example of machine learning models are neural networks. The hypoth-
esis space H consists of concatenations of affine linear functions and non linear
activation functions. These activation functions σk : R → R are defined on R and
extended to x ∈ Rn by element wise application σ

[n]
k (x) := (σk(xj))

n
j=1. In this

section two types of neural networks will be defined: dense feed forward networks
and convolutional neural networks.

Dense feed forward networks consist of a series of affine linear functions (li)
n
i=1 with

li : RLi → RLi+1 and activation functions (σi)
n+1
i=2 . This type of network applied

on the input x ∈ RL1 is calculated by Rθ(x) = σ
[Ln+1]
n+1 (ln(. . . σ

[L2]
2 (l1(x)) . . .)).

Its architecture is given by the dimensions of its layer (Li)
n+1
i=1 ∈ Nn+1. L1 is

the dimension of the input layer and Ln+1 the dimension of the output layer. The
networks are called feed forward because the linear function of each layer is fed only

1http://yann.lecun.com/exdb/mnist/

32

with the output of the previous layer. The parameters of the affine linear functions
are called neural weights (matrices) and biases (vectors) and will be denoted by
θ. During training these parameters are adjusted by a gradient descent based
training algorithm. The gradient descent algorithm is a minimization algorithm
that searches for the minimum in the direction of the steepest descent. For a given
set of parameters θ the updated parameters in one training step are given by

θnew := θ − η∇θC(x, Rθ(x))

where η ∈ R+ is the step size and the negative gradient of the cost function is
the step direction. Training ends when the gradient descent algorithm reaches a
minimum. Improved versions of this algorithm, like the stochastic gradient descent,
Nestrov momentum or the ADAM (Adaptive Momentum Estimation) algorithm,
can improve training speed and the prevalence of getting stuck in local minima.
Training parameters like the step size η have a huge impact on training outcome
and are therefore called hyper-parameters. These improved algorithms increase
the robustness of the training outcome to hyper parameters. A more detailed
definition of neural networks and the calculation of the gradient can be found in
[Fis20, Section 3]. State of the art training algorithms for machine learning are
described in [GBC16, Section 8].

Convolutional neural networks (CNN) are used for time series data, image recog-
nition or other multidimensional data where the order of the input data is an
essential feature. Instead of a concatenation of linear functions with activation
functions it contains three types of layers in the following order: convolution lay-
ers, pooling layers and fully connected layers. Images are specifically well suited
for the application of CNN because the convolution layer processes blocks of neigh-
bor pixels. This preserves local dependencies of pixels. The input space, the set
of images X ⊆ Rn×n, contains matrices that encode the brightness values of each
pixel.

Dense feed forward networks have fully connected layers, i.e. in each layer every
output value depends on all values of the previous layer. The convolution layer
on the other hand uses local connectivity, where each output value only depends
on few values of the previous layer. It is implemented with use of the discrete
convolution of a kernel matrix ϱ : Rm×m with m ∈ N uneven and m < n, which
defines a kernel function ϱ ∗ · : Rn×n → R(n−m+1)×(n−m+1). The convolution of ϱ
with a matrix x ∈ X is given by

[ϱ ∗ x](i, j) =
m∑
l=1

m∑
k=1

ϱ
(
l, k

)
x
(
i − l + (m + 1)/2, j − k + (m + 1)/2

)
with i, j ∈ {1, . . . , n − m + 1}. The pooling layers are designed to reducing the
size of the matrix by a factor of r ∈ N. The input matrix of this layer is separated

33

into blocks of size lower or equal to r × r and the maximal value, the mean value
or the minimal value extracted. The pooling layer can be calculated by neural
networks with a relu activation function. The fully connected layers consist of affine
linear functions and activation functions similar to dense feed forward networks.
The convolution, pooling, and fully connected layers are concatenated such the
resulting neural networks describes a function from X to Y .

34

8 Data Analysis Framework

8.1 Introduction

At CERN machine learning has proved to be a useful tool for data exploration
and data analysis of experimental data and even created IML (Inter-Experimental
LHC Machine Learning Working Group). It is, however, considered a novel tech-
nique in machine maintenance where its predictions might even improve machine
reliability [Obe+22]. The main disadvantage is that preparing data to be process-
able by machine learning software is tedious and time consuming. The raw data
is often uncleaned and stored in a unique data format that is dependent on the
monitoring software. Individual solutions that are tailored to each set of raw data
can not be used for other projects and lack the necessary transparency for collab-
oration. In every machine learning projects similar operational steps are applied
to data preparation and machine learning. Consequently, a reusable, sustainable
framework for machine learning can be adapted to multiple use cases and increase
the implementation’s transparency.

This section will start with the explanation of the steps a machine learning project
goes through. Each step from raw data to the application of machine learning
software will be discussed. In parallel, the framework will be tested on the example
of the XBox-2 (see Section 6.2) dataset. The focus of the first part of this section
is to test and decide on a data format that will be used throughout the whole
framework for data transfer and manipulation.

8.1.1 Abstract Framework

The data analysis framework is a set of building blocks that serves as a flexible tool
for data processing and machine learning. The main steps used in this framework
are:

i) Transformation

ii) Exploration

iii) Modeling

iv) Execution

Every data analysis project may have a unique data format. Thus, as a first step,
the data has to be transformed into a fixed data format so that the following
building blocks that manipulate data universally applicable. In the second step

35

the data structure is explored, faulty data is filtered and its features (distinct
properties like mean value, standard deviation, maximal value etc) are studied.
Unsupervised machine learning can help to find outliers and to understand cor-
relations. In the third step, supervised machine learning techniques are applied
for predictions and its performance in generalization is tested. In the fourth step
these analysis results are applied at the device under test. The implementation of
a trained machine learning model to be used for predictions is an individual task.
However, conducting a sensitivity analysis that investigates the decision making
process is universally applicable for neural networks. It can potentially improve
the understanding of the underlying data.

In Figure 10 the cycle of the machine learning framework is visualized. Each
operational step of the framework is symbolized by a large arrow and each sub task
by a small arrow. Data is passed on from one operational step to the next with
newly created files that are symbolized by notes which are located in the corners
of the figure. In Section 8.2 a selection of available data formats is analyzed. In
Section 8.2.2 the most promising formats are compared.

Tr
an

sf
or

m
at

io
n

Exploration
handle

data
calculate

 features

unsuper-
vised ML

Modeling
supervised

ML
explanation
validation

uniform
datatype

models

re
ad

da

ta
 fo

rm
at

cl
ea

n
an

d
pr

oc
es

s
da

ta

Execution
im

ple-
m

entation

raw data

findings

best model

Figure 10: Machine learning framework flow diagram

8.2 Data Format

Research projects often use a unique data type, structure, and format that serve
a very specific purpose. The data of every project has to be reformatted to the

36

same data type in order to reuse existing implementations for data manipulation
and analysis. We call this process transformation. We choose the data type of the
output to be:

i) easy to use in Python

ii) fast to read (single time series)

iii) processed quickly (sorted, filtered, calculated)

iv) transformable to arrays for machine learning

Machine learning research is developing rapidly. Therefore, it is beneficial to use
programming environments that are on the fore front of research. Respective
packages like Pytorch, Tensorflow and Keras all have good Python support. Con-
sequently, we require the data format to be Python friendly. Analyzing time series
sensory data with machine learning has high priority in the analysis of scien-
tific data. It is important to read data from a single sensor for large sections of
time quickly for analysis and feature calculation purposes. Computationally heavy
calculations on these time series should be executed quickly. Machine learning al-
gorithms generally require arrays, a list of values, as input data. Therefore, it is
necessary that the chosen data can be transformed to arrays efficiently.

The packages Pytorch and Tensorflow each have their own data format torch and
Tensorflow records that can store tensors of higher order. They, however are
not directly interchangeable and therefore inhibit switching from one to another.
Additionally, the context and additional information (like properties in tdms files)
can not be directly stored in these tensor based formats.

8.2.1 Data Format Candidates

The four different data formats

i) Tdms Files

ii) Tabular Format

iii) Databases

iv) Hdf Files

are file formats that are analyzed in detail for this framework. In the following, an
attempt to store the XBox-2 data in these formats will be done. This will lay the
basis for an informed decision for the best suited data format for the data analysis
framework.

37

Tdms Files The XBox-2 data set is originally stored in the Tdms File format.
Instead of changing the data format, one could argue that most scientific data can
be represented in tdms files. There is a package for Python called nptdms that
can read and write tdms files. As mentioned above, tdms files consist of channels
that are contained in groups that are contained in files. The data in channels
can only be stored in one dimensional arrays. Converting higher order tensors
into a tensor of first order, or array, requires either proprietary software by NI
(eg. its image saving software) or custom conversion tools which would reduce
the usability. Without such transformations the highest order object that can be
represented by a tdms file is a tensor of third order, which limits its use cases.

The main disadvantage for data analysis is the internal structure of the tdms
files. They are write oriented, which means that they are extremely fast at storing
data. This is necessary in case of scientific studies at CERN because of the high
resolution data and high frequency tests. Here, the tdms files need to be filled
incrementally by the data streaming application in LabVIEW. During this data
streaming process an index file is created. This index file is a copy of the original
file, but instead of the raw data it only contains links to the data arrays. As long
as this file exists navigation through the groups and channels can be done quickly
as it only happens in the index file. When a dataset of a channel is selected, the
link in the index file leads directly to the array in the main tdms file. However,
only proprietary NI software can make use of existing index files. Other software,
like the nptdms package, has to create its index files during every reading of the
tdms file. This process of index file creation is called opening. Thus reading
small segments of tdms files in Python can take orders of magnitude longer to
read because the whole file has to be loaded in order to create this index file.
Additionally, altering a tdms file with the nptdms package is not intended. One
can overwrite the original file with the altered content as a workaround. However,
this is resource heavy, time consuming, and tedious. In summary, it turns out
that the tdms file format is optimized for fast write speeds in the lab environment
but not suitable for post processing because of its limited data structure an write-
optimized storage technique [Nat21a] [Ree20].

Tabular Format A tabular data format stores values on a two dimensional
spread sheet, e.g. matrices. The main advantage of this format is its simplicity
and the highly optimized software that is available. The proprietary .xsl or the
xml based .xslx data format of the spread sheet program Microsoft Excel are also
tabular data formats. In Python the package pandas has reached high popularity
due to its ease of use combined with a powerful back end. Data can be loaded in
pandas series or data frames that are either one or two dimensional data storage
solutions [Pan21]. We will focus on pandas data frames as a representative of

38

tabular data formats.

The structure of the event data of the XBox-2 dataset cannot be directly trans-
ferred to a file format that can only resolve matrices (or higher order tensors). It
contains not only the data arrays but also additional information that is stored
in the tdms properties. For each pulse 3200 × 8 and 500 × 8 values have to be
stored, which requires two separate tables. In addition, the channel properties and
group properties require separate tables. Over a million files are needed in order
to store all event data signals (∼ 3 · 105) this way. This amount of files creates
an unnecessary overhead by the file system. Consequently, other techniques are
needed to store data of this complexity efficiently.

It is possible to fill cells with arbitrary objects such as vectors or matrices in some
tabular data formats. Thus tensors of higher order can be stored. In case of pandas
data frames this is not intended and unpractical as pandas automatically reformats
given data to a table of scalars whenever possible. This feature is a compromise
to ensure simplicity. For the event data of the XBox-2 data set, however, storing
arrays in cells is possible as the array lengths are either 3200 or 500 which makes
reformatting to a table of scalars impossible.

Pandas data frames cannot be stored directly, they have to be transformed either
with a data serialization tool like pickle or by a transformation to another format
like csv (comma separated values). The csv format converts float values to its
decimal representation, converts a fixed amount of digits into strings and stores
them in a text file separated by commas. Storing float values as strings of fixed
size of its decimal representation has two main flaws. Firstly, the transition from
float to a fixed digit decimal representation comes with a major loss of information.
Secondly, characters with an 8 bit encoding can only use a fraction of its poten-
tial storing space to store numbers, the rest of possible storage space is wasted.
Therefore, it is not recommended to use csv for scientific applications [Pyt21a].
Pickle is an external tool that converts any Python object like a data frame into a
byte stream that can be stored directly in the memory. This byte stream can be
converted back into a data frame. Note that pickle is regularly updated decreasing
backwards compatibility with servers that run software which is not up to date.
Nevertheless, storing pandas data frames with the help of the pickle protocol still
is the best option available [Pyt21b].

In summary, tabular data formats can only store data with restricted complexity.
For the XBox-2 dataset some restructuring of the raw data had to be done in order
to fit pandas data frames.

39

Databases Databases are collections of data that are able to store highly com-
plex data structures and their relationships. A database can be organized with a
DBMS (data base management system). SQL is a DBMS that can create, manipu-
late and query databases. Other features like elaborate access control, security and
automatic filling of the database are not relevant in this scientific use case. SQL is
operated with a query language and its code differs significantly to that of classical
programming languages.

Some databases do not provide data types that can store arrays. Separate tables
with a column for each entry can be created for arrays of fixed size. However, the
number of columns is constrained in many DBMS to a number smaller than 3200,
which is the largest array length in the XBox-2 dataset [KA15, Chapter 4].

Databases are typically stored tuple by tuple, which is called row-oriented. Writing
a tuple into memory is fast because the existing table only needs to be extended
with one tuple. During the writing process the spot where the entry should end
up needs to be determined and then the values of the tuples can be inserted.
However, write speed is not the main concern in case of scientific data that is
stored for analysis in retrospect. In fact, read speed is much more important.
Reading a single attribute of a table that is stored row-oriented requires reading
the whole table. Thus a read specialized DBMS like C-Store that stores data in
columns is needed. When done correctly, selecting data on row-wise-stored data
is much quicker [Sto+18].

Databases can handle almost any data structure, including the XBox-2 dataset.
A detailed explanation how to store Tdms files in general as a database can be
found in the appendix in Section 10.1. The main advantages of using a database
and DBMS to store scientific data are the scalability and the possibility to perform
highly complex queries efficiently. In particular, query languages are designed to
manage large amounts of highly complex data. The main disadvantage, however, is
that its creation, insertion of values, and writing of data selection queries requires
the knowledge of query languages. There are Python packages, like sqlight3, that
enable the control of a DBMS in Python code, but they are not easy to use as
they still require the knowledge of query languages. Additionally, most available
databases are row-oriented while only commercial databases offer the flexibility
and speed that are needed for machine learning projects.

Hdf Files The hdf (hierarchical data format) is an open source file format that
is based on a root tree structure. It is maintained by the hdf group, a non-profit
organization and used in several scientific applications. There are different ver-
sions of hdf files, here the more advanced hdf5 files are used. The core processing
is implemented in the programming language C and highly optimized, which con-

40

tributes to its processing speed. As discussed above, the framework is has to be
implemented in Python because of the machine learning software that is available
there. The package h5py for Python allows managing hdf files with a high level
API (Application Programming Interface) and is distributed by the hdf group
[Col+21]. The main objects in hdf5 files are groups and datasets. A special group
called file is at the root of the tree based format. Datasets can only be leaves of
the tree while groups can be inner vertices or leaves if they are empty. Datasets
and groups can all contain additional information in so called attributes.

The hdf objects and their naming style works similar to the unix file system, which
is familiar when programming on a Linux based system. Navigating through an
hdf file can be done like navigation in directories. Access is possible directly by
the full hdf path with a backslash in the beginning and separating backslashes in
between group names or by calling groups incrementally. Similar to unix, hard
and soft (symbolic) links can be attached at the tree. An internal link points to
a group or dataset of the graph within an hdf file. Placing this link as a child of
a group will lead the user to the destination group or dataset. The link acts like
a shallow copy of its origin. A hard link copies the data location while a soft link
copies its symbolic location inside the file graph. Similar to mounting external
storage in the /mnt or /media directory in unix it is possible to link groups or
datasets from external hdf files [Col+21].

The tdms file format is a tree based file format with additional properties at each
node that is bound to depth two. Thus a tdms file can be directly converted to
the more general hdf5 format that can store any tree based structure. During the
translation process each tdms file object is converted to an hdf root group, each
tdms group to an hdf group and each tdms channel to an hdf dataset. In each
step all tdms properties can be stored as hdf attributes. This conversion is already
implemented in the nptdms package that is used for reading tdms files in Python.

8.2.2 Data Format Comparison

In the following an empirical comparison of the data formats nptdms, hdf5, and
pandas data frames is done empirically by the example of the XBox-2 data. The
decision of the data type used for the data analysis framework is based on this
comparison. The objective of the test is to see which data format allows reading
all available data from a few sensors fastest. Similar reading of data is essential
for data analysis. During the comparison the read speed of 1, 3, 15 and all 35
of 35 available channels is tested. Additionally, the amount of storage space that
the data needs is monitored. During the test all trend data is converted to hdf5
files with the conversion tool available in the nptdms package. The trend data is

41

converted to pandas data frames so that each channel data is located in a separate
column. The data frames are stored with the pickle protocol for data serialization.
The results of the speed test are presented in table 1.

nptdms pd.df+pickle hdf5
space (GB) 20.5 GB 2.8 GB 2.8 GB
read (TD 1 channel) ∼ 60 min 4 s 0.5 s
read (TD 3 channels) ∼ 60 min 4 s 0.7 s
read (TD 15 channels) ∼ 60 min 4 s 2.3 s
read (TD 35 channels) ∼ 60 min 4 s 6.0 s

Table 1: Read speed of tdms, pandas data frames and hdf5 files in Python

Data streaming in tdms files leads to very inefficient use of storage space and very
slow read times. This effect is more noticeable with trend data. This difference
might be caused by the writing process. In trend data one value is added every
∼ 1.5s in each channel, which leads to approximately 57 600 write processes spread
out during the day. In contrast to that fewer large chunks of data are written at
once in event data. The storage space requirement is reduced by 86% by converting
the trend data from tdms to a different file format.

Read time of pandas data frames does not change with the number of channels
to read because pickle cannot de-serialize single columns. In comparison, hdf5
can make use of the reduced amount of data to read because of its tree based file
structure. Reading a few channels with hdf5 takes under a second while reading all
channels takes 6 seconds. Reading tdms files without the index file, which contains
the file structure, requires an opening process. The file structure is analyzed and
the index file is created by reading all data into memory. This method seems to
be highly inefficient as the reading time is thousands of times higher than that of
hdf5 files or pandas data frames.

In order to save additional space, data compression tools can be used. One of the
most common compression algorithms is gzip (gnu zip), which is based on Huff-
man coding combined with additional compression of repetitive data. Encoding
and decoding is computationally expensive which is a trade-off for the decreased
storage space. File compression can be applied on different layers of a file format.
Applying gzip on a whole folder or file is considered a top layer application. Al-
ternatively, the compression of hdf5 files can be applied on each individual dataset
automatically, which is considered a bottom layer application. A comparison of
different compression strategies can be seen in table 2.

In all cases an increase of read time can be observed with compressed data. Top
level compression leads to a constant decompression time added to the whole

42

pd.df+pickle+gzip hdf5
using gzip n y y top y top y bottom
space (GB) 2.8 GB 1 GB 2.8 GB 1 GB 2.9 GB
read (TD 1 channel) 4 s 12 s 0.5 s 12 s 0.5 s
read (TD 3 channels) 4 s 12 s 0.7 s 13 s 1.5 s
read (TD 15 channels) 4 s 12 s 2.3 s 14 s 5.5 s
read (TD 35 channels) 4 s 12 s 6.0 s 18 s 15.0 s

Table 2: Comparison of compression strategies on pandas data frames and hdf5
files

read time. This is a consequence of the time needed for the decompression of
the whole file before a section can be read. A noticeable decrease in read time
for fewer channels can be achieved by the hdf5 internal compression algorithm.
Compressing each dataset, however, does not decrease the storage space. No
repetitive parts can be compressed when applying the gzip algorithm individually
for each dataset. This shows that data compression can decrease the total storage
space. More repetitive data compressed at once on a higher layer leads to a better
data compression rate while reading time for small segments of data benefits from
the compression on a lower layer.

In summary, the hdf5 format has faster read times for smaller segments of data
compared to pandas data frames, which is an advantage for machine learning. Ad-
ditionally, hdf5 offers more flexibility in compression algorithms compared to tab-
ular data formats. The tdms format is inadequate for data analysis and databases
require the knowledge of query languages, which is an obstacle when working in
Python with this framework.

8.3 Transformation

The main task of the transformation step is the conversion from the input data
format to the final data format used in the following steps of the framework.
During that step data that does not fit a pre-selected structure is filtered. As
analyzed in Section 8.2.2 on the example of the XBox-2 dataset, the format most
suited for the conversion is hdf5. The framework should also be flexible enough to
be used for another data format. Consequently, the conversion is organized with a
class structure that supports the conversion of various input and output formats.

In Figure 11 a visual representation of the transformation is depicted. In the top
left corner the main program is shown. It is implemented to convert XBox-2 data
from tdms to hdf5 format. The gray arrows point to the Convert class, which is

43

Convert

ConvertFromTdms

ConvertFromTdmsToHdf

from_tdms(directory)

to_hdf(directory)

get_tdms_file_paths_to_convert

run _convert_file

Gatherer

gather

(source_file_paths,

destination_dir_path)

_get_func_to_fulfill
(on_error, func_to_fulfill)

_hdf_write_ext_links
(source_file_path,

destination_file_path, depth,
func_to_fulfill)

_get_ext_link_rec

(file_path, hdf_file_path,

depth_to_go, func_to_fulfill)

transform (tdms_directory, hdf_directory)

Convert apply from_tdms(tdms_directory)

apply to_hdf(hdf_directory)

apply run

define function_to_fulfill for event data and
trend data
the function is fulfilled if all data formats
and the number of datapoints are as expected

gather the event and trend data, if they
fulfill the above function at the first layer

Figure 11: A visual representation of the implementation of the transformation

located on the bottom in green and the Gatherer class which is on the right hand
side in red. Both of these classes can be extended to be applied on different data
formats.

8.3.1 Convert Data

The class structure for conversion consists of three layers.

The Convert class is the base layer with the attributes check already converted

and num processes. The first one defines whether the program should look for
already converted files or whether all files of the input directory should be con-
verted. The second input parameter defines how many processing cores should be
used in parallel for the conversion.

The preceding class layer defines the input directory, in the case of the XBox-2
dataset a directory of tdms files. The class name is ConvertFromTdms. An instance
of this class layer can be created with from tdms, a function of the Convert class.

44

When an additional data format has to be transformed by the Convert class, an
additional preceding class is added.

The final class layer defines the output data format. As suggested in Section 8.2.2,
hdf files will be used as they are the most suited data format for the XBox-2
dataset. An instance of the ConvertFromTdmsToHdf class can be created by the
to hdf function from the previous class layer. The conversion process of all files
listed for conversion is started with a call of the function run. It calls the hidden
function convert file which opens each tdms file and converts it. An additional
output data format can be added to the ConvertFromTdms class by an additional
subsequent class.

Thus an additional input data format requires the implementation of another
second and third layer class and hidden file converter. Another output data format
would only require a new third layer class and hidden file converter.

The class structure is chosen so that its class structure’s application is convenient
and self explanatory during the call in the main transformation program. Class
attributes in Python are called with a dot between attribute and class member.
Let the input directory be given by tdms dir and the output directory by hdf dir

then the call of the conversion with 4 parallel processes with a check of already
converted files can be done with

Convert(check already converted=True, num processes=4).

from tdms(tdms dir).

to hdf(hdf dir).run() [line 26-28 Listing 3]

8.3.2 Clean and Process Data

In the lab environment of the XBox-2 test stand adjustments of the machine had
to be made during testing. For example, from time to time electronic components
had to be moved and cables unplugged or rearranged. The recorded data during
periods of such changes miss certain data points. Consequently, fixed data types
and structures are defined that standardize all event and trend data. A detailed
description of the filter criteria is defined in the course of this section and its
implementation can be found in the Appendix in Listing 3. The filtering is done by
functions that return the Boolean value true if it fulfills the standardized structure
and false if not. Additionally, the files are restructured to improve usability.

The hdf format enables restructuring data of multiple hdf files into one with exter-
nal links. Instead of copying all data into one large file, known as deep copy, only
the file path of the hdf file and its internal hdf path are stored, which is known as
shallow copy. The Gatherer class can gather groups of a given hdf layer of a list of

45

hdf files into one hdf file if these groups fulfill the function to fulfill. The layer
of a group is given by its depth in the file tree graph starting from the root. The
output hdf file is given by the destination file path. Additionally, with the option
on error one can define what should be done when the function to fulfill

fails execution and thus throws an error. The gathering with external links keeps
the size of individual files small, which is necessary for file transfer in network
environments where the maximal shareable file size is limited.

The ed function to fulfill tests each recorded pulse stored in a group of the
event data if there are 8 channels with a length 3200 and 500 respectively. The
tdms format supports storing NaN (Not a Number) and inf (infinity) values. These
values are of no use in further analysis and are labeled smelly. Smelly values of
event data are filtered. Its implementation can be found in lines 41-68 in Listing 3.

The td function to fulfill tests each group of the trend data tdms file. It
checks if there are 35 channels and if all channels have same lengths. An imple-
mentation can be found in lines 29-35 of Listing 3.

For the XBox-2 dataset trend data and event data are gathered separately with
the help of external links. In the event data each group contains the data of one
pulse of RF power that is sent to the RF cavity. In the Gatherer, data is joined
at the first layer so that values of all pulses of all days are combined in one hdf
file. The trend data is also gathered at its first layer for all days which makes the
combined file a list of truncated sections of continuous data. The application of
the Gatherer for the XBox-2 data can be seen in lines 37-39 and 70-72 of Listing 3.

The trend data is a consecutive time series with equidistant intervals between
measurements. It is stored, however, as segments of time series. Combining all
trend data requires merging datasets that are segmented in several groups placed
in several trend data files. The hdf file that contains all merged datasets is a deep
copy of its segments. Filtering faulty values is different in trend data. In event data
a fixed amount of event data values is expected for data analysis. In trend data,
however, each data point is recorded and analyzed individually. Therefore, if a
single data point is faulty it can be removed or altered individually. This filtering
procedure is done by row. An implementation of merge and clean by row can
be found in lines 20-36 and 81-115 of list 2. Furthermore, the merged data can
be sorted by a specific column. In case of the XBox-2 data, it is sorted by its
timestamp. The sorting function is implemented in lines 118-129 of list 2. These
data manipulation functions are called in the main program (see list 1) right after
the transformation.

46

8.4 Exploration

The main task of the exploration step of the data analysis framework is feature
calculation, also known as data handling, and an exploration of the data with
unsupervised machine learning. Firstly the context data file is created. It con-
tains additional values called features that describe characteristic properties of the
experiment. It can be either data of its surrounding environment or statistical
properties calculated from data arrays. The most common examples of statisti-
cal features are length, mean, median, maximal and minimal value, variance or
Fourier coefficients when dealing with time series. Secondly, the exploration with
unsupervised machine learning helps to understand inner relations of the data and
to find statistical outliers.

8.4.1 Feature Calculation

The main point of interest of this analysis is the occurrence of breakdowns, which
is information that is stored in the event data. The hdf file context.hdf is created
in an effort to keep the original data measurements unchanged. The context
file contains features for each event. It contains event data attributes, features
calculated form event data and the previous trend data point.

The storing process of event and trend data happens completely independently.
The information of breakdown occurrences is only contained in the event data.
Therefore, using the trend data for analyzing breakdowns is only possible com-
bining the two datasets. Timestamps in trend and event data enable joining
the recordings. It is important, however, to keep the correct order of events,
otherwise a prediction might be deceptive when it uses data that is subsequent
of a breakdown. A timestamp is stored in the group attributes for each pulse
of the event data while in trend data timestamps are stored in a channel. At-
tributes are read during the feature selection process. Therefore, merging of event
and trend data timestamps has to be done after they are read. An implemen-
tation of the combination of event and trend data can be found in the function
manage trend data features in lines 72-89 of list 6.

The statistical properties of event data are part of the context data file. The
feature calculation and the process of storing these values to the context data
file is implemented separately. The essence of its implementation is depicted in
Figure 12. A legend of the used shapes is located in the lower left corner. The
program XBox2ContextDataCreator manages the feature calculation and writ-
ing of the context data file. It is called in the main program in line 49-51 of
Listing 1. In the left upper corner the feature class.py is located in red.
It contains the class structure of all custom features. Each trend-data, event-

47

data, and event-attribute feature is created individually by their get functions
that are located in the center in purple. Furthermore, the get tsfresh func-
tion automates the use of the feature library. The created feature calculators
are used by the XBox2ContextDataCreator and kept in temporary storage. The
Context Data Writer has two sub classes. The column-wise-writer writes one fea-
ture of all events at once while the row-wise-writer writes a bunch of features of a
single event at once.

feature_class.py context_data_creator.py

handler.py

context_data_writer.py

event.py

attribute.py

tsfresh.py

trend.py

Custom

Feature

ColumnWise

Feature

Event
Attribute

Feature

Trend

Data

Feature

Event

Data

Feature

ContextDataCreator

XBox2ContextDataCreator

get_event_

attribute_

features

get_

event_data_

features

get_trend_
data_features

ContextDataWriter

ColumnWise

Context

DataWriter

RowWise

Context

DataWriterget_tsfresh

class
inheritance

classmodule

creates a

class instance

function

call function

Figure 12: Visual representation of the class structure of the feature calculation
and context data writing process

Event Attribute Features Firstly, the event attribute features are created.
During this process all group attributes (originally tdms properties) of each event
are stored in a temporary vector. At the end of the calculation of this feature
the temporary vector of attributes is written into the context data by the column-
wise-writer.

Trend Data Features Secondly, trend data features are created. They require
the exact timestamps of the event data, which are already stored in the event data
attributes. Finding the right trend data points is fast because of the combined
trend data that was prepared during the transformation step.

Event Data Features Finally, the event data features are computed. The
calculation of general statistical properties is done with the help of a package called
tsfresh, which offers implementations of feature calculations [BC]. The number of

48

features that are calculated can be altered between basic (9 values), efficient (∼800
values) and comprehensive (∼2000 values). Additionally to traditional statistical
features the efficient and comprehensive sets contain feature functions that depend
on additional parameters and therefore yield multiple values at once. Feature
functions like k-quantil, count values above x or Fourier-coefficients of frequency l
allow for an increased number of features. All other features are implemented as
a CustomFeature specific to the XBox-2 dataset.

The reading process takes up most time during event data feature calculation.
Therefore, each event data feature is only read once and immediately calculated
by both types of features, tsfresh and custom features. The custom event data
features are written into temporary vectors and finally written by the column wise
context data writer. Consider one thousand tsfresh features that each take up
8B of storage space. Then the required temporary storage space for the 297 128
events with data of 16 sensors each would be 297 128 · 16 · 8byte · 1000 = 38.03GB,
which would create unnecessary overhead. Consequently, the row-wise-writer is
used for tsfresh features. It immediately writes all features of a single event into
the context data file right after its calculation.

The feature calculators and their destination locations in the context data file are
depicted in Figure 13. On the left hand side the step by step calculation of features
is illustrated. Each arrow points from a feature calculator, placed on the left hand
side, to its destination datasets of the context data file, which can be seen on
the right hand side. Event attribute features are stored as direct children of the
context data file, whereas the datasets of tsfresh and custom features are stored
as children of their separate sensors’ data groups, which in turn are children of
the file. The trend data values of the closest preceding records are located in a
separate group called PrevTrendData.

8.4.2 Unsupervised Machine Learning

Dimension reduction is a process that defines a function that projects a high di-
mensional dataset to a lower dimensional space while preserving the essence of the
dataset. The essence of a dataset is defined as the similarities that they have or
the differences that distinguish them. The lower dimensional representation can
be used to get an insight into the essential properties with a visual representation
of the projection. The projection can be applied on new data that was not used
during its creation. Generalization is achieved if the resulting low dimensional rep-
resentation also displays connecting and differing properties. Therefore, dimension
reduction can be used as a machine learning tool with unsupervised training (see
Section 7).

49

The simplest projection function for unsupervised machine learning is a linear
function. It, however, can only preserve linear properties of its training data.

Neural networks with a special architecture can be used to define a projection
function. Consider a neural network with multiple layers that contains same in
and output dimensions and a hidden layer with only a few neurons called restriction
layer. This network is trained to represent the identity function on a given dataset.
If possible it is able to encode the input information in the restriction layer and
decode it again afterwards. This type of neural network is called autoencoder.

Figure 14: UMAP projection of pre-breakdown events in red and healthy events
in green

Statistical graph based methods that search for a manifold in the high dimensional
input space with a lower dimensional representation have been highly successful in
machine learning. The most common examples are TSNE (t-distributed stochastic
neighbor embedding) and its improved version UMAP (uniform manifold approxi-
mation and projection) have gained high popularity. The UMAP algorithm works
in three major steps. Firstly, it computes a weighted graph that resolves the high
dimensional relations of the data. A relational graph is defined with help of a
directed graph where each point is connected to its k-nearest neighbors. Each
directed edge is assigned with a weight equal to its relative distance in relation to
the rest of its k-nearest neighbors. The directed weighted graph is turned into a
weighted graph by combining both directional weights. Secondly, UMAP initial-
izes a low dimensional representation and calculates its relational graph. Thirdly,
it improves the lower dimensional representation such that it’s relational graph
most accurately represents that of its higher dimensional pair. This optimization

50

process uses stochastic gradient descent to minimize an improved cross entropy
measure of its graph edges [MHM18].

An analysis of XBox-2 data with TSNE is done in Chapter III. B. Exploration by
C. Obermair [Obe+22]. We use the UMAP algorithm for unsupervised analysis
of the XBox-2 dataset. The previous trend data signal and the max, min, mean,
median, standard deviation, sum and variance of each event data signal are used
for the analysis. All data is normalized to have mean zero and standard deviation
one before the training algorithms are applied.

Figure 15: UMAP projection of breakdown events in orange-red and healthy events
in green-blue, stacked points are indicated by a darker color

Firstly, only pre-breakdown events where a breakdown happened 20ms afterwards
and some of the healthy events were used for analysis. In Figure 14 the UMAP
projection is displayed. Each projection of a pre-breakdown event is marked in
red and each projection of a healthy event in green. We can see that no clear
distinction between pre-breakdown and healthy pulses is possible by unsupervised
training with UMAP. Therefore, no generalization can be done. The data points
of the clusters do not indicate a clear distinction with respect to time.

Secondly, breakdown events and part of the healthy signals are analyzed. The
UMAP projection onto the 2 dimensional plane is visualized in Figure 15. The
breakdown signals are colored in shades of red and the healthy signals in shades of
blue. The UMAP algorithm can distinguish breakdown and healthy clearly even
though no labels are used during the definition of the projection. The darker the
color the more points are stacked on top of each other.

This shows that breakdown and healthy data already is clearly separable in the

51

high dimensional space. A breakdown data event, however, contains the data of
a vacuum arc that has already formed, thus no predictions are possible with this
distinction.

Thirdly, the UMAP algorithm is applied on a random set of only healthy events.
The results in Figure 16 are colored by runs. The segments of stable operation
are numbered as run 1 to run 9. Runs are time segments where no settings are
changed. This projection is able to separate events with respect to runs with very
few outliers. However assigning events to distinct time intervals does not help for
the detection of breakdowns.

1

2

3

4

5

6

7

8

9

Figure 16: UMAP projection of healthy XBox-2 data colored by run

8.5 Modeling

During the modeling phase the data for analysis is selected and a machine learning
algorithm is trained for breakdown prediction. The model’s generalization is then
tested on a test set or could even be integrated in the lab environment. Addi-
tionally an analysis of the machine learning model’s predictions gives insights to
the decision making process that can potentially improve the understanding of the
underlying data.

8.5.1 Supervised Machine Learning

For each event of the event data 8 statistical properties of its data arrays and
the first preceding trend data record are used for analysis, which is a total of
191 values per event. The number of healthy signals is disproportionately large

52

compared to the breakdown events. Only a random part of healthy events is
chosen for training. The pre-breakdown events, where a breakdown happens 20ms
afterwards, are selected for training. A distinction between healthy signals and
pre-breakdown ones will enable a model to predict that a breakdown happens in
the subsequent event. The labels used for supervised training are: is a healthy
event and is a pre breakdown event.

A fully connected feed forward neural network with 2 hidden layers is chosen as a
model. The two hidden layers have 191 nodes each, while the output layer only
has a single node. The activation function in between the hidden layers is the
relu (rectified linear unit) which is given by relu(x) = min(0, x). The sigmoid
function, sig(x) = (1 + exp(−x)) is used after the output layer. Its range is in
(0, 1) so the output is interpreted as a probability of its Boolean value 0 or 1.

Before training each dimension of the available data is scaled to have mean zero
and standard deviation 1. The data is split into training and test data with a ratio
of 1

5
to 4

5
randomly. During training validation data is separated from the training

data to measure the performance of the network after each round of training. The
Adam (adaptive moment estimation) algorithm with batches of size 10 is used for
training. One round of training where all data is used is called epoch. The results
were evaluated after 20 training epochs in this machine learning example.

During the evaluation of the model all output lower than 1
2
is interpreted as a

prediction of a healthy event and all values greater or equal to 1
2
as a predic-

tion of a pre-breakdown event. The outcome of the prediction is a binary event.
We will consider the classification of a pre-breakdown event a positive and a not
pre-breakdown a negative event. The goal of the machine learning model is to
accurately classify actual positives and actual negatives as such.

The XBox-2 data is highly unbalanced which requires a special performance mea-
sure for predictions. Normally the accuracy, which divides the number of true
predictions divided by the number of total predictions, is used. For imbalanced
data, however, the accuracy is not suited to test the performance. Instead, the
balanced accuracy is used. It is calculated by the mean of sensitivity and speci-
ficity.

balanced accuracy =
sensitivity + specificity

2
=

1

2

(
true pos.

actual pos.
+

true neg.

actual neg.

)
Sensitivity is the number of true positives divided by the number of actual pos-
itives and specificity is the number of true negatives divided by the number of
actual negatives. The balanced accuracy is suited to evaluate the performance of
a machine learning model on imbalanced data.

A k-fold cross validation splits the training data into k equally large parts. It does

53

k different training runs with k−1 parts used for training and one part for testing.
The average performance is then measured separately with the balanced accuracy.

The machine learning model is trained on 6352 events of which 953 are labeled as
pre-breakdown events. On the 5-fold cross validation test set there are on average
157 pre-breakdown events of which 150 are predicted correctly and 1113 healthy
events of which 1072 are predicted correctly. The machine learning model is able
to distinguish healthy events from pre-breakdown ones with a balanced accuracy
of 95, 88% with a standard deviation of 1.21%. This was tested with a 5-fold cross
validation. An implementation of the machine learning model can be found in line
55-99 of Listing 1.

This model suggests that breakdown occurrence is predictable. If settings in the
accelerator can be changed shortly before a breakdown occurs it can potentially
be prevented. Further verification is necessary before the machine learning models
can be applied in the lab. A detailed discussion of results and comparison of
different neural networks is done in Chapter III and IV by C. Obermair [Obe+22].

8.5.2 Explanation and Validation

The shap package is a sensitivity analysis tool that enables the exploration of the
impact of each input feature named after Lloyd Shapely. At first, it calculates
shapely values for each input data point. These values are a balanced measure
of the impact of each input dimension on the output magnitude of the neural
network. The mean of the shapely values then quantify the average impact of an
input dimension on the predicted output [LL17].

sensor name shapely value
internal pressure upstream 0.098
internal pressure before structure 0.0141
internal pressure load 0.00773

Table 3: The three most important trend data signals for breakdown prediction
and their shapely values

Table 3 shows the three highest mean shapely values of the neural network trained
in Section 8.5.1. All three signals describe the internal pressure at: upstream
(placed at the beam axis of the structure, stream is the direction of the RF wave),
before structure (in the wave guide leading to the structure), and load (RF ter-
minator after the structure). For a more detailed description see Section 6.2 or
[Obe+22, Chapter II]. The shapely values suggest that upstream internal pressure
sensor is by far most responsible for the breakdown prediction. Its mean shapely

54

value is seven times higher than that of the second most important signal. As
mentioned in Section 6.2 accelerator scientists observed that small deformations
in the material of the accelerating unit create field enhancements in that region.
It is believed that spikes in electric field strength melt material in the region of the
deformation and thus disturb the vacuum[Nav17, Section 2.3]. The analysis of the
machine learning model suggests that a disturbance of the vacuum is measurable
much earlier than the breakdown occurrence.

8.6 Execution

The application of the knowledge obtained by the machine learning models is called
execution. The transfer of results can be done either by using the trained machine
learning model in the lab environment or by deriving information from the trained
models.

The XBox-2 test stand is controlled by the lab software LabVIEW. The imple-
mentation of a pre-trained machine learning model is possible. Clean data is
required for flawless operation. However, this is not always available. The imple-
mentation of a model that continues learning during operation is resource heavy.
Furthermore, not understanding the reason for its predictions does not improve the
understanding of the processes that cause breakdowns. Consequently, alternative
ways of knowledge transfer are are required. This can be achieved by investigating
the decision making process of the neural network as done in Section 8.5.2.

The XBox-2 test stand was already deactivated at the time these results were
available. Therefore, it was impossible to test the results on the original ma-
chine. The succeeding model, the XBox-3 test stand, is similar and was in place at
that time. The hypothesis is that breakdowns occurs after a vacuum disturbance
which is monitored by the pressure sensor that is responsible for the prediction in
the machine learning model. During the experiment the hypothesis is tested by
changing the settings when a fluctuation in the pressure signal is detected. When
the settings are changed back, the occurrence of breakdowns suggests that local
deformations of the material cause the breakdown. The time available for exper-
imental proof of the hypothesis on the XBox-3 accelerator was only 4 hours. 15
breakdowns occurred in 5 groups during that time. Two groups of breakdowns
support the hypothesis and three do not. No conclusive results were possible due
to the limited time for testing. Further experiments with a sufficient amount of
breakdown data are needed to be able to verify this hypothesis. Additionally, an
improved strategy for hypothesis testing is recommended.

In summary, the analysis of the machine learning model with shap from Sec-
tion 8.5.2 suggests that a pressure signal disturbance is an indicator for break-

55

downs. No conclusive experimental proof was conducted during the testing of the
failure hypothesis. However, the application of machine learning analysis gave
new insights in breakdown occurrence in the XBox-2 accelerator. A more in-depth
analysis of the experimental is done in Chapter IV.C. Experimental validation by
C. Obermair [Obe+22].

56

9 Conclusion

In this thesis the standard model of particle physics is introduced. It is a model
for the fundamental building blocks of matter. On the one hand it defines the
objects investigated in particle physics, on the other hand it explains the need
for high energy experiments. The axiomatic introduction of relativistic mechanics
and electromagnetism allows a deeper understanding of the physics in particle
accelerators. A theoretical comparison of collider and accelerator designs and
collision strategies highlights the challenges of future accelerators. Calculations in
the first part of the thesis show that colliding beam experiments are preferred over
fixed target collisions. The main constraint of circular colliders are the magnets
that bend the particle beam. In this thesis, the minimal required magnetic field
strength needed to achieve collisions of 13TeV in the LHC (Large Hadron Collider)
is calculated. This indicates that higher energy beam collisions are not possible
with the currently available superconducting magnets. Therefore, a bigger circular
accelerator is needed for higher energy experiments. New research goals can also be
pursued with a linear accelerator which achieves higher luminosity, an important
metric of particle colliders. The CLIC (Compact Linear Collider) is a linear collider
designed by CERN and intended to be built in three stages within the next three to
four decades. An experimental RF (radio frequency) cavity structure, called XBox-
2, is introduced. It investigates the main boundary of this type of accelerators:
breakdowns. In the second part of this thesis breakdown data of the XBox-2 test
stand is analyzed.

Data preparation for machine learning is a resource heavy, time consuming and
tedious process. In this thesis a robust and reusable framework is built that seeks
to achieve high respectability and efficiency. The implementation of the framework
is described with the support of graphical illustrations. In parallel, it is applied
on data of the XBox-2 accelerator for the investigation of breakdowns. Firstly,
the optimal data type used for data analysis is determined by an empirical study
of a selection of available options: tdms files (used by LabVIEW by NI), tabu-
lar data formats (e.g. pandas data frames, excel, CSV), databases (e.g. SQL),
and Hdf files (Hierachical data format). A transformation class structure, that is
adaptable for different data types, is implemented. Secondly, data is explored by
feature calculation and analysis with unsupervised machine learning techniques.
An unsupervised algorithm was able to distinguish events with respect to differ-
ent operating parameters. However, no breakdown predictions were possible with
unsupervised training. Thirdly, neural networks are used for supervised machine
learning. A trained model is able to distinguish healthy from pre-breakdown events
and therefore predicts breakdowns. Fourthly, a sensitivity analysis on the trained
neural network suggests that a pressure signal is an indication for a breakdown

57

formation in the XBox-2 accelerator. Experiments are carried out in order to
validate this hypothesis on the succeeding XBox-3 accelerating unit at CERN.

The XBox-2 data was not recorded with a machine learning application in mind.
An improved way to store data could significantly increase productivity and might
even lead to new findings. Limited time was allocated to validate this hypothesis,
but further experiments will be carried out in the future to confirm the correctness
of the identified precursors.

To summarize, this thesis analyzes the basic operating principles of linear and cir-
cular accelerators and thereby motivates accelerators and explains CERN’s high-
gradient test stands. Operational data pertaining to a prototype linear particle
accelerator is analyzed using machine learning methods. A framework for data
analysis is created, optimized and applied on data of an experimental linear ac-
celerating structure. A hypothesis for breakdown occurrence is extracted from a
trained neural network and tested in the lab. Further research is required before
machine learning models can be used to derive a breakdown detection and recovery
algorithm in RF cavities fully based on machine learning.

58

References

[12] “Radiofrequency cavities”. In: (Sept. 1, 2012). url: https://cds.
cern.ch/record/1997424.

[22] The ATLAS Open Data 13 TeV docs. CERN. Jan. 21, 2022. url:
http://opendata.atlas.cern/release/2020/documentation/

index.html (visited on 01/21/2022).

[Aic+18] Markus Aicheler et al. The Compact Linear Collider (CLIC) – Project
Implementation Plan. CERN, Feb. 1, 2018. doi: https://doi.org/
10.23731/CYRM-2018-004.

[BC] Nils Braun and Maximilian Christ. tsfresh. url: https://tsfresh.
com/ (visited on 02/01/2022).

[Bur+18] Philip N. Burrows et al. The Compact Linear Collider (CLIC) – 2018
Summary Report. CERN, Feb. 1, 2018. doi: https://doi.org/10.
23731/CYRM-2018-002.

[Col+20] European Strategy Group Collaboration et al. “Update of the Eu-
ropean Strategy for Particle Physics”. In: CERN Council, Geneva
(2020). url: https://cds.cern.ch/record/2721370 (visited on
11/11/2021).

[Col+21] Andrew Collette et al. HDF5 for python. Aug. 4, 2021. url: https:
//docs.h5py.org/en/stable/index.html (visited on 10/06/2021).

[Ein+05] Albert Einstein et al. “On the electrodynamics of moving bodies”. In:
Annalen der physik 17.10 (1905), pp. 891–921.

[Fis20] Lorenz Fischl. “FEM Triangulation for the Poisson Problem on Polyg-
onal Domains with Neural Networks”. Bachelor Thesis. 2020.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
Adaptive Computation and Machine Learning. MIT Press, Cambridge,
MA, 2016. url: http://www.deeplearningbook.org.

[Gun13] Helmut Gunther. Die Spezielle Relativitätstheorie: Einsteins Welt in
einer neuen Axiomatik. 1st ed. Springer Fachmedien Wiesbaden, 2013.
isbn: 3658007125.

[Isi24] Gustav Ising. “Prinzip einer Methode zur Herstellung von Kanal-
strahlen hoher Voltzahl”. In: Ark. Mat. Astron. Fys. 18 (1924), pp. 1–
4. url: https://cds.cern.ch/record/433984.

59

[KA15] Alfons Kemper and Eickler André.Datenbanksysteme: Eine Einführung.
ger. De-Gruyter-Oldenbourg-Studium. De Gruyter Oldenbourg, Sept. 25,
2015. isbn: 978-3110443752. url: https://lead.to/amazon/com/
?op=bt&la=de&cu=usd&key=3110443759.

[Kam14] Ahmad Anwar Kamal. Particle physics. Graduate texts in physics.
Berlin [u.a.]: Springer, 2014. isbn: 3642386601.

[Kov10] Jan Wilhelm Kovermann. “Comparative Studies of High-Gradient Rf
and Dc Breakdowns”. 2010. url: http://cds.cern.ch/record/
1330346.

[LL17] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting
Model Predictions”. In: Advances in Neural Information Processing
Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017,
pp. 4765–4774. url: http://papers.nips.cc/paper/7062- a-
unified-approach-to-interpreting-model-predictions.pdf.

[LP96] Elliot Leader and Enrico Predazzi. An introduction to gauge theo-
ries and modern particle physics. Cambridge monographs on particle
physics, nuclear physics, and cosmology. Cambridge [u.a.]: Cambridge
Univ. Pr., 1996. isbn: 052157742X.

[Luc+19] Thomas Geoffrey Lucas et al. “Dependency of the capture of field
emitted electron on the phase velocity of a high-frequency accelerat-
ing structure”. In: Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment 914 (2019), pp. 46–52. issn: 0168-9002. doi: https:
//doi.org/10.1016/j.nima.2018.10.166. url: https://www.
sciencedirect.com/science/article/pii/S0168900218314803.

[MHM18] Leland McInnes, John Healy, and James Melville. “Umap: Uniform
manifold approximation and projection for dimension reduction”. In:
arXiv preprint arXiv:1802.03426 (2018).

[Nat21a] National Instruments Corporation. TDMS File Format Internal Struc-
ture. National Instruments Corporation. Aug. 1, 2021. url: https:
//www.ni.com/en-us/support/documentation/supplemental/

07 / tdms - file - format - internal - structure . html (visited on
09/03/2021).

[Nat21b] National Instruments Corporation. The NI TDMS File Format. Na-
tional Instruments Corporation. June 1, 2021. url: https://www.ni.
com/en-us/support/documentation/supplemental/06/the-ni-

tdms-file-format.html (visited on 08/20/2021).

60

[Nat21c] National Instruments Corporation. What is LabVIEW? National In-
struments Corporation. Aug. 11, 2021. url: https://www.ni.com/
en-us/shop/labview.html (visited on 09/06/2021).

[Nav17] Jorge Giner Navarro. “Breakdown studies for high-gradient rf warm
technology in: clic and hadron therapy linacs”. PhD thesis. Universitat
de València, 2017.

[New40] Isaac Newton. Philosophiae naturalis principia mathematica. Vol. 2.
Barrillot, 1740.

[Nob13] Nobel Prize Outreach AB 2021. “The Nobel Prize in Physics 2013”.
In: The 2013 Nobel Prize in Physics - Press release (Sept. 10, 2013).
url: https://www.nobelprize.org/prizes/physics/2013/press-
release/.

[Nob84] Nobel Prize Outreach AB 2021. “The Nobel Prize in Physics 1984”.
In: The 1984 Nobel Prize in Physics - Press release (Sept. 11, 1984).
url: https://www.nobelprize.org/prizes/physics/1984/press-
release/.

[Obe+22] Christoph Obermair et al. Explainable Machine Learning for Break-
down Prediction in High Gradient RF Cavities. Tech. rep. Feb. 2022.
arXiv: 2202.05610. url: https://cds.cern.ch/record/2803014.

[Oku89] Lev B Okun. “The concept of mass”. In: Physics today 42.6 (1989),
pp. 31–36.

[Pan21] Pandas development team. Package overview - pandas 1.3.3 documen-
tation. the pandas development team. Sept. 20, 2021. url: https:
//pandas.pydata.org/docs/getting_started/overview.html

(visited on 09/12/2021).

[Per00] Donald H. Perkins. Introduction to High Energy Physics. 4th ed. Cam-
bridge University Press, 2000. doi: 10.1017/CBO9780511809040.

[Pyt21a] Python Software Foundation. csv — CSV File Reading and Writing.
Python Software Foundation. Sept. 19, 2021. url: https://docs.
python.org/3/library/csv.html (visited on 09/20/2021).

[Pyt21b] Python Software Foundation. pickle - Python object serialization. Python
Software Foundation. Sept. 19, 2021. url: https://docs.python.
org/3.9/library/pickle.html (visited on 09/20/2021).

[Ree20] Adam Reeve. npTDMS documentation. Aug. 24, 2020. url: https:
//nptdms.readthedocs.io/en/stable/index.html (visited on
10/04/2021).

61

[SCE22] SCE Department. CERN maps. CERN. Mar. 1, 2022. url: https:
//maps.web.cern.ch (visited on 03/01/2022).

[Sir+20] Albert M Sirunyan et al. “A measurement of the Higgs boson mass
in the diphoton decay channel”. In: Physics Letters B 805 (2020),
p. 135425.

[Sto+18] Mike Stonebraker et al. “C-Store: A Column-Oriented DBMS”. In:
Making Databases Work: The Pragmatic Wisdom of Michael Stone-
braker. Association for Computing Machinery and Morgan; Claypool,
2018, pp. 491–518. isbn: 9781947487192. url: https://doi.org/10.
1145/3226595.3226638.

[Stu19] Thomas Studer. Relationale Datenbanken: Von den theoretischen Grund-
lagen zu Anwendungen mit PostgreSQL. ger. Springer Berlin Heidel-
berg, Oct. 29, 2019. isbn: 9783662589755.

[Tie+21] Eite Tiesinga et al. “CODATA recommended values of the funda-
mental physical constants: 2018”. In: Reviews of Modern Physics 93.2
(2021), p. 025010.

[VM] Xabier Cid Vidal and Ramon Cid Manzano. rf cavities. CERN. url:
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.

rf_cavities (visited on 01/23/2022).

[Wid28] Rolf Widerøe. “Über ein neues Prinzip zur Herstellung hoher Span-
nungen”. In: Archiv für Elektrotechnik 21.4 (1928), pp. 387–406.

[Woo16] Nicholas Woodhouse. Spezielle Relativitätstheorie. ger. 1st ed. Springer-
Lehrbuch Masterclass. Berlin, Heidelberg: Springer Berlin Heidelberg
Imprint: Springer Spektrum, 2016. isbn: 3662463733.

[Wue+17] Walter Wuensch et al. “Statistics of vacuum breakdown in the high-
gradient and low-rate regime”. In: Phys. Rev. Accel. Beams 20 (1 Jan.
2017), p. 011007. doi: 10.1103/PhysRevAccelBeams.20.011007.
url: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.
20.011007.

62

10 Appendix

10.1 Represent Tdms Files as a Database

Tabular data formats consist of columns and rows whereas tables in databases
consist of tuples and attributes. A tuple is one entry of a database. A set of tuples
that all have the same structure is called a table. An attribute of a tuple is a single
value while an attribute of a table is referred to as all values of a single attribute
of all tuples. A collection of tables is called a database.

Definition 10.1 (tuple, table, attribute, database). Let n ∈ N and D1, . . . , Dn be
sets, called domains and let A = {a1, . . . , an} be a set of names. Then a tuple is a
function mapping A to the union of the domains that satisfies

t : A →
‖

i∈1,...,n
Di

∀i ∈ 1, . . . , n : ai Ɨ→di ∈ Di.

A set of tuples that all have the same set of names and domains is a table. The
projection of a table T = {ti : i ∈ I} to its k-th component is defined as the multi-
set πk(T) = {ti(ak) : i ∈ I} and is called an attribute (or column) of the table. A
set of tables is a database.

In the field of databases values are called by their column names (attributes) while
in tabular data formats they are called by numbers (indices). The main difference
to other tabular data formats, however, is the connectivity between tables.

In a DBMS the domains are defined by the data types of each attribute. These
help to reserve the required amount of space when storing entries. Typical DBMS
contain the data types numbers, dates and strings. Numeric data types typically
have different categories like integer, float and identification numbers called id. In
specialized applications a so called blob (binary large object) can be used to store
any data in a binary format. Arrays are typically saved as blobs if the DBMS can
handle them at all [KA15, Chapter 4].

One of the main advantages of databases is the possibility to store dependencies
from one tuple to another. Setting two tuples in relation to each other requires an
identification. A table is defined as a set of tuples. Tuples can not necessarily be
uniquely identified by the image of a single name. However, it is of great interest
to know the minimal set of attribute names of a table that uniquely identifies
all tuples of that table. A set of attribute names with that property is called a
primary key. Dependencies of tuples with each other is implemented with keys
[Stu19, Chapter 2].

63

Definition 10.2 (primary key, foreign key). Let T be a table with attribute names
A. Any subset K of the attribute name set A is called primary key of T iff

∀t, t' ∈ T : [∀a ∈ K : t(a) = t'(a)] =⇒ t = t'.

Let T ' be a table with attribute names A'. A foreign key is a subset K ' of A' that
also is a primary key of T .

Data reconfiguration like joining tables are summarized as relational algebra.
These operations use primary and foreign keys for merging data. Note that a
foreign key can be a primary key of its own table and thus represents a self refer-
ence.

The table names, attribute names and data types are typically summarized in a
table called relational scheme.

Definition 10.3 (relation scheme). Let k ∈ N be the number of tables and nk ∈ N
be the number of attributes per table. Let the table names be given by t1, . . . , tk
and the attribute names be given by Ak = {ak1, . . . , aknk

} where the first {ak1, . . . aklk}
names form a primary key of the table tk. Let the domains be given by their data
types Dk = {dk1, . . . , dkn}, then the relation scheme is given by

t1 :{[a1
1 : d1

1, . . . , a
1
l1
: d1

l1
, . . . , a1

n1
: d1

n1
]},

...

tk :{[ak1 : dk1, . . . , a
1
lk
: d1

lk
, . . . , aknk

: dknk
]}.

The data of the XBox-2 test stand is stored in tdms files. The ease of usability in
Python, the first requirement for the framework’s data type, is tested by creating
a database that could store tdms files. Initially a database on the conceptual level
is created with a procedure presented by Alfons Kemper [KA15, Chapter 2].

Each channel has exactly one parent group while each group has exactly one parent
file. The relationship that each child has exactly one parent and each parent can
have multiple children is called (1 : N). These three entities all have the attribute
name. The main data is stored with the attribute data of the channel entity. The
name and value of the properties are attributes of the property entity which is
shared between files, groups, and channels. Thus the three entities all have the
relationship has with the same entity property. Each file, group, and channel can
have multiple properties and each property can be assigned to multiple entities.
This relationship is called (N : M).

In Figure 17 the ER (entity relationship) diagram of tdms files is displayed. The
file, group, and channel entities are depicted on the right hand side. The shared

64

properties are placed on the left hand side of the figure. In an ER diagram each
entity is represented by a rectangle, each connection between entities by a diamond,
and each attribute by an ellipse. The connection types (1 : N) and (N : M) are
marked at the connecting lines. Note that the attribute data of channel contains
arrays which are not available in every DBMS [KA15, Chapter 2].

1
file

1
group

channel

N
contains

N
contains

M
M
M

property

N

has

Nhas

N

has

name

value

name

name

name

data

Figure 17: Entity relationship diagram of tdms files

The entity relationship model in Figure 17 can be transferred to a UML (Unified
Modeling Language) diagram. This diagram consists of tables of the database.
Each table has a separate box. The table name is located in the first row and
its attributes in the following rows. The primary and foreign keys are marked
with the abbreviations PK and FK. There is a table in the UML diagram for
each entity in the ER diagram. The names of files, groups and channels can be
the same. Therefore, an extra attribute id needs to be added for every entity in
order to ensure the uniqueness of each tuple. Ids are unique consecutive numbers
that identify each tuple of a table. There is a table for each relationship that
contains two foreign keys, one for each related attribute. A visualization of the
UML diagram with connecting lines between foreign and primary keys can be seen
in Figure 18 [KA15, Chapter 3].

65

property

+ id_property: id (PK)

+ name: str

+ value: any

file

+ id_file: id (PK)

+ name: str

N
group

+ id_group: id (PK)

+ name: str

channel

+ id_channel: id (PK)

+ name: str

+ data: arr

file_has_property

+ id_file: id (PK, FK)

+ id_property: id (PK, FK)

group_has_property

+ id_group: id (PK, FK)

+ id_property: id (PK, FK)

channel_has_property

+ id_channel: id (PK, FK)

+ id_property: id (PK, FK)

1
file_contains_group

+ id_file: id (FK)

+ id_group: id (PK, FK)

1

N

group_contains_channel

+ id_group: id (FK)

+ id_channel: id (PK, FK)

M

M

N

N

N

M

Figure 18: Conceptual model of tdms files as a UML diagram

The tables file and file contains group both have the same primary key, id file,
because of the (1 : N) relationship between file and group. Tables that have
the same primary keys can be merged into a single table. Similarly, group and
group contains channel can be merged into a single table. Consequently, we re-
move the two contain relation tables and add the attribute contained in file id
to group and contained in group id to channel. A more compact version of the
UML diagram can be created by the union of these tables. The primary keys of
group has property and channel has property cannot be included in another table
because of their (N : M) relationship. The improved version of the conceptual
model of tmds files can be seen as a relation scheme in table 4.

file : {[id file: id, name: str]}
group : {[id group: id, name: str, contained in file id: id]}

channel
: {[id channel: id, name: str, data: arr,

contained in group id: id]}
property : {[id property: id, name: str, value: any]}

file has property : {[id file: id, id property: id]}
group has property : {[id group: id, id property: id]}

channel has property : {[id channel: id, id property: id]}
Table 4: Improved conceptual model of tdms files in a relational scheme

66

ts
fr

es
h

ge
ne

ric
 ti

m
e

se
rie

s
fe

at
ur

e
m

od
ul

e
co

m
pr

eh
en

si
ve

fe
at

ur
es

~2
00

0
va

lu
es

ef
fic

ie
nt

fe
at

ur
es

~8
00

va
lu

es

Ev
en

t D
at

a
Fe

at
ur

es

re
ad

 th
e

tim
e

se
rie

s
da

ta
 a

nd
ca

lc
ul

at
e

fe
at

ur
es

Ev
en

t A
ttr

ib
ut

e
Fe

at
ur

es

re
ad

 e
ve

nt
 a

ttr
ib

ut
es

/p
ro

pe
rti

es

is
_b

d

is
_l

og

is
_b

d_
in

_4
0m

s

tim
es

ta
m

p

Tr
en

d
D

at
a

Fe
at

ur
es

se
le

ct
 p

re
vi

ou
s

tre
nd

 d
at

a

C
us

to
m

 E
ve

nt
 D

at
a

Fe
at

ur
es

Options

pu
ls

e
am

pl
itu

de

pu
ls

e
le

ng
th

tim
es

ta
m

p
pr

es
su

re

...

1 2 3

PK
I a

m
pl

itu
de

Pr
ev

Tr
en

dD
at

a

tim
es

ta
m

p

is
_b

d

is
_b

d_
in

_2
0m

s

pu
ls

e
le

ng
th

D
1

ts
fre

sh
_f

ea
tu

re
1

ts
fre

sh
_f

...

ts
fre

sh
_f

ea
tu

re
2

D
9

D
1

D
9

pu
ls

e
am

pl
itu

de

PS
I a

m
pl

itu
de

pu
ls

e
le

ng
th

pu
ls

e
am

pl
itu

de

ts
fre

sh
_f

ea
tu

re
1

ts
fre

sh
_f

...
ts

fre
sh

_f
ea

tu
re

2

D
1

pu
ls

e
am

pl
itu

de tim
es

ta
m

p

pr
es

su
re

...

C
on

te
xt

 D
at

a
Fi

le

is
_b

d_
in

_2
0m

s

da
ta

se
t

gr
ou

p
ts

 fr
es

h
fe

at
ur

e
ca

lc
ul

at
or

cu
st

om
 fe

at
ur

e
ca

lc
ul

at
or

is
_l

og

ba
si

c
fe

at
ur

es

9
va

lu
es

is
_b

d_
in

_4
0m

s

F
ig
u
re

13
:
M
o
d
el

of
th
e
fe
at
u
re

ca
lc
u
la
to
rs

on
th
e
le
ft

an
d
th
ei
r
lo
ca
ti
on

s
in

th
e
co
n
te
x
t
d
at
a
fi
le

on
th
e
ri
gh

t

67

10.2 Implementation

Figure 19: Directory structure of the implementations

feature_class.py

src

xbox2_main.py

handler.py

transformation.py

utils

hdf_tools.py

handler_tools

context_data_creator.py

context_data_writer.py

transf_tools

convert.py

gather.py

xbox2_speciffic

feature_def

attribute.py

event.py

trend.py

tsfresh.py

select_features

simple_select.py

68

Listing 1: Implementation of xbox2 main.py

1 """
2 This is the main program for the analysis of the XBox-2 accelerator.
3 It combines all steps of the machine learning framework:
4 * transformation from tdms to hdf files
5 * data exploration with a data handler
6 * modeling of a neural network for breakdown prediction
7 """
8 from pathlib import Path
9 from collections import namedtuple

10 import numpy as np
11 import tensorflow as tf
12 from tensorflow import keras
13 from tensorflow.keras.layers import Input, Dense
14 from sklearn.model_selection import StratifiedKFold
15 from src.transformation import transform
16 from src.handler import XBox2ContextDataCreator
17 from src.utils import hdf_tools
18 from src.xbox2_speciffic.select_features.simple_select import select_data
19

20

21 def transformation(src_dir: Path, work_dir: Path) -> None:
22 """
23 calls the transformation function, combines all trend data and
24 re-formats timestamps
25 :param src_dir: directory of the data source (where tdms files are located)
26 :param work_dir: the working directory, destination of the transformation
27 """
28 transform(tdms_dir=src_dir,
29 hdf_dir=work_dir)
30

31 gathered_trend_data = work_dir / "TrendDataExtLinks.hdf"
32 combined_trend_data_path = work_dir / "combined.hdf"
33

34 hdf_tools.merge(source_file_path=gathered_trend_data,
35 dest_file_path=combined_trend_data_path)
36 hdf_tools.convert_iso8601_to_datetime(file_path=combined_trend_data_path)
37 hdf_tools.sort_by(file_path=combined_trend_data_path, sort_by_name="Timestamp")
38

39

40 def data_handling(work_dir: Path) -> None:
41 """
42 creates the context data
43 :param work_dir: the working directory where the gathered data files are located
44 """
45 gathered_event_data_path = work_dir / "EventDataExtLinks.hdf"
46 context_data_file_path = work_dir / "context.hdf"
47 combined_trend_data_path = work_dir / "combined.hdf"
48

49 creator = XBox2ContextDataCreator(ed_file_path=gathered_event_data_path,
50 td_file_path=combined_trend_data_path,
51 dest_file_path=context_data_file_path)
52 creator.manage_features()
53

54

55 def get_model() -> keras.models.Model:
56 """
57 creates and compiles a neural network that is ready for training
58 :return: a compiled keras neural network
59 """
60 activation_func = tf.nn.relu
61 input_layer = Input(shape=191)
62 layer1 = Dense(units=191, activation=activation_func)(input_layer)
63 layer2 = Dense(units=191, activation=activation_func)(layer1)
64 output_layer = Dense(units=1, activation=tf.nn.sigmoid)(layer2)
65

66 model = keras.models.Model(inputs=input_layer, outputs=output_layer)
67 model.compile(loss='binary_crossentropy', optimizer=keras.optimizers.Adam(),
68 metrics=[keras.metrics.AUC()])

69

69 return model
70

71

72 def modeling() -> np.ndarray:
73 """
74 creates test data and does a k-fold cross validation to test
75 a neural network's performance with balanced accuracy
76 :return: list of the balanced accuracies done by the k-fold cross validation
77 """
78 x, y = select_data()
79 y = y.astype(dtype=int)
80

81 results_list = []
82 k_fold = StratifiedKFold(n_splits=5, shuffle=True)
83 batch_size = 10
84 num_epochs = 20
85 data = namedtuple("data", ["x", "y"])
86 for train, test in k_fold.split(x, y):
87 train = data(x[train], y[train])
88 test = data(x[test], y[test])
89

90 model = get_model()
91 model.fit(train.x, train.y, batch_size=batch_size, validation_split=0.3,

epochs=num_epochs,→c
92 verbose=True)
93

94 predictions = np.around(model.predict(x=test.x)[:, 0]).astype(dtype=int)
95 c_m = tf.math.confusion_matrix(labels=test.y, predictions=predictions)
96 bal_acc = (c_m[0, 0] / (c_m[0, 0] + c_m[1, 0]) + c_m[1, 1] / (c_m[0, 1] + c_m[1,

1])) / 2→c
97 results_list.append(bal_acc)
98

99 return np.array(results_list)
100

101

102 if __name__ == "__main__":
103 transformation(src_dir=Path("~/project_data/CLIC_DATA_Xbox2_T24PSI_2/").expanduser(),
104 work_dir=Path("~/output_files/").expanduser())
105 data_handling(work_dir=Path("~/output_files/").expanduser())
106 print(modeling().mean())

70

Listing 2: Implementation of hdf tools.py

1 """
2 This module contains implementations of useful functions for hdf-files.
3 * merge: unifies all hdf-datasets in a file that have the same name;
4 searches for all datasets in a file
5 * clean: the clean_by_row cleans "smelly" values row by row
6 * sort: sorts all datasets according to one of them
7 * conversion to df: convert_to_df converts an hdf file into a pandas dataframe
8 """
9 from pathlib import Path

10 import logging
11 import re
12 import typing
13 import numpy as np
14 import h5py
15 import pandas as pd
16

17 logger = logging.getLogger(__name__)
18

19

20 def merge(source_file_path: Path, dest_file_path: Path) -> None:
21 """
22 merges specific parts of datasets in hdf files
23 In the first layer of the hdf-file structure there have to be groups only.
24 In the following layer each group has to have hdf-datasets of the same name.
25 Then this function merges (concatenates) all datasets into a file that has the
26 merged datasets as children of the hdf-file-group (the root).
27 :param source_file_path: file of the un-merged groups with same data set names
28 :param dest_file_path: file where the merged datasets will be stored at the root
29 """
30 with h5py.File(source_file_path, mode="r") as source_file, \
31 h5py.File(dest_file_path, mode="a") as dest_file:
32 first_grp = source_file.values().__iter__().__next__()
33 for channel_name in first_grp.keys(): # the channel names are always the same
34 logger.debug("currently merging: %s", channel_name)
35 data = np.concatenate([grp[channel_name][:] for grp in source_file.values()])
36 dest_file.create_dataset(name=channel_name, data=data, chunks=True)
37

38

39 def convert_iso8601_to_datetime(file_path: Path, also_convert_attrs: bool = True) -> None:
40 """
41 converts datasets and attributes of strings that contain datetime values of iso8601
42 format to the numpy datetime format
43 :param file_path: path of the hdf file to convert
44 :param also_convert_attrs: boolean value to define if attrs datetime should
45 also be converted
46 """
47 def convert_attrs(_: str, hdf_obj):
48 """
49 a visitor function (hdf.File.visititems()) converts all the attributes
50 of the given hdf_obj.
51 """
52 for attrs_key, val in hdf_obj.attrs.items():
53 try:
54 val = pd.to_datetime(val.astype(str), format="%Y-%m-%dT%H:%M:%S.%f")
55 except ValueError:
56 pass
57 else:
58 val = val.to_numpy(np.datetime64)
59 del hdf_obj.attrs[attrs_key]
60 hdf_obj.attrs.create(name=attrs_key, data=np.array(val).
61 astype(h5py.opaque_dtype(val.dtype)))
62

63 with h5py.File(file_path, mode="r+") as file:
64 if also_convert_attrs:
65 convert_attrs("/", file)
66 file.visititems(convert_attrs)
67

68 for key, channel in list(get_all_dataset_items(file)):

71

69 try:
70 data = pd.to_datetime(data=channel[:].astype(str),
71 format="%Y-%m-%dT%H:%M:%S.%f")
72 except ValueError:
73 pass
74 else:
75 data = data.to_numpy(np.datetime64)
76 del file[key]
77 file.create_dataset(name=key,
78 data=data.astype(h5py.opaque_dtype(data.dtype)))
79

80

81 def _check_corruptness(arr: np.ndarray):
82 """
83 checks if the input array contains a healthy or smelly (inf or nan) value
84 :param arr: input array to check
85 :return: array with boolean values
86 True if the value at that index was healthy; False if it was corrupt
87 """
88 if np.issubdtype(arr.dtype, np.number):
89 is_corrupt = np.isnan(arr) | np.isinf(arr)
90 elif np.issubdtype(arr.dtype, np.datetime64):
91 is_corrupt = np.isnat(arr)
92 else:
93 raise NotImplementedError("Corrupt data is only known for "
94 "numeric and datetime values.")
95 return is_corrupt
96

97

98 def clean_by_row(file_path: Path) -> None:
99 """

100 removes smelly rows
101 column = dataset of the hdf-file
102 row = values with the same index from all columns
103 :param file_path: the path of the hdf-file containing datasets of same length
104 """
105 with h5py.File(file_path, "r+") as file:
106 shape = file.values().__iter__().__next__().shape # shape of the first dataset
107 is_corrupt = np.zeros(shape, dtype=bool)
108 for channel in file.values():
109 is_corrupt |= _check_corruptness(channel[:])
110 new_shape = (sum(~is_corrupt),)
111 for channel in file.values():
112 logger.debug("cleaning channel: %s", channel)
113 data = channel[~is_corrupt]
114 channel.resize(size=new_shape)
115 channel[...] = data
116

117

118 def sort_by(file_path: Path, sort_by_name: str) -> None:
119 """
120 sorts all datasets with respect to one specific dataset (given by the key)
121 this is done inplace, without copying data
122 :param file_path: path of the hdf-file containing datasets of the same length
123 :param sort_by_name: name of the dataset to be sorted
124 """
125 with h5py.File(file_path, "r+") as file:
126 indices_order = file[sort_by_name][:].argsort()
127 for channel in get_all_dataset_values(file):
128 data = channel[:]
129 channel[...] = data[indices_order]
130

131

132 def hdf_path_combine(*argv: str) -> str:
133 """
134 concatenates hdf path with "/" in between
135 works similar to Path(str, str, str) or the / operator for Path objects but for
136 hdf-paths (so with string objects)
137 :param argv: the group names for concatenation
138 :return: the concatenated path string
139 """
140 path = "/" + "/".join(argv)

72

141 path = re.sub('//+', '/', path)
142 return path
143

144

145 def _get_all_dataset_items_rec(
146 hdf_path: str, hdf_obj: typing.Union[h5py.File, h5py.Dataset, h5py.Group])\
147 -> typing.Generator:
148 """
149 a private generator that returns all items that are children of the value hdf object
150 :param hdf_path: hdf-object
151 :return: generator that returns all children hdf-dataset items of that hdf-object
152 """
153 if isinstance(hdf_obj, h5py.Dataset):
154 yield hdf_path, hdf_obj
155 else:
156 for key, val in hdf_obj.items():
157 yield from ((hdf_path_combine(hdf_path, key), val)
158 for key, val in _get_all_dataset_items_rec(key, val))
159

160

161 def get_all_dataset_items(hdf_obj, path: str = "/") -> typing.Generator:
162 """
163 a generator that returns all items that are children of the value hdf object
164 :param hdf_obj: starting hdf_obj (file, group, dataset)
165 :param path: the path of the starting hdf_obj
166 :return: generator that returns all children hdf-dataset items of the given path
167 """
168 yield from _get_all_dataset_items_rec(path, hdf_obj)
169

170

171 def get_all_dataset_values(value: typing.Union[h5py.File, h5py.Dataset, h5py.Group]) -> \
172 typing.Generator:
173 """
174 a generator that returns all values that are children of the value hdf object
175 :param value: the value to recursively go through all values
176 :return: generator that returns all children hdf-dataset values of that hdf-object
177 """
178 if isinstance(value, h5py.Dataset):
179 yield value
180 else:
181 for val in value.values():
182 yield from get_all_dataset_values(val)
183

184

185 def hdf_to_df(file_path: Path, hdf_path: str = "/") -> pd.DataFrame:
186 """
187 converts hdf files into pandas dataframes
188 :param file_path: file path of the hdf-file to convert
189 :param hdf_path: inner hdf-path whose children datasets should be converted
190 :return: pandas dataframe
191 """
192 with h5py.File(file_path, "r") as file:
193 return pd.DataFrame(data={path[1:].replace("/", "__").replace(" ", "_"): val[:]
194 for path, val in get_all_dataset_items(file[hdf_path],
195 hdf_path)})
196

197

198 def hdf_to_df_selection(file_path: Path, selection, hdf_path: str = "/") -> pd.DataFrame:
199 """
200 converts selection of hdf files into pandas dataframes
201 :param file_path: file path of the hdf-file to convert
202 :param hdf_path: inner hdf-path whose children datasets should be converted
203 :return: pandas dataframe
204 """
205 with h5py.File(file_path, "r") as file:
206 return pd.DataFrame(
207 data={path[1:].replace("/", "__").replace(" ", "_"): val[selection]
208 for path, val in get_all_dataset_items(file[hdf_path], hdf_path)})

73

10.2.1 Transformation

Listing 3: Implementation of transformation.py
1 """This module applies conversion and gathering on XBox-2 data."""
2 from pathlib import Path
3 import logging
4 import h5py
5 import numpy as np
6 from src.utils.transf_tools.convert import Convert
7 from src.utils.transf_tools.gather import Gatherer
8

9 logger = logging.getLogger(__name__)
10

11

12 def transform(tdms_dir: Path, hdf_dir: Path) -> None:
13 """
14 transforms all tdms files to hdf files, filters faulty data and gathers hdf
15 groups with depth 1 of the hdf files into one hdf file with external links
16 :param tdms_dir: input directory with tdms files
17 :param hdf_dir: output directory with hdf files
18 """
19 Path(hdf_dir, "data").mkdir(parents=False, exist_ok=True)
20

21 # read tdms files, convert them to hdf5 and write them into hdf_dir/data/
22 Convert(check_already_converted=True, num_processes=4) \
23 .from_tdms(tdms_dir) \
24 .to_hdf(hdf_dir / "data").run()
25

26 # combine all events and trend data sets into one hdf5 file with external links
27 # if the time series segments are healthy
28

29 def td_func_to_fulfill(file_path: Path, hdf_path: str) -> bool:
30 with h5py.File(file_path, "r") as file:
31 grp = file[hdf_path]
32 ch_shapes = [ch.shape[0] for ch in grp.values()]
33 len_equal = all(ch_shape == ch_shapes[0] for ch_shape in ch_shapes)
34 num_of_samples = 35
35 return len_equal and len(ch_shapes) == num_of_samples
36

37 Gatherer(if_fulfills=td_func_to_fulfill, on_error=False, num_processes=4)\
38 .gather(src_file_paths=hdf_dir.glob("data/Trend*.hdf"),
39 dest_file_path=hdf_dir / "TrendDataExtLinks.hdf")
40

41 def ed_func_to_fulfill(file_path: Path, hdf_path: str) -> bool:
42 with h5py.File(file_path, "r") as file:
43 grp = file[hdf_path]
44 ch_len = [ch.shape[0] for ch in grp.values()]
45

46 acquisition_window = 2e-6 # time period of one event is 2 microseconds
47

48 # acquisition card NI-5772 from National Instruments
49 # see https://www.ni.com/en-us/support/model.ni-5772.html
50 sampling_frequency_ni5772 = 1.6e9
51 num_of_values_ni5772 = acquisition_window * sampling_frequency_ni5772
52 number_of_signals_monitored_with_ni5772 = 8
53

54 # acquisition card NI-5761 from National Instruments
55 # see https://www.ni.com/en-us/support/model.ni-5761.html
56 sampling_frequency_ni5761 = 2.5e8
57 num_of_values_ni5761 = acquisition_window * sampling_frequency_ni5761
58 number_of_signals_monitored_with_ni5761 = 8
59

60 def has_smelly_values(data) -> bool:
61 return any(np.isnan(data) | np.isinf(data))
62

63 return grp.attrs.get("Timestamp", None) is not None \
64 and ch_len.count(num_of_values_ni5772) == \
65 number_of_signals_monitored_with_ni5772 \
66 and ch_len.count(num_of_values_ni5761) == \
67 number_of_signals_monitored_with_ni5761 \
68 and not any(has_smelly_values(ch[:]) for ch in grp.values())
69

74

70 Gatherer(if_fulfills=ed_func_to_fulfill, on_error=False, num_processes=1)\
71 .gather(src_file_paths=hdf_dir.glob("data/EventData_201804*.hdf"),
72 dest_file_path=hdf_dir / "EventDataExtLinks.hdf")

75

Listing 4: Implementation of convert.py

1 """This module contains classes that read data and convert it to a different
2 file format."""
3 import os
4 from time import time
5 from pathlib import Path
6 import multiprocessing as mp
7 import logging
8 from functools import partial
9 import nptdms

10 import h5py
11

12 logger = logging.getLogger(__name__)
13

14

15 def _convert_file(tdms_file_path: Path, hdf_dir: Path) -> None:
16 """
17 converts one tdms file to an hdf file with the nptdms as_hdf function
18 :param tdms_file_path: file path of the tdms file
19 :param hdf_dir: file path of the hdf file (destination)
20 """
21 t_0 = time()
22 with nptdms.TdmsFile(tdms_file_path) as tdms_file:
23 logger.debug("reading tdms file %40s took: %10.10s sec",
24 tdms_file_path.stem, time() - t_0)
25 hdf_file_path = hdf_dir / tdms_file_path.with_suffix(".hdf").name
26 t_0 = time()
27 tdms_file.as_hdf(hdf_file_path, mode="w", group="/")
28 logger.debug("tdms2hdf + writing %40s took: %10.10s sec",
29 tdms_file_path.stem, time() - t_0)
30

31

32 class Convert: # pylint: disable=too-few-public-methods
33 """very general converter object, that can be adapted to other input and output
34 data formats"""
35

36 def __init__(self,
37 check_already_converted: bool = True,
38 num_processes: int = 2):
39 """
40 initializes the converter
41 :param check_already_converted: It is possible that part of the files has already
42 been converted. check_already_converted defines whether only the files
43 that have not been converted yet or all files will be converted
44 :param num_processes: number of processes for parallel conversion
45 """
46 self.check_already_converted = check_already_converted
47 self.num_processes = num_processes
48

49 def from_tdms(self, tdms_dir: Path):
50 """
51 adds the source directory where the tdms files are located and returns
52 a ConvertFromTdms object
53 :param tdms_dir: file path of the directory where the tdms files are located
54 :return: a ConvertFromTdms object
55 """
56 return ConvertFromTdms(tdms_dir,
57 self.check_already_converted, self.num_processes)
58

59

60 class ConvertFromTdms(Convert):
61 """adds the from_directory (source) for the converter"""
62

63 def __init__(self, tdms_dir: Path, check_already_converted: bool, num_processes: int):
64 """
65 initializes the ConvertFromTdms class object, inherits from Convert.
66 tdms_dir is the source directory where the tdms files ready for conversion
67 are located.
68 :param tdms_dir: source directory of tdms files

76

69 :param check_already_converted: only convert the not yet converted files
70 :param num_processes: number of processes for parallel conversion
71 """
72 super().__init__(check_already_converted, num_processes)
73 self.tdms_dir = tdms_dir
74

75 def to_hdf(self, hdf_dir: Path):
76 """
77 adds the destination directory where the hdf files will be stored and returns
78 a ConvertFromTdmsToHdf object
79 :param hdf_dir: path of the directory where the hdf-files will be stored
80 :return: a ConvertFromTdmsToHdf object
81 """
82 return ConvertFromTdmsToHdf(
83 hdf_dir, self.tdms_dir, self.check_already_converted, self.num_processes)
84

85

86 class ConvertFromTdmsToHdf(ConvertFromTdms):
87 """adds the destination directory (destination) for ConvertFromTdms"""
88

89 def __init__(self, hdf_dir: Path, tdms_dir: Path,
90 check_already_converted: bool, num_processes: int):
91 """
92 initializes the ConvertFromTdmsToHdf class object
93 :param hdf_dir: destination directory of the hdf files
94 :param tdms_dir: ConverterFromTdms class object
95 """
96 super().__init__(tdms_dir, check_already_converted, num_processes)
97 self.hdf_dir = hdf_dir
98

99 def get_tdms_file_paths_to_convert(self) -> set:
100 """
101 creates a set of tdms files that will be converted
102 if check_already_converted -> returns the file paths that are not converted yet
103 else -> return all tdms files in the tdms_dir
104 :return: set of file paths that will be converted
105 """
106 tdms_file_paths = self.tdms_dir.glob("*.tdms")
107 if self.check_already_converted:
108 for path in self.hdf_dir.glob("*.hdf"):
109 try:
110 # if the writing process of an hdf file was aborted prematurely,
111 # the file cannot be opened and therefore needs to be recompiled
112 h5py.File(path, "r").close()
113 except OSError:
114 os.remove(path)
115 hdf_file_names = set(path.stem for path in self.hdf_dir.glob("*.hdf"))
116 ret = set(p for p in tdms_file_paths if p.stem not in hdf_file_names)
117 else:
118 ret = set(tdms_file_paths)
119 if len(ret) != 0:
120 logger.debug("Files to convert: %s", len(ret))
121 return ret
122

123 def run(self) -> None:
124 """starts the conversion process"""
125 t_tot = time()
126 if self.num_processes == 1:
127 for path in self.get_tdms_file_paths_to_convert():
128 _convert_file(path, self.hdf_dir)
129 else:
130 convert_func = partial(_convert_file, hdf_dir=self.hdf_dir)
131 with mp.Pool(self.num_processes) as pool:
132 pool.map(convert_func, self.get_tdms_file_paths_to_convert())
133 logger.debug("In total tdms to hdf5 conversion took: %s sec", time() - t_tot)

77

Listing 5: Implementation of gather.py

1 """The gather module contains classes that combine/group/merge hdf-groups
2 into one file when they are scattered in multiple files with external links."""
3 from typing import Callable
4 import logging
5 from pathlib import Path
6 from functools import partial
7 from collections.abc import Iterable
8 import h5py
9 from src.utils.hdf_tools import hdf_path_combine

10

11 logger = logging.getLogger(__name__)
12

13

14 def _get_ext_link_rec(file_path: Path, hdf_path: str, depth_to_go: int,
15 func_to_fulfill: Callable[[Path, str], bool]) -> set:
16 """
17 recursive function to return external links of hdf files in variable depth
18 :param file_path: path of the hdf file
19 :param hdf_path: hdf_path of the hdf object inside the hdf file
20 :param depth_to_go: goal depth to go inside the hdf-file
21 :param func_to_fulfill: the function that has to be fulfilled in order to be gathered
22 :return: set of external hdf links
23 """
24 if depth_to_go == 0:
25 return {h5py.ExternalLink(file_path, hdf_path)} if \
26 func_to_fulfill(file_path, hdf_path) else set()
27

28 if depth_to_go > 0:
29 with h5py.File(file_path, "r") as file:
30 children_set = set()
31 for key in file[hdf_path].keys():
32 children_set.update(set(_get_ext_link_rec(
33 file_path=file_path, hdf_path=hdf_path_combine(hdf_path, key),
34 depth_to_go=depth_to_go - 1, func_to_fulfill=func_to_fulfill)))
35 return children_set
36

37 raise ValueError("depth_to_go should be a non negative integer")
38

39

40 def _hdf_write_ext_links(source_file_path: Path, dest_file_path: Path, depth: int,
41 func_to_fulfill: Callable[[Path, str], bool]) -> None:
42 """
43 writes external links from the source file of given depth into the destination file
44 :param source_file_path: file path of the hdf file
45 :param dest_file_path: file path of the destination hdf file
46 :param lock: lock to gain writing access to the dest hdf file
47 :param depth: the depth in which external links will be created
48 :param func_to_fulfill: the function that has to be fulfilled in order to be gathered
49 """
50 ext_link_list = _get_ext_link_rec(file_path=source_file_path, hdf_path="/",
51 depth_to_go=depth, func_to_fulfill=func_to_fulfill)
52 with h5py.File(dest_file_path, "a") as dest_file:
53 for link in ext_link_list:
54 grp_name = source_file_path.stem + link.path.replace("/", "-")
55 dest_file[grp_name] = link
56

57

58 def _get_func_to_fulfill(on_error: bool,
59 func_to_fulfill: Callable[[Path, str], bool] = None) -> \
60 Callable[[Path, str], bool]:
61 """
62 creates the function_to_fulfill with error handling
63 if an error occurs during evaluation of the func_to_fulfill the error will be handled
64 :param func_to_fulfill: filtering function
65 :param on_error: boolean value that will be returned when the func_to_fulfill throws
66 an error
67 """
68 def func_to_fulfill_with_error_handling(file_path: Path, hdf_path: str) -> bool:

78

69 ret = on_error
70 try:
71 if func_to_fulfill is None:
72 ret = True
73 else:
74 ret = func_to_fulfill(file_path, hdf_path)
75 except (ValueError, SystemError, ArithmeticError,
76 AttributeError, LookupError, RuntimeError):
77 logger.info("Caught error for function_to_fulfill on input "
78 "(%s, %s). Returned on_error=%s", file_path, hdf_path, on_error)
79 return ret
80

81 return func_to_fulfill_with_error_handling
82

83

84 class Gatherer: # pylint: disable=too-few-public-methods
85 """
86 gathers hdf-groups of many hdf files into one by creating external links that point
87 to the original files
88 therefore, data can be accessed through one file without copying it into a large file
89 """
90

91 def __init__(self, if_fulfills: Callable[[Path, str], bool] = None,
92 on_error: bool = False,
93 depth: int = 1,
94 num_processes: int = 2):
95 """
96 initializes the Gatherer
97 :param if_fulfills: function that needs to be fulfilled so that the
98 hdf-object is added to the destination file via external links
99 :param on_error: boolean value that will be returned when the func_to_fulfill

100 throws an error
101 :param depth: the hdf-file-depth in which external links will be created
102 :param num_processes: number of processors used for parallel gathering
103 """
104 self.func_to_fulfill = _get_func_to_fulfill(on_error, if_fulfills)
105 self.depth = depth
106 self.num_processes = num_processes
107

108 def gather(self, src_file_paths: Iterable,
109 dest_file_path: Path) -> None:
110 """
111 starts the gathering process
112 :param src_file_paths: Iterable of Path objects of the source hdf-file-paths
113 :param dest_file_path: Path of the destination hdf file
114 """
115 h5py.File(dest_file_path, "w").close() # overwrite destination file
116 multi_proc_func = partial(_hdf_write_ext_links,
117 dest_file_path=dest_file_path,
118 depth=self.depth,
119 func_to_fulfill=self.func_to_fulfill)
120 for path in src_file_paths:
121 multi_proc_func(path)
122 logger.debug("finished gathering %s", dest_file_path)

79

10.2.2 Exploration

Listing 6: Implementation of handler.py
1 """This module contains the class that is capable of creating the context data."""
2 import logging
3 from pathlib import Path
4 from dataclasses import dataclass, field
5 import itertools
6 import typing
7 import numpy as np
8 import h5py
9 from tqdm import tqdm

10 import tsfresh
11 from src.utils.hdf_tools import hdf_path_combine, sort_by
12 from src.utils.handler_tools.context_data_creator import ContextDataCreator
13 from src.xbox2_speciffic.feature_def.attribute import get_event_attribute_features
14 from src.xbox2_speciffic.feature_def.event import get_event_data_features
15 from src.xbox2_speciffic.feature_def.trend import get_trend_data_features
16 from src.xbox2_speciffic.feature_def.tsfresh import get_tsfresh
17 from src.utils.handler_tools.context_data_writer import \
18 ColumnWiseContextDataWriter, RowWiseContextDataWriter
19

20 logger = logging.getLogger(__name__)
21

22

23 @dataclass
24 class XBox2ContextDataCreator(ContextDataCreator):
25 """
26 Class that manages the creation of the context data file. It contains a fixed number
27 of features for each event.
28 """
29 ed_file_path: Path
30 td_file_path: Path
31 num_events: int = field(init=False) # number of events
32

33 def __post_init__(self):
34 with h5py.File(self.ed_file_path, "r") as file:
35 self.num_events: int = len(file)
36

37 def manage_features(self):
38 """
39 manages all feature calculation processes
40 the feature list creation is done in another python file
41 """
42 feature_list = list(get_event_attribute_features(length=self.num_events))
43 self.manage_event_attribute_features(feature_list)
44 sort_by(self.dest_file_path, "Timestamp")
45

46 feature_list = list(get_trend_data_features(
47 length=self.num_events, trend_data_file_path=self.td_file_path))
48 self.manage_trend_data_features(feature_list)
49

50 feature_list = list(get_event_data_features(length=self.num_events))
51 self.manage_event_data_and_tsfresh_features(event_data_features=feature_list)
52

53 self.feature_post_processing()
54

55 def manage_event_attribute_features(self, features: typing.List) -> None:
56 """
57 manages the reading and writing of attributes of the event data
58 :param features: a list of EventAttributeFeatures
59 """
60 # calculate features
61 with h5py.File(self.ed_file_path, "r") as file:
62 attrs_gen = (grp.attrs for grp in file.values())
63 for attrs, index in zip(attrs_gen, itertools.count(0)):
64 for feature in features:
65 feature.calculate_single(index, attrs)
66 # write features into the context data
67 column_wise_handler = ColumnWiseContextDataWriter(self.dest_file_path,
68 length=self.num_events)

80

69 for feature in features:
70 column_wise_handler.write_column(feature)
71

72 def manage_trend_data_features(self, features: typing.List) -> None:
73 """
74 manages the reading and writing of the trend data features
75 the main concern is to find the first preceding trend data record of every event
76 :param features: a list of TrendDataFeatures
77 """
78 # calculate features
79 with h5py.File(self.td_file_path, "r") as trend_data_file, \
80 h5py.File(self.dest_file_path, "r") as context_data_file:
81 trend_ts = np.array(trend_data_file["Timestamp"][:])
82 event_ts = np.array(context_data_file["Timestamp"][:])
83 loc = np.searchsorted(trend_ts, event_ts) - 1
84 cw_handler = ColumnWiseContextDataWriter(
85 self.dest_file_path, length=self.num_events)
86 # write features into the context data
87 for feature in features:
88 feature.vec = feature.calculate_all(loc)
89 cw_handler.write_column(feature)
90

91 def manage_event_data_and_tsfresh_features(self, event_data_features: typing.List) \
92 -> None:
93 """
94 manages the calculation and writing of event data features
95 event data = event data time series arrays
96 custom and tsfresh features are used
97 :param event_data_features: a list of EventDataFeatures
98 """
99 # calculate features and write tsfresh features

100 row_wise_handler = RowWiseContextDataWriter(
101 self.dest_file_path, length=self.num_events)
102 with h5py.File(self.ed_file_path, "r") as file:
103 data_gen = ({key: channel[:] for key, channel in grp.items()}
104 for grp in file.values())
105 for data, index in tqdm(zip(data_gen, itertools.count(0))):
106 for feature in event_data_features:
107 feature.calculate_single(index, data)
108

109 tsfresh_df = get_tsfresh(
110 data=data, settings=tsfresh.feature_extraction.MinimalFCParameters())
111 val_gen = ((hdf_path_combine(str(clm_id), str(row_id)), val)
112 for row_id, row in tsfresh_df.iterrows()
113 for clm_id, val in row.items())
114 # write ts fresh features row by row
115 row_wise_handler.write_row_from_external(index=index, data_iter=val_gen)
116 # write custom features into the context data
117 column_wise_handler = ColumnWiseContextDataWriter(
118 self.dest_file_path, length=self.num_events)
119 for feature in event_data_features:
120 column_wise_handler.write_column(feature)
121

122 def feature_post_processing(self):
123 """
124 after all features have been calculated, additional features are calculated
125 the features require the information of more than just one event
126 """
127 with h5py.File(self.dest_file_path, "r+") as file:
128 clic_label = file["/clic_label"]
129 is_bd = clic_label["is_bd_in_40ms"][:-2] & \
130 clic_label["is_bd_in_20ms"][1:-1] & \
131 clic_label["is_bd"][2:]
132 length = clic_label["is_bd"][:].shape
133

134 file.require_dataset(name="is_bd", shape=length, dtype=bool,
135 chunks=True)[:] = np.append([False, False], is_bd)
136 file.require_dataset(name="is_bd_in_20ms", shape=length, dtype=bool,
137 chunks=True)[:] = np.append([False],
138 np.append(is_bd, [False]))
139 file.require_dataset(name="is_bd_in_40ms", shape=length, dtype=bool,
140 chunks=True)[:] = np.append(is_bd, [False, False])

81

141 file.require_dataset(name="is_healthy", shape=length, dtype=bool,
142 chunks=True)[:] = file["clic_label/is_healthy"][:]

82

Listing 7: Implementation of feature class.py

1 """This module contains a class structure of machine learning features."""
2 from dataclasses import dataclass, field
3 import typing
4 import logging
5 import h5py
6 import numpy as np
7 from src.utils.hdf_tools import hdf_path_combine
8

9 logger = logging.getLogger(__name__)
10

11

12 @dataclass
13 class CustomFeature:
14 """
15 a feature is a statistical property of a time series (min, max, mean, etc.) or a
16 measurement of the environment that the time series was recorded
17 one object of the CustomFeature class exists for every feature, it manages the
18 reading, calculation and temporary storage of values
19 """
20 name: str # name of the feature, also the name of the dataset in the full_hdf_path
21 func: typing.Callable # the feature function
22 hdf_path: str # path of the hdf-group where the hdf-dataset with self.name goes to
23 info: str # additional information that is stored in the hdf-group attributes
24

25 @property
26 def full_hdf_path(self) -> str:
27 """
28 :return: full hdf path starting from root, ending with the hdf-dataset name
29 """
30 return hdf_path_combine(self.hdf_path, self.name)
31

32

33 @dataclass
34 class ColumnWiseFeature(CustomFeature):
35 """
36 parent class of all features that are temporarily stored and written in one go
37 """
38 length: int
39 output_dtype: typing.Union[type, np.dtype]
40 vec: typing.Any = field(init=False)
41

42 def __post_init__(self):
43 self.vec = np.empty(shape=(self.length,), dtype=self.output_dtype)
44

45

46 class EventAttributeFeature(ColumnWiseFeature):
47 """features read from the event data attributes"""
48 def calculate_single(self, index: int, attrs: h5py.AttributeManager):
49 """
50 reads the event attribute feature by applying self.func and writes it to the
51 self.vec at the given index
52 :param index: index of the input event and destination index of the feature
53 :param attrs: an h5py.AttributeManager object
54 """
55 self.vec[index] = self.func(attrs)
56

57 class TrendDataFeature(ColumnWiseFeature):
58 """
59 features read from the trend data attributes
60 """
61 def calculate_all(self, selection: np.ndarray):
62 """
63 reads all trend data feature at once by applying self.func and returns it
64 :param selection: selection of trend data records that are stored as features
65 :return: numpy array of datatype self.dtype
66 """
67 return self.func(selection)
68

83

69

70 @dataclass
71 class EventDataFeature(ColumnWiseFeature):
72 """features calculated from the event data array (e.g. statistical properties)"""
73 working_on_dataset: str
74

75 def calculate_single(self, index: int, data: np.ndarray):
76 """
77 calculates the event attribute feature by applying self.func and writes it to
78 the self.vec at the given index
79 :param index: index of the input event and destination index of the feature
80 :param data: all data of a single event as a dictionary
81 """
82 self.vec[index] = self.func(data[self.working_on_dataset])

84

Listing 8: Implementation of context data creator.py

1 """This module contains an abstract class structure for creating a context data file.
2 The ContextDataCreator class should organize the creation of the context data file."""
3 from dataclasses import dataclass
4 import logging
5 from pathlib import Path
6 import abc
7

8 logger = logging.getLogger(__name__)
9

10

11 @dataclass
12 class ContextDataCreator(abc.ABC):
13 """abstract class that manages the creation of the context data file"""
14 dest_file_path: Path
15

16 @abc.abstractmethod
17 def manage_features(self) -> None:
18 """abstract method for the feature calculation process"""

85

Listing 9: Implementation of context data writer.py

1 """This module contains the class structure of two different context data writers."""
2 from pathlib import Path
3 import typing
4 from dataclasses import dataclass
5 import h5py
6 from src.utils.handler_tools.feature_class import ColumnWiseFeature
7

8

9 @dataclass
10 class ContextDataWriter:
11 """abstract context data handler class. Different writing methods are inherited."""
12 context_data_file_path: Path
13 length: int
14

15

16 class ColumnWiseContextDataWriter(ContextDataWriter): # pylint:
disable=too-few-public-methods→c

17 """
18 simplifies the filling the context data file
19 column-wise = writing single feature applied on all all events at once
20 """
21

22 def write_column(self, feature: ColumnWiseFeature) -> None:
23 """
24 writes a column placed in feature.vec into feature.full_hdf_path
25 :param feature: a ColumnWiseFeature with a filled feature.vec
26 """
27 with h5py.File(self.context_data_file_path, "a") as file:
28 dataset = file.require_dataset(name=feature.full_hdf_path,
29 shape=(self.length,),
30 dtype=feature.vec.dtype,
31 chunks=True)
32 dataset[:] = feature.vec
33 dataset.attrs.create(name="info", data=feature.info)
34

35

36 class RowWiseContextDataWriter(ContextDataWriter):
37 """
38 simplifies the filling the context data file
39 row-wise = writes a bunch of feature applied on one individual event
40 """
41

42 def write_row_custom_features(self, index: int, data_iter: typing.Iterable):
43 """
44 writes a single value into many paths given by the data_iter
45 :param index: the location of the event
46 :param data_iter: an iterable of tuples (hdf_path, value)
47 """
48 with h5py.File(self.context_data_file_path, "a") as file:
49 for feature, value in data_iter:
50 dataset = file.get(feature.full_hdf_path, None)
51 if dataset is None:
52 dataset = file.require_dataset(
53 name=feature.full_hdf_path, shape=(self.length,),
54 dtype=type(value), chunks=True)
55 dataset.attrs.create(name="info", data=feature.info)
56 dataset[index] = value
57

58 def write_row_from_external(self, index: int, data_iter: typing.Iterable):
59 """
60 writes a single value into many paths given by the data_iter
61 :param index: the location of the event
62 :param data_iter: an iterable of tuples (hdf_path, value)
63 """
64 with h5py.File(self.context_data_file_path, "a") as file:
65 for hdf_path, value in data_iter:
66 dataset = file.get(hdf_path, None)
67 if dataset is None:

86

68 dataset = file.require_dataset(
69 name=hdf_path, shape=(self.length,), dtype=type(value),
70 chunks=True)
71 # attention, no info string will be added
72 dataset[index] = value

87

10.2.3 Feature Definitions

Listing 10: Implementation of event.py
1 """This module contains the definition of the list of EvenDataFeatures
2 for the XBox2 data set."""
3 import typing
4 from functools import partial
5 import numpy as np
6 from src.utils.handler_tools.feature_class import EventDataFeature
7

8

9 def get_event_data_features(length) -> typing.Generator:
10 """
11 generates all custom EventDataFeatures for the XBox-2 data set
12 :return: generator of features
13 """
14 pulse_length_info_text = "The pulse length is the pulse duration in mirco " + \
15 "seconds. The pulse is defined as the region where the " + \
16 "amplitude is higher than the threshold (= half of the " + \
17 "maximal value)"
18 pulse_amplitude_info_text = "The pulse amplitude is the mean value of the " + \
19 "pulse. The pulse is defined as the region " + \
20 "where the amplitude is higher than the threshold " \
21 "(= half of the maximal value)"
22

23 yield EventDataFeature(
24 name="pulse_length", func=_pulse_length, length=length, output_dtype=float,
25 hdf_path='PEI Amplitude', working_on_dataset='PEI Amplitude',
26 info=pulse_length_info_text)
27 yield EventDataFeature(
28 name="pulse_amplitude", func=_pulse_amplitude,
29 working_on_dataset='PEI Amplitude', length=length, output_dtype=float,
30 hdf_path='PEI Amplitude', info=pulse_amplitude_info_text)
31

32 yield EventDataFeature(
33 name="pulse_length", func=_pulse_length, length=length, output_dtype=float,
34 hdf_path='PKI Amplitude', working_on_dataset='PKI Amplitude',
35 info=pulse_length_info_text)
36 yield EventDataFeature(
37 name="pulse_amplitude", func=_pulse_amplitude,
38 working_on_dataset='PKI Amplitude', length=length, output_dtype=float,
39 hdf_path='PKI Amplitude', info=pulse_amplitude_info_text)
40

41 yield EventDataFeature(
42 name="pulse_length", func=_pulse_length, length=length, output_dtype=float,
43 hdf_path='PSI Amplitude', working_on_dataset='PSI Amplitude',
44 info=pulse_length_info_text)
45 yield EventDataFeature(
46 name="pulse_amplitude", func=_pulse_amplitude,
47 working_on_dataset='PSI Amplitude', length=length, output_dtype=float,
48 hdf_path='PSI Amplitude', info=pulse_amplitude_info_text)
49

50 yield EventDataFeature(
51 name="pulse_length", func=_pulse_length, length=length, output_dtype=float,
52 hdf_path='PSR Amplitude', working_on_dataset='PSR Amplitude',
53 info=pulse_length_info_text)
54 yield EventDataFeature(
55 name="pulse_amplitude", func=_pulse_amplitude,
56 working_on_dataset='PSR Amplitude', length=length, output_dtype=float,
57 hdf_path='PSR Amplitude', info=pulse_amplitude_info_text)
58

59 yield EventDataFeature(
60 name="D1", func=_apply_func_creator(partial(np.quantile, q=.1)),
61 working_on_dataset='DC Up', length=length, output_dtype=float, hdf_path='DC Up',
62 info="calculates the first deciles of the data")
63 yield EventDataFeature(
64 name="D9", func=_apply_func_creator(partial(np.quantile, q=.9)),
65 working_on_dataset='DC Up', length=length, output_dtype=float, hdf_path='DC Up',
66 info="calculates the 9th deciles of the data")
67

68 yield EventDataFeature(
69 name="D1", func=_apply_func_creator(partial(np.quantile, q=.1)),

88

70 working_on_dataset='DC Down', length=length, output_dtype=float,
71 hdf_path='DC Down', info="calculates the first deciles of the data")
72 yield EventDataFeature(
73 name="D9", func=_apply_func_creator(partial(np.quantile, q=.9)),
74 working_on_dataset='DC Down', length=length, output_dtype=float,
75 hdf_path='DC Down', info="calculates the 9th deciles of the data")
76

77 yield EventDataFeature(
78 name="dc_up_threshold_reached", func=_dc_up_threshold_func,
79 working_on_dataset="DC Up", length=length, output_dtype=bool, hdf_path="/",
80 info="Decides if event is a breakdown with a threshold of -0.01 on the"
81 " DC Up signal. So if the min of DC Up is < (threshold assigned"
82 " by experts) it is labeled as a breakdown.")
83

84

85 def _get_data_above_half_max(data: np.ndarray):
86 """
87 returns data that has a value greater than half of its maximal value
88 """
89 threshold = data.max(initial=-np.inf) / 2
90 return data[data > threshold]
91

92

93 def _dc_up_threshold_func(data: np.ndarray) -> bool:
94 """
95 checks if any of the signals is below a given threshold
96 :param data: event data time series as an array
97 """
98 threshold = -0.05 # threshold defined by rf cavity experts
99 return bool(np.any(data < threshold))

100

101

102 def _pulse_length(data: np.ndarray) -> float:
103 """
104 calculates the pulse duration in micro seconds of the region where the amplitude
105 is greater than a threshold (= half of the maximal value)
106 :param data: event data time series as an array
107 """
108 acquisition_window = 2. # in micro seconds
109 num_total_values = len(data)
110 num_relatively_large_values = len(_get_data_above_half_max(data))
111 if num_total_values == 0:
112 pulse_length = 0.
113 else:
114 pulse_length = acquisition_window * \
115 (num_relatively_large_values / num_total_values)
116 return pulse_length
117

118

119 def _pulse_amplitude(data: np.ndarray) -> float:
120 """
121 calculates the mean value where the amplitude is greater than a
122 threshold (= half of the maximal value)
123 :param data: event data time series as an array
124 """
125 return _get_data_above_half_max(data).mean()
126

127

128 def _apply_func_creator(func: typing.Callable) -> typing.Callable:
129 """
130 creates a feature-func that applies the input func to the event data array
131 :param func: the func to apply
132 :return: a function that applies func on event data arrays"""
133

134 def apply_func(data: np.ndarray) -> float:
135 """
136 applies a func on event data arrays
137 :param data: event data time series as an array
138 """
139 return func(data)
140

141 return apply_func

89

Listing 11: Implementation of attribute.py

1 """This module contains the definition of the list of EvenAttributeFeatures
2 for the XBox2 data set"""
3 import typing
4 import numpy as np
5 import h5py
6 from src.utils.handler_tools.feature_class import EventAttributeFeature
7

8

9 def get_event_attribute_features(length: int) -> typing.Generator:
10 """
11 generates all EventAttributeFeatures for the XBox-2 data set
12 :param length: number of values that will be calculated by each feature
13 :return: generator of features
14 """
15 yield EventAttributeFeature(
16 name="Timestamp", func=_get_timestamp, length=length, hdf_path="/",
17 output_dtype=h5py.opaque_dtype('M8[us]'),
18 info="The timestamp of the EventData is a property of the event group. It is "
19 "given in a datetime format with the precision of micro seconds.")
20

21 info_text = "These values originated from the Log_Type assigned by the" + \
22 " CLIC-Team. Originally the Log_Type property had values in" + \
23 " {0,1,2,3} where 0 stood for a healthy or normal log signal, and" + \
24 " 3 for a breakdown. The label 1 and 2 stood for breakdown in 20ms" + \
25 " and 40ms, which are the signals prior to a breakdown."
26

27 yield EventAttributeFeature(
28 name="is_healthy", func=fun_is_healthy_label, length=length,
29 hdf_path="/clic_label/", output_dtype=bool, info=info_text)
30

31 yield EventAttributeFeature(
32 name="is_bd_in_40ms", func=fun_is_bd_in_40ms_label, length=length,
33 hdf_path="/clic_label/", output_dtype=bool, info=info_text)
34

35 yield EventAttributeFeature(
36 name="is_bd_in_20ms", func=fun_is_bd_in_20ms_label, length=length,
37 hdf_path="/clic_label/", output_dtype=bool, info=info_text)
38

39 yield EventAttributeFeature(
40 name="is_bd", func=fun_is_bd_label, length=length, hdf_path="/clic_label/",
41 output_dtype=bool, info=info_text)
42

43 yield EventAttributeFeature(
44 name="log_type", func=fun_log_type, length=length, hdf_path="/clic_label/",
45 output_dtype=int, info="These values originated from the Log_Type assigned "
46 "by the CLIC-Team. (is_healthy: 0, is_bd_in40ms: 1, "
47 "is_bd_in20ms: 2, is_bd: 3).")
48

49

50 def fun_log_type(attrs: h5py.AttributeManager) -> bool:
51 """
52 translates the 'Log Type' group properties (attributes) of the event data
53 into a boolean value
54 :param attrs: the h5py.AttributeManager of an hdf.Group object
55 :return: value (is_healthy: 0, is_bd_in40ms: 1, is_bd_in20ms: 2, is_bd: 3)
56 """
57 label = attrs["Log Type"]
58 return label
59

60

61 def fun_is_healthy_label(attrs: h5py.AttributeManager) -> bool:
62 """
63 translates the 'Log Type' group properties (attributes) of the event data
64 into a boolean value
65 :param attrs: the h5py.AttributeManager of an hdf.Group object
66 :return: True if (is_healthy: 0, is_bd_in40ms: 1, is_bd_in20ms: 2, is_bd: 3)
67 in other cases return False
68 """

90

69 label = attrs["Log Type"]
70 if label in {0, 1, 2, 3}:
71 is_defined_type = label == 0
72 else:
73 raise ValueError(f"'Log Type' label not valid no translation for {label}!")
74 return is_defined_type
75

76

77 def fun_is_bd_in_40ms_label(attrs: h5py.AttributeManager) -> bool:
78 """
79 translates the 'Log Type' group properties (attributes) of the event data
80 into a boolean value
81 :param attrs: the h5py.AttributeManager of an hdf.Group object
82 :return: True if (is_healthy: 0, is_bd_in40ms: 1, is_bd_in20ms: 2, is_bd: 3)
83 in other cases return False
84 """
85 label = attrs["Log Type"]
86 if label in {0, 1, 2, 3}:
87 is_defined_type = label == 1
88 else:
89 raise ValueError(f"'Log Type' label not valid no translation for {label}!")
90 return is_defined_type
91

92

93 def fun_is_bd_in_20ms_label(attrs: h5py.AttributeManager) -> bool:
94 """
95 translates the 'Log Type' group properties (attributes) of the event data
96 into a boolean value
97 :param attrs: the h5py.AttributeManager of an hdf.Group object
98 :return: True if (is_healthy: 0, is_bd_in40ms: 1, is_bd_in20ms: 2, is_bd: 3)
99 in other cases return False

100 """
101 label = attrs["Log Type"]
102 if label in {0, 1, 2, 3}:
103 is_defined_type = label == 2
104 else:
105 raise ValueError(f"'Log Type' label not valid no translation for {label}!")
106 return is_defined_type
107

108

109 def fun_is_bd_label(attrs: h5py.AttributeManager) -> bool:
110 """
111 translates the 'Log Type' group properties (attributes) of the event data
112 into a boolean value
113 :param attrs: the h5py.AttributeManager of an hdf.Group object
114 :return: True if (is_healthy: 0, is_bd_in40ms: 1, is_bd_in20ms: 2, is_bd: 3)
115 in other cases return False
116 """
117 label = attrs["Log Type"]
118 if label in {0, 1, 2, 3}:
119 is_defined_type = label == 3
120 else:
121 raise ValueError(f"'Log Type' label not valid no translation for {label}!")
122 return is_defined_type
123

124

125 def _get_timestamp(attrs: h5py.AttributeManager) -> np.ndarray:
126 """
127 returns the Timestamp from group properties/attribute in numpy datetime format
128 :param attrs: the h5py.AttributeManager of an hdf.Group object
129 :return: numpy datetime format of the timestamp
130 """
131 datetime_str = attrs["Timestamp"][:-1]
132 return np.datetime64(datetime_str).astype(h5py.opaque_dtype('M8[us]'))

91

Listing 12: Implementation of trend.py

1 """This module contains the definition of the list of TrendDataFeatures
2 for the XBox-2 data set."""
3 from pathlib import Path
4 import typing
5 import numpy as np
6 import h5py
7 from src.utils.handler_tools.feature_class import TrendDataFeature
8

9

10 def get_trend_data_features(length: int, trend_data_file_path: Path) -> typing.Generator:
11 """
12 generates all TrendDataFeatures for the XBox-2 data set
13 :param length: number of values that will be calculated by each feature
14 :param trend_data_file_path: file path of the trend_data_file
15 :return: generator of features
16 """
17 with h5py.File(trend_data_file_path, "r") as file:
18 for key in file.keys():
19 yield TrendDataFeature(
20 name=key, func=_select(trend_data_file_path, key),
21 output_dtype=h5py.opaque_dtype("M8[us]") if key == "Timestamp" else float,
22 length=length, hdf_path="PrevTrendData",
23 info=f"Previous trend data of {key}")
24

25

26 def _select(trend_data_file_path: Path, key: str):
27 """
28 creates and returns a function that selects trend data from given keys
29 """
30 def selection(indices_selection: np.ndarray):
31 """
32 returns a selection of one signal of the trend data
33 :param indices_selection: selection of indices to return (array of boolean values)
34 """
35 with h5py.File(trend_data_file_path, "r") as file:
36 return np.array(file[key])[indices_selection]
37 return selection

92

Listing 13: Implementation of tsfresh.py

1 """This module contains the definition of the list of tsfresh features with predefined
2 settings for the XBox-2 data set."""
3 import pandas as pd
4 import tsfresh
5

6

7 def get_tsfresh(data: dict, settings: dict, n_jobs: int = 0) -> pd.DataFrame:
8 """
9 calls the tsfresh feature calculation on all input data

10 combines all calculated features into a single dataframe and returns it
11 :param data: a dictionary of {vec_name:data_vector}
12 :param settings: the tsfresh feature settings
13 :param n_jobs: the number of cores used to calculate the features
14 using multiple cores when calculating a few features may cause a big overhead
15 :return: dataframe of calculated features
16 columns are the input data vector names
17 indices are the feature names
18 """
19 df_molten = pd.DataFrame()
20 for length in {val.shape[0] for val in data.values()}:
21 df_tmp = pd.DataFrame({key: val for key, val in data.items()
22 if len(val) == length})
23 df_tmp['column_sort'] = df_tmp.index
24 df_molten = df_molten.append(
25 df_tmp.melt(id_vars='column_sort', value_name="tsfresh", var_name="channel"))
26

27 df_ret = tsfresh.extract_features(timeseries_container=df_molten,
28 column_id="channel",
29 column_sort="column_sort",
30 column_value="tsfresh",
31 default_fc_parameters=settings,
32 n_jobs=n_jobs,
33 disable_progressbar=True).T
34 return df_ret

93

