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Abstract

Program analyzers implement complex algorithms and, as any soft-
ware, can contain bugs. Bugs in their implementation may lead
to analyzers being imprecise and failing to verify safe programs,
i.e., programs with no reachable error locations; or worse, analyzer
bugs may lead to reporting unsound results by verifying unsafe
programs, i.e., programs with reachable error locations.

In this paper, we propose a method to detect such bugs by gen-
erating constraint-based test oracles for analyzers. We re-purpose
and extend Fuzzle, a tool for benchmarking fuzzers, in a tool called
Minotaur. Minotaur generates C programs from SMT constraints,
and based on the satisfiability of the constraints, derives whether
the generated programs are safe or unsafe. For instance, for an
unsafe program, an analyzer under test contains a soundness issue
if it proves it safe. Using Minotaur, we found 30 unique soundness
and precision issues in 11 well-known analyzers that reason about
reachability properties.
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1 Introduction

Over the last decades, program analyzers, whether that is static
analyzers or systematic-testing engines, are increasingly integrated
in the software-development process. This is especially true for
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safety-critical code. Nevertheless, program analyzers constitute
software themselves, and as a matter of fact, implement complex
algorithms. They are, therefore, likely to also contain bugs in their
implementations.

Such bugs can, for instance, cause a program analyzer to crash,
or more importantly, return an incorrect result. In particular, the
latter bugs could lead to the analyzer verifying unsafe code—i.e.,
having a soundness issue and producing false negatives by failing
to report reachable error locations—or not being able to verify safe
code—i.e., having a precision issue and producing false positives
by reporting unreachable error locations as reachable. Of course,
soundness and precision issues may also be intentional to favor
performance, scalability, or other attributes of the analysis [9].

State of the art. Recently, there have emerged several tech-
niques for testing program analyzers for bugs, including uninten-
tional soundness and precision issues. Most of these techniques may
be classified as applications of more general approaches, namely,
specification-based (e.g., [7, 32, 37]), differential (e.g., [12, 15, 25, 26,
34, 38]), and metamorphic testing (e.g., [19, 29–31, 33, 39, 41, 42]).
However, each of the aforementioned approaches comes with dif-
ferent challenges.

For example, specification-based testing requires manually and
precisely formalizing the correct behavior of an analyzer, which
can be difficult and impractical. While differential testing does not
need manual oracle specifications, it requires multiple analyzers
with the same input/output behavior in order to be applicable. Even
then, the oracle is weak—it can establish that there exist one or
more analyzers that behave differently but cannot determine which
analyzer returns the incorrect result. Metamorphic testing lies in the
middle of this spectrum: it can be used to test a single analyzer, and
it requires metamorphic transformations, which are typically more
lightweight than a full-blown oracle specification. Nevertheless,
the metamorphic transformations need to be carefully designed
in order to be applicable to code that the analyzer can handle and
effective in detecting bugs.

Our technique. In this paper, we consider another general
approach for testing analyzers, namely, program generation (e.g.,
[6, 22]). Specifically, this approach aims to generate programs that
are safe or unsafe by construction. If running an analyzer under
test on such a generated program returns a result that contradicts
the ground truth about the program’s safety, then a soundness or
precision issue is detected. Program generation does not require
any manual definitions and is applicable even for a single analyzer.
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However, since determining the safety of any program is an undecid-
able problem, this approach imposes restrictions on the generated
code [22], e.g., by disallowing certain language constructs.

In 2022, Lee et al. proposed Fuzzle [27], an algorithm and tool
that automatically generates buggy C programs for benchmarking
fuzzers. The key idea behind Fuzzle is to cast the problem of gener-
ating unsafe programs as a maze-generation problem. In particular,
each generated program resembles an agent looking for the exit in
a maze. The agent consumes input that determines its sequence of
movements in the maze. Once it consumes all input, the program
terminates. If it finds the exit, the program aborts, i.e., a bug is
found. Each maze has a single exit guaranteeing that, if the exit
of the maze is reachable from the entry, the program is unsafe. To
make the generated programs more realistic, Fuzzle may first use
symbolic execution to compute path constraints to a number of
known CVEs. It can subsequently construct program paths from
these constraints leading to the maze exit. As a result, detecting
the bug in a generated program may approximate the difficulty of
detecting a known CVE.

Here, we describe a novel testing technique that incorporates
Fuzzle for testing program analyzers, rather than for benchmarking
fuzzers. Specifically, our technique automatically generates safe
or unsafe, maze-like C programs as input to program analyzers
that reason about reachability properties. It is designed based on
the following insights. First, any constraint can be used to restrict
the path to the maze exit in a generated program. Second, the
more diverse the constraints are, the more diverse the generated
programs will be, and the more thoroughly the analyzers will be
tested. Third, the ground truth (i.e., safe or unsafe) for each program
can be derived from the satisfiability of these constraints. This
enables determining whether a detected analyzer issue is related to
soundness or precision. A key challenge we faced was translating
constraints, in the form of SMT formulas, to C code in a way that
closely approximates their semantics.

Contributions. Our paper makes the following contributions:
(1) We present a novel technique that generates safe or unsafe,

maze-like C programs for testing program analyzers that
reason about reachability properties.

(2) We implemented our technique inMinotaur and experimen-
tally demonstrate Minotaur’s effectiveness by testing 11
well-known program analyzers and detecting 30 soundness
and precision issues.

(3) We discuss important take-aways from designing and evalu-
ating Minotaur.

(4) We provide our tool and documentation at: https://github.
com/Rigorous-Software-Engineering/minotaur

Outline. In Sect. 2, we give an overview of Minotaur, and
in Sect. 3, we describe the technical details of its novel aspects.
Sect. 4 highlights certain implementation choices of Minotaur. We
present our experimental evaluation in Sect. 5, discuss take-aways
and related work in Sects. 6 and 7, and conclude in Sect. 8.

2 Guided Tour

Here, we first provide the relevant background on Fuzzle. We then
give an overview of Minotaur and present example soundness
and precision issues it detected in different program analyzers.

0 1

2 3

start

bug

(a) Maze

1 void func_bug(char *input , ...) { abort (); }

2 void func_0(char *input , ...){

3 // compute a variable used in conditionals

4 if ( ) func_1(input , ...); // go to 1

5 else if ( ) func_2(input , ...); // go to 2

6 else fatal_error("Hit the wall");

7 }

8 void func_1(char *input , ...){

9 // compute a variable used in conditionals

10 if ( ) func_0(input , ...); // go to 0

11 else fatal_error("Hit the wall");

12 }

13 // func_2 is analogous

14 void func_3(char *input , ...){

15 // compute a variable used in conditionals

16 if ( ) func_bug(input , ...); // exit

17 else if ( ) func_2(input , ...); // go to 2

18 else fatal_error("Hit the wall");

19 }

20 // main is omitted

(b) Program

Figure 1: A maze and program generated by Fuzzle.

2.1 Background on Fuzzle

As already mentioned, Fuzzle generates buggy C programs for
benchmarking fuzzers. The key insight behind Fuzzle is that finding
a bug in a program resembles finding an exit in a maze. Therefore,
every generated program represents a certain maze by encoding
each path in the maze as a sequence of function calls. In turn, each
function represents a particular cell in the maze. When execution
reaches the maze exit, a bug is triggered; otherwise, execution
terminates normally when it runs out of input.

For example, Fig. 1a shows a randomly generated 2x2 maze. Each
maze cell is assigned a unique identifier, and in the figure, cell 0 is
the entry cell and cell 3 the exit cell, leading to the bug. Even for
such a small maze, there are arbitrarily many paths from the entry
to the exit, e.g., 0 − 2 − 3−bug, 0 − 1 − 0 − 2 − 3−bug, etc.

Next, Fuzzle converts this maze into a program template, shown
in Fig. 1b. A program template is an incomplete C program repre-
senting the maze—the boxes in the figure are holes that are filled
later. In particular, each cell in the maze is encoded by a function
definition, e.g., cell 0 is encoded by func_0 , cell 1 by func_1 , and so
on. Each path in the maze is encoded by a sequence of function calls,
e.g., path 0−1−0−2−3 is encoded by calling func_0 , satisfying the
condition on line 4 to call func_1 , satisfying the condition on line 10
to call func_0 , satisfying the condition on line 5 to call func_2 , and
so on. The maze exit is encoded by function func_bug (defined on
line 1 and called on line 16), which aborts execution to signal that
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a bug is found. The main function, which is omitted in the figure,
calls the maze-entry function, i.e., func_0 , with the input.

In the final step, Fuzzle fills the holes in the generated program.
The conditionals on lines 4, 5, 10, 16, and 17 are generated to be
satisfiable and ensure that the branches on lines 6, 11, and 18 are
never executed—an agent should not be able to go through maze
walls. The holes on lines 3, 9, and 15 serve two purposes. First, they
check the input size; each function consumes a different number of
input bytes, and when all input is consumed, execution terminates
normally. Second, they allow assigning input bytes to variables that
are then used in subsequent conditionals.

More specifically, Fuzzle first fills the holes along a path to the
bug. It may do this using path constraints to knownCVEs, which are
obtained using symbolic execution. Given such a path constraint,
Fuzzle may generate several, independent conditions such that
different conditions do not share variables, and thus, input bytes.
Note that all conditions along a buggy path are generated to be
satisfiable. All other conditions may additionally be generated using
input-range or equality checks.

2.2 Overview of Minotaur

In this paper, we re-purpose and significantly extend Fuzzle to
build Minotaur, which tests program analyzers for soundness and
precision issues. Minotaur focuses on testing program analyz-
ers that reason about reachability of error locations. Reachability
properties are widely supported by analyzers, and several other
properties may also be reduced to reachability.

A high-level overview of the main components in Minotaur is
shown in Fig. 2, where our contributions are shaded in blue. Mino-
taur takes a Satisfiability Modulo Theories (SMT) seed constraint
as input. This is similar to Fuzzle, which may use path constraints
to known CVEs when generating conditions along buggy paths. We
also build on the insight that constraints can be used to generate
programs. In our case, we collect seed constraints from the SMT
Competition (SMT-COMP) [1] and by running KLEE [8] on reacha-
bility benchmarks from the Competition on Software Verification
(SV-COMP) [3].

Next, the seed constraint is passed to a constraint fuzzer that gen-
erates formula mutants—see step (1) in the figure—thereby increas-
ing the formula diversity beyond the collected seeds and controlling
the formula size. In short, our fuzzer builds on STORM [30], which
aims at testing SMT solvers. STORM, however, only mutates formu-
las on a propositional level and only produces satisfiable formula
mutants. Our fuzzer mutates formulas at a finer granularity and
uses a novel technique to also generate unsatisfiable mutants. In
addition to generating formula mutants, it ensures that the satisfia-
bility of each mutant is known—this is important to later determine
whether a detected issue in a program analyzer is soundness or
precision related. We describe the fuzzer in detail in Sect. 3.2.

In step (2), each formula mutant is passed to the C converter,
which translates it into several C expressions. These expressions
are later used to fill different holes in the generated program. Note
that, as described in Sect. 2.1, this functionality already exists in
Fuzzle. However, its C converter is mainly tailored to handle the six
CVEs included in the Fuzzle distribution. We develop a C converter
that supports formulas over bit-vectors and bit-vector arrays as

Constraint
Fuzzer C Converter

FuzzleOracle

Minotaur

Seed
Constraint

Program Analyzer(s)

Issue

1 2

3

45

6

Figure 2: Schematic overview of the main components in

Minotaur. Our contributions are shaded in blue.

well as over integer arithmetic and integer arrays. Moreover, our
converter can be configured to ensure that the C expressions do not
contain undefined behavior—in the presence of undefined behavior,
analyzers may assume that any behavior is possible. As a result,
the developers of certain analyzers do not value soundness and
precision issues detected in such cases (see Sect. 6).

In step (3), Fuzzle uses the C expressions to generate a maze-like
program. We adapt its program generation to render the code suit-
able for program analysis, instead of fuzzing. In particular, we use
the conventions of SV-COMP to model special information, such
as non-deterministic variables (i.e., free variables in the formulas).

The generated program is then used to test one or more program
analyzers, where the oracle is the satisfiability of the formula—see
steps (4)–(6). Specifically, if the formula is satisfiable, we know that
the bug in the program is reachable; if an analyzer under test fails to
report it, a soundness issue has been detected. On the other hand, if
the formula is unsatisfiable, we know that the bug in the program is
unreachable; if an analyzer reports it nonetheless, a precision issue
has been detected. In contrast, when using existing differential- or
metamorphic-testing techniques for testing analyzers, it is unclear
whether a detected issue is soundness or precision related without
human inspection. When an issue is detected, Minotaur uses a
minimizer to generate a smaller program that still reveals the buggy
behavior of the analyzer.

2.3 Example Issues Detected by Minotaur

In the rest of this section, we showcase three example issues that
were detected by Minotaur in three different program analyzers
(see Fig. 3). All issues were confirmed by the analyzer developers,
and the sub-figure captions link to our anonymous bug reports.

Fig. 3a shows a program that revealed a soundness issue in
the invariant-generation component of CPAchecker. On line 2,
variable x is assigned a non-deterministic value (denoted by ⋆).
The analysis infers the possible values of x in the form of an in-
terval, which after line 2 is [INT_MIN , INT_MAX ]. The first two
if-statements (on lines 3 and 4) restrict this interval to [10, 21] right
after line 4. Right after line 5, the interval should be [11, 21] as, for
x = 10, the condition of the if-statement on line 5 holds and the
program returns. Instead, the interval is incorrectly inferred to be
[20, 20]; this causes the analysis to unsoundly conclude that the
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1 int main() {

2 unsigned int x = ⋆;

3 if (x < 10) return 0;

4 if (x > 21) return 0;

5 if (20 / x >= 2) return 0;

6 if (x < 21) return 0;

7 __VERIFIER_error ();
8 }

(a) Soundness issue in CPAchecker.

1 int main() {

2 if (-((uint)-1) < 0U) {

3 __VERIFIER_error ();
4 }

5 return 0;

6 }

(b) Precision issue in ESBMC.

1 ulong div(ulong l, ulong r) {

2 return l / r;

3 }

4 int main() {

5 if (div(1, (ushort )~0) == 0)

6 __VERIFIER_error ();
7 return 0;

8 }

(c) Soundness issue in MOPSA.

Figure 3: Example soundness and precision issues found by Minotaur.

program will always return on line 6 and never reach the error on
line 7.

The program in Fig. 3b triggered a precision issue in ESBMC. The
program is safe, that is, the error is unreachable, because the unary
minus on line 2 cannot produce a negative value. This is because the
negation of unsigned integers is computed modulo the maximum
integer value. However, as the expression becomes unsigned only
after the cast, ESBMC fails to consider this and imprecisely claims
that the error is reachable. While we reported this as a precision
issue, the bug can also cause unsoundness, which is exposed by
replacing < 0U with > 0U on line 2—the resulting program is unsafe,
but ESBMC claims that the error cannot be reached.

Minotaur also detected a soundness issue in the MOPSA ana-
lyzer for the program in Fig. 3c. Here, the error is reachable since
expression (ushort )~0 (on line 5) yields the maximum unsigned
short. As this is certainly greater than nominator 1, the division
evaluates to 0 and the condition of the if-statement holds. However,
the excluded-powerset analysis in MOPSA unsoundly verifies the
program. Interestingly, this soundness issue no longer occurs if
function div is inlined.

These three issues triggered both unsoundness and imprecision
in the analyzers under test and involved reasoning about non-
deterministic variables as well as inter-procedural reasoning. In the
following section, we discuss the technical details behindMinotaur
that enable it to detect a diverse range of analyzer issues.

3 Our Approach

In this section, we describe the main components of our approach
(shown in Fig. 2) in the order in which they are used.

3.1 Seed Constraint

As discussed, Minotaur uses constraints to generate more challeng-
ing programs. Based on the logics supported by the C converter, we
collect constraints, in the form of SMT formulas, from SMT-COMP
and by running KLEE on several SV-COMP benchmarks.

3.2 Constraint Fuzzer

As a next step, the constraint fuzzer mutates the seed constraint to
obtain a configurable number of mutants of configurable size.

The constraint fuzzer serves three key functions. First, it in-
creases the diversity of the generated programs by producing syn-
tactically and semantically different variants of the seed constraint.
Second, it regulates the size of the generated mutants, and therefore,
of the generated programs. This is important as large formulas (and

programs) are more likely to cause timeouts in the analyzers under
test. Third, the fuzzer controls the satisfiability of the generated
mutants, which in turn determines Minotaur’s oracle for the ana-
lyzers under test. In other words, it determines whether a detected
analyzer issue is soundness or precision related.

The fuzzer has three modes, namely, two pure modes that only
generate either satisfiable or unsatisfiable mutants, and a mixed
mode that generates mutants of any satisfiability. We describe them
in the following.

Fuzzing SAT/UNSAT seeds to generate SATmutants. In this
mode, we fuzz any given seed formula (satisfiable or not) to generate
satisfiable mutants. This is achieved by incorporating an existing
fuzzer, namely STORM [30], which was developed to detect critical
bugs in SMT solvers. We use those components of STORM that de-
compose an input formula into its propositional atoms and combine
them again such that all resulting mutants are satisfiable (given a
random model) and do not exceed a configurable size.

Fuzzing UNSAT seeds to generate UNSAT mutants. This
mode operates on an unsatisfiable seed and implements a novel
technique for generating unsatisfiable mutants. It first uses the
Z3 [13] solver to extract an unsatisfiable core of the seed formula,
that is, a sub-formula that is still unsatisfiable. Next, our fuzzer
randomly mutates those sub-formulas in the seed that are not in
the unsatisfiable core. This guarantees that the generated mutants
are also unsatisfiable. We describe how the random mutations are
performed later in this section.

Fuzzing SAT/UNSAT seeds to generate any mutant. Unlike
the other two pure fuzzing modes, this mixed mode takes as in-
put any seed formula (satisfiable or not) and generates mutants of
any satisfiability. Our fuzzer simply creates mutants by performing
random mutations on any sub-formula in the seed. Recall, how-
ever, that knowing the satisfiability of the generated mutants is
important for determining the oracles for the analyzers under test
and classifying detected issues as soundness or precision related.
Therefore, this mode checks the satisfiability of each generated
mutant post-factum, using Z3.

Random mutants. For generating unsatisfiable and mixed mu-
tants, our fuzzer combines sub-formulas of the seed using random
operators in a type-aware manner. We take inspiration from Type-
Fuzz [34], a fuzzer for SMT solvers that performs type-aware mu-
tations, but unlike TypeFuzz that roughly preserves the size of the
seed, our fuzzer generates mutants of a configurable size.

A seed constraint typically contains several assertions, each with
a certain height of its corresponding formula tree. To generate mu-
tants, our fuzzer takes a parameter n for the maximum number of
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assertions and h for the maximum height of the formula tree that
is allowed. Of course, a larger n results in more diverse mutants
but is more likely to lead to the generation of contradicting asser-
tions, thus making the mutants unsatisfiable. A larger h results in
more complex mutants, and therefore, more complex programs.
Given these parameters, our fuzzer generates mutants with up to n
assertions as follows.

Each assertion in a mutant is constructed recursively. Given
height h and a type T , which for an assertion is Boolean, the con-
struction procedure performs two steps. First, it chooses a random
operator of type T from a set of valid operators for bit-vectors,
integers, and arrays, as defined in the SMT-LIB standard. For in-
stance, operators of Boolean type are or and => (implication), and
of bit-vector type are bvadd (addition) and bvor (bitwise-or). We
avoid introducing new types in the mutants by restricting the op-
erator choice to only those where every operand type T ′ already
appears in the seed formula. Second, the fuzzer instantiates the
operands by selecting an option of type T ′ among the following:
(1) a sub-formula of the seed with a height of no more than h; (2) a
constant; or (3) a recursive call of the construction procedure with
height h − 1 and type T ′.

3.3 C Converter

The C converter transforms each generated constraint into C ex-
pressions that are later used by Fuzzle to populate conditionals
along the path to the maze exit. The conversion ensures that the
SMT formula and the resulting C expressions are equi-satisfiable,
that is, there exists a valid variable assignment for which the C
expressions evaluate to a non-zero integer value if and only if the
SMT formula is satisfiable.

The C converter takes as input any SMT formula in the sup-
ported logics. As mentioned earlier, the converter supports formu-
las over bit-vectors and bit-vector arrays as well as over integer
arithmetic and integer arrays. Translation of most operations is
straightforward as Boolean, arithmetic, and bitwise operations (for
bit-vectors) in SMT-LIB have a unique counterpart operator in C.
Certain operations are translated as a composition of C operators,
for instance, implication (=> a b) is translated into !a || b, bit-
vector concatenation (bvconcat a b) into (a << width(a)) | b,
etc. In the following, we focus on the three more involved aspects
of the conversion.

Types. Types in SMT-LIB and C do not always match, in which
case we use a suitable approximation. For instance, SMT-LIB in-
tegers are unbounded, whereas C integers have finite width. We
assume a 64-bit system, where integers have width 32 and long
integers have width 64; we use signed long integers to represent
SMT-LIB integers. (Note that we configured the tested analyzers to
match this assumption.)

To ensure correct conversion, we first constrain the SMT formula
further with checks expressing that all (sub-)expressions of integer
type are in the range of signed long integers ([−263, 263 − 1]). We
then check that the satisfiability of the resulting formula is the
same as that of the original formula. For instance, if the original
formula is satisfiable for unbounded integers, we check whether
it is also satisfiable for signed long integers. If the check succeeds,
the resulting formula sufficiently (under-)approximates the values

encoded by the original formula, and the C converter proceeds with
the translation into C; otherwise, the formula is disregarded.

To represent SMT-LIB bit-vectors, we use the closest unsigned
integer type in C, with at least as many bits as the bit-vector. For ex-
ample, a bit-vector of width 8 is translated into unsigned char, one
of width 32 into unsigned int, etc. We choose unsigned types to
represent bit-vectors as they have the same semantics for overflow.

However, implicit type conversions in C often require that we
use explicit type casts to generate a C expression that preserves
the semantics of the SMT formula. As an example, consider the
following formula in SMT-LIB:
1 (bvsgt
2 (bvadd (_ bv255 8) (_ bv1 8))

3 (bvadd (_ bv127 8) (_ bv1 8))

4 )

Line 2 adds 255, represented as a bit-vector of 8 bits ((_ bv255 8)),
and 1, also represented as a bit-vector of 8 bits ((_ bv1 8)). Sim-
ilarly, line 3 adds 127 and 1. Then, bvsgt (line 1) checks whether
the sum of line 2 is greater than that of line 3. Note, however, that
the first sum cannot be represented in 8 bits and overflows to 0
(11111111 + 1 = 00000000). The second sum, on the other hand,
gives 01111111 + 1 = 10000000, which is negative in two’s com-
plement. As a result, the inequality resolves to 0 > −128, which is
true.

To preserve the SMT-LIB semantics, we translate the above for-
mula into the following C expression:
1 (( signed char) (( unsigned char) (255U + 1U))

2 > -(signed char )(256U - (127U + 1U)))

For the first sum, we cast the result of 255U + 1U to unsigned char

to ensure that the overflow happens, as in SMT-LIB. Without this
cast, the compiler might implicitly choose to represent the sum
as an int. For the second sum, we explicitly compute its signed
representation. Finally, we cast the left operand of the inequal-
ity to signed char to ensure that the compiler interprets > as a
signed comparison. Without this cast, we would have an unsigned-
character comparison giving 0 > 128, which is false.

Arrays. By default, SMT-LIB arrays are bounded by the largest
value of their index type; for instance, if the index type is BitVec 32

(bit-vector of width 32), the array has size 232. To avoid unneces-
sarily large C arrays, we infer a sufficiently small array size.

For the inference, we use array reads at constant indices as a
guide. In particular, we find the largest constant index appearing
in the formula and initially infer the array size to be this index
incremented by one. Similar to the treatment of unbounded SMT-
LIB integers, we then constrain the formula further to ensure that
all array accesses are within the inferred bound. Next, we check
that the satisfiability of the resulting formula is the same as that
of the original formula. If the original formula is satisfiable but
the resulting formula becomes unsatisfiable, the inferred array
size is too small to sufficiently (under-)approximate some values
encoded by the original formula. We, therefore, iteratively double
the inferred array size either until the resulting formula becomes
satisfiable or until the inferred size exceeds 512. In the latter case,
the formula is disregarded.

The array size is required for operations on an entire array, such
as initialization or equality checks. Given an (inferred) array size, we
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convert such operations to bounded for-loops in C. This translation
naturally supports multi-dimensional arrays.

Unlike Fuzzle, our C converter supports operations at sym-
bolic array indices. For instance, reading from index i of array a—
(select a i) in SMT-LIB—is translated into a[i] in C. However,
writing value v to index i of array a—(store a i v) in SMT-LIB—
requires additional pre-processing.

SMT-LIB arrays are immutable, and therefore, each store opera-
tion creates and returns a new (immutable) array. To ensure correct
translation into C, for each store operation, we first perform an
equivalent re-write of the SMT formula as follows. We explicitly
declare a new array, e.g., using a fresh symbol FV, add a constraint
that FV is equal to the original array a, and perform the store on FV:

(and (= a FV) (...( store FV i v)...))

We then translate this into the following C code:

array_eq(a, FV) && (... array_store(FV , i, v)...)

Helper function array_eq ensures element-wise equality of the two
arrays. Helper function array_store updates array FV (in place)
and returns a pointer to it; this pointer is used for any subsequent
read accesses.

Undefined behavior. Our C converter may be configured to
generate exclusively well-defined C expressions, that is, without
undefined behavior. As we discuss in Sect. 6, analyzer issues that
occur in the presence of undefined behavior are less likely to be
confirmed by developers, let alone fixed. We, therefore, avoid the
following cases of undefined behavior.

Division by zero: SMT-LIB defines the result of division by zero
for bit-vectors as a bit-vector of ones; to translate to C, we further
constrain the SMT formula to check whether the denominator is
zero, and if so, return the equivalent C value. For integer division,
we constrain the SMT formula to ensure that the denominator is
non-zero. If the resulting formula does not preserve the satisfia-
bility of the original formula, we disregard it.

Signed overflow: We avoid signed overflow by using unsigned
types wherever necessary—unsigned overflow is well defined.
When casting to signed types (as for the second sum of the bvsgt

example), we avoid any overflow by explicitly computing the
corresponding signed representation.

Array accesses: We explicitly initialize array elements with non-
deterministic values. We additionally check that array indices are
within bounds as discussed earlier.

Bitwise shifts: To avoid shifting by more bits than the type size,
we further constrain the formula to check that any expression
used as the right operand of a bit-shift is within the valid range.
Again, if the resulting formula does not preserve the satisfiability
of the original formula, we disregard it.

3.4 Test Oracle

Given the C expressions that the converter produces from an SMT
formula, Minotaur calls Fuzzle to generate a C program as de-
scribed in Sect. 2.1. In short, the C expressions are used to fill in the
conditions of the if-statements leading to the maze exit, and thus,
the bug. Note that the exact maze and conditions are determined
randomly and controlled by a random integer seed.

Minotaur uses the satisfiability of the SMT formula to derive
a suitable oracle for the analyzer under test. In particular, if the
formula is satisfiable, there exists a valid variable assignment for
which the C expressions hold, and consequently, there exists a
program trace that reaches the bug. Since the generated program
is unsafe, the analyzer under test is expected to report an error. If
it does not, Minotaur detects a soundness issue.

Conversely, if the formula is unsatisfiable, there is no valid vari-
able assignment for which the C expressions hold, and consequently,
there is no program trace that reaches the bug. Since the generated
program is safe, the analyzer under test is expected to verify it. If it
instead reports an error, Minotaur detects a precision issue.

3.5 Issue Minimization

Before reporting a detected issue, we attempt to reduce the program
that revealed it.

First, our issue-minimization technique tries to reduce the SMT
mutant that led to the program. To do so, it iteratively drops as-
sertions from the formula and re-runs the rest of the Minotaur
pipeline. The goal is to generate another C program, from the
reduced formula, that still reveals the issue. For precision issues,
we must additionally ensure that any dropped assertions are not
contained in the unsatisfiable core of the formula; otherwise, the
reduced formula might accidentally become satisfiable.

Second, the minimizer uses the C expression that is produced
from the potentially reduced formula as the condition of a single
if-statement, thereby generating a 1x1 maze. If the issue still occurs,
the reduced program consists of a single function.

3.6 Discussion

Supporting other program analyses. Our approach could be
used to test other program analyses as long as the properties they
analyze can be expressed as reachability properties. For example,
to test a taint analysis, one could add a sink in func_bug and the
corresponding source anywhere along a path to the maze exit. To
test a static call-graph analysis, one could check if func_bug or
any other function along a path to the maze exit is transitively
reachable from main in the call-graph. However, more elaborate
encodings are also possible since they should be tailored to the
analysis capabilities in order to be effective.

False positives. In general, our approach does not generate
false positives. However, our implementation might do so due to
bugs in Minotaur (including bugs in the underlying SMT solver).
We encountered and fixed several such cases during the develop-
ment of Minotaur. Nonetheless, analyzer developers might not fix
issues that Minotaur detects when these are intentional sources
of unsoundness or imprecision. Obviously, since our approach is
based on testing, it may miss bugs in an analyzer (false negatives).

Overhead of mixed fuzzing mode. When testing analyzers
that are supposed to be sound but imprecise by design, for instance,
an abstract interpreter, one primarily wants to test for soundness
issues. When using mixed mode in this scenario, Minotaur would
have to discard every UNSAT mutant, which is inefficient. On the
other hand, when testing analyzers that are supposed to be precise
but unsound by design, such as a symbolic-execution engine or a
bounded model checker, Minotaur would have to discard every
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SATmutant produced by the mixed mode. Consequently, discarding
mutants results in performance overhead in comparison to a pure
fuzzing mode.

Program diversity. The size of the programs that Minotaur
generates is configurable through the maze and mutant size. Loops
are introduced from cycles in the maze, and their presence is also
configurable. (Note, however, that in our experiments we disallow
cycles for efficiency reasons—they frequently cause timeouts in
some of the tested analyzers.) The expressions Minotaur generates
are as diverse as the supported SMT formulas in the logics of Tab. 1.
The program templates have limited diversity since they are all
instantiations of mazes.

4 Implementation

Minotaur is built on top of Fuzzle and is written in Python. To
have a common interface for testing analyzers and avoid any clashes
in their dependencies, each analyzer under test is built in a Docker
container. In the following, we present the most interesting imple-
mentation choices we made.

Duplicate sub-formulas. SMT-COMP benchmarks and their
mutants often contain duplicate sub-formulas. This may result in
unnecessarily large and potentially unreadable C programs. There-
fore, we (optionally) reduce the size of SMT seeds by assigning
frequently occurring sub-formulas to fresh variables and replac-
ing their occurrences with the corresponding variables. Through
Minotaur’s configuration, we are able to control how often this
formula reduction is applied.

Expression caching. When generating mutants, certain sub-
formulas may appear multiple times across mutants. To speed up
the translation to C, for each sub-formula, we cache the resulting C
expression. However, to ensure correct translation, the cache must
be cleared whenever translation parameters change, for instance if
we opt for generating only well-defined C expressions.

Parameter fuzzing. Minotaur randomizes most of its param-
eters as well as those of the analyzers under test. The latter is
especially important; it allowed us to test various analysis com-
ponents, e.g., different abstract domains in abstract interpreters,
and detect issues that do not occur for the default configuration.
Note that we do not blindly fuzz the analyzer configurations; we
carefully chose suitable configurations for our purposes, e.g., when
testing an analyzer for soundness, we only enable sound options.

5 Experimental Evaluation

We tested 11 open-source, well-known analyzers that participate
in verification competitions and implement several analysis tech-
niques, namely model checking, abstract interpretation, and sym-
bolic execution. More specifically, we used Minotaur to test 2ls [5],
CBMC [10], CPAchecker [4], ESBMC [11], MOPSA [24], Sea-
Horn [18], Symbiotic [35, 36], and the Ultimate framework [20],
including Kojak [14], Taipan [17], Automizer [21], and GemCut-
ter [16]. We address the following research questions:

RQ1: How effective is Minotaur in detecting soundness and pre-
cision issues in program analyzers?

RQ2: How efficient is Minotaur in detecting issues?
RQ3: How effective is Minotaur in terms of code coverage?

Table 1: Number of collected SMT seeds per logic.

Logic BV LIA NIA

QF_ 10358 787 50
QF_A 8320 34 8
QF_UF 157 0 0
QF_AUF 2112 36 0

5.1 RQ1: Issue Detection

Setup. For this experiment, we collected seed constraints from
SMT-COMP [1]. We also generated seeds by obtaining the path
conditions that KLEE computes for the ReachSafety-BitVectors
and ReachSafety-Arrays categories of SV-COMP [3]. To generate
these seeds, we adapted the SV-COMP programs such that they are
compatible with KLEE. In the end, we excluded seeds that caused
high runtime for SMT solvers, were not supported by Minotaur,
or were too small to yield challenging tests (< 5 atoms). In total, we
obtained almost 21,900 SMT seeds; we provide their count for each
logic in Tab. 1. The first column and row show pre- and suffixes for
logic names, respectively. For instance, for logic QF_BV (Quantifier-
Free BitVectors), shown in the second row and column of the table,
we obtained 10,358 SMT seeds.

Using these seeds, Minotaur generates mazes of size between
4x5 and 7x7 cells—the exact size is determined randomly. Generat-
ing smaller mazes was not possible due to a limitation in Fuzzle
libraries, and larger mazes led to many timeouts in some analyzers
under test. The algorithm for maze generation is also selected ran-
domly (out of five possible options in Fuzzle). However, we impose
the constraint that generated mazes should not contain cycles, i.e.,
we disallow infinite paths through the mazes. This is because cycles
again led to timeouts in the tested analyzers.

We tested the analyzers for soundness issues for about 10months,
for precision issues for about 3 months, and we used Minotaur’s
mixed fuzzingmode for about 2months. Note that we started testing
analyzers as soon as we had a preliminary version of Minotaur. So,
during the months of testing, we were also improving our tool and
adding support for additional analyzers and options. In addition,
we wanted to make sure that the bugs we report are unique; to do
so, we typically waited for each reported bug to be fixed before
testing an analyzer (configuration) further. We set the timeout of
each analyzer to 60 seconds.

We ran this experiment on an AMD EPYC 7702 CPU @ 1.5GHz
machine with 512GB of memory, running Debian.

Results. Tab. 2 presents all unique issues detected by Minotaur.
The first column provides an identifier for each detected issue; each
identifier links to the anonymized bug report. The second column
lists the analyzer in which the issue was found, and the following
two columns show the issue type (e.g., soundness or precision) and
the fuzzing mode of Minotaur that was used (i.e., pure or mixed).
Recall that ‘pure’ denotes fuzzing for either soundness or precision,
while ‘mixed’ denotes fuzzing for both. The last column indicates
the current status of each issue (e.g., confirmed or fixed).

Minotaur detected issues in all the 11 tested analyzers. In total,

Minotaur found 31 unique issues, 19 of which are soundness related,

11 are precision related, and 1 is a crash. Of all issues, 14 are fixed, 10

are confirmed, and there is a fix planned (i.e., there is an open pull
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Table 2: Issues detected by Minotaur.

Issue Program Issue Fuzzing Issue

ID Analyzer Type Mode Status

1 2ls Precision Pure Confirmed
2 CBMC Precision Mixed Reported
3 CBMC Precision Mixed Reported
4 CPAchecker Soundness Pure Fixed
5 CPAchecker Soundness Pure Fixed
6 CPAchecker Soundness Pure Fixed
7 CPAchecker Soundness Pure Confirmed
8 CPAchecker Precision Mixed Fixed
9 CPAchecker Precision Mixed Confirmed
10 ESBMC Soundness Pure Fixed
11 ESBMC Soundness Pure Fixed
12 ESBMC Soundness Pure Fixed
13 ESBMC Soundness Pure Fixed
14 ESBMC Soundness Pure Confirmed
15 ESBMC Precision Mixed Confirmed
16 MOPSA Precision Pure Confirmed
17 MOPSA Precision Pure Fix planned
18 MOPSA Precision Pure Confirmed
19 MOPSA Soundness Mixed Fixed
20 MOPSA Soundness Mixed Confirmed
21 MOPSA Soundness Mixed Fixed
22 MOPSA Soundness Mixed Fix planned
23 SeaHorn Soundness Pure Confirmed
24 SeaHorn Precision Pure Reported
25 SeaHorn Precision Pure Reported
26 Symbiotic Soundness Pure Confirmed
27 Symbiotic Soundness Pure Reported
28 Ultimate Soundness Pure Fixed
29 Ultimate Soundness Pure Fixed
30 Ultimate Crash Pure Fixed
31 Ultimate Soundness Mixed Fixed

request) for 2. The analyzer developers found our bug reports easy
to investigate (see comments for issue 4) and perfectly minimal (see
comments for issue 6).

Note that issues 28 and 31 are revealed for all Ultimate analyzers
that we tested, issue 29 does not occur for Taipan, and issue 30
only occurs for Kojak. Moreover, issues 3, 14 and 15 were detected
using our KLEE-generated SMT seeds, and all other issues using
SMT-COMP seeds, which however also contain KLEE-generated
formulas.

In the following, we showcase six issues detected by Minotaur
and fixed by the analyzer developers (see Fig. 4). Our goal is to
provide a better understanding of the kinds of issues that can be
found with our technique.

Fig. 4a shows the program that revealed soundness issue 5 in
CPAchecker. Variables x and y are assigned non-deterministic
values (line 2), and the equality of x with the bitwise negation
of y is checked on line 3. There, of course, exist values for these
variables such that the equality check succeeds, and therefore, the
error on line 4 is reachable. CPAchecker, however, missed this error

and unsoundly verified the program. This is because its invariant-
generation component incorrectly handled bitwise negation as a
set-complement operation. The program in Fig. 4b revealed another
soundness issue in CPAchecker (issue 6). Here, the analyzer did
not soundly handle the case where the left modulo operand is 0
(line 3) and missed reporting the reachable error on line 4.

For the program in Fig. 4c, ESBMC does not report the reachable
error on line 5 (issue 11) when running in interval-analysis mode.
This issue occurred because the analysis removed type casts, such
as the one on line 3, when processing path conditions of nested
if-statements. The program in Fig. 4d revealed another soundness
issue in ESBMC (issue 12). Here, the interval analysis was unsound
because it was missing a case when handling Boolean negation.

The program that revealed issue 19 in MOPSA is shown in Fig. 4e.
Given a non-deterministic value for variable r, the condition on
line 4 can be satisfied. However, MOPSA unsoundly considers the
error on line 6 unreachable (when using the congruence abstract do-
main). This issue occurred, only occasionally, when the left operand
of a modulo was negative. Interestingly, for a slightly different
syntax—when uncommenting line 2 and replacing line 4 with 5—
this issue did not occur, and the error was soundly reported. Sound-
ness issue 21 (not shown in the figure) was also detected in MOPSA,
but the bug was actually caused by the Apron library [23], which
is used by MOPSA. The bug had previously been found and fixed
there, but MOPSA was using the release version of the library,
which did not yet include the fix.

Minotaur detected a soundness issue in the Ultimate frame-
work itself (i.e., affecting all four analyzers we tested) with the
program of Fig. 4f (issue 28). Given non-deterministic variable uc,
the error on line 8 is reachable regardless of type casts, e.g., for
uc = 32. The analyzers failed to report the error due to a bug related
to the right operand of a right shift being a constant.

5.2 RQ2: Performance

Setup. In this question, we evaluate the efficiency of Minotaur in
detecting issues and compare it with the following two baselines:
Fuzzle: We use its default configuration, which generates all con-
ditions using input-range or equality checks, i.e., no CVEs are
used (see Sect. 2). This baseline generates programs where the
error is always reachable, and therefore, it may only be used to
detect soundness issues.

Fuzzle + SMT: This refers to Fuzzle extended with our C con-
verter, but without our SMT fuzzer. Recall that Fuzzle can only
handle the six CVEs included in its distribution. This baseline
is able to handle all logics that Minotaur supports. The oracle
is determined based on the satisfiability of the given SMT for-
mula. In particular, for satisfiable (resp. unsatisfiable) formulas,
an analyzer under test is expected (resp. not) to report the error.
Wemeasure the performance of these baselines andMinotaur in

re-finding the fixed issues of Tab. 2. We target fixed issues to be able
to verify that it was indeed the target issue that was re-found, and
not a different one. In particular, for each detected issue, we apply
the corresponding fix implemented by the analyzer developers; if
the issue no longer occurs, the detected issue is the target issue. We
omit issue 30, which causes Ultimate to crash, as it is a by-product
of testing for soundness and precision issues.
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1 int main() {

2 int x = ⋆, y = ⋆;

3 if (x == ~y) {

4 __VERIFIER_error ();
5 }

6 return 0;

7 }

(a) Soundness issue in CPAchecker.

1 int main() {

2 uint n = ⋆;

3 if ((0 % n) <= 100) {

4 __VERIFIER_error ();
5 }

6 return 0;

7 }

(b) Soundness issue in CPAchecker.

1 int main() {

2 uint n = ⋆;

3 if (!(0 <= (int) n))

4 if (846 <= n)

5 __VERIFIER_error ();
6 return 0;

7 }

(c) Soundness issue in ESBMC.

1 void main() {

2 bool b1 = ⋆, b2 = ⋆;

3 long l1 = ⋆, l2 = ⋆;

4 if (b2)

5 if (!((b1 || (l2 == 0)) && !b2))

6 if (!((b2 || (l1 == 0)) && !b1))

7 __VERIFIER_error ();
8 }

(d) Soundness issue in ESBMC.

1 int main() {

2 // signed short l = -1 % 8;

3 signed short r = ⋆;

4 if ((-1 % 8) <= r)

5 // if (l <= r)

6 __VERIFIER_error ();
7 return 0;

8 }

(e) Soundness issue in MOPSA.

1 void main() {

2 uchar uc = ⋆;

3 if ((uint )(( uint)(
4 ((uint )((( uint) uc) +

5 ((uint )((( uint )4294967295)*1))))
6 >> ((uint) 2)))

7 < (uint) 8)

8 __VERIFIER_error ();
9 }

(f) Soundness issue in Ultimate.

Figure 4: Issues detected by Minotaur and fixed by the analyzer developers.

For Fuzzle + SMT and Minotaur, we provide a single SMT seed,
that is, the seed that originally led to detecting each issue. If we are
trying to re-find a soundness issue but the SMT seed is unsatisfiable,
we negate it such that Fuzzle + SMT also has a chance to detect it.
We allow all techniques to generate 1000 programs per issue, and
we run them 5 times, each with a different random integer seed to
account for randomness in the testing processes. We again set the
timeout of each analyzer to 60 seconds.

We ran this experiment on an AMD Ryzen 7 PRO 7840U CPU @
3.3GHz machine with 32GB of memory, running Ubuntu.

Results. Tab. 3 presents the results of the comparison. The first
column shows the issue identifier from Tab. 2. For each technique,
we show the average time (in minutes) to re-find an issue as well as
the number of different random integer seeds (out of 5) for which the

Table 3: Average time (in minutes) to re-find a fixed issue

for Fuzzle, Fuzzle + SMT, and Minotaur, and the number

of different random seeds for which the issue was re-found.

Issue Fuzzle Fuzzle + SMT Minotaur

ID Time Seeds Time Seeds Time Seeds

4 - 0/5 6.5 5/5 14.0 5/5
5 - 0/5 7.4 5/5 4.4 5/5
6 - 0/5 1.8 5/5 1.4 5/5
8 n/a n/a n/a n/a 297.1 5/5
10 - 0/5 - 0/5 116.2 5/5
11 - 0/5 - 0/5 61.4 5/5
12 - 0/5 - 0/5 1.1 5/5
13 0.9 5/5 - 0/5 1.1 5/5
19 - 0/5 - 0/5 5.4 3/5
21 - 0/5 - 0/5 6.5 3/5
28 - 0/5 - 0/5 - 0/5
29 - 0/5 - 0/5 13.1 5/5
31 - 0/5 - 0/5 213.2 2/5

issue was re-found. We use ‘-’ and 0/5, respectively, to indicate that
an issue could not be re-found within the budget of this experiment.
Moreover, we use ‘n/a’ to express that the Fuzzle baseline cannot
be used to detect precision issues (issue 8 in the table). Fuzzle +
SMT is also unable to detect issue 8 as the SMT seed is satisfiable.

Within the budget of this experiment, Minotaur consistently (i.e.,

with ≥3 random seeds) detects 11 out of 13 issues, while the two

baselines are much less effective. In particular, Fuzzle is only able
to detect issue 13. This is to be expected given the simplicity of
the generated conditions. Fuzzle + SMT only detects 3 issues. The
explanation is twofold: (1) the constraint fuzzer significantly con-
tributes to the effectiveness of Minotaur, and (2) the SMT seeds
can be large and complex, thereby producing large and complex pro-
grams that frequently cause analyzer timeouts. In contrast, fuzzing
the SMT seeds allows Minotaur to control the size of the mutants.

Note that, to clearly demonstrate the benefit of constraint fuzzing,
we configured Minotaur to only use seed-constraint mutants for
program generation, and not the seed constraint itself (as Fuzzle +
SMT). This leads to Fuzzle + SMT finding 1 issue faster than Mino-
taur. However, Minotaur can easily be configured to subsume the
Fuzzle + SMT baseline.

5.3 RQ3: Code Coverage

Setup. In this research question, we compare the coverage of ana-
lyzers under test achieved by the two baselines and Minotaur.

The analyzers we tested are written either in OCaml (MOPSA),
Java (Ultimate, CPAchecker) or C (all others). We, therefore, focus
on C, the most common source-code language of these analyzers.
We measure the achieved coverage of CBMC, ESBMC, and Sea-
Horn (using gcovr [2]). We omit 2ls as it shares the code base with
CBMC. We also omit Symbiotic as it combines multiple analyzers.
We use branch coverage since it is the most common coverage
metric for fuzzers.

We compute the average branch coverage (in %) of each ana-
lyzer across 5 randomized runs. Each run tests the analyzer on 10K
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Figure 5: Average branch coverage (in %) of analyzer source code achieved with 10K generated programs.

programs; for Fuzzle + SMT and Minotaur, these are generated
from 25 randomly selected SMT seeds. As the Fuzzle baseline is
unsuitable for testing precision, we configure Fuzzle + SMT and
Minotaur to only test for soundness issues, i.e., we choose the
SMT seeds and mutants to be satisfiable.

We again set the analyzer timeout to 60 seconds and ran our
experiments on the same hardware as for RQ1.

Results. Fig. 5 shows the average branch coverage achieved in
steps of 100 programs. Minotaur achieves the highest coverage for

all three analyzers. As expected, the Fuzzle baseline is the least
effective, indicating that complex expressions derived from SMT
formulas help exercise more diverse code in analyzers. When com-
paring Fuzzle + SMT with Minotaur, the difference in coverage is
not large, yet it seems to be significant when considering the issues
that Fuzzle + SMT fails to detect (Tab. 3).

5.4 Threats to Validity

Our experimental results depend on the seed constraints, the an-
alyzers under test, and the parameters of both the analyzers and
Minotaur. To mitigate these threats, we collected a large set of al-
most 22K SMT seeds and selected 11 program analyzers, implement-
ing different techniques. Moreover, we randomized the parameters
of both the analyzers and Minotaur during testing.

6 Discussion

In this section, we discuss insights we gained while developing and
evaluating Minotaur that could benefit the community.

Detected issues.We observed that several issues were caused
by the analyzers mishandling corner cases (for example, see Fig. 4a
with the relatively rare bitwise-negation operator, or Fig. 4e with
the modulo operator and its negative operand). Such corner cases
are easy to overlook and can remain undetected by the manually
crafted test suites of analyzer developers.

Issue fixes.When reporting an issue to analyzer developers, we
noticed that their responsiveness and willingness to provide a fix
correlate with two important factors. First, as expected, soundness
issues are prioritized over precision issues. In particular, of the
19 soundness issues that we reported, 12 are fixed and one has a
planned fix, whereas of the 11 precision issues that we reported,
only 1 is fixed and a fix is planned for another. This is not surprising,

as failing to report a reachable error location is far more critical
than emitting a false alarm.

Second, bug reports containing minimal (or at least small) pro-
grams are more likely to be considered. Of course, larger programs
require more debugging time and effort. Interestingly, we found
that, even after minimization, programs that reveal precision issues
tend to be larger than ones revealing soundness issues. This might
be due to the fact that over-approximation in an analysis accumu-
lates with more analyzed code, and it could also explain the low fix
rate of precision issues.

Undefined behavior. The execution of C code with undefined
behavior may be unpredictable. We noticed that handling unde-
fined behavior in program analyzers can also be unpredictable. For
example, an analyzer that reasons about reachability could soundly
assume that an error location is reachable in the presence of unde-
fined behavior, or completely ignore this possibility.

Handling undefined behavior may even vary across different
analyzer configurations. For example, consider the following issue
that Minotaur detected in Ultimate (not shown in Tab. 2). In its
theory of bit-vectors, a division by zero yields a bit-vector with
every bit set. On the other hand, in its theory of integers, a division
by zero yields any integer1. Similarly, Minotaur found that right
shifts where the left operand is negative are handled differently
across the abstract domains of MOPSA (not shown in Tab. 2). While
the developers originally wanted to fix the issue and consistently
handle this case, they later decided against it. They mentioned that
they “expect cases in which this feature is helpful to be really rare”
and “probably not worth the time and the addition of complexity”2.

When our bug reports contained programs with undefined be-
havior, the issues were less likely to be confirmed, let alone fixed.
Soundness issues detected with such programs were sometimes
fixed provided that a well-defined trace could also reach the error
location. Precision issues, on the other hand, were never fixed and
were not considered interesting by the developers.

Program analyzers as test subjects. During the development
of Minotaur, we faced three main applicability challenges. First,
while several analyzers take C programs as input, we found that
they may support different language subsets and standard-library

1https://github.com/ultimate-pa/ultimate/issues/664#issuecomment-2097745668
2https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/215#note_1921395336
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features. We also observed that external library calls are rarely
handled. In Minotaur, we focused on a language subset that is
shared among the tested analyzers.

Second, the analysis output also varies across tools. Fuzzers
like Minotaur then have to parse each individual output format
separately. Any efforts to standardize the analyzer output formats
(as done, for instance, in SV-COMP) greatly benefit tools and users
relying on more than a single analyzer.

Third, each analyzer comes with a large variety of custom op-
tions, for instance, configuring its soundness, precision, or perfor-
mance. However, these options are often poorly documented, thus
making it difficult to determine whether the reported results are
intentionally unsound or imprecise. Moreover, not all analyzer con-
figurations exhibit the same soundness and precision issues; it is,
therefore, critical to document differences in the expected behavior.

7 Related Work

We presented Minotaur, a technique for generating programs that
are safe or unsafe by construction and using these programs to test
analyzers for soundness and precision issues. In this section, we
compare it with the most closely related work on analyzer testing.

Program generation. As mentioned in the introduction, we
classify our technique under the general program-generation ap-
proach for testing analyzers. This approach has been applied to
detect bugs in different kinds of analyzers, such as string solvers [6]
and a deductive verifier [22]. For string solvers, the authors synthe-
size formulas that are satisfiable or unsatisfiable by construction;
this ground truth is then used as a test oracle for the string solvers.
In the case of the deductive verifier, the authors target Dafny [28].
They build XDsmith, which generates random annotated programs
that have an already known verification outcome. To achieve this,
XDsmith focuses on a subset of Dafny and specific annotations,
e.g., of the form x == v such that they are satisfied or violated for
a specific program execution.

We are not aware of program-generation techniques that target
analyzers reasoning about reachability properties, like Minotaur.
In general, a downside of these techniques is that the generated
programsmust be restricted.Minotaur, in particular, generates pro-
grams with a specific structure and supports a subset of C (although
the latter is tailored to the analyzers under test, as discussed).

Specification-based testing. Specification-based testing tech-
niques require a specification of correct behavior for an analyzer
under test; they then test the analyzer, for example using fuzzing,
against this specification. Such techniques have, for instance, been
used to test implementations of dataflow analyses [37], abstract do-
mains [7], or certain lattice properties of abstract interpreters [32].

In contrast to Minotaur, these techniques require time and
manual effort to write the specifications, which can often be non-
trivial for analyzers. For instance, the work on testing dataflow
analyses [37] uses an independent SMT-based dataflow analysis,
developed by the authors, as a specification. Due to the comparison
with the SMT-based dataflow analysis, this approach could also
be seen as an instance of differential testing. In fact, differential
testing, which we discuss next, could be viewed as specification-
based testing, where the specification is another implementation.

Differential testing. Differential testing of analyzers consists
of running multiple of them on the same input programs and com-
paring their results. If they disagree, then an issue is detected in at
least one of them; however, both the type of issue (soundness or pre-
cision) and which analyzer exhibits the issue remain unclear. Such
techniques have been used to, e.g., test C compilers [40] and ana-
lyzers [12, 15, 26], SMT solvers [34, 38], and a symbolic-execution
engine [25].

In contrast, Minotaur does not require more than one analyzer
under test and is able to classify any detected issue as soundness or
precision related. In addition, differential testing can suffer from
false positives when comparing analyzers that implement intention-
ally different analysis techniques, e.g., when comparing analyzers
that are intentionally imprecise, such as abstract interpreters, with
analyzers that are intentionally unsound, such as bounded model
checkers.

Metamorphic testing. Metamorphic-testing techniques typi-
cally run an analyzer on an input program to get its result; based
on this, they then transform the program such that the expected an-
alyzer result for the transformed program is known. An issue is de-
tected when the actual analyzer result does not match the expected
one. Such techniques have been applied to test SMT solvers [30, 39],
Datalog engines [29, 31], static analyzers [19, 33, 41, 42], etc.

Metamorphic testing detects an issue on a pair of programs
(original and transformed), making it unclear whether the issue is
soundness or precision related. This is not the case with Minotaur.
He et al. [19], in addition to a static, metamorphic oracle, define a
dynamic one that is able to distinguish soundness and precision
issues by comparing with concrete program executions.

8 Conclusion

In this paper, we presented a novel testing framework to find sound-
ness and precision issues in a wide range of program analyzers.
Our approach generates unsafe (respectively safe) programs from
satisfiable (respectively unsatisfiable) SMT constraints. Minotaur
reports an issue if an analyzer returns a result that does not match
the ground truth. By knowing the ground truth, as given by the satis-
fiability of the used constraint, Minotaur can also indicate whether
the issue is related to precision or soundness. Overall, Minotaur
found 19 soundness and 11 precision issues in 11 analyzers.
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