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Abstract

In this cumulative PhD dissertation, we address the problems related to singularity distance
computations for the Stewart-Gough type parallel robots, primarily focusing on theoretical
analysis and computational algorithms.

Under the term parallel manipulators of the Stewart-Gough type, we summarize mecha-
nisms, where the moving platform is connected to the base by a certain number of prismatic
(P) legs according to the robot’s degree of freedom. For planar mechanisms, the legs are
anchored by passive revolute (R) joints, and for spatial ones by passive spherical (S) joints.

In so-called singular (also known as shaky) configurations these manipulators gain at least
one instantaneous degree of freedom. Therefore, minor variations in the manipulator ge-
ometry (e.g. backlash in passive joints or uncertainties in the actuation of the P joints) can
significantly affect the realized configuration. Near singular configurations, forces in pris-
matic actuators can become excessively large, potentially leading to the breakdown of the
mechanism. Therefore, singular configurations and their vicinity should be avoided.

In this context, we consider 3-RPR manipulators and present a comparison of singu-
lar distances with respect to extrinsic and intrinsic metrics along a 1-parametric motion.
Note that different metrics can be used depending on the chosen interpretations of the plat-
form/base; e.g. as a triangular plate or as a pin-jointed triangular bar structure.

There also exist so-called architecture singularities referring to robot designs, which are
shaky in every configuration. These designs have to be avoided but also their vicinity, as
every anchor point can be associated with a space of uncertainties (e.g. tolerances in the
passive joints or deviations of the platform/base from the geometric model). In this context,
we consider linear pentapods (5-SPS manipulators with a linear platform) and present an
approach to measure the distance of a given design from being architectural singular.

For both kinds of singularities, the distances are computed as the global minima of opti-
mization problems. Their critical points are found through a generic computational pipeline
that relies on algorithms from symbolic and numerical algebraic geometry implemented in
Maple, Bertini, and Paramotopy. Note that we do not only obtain the singularity distance
but also the corresponding closest singular configuration and architecture singularity, re-
spectively.

This PhD thesis was funded by Grant No. P 30855-N32, from the Austrian Science Fund
(FWF), devoted to evaluating the closeness of Stewart-Gough platforms to singularities.

Keywords: Singularity distance, Parallel manipulator, Architectural singularity, Bertini.
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Kurzfassung

In dieser kumulativen Dissertation befassen wir uns mit den Problemen im Zusammenhang
mit der Berechnung der Singularitätsdistanz für parallele Roboter vom Typ Stewart-Gough,
wobei wir uns in erster Linie auf die theoretische Analyse und die Berechnungsalgorithmen
konzentrieren.

Unter dem Begriff Parallelmanipulatoren des Stewart-Gough-Typs fassen wir Mecha-
nismen zusammen, bei denen die bewegte Plattform über eine bestimmte Anzahl prisma-
tischer (P) Beine entsprechend dem Freiheitsgrad des Roboters mit der Basis verbunden
ist. Bei planaren Mechanismen sind die Beine durch passive Drehgelenke (R) verankert, bei
räumlichen Mechanismen durch passive Kugelgelenke (S).

In sogenannten singulären (auch als wackelig bezeichneten) Konfigurationen erhalten diese
Manipulatoren mindestens einen momentanen Freiheitsgrad. Daher können geringfügige
Abweichungen in der Manipulatorgeometrie (z. B. Spiel in passiven Gelenken oder Unge-
nauigkeiten bei der Betätigung der P-Gelenke) die realisierte Konfiguration erheblich bee-
influssen. In der Nähe singulärer Konfigurationen können die Kräfte in prismatischen Ak-
tuatoren zu groß werden, was zum Versagen des Mechanismus führen kann. Daher sollten
singuläre Konfigurationen und deren Umgebung vermieden werden.

In diesem Zusammenhang betrachten wir 3-RPR-Manipulatoren und präsentieren einen
Vergleich der singulären Abstände in Bezug auf extrinsische und intrinsische Metriken ent-
lang einer 1-parametrischen Bewegung. Man beachte, dass verschiedene Metriken verwen-
det werden können, je nach der gewählten Interpretationen der Plattform/Basis, z. B. als
dreieckige Platte oder als gelenkig verbundene dreieckige Stabstruktur.

Es gibt auch sogenannte Architektonische-Singularitäten, die sich auf Roboterdesigns
beziehen, die in jeder Konfiguration wackelig sind. Diese Konstruktionen müssen ver-
mieden werden, aber auch ihre Umgebung, da jeder Ankerpunkt mit einem Raum von
Ungenauigkeiten verbunden sein kann (z. B. Toleranzen in den passiven Gelenken oder
Abweichungen der Plattform/Basis vom geometrischen Modell). In diesem Zusammen-
hang betrachten wir lineare Pentapoden und präsentieren einen Ansatz zur Messung des
Abstands eines gegebenen Designs von der architektonischen Singularität.

Für beide Arten von Singularitäten werden die Abstände als globale Minima von Opti-
mierungsproblemen berechnet. Ihre kritischen Punkte werden durch eine generische Berech-
nungspipeline gefunden, die sich auf Algorithmen der symbolischen und numerischen al-
gebraischen Geometrie stützt, die in Maple, Bertini und Paramotopy implementiert sind.
Es sei bemeht, dass wir nicht nur die Singularitätsdistanz, sondern auch die entsprechende
nächstgelegene singuläre Konfiguration bzw. Architektursingularität erhalten.

Schlüsselwörter: Singularitätsabstand, Parallelmanipulator, Architektonische Singularität,
Bertini.
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Chapter 1

Introduction

1.1 Topic and outline

A robot is an actuated mechanism composed of a series of (generally rigid) links connected
by joints that allow relative motion between different parts. Actuation of some or all of the
joints, typically using electric motors, enables the robot to move. The End-Effector (EE) is
the part of the robot where the tool is attached, designed to interact with the environment,
such as the gripper at the end of a robotic arm. A mechanical device that consists of two
or more kinematic chains that connect the base to the end-effector in a closed loop, is also
known as Parallel Manipulator (PM). The joints that can be controlled are called the active
joints, while the passive joints are allowed to move freely.

Parallel manipulators of the Stewart-Gough (SG) type can be classified into three types
based on their degrees of freedom and geometric design [33]: the hexapod and linear pen-
tapod, which are spatial manipulators with six and five degrees of freedom (DoFs), respec-
tively, and the 3-RPR planar parallel mechanism, which has three DoFs, as shown in Fig-
ure 1.1.

In the geometric design of hexapods, the moving platform is connected to the base by six
spherical-prismatic-spherical (SPS) legs (see Figure 1.1(a)). Linear pentapods have a linear
moving platform (lmp) connected to the base through five SPS legs (see Figure 1.1(b)). In
the 3-RPR manipulator, the moving platform is connected to the base via three rotational-
prismatic-rotational (RPR) legs (see Figure 1.1(c)). The prismatic joints are active in these
manipulator designs, while the spherical and rotational joints are passive.

(a)
Bi

Pi platform

Base

S

P

S

(b)

S

S lmp

P

(c)
R

P
R

FIGURE 1.1: Sketch of a (a) hexapod [33] (b) linear pentapod [33] and (c) 3-
RPR manipulator. For the planar mechanism as well as the spatial mechanical
devices the anchor points of the legs are denoted by Bi (at the base) and Pi (at

the platform).
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The number of applications of parallel robots, ranging from medical surgery to astron-
omy, has increased enormously during the last decades due to their advantages of high
speed, stiffness, large payload capacity, high precision, and load-to-weight ratio, among
others [33].

1.1.1 Motivation and problem statement

Parallel manipulators (PMs) have several drawbacks, including a smaller workspace, high
coupling in kinematic relationships, and the presence of singularities.

Singularities of PMs are classified into two types: Type I (serial singularities), where
the manipulator loses an instantaneous DoF, and Type II (parallel singularities), where the
manipulator gains an instantaneous DoF [27].

Note that PMs of SG type are free of Type I singularities due to the design of their
legs. Therefore, this thesis only deals with Type II singularities, which can further be distin-
guished into configuration-dependent and configuration-independent ones. The latter are
also known as architectural singularities [26] as they are related to robot designs, which are
shaky in every configuration. This thesis addresses the problems of evaluating singularity
distance computations related to Type II singularities.

Problem I: configuration-dependent singularities

When the manipulator is in a singular configuration, it gains infinitesimal degrees of free-
dom and can move slightly in certain directions, a phenomenon thus referred to as shak-
iness in the literature. Mathematically, this corresponds to the Jacobian matrix becoming
rank-deficient, which relates the velocities of the actuators (in joint space) to the end-effector
velocities (in configuration space).

Type II singularities can cause unpredictable movements and loss of control over the end
effector, even if all prismatic joints are locked. Additionally, in the vicinity of these singu-
larities, minor variations in the manipulator’s geometry—such as backlash in passive joints
or uncertainties in prismatic joint actuation—can significantly affect its configuration. Near
singular configurations, forces in prismatic actuators can become excessively large, poten-
tially leading to the breakdown of the mechanism. This case can be seen as an "ordinary"
type II configuration-dependent singularity. In extreme cases, this can result in self-motion
of the manipulator. Therefore, avoiding these singular configurations and their vicinity is
crucial. Current methods for evaluating the closeness to a singularity in the literature are
referred to as indices. A crucial issue is that these indices are not distance functions. Conse-
quently, no conclusions can be drawn about the shape and size of a singularity-free region in
the workspace and joint space around the given configuration based on these index values.
A detailed literature survey on singularity closeness indices is presented in Section 1.1 of
Chapter 3.

There are only a few approaches in the literature that use distance functions to determine
the shape and size of such regions, but these approaches also have limitations. For a review
on this topic, readers are referred to Sections 1.2–1.3 of Chapter 3 and Section 1.2 of Chapter 4
of this thesis.

Problem II: configuration-independent singularities

Architectural singularities are inherent to the design of the manipulator and are indepen-
dent of its pose. These are manipulator designs that are shaky in every configuration of
the workspace. Such designs should be avoided, along with their vicinity, as every anchor
point can be associated with a space of uncertainties (e.g., tolerances in the passive joints
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or deviations of the platform/base from the geometric model). Therefore, there is a need
for a metric allowing the evaluation of the distance of a given design to the closest architec-
ture singularity. For a detailed review of the literature on this topic, readers are referred to
Section 1.1 of Chapter 5 of this thesis.

To address Problem I and Problem II, we build upon the extensive prior work of Nawratil [31,
32, 33, 34, 35]. Based on his research, two distinct distance metrics can be identified for eval-
uating closeness to singularities.

1. Extrinsic metrics: The distance to the singularity is measured based on the metric in
the embedding space, which is the space in which the robot is situated.

2. Intrinsic metrics: The distance to the singularity is measured based on the inner metric
of the manipulator (e.g. lengths of the prismatic legs).

The two problems outlined above serve as the motivation for this thesis. In the context
of Problem I, we consider 3-RPR manipulators and present a comparison of singular dis-
tances with respect to extrinsic and intrinsic metrics along a 1-parameter motion. Note that
different metrics can be used depending on the chosen interpretations of the platform/base,
such as a triangular plate or a pin-jointed triangular bar structure. In the context of Problem
II, this thesis considers linear pentapods and presents an algorithmic approach to measure
the extrinsic distance of a given design from being architecturally singular.

1.1.2 Key research objectives

The primary aim of this research is to address the challenges associated with Type II singu-
larities in parallel manipulators by developing and applying novel methods for evaluating
singularity distances. The key objectives of this thesis are:

• Propose Distance Functions: Formulate distance functions to evaluate the closeness
to both configuration-dependent and independent type II singularities.

• Formulate Optimization Problems: Use these distance functions as the objective func-
tions of the minimization problem to determine the closest singularity. In the case of
constrained optimization problems, we use the Lagrangian approach. Our rigorous
mathematical framework also incorporates the singular points of constraint varieties.

• Develop Computational Algorithms: For finding the global minimizer, we have to
solve the system of polynomial equations resulting from taking the optimization func-
tion’s partial derivatives. We focus on developing efficient and novel computational
algorithms for determining this zero-set (critical points). For this purpose, we will
use computational tools from algebraic geometry, computer algebra, and numerical
algebraic geometry. Our primary focus will be on utilizing homotopy continuation
algorithms implemented in the freeware packages Bertini [5] and HC.jl [10] to solve
these optimization problems. Additionally, we aim to explore the functionalities of
these two software packages with regard to their computational efficiency and their
ability to handle our specific issues.

• Demonstration: Present numerical examples to demonstrate the computational pro-
cedure. For instance, we apply our method to the planar 3-RPR manipulator for
configuration-dependent type II singularities and to a linear pentapod for architec-
tural singularities.
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• Compare Metrics: Evaluate and compare the proposed metrics for singularity assess-
ment with the existing relevant performance indicies in the literature, highlighting our
approach’s advantages and potential improvements.

• Application: Demonstrate the application of the developed methods to more complex
manipulators, and manipulator design optimization, showcasing their effectiveness
and versatility in addressing real-world challenges.

The computation of singularity distances based on a well-defined metric is significant
for quantifying how close the robot is to a singular configuration. This measure is critical
for ensuring that the robot operates within safe and controllable regions, thereby preventing
sudden failures. The singularity-free spheres and the associated closest singular configura-
tions can be used for path optimization [40]. Additionally, it plays a key role in optimizing
the design of the manipulator and in developing robust control algorithms that can handle
near-singularity conditions.

1.1.3 Structure of the thesis

The motivation as mentioned above and the problem statement connect all four papers,
which are the main contributions of this thesis and are published in peer-reviewed journals
and conferences. The chronological order of the publications is as follows:

[A] Aditya Kapilavai and Georg Nawratil: On Homotopy Continuation Based Singularity
Distance Computations for 3-RPR Manipulator. New Trends in Mechanism Science
(D. Pisla, B. Corves eds.), pp. 56–64, 2020.

[B] Aditya Kapilavai and Georg Nawratil: Singularity distance computations for 3-RPR
manipulators using extrinsic Metrics. Mechanism and Machine Theory, Vol. 195,
pp. 105595, 2024.

[C] Aditya Kapilavai and Georg Nawratil: Singularity distance computations for 3-RPR
manipulators using intrinsic Metrics. Computer Aided Geometric Design, Vol. 111,
pp. 102343, 2024.

[D] Aditya Kapilavai and Georg Nawratil: Architecture Singularity Distance Computa-
tions for Linear Pentapods. ASME Journal of Mechanisms and Robotics, Vol. 17(2),
pp. 021008, 2025.

These publications [A, B, C, D] are reprinted in Chapters 2–5, respectively.

Summary of the scientific publications and their contributions

• Chapter 2: To gain experience for the treatment of the mentioned spatial manipula-
tors, paper [A] attempts to find minimal multi-homogeneous Bézout numbers for the
homotopy continuation-based singularity distance computation with respect to vari-
ous algebraic motion representations of planar Euclidean/equiform kinematics. We
investigated algebraic motion representations by considering the 3-RPR manipulator
as a case study. We divided these representations into two classes: non-homogeneous
and homogeneous, to determine which representation results in the minimal Bézout
bound. This study suggests that the point-based representation resulted in the mini-
mal Bézout bound.
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• Chapter 3: We proposed extrinsic metrics by taking the combinatorial structure of the
3-RPR manipulator into account as well as different design options. Utilizing these
extrinsic metrics, we formulated constrained optimization problems. These problems
are aimed at identifying the closest singular configurations for a given non-singular
configuration. The solution to the associated system of polynomial equations relies on
algorithms from numerical algebraic geometry implemented in the software package
Bertini. A limitation of the approach presented in [33] concerns the computational ef-
ficiency, caused by Gröbner basis computations. As we aim to compute the singularity
distance (incl. the closest singularity) along a one-parametric motion of the manipula-
tor, we use the numerical algebraic geometry tool of homotopy continuation, which is
implemented in the freeware Bertini and paramotopy. Moreover, the publication [B]
also fills the gap that singular points of the singular variety are excluded from the La-
grangian approach. We identify these points, which are considered separately within
the presented computational pipeline. The effectiveness of the presented approach is
demonstrated based on numerical examples and compared with existing indices eval-
uating the singularity closeness.

Finally, it should be noted that the presented method can also be applied to more
complicated mechanisms, which can be abstracted into a joint composition of bars, tri-
angular plates, and tetrahedral bodies. We demonstrated this for 3-RRR mechanisms.
In addition, this example showed a further advantage of using the proposed metrics,
namely that serial and parallel singularities can be treated uniformly.

The supplementary materials, which contain animations and proofs of the theorems,
can be downloaded from [23].

• Chapter 4: We proposed a novel algorithm for computing the singularity distance
for the same design options as in Chapter 3 of the 3-RPR manipulator using intrinsic
metrics. The algorithm utilizes intrinsic metrics based on the framework’s total elas-
tic strain energy density, employing the physical concept of Green-Lagrange strain.
The constrained optimization problem for detecting the closest singular configuration
with respect to these metrics is solved globally using tools from numerical algebraic
geometry implemented in the software package Bertini. Additionally, we compared
our method with the existing intrinsic singularity distances mentioned in the litera-
ture, highlighting its application in design optimization. We compared our intrinsic
singularity distances with the corresponding extrinsic ones presented in Chapter 3.

Note that the presented methods and applications are not restricted to 3-RPR manip-
ulators used for the proof of concept in the publication [C], but can be applied to any
mechanism/robot that can be considered as a pin-jointed body-bar framework accord-
ing to [31], where e.g. Stewart Gough platforms were discussed in Section 6.

The supplementary materials, which contain animations and proofs of the theorems,
can be downloaded from [24].

• Chapter 5: We studied the architecture singularity distance computations of linear
pentapods. We present the architecture singularity distance function, later we dis-
cuss how the corresponding optimization task can be managed by breaking it up into
several minimization problems, which are related to the different classes of architec-
tural singularity known in the literature [35]. This fragmentation of the computa-
tion reduces the maximal number of needed unknowns, which allows us to compute
the global minimizer; i.e., the closest architecturally singular design. For some of the
classes, we can give a geometric characterization of the corresponding minimizes. For
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the more involved classes, we resort to homotopy continuation computational algo-
rithms implemented in the software Beritini and HomotopyContinuation.jl respec-
tively. We discussed the developed computational pipeline for computing the archi-
tectural singularity distance. We presented two numerical examples, where the first
design has a planar base and the second manipulator has a non-planar one. The first
example is also compared with the existing approach.

The supplementary materials, which contain animations and proofs of the theorems,
can be downloaded from [22].

Based on the contributions of this thesis, we can conclude that substantial progress has been
made in evaluating the closeness of Type II singularities in parallel manipulators of the
Stewart-Gough type. This advancement enhances real-time computational efficiency and
global optimization techniques. Now, we will highlight a few interesting topics for future
work and open problems related to the Chapters 2–5 of the thesis.

Future work and open problems

• The usage of paired intrinsic and extrinsic metrics, which were compared at the level
of velocities, is also expected to contribute to sensitivity analysis [11, 16], as in this way
one can quantify the change in the shape of the manipulator implied by variations in
the inner geometry.

• In the Chapters 4 and 5, there also remain open computational issues, as we cannot
guarantee the completeness of the solution set for some of the optimization problems
in the ab-initio phase. They may be resolved by using isotropic coordinates, which
facilitate the numerical solution of problems in planar kinematics [47].

• The relationship between the extrinsic and intrinsic singularity distances for 3-RPR
configurations observed in Chapter 4 is not yet fully understood.

• In Chapter 5, the geometric interpretations for the minimizers of some classes of ar-
chitectural singularity remain open. The development of an algorithm for design op-
timization using the information of the closest architectural singularity is devoted to
future research.

• In the Chapters 3 and 5, the critical points obtained by the ab-initio phase using Bertini
are validated heuristically but are not yet certified solutions. They can be verified us-
ing tools like alphaCertified [18] and interval arithmetic [9].

• Further open problems are the computation of extrinsic and intrinsic singularity dis-
tances for linear pentapods [38, 40] and hexapods. Moreover, one can attack the deter-
mination of architectural singularity distances for the design of hexapods.

• It is desirable to implement the proposed singularity distance computation algorithms
in more sophisticated programming languages (e.g. C++, Python, or Julia) and to de-
velop a graphical user interface for a given manipulator design, allowing the user to
select the suitable metric to visualize the closest singular configuration.

In subsequent sections, we review the fundamentals and theoretical background of par-
allel robot kinematics, the properties and definitions of metrics, and tools from algebraic
and numerical algebraic geometry that are rigorously used in the publications forming this
cumulative PhD thesis.
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1.2 Fundamentals and theoretical background

1.2.1 Fundamental tools from kinematics

In this subsection, we provide some fundamental concepts from kinematics. Kinematics is
used to describe the motion of a system’s links and joints, and kinematic analysis is the pro-
cess of measuring the kinematic quantities used to describe this motion. For PMs, it implies
establishing relations between the joint coordinates and the moving platform pose (position
and orientation) [27]. We start with the hierarchy of transformations that are extensively
used in the publications [A, B, C].

Transformations

Euclidean transformations are transformations of the n-dimensional space Rn preserve
distances. They include translations, rotations, and reflections. A Euclidean transformation
in n-dimensional space can be given as follows:

f : Rn → Rn; x 
→ Ax + b (1.1)

where A is an orthogonal matrix from the orthogonal group O(n), which represents either
a rotation (if det(A) = 1) or a reflection (if det(A) = −1). The matrix A satisfies AAT = I,
and b is a translation vector ∈ Rn.

Equiform/Similarity transformations combine scaling (resize), translation, and rotation.
In n-dimensional space, a similarity transformation f is represented as:

f : Rn → Rn, x 
→ sAx + b, (1.2)

where s is a scalar factor.

Affine transformations of n-dimensional space are represented by an affine mapping f as:

f : Rn → Rn, x 
→ Ax + b (1.3)

where A is an n × n matrix that can represent any linear transformation. Affine transforma-
tions preserve parallelism and ratios of distances along lines but not necessarily angles or
lengths.

Inverse kinematics

Inverse kinematics establishes the values of actuated joint coordinates given the moving
platform pose [27]. It is essential for the position control of PMs. For a given moving plat-
form pose, the limbs of a PM can have different postures resulting in more than one solution
to the inverse kinematics problem. These solutions are called working modes.

Parallel manipulators of SG type have only one working mode.

Forward/Direct kinematics

Direct kinematics involves determining the moving platform pose from the actuated joint
coordinate values [27]. In general, this problem is computationally more expensive to solve
than the inverse kinematic problem for parallel architectures. There are usually many solu-
tions to this problem, meaning several ways exist to assemble the PMs. Therefore, they are
also called assembly modes [27].
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The number of assembly modes for a 3-RPR manipulator may be up to 6 [20, 21],
whereas, for a hexapod, it is up to 40 [13]. For a pentapod, it is up to 8 solutions [49, 8,
35].

Plücker coordinates

Following H. Grassman and J. Plücker, the coordinates of a line L spanned by two points
A and B with homogeneous coordinates (a0, a) = (a0, a1, a2, a3) and (b0, b) = (b0, b1, b2, b3),
respectively, are given by their exterior product as follows [37]:

(a0, a1, a2, a3) ∧ (b0, b1, b2, b3) = (l, l̂) = (p01, p02, p03, p23, p31, p12), pij = aibj − ajbi (1.4)

where ∧ denotes the wedge product. The six-tuple = (p01, p02, p03, p23, p31, p12) contains the
Plücker coordinates of a line and they must satisfy the following Plücker identity:

p01 p23 + p02 p31 + p03 p12 = 0 (1.5)

The vector l denotes the direction vector of L and the vector l̂ denotes the moment vector
of the line with respect to the origin.

Using the line-geometric characterization, parallel manipulators of SG-type are in a sin-
gular configuration if and only if the Plücker coordinates of the involved legs are linearly
dependent. For the specific manipulators mentioned, the singular configurations can be
characterized as follows:

• Hexapod: The hexapod is in a singular configuration if and only if the six lines l1, . . . , l6
belong to a linear line complex [33].

• Linear Pentapod: The linear pentapod is in a singular configuration if and only if the
five lines l1, . . . , l5 belong to a congruence of lines [40].

• 3-RPR Manipulator: It is known that this planar analog of the hexapod is infinitesi-
mally movable if and only if the three lines l1, l2, l3 belong to a pencil of lines [33].

1.2.2 Distance metric

One of the primary focuses of this thesis is the development and application of a distance
metric for evaluating the singularity closeness of parallel manipulators. In this section, we
will review the concept of metrics, which is fundamental to our approach. The following
concepts are derived from [42].

Scalar product

Given is an n- dimensional vector space Rn containing the vectors

u =


u1
u2
...

un

 v =


v1
v2
...

vn

 0 =


0
0
...
0

 (1.6)

Then the standard scalar product (also called dot product) on Rn equals

u · v = u1v1 + u2v2 + . . . unvn (1.7)
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which can also be rewritten as

uTv = uT



1
. . .

. . .
. . .

1


v = ⟨u, v⟩I (1.8)

One can replace the identity matrix I with any symmetric matrix G, which is a positive
definite

uTGu > 0 for all u ∈ Rn \ {0}. (1.9)

Remark 1. A symmetric matrix G is positive definite if and only if all the eigenvalues of G (roots of
det (G-λI)=0) are positive. ⋄

Then we write the scalar product induced by G as follows:

⟨·, ·⟩G : Rn × Rn −→ R with (u, v) 
−→ ⟨u, v⟩G := uTGv (1.10)

Norm and metric

A scalar product induces the following norm on the vector space Rn:

|| · || : Rn −→ R≥0 with u 
−→ ||u||G :=
�
⟨u, u⟩G (1.11)

A vector space on which a norm is defined is called a normed vector space. Furthermore,
a norm induces the following metric (distance function) on the vector space Rn:

dG(., .) : Rn × Rn −→ R≥0 with (u, v) 
−→ dG(u, v) := ||u − v||G (1.12)

Remark 2. A vector space equipped with a metric is a metric vector space. ⋄
More generally a metric (distance function) [42] can be defined on a set S as follows:

d : S × S 
→ R≥0 with (1.13)

1. d(u, v) ≥ 0 (non-negativity)

2. d(u, v) = 0 ⇐⇒ u = v (non-degeneracy)

3. d(u, v) = d(v, u) (symmetry)

4. d(u, v) ≤ d(u, v) + d(v, w) (triangle inequality)

If a function only fulfills the properties 1, 3, and 4 then it is called a pseudometric. There-
fore, a pseudometric d(u, v) can be zero even if u and v are not identical.

1.2.3 Distance between poses

It is widely recognized [30, 36], that a bi-invariant (positive-definite) metric cannot be de-
fined on the Special Euclidean group SE(n). A metric d on SE(n) is termed bi-invariant if
it remains invariant under changes in both the fixed frame (left invariant) and the moving
frame (right invariant). As a result, defining a geometrically meaningful distance between
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two poses is not feasible. This issue is further emphasized in [28], which states: “Measuring
closeness between a pose and a singular configuration is a difficult problem: there exists no mathe-
matical metric defining the distance between a prescribed pose and a given singular pose. Hence, a
certain level of arbitrariness must be accepted in the definition of the distance to a singularity . . . ”

In [36], it is mentioned that there is an approach to come up with a geometrically mean-
ingful distance function, presenting an alternative to distance metrics on SE(n) by changing
the perspective as follows: One can consider the distance between two poses of the same
rigid body, leading to so-called object-dependent metrics first studied by Kazerounian and
Rastegar [25].

Concept of extrinsic metric

As the moving platform has m exceptional points (i.e., platform anchor points), it suggests
measuring the distance between two poses of the moving platform (given pose Pi and trans-
formed pose Pα

i ) by the distance measure

dm :=

�
1
m

m

∑
i=1

⟨Pα
i − Pi, Pα

i − Pi⟩I (1.14)

Eq. (1.14) was used in [39] to compute the distance of a linear pentapod to the next singular-
ity. However, this measure has a limitation: when we change our perspective by considering
the platform as fixed and the base as the moving part (or vice versa), the calculated distance
to the singularity generally changes, which is less desirable from a geometric perspective.

A more sophisticated approach based on the idea of transforming the base and platform
anchor points simultaneously was first introduced in [33]. The new distance measure is
given by:

Dm :=

�
1

2m

m

∑
i=1

��
Pα

i − Pi, Pα
i − Pi

�
I +

�
Bβ

i − Bi, Bβ
i − Bi

�
I

	
(1.15)

where Bβ
i denotes the transformed base points by the base transformation β ∈ SE(n). Note

that Eqs. (1.14) and (1.15) can be seen as metrics induced by a scalar product (cf. Section
1.2.2). Moreover, following the idea presented in Eq. (1.15), Chapter 5 of the thesis intro-
duces the definition of an architectural singularity distance metric.

In the following subsection, we present the concept of intrinsic metrics by restricting to
changes of the leg lengths only; i.e., using this metric, the distance is measured in the joint
space instead of the configuration space.

Concept of intrinsic metric

Intrinsic metrics, particularly those based on total elastic strain energy density, are defined
in [34, Section 3] based on the physical concept of Green-Lagrange strain. It can be defined
as follows:

d : Rb × Rb → R≥0 with (L, L′) 
→ d(L, L′) :=
|u(L)− u(L′)|

E
(1.16)

where L = (L1, . . . , Lm) and L′ = (L′
1, . . . , L′

m) represent undeformed and deformed leg
lengths, respectively, with Li = ∥Pi − Bi∥ and E is the Young modulus. Eq. (1.16) defines a
pseudometric on the m-dimensional joint space given by L and L′. Notably, the pseudomet-
ric d is independent of the choice of E.
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1.2.4 Preliminaries from algebraic geometry

In algebraic geometry, a system of polynomials is said to define a polynomial ideal, which
consists of all the algebraic combinations of the generating polynomials. The geometric
counterpart of an ideal is called an algebraic variety, consisting of the set of all the common
(complex) roots of the polynomials in the ideal. The definitions of the fundamental concepts
of an ideal and a algebraic variety can be found in the classical reference by Cox, Little,
and O’Shea [12], so we will not repeat them here. There are other symbolic methods like
resultants and excursions methods for this we refer to [44, Chapter 6]. In our research,
we exclusively use Gröbner basis to analyze and solve polynomial systems. Here’s a brief
overview:

Gröbner basis

A Gröbner basis is a set of multivariate polynomials with desirable algorithmic properties.
Every set of polynomials can be transformed into a Gröbner basis. This process generalizes
three familiar techniques: Gaussian elimination for solving linear systems of equations, the
Euclidean algorithm for computing the greatest common divisor of two univariate poly-
nomials, and the simplex algorithm for linear programming [45]. In the following, we list
the applied software packages that use the Gröbner basis algorithm for finding solutions to
systems of polynomial equations.

• Maple: A mathematical software package for symbolic and numerical computing. In
Maple, Gröbner bases are computed using the Groebner[Basis] function, which can
handle various types of polynomial systems and monomial orders [12]. The process
is flexible, allowing for the elimination of variables, solving systems, and performing
advanced polynomial algebra.

• msolve: It uses advanced Gröbner basis algorithm to compute isolate all real solu-
tions to polynomial systems with rational coefficients and finitely many complex so-
lutions [7].

In this thesis, the author extensively used the computer algebraic software Maple to
prove the theoretical arguments mentioned in Chapters 3, 4, and 5 of this thesis.

1.2.5 Optimization techniques

Our goal is to find the closest singular configuration to a given pose. This leads to a con-
strained optimization task, where the distance function serves as the objective, and the sin-
gularity condition acts as the constraint.

Iterative optimization techniques like Newton’s method and gradient descent often strug-
gle with these constraints. However, the method of Lagrange multipliers is particularly
powerful for problems with explicit equality constraints, as it integrates these constraints ci
directly into the optimization process. The problem of minimizing a distance function using
Lagrange multipliers λi can be defined as follows:

L = d + ∑
i

λici (1.17)

By finding the partial derivatives of L with respect to the unknowns, we obtain a system
of polynomial equations. Its solutions are also known as critical points. This method ensures
that the constraints are satisfied exactly at these points.
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However, an important limitation is that the method of Lagrange multipliers fails at sin-
gular points of the constraint variety [40, section 3.2.2]. Therefore, these points are treated
separately in the Chapters 3 – 5 of this thesis.

Reason for global optimization

Global optimization is essential in our research to ensure that we identify the true minimum
of our objective functions, rather than settling on local minima. This necessity becomes
even more apparent when dealing with the high degree and complexity of the polynomial
optimization problems we address in this thesis.

While symbolic methods such as Gröbner basis and dialytic elimination theoretically
offer ways to find critical points for polynomial systems, these methods become computa-
tionally infeasible given the complexity of our problems. This limitation highlights the need
for robust global optimization techniques.

Traditional optimization methods like gradient descent are prone to getting stuck in lo-
cal minima, making them insufficient for our purposes. To overcome these challenges, this
thesis primarily utilizes numerical continuation techniques based on homotopy continua-
tion. We now provide a brief overview of the relevant concepts from numerical algebraic
geometry to support our approach.

1.2.6 Preliminaries from numerical algebraic geometry

Numerical algebraic geometry’s primary focus is on applying numerical techniques to alge-
braic geometry problems. At the heart of nonlinear algebra is algebraic geometry but there
are also links to many other branches of mathematics. These include combinatorics, alge-
braic topology, commutative algebra, and discrete geometry. Nonlinear algebra connects
these different branches of mathematics with a strong focus on computations and applica-
tions [44].

Homotopy continuation

Numerical homotopy continuation works based on a homotopy. This method solves a poly-
nomial system of interest by creating a related system with known solutions, and then grad-
ually transforming that system and its solutions into the system and solutions of interest.
For the reader’s understanding, we discuss a brief overview of this method. For more in-
formation on homotopy continuation and other numerical methods for solving polynomial
systems, we refer to [6, 44].

Let us consider the system F(x) = 0 of N polynomials in variables x ∈ CN , given by:

F(x) =

� f1(x1, . . . , xN)
...

fN(x1, . . . , xN)

� (1.18)

Our goal is to compute the solutions to this system, our target system. Homotopy continua-
tion utilizes a system G(x), called the start system, that is similar to F(x). The simplest start
system is such that the degree of gi(x) is equal to the degree of fi(x), this is a total-degree
homotopy. Homotopy continuation deforms G(x) and its solution is set into F(x). One a
common type of homotopy used in literature is the straight-line homotopy equation:

H(x, t) = (1 − t)F(x) + tG(x) = 0 (1.19)
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In this simple construction, t is a parameter that goes from 1 to 0, because floating point
numbers are more accurate near the origin.

At t = 1, we know the solutions of H(x, 1) = G(x) = 0. As the function deforms contin-
uously, the behavior of the features of this function, such as its zeros, is tracked. The zeros
of the start system and the target system are referred to as starting points and target/end
points, respectively.

G(x)F(x)

Target system Start system
t=1t=0 H(x,t)

FIGURE 1.2: Pictorial representation of homotopy continuation [43].

Figure 1.2 shows the basic idea of the numerical homotopy continuation, the red dot-
dash line indicates paths that diverge to infinity, the dashed purple line indicates paths that
merge to a so-called singular solution as its multiplicity is greater than 1, and solid blue ends
at distinct non-singular solutions.

Euler-Newton predictor-corrector is used to follow the paths for t ∈ [1, 0] ending at the
solutions to H(x, 0) = F(x) = 0. For more detailed basics on path tracking, we refer to [15,
4].

Various established techniques exist in polynomial homotopy continuation, including
multi-homogeneous homotopy [29] (Bézout bound), spare polyhedral homotopy (BKK bound)
[46], monodromy [14], and regeneration [17], among others can be used for finding the solu-
tions to a system of polynomial equations. The Bézout bound and the BKK bound provide
upper bounds on the number of common solutions (roots) for a system of polynomial equa-
tions. For a detailed discussion of these approaches, we refer to [6, 44].

Parameter homotopy and its advantages

Parameter homotopy is a technique used to solve families of polynomial systems that de-
pend on parameters. This approach allows for efficient resolution of the polynomial system
across different parameter sets (see [6, Chapter 6]). Consider the parameterized polynomial
system given by:

F(x; p) =

���
f1(x1, . . . , xN ; p1, . . . , pP)
f2(x1, . . . , xN ; p1, . . . , pP)

...
fN(x1, . . . , xN ; p1, . . . , pP)

��� (1.20)

where x = (x1, . . . , xN) ∈ CN are the variables, and p = (p1, . . . , pP) ∈ CP are the analytical
parameters. Parameter homotopy comes in a two-step process:

Step 1 The first step in parameter homotopy is the ab-initio phase, which involves comput-
ing all the generic finite solutions of F(x; p⋆) = 0, where p⋆ ∈ CP are randomly chosen
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values for the parameters. Although this initial computation requires significant effort, it
is performed only once. Typically, multi-homogeneous homotopy and sparse polyhedral
homotopy are employed in this phase to track both non-singular and singular roots. It is
crucial to ensure that no path failures occur, as they can disrupt the tracking process.

Step 2 In this step, we construct a straight-line homotopy between the start and final pa-
rameters. The generic roots obtained from the ab-initio phase are used as starting points to
track solutions for the actual system of interest. Note that Step 2 is just a special case of a
user-defined homotopy.

Remark 3. Theoretically, one could use random real numbers for the ab-initio phase. For Bertini,
the main reason that random complex numbers are used is that in the parameter homotopy stage (Pa-
rameterHomotopy: 2), Bertini uses a straight-line homotopy between the start parameters and the
final parameters. Over the real numbers, such a straight line homotopy often runs into singularities:
e.g., f (x; p) = x2 − p = 0 moving along a straight line from p = 1 to p = −1 hits a singularity at
0. However, if we move along a straight line from p = 1+i to p = -1, then we do not hit a singularity
along the way [19]. ⋄

1.2.7 Software for numerical algebraic geometry

There are several open-source software packages available for polynomial continuation.
Some notable examples include PHCpack, HOM4PS-2.0, and Macaulay2. The most recent
open-source numerical continuation software packages are HC.jl and Bertini. A compar-
ison of these and other available software packages, along with their performance, can be
found in [10]. We have chosen Bertini 1.6v for computing the singularity distance of par-
allel manipulators due to (a) its exceptional features highlighted in [48] and (b) the longevity
of the Bertini software. We will now provide a brief overview of the functionality of this
software.

In general, for a given system of polynomial equations as input, Bertini will automati-
cally construct the start system G(x) and the homotopy H(x, t). It offers multiple choices of
predictor-corrector methods, with the classical 5th order Runge-Kutta method typically used
as the default configuration setting in Bertini. Depending on the complexity of the polyno-
mial system, the next task is to consider tuning the configuration settings in the input file.
This includes, among other things, tracker settings, end game settings, and security
settings.

During tracking some paths will fail due to various numerical reasons. This can usually
be fixed by adjusting settings and tolerances within Bertini input file configuration settings.

In our research, we are dealing with a parameterized system of polynomial equations
that differ only in their coefficients, not in their monomials. This motivated us to use the
advantage of parameter homotopy, as outlined in the previous section.

There is a special Bertini module called Paramotopy [3], which solves para–metrized
polynomial systems in parallel, using Bertini as the underlying mathematical solver. It is a
numeric menu-driven program, which runs both Step 1 and Step 2.

In Chapter 3, we proposed an alternative computational algorithm using the paramotopy
for computing singularity distances using extrinsic metrics. In Chapter 4 of the thesis, in
Section 4.1.2 we discussed alternative approaches involving Paramotopy for computing sin-
gularity distances using intrinsic metrics.

Comparison of Bertini and HomotopyContinuation.jl

We extensively used Bertini and HomotopyContinuation.jl throughout our research, de-
pending on the problem at hand. We will now compare the features and limitations of
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these two software packages based on our experience and provide insights into potential
improvements to enhance their computational efficiency.

Features of Bertini

• Offers a parallel (single machine multiple threads) version for the Linux operating
system.

• Multiple choices of predictor-corrector methods.

• Equation-by-equation methods such as regeneration homotopy.

• Multiple configuration settings for secure path tracking.

• Adaptive multi-precision, various end games (tools to compute singular points), com-
puting. Positive-dimensional sets are represented by witness sets.

• Parameter homotopies.

Limitations of Bertini

• Hassle for solving over-determined systems.

• Written in C, so have to rely on the input and output of the files. Generates a lot of
intermediate files.

• Need a wrapper like Python to allow the user to interact with the core software.

• Currently there is no direct implementation of polyhedral or monodromy homotopies.

• In Bertini, the evaluation of the square root is consciously implemented only over R

to avoid numerical instabilities near the branch cut [1].

• Solutions are validated heuristically, with no direct implementation to certify solu-
tions. The program alpha-Certified [18], proving that candidates are approximate
roots is intended to remedy this shortcoming.

Features of HomotopyContinuation.jl

• It is built in Julia, leveraging the language’s performance and modern features.

• Polyhedral and monodromy solvers are implemented.

• Overdetermined systems can be solved.

• No separation between the computational core and a wrapper.

• Modular design allows users to extend and customize functionalities easily.

• Julia’s just-in-time compilation provides the potential for high-performance computa-
tions, especially for large and complex systems.

• Wrapper is written so the user can interact with Bertini, Macaulay 2 via HC.jl.

• Direct implementation of certifying zeros of polynomial systems using interval arith-
metic [9].

• In Julia, the evaluation of the square root is also implemented over C.
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Potential improvements

Below is a list of the main features that are still missing, which could be considered for
future research to enhance computational methods using homotopy continuation software
Bertini and HC.jl.

• Hybrid algorithms that combine advantages of both symbolic and numerical approaches.

• Use a symbolic preprocessor to simplify the system that is then solved using numerical
methods.

• Artificial Intelligence and machine learning modules for Bertini/HC.jl for tuning the
configuration settings for successful path tracking.

The two software packages mentioned above, Bertini and HC.jl, can be used for var-
ious robotic applications. These include but are not limited to kinematic synthesis prob-
lems [2, 15, 43], and computer vision applications [41].

This concludes the basic prerequisites required to understand the rest of the chapters in
this thesis.
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Chapter 2

On Homotopy Continuation Based
Singularity Distance Computations for
3-RPR Manipulator

This chapter consists of the conference paper:

• Aditya Kapilavai and Georg Nawratil: On Homotopy Continuation Based Singularity
Distance Computations for 3-RPR Manipulator.

It was published in the conference proceedings of New Trends in Mechanism Science (D.
Pisla, B. Corves eds.), pp. 56–64, 2020.

Contributions

The author of this thesis contributed to performing groupings of unknown variables for all
the presented nonhomogeneous and homogeneous representations, conducting computa-
tions, analyzing the results, and writing and editing the draft of the paper.

The results of this chapter are presented at the conference

• PARALLEL 2020, The 4th International Workshop on Fundamental Issues, Applica-
tions and Future Research Directions for Parallel Mechanisms/Manipulators
Machines, September 9-11 2020, online conference due to COVID-19.
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Chapter 3

Singularity distance computations for
3-RPR manipulators using extrinsic
metrics

This chapter consists of the journal paper:

• Aditya Kapilavai and Georg Nawratil: Singularity distance computations of 3-RPR
manipulator using extrinsic metrics.

It was published in the Journal of Mechanism and Machine Theory, Vol. 195, pp. 105595,
2024 (Open Access).

Contributions

The thesis author was mainly involved in data curation, investigation, methodology, soft-
ware development, conducting computations, validation, visualization, writing – the origi-
nal draft, writing – the review and editing, and the main results of the paper.

The results of this chapter are presented at the conference

• IFToMM D-A-CH Konferenz, February 18-19, 2021. Online conference due to COVID-
19.

• Effective Methods in Algebraic Geometry (MEGA 2021), June 7-11, 2021. Oral presen-
tation in the software session held online due to COVID-19.
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Chapter 4

Singularity distance computations for
3-RPR manipulators using intrinsic
metrics

This chapter consists of the journal paper:

• Aditya Kapilavai and Georg Nawratil: Singularity distance computations of 3-RPR
manipulator using intrinsic metrics.

It was published in Computer-Aided Geometric Design, Vol. 111, pp. 102343, 2024 (Open-
Access).

Contributions

The thesis author was primarily involved in data curation, investigation, methodology, soft-
ware development, validation, visualization, original draft writing, and reviewing and edit-
ing.

The results of this chapter are presented at the conference

• Conference on Geometry: Theory and Applications, Kefermarkt, June 19-23, 2023,
Austria.
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Chapter 5

Architectural Singularity distance
computations of linear pentapods

This chapter consists of the journal paper:

• Aditya Kapilavai and Georg Nawratil: Architectural singularity distance computa-
tions of Linear pentapods.

It was published in the ASME Journal of Mechanisms and Robotics, Vol. 17(2), pp. 021008,
July 2024.

Contributions

The author of this thesis has contributed to data acquisition, conducting computations, writ-
ing the original draft, and analysis of the results.

The initial idea of this chapter is presented at the conference

• ICRA 2022 Workshop "New Frontiers of Parallel Robotics," Philadelphia, May 27, 2022,
USA. Oral online presentation in the session "My Work in 5 Minutes," held in a hybrid
format due to COVID-19.
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