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Abstract–Factors models are commonly used to analyze high-

dimensional data in both single-study and multi-study settings. 

Bayesian inference for such models relies on Markov Chain Monte 

Carlo (MCMC) methods, which scale poorly as the number of 

studies, observations, or measured variables increase. To address 

this issue, we propose new variational inference algorithms to 

approximate the posterior distribution of Bayesian latent factor 

models using the multiplicative gamma process shrinkage prior. The 

proposed algorithms provide fast approximate inference at a fraction 

of the time and memory of MCMC-based implementations while 

maintaining comparable accuracy in characterizing the data 

covariance matrix. We conduct extensive simulations to evaluate our 

proposed algorithms and show their utility in estimating the model 

for high-dimensional multi-study gene expression data in ovarian 

cancers. Overall, our proposed approaches enable more efficient 

and scalable inference for factor models, facilitating their use in 

high-dimensional settings. An R package VIMSFA implementing our 

methods is available on GitHub (github.com/blhansen/VI-MSFA). 

Keywords: Factor Analysis, Shrinkage prior, Variational Bayes, Multi-Study 
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1 Introduction 

Factor Analysis (FA) models are popular tools for providing low-dimensional data 

representations through latent factors. These factors are critical to visualize, denoise 

and explain patterns of interest of the data, making FA models useful in several fields of 

application such as biology (Pournara and Wernisch, 2007), finance (Ludvigson and 

Ng, 2007), public policy (Samartsidis et al., 2020), and nutrition (Edefonti et al., 2012; Joo 

et al., 2018)—among many others. 

In high-dimensional settings, FA models shrinking many latent factors’ components to 

zero are particularly helpful. These models allow focusing only on a small set of 

important variables, making the interpretation of the factors easier (Carvalho et al., 2008). 

Moreover, they can lead to more accurate parameter estimations compared to models 

that do not include shrinkage or sparsity (Avalos-Pacheco et al., 2022). In a Bayesian 

setting, many priors have been proposed to induce shrinkage or sparsity in the latent 

factors (e.g., Archambeau and Bach (2008); Carvalho et al. (2008); Legramanti 

et al. (2020); Cadonna et al. (2020); Frühwirth-Schnatter (2023)). A widely used one is the 

gamma process shrinkage prior (Bhattacharya and Dunson, 2011; Durante, 2017) that 

induces a shrinkage effect increasing with the number of factors. This prior adopts an 

adaptive approach for automatically choosing the latent dimension (i.e., the number of 

latent factors), facilitating posterior computation. 

In a Bayesian context, inference on the posterior distribution of FA typically relies on 

Markov-Chain Monte Carlo (MCMC) algorithms (Lopes and West, 2004), which scale 

poorly to high-dimensional settings (Rajaratnam and Sparks, 2015). In addition, computing 

posterior expectations from MCMC can be computationally intensive. Specifically, many 

parameters are invariant to orthogonal transformations and must be post-processed 

before being averaged for inference, exacerbating time and memory needs. We refer to 

Papastamoulis and Ntzoufras (2022) for examples of post-processing algorithms. In high-

dimensional settings, MCMC for FA can also show poor mixing (Frühwirth-Schnatter 
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et al., 2023), further increasing the difficulty of obtaining high-quality posterior inference 

without extensive computational resources. 

While some alternatives to MCMC that seek the posterior mode via Expectation-

Maximization (EM) algorithms have been developed for Bayesian FA (e.g., Ročková and 

George, 2016), fast approximation of the posterior distribution that has the potential to 

scale inference in high-dimensional settings are still under-explored. Variational 

Bayes (VB) is one popular class of approximate Bayesian inference methods which has 

been successfully applied to approximate the posterior distribution of several models, 

such as logistic regression (Jaakkola and Jordan, 1997; Durante and Rigon, 2019), probit 

regression (Fasano et al., 2022), latent Dirichlet allocation (Blei et al., 2017), and network 

factor models (Aliverti and Russo, 2022), among others. VB has also been shown to scale 

Bayesian inference to high dimensional datasets for models closely related to FA. For 

example, Ghahramani and Beal (1999) develop a VB approximation for Bayesian mixtures 

of factor analysers, Wang et al. (2020) consider item response theory models with latent 

factors, while Dang and Maestrini (2022) propose VB algorithms for structural equation 

models. However, VB for FA models with shrinkage priors is still under-explored, and to 

our knowledge, no VB implementations for FA with gamma process shrinkage priors 

exist. To address this issue and enable the practical use of FA in high-dimensional 

settings, we present two VB algorithms to approximate the posterior of this model and 

extend them to settings where multiple data from different sources are available. 

There are many applications where data are collected from multiple sources or studies. 

These sources of information are then combined to produce more precise estimates 

and results that are robust to study-specific biases. For example, in biology, different 

microarray cancer studies can collect the same gene expression, measured in different 

platforms and/or with different late-stage patients. One standard approach to analyzing 

these multiple data is to stack them into a single dataset and perform FA (Wang 

et al., 2011). This approach can lead to misleading conclusions by ignoring potential 

study-to-study variability arising from both biological and technical sources (Garrett-

Mayer et al., 2008). Therefore, statistical methods that are able to estimate concurrently 
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common and study-specific signals should be adopted. Recent methods have been 

proposed to enable FA to integrate multiple sources of information in a single statistical 

model. These include perturbed factor analysis (Roy et al., 2021), Multi-Study Factor 

Analysis (MSFA, De Vito et al., 2019, 2021), Multi-Study Factor Regression (De Vito and 

Avalos-Pacheco, 2023), and Bayesian combinatorial MSFA (Grabski et al., 2023). 

In this paper, first, we present VB algorithms to conduct fast Bayesian estimation for FA 

with a continuous response, and second, we extend these algorithms to a multi-study 

setting. We adopt the MSFA model, which decomposes the covariance matrix of the 

data in terms of common and study-specific latent factors and extends the gamma 

process shrinkage prior in this context (De Vito et al., 2019, 2021). Compared to current 

MCMC implementations, we show that VB approximations for FA and MSFA greatly 

reduce computation time while still providing accurate posterior inference. 

We emphasize that our proposed VB algorithms are tailored for efficient point estimation 

of the latent factor loadings. This is typically the main goal in FA, which is mainly used 

as an exploratory tool. In fact, the non-identifiability and the unknown dimensions of the 

factor loadings make uncertainty quantification of the latent factors themselves 

challenging. 

The structure of this paper is as follows: §2 defines single-study FA and describes VB 

estimation of the model parameters through Coordinate Ascent Variational Inference 

(CAVI) and Stochastic Variational Inference (SVI) algorithms; §3 generalizes these 

algorithms in a multi-study setting; §4 provides simulation studies benchmarking the 

performance of the proposed VB algorithms in comparison to previous MCMC based 

algorithms; §5 applies the proposed algorithms to a dataset containing gene expression 

values from 1, 198 patients with ovarian cancer across 4 studies (Ganzfried et al., 2013); 

finally, §6 provides a brief discussion. 

2 Factor Analysis 
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Let 1( , , ) P

i i iPx x  x
 be a vector of P centered observed variables for individual 

1, ,i N  . FA assumes that ix
 can be modelled as a function of J P  latent factors or 

scores 
J

i l
, and a corresponding factor loading matrix 

P JΛ  via 

, 1, , .i i i i N   x Λl e  (1) 

Both the factors 
{ }il  and the idiosyncratic errors 

{ }ie
 are assumed to be normally distributed, 

with 
~ ( , )i J Jl 0 I

, and 
~ ( , )i Pe 0 Ψ

 where 
 2 2

1diag , , P  Ψ
. Factors 

{ }il  are assumed 

to be independent from the errors 
{ }ie

, and the latent dimension J P  is typically unknown. 

As a consequence, the observed covariance matrix, 
Cov( )iΣ x

, can be expressed as 

 Σ ΛΛ Ψ . Given that Ψ  is a diagonal matrix, the non-diagonal elements of ΛΛ  represent 

the pairwise covariances of the P variables, i.e., 1

Cov( , )
J

ip iq pj qj

j

x x  



 for p q . 

In the following, we will use 
{ }iX x

 to indicate the N × P data matrix used for the 

analysis. 

2.1 Prior Specification 

Following a Bayesian approach to inference for Model (1), we use the gamma process 

shrinkage prior of (Bhattacharya and Dunson, 2011) for each element 
{ }pj

 of the loading 

matrix .Λ  Indicating with ( , )a b  a gamma distribution with mean a / b and variance 
2/a b , this prior can be expressed via: 

1 1

1 1 2

1

| , ~ (0, ), 1, , , 1, ,

~ , , , ~ ( ,1), ~ ( ,1), 2,
2 2

pj pj j pj j

j

pj j l l

l

p P j

a a l

    

 
    

 



   

 
       

 (2) 

where 
( 1,2, )l l  

 are independent, τj is the global shrinkage parameter for column j, and ωpj 

is the local shrinkage parameter for element p in column j. 
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In practice, prior (2) is truncated to a conservative upper bound 
*,J  smaller than P. We 

refer to Bhattacharya and Dunson (2011) for more details on the choice of 
*.J  

Lastly, an inverse-gamma prior is placed on the diagonal entries of Ψ , which is a 

common choice in FA (Lopes and West, 2004; Ročková and George, 2016): 

2 ~ ( , ).p a b     (3) 

For simplicity, we denote all the model parameters with 
         2, , ,p i p pj l   Λ lθ

 

where 
*1( , , )p p J p

  Λ
 is row p of Λ , and with ( ) θ  the prior (2)–(3). 

2.2 Variational Inference for Factor Analysis 

The goal of VB algorithms is to approximate the posterior distribution ( | )p Xθ , with a 

density 
*( )q θ  in a class  (see Blei et al. (2017) for further details). Specifically, the VB 

approximation of the posterior is defined as the distribution 
*( )q θ  closest to ( | )p Xθ  

in Kullback-Leibler (KL) divergence, satisfying the minimization: 

( ) ( )

( )
arg min KL ( ) ( | ) arg min ( ) log ,

( | )q q

q
q p q d

p


 

   
        

ΘX
Xθ θ

θ
θ θ θ

θ
 

or equivalently the maximization of the evidence based lower bound (ELBO): 

   ( ) ( )
( ) ( )

arg max ELBO( ( )) arg max [log ( , )] [log ( )] ,q q
q q

q p q
 

 X
θ θ

θ θ

θ θ θ  (4) 

where ( , ) ( | ) ( )p p X Xθ θ θ  is the joint distribution of the data and ,θ  and the expectations 

are with respect to ( )q θ . A common approach to select  is to use a mean-field variational 

family, 

MF

1

{ : ( ) ( )},
M

m

m

q q q


 θ θ

 that considers a partition of the parameters θ  into M 

blocks, 1( , , )Mθ θ
 and approximate the posterior with a product of M independent density 
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functions 
( ),mq θ

 referred to as the variational factor for mθ . When using 
MF ,  the variational 

factors 
*{ ( )}mq θ

 composing the VB approximation of the posterior can obtained from 

  *

( )( ) exp log( ( | , ) ,
mm m q m mq p

  X
θ

θ θ θ  (5) 

where 1 1 1( , , , , , )m m m M    θ θ θ θ θ
 is the vector of parameters excluding the m-th one 

(Chapter 10, Bishop (2006)). 

When the conditional distribution 
( | , )m mp  Xθ θ

 belongs to the exponential family, the 

corresponding optimal variational factor 
*( )mq θ

 also belongs to the same exponential 

family. Therefore, the maximization problem (4) reduces to learning the value of the 

parameters characterizing the distribution 
* ( ).m mq θ

 We will indicate these parameters as 
*

mφ  and the corresponding optimal variational factor as 
* *( ; ).m mq θ φ

 Choosing 
MF

 in such 

a way that 
{ ( )}m θ

 are conditionally conjugate prior for 
{ }mθ  enables the development 

of efficient algorithms such as the Coordinate-Ascent Variational Inference (CAVI) which 

learns 
*
φ  by iteratively updating each parameter of 

* *( ; )m mq θ φ
 conditional to the others 

variational factors until convergence is reached (Chapter 10, Bishop (2006)). 

To implement CAVI for FA with priors (2)–(3), we propose the following mean-field 

variational family: 

* *

1 1 1 1

2

1 1

( ; ) ( ; , ) ( ; , ) ( ; , )

( ; , ) ( ; , ) ,

J P J N
l l

l l l pj pj pj i i i

l p j i

P P

p p p p p p

p p

q q q q

q q

   

 

     

  

   

  

 

     
      

    

   
   
   

  

 

l Σ

Λ Σ

θ φ μ

μ

 (6) 

with variational parameters 
 { },{ },{ },{ },{ },{ },{ },{ )},{ },{ } .l l

l l pj pj i i p p p p

            Σ Σφ μ μ
 

The mean-field approximation in equation (6) factorizes the posterior distribution into 

conditionally conjugate elements, so maximizing the ELBO with respect to 
( )mq θ

 leads 

to closed-form expressions for each variational parameter (Supplementary §F for 
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details). All the steps to obtain the VB posterior approximation are detailed in Algorithm 

S1 (Supplementary §A). 

An important aspect of CAVI is that each iteration requires optimizing the local 

parameters 
l

iΣ  and 
,l

iμ  relative to the scores il  for 1, , ,i N   which is computationally 

expensive in settings with large sample size. Thus, we propose a Stochastic Variational 

Inference (SVI) algorithm, which uses stochastic optimization to reduce the 

computational cost of each iteration (Hoffman et al., 2013). The key idea of this algorithm 

is to compute at each iteration the local parameters only for a small subset of available 

data and use this subset to approximate the remaining parameters common to all 

individuals, namely global parameters. In the following we use 
G {1, , }M   for the 

indices of the global parameters. 

As a first step to illustrate the SVI algorithm, we reframe CAVI as a gradient-based 

optimization algorithm for the global parameters. Recall that the mean field 

approximation is constructed so that the optimal variational factors are distributions in 

the exponential family, i.e., a function of the natural parameters  ,Xη θ
 (see Table S1 

of Supplementary §A for details). With this parameterization, the derivative of the ELBO 

in equation (4) with respect to the natural parameters is (Hoffman et al., 2013): 

  G

( )( ( )) , for .
mm q mELBO q m


      Xθθ η θ φ  (7) 

Equating the gradient (7) to 0, the solution of (4) can be written as 
 ( ) ,

mm q 
   Xθφ η θ

. 

The SVI replaces the gradient with an estimate much easier to compute. This is 

accomplished by selecting a batch-size parameter (0,1)b  and drawing a random 

sample of the data of dimension 
,N b N     at each iteration of the algorithm. Here 

,x    indicates the greatest integer less than or equal to x. At iteration t, let 

( ) {1, , }t N   be the subset of sampled observations, and 
{  for ( )}

t

i i t X x
 the 

corresponding N P  data matrix. SVI proceed by first updating the local parameters 
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{ }liΣ  and 
{ }liμ  for all ( ),i t  and then computing an approximated gradient for the 

global parameters via 

G

( )( ( )) ( , ) , for ,
m

t

m q mELBO q m


    
 

Xθθ η θ φ  (8) 

where the expectation 
( ) ( , )

m

t

q 

 
 

Xθ η θ
 is computed giving weight /N N  to each individual in 

( )t  (Hoffman et al., 2013). We call m
φ

 the solution of (8). At each iteration t of the SVI 

algorithm, the update for the 
{ ( )}m tφ

 of the global parameters is obtained as a weighted 

average of m
φ

 and 
( 1)m t φ

 at the previous iteration: 

G( ) (1 ) ( 1) , for ,m t m t m
t t m     φ φ φ  (9) 

where ρt is a step size parameter such that 
t

t

 
 and 

2

t

t

  
 (Robbins and 

Monro, 1951). The choice of ρt can impact convergence. Step sizes that are too large may 

overweight estimated gradients and lead to unreliable estimates of variational parameter 

updates for some iterations, while step sizes that are too small may take many iterations to 

converge. A typical choice is to define 
( )t t    

, where (0.5,1]   is the forgetting rate, 

which controls how quickly the variational parameters change across several iterations, and 

0   is the delay, which down-weights early iterations (Hoffman et al., 2013). 

To implement SVI for FA, we reparameterize the global parameters in (6) in terms of the 

natural parameterization of the exponential family (Supplementary §A Table S1). The 

details are provided in Algorithm S2 (Supplementary §A). 

3 Multi-Study Factor Analysis 

We extend the two algorithms presented in §2 to the setting where there are S > 1 

datasets measuring the same P variables, using the MSFA Model (De Vito et al., 2021). 
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We indicate with 1( , ) P

si si siPx x  x
 the vector of P centered observed variables for 

individual 
1, , si N 

 in study 1, ,s S   and use the model 

1, , , 1, , ,si si s si si si N s S      x Φf Λ l e  (10) 

where 
~ ( , )si K kf 0 I

 are the K-dimensional scores which correspond to the shared loading 

matrix ,P KΦ  and 
~ ( , )

s ssi J Jl 0 I
 are the Js-dimensional scores with study-specific loading 

matrices 
sP J

s


Λ

. Finally, 
~ ( , )is se 0 Ψ

 are idiosicratic errors with 
 2 2

1diag , ,s s sp  Ψ
. 

Model (10) can be seen as a generalization of Model (1) that incorporates shared latent 

components, sif
 and Φ , and study-specific latent components, sil

 and sΛ . The covariance 

matrices of each study 
Cov( )s siΣ x

 for 1, ,s S   can be decomposed as 

s s s s   ΦΦ Λ Λ Ψ
. The terms ΦΦ  and s sΛ Λ

 represent the portion of the covariance 

matrix that is attributable to the common factors and the study-specific factors, respectively. We 

refer to the sN P
 data matrix from study s as sX

. 

3.1 Prior Specification 

Following De Vito et al. (2021), we use the gamma process shrinkage prior (Bhattacharya 

and Dunson, 2011) for both the study-specific and the shared loading matrix. The prior for 

each study-specific loading element λspj is 

 

   

1 1

1 1 2

1

| , ~ 0, , 1, , 1, , , 1, , ,

~ , , , ~ ,1 , ~ ,1 , 2,
2 2

spj spj sj spj sj

j

s s
spj sj sl s s sl s

l

s S p P j

a a l

    

 
    

 



      

 
       

 (11) 

where 
( 1,2, )sl l  

 are independent, τsj is the global shrinkage parameter for column j, and ω

spj is the local shrinkage for the element p in column j. Similarly, the prior for each shared 

loading element pk
 is 
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1 1

1 1 2

1

| , ~ (0, ), 1, , , 1, , ,

~ , , , ~ ( ,1), ~ ( ,1), 2,
2 2

pk pk k pk k

k

pk k l l

l

p P k

a a l

    

 
    

 



    

 
       

 (12) 

where 
( 1,2, )l l  

 are independent, τk is the global shrinkage parameter for column k and ωpk 

is the local shrinkage parameter for element p in column k. 

These two priors introduce infinitely many factors for both the study-specific and the 

shared components (i.e., 
,sJ  
 for 1, ,s S  , and K   ). As detailed in §(2), we 

truncate the latent dimensions using upper bounds 
*K  and 

*,sJ
 to all the studies. 

Finally, an inverse-gamma prior is used for the diagonal entries of sΨ
 

2 ~ ( , ).sp a b     (13) 

We denote 
              2, , , , , ,p sp ps pk l spj sl     Φ Λθ

 as the vector of all model 

parameters, where pΦ
 is row p of Φ  and spΛ

 is row p of sΛ . 

3.2 Variational Inference for Multi-Study Factor Analysis 

The computational cost of Model (10) is larger than S times the computational cost of 

Model (1) because we need to estimate both the shared and study-specific parameters. 

Therefore, the benefit of fast VB posterior approximation is even higher than in the 

single-study setting, especially if several high-dimensional studies are available for 

analysis. This is increasingly common in many applied settings, such as cancer 

genomics, where the expression levels of a large set of genes are measured across 

multiple cancer types. 

To extend CAVI in a multi-study setting, we use the following mean field factorization 
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 (14) 

where pΦ
 is the pth row of 

, spΦ Λ
 is the pth row of sΛ , and 





{ },{ },{ },{ },{ },{ },{ },{ },

{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }

l l sl sl pk pk spj spj

f f l l

si si si si p p sp sp sp sp

       

 

       

    



Σ Σ Σ Σ

φ

μ μ μ μ
 

is the vector of variational parameters. Maximizing the ELBO with equation (5) leads to closed-

form expressions for optimal variational parameters for each factor, conditional on the others 

(see Supplementary §F for supporting calculations). Our implementation of CAVI for Bayesian 

MSFA is detailed in Algorithm S3 (Supplementary §A). 

CAVI for MSFA requires computing both shared and study-specific scores for each 

observation in each study at each iteration. When 
{ }sN

 are large, this can become very 

computationally demanding. Thus, we generalize the SVI algorithm described in §2 to 

the multi-study setting using the natural parameterization in Table S2 (Supplementary §

A). The sub-sampling step of SVI is generalized to a multi-study setting by taking a sub-

sample of size s s sN b N     from each study. Our implementation of SVI for Bayesian 

MSFA is presented in Algorithm S4 (Supplementary §A). 

4 Simulation Study 

To assess the accuracy and computational performance of the CAVI and SVI algorithms 

for FA (§2) and MSFA (§3), we simulated different scenarios with varying numbers of 

subjects, variables, and studies. We compared the performance of the proposed 

algorithms (available at github.com/blhansen/VI-MSFA) against several competitors, 

including the Gibbs Sampler (GS) and Expectation Conditional Maximization (ECM) 
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algorithms (available at github.com/rdevito/MSFA), the principal components based 

POET algorithm (Fan et al., 2013), and the Automatic Differentiation Variational Inference 

(ADVI) algorithm (Kucukelbir et al., 2017), implemented in STAN (Carpenter et al., 2017). 

The algorithms were evaluated in terms of: 1) computation time measured in seconds, 

2) maximum RAM usage in megabytes (Mb), and, 3) estimation accuracy of 

 Σ ΛΛ Ψ  and s s s s  Σ ΦΦ Λ Λ Ψ
 in the single and multi-study simulations, 

respectively. Computation time and RAM usage are monitored using the R package 

peakRAM (Quinn, 2017), while estimation accuracy is evaluated using the RV coefficient 

between the true, Σ  or 
Σ

s , and the estimated covariance matrices, Σ  or sΣ . The RV 

coefficient is a measure of similarity between two matrices varying between 0 and 1 

defined as 

2 2

Tr( )
RV( , ) .

Tr( ) Tr( )


ΣΣ ΣΣ

Σ Σ

ΣΣ ΣΣ

 (15) 

An RV coefficient close to 1 (0) indicates strong similarity (dissimilarity) between the two 

matrices (Robert and Escoufier, 1976). Additional metrics to evaluate estimation accuracy, 

including the Frobenius norm and L1 norm of the difference between the estimated covariance 

matrices and the ground truth, are provided in Supplementary §C (Tables S3, S5, S7–S13). 

For SVI Algorithms S2 and S4, we set the forgetting rate κ and delay parameter τ, which 

control the step-size schedule for ρt, to 0.75   and τ = 1. We must also specify the 

batch size parameters b, which control the number of points sampled at each iteration 

to estimate the gradient of the ELBO in Equation (8). The choice of batch size is non-

trivial and consistently affects the accuracy and computational cost of the SVI 

algorithms. We refer to Tan (2017) as a recent work that considers the choice of batch 

size. To assess the effect of batch size on model performance in our settings, we 

consider batch sizes corresponding to 5%,  20%,  and 50% of the sample size, 

{0.05,0.20,0.50}b . For convenience, we will refer to SVI algorithms with these batch 

sizes as SVI-005, SVI-02, and SVI-05, respectively. Parameter initialization for CAVI 
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and SVI is described in Supplementary §B. Convergence is monitored using the mean 

squared difference in parameters across iterations. 

For GS, we draw 10, 000 posterior samples after a burn-in of 5, 000 and save in 

memory the values of the parameters every 5 iterations, i.e., a total of 2, 000 samples. 

We then use these samples to compute the averages of ΦΦ  and s sΛ Λ
 as point 

estimates of their respective posterior means. Note that ΦΦ  and s sΛ Λ
 are identifiable 

functionals of the posterior of Model (10), therefore posterior means can be estimated 

directly by averaging the GS draws. 

4.1 Single-Study Simulations 

We consider simulation scenarios for all combinations of {100,500,5000}P   and 

{100,500,1000}N  , generating the data from Model (1) with J = 4 factors. For each 

scenario, we set each value of Λ  to zero with probability 2/3 or randomly generated it 

from an Uniform(0,1)  with probability 1/3. Further simulation studies with sparsity levels 

of 50% and 80% are presented in Tables S4-S7. The values of Ψ  are drawn from an 

Uniform(0.1,1) . Using the generated  Σ ΛΛ Ψ , we sample 50 datasets for each 

simulation scenario by taking N draws from 
( , )p 0 Σ

. For each dataset, we estimate θ  

with 
* 5J   factors using CAVI, SVI, GS, ECM, ADVI, and POET as previously 

described. Bayesian methods (CAVI, SVI, GS, and ADVI) use priors (2)-(3) with 

hyperparameters ν = 3, 1 22.1, 3.1, 1a a a  
, and 0.3b  . 

Table 1 reports, for each simulation scenario, the averages and standard deviations for 

the computation time, memory usage, and estimation accuracy. Comprehensive results 

are provided in Fig.s S1-S4 (Supplementary §C). Given the computational resources 

available, we found performing GS, ECM, and ADVI infeasible for some scenarios and 

therefore, results are not reported (see caption of Table 1 for details). 

As expected, CAVI required much less computational time than GS for every scenario. 

For example, in the scenario with P = 500 and N = 1, 000, CAVI required, on average, 

68 seconds compared to 873 for the GS. The average computation time of SVI was 

Acc
ep

te
d 

M
an

us
cr

ipt



lower than CAVI in every simulation scenario with N > 100, while in scenarios with N = 

100 and 100,500,P   SVI-005 required, on average, more computational time than 

CAVI. Note that in these scenarios, SVI-005 only uses 5 observations to approximate 

the gradient in (8), requiring many iterations to converge. When the sample size 

increases, SVI is faster than CAVI. This is particularly evident for scenarios with larger 

P. For example, when P = 5, 000 and N = 1, 000 CAVI required on average 

approximately 25 minutes compared to 12, 5 and 2 minutes for SVI-05, SVI-02, and 

SVI-005 respectively. Additionally, SVI with small batch sizes scales better with 

increasing N. In the scenario with P = 5, 000, N = 100, SVI-005, required an average of 

23.65 seconds. The computational time increases six times when N = 1, 000, while the 

computational time for SVI-02 and SVI-05 increases by 7 and 8 times, respectively. We 

note that the frequentist algorithms ECM and POET require very little computational 

time in simulation scenarios with P = 100, requiring approximately 3 seconds of runtime 

with N = 1000, while CAVI required 13 seconds in the same scenario. However, ECM 

cannot be performed in scenarios with P N , and POET does not scale with increasing 

P, requiring approximately 1017 seconds on average when P = 5000 and N = 100, 

which is approximately 6 times longer than CAVI, which required only 164 seconds on 

average. ADVI consistently required the most computational time out of any of the 

algorithms considered, taking approximately 150 times longer than CAVI even in the 

smallest simulation scenario considered (202 seconds vs 1.37 seconds). 

In terms of memory usage, the computational burden of GS drastically increases with 

the number of variables. For example, GS required 396 Mb of RAM memory on average 

when N = 1, 000 and P = 100, and 4, 275 Mb when 500.P   In other words, when P = 

500 the memory requirements are approximately 11 times the ones needed for P = 100. 

In the same scenarios, the memory requirements of CAVI increase by approximately 

1.2 times, from 37 Mb (P = 100) to 45 Mb (P = 500). The ECM and SVI algorithms have 

memory requirements that are very similar to CAVI. POET and ADVI consistently 

required more memory than CAVI across all simulation scenarios, with the disparity in 

their memory requirements increasing in scenarios with P. 

Acc
ep

te
d 

M
an

us
cr

ipt



In terms of accuracy, CAVI and SVI estimate Σ  with comparable accuracy to the 

estimates from GS, ECM, and POET in most scenarios. As expected, SVI performance 

deteriorates in scenarios with a small sample size and batch size. For example, in the 

scenario with P = 5, 000 and N = 100, SVI-005 had an average RV of 0.62 compared to 

0.74 of CAVI. However, the difference in performance between the two algorithms 

diminishes as the sample size increases. For example, when P = 5, 000 and N = 1, 000, 

SVI-005 has an average RV of 0.94 compared to 0.97 of CAVI. On average, ADVI had 

comparable estimation accuracy to CAVI, in terms of RV, but had worse estimation 

accuracy in terms of the Frobenius and L1 norms (Table S3, Supplementary §C). 

4.2 Multi-Study Simulations 

Analogously to §4.1, we assess the performance of the proposed VI algorithms in the 

multi-study setting. We consider simulation scenarios with {5,10}, {100,500,5000}S P   

and 
{100,500,1000}sN 

, generating the data from Model (10) with K = 4 common 

factors and 
4, 1, ,sJ s S  

 study-specific factors. For each scenario, factor matrices 

Φ  and sΛ  are randomly generated setting each values to 0 with probability 2/3 or 

drawing from an Uniform(0,1)  with probability 1/ 3,  while the values of 
, 1, ,s s S Ψ

 are 

generated from an Uniform(0.1,1).  Using the generated sΣ , we sample 50 S  by taking 

Ns draws from 
( , )s s s 0 ΦΦ Λ Λ Ψ

 for each study. We estimate θ  with 
* *5, 5sK J 

 

using the multi-study versions of CAVI, SVI, GS, ECM, and ADVI as described in §4. 

We excluded comparisons with POET in this section since it is not designed to analyze 

multi-study data. Bayesian methods (CAVI, SVI, GS, and ADVI) use priors (11)-(13) 

with hyperparameters 1 1 2 23 3, 2.1, 3.1, 1s s sa a a a a        
, and 0.3b   As we 

found in the single-study simulations, we were unable to run some scenarios with GS, 

ECM, and ADVI within the limited computational resources available. 

Table 2 reports the average computational times (refer to Fig. S5, Supplementary §C for 

comprehensive results). CAVI and SVI required much less time on average than GS in 

every simulation scenario. For example, in the scenario with S = 10, P = 500, and 

1,000sN 
, CAVI required an average of approximately 22 minutes to converge while 
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GS took about 6 hours, making CAVI about 16 times faster than GS. In the same 

scenario, SVI algorithms were even faster, taking approximately 16, 7, and 6 minutes on 

average for SVI-05, SVI-02 and SVI-005 respectively, making SVI algorithms between 

22 to 65 times faster than GS. ECM and ADVI require much more computational time 

than CAVI in all simulation scenarios. 

Table 3 reports the average memory usage (refer to Fig. S6, Supplementary §C, for the 

comprehensive results). The proposed algorithms require much less memory than GS 

in all the scenarios. For example, GS required 3.5 times as much memory as CAVI in 

the setting with S = 5, Ns = 100, P = 100 (126 Mb compared to 36 Mb), while in the 

setting with S = 10, Ns = 1000, P = 500 GS required about 5.5 times more memory than 

CAVI (1557 Mb compared to 285 Mb). In all scenarios, CAVI and SVI have comparable 

memory requirements. ECM had memory requirements to CAVI for scenarios with P = 

100, but appears to scale poorly with increasing P, having memory requirements 

comparable to GS in simulation scenarios with P = 500. ADVI consistently had the 

largest memory requirements in every scenario we could complete. 

We report the averages and standard deviations of the RV coefficients between 

estimated sΣ  and the simulation truth (Table 4). We refer to Fig. S7 for comprehensive 

results for sΣ  and Fig.s S8–S9 for the RV coefficients of Φ  and sΛ , respectively. As 

before, CAVI estimates sΣ  with comparable accuracy to GS, ADVI, and ECM in most 

scenarios. In scenarios where the number of observations is small, CAVI is less 

accurate than GS. For example, when P = 100 and Ns = 100, CAVI has an average RV 

of 0.85 compared to 0.92 of the GS. When the sample size increases, the average RV 

of CAVI is closer to GS. For example, when P = 500 and 
1,000sN 

 CAVI as an 

average RV of 0.96 compared to 0.99 of the GS. When both the sample and batch size 

are small, the SVI algorithms can present poor performance. When Ns is low, the 

performance of SVI with a small batch size can be inferior to CAVI, especially in high 

dimensional settings. For example, with P = 5, 000 and Ns = 100, the average RV of 

SVI-005 was 0.68 while CAVI had an average RV of 0.86. The difference between SVI 

and CAVI is much smaller with larger batch sizes—the RVs were comparable to CAVI 
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for SVI-02 and SVI-05 across all 18 simulation scenarios. When 
100sN 

, SVI-005 

presented an accuracy comparable with CAVI for all the considered values of P and S. 

5 Case Study: Ovarian Cancer Gene Expression Data 

We apply the proposed algorithms to four high-dimensional datasets containing 

microarray gene expression data available in the R package curatedOvarianData 1.36 

(Ganzfried et al., 2013). The curated ovarian cancer studies contain 

 578,285,195,140sN 
 patient observations. We selected genes with observed 

variances in the highest 15% in at least one study, resulting in a final set of P = 3643 

genes. Each dataset was centered and scaled before analysis. 

We start by evaluating the ability of MSFA to predict out-of-sample six
 compared to 

alternative FA models in a 10-fold cross-validation. In particular, we consider three 

models: 1) A MSFA as described in §3; 2) A FA fitted on a dataset stacking all the S = 4 

studies (Stacked FA); 3) Independent FA models for each study (Independent FA). For 

the MSFA model 1) we set 
* 10K   and 

* 10,sJ 
 and use CAVI and SVI (with 

0.5sb 
 for 

1, ,4s   ). For FA in 2) and 3), we set 
* 10J   using CAVI and SVI (b = 0.5). It is 

important to emphasize that fitting these models with GS, ECM, or ADVI would have 

required more than 128Gb of RAM to be allocated (the limit set in §4); therefore, this 

was considered not feasible. 

Predictions are computed as follows: 

: : : .si si s si si si si s siMSFA Stacked FA Independent FA   x Φf Λ l x Φf x Λ l  

Factor scores for out-of-sample observations are derived by adapting Bartlett’s method 

(Bartlett, 1937) for MSFA: 

 
1

1 1

( , ) ( , ) ,si s s s s si


 

f Φ Λ Ψ Φ Λ Φ Ψ x  (16) 
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 
1

1 1

( , ) ( , ) ,si s s s s s si


 

l Φ Λ Ψ Φ Λ Λ Ψ x  (17) 

where ( , )sΦ Λ  is obtained by stacking the common and study-specific factor loading matrices, 

and Φ  and 
ˆ,s sΛ

 denote the posterior mode of the respective VI approximation. The Mean 

Squared Error (MSE) is computed as the average of the prediction errors across all 

observations in every study: 

1

2

1 1 1 1

ˆMSE ( ) .
sNS S P

s sip sip

s s i p

N x x



   

 
  
 
 

 

Results of the 10-fold cross-validation are reported in Table 5. Despite the high 

dimensionality of the dataset, the proposed VB algorithms were able to fit the MSFA 

model with an average computation time of approximately 11 minutes for CAVI and 9 

minutes for SVI. Also, the two considered FA approaches were computed in a small 

amount of time, approximately 14 minutes for CAVI and 7 minutes for SVI. In terms of 

MSE, CAVI and SVI share a similar performance, decreasing the MSE of 10% 

compared to Stacked FA and 6% compared to Independent FA. 

We then estimated the common covariance 
ˆ
 ΦΦ

 with MSFA via CAVI and 

represented it via a gene co-expression network (Figure 1). A gene co-expression 

network is an undirected graph where the nodes correspond to genes, and the edges 

correspond to the degree of co-expression between genes. The number of connections 

between genes is visualized in the plot by the size of each node, i.e., the bigger, the 

more connected. We identified two different and important clusters. The first cluster 

contains genes associated with the immune system and cell signaling, such as 

CD53 (Dunlock, 2020), LAPTM5 (Glowacka et al., 2012), PTPRC (Hermiston et al., 2003), 

TYROBP (Lanier et al., 1998), C1QA/C1QB (Liang et al., 2022). Also, in the first cluster, 

some genes play a crucial role in cancer, such as SAMSN1 (Yan et al., 2013) and 

FCER1G (Yang et al., 2023). The second network includes genes such as FBN1 known 

to promote metastasis in ovarian cancer (Wang et al., 2015), and SERPINF1 crucial to 

the prognosis of cancer (Zhang et al., 2022). 
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The gene network in Fig. 1 reveals the ability of the MSFA to discover common signal 

pathways across different studies, critically helpful in ovarian cancer and generalizable 

to new context areas. These results further show the ability of the proposed VB 

algorithms to provide reliable results in a short computation time. 

6 Discussion 

We have proposed VB algorithms that provide fast Bayesian estimation for FA in both 

single and multi-study settings. These algorithms provided significant advantages over 

MCMC-based implementations, requiring substantially less memory and time while 

achieving comparable performance in characterizing data covariance matrices. 

Moreover, in the ovarian cancer application case, we showed how these algorithms 

could help reveal biological pathways in the high-dimensional setting, using 

computational resources typically available on a laptop rather than a high-performance 

computing server. 

In Supplementary §D, we present additional simulations to evaluate the predictive 

performance of our VB algorithms compared to GS. We consider scenarios with 1,S   

sample size N = 100 and P = 100, 500. These results suggest that CAVI and GS have 

similar performance in terms of out-of-sample prediction errors and coverage and length 

of prediction intervals. SVI performed worse than CAVI and GS, achieving inappropriate 

95% prediction interval coverage (ranging from 0.92 to 0.99) and higher MSE. For 

example, with P = 500, SVI algorithms have an MSE ranging from 0.6 to 0.9, compared 

to 0.3 of GS and CAVI. 

While VB algorithms offer numerous advantages, they have some limitations. First, 

convergence can be sensitive to parameter initialization. This is common to many 

iterative algorithms, including the EM algorithm used in frequentist MSFA (De Vito 

et al., 2019). Thus, we have provided effective informative initializations (Supplementary 

§B), helpful especially in scenarios with .P N  Second, the performance of SVI 

algorithms can vary substantially depending on the chosen batch size parameter. 

Tuning the batch size parameter remains an active area of research (Tan, 2017). Third, 
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compared to MCMC and GS, VB algorithms tend to underestimate uncertainty. 

However, when the main focus is on point estimates and exploratory analysis—typically 

the main goals of FA—the underestimation of uncertainty is less of a concern than in 

other settings. 

A known issue with FA is the non-identifiability of the factor loading matrix, i.e., the 

factor loadings can be rotated and produce the same covariance structure. This 

orthogonal indeterminacy is not a concern if inference only targets an identifiable 

function of the loading matrix, such as the covariance matrix. Alternatively, the loading 

matrices in Models 1 and 10 can be further constrained to be identifiable (e.g, Lopes and 

West, 2004). These or alternative constraints can be incorporated in the proposed 

algorithms by adapting parameter-expansions techniques (see for example Ročková and 

George, 2016). We also refer to De Vito et al. (2019) for two methods to recover factor 

loading matrices from MSFA, which can be applied to estimates provided by our 

algorithms. 

We have even observed that the impact of the shrinkage priors (2), and (11)–(12) on the 

GS posterior distribution differs from the effect on the approximate VB posterior 

(Fig.s S10-S11, Supplementary §C). When employing the same hyperparameter 

values, the VB algorithm induces a stronger shrinkage effect compared to GS. Similar 

findings were reported by Zhao and Yu (2009) while studying FA under a different 

shrinkage prior. Further research is required to understand if this behavior is shared 

when using VB with other popular shrinkage priors, such as the Besov prior (Lassas 

et al., 2009), the cumulative shrinkage process prior (Legramanti et al., 2020), the triple-

gamma prior (Cadonna et al., 2020), and non-local shrinkage priors (Avalos-Pacheco 

et al., 2022). 

In conclusion, the proposed VB algorithms enable scaling inference for FA and MSFA to 

high-dimensional data, enabling new research opportunities in previously inaccessible 

settings without extensive computational resources. 
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column index; §F: Derivations supporting coordinate updates in Algorithms 1-4. (pdf) 

Supporting code: VIMSFA: the current version of our R package available at 

github.com/blhansen/VI-MSFA 
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Fig. 1 Common gene co-expression network estimated via ΦΦ  across the four 

ovarian cancer studies. The network is obtained using Gephi via the Fruchterman-

Reingold algorithm (Bastian et al., 2009). We include edges if | 0.5 |ΦΦ , and exclude 

from the figure nodes with no edges. The figure includes 92 nodes and 851 edges. 
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Table 1 Average computational cost (in seconds), used RAM (in Mb), and estimation 

accuracy (RV coefficients) across 50 simulation replicates, mean(sd). Note: we were 

unable to run GS, ADVI, and POET for some scenarios due to computation time and 

memory limitations, as the maximum allocation of 24 hours of run time and 128Gb of 

RAM for each iteration was insufficient. Additionally, we are unable to run ECM in 

scenarios with P N . This is indicated with —– in the table. 

  

Time (Seconds) Memory (Mb) 

Estimation Accuracy 

 RV( , )Σ Σ
 

meth

od  N P=100 P=500 P=5000 P=100 P=500 P=5000 P=100 P=500 

P=500

0 

GS  

10

0 

136.58(2.1

) 

653.15(7

.77) —– 

209.67(0

.1) 

4019.35(

0.18) —– 

0.89(0

.04) 

0.86(0

.05) —– 

CAV

I  

10

0 1.37(0.04) 

7.46(0.2

) 

164.45(13

.13) 

23.41(0.

04) 

47.84(1.

6) 

614.99(61.5

8) 

0.85(0

.04) 

0.76(0

.03) 

0.74(0

.02) 

SVI-

05  

10

0 0.91(0.03) 

4.72(0.1

) 

87.43(2.2

1) 23.2(0) 48.1(0) 

829.63(57.1

1) 

0.83(0

.04) 

0.73(0

.03) 

0.72(0

.02) 

SVI-

02  

10

0 0.53(0.02) 

2.67(0.0

5) 

45.13(1.2

3) 20.7(0) 

47.57(1.

87) 615.2(2.13) 

0.81(0

.04) 

0.72(0

.03) 

0.7(0.

02) 

SVI-

005 

10

0 3.43(1.25) 

1.71(0.1

1) 

23.65(0.7

7) 

17.01(0.

06) 

32.49(0.

76) 825.7(69.6) 

0.81(0

.05) 

0.63(0

.04) 

0.62(0

.04) 

POE

T  

10

0 0.35(0.02) 

10.59(0.

89) 

1017.11(1

.5) 

50.22(3.

25) 

285.54(3

0.97) 

24585.98(1

134.5) 

0.9(0.

02) 

0.89(0

.03) 

0.89(0

.03) 

ECM  
10

—– —– —– —– —– —– —– —– —– 
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Time (Seconds) Memory (Mb) 

Estimation Accuracy 

 RV( , )Σ Σ
 

0 

ADV

I  

10

0 

202.48(12

0.32) —– —– 

180.56(2

1.37) —– —– 

0.76(0

.17) —– —– 

GS  

50

0 

157.97(2.4

8) 

745.66(1

4.21) —– 

293.63(0

.16) 

4133.59(

1.02) —– 

0.99(0

.01) 

0.98(0

.01) —– 

CAV

I  

50

0 6.29(0.07) 

34.94(0.

5) 

789.25(65

.87) 

37.11(0.

06) 

46.65(0.

33) 

696.27(85.1

9) 

0.98(0

.01) 

0.94(0

.01) 

0.93(0

.01) 

SVI-

05  

50

0 3.63(0.05) 

19.78(0.

3) 

369.37(24

.09) 37.1(0) 46.5(0) 

748.79(61.4

5) 

0.97(0

.01) 

0.92(0

.01) 

0.91(0

.01) 

SVI-

02  

50

0 1.78(0.04) 

9.62(0.1

4) 

169.66(10

.74) 32.4(0) 46.5(0) 

745.16(66.4

7) 

0.97(0

.01) 

0.92(0

.01) 

0.91(0

.01) 

SVI-

005 

50

0 0.86(0.04) 

4.49(0.0

8) 

69.01(4.0

8) 

24.82(0.

13) 

46.23(1.

57) 

745.4(72.09

) 

0.94(0

.01) 

0.9(0.

01) 

0.89(0

.01) 

POE

T  

50

0 1.17(0.09) 

22.86(1.

9) 

2596.15(1

37.93) 

103.6(0.

03) 

1195.96(

0.07) 

100903.5(1

101.22) 

0.98(0

.01) 

0.97(0

.01) 

0.98(0

.01) 

ECM  

50

0 3.19(0.07) —– —– 

37.3(0.0

3) —– —– 

0.98(0

.01) —– —– 

ADV

I  

50

0 

988.78(10

29.77) —– —– 

233.59(5

9.72) —– —– 

0.97(0

.02) —– —– 

GS  
10 182.65(2.2 873.28(3

—– 
396.72(1 4275.09(

—– 
0.99(0 0.99(0

—– 
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Time (Seconds) Memory (Mb) 

Estimation Accuracy 

 RV( , )Σ Σ
 

00 5) 2.11) 2.59) 1.39) ) ) 

CAV

I  

10

00 

13.42(2.03

) 

68.07(1.

38) 

1497.61(5

0.72) 

36.71(0.

06) 

44.65(0.

34) 

784.08(106.

86) 

0.98(0

.01) 

0.97(0

.01) 

0.97(0

.01) 

SVI-

05  

10

00 6.9(0.08) 

38.23(0.

66) 

702.83(54

.63) 36.7(0) 60.7(0) 

747.39(109.

88) 

0.98(0

.01) 

0.96(0

.01) 

0.96(0

.01) 

SVI-

02  

10

00 3.28(0.05) 

18.01(0.

3) 

318.39(24

.57) 36.7(0) 

60.38(2.

28) 

761.84(104.

72) 

0.97(0

.01) 

0.96(0

.01) 

0.96(0

.01) 

SVI-

005 

10

00 1.49(0.04) 

7.89(0.1

2) 

127.56(8.

06) 

33.57(0.

17) 

60.42(1.

94) 

748.56(130.

9) 

0.96(0

.01) 

0.94(0

.01) 

0.94(0

.01) 

POE

T  

10

00 3.18(0.16) 

38.87(3.

02) —– 203(0) 

2385.51(

0.07) —– 

0.99(0

) 

0.99(0

) —– 

ECM  

10

00 3.08(0.07) 

76.9(0.8

) —– 37(0.03) 

61.04(0.

3) —– 

0.99(0

) 

0.97(0

.01) —– 

ADV

I  

10

00 

2011.14(2

119.07) —– —– 

183.79(1

5.67) —– —– 

0.95(0

.09) —– —– 

 

 

Table 2 Average computation time in seconds, mean(sd), for 50 multi-study 

simulation replicates. Note: we were unable to run GS and ADVI for some scenarios 

due to computation time and memory limitations, as the maximum allocation of 24 hours 
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of run time and 128Gb of RAM for each iteration was insufficient. Additionally, we are 

unable to run ECM in scenarios with sP N
. This is indicated with —– in the table. 

  

S = 5 

  

S = 10 

  Meth

od Ns  P= 100 P=500 P=5000 P=100 P=500 P=5000 

GS  

10

0  

1742.43(39.3

9) 

7907.73(254.

45) —– 

3288.87(73.3

7) 

14001.49(85

7.06) —– 

CAVI  

10

0  14.03(0.3) 68.38(0.77) 

704.38(10.

27) 26.49(0.32) 138.1(1.93) 

1434.77(28.4

6) 

SVI-

05  

10

0  11.15(0.14) 54.53(0.56) 608(5.73) 22.12(0.3) 109.7(0.79) 

1216.65(15.5

4) 

SVI-

02  

10

0  6.06(0.11) 30.58(0.33) 

343.61(4.6

2) 11.95(0.19) 59.3(0.67) 686.83(7.86) 

SVI-

005 

10

0  5.15(0.42) 17.86(0.14) 

207.91(3.0

1) 7.44(0.46) 34.2(0.24) 409.53(8.76) 

ECM  

10

0  —– —– —– —– —– —– 

ADVI  

10

0  

1596(1200.04

) —– —– 

2851.41(1667

.1) —– —– 

GS  

50

0  

2100.87(42.6

8) 

9534.65(446.

68) —– 

3962.02(84.6

6) 

16861.88(18

35.69) —– 

CAVI  
50

62.96(0.68) 316.34(5.56) 
3303.78(66

126.77(2.1) 
649.44(27.64 7001.73(419.
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S = 5 

  

S = 10 

  0  .45) ) 42) 

SVI-

05  

50

0  49.62(3.61) 232.96(2.9) 

2548.9(63.

29) 94.74(1.3) 467.26(5.47) 

5055.43(460.

32) 

SVI-

02  

50

0  42.69(2.42) 111.5(1.18) 

1231.84(13

.37) 64.11(2.54) 224.64(2.61) 2475(49.49) 

SVI-

005 

50

0  39.65(2.1) 82.77(2.44) 581.16(9) 58.95(2.08) 129.35(1.88) 

1140.81(33.7

6) 

ECM  

50

0  

1219.83(572.

05) —– —– 

3063.55(742.

01) —– —– 

ADVI  

50

0  

8642.38(7060

.36) —– —– 

12078.54(234

0.81) —– —– 

GS  

10

00  

2657.03(56.3

2) 

11638.49(624

.67) —– 5048.3(99.63) 

21271.9(125

6.6) —– 

CAVI  

10

00  128.28(1.87) 665.95(11.99) 

6669.16(71

2.57) 253.37(5.38) 

1332.73(19.1

5) 

11674.25(13

14.02) 

SVI-

05  

10

00  144.7(7.69) 473.39(7.28) 

5072.69(34

4.52) 218.7(12.65) 

965.94(20.17

) 

8785.58(808.

99) 

SVI-

02  

10

00  123.46(5.25) 259.83(15.78) 

2349.63(45

.61) 181.71(7.47) 434(7.62) 

4417.48(496.

26) 

SVI-

005 

10

00  106.77(4.21) 213.44(5.5) 

1044.76(21

.22) 143.88(4.02) 329.09(9.48) 

2115.91(92.7

4) 
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S = 5 

  

S = 10 

  

ECM  

10

00  

1023.11(443.

41) 

61570.47(197

74.57) —– 

4088.28(903.

69) —– —– 

ADVI  

10

00  

14602.13(133

89.31) —– —– 

25977.91(174

21.21) —– —– 
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Table 3 Average peak RAM usage in Mb, mean(sd), for 50 multi-study simulation 

replicates. Note: we were unable to run GS and ADVI for some scenarios due to 

computation time and memory limitations, as the maximum allocation of 24 hours of run 

time and 128Gb of RAM for each iteration was insufficient. Additionally, we are unable 

to run ECM in scenarios with sP N
. This is indicated with —– in the table. 

  

S = 5 

  

S = 10 

  Metho

d Ns  P= 100 P=500 P=5000 P=100 P=500 P=5000 

GS  100  

126.24(2.33

) 

528.48(22.94

) —– 

184.89(1.07

) 856.76(17.8) —– 

CAVI  100  35.81(0.08) 57.93(1.88) 

3130.33(315.

86) 40.49(6.68) 69.49(2.16) 

5708.93(710.

89) 

SVI-05  100  35.51(0.65) 77.93(7.92) 

3123.61(313.

18) 47.14(3.05) 82.62(1.27) 

5720.95(701.

25) 

SVI-02  100  35.51(0.65) 58.15(0.35) 

2556.88(231.

39) 47.41(2.44) 82.62(1.27) 

5707.01(703.

05) 

SVI-

005 100  35.51(0.65) 57.93(1.23) 

2556.78(231.

38) 47.14(3.05) 82.6(1.39) 

5710.53(697.

44) 

ECM  100  —– —– —– —– —– —– 

ADVI  100  

359.08(23.3

9) —– —– 610(26.92) —– —– 

GS  500  
211.76(15.6

735.71(51.2) —– 
308.18(40.6 1170.03(53.3

—– 
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S = 5 

  

S = 10 

  2) 2) 3) 

CAVI  500  47.66(1.73) 116.52(4.45) 

3235.65(323.

23) 60.92(1.99) 155.69(0.1) 

4736.93(650.

13) 

SVI-05  500  47.83(0.2) 117.13(1.17) 

2532.19(191.

86) 61.01(2.01) 155.59(0.08) 

4652.65(633.

34) 

SVI-02  500  47.6(1.43) 115.31(7.34) 

2532.29(191.

88) 61.01(2.01) 155.59(0.08) 

4621.51(501.

91) 

SVI-

005 500  47.56(1.71) 

109.23(13.42

) 

2533.01(191.

98) 61.01(2.01) 155.59(0.08) 

4613.68(499.

66) 

ECM  500  64.31(0.27) —– —– 80.61(0.42) —– —– 

ADVI  500  

362.45(14.2

5) —– —– 

518.52(28.3

9) —– —– 

GS  

100

0  

213.15(13.7

7) 

1001.85(91.5

5) —– 

294.72(14.7

2) 

1557.5(108.8

3) —– 

CAVI  

100

0  46.03(0.18) 

168.55(10.13

) 

2663.43(258.

27) 

87.94(12.32

) 285.26(1.73) 

5080.33(560.

21) 

SVI-05  

100

0  60.42(4.8) 171.02(2.67) 

2674.08(225.

38) 76.06(2.4) 285.35(1.74) 

5276.57(641.

45) 

SVI-02  

100

0  61.06(3.75) 171.02(2.67) 

2697.99(168.

79) 75.67(3.6) 

274.18(14.38

) 

6068.98(888.

85) 
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S = 5 

  

S = 10 

  SVI-

005 

100

0  61.71(2.08) 169.57(8.52) 

2697.99(168.

79) 75.29(4.46) 285.35(1.74) 

5901.31(645.

49) 

ECM  

100

0  62.42(0.27) 

779.87(59.36

) —– 99.76(0.43) —– —– 

ADVI  

100

0  

375.78(28.6

3) —– —– 

577.74(82.7

1) —– —– 
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Table 4 Average estimation accuracy, reported as RV between estimated 

s s s s  Σ ΦΦ Λ Λ Ψ
 and the simulation truth, mean(sd), for 50 multi-study simulation 

replicates. Note: we were unable to run GS and ADVI for some scenarios due to 

computation time and memory limitations, as the maximum allocation of 24 hours of run 

time and 128Gb of RAM for each iteration was insufficient. Additionally, we are unable 

to run ECM in scenarios with sP N
. This is indicated with —– in the table. 

  

S = 5 

  

S = 10 

  Method Ns  P= 100 P=500 P=5000 P=100 P=500 P=5000 

GS  100  0.923(0.025) 0.894(0.047) —– 0.927(0.025) 0.904(0.044) —– 

CAVI  100  0.851(0.032) 0.842(0.026) 0.85(0.021) 0.862(0.031) 0.855(0.027) 0.864(0.02) 

SVI-05  100  0.835(0.032) 0.842(0.026) 

0.857(0.022

) 0.843(0.037) 0.856(0.028) 

0.871(0.021

) 

SVI-02  100  0.827(0.033) 0.827(0.027) 

0.842(0.025

) 0.83(0.038) 0.837(0.03) 

0.849(0.024

) 

SVI-

005 100  0.713(0.049) 0.676(0.042) 

0.677(0.043

) 0.704(0.047) 0.679(0.043) 0.679(0.04) 

ECM  100  —– —– —– —– —– —– 

ADVI  100  0.798(0.071) —– —– 0.761(0.061) —– —– 

GS  500  

0.986(0.0036

) 

0.984(0.0058

) —– 

0.982(0.0059

) 

0.987(0.0046

) —– 

CAVI  500  0.932(0.022) 0.933(0.03) 

0.956(0.018

) 0.921(0.02) 0.958(0.013) 

0.966(0.013

) 
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S = 5 

  

S = 10 

  

SVI-05  500  0.92(0.025) 0.927(0.031) 

0.954(0.018

) 0.892(0.032) 0.952(0.016) 

0.965(0.013

) 

SVI-02  500  0.925(0.024) 0.926(0.03) 

0.952(0.018

) 0.896(0.03) 0.951(0.015) 

0.963(0.013

) 

SVI-

005 500  0.932(0.019) 0.92(0.028) 

0.935(0.018

) 0.907(0.023) 0.938(0.015) 

0.943(0.013

) 

ECM  500  0.907(0.012) —– —– 0.907(0.015) —– —– 

ADVI  500  0.91(0.045) —– —– 0.906(0.033) —– —– 

GS  

100

0  

0.992(0.0021

) 

0.993(0.0021

) —– 

0.993(0.0022

) 

0.993(0.0019

) —– 

CAVI  

100

0  0.94(0.029) 0.949(0.011) 

0.966(0.018

) 

0.948(0.0071

) 0.961(0.015) 

0.977(0.011

) 

SVI-05  

100

0  0.934(0.028) 0.944(0.012) 

0.964(0.019

) 0.936(0.012) 0.955(0.018) 

0.974(0.012

) 

SVI-02  

100

0  0.938(0.027) 0.945(0.012) 

0.963(0.019

) 0.941(0.011) 0.954(0.018) 

0.974(0.013

) 

SVI-

005 

100

0  0.946(0.022) 0.946(0.011) 

0.957(0.018

) 

0.948(0.0085

) 0.954(0.016) 

0.966(0.012

) 

ECM  

100

0  0.929(0.011) 0.915(0.039) —– 0.904(0.028) —– —– 
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S = 5 

  

S = 10 

  

ADVI  

100

0  0.92(0.039) —– —– 0.909(0.031) —– —– 

Table 5 Computation time (in minutes) and MSE, reported as mean(sd), across the 

10 cross-validation folds. Relative MSE is the average MSE divided by the average 

MSE of MSFA fitted using CAVI (the best-performing algorithm). For independent FA 

the time include fitting S = 4 serially. 

Method  Time (minutes) MSE  Relative MSE 

MSFA (CAVI)  11.06(0.24)  2296(53) 1 

MSFA (SVI)  8.83(0.24)  2315(52) 1.01 

Independent FA (CAVI) 14.41(0.16)  2435(55) 1.06 

Independent FA (SVI)  6.77(0.036)  2447(50) 1.06 

Stacked FA (CAVI)  13.58(0.19)  2531(52) 1.10 

Stacked FA (SVI)  6.07(0.093)  2527(53) 1.10 
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