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Abstract

The field of two-dimensional patchy particles opens up research for a wide range of
technical applications such as, but not limited to, membranes and surface layer ap-
plications. These patchy particles can be engineered at different scales using DNA
folding, manufacturing of nano-particles or serve as a model system for molecules
with similar geometrical shapes or bonding behavior. The aim of this work was to
gain more understanding of the self-assembly behavior of triangular patchy parti-
cles for different particle and system parameters. To achieve this, a Monte Carlo
simulation was performed to study the self-assembly of different types patchy tri-
angles in the canonical ensemble. Visual examination of snapshots allows for a
generation of state diagrams that serve as a reference for the automated classifica-
tion on the basis of order parameters. Among the observed structures are chains,
gels, porous, and close packed crystals which require the use of a set of different
order parameters for a proper classification. The results of the self-assembly de-
pend on both system and particle parameters, such as patch arrangements on the
particle edge, referred to as patch topologies. A phenomena occurring when trying
to identify clusters in high dimensional spaces is the so called Curse of Dimension-
ality, which can create different issues when the number of data points is too small
for the data’s dimensions. To deal with this issue, the space spanned by multiple
order parameters was reduced to two dimensions using the conventional Principal
Component Analysis (PCA). Further utilization of state-of-the-art machine learn-
ing methods suggested the use of Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) to classify the now two-dimensional dataset
into different groups of similar systems. This clustering method successfully cat-
egorized the systems into different observable phases, without a visual analysis
of all singular snapshots. These results contribute to a refined understanding of
self-organization processes for patchy triangles.
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1 Introduction

1.1 From single particles to clusters

1.1.1 Self-assembly and phase transitions

Self-assembly is a process responsible for the spontaneous formation of structures
from disordered smaller components [1]. The broadness of this definition is re-
flected in the wide range of possible scenarios, since the concept is so general that
it can be observed at different length scales: it may be a formation of atomic solids
from atoms, of polymer chains from molecules or of micro-structured crystals from
colloidal particles. This holds true as long as there exists appropriately strong
interaction forces scaled alongside. Nature itself has been taking advantage of
self-organization since the dawn of time, as it serves as the guiding principle for
the assembly of living cells [2, 3]. Even the process of evolution appears to be
influenced by self-organization more than Darwin believed [4]. Humanity quickly
discovered the practicality of self-assembly when casting metal and to this day it
still serves as an excellent tool for modern material synthesis. On a molecular
scale this process is evident, but research has led to the exploration and creation
of more complex matter and applications [5, 6].
Under suitable circumstances, this process can be utilized for the designed creation
of a wide variety of structures due to those properties’ scalability.
Self-assembly can occur via different processes through clustering, chaining, cross
linking, and liquid-liquid, liquid-gas phase separation [7–9]. One of the self-
assembly processes observed in this work is nucleation, a typically stochastic pro-
cess consisting in the formation of aggregates of bonded components, followed by
a growth phase where the crystalline structures grow from these primary nuclei.
Such a process is a phase transition, i.e. a transition of the system from one state
to another. Structures will proceed to grow from these primary nuclei, which is
an organization of matter representing a phase transition, defined as a medium’s
or substance’s change of state [10, 11]. This change may involve a transition
from one state of matter to another, structural, or a change of physical properties
like magnetic ordering. A correctly defined order parameter is one that is able to
represent such a phase transition in numerical form, typically by passing or reach-
ing a characteristic value as the transition completes. Classical nucleation theory
formally describes the kinetics of nucleation and proposes a prediction for the nu-
cleation rate R. Relevant to the nucleation rate are the number of nucleation sites
Ns, the attachment rate j describing the average rate of new connections with the
nucleus, the Boltzmann constant kB, the temperature T , the free energy cost of
the nucleus at the top of the nucleation barrier ∆G∗, and the probability that a
new phase will be formed by a nucleus at the top of the barrier, the Zeldovich
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factor Z [12, 13]. This nucleation rate can be thus expressed as

R = NsZj exp

�
−∆G∗

kBT

�
. (1)

As seen above, the nucleation barrier plays part in the nucleation rate, as it relates
to the probability of forming a nucleus. With surface tension σ of the spherically
assumed nucleus with the size r and the difference in free energy per unit of
volume between the two different nucleation phases ∆gv, the nucleation barrier
can be written as

∆G∗ =
16πσ3

3|∆gv|2 . (2)

This the Gibbs free energy of a nucleus with the so-called critical radius. Attach-
ment of new particles to nuclei larger than this critical radius leads to a decrease
in free energy, thus encourages self-assembly. Once the free energy has reached its
minimum, the self-assembly process has concluded [14].

1.1.2 Self-assembly for materials design

For the creation of new materials, colloidal particles have excelled due to their
versatility. Colloidal particles are suspended in a solution and vary in size and
shape, although spherical specimens are more commonly used. Examples of such
spherical colloids are made out of polymethyl methacrylate (PMMA), polystyrene,
and nano crystals. A colloidal suspension of PMMA may result in glass, gel and
cluster states, but it can also be combined with other materials to diversify the
possible phases, for example with ferromagnetic properties [15, 16]. Polystyrene
has been observed in gel, glass, and close-packed crystal states. Clever engineering
allows for other possibilities, such as two-dimensional non-closely packed arrays of
polystyrene, by controlling their size [17].

The use of nano crystals opens up a field of complex particles, that can also be
engineered into crystal, gel, and glass states while retaining the properties of the
used nano crystals [18]. Additionally their use gives way to new phases such as
superlattice structures and materials that can be harder than atomic solids such as
graphite [19, 20]. The programmability of such systems opens up a wide variety
of new synthetic materials, and their creation methods go beyond the molecular
scale [21]. Some of the recently popular methods on a nanometer scale take advan-
tage of colloidal self-assembly. The generation of such colloidal nano-particles can
be accomplished via bottom-up approaches, such as the utilization of nucleation
of atoms into small particles, or so-called DNA origami [22–26]. DNA origami
requires a long DNA strand which can be manipulated into various shapes and
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fixed through the use of shorter DNA strands, which tie the long strand to itself.
The folding of DNA therefore presents itself as a bottom-up approach to synthe-
size colloids of any desired shape. Colloidal particles synthesized by any of these
methods can be used for all sorts of surface layer preparations in order to modify
their substrate’s physical properties. Examples include, but are not limited to, the
modifications of electromagnetic, photonic, or even fluorescent properties [27–29].
Modern synthesis methods allow for the generation of a wide range of shapes and
sizes of colloids, which can be applied using wet-chemical synthesis. To induce
and control self-assembly in different ways, these colloidal particles are altered
through surface modification creating topological interaction sites. Such particles
are nowadays labeled patchy particles.

1.1.3 Patchy Particles

A hard shell particle, a particle that does not allow for any overlaps with other
particles nor deformation, decorated with at least one anisotropic interaction area
on its surface, is called a patchy particle. These anisotropic modifications introduce
directional forces between all patchy particles and are a core component of the self-
assembly process in these systems. The most utilized of such particles would be the
Janus particle, which is a round particle that shows a difference in some property
between its two semi-spheres. These differences in chemical, electrical, or physical
properties can lead to strong interaction forces between pairs of patchy particles
[30, 31]. One possibility to produce such particles is masking areas of particles
using waxes, gels, or elastomers during treatments, followed by demasking to reveal
the original area which is left unaffected during any surface treatment. Another one
would be the deposition of a small metal layer onto particles, for which polystyrene
particles are commonly used. Patchy particles bond with each other through these
attracting patches, forming larger connected networks [32–35]. Those patches can
vary in number, size, shape, placement, and their interaction potential. A smaller
patch size creates more directionality in the interaction between two particles,
and with an intentional selection of their placement provides a reliable way to
reproduce replicable structures. Any slight change to the selected particle’s or
patches’ parameters can drastically influence the assembled structures’ properties
[36]. This sensitivity to patch placement during self-assembly results in highly
adaptable structures with properties heavily depending on the parameters of their
building units.

1.1.4 Patchy triangles and their applications

Through the use of the previously mentioned methods, it is possible to create
patchy particles of any shape, allowing for the generation of all sorts of structures
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through self-assembly. Experiments on the generation of triangular DNA origami
have already been conducted and show promising results for the future [37]. The
focus of this work is on two-dimensional triangular patchy particles and the study
of correlations between various patch placements as well as the properties of their
two-dimensional aggregates. Significantly different patch placements will be re-
ferred to as different patch topologies. Once generated, these particles can model
any system made of units that closely resemble these patchy triangles in their con-
nectivity properties. An example would be to view the triangles as a bounding box
or a simplified stencil for molecules, such as the trimesic acid aggregates, which
are open for bonds in just the same positions as the attractive patches on triangles
[38–40]. A similar approach has been conducted through the use of patchy rhombi
with four patches for TPTC (p-terphenyl-3,5,3’,5’-tetracarboxylic acid), which has
four functional carboxyl groups at the ends of the molecule, resembling the con-
nective behavior that can be simulated [41]. With an intentional selection of
building blocks, two-dimensional geometric particles could be used for membranes
or for surface layer applications with a low number of defects while utilizing the
self-assembly process during manufacturing [42, 43]. Another application is the
engineering of self-cleaning surfaces or the modification of their wettability [44–
46]. The third popular use case for patchy particles is in optics, for example, as
photonic crystals, since they allow for modification of the photonic band gap, or
for structural coloring and iridescence [47–51].

1.1.5 Self-assembly simulations

It is possible to skip the manual process of setting up experiments for all the
systems of interest by taking advantage of the current state of computer science.
One approach to simulate the process of self-assembly for multiple patch topolo-
gies and their variations is the utilization of Monte Carlo simulations [52]. A
Monte Carlo simulation is a method of gaining an understanding of a problem
by studying an ensemble of systems generated with probabilistic behavior, thus
within their physical limitations. The nature of this simulation approach creates
particle behavior similar to Brownian motion and a probabilistic self-assembly via
the attractive patches [53, 54]. At its core, the Monte Carlo simulation consists of
random moves, that need to pass an acceptance criterion. This criterion considers
the probability density of finding the system in a suggested configuration and then
uses a random number generator to accept or discard a chosen move. This pro-
cess makes it possible to study the equilibrium phases of randomly self-assembled
systems of each patch topology. The simulation slowly iterates through time in a
discrete manner, while calculating the probability of random actions (movements)
at each step.
At this point it is necessary to introduce the boundary condition for hard particles:
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an infinite potential preventing any overlap. Attractive and repulsive forces are
all taken into consideration to discard any cases of physically impossible behav-
ior. Any new configuration needs to adhere to these interactions by passing the
acceptance criterion. If a new configuration is accepted, it is stored to serve as
the starting point for the next time step. Multiple simulations based on different
random starting configurations, where each configuration is an ensemble of parti-
cles with a given position and orientation. Within a relatively short time frame it
becomes possible to study a large parameter space on the Vienna Scientific cluster.
With strong attraction forces, the standard Monte Carlo moves (translational and
rotational) show low acceptance rates, which also lead to larger clusters getting
stuck in place. Through the introduction of virtual cluster moves it is possible to
avoid these so-called kinetic traps [55].
An alternative to the Monte Carlo simulation is performed by the use of molecular
dynamics simulations. In this simulation approach, forces are calculated for the
initial conditions and then, after integrating Newton’s equations of motion for the
selected time frame, one can calculate system averages for observable quantities
[52]. For hard particles a molecular dynamics simulation increases in computa-
tional intensity. To calculate these systems, pair collisions have to be calculated
iteratively, and the collision times must be stored. Following this, the algorithm
has to search for all particles that are affected by this collision before calculating
the next collision [56].
In order to gain more samples of the patchy triangles’ phase space, the ensemble of
each patch topology is further divided into systems that have assembled under dif-
ferent temperatures and slight variations in their characteristic patch placements.
Due to technical reasons, the scenario chosen for this simulation was the one of
a canonical ensemble, in which the number of particles and system temperature
within a simulation box of certain size all remain static. Thus, it simulates the
behavior of a system of a set number of particles of a specific patch configuration
within a static volume under a static temperature. Once its internal energy has
converged to a minimum, a system has reached a stable or metastable state. At
this point, the simulations are concluded and enable the study of resulting phases
[57].

1.2 Gaining a quantitative understanding of large particle
assemblies

1.2.1 Order Parameters

A typical tool for the study of an ensemble of systems is the utilization of or-
der parameters for a quantitative classification. Order parameters are scalar or
vector values that show a characteristic behavior for different phases. This per-
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mits to understand the state of a system, and therefore classifying it, without
visual inspection of a snapshot. Order parameters also typically allow to spot a
phase transition, since they should return noticeably different values for different
phases, if the right parameters are selected. A common example would be the
bond-orientational order parameters Q4 and Q6 [58]. The Q4 order parameter
represents cubic symmetry and converges towards 1 for a crystal with a cubic lat-
tice structure. With a decrease in cubic positional order, Q4 converges towards
0, which represents a system with no cubic positional order. In this work, order
parameters are selected to account for the relative position, relative rotation, num-
ber of bonds per particle, as well as the porosity of a system. This enables the
identification of the different phases.

1.2.2 Automated classification

Once the phase space is mapped to an order parameter space, it becomes pos-
sible to find clusters in the order parameter space. With correctly chosen order
parameters, these clusters represent all systems in similar states and will also re-
flect differences. Application of modern clustering algorithms to this large dataset
speeds up the process of classification. Clustering algorithms are sensitive meth-
ods based on very different mathematical principles resulting in entirely different
solutions, even if applied to the same problems. It is therefore essential to select
a suitable algorithm for any problem to receive a reasonable result [59]. Factors
to take into consideration when selecting the right method are, for example, the
dimensions of the problem or the shape in space, knowledge over the number of
clusters, and the relevance of noise recognition. The selected clustering algorithm
is called Hierarchical Density-Based Spatial Clustering of Applications with Noise,
or HDBSCAN [60]. This density-based approach allows for a classification inde-
pendent of cluster shapes without introducing a bias by limiting the number of
classes one is looking for. This is desired because it allows the algorithm find any
patterns within the ensemble of assembled systems, without creating an error due
to initial assumptions concerning the number or shape of clusters. Additionally,
the hierarchical component of this method allows the user to retrieve the probabil-
ity of a point assigned to any cluster. This can be applied as a way to detect phase
transitions where the systems are a mixture of two phases, thus returning conclu-
sive order parameters. Once applied, the method’s parameters are adjusted to find
the desired outcome, HDBSCAN automatically assigns any system to a cluster and
thus to a class or phase the system is in. This approach enables the detection of
patterns in the combinations of order parameters for each phase, without the need
to identify singular specific order parameters for each one.
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1.2.3 Data comprehension for large data sets

The space spanned by order parameters increases in its number of dimensions
with each additional order parameter needed for classification. The difficulty of
analyzing higher-dimensional spaces creates a trade off between selecting as many
parameters as needed for correct classification and as few as possible for anal-
ysis, also known as the curse of dimensionality [61]. Simply adding more order
parameters is therefore not desirable as they increase computation times and addi-
tionally might not even be completely independent of each other. Once a selection
of suitable order parameters is found, methods of dimensionality reduction can be
applied to reduce a potentially complex multi dimensional space into something
more easily comprehensible, thus avoiding the curse of dimensionality. Nowadays,
multiple options for dimensionality reduction processes are in use and have been
comprehensively studied [62]. Out of those, the Principal Component Analysis
(PCA) was selected [63]. This method is an unsupervised, linear transformation
algorithm, creating a new linear combination of order parameters that spans a
new subspace. Those order parameters are selected to explain most of the vari-
ance within the system, thus finding a combination of the most relevant order
parameters. Depending on the amount of principal components used, one can
scale the order parameter space to different dimensions. PCA performs worse for
non-linear data and requires data standardization to deliver the best results. It
has earned its use in the space of neural network models and machine learning for
its quick calculation speed [64, 65].
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2 Simulation

2.1 Monte Carlo Method

The self-assembly through nucleation of anisotropic colloids is simulated using
the Monte Carlo method. This simulation approach describes the fluctuation-
induced first order phase transition by iterating through all particles and creating
movements similar to Brownian motion. Each single particle is assigned a random
translation and rotation, followed by a subsequent collision detection. Once this
is done collectively for all particles the system has gone through a Monte Carlo
sweep. The probability of accepting a move is correlated to the proposed move’s
system energy, where a higher energy will lead to a lesser probability. Using a
uniform random number generator, some moves pass the acceptance criterion,
while others are discarded. The particles used are hard particles, described by
the pair-potential V , as well as a distance d and rotation Ω between two particles
(i, j). Since the pair-potential V (dij,Ωij) is infinite in the case of an overlap, the
probability of accepting moves with any overlap between two hard particles is 0.
This is due to the factor exp(−βV ) in the Metropolis algorithm. A visualization
of the pair-potential V can be found in figure 1.

V (dij,Ωij) =

�
∞ if overlapped

0 if not overlapped
(3)

Attractive circular patches are placed on the surface of the two-dimensional par-
ticles, enabling the particles to form attractive bonds. These patches are not
considered as a part of the geometry of the hard particles and only act as interac-
tion points. The pair-interaction of those patches is described by a finite square
well potential W . For any two patches, the interaction range is equal to the diam-
eter δ of one patch. The interaction is modeled using the pair-potential W shown
in figure 1 for any distance pij from the patch center.

W (pij) =

�
−ϵij if pij < δ

0 if pij ≥ δ
(4)
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0
δ pij

W (pij)

−ϵij

Attractive Square Well Potential

0 δ dij

∞

V (dij)

Hard Particle Potential

Figure 1: Left: The infinite step pair-potential of hard shell circles (i, j) with the
diameter δ, allowing for no penetration of any two particles.
Right: The attractive square well potential used to define the pair-interaction
between two circular patches (i, j) with the diameter δ.

Furthermore, the formation of clusters requires the introduction of virtual clus-
ter moves in addition to the single particle moves. Otherwise, particle clusters can
get stuck in so-called kinetic traps, mentioned in section 1.1.5. These cluster moves
introduce translations and rotations to groups of particles.

The method chosen to detect a collision or overlap between two particles is based
on the separating axis theorem shown in figure 2 [66]. By checking the vertices’
projections onto the face normals of one triangle, it becomes possible to spot any
overlap between particles. If the overall distance D between the projections of the
outermost ends of both particles is larger than the sum of each particle’s own pro-
jection P1 and P2 onto a face normal, there is no overlap along this axis. Therefore
it is necessary to check if

D > P1 + P2, (5)

is true for at least one of the face normals of a triangle. Through the application
of this criterion, it becomes possible to detect overlaps between the bodies of any
two particles.
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P1 P2

D

D

P1 P2

Figure 2: Collision detection through application of the separating axis theorem.
Upper: No collision detected, since the condition in equation (5): D > P1 + P2, is
true for one of the face normals, thus a separating axis is found. Lower: Collision
detected because D ≤ P1 + P2 holds true for the projections onto all of the face
normals.

The framework for the Monte Carlo Simulation was written by C. Karner for the
investigation of patchy rhombi [41]. Thus it only had to be extended to allow for
the simulation of triangular particles, which included defining a new particle type,
the collision detection using the separating axis theorem, and periodic boundary
conditions.

2.2 Particle Parameters

The particles used in our Monte Carlo simulations are patchy hard shell equilateral
triangles. Circular interaction patches are placed on the edges or vertices of these
triangles. Different placement positions and number of attached patches lead to
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a number of different possible variations, so-called patch topologies. All of those
topologies are subject to the same set of parameters: the number of patches np

and their placement along the vertices ∆, the patch radius r, and the side length of
the equilateral triangle L, shown in figure 3. For this work, the side length will be
constant at L = 1 and the patch radius at r = 0.05, whereas the patch placement
and number will be varied to explore a broad parameter space. Due to previous
work on patchy rhombi, the choice of r = 0.05 appears as a good starting point
to study the self-assembly of patch triangles, since it serves as a good compromise
between interaction range and inter-particle distance [36].

r

∆

L

Figure 3: A depiction of all the particle parameters, where np = 1, L = 1,
∆ = 0.5 and r = 0.2. The patch radius in the simulation is r = 0.05, but is set to
a larger size in this graphic for better readability.

After manually searching for patch topologies that have the possibility to form
into different small structures, six are selected, which are described below and
are shown in figure 4. The results of the manual small cluster analysis will be
discussed in section 2.5. Some of the patches will remain at the same position
for all simulations of their topology, while others are static but placed at different
positions ∆ for different runs. The reference vertices for ∆ are defined also defined
in figure 4 for each topology and explained in the list of topologies below. Some
of the chosen patch topologies include the asymmetrically placed patches, which
references to patches that are placed on two different edges and a patch placement
of ∆ for one patch and 1−∆ for the other with respect to their connecting vertex.
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∆

VN

∆

VO

∆

∆

∆

∆

∆ ∆

6patch

∆

∆

2asym1c

∆

∆

∆

3asym

∆

∆

∆

mouse

Figure 4: List of selected patch topologies. The patches drawn as black circles
sit on the border of the hard triangles. Patches at the edges of a triangle (VN,
VO) or defined as centered along a vertex (2asym1c) will remain there for all
iterations of their respective topology. In this figure the position is set to ∆ = 0.33
and the patch radius to r = 0.05 for all topologies.

The list of the selected patch topologies is the following:

2asym1c: Two asymmetrically placed patches along two of the edges and the last
one centered on the last edge with ∆ ∈ {0.05k|k ∈ N : 2 ≤ k ≤ 10}.

3asym: Three asymmetrically placed patches, one on each edge of the triangle
with ∆ ∈ {0.05k|k ∈ N : 2 ≤ k ≤ 10 ∨ k ∈ {0}}.

mouse: Two asymmetrically placed patches and one symmetric to either one of
those with ∆ ∈ {0.05k|k ∈ N : 2 ≤ k ≤ 10}.

VN: One patch placed on a vertex and one at a neighboring edge with ∆ ∈
{0.05k|k ∈ N : 2 ≤ k ≤ 20}.

VO: One patch placed on a vertex and one at its opposite edge with ∆ ∈ {0.05k|k ∈
N : 2 ≤ k ≤ 10}.

6patch: Six patches, two on each edge with ∆ ∈ {0.05k|k ∈ N : 2 ≤ k ≤ 9}.
For the topologies 2asym1c, 3asym, mouse and 6patch, a patch placement of
∆ > 0.5 creates particles, which are mirror-symmetrical to particles of the same
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topology with patches placed at 1 − ∆. These topologies are only simulated for
0.1 ≤ ∆ ≤ 0.5 in order to avoid redundant calculations for the mirror-symmetrical
high ∆ variations (0.1 ≤ ∆ ≤ 0.45 in the case of the 6patch topology, to avoid
stacking of patches at ∆ = 0.5). The case ∆ = 0 is only studied for the 3asym
topology, since ∆ = 0 would be redundant for other. For example, VN with ∆ = 1
is the same particle as VO with ∆ = 0. Setting 0 < ∆ · sin (π

3
) < r would lead

to some undesired bonds due to the patch unintentionally showing on a second
side of the triangle. Additionally, patches placed within certain ∆ ranges allow
for potential patch to patch overlaps occurring within the area of a triangle. Both
of the cases mentioned above are depicted in figure 5 below. The possibility

∆

r

L
d

Figure 5: Left: Patch interaction spills over to another side of the triangle if
0 < ∆ · sin (π

3
) ≤ r. Center: Interaction between two particles are possible, even if

the patches aren’t placed along the sides facing each other. Right: Bonds between
two patches inside the area of a triangle can be avoided if d > r.
np = 1, L = 1, ∆ = 0.2 and r = 0.2 for a better visualization.

of overlaps within the area of a triangle was initially missed when deciding the
space of simulated parameters, thus some variations are simulated which show
significantly different behavior. The self-assembly of all systems with ∆ = 0.1 is
influenced by this phenomena. To avoid this issue the distance d between a patch
and any other edge should be at least larger then r, as seen in figure 5. Thus∆
should be set within 2r/ sin (π

3
) < ∆ < 1 − 2r/ sin (π

3
) when working with equi-

lateral triangles of side length L = 1. For a patch radius r = 0.05, that means
0.11547 < ∆ < 1− 0.11547 avoids those undesired overlaps.

2.3 Canonical Ensemble

The principal thermodynamic variables (N, V, T ) of the canonical ensemble are
explored in all combinations of the options shown in table 1 [52]. Instead of
setting the volume V to a fixed value, it is calculated for selected particle densities
φ and absolute number of particles N with a given volume of a single particle
using V = N

φ
. The self-assembly is mediated by controlling the temperature.
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Higher temperatures generally decrease the possibility of bonds being energetically
favorable, making them more likely to break apart. With lower temperatures the
self-assembly proceeds faster, but with a higher likelihood of retaining defects in
the structure. Initially, the temperature T = 0.1 was chosen as it has been used
in similar simulations for rhombi [36]. Preliminary runs showed self-assembly
with too many defects, and therefore higher temperatures T are needed for the
simulation of self-assembling triangles. The effects of temperature on the self-
assembly was scanned for a range of T = 0.1 to T = 0.25 and the most promising
candidates are selected, shown in table 1.

variable selected values
N {1200}
φ {0.1, 0.25, 0.3}
T {0.115, 0.13, 0.145, 0.16, 0.175, 0.19}

Table 1: All selected values for the principal thermodynamic variables of the
canonical ensemble. V is defined by the particle density φ.

2.4 Runs and Data

The final number of runs Nruns is quickly compiled using the amount of different
densities Nφ = 3, temperatures NT = 6, and patch positions N∆. Since N∆

varies for each topology, it is advisable to refer to table 2 for a summary of patch
topologies and their individual number of patch positions N∆,top.

topology (top) 2asym1c 3asym mouse VN VO 6patch
N∆,top 9 10 9 19 9 8

Table 2: Some topologies allowed for a wider range of ∆, when observing the
possible unique patch configurations mentioned above.

Furthermore, each unique combination is simulated NID = 16 times, resulting
in a final number of runs of:

Nruns = Nφ ×NT ×
�
top

N∆,top ×NID = 18432. (6)

A little trick one can employ to artificially expand the number of final data points
for statistical analysis is to consider a set of final states Nstates = 5 from one system
such that

Ndata = Nruns ×Nstates = 92160. (7)
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After initial testing to find the suitable simulation parameters, the calculations
were started on the VSC3. The calculations later had to be moved to VSC4 due
to the shutdown of VSC3. Runs continued until system energy had converged to a
minimum for all systems. At that point, they were stopped and ready for analysis.

2.5 Expected Results

Due to the nature of the Monte Carlo method the system of colloids will self-
assemble, if given enough time under the right thermodynamic conditions. The
topologies shown in figure 4 are handpicked to be a part of a selection of pos-
sible small assemblies, created under the criteria of satisfying all possible bonds
without creating overlaps. It is expected that some of the resulting systems will
show bigger instances of the examples shown in figures 6 to 12 below. Some will
combine into crystals, while others form gels, depending on the system variables
for each individual run. With at least two patches of the same ∆ at different
edges, the systems can show porous or closed crystal structures as seen below for
the 2asym1c and 3asym topologies figures 6 to 8 and for also the 6patch topol-
ogy in figure 9. Centered patches typically lead to more closed structures, where
off-centered patches create flexible gels or porous crystals.

Figure 6: Small cluster analysis of the 2asym1c topology with ∆ = 1/3. Left: A
single particle. Center: A ring of six particles creates a pore at its center, whose
size changed with Delta. Right: These compact clusters form larger systems with
multiple pores and different pore sizes. The small pore in the center when combin-
ing three rings (right) will remain the same as it’s a result of the centered patch.
Gels and crystals will become increasingly more compact when ∆ approaches 0.5
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Figure 7: Small cluster analysis of the 3asym topology with ∆ = 1/2. Left:
A single particle. Center: Particles only consisting of centered edges form close-
packed clusters. Right: These small close-packed clusters self-assemble into larger
pore free structures.

Figure 8: Small cluster analysis of the 3asym topology with ∆ = 1/3. Left: A
single particle. Center: As patches are placed closer towards the edges, pores are
created with increasingly larger pore sizes. Right: Selection of the patch placement
for the 3asym patch topology allows for very precise control over the pore size. This
combination of topology and ∆ is expected to deliver very porous gels and crystals.
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Figure 9: Small cluster analysis of the 6patch topology with ∆ = 1/3. First:
A single particle. Second: For this topology, very compact clusters are expected.
Third: These can form crystals that either are completely closed or potentially
characteristic pores. Fourth: Gels based on this geometry are very likely to form
close-packed connections.

For the mouse topology, the potential pores in crystals would not arise at
the center of ring-like clusters, but rather only between hexagonal arrangements
figure 10.

Figure 10: Small cluster analysis of the mouse topology with ∆ = 1/3. Left: A
single particle. Center: For this topology, very characteristic closed substructures
are expected. Right: Here are here are no pores within a hexagonal substructure,
but instead only between the hexagonal groups.
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When studying the options for two-patch topologies, two options arise. If the
second patch is on the edge opposite the vertex patch, the vertex patch can again
lead to the formation of hexagonal shapes with connective patches as seen in fig-
ure 11. These connective patches can create closed crystals, or gels. Alternatively,
they can lead to chain structures instead of gels with multiple branches.

Figure 11: Small cluster analysis of the VO topology with ∆ = 2/3. Left: A
single particle. Center: The hexagonal shape could perform similar to the mouse
patch topology. Right: Using this patch topology, chains of triangles are now also
possible.

Once the second patch is placed on an edge connected to the patch vertex,
self-assembly is expected to create multiple small and saturated clusters seen in
figure 12. These small saturated clusters cannot form larger structures, remaining
in gel or liquid state.
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Figure 12: Small cluster analysis of the VN topology with ∆ = 2/3. Left:
A single particle. Besides gels and chains, two options seem reasonable. The
hexagonal shape (center) or closed off rings (right) will form liquids under the
right circumstances.

Due to the number of variables and their ranges, there is a large amount of
potential combinations to be explored (seen in section 2.4) and the options shown
above are not an exhaustive list. Machine learning algorithms will be used in
section 4 to analyze the resulting space of self-assembling triangular anisotropic
colloids under different conditions.
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3 System Classification

Different phases show different kinds of structures in the particle clusters. In order
to quantify all those different systems, a set of order parameters is introduced.
These order parameters span a space, which can be used to group systems into
different categories such as fluid, gel-like crystalline, and porous states. The aim
here is to create an overview of the possible states and state diagrams for each
topology. Some of the states will be split into different subgroups, which will be
described in more detail. Order parameters are selected to describe the particles
relative orientation, position, number of bond, and also the porosity of clusters.
They are then used to classify different states by identifying patterns in the order
parameter space.

3.1 Cluster Recognition

The initial step necessary to analyze those systems is to find out which particles
are grouped as clusters via their patches. First, the distance between two close
patches pij is compared to their patch diameter δ. If this distance is smaller, or
more explicitly, if pij ≤ δ, then the patches overlap and therefore have formed a
bond. The information about which patches have bonded is gathered to define
groups of bonded particles as clusters. The Voronoi decomposition from the freud
package is implemented with periodic boundary conditions for a calculation of
order parameters, but can be utilized already for particle cluster recognition, as
seen in figure 13 [67–69]. Using the Delaunay-Triangulation the Voronoi method
separates the space into regions defined with the input points at their center. Each
of those cells contains all the points closest to its own center compared to all other
centers, using the Euclidean metric. At first, just the triangles’ center positions
are used as the input points with periodic boundary conditions. The method
returns information about which cells are neighbors to each other. This reduces
the number of patch-to-patch distance checks necessary to identify clusters to just
taking the particles’ information of a handful of neighbor cells.
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Figure 13: Example of a crystallizing system, with different large porous clusters
with hexagonal pore symmetry. The Voronoi decomposition is applied to the set
of triangle center points. Particles are colored in orange, Voronoi cells of bonded
particles drawn in green, Voronoi cells of particles without any bonds in grey.
Topology = 3asym; ∆ = 0.2; ϕ = 0.1; T = 0.13

3.2 Order Parameters

To investigate the large number of systems it is helpful to quantify them by using
order parameters. The goal of the selected order parameters is to identify different
types of states. By doing so it will be possible to find groups of clusters representing
systems of similar states in the order parameter space.

3.2.1 Bonds

The first order parameter Φb(t) chosen to quantify the system describes the bond-
ing behavior of the system in terms of the number of bonding partners. This
parameter helps to distinguish more accurately between gels, crystals, chains, and
other possible phases. It is based on the weighted arithmetic mean of the num-
ber bonded patches bi per particle i over the total number of particles, which is
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denoted as N This order parameter is normalized by putting the bonded patches
per particle bi relative to six, the maximum number of patches per particle and is
expressed as

Φb =
1

N

N�
i=1

bi
6
. (8)

The results of the bond order parameter are within a range from 0 to 1. A system
with no bonds would return 0 and a system where six patches on all particles are
bonded will return a value closer to 1. The latter won’t occur in the scope of
this work which is calculated using the canonical ensemble, where the assemblies
usually have a boundary layer of particles in which not all bonds are satisfied, even
with periodic boundary conditions,

3.2.2 Positional Order

To determine positional order, the Steinhardt Order parameters Φ4 and Φ6 are
chosen [58]. These will help distinguish especially between square (in the case
of Φ4) or hexagonal lattice structures, using Φ6. First Φc

n is calculated for each
cluster c with a size Nc

Φc
k =

1

nc

nc�
i=1

����� 1

Nn

Nn�
j=1

exp(ikθij)

����� (9)

and then given their relative cluster size as a weight when summed up for Φk. The
weighted arithmetic mean is used to reduce the influence of smaller clusters on
the total order parameter Φk. Here nc denotes the number of particles in a cluster
with Nn neighbors each and N the total number of bonded particles in the system.
The angle between the ij -particle bond vector and an arbitrary fixed direction in
space is written as θij. And lastly, k is set to 4 or 6 depending on the desired order
parameter, thus allowing the positional order parameter to be expressed as

Φk =
Nc�
c=1

nc

N
Φc

k. (10)

The parameter is defined to return a value between 0 and 1, where 0 represents
a cluster with no square (k = 4) or hexagonal (k = 6) lattice structure and 1
represents a perfectly ordered one.

3.2.3 Orientational Order

With the use of Φθ it will be possible to gain an understanding of dominant relative
orientations in the different systems. For simplicity only bonded neighbors and
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relative angle of their orientation θi are considered. The factor s takes rotational
symmetry of triangles into account by setting s = 3. The number of bonds per
cluster c is written as Bc and is used to determine the orientational order parameter
Φc

θ per cluster with a size Nc. Again, nc denotes the number of particles in a cluster
with Nn neighbors each and N the total number of bonded particles in the system.
Once the order parameter is calculated for each cluster

Φc
θ =

1

2

�
1

Bc

Bc�
i=1

cos (sθi) + 1

�
, (11)

it is followed by a calculation of Φθ, the weighted arithmetic mean. The orienta-
tional order parameter can therefore be expressed as

Φθ =

NC�
c=1

nc

N
Φc

θ. (12)

The cosine will result in 1 for parallel bonds and -1 for antiparallel, while taking
the order of rotational symmetry s = 3 for triangles into account. In the end, the
order parameter is rescaled to range from 0 to 1, such that it matches the scale of
the other order parameters.

3.2.4 Porosity

Another selected criterion for classification of such structures is their porosity.
Initially, the intention was to gain this information from the Voronoi decomposition
by additionally incorporating the positions of vertices and patches as points for
the Delaunay-Triangulation.
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Figure 14: For this Voronoi decomposition the particles’ vertices and patch po-
sitions are also considered as input points. For better readability, the particles are
reduced to their outlines and patches, drawn in blue. The cells corresponding to
the center points of bonded particles are also drawn in blue. If a cell originates
from a patch that has formed a bond then it is also counted as particle cells. All
other cells are void space, but if they are enclosed by particle cells then they are
detected as a pore cell and colored orange instead of grey. This shows a consistent
approximation of the clusters’ pore sizes for some ensembles.
Topology = 3asym; ∆ = 0.5; T = 0.16; ϕ = 0.25

The results for including more points are shown in figure 14. With the increased
number of cells, a more detailed analysis would be possible, after classifying them
correctly. Cells that originate from the positions or connected patches are counted
as particle cells. The remaining cells are labeled as grey void or blue pore cells.
While it is possible to gain information for larger pores using this technique, it
shows to be inaccurate for small pores as shown in figure 15. The cells originating
from vertex points overestimate those small pores since their boundary is always
halfway to other close Delauney-Triangulation points.
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Figure 15: Once the pores get smaller, the Voronoi approach proves to be unreli-
able in measuring the porosity of the clusters. The particles’ outlines are drawn in
blue and the Voronoi cells corresponding to the center position of bonded particles
drawn in blue. Cells created from bonded patches are also drawn in blue. All the
blue cells are labeled particle cells. Any other cell surrounded by those particle
cells is colored orange to represent a pore and the rest as gray if they are void.
Topology = 3asym; ∆ = 0.5; T = 0.16; ϕ = 0.25

Due to the limitations of the Voronoi approach, alpha shapes are used to cal-
culate the porosity of a cluster instead [70]. Alpha shapes are piecewise linear
geometries that create a bounding area of a set of points and are a generalization
of the concept of convex hulls. Instead of purely convex shapes like the convex
hull, alpha shapes allow for concave sections, allowing them to determine the shape
generated by a set of points. How tight those shapes fit the set of points can be
configured using the α parameter, where α = 0 is equal to the convex hull of the
set of points. More specifically, α is used to define the border points such that the
perimeter of a circle with radius 1/α can be drawn between any two points on the
border of the set without containing any other point of the set within it. With

29



alpha shapes, these arcs are simplified to linear connections between those edge
points. If α is low then the bounding area does not fit tightly around the set of
points, whereas a too-high alpha value leads to a too-tight fit and and therefore
unrealistic representation of the clusters. This is showcased in figure 16. Manual
iteration through α values in randomly chosen snapshots of different phases led
to the selection of α = 1.73. It would be possible to automate the search for the
optimal α for each individual system.

(a) α = 0.1 (b) α = 1.73 (c) α = 1.9

Figure 16: Examples of how the α parameter influences how tight the alpha
complex fits the set of input points, which in this case are the particles’ vertices.
The particles are colored in orange and the different alpha shapes are overlayed
in gray. Low alpha values lead to an overestimate of the pore area as seen in
(a), whereas using too large alpha values underestimates the pore area which
is displayed in (c). The manually chosen alpha value of α = 1.73 serves as an
approximate solution and is showcased in (b). Topology = 6patch; ∆ = 0.1;
T = 0.145; ϕ = 0.25

Using the area of a cluster’s alpha shape Aα,c, it is possible to determine the
total space enclosed by particles. To determine the area of unoccupied space, the
area of each particle is subtracted from the alpha shapes, which is always the
area of an equilateral triangle AT with a side length of 1. Again, the number of
particles that are part of a cluster c is written as nc and Nc is the total number of
clusters. Next, the largest unoccupied pore area found in all of the systems Amax

is found, and used to normalize the order parameter. Thus the order parameter
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Φϕ is defined as

Φϕ =
1

Amax

Nc�
c=1

[Aα,c − ATnc] . (13)

A value of 0 would represent a system where no area is enclosed by a group of
particles and a value of 1 represents the case where the pore area is equal to the
size of the largest pore area found within the data, which excludes the area covered
by particles.

3.3 Topology study

The study of each patch topology reveals different phases depending on the system
temperature and patch placements. These are subsequently discussed for each par-
ticle type. Variation in temperature and patch placement reveals a state diagram
unique to each patch topology. These phases are classified by visual examination
of snapshots for each T -∆ combination. Some of the patch topologies show sig-
nificantly different behavior for ∆ = 0.1. The reason for this is the patch spillover
explained in figure 5. Additionally the chosen order parameters for bonding be-
havior Φb, positional order Φ4 and Φ6, orientational order Φθ, and porosity Φϕ are
reviewed for each topology individually. The chosen approach is to take the av-
erage of each order parameter for each ∆-T combination. This approach assumes
that all systems of the same T and ∆ show similar behavior. The physical states
occurring within the scope of this thesis can be broadly categorized into a handful
of options. Liquids, where either most particles are not part of a cluster, or the
average cluster size is close to 1. Crystals, which show a regular lattice structure
and long-range order. These crystals can be porous, close-packed, and can even
appear with a periodic substructure. Systems are categorized as chains, when the
clusters are of a linear structure with two ends on average. Lastly, there are the
gel states. Gels are disordered networks without long-range order with varying
levels of porosity. Some show localized short range order in the form of different
substructures. In the following section, physical states are labelled in accordance
with these guidelines

3.3.1 2asym1c

A large variety of structures are observed for the 2asym1c topology, of which
characteristic snapshots are shown in figure 17 and a quantitative representation
of where the different structures appear in the temperature versus ∆ plane is
reported in figure 18 for ϕ = 0.25. Examination of this diagram shows a liquid
phase occurring at temperatures T ≥ 0.16, while temperatures below this threshold
allow the formation of various cluster states. At these relatively high temperatures,
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bonds are not stable, which is why cluster sizes remain small. Only in the ∆ = 0.1
regime are larger clusters still found at the high end of the chosen temperature
spectrum 0.115 ≤ T ≤ 0.19. The behavior here is noticeably different due to
the patch spillover explained in figure 5 and leads to the assembly of rhombic
chains. These rhombic chains consist of pairs of particles that are connected with
other pairs. For the same ∆ at lower temperatures, the systems transition into
a gel phase, where edges of bonded triangles are not perfectly aligned, but offset,
creating a very porous gel. This freedom results in very porous and disordered
structures in terms of position as well as orientation. Since the particles in these
systems are not aligned along their edges and vertices, they are labeled as offset
gels in the following. For all other patch placements this patch topology assembles
into crystals with different pore sizes, depending on the location of the patches.
More centered patches lead to smaller pores, leading to the generation of close-
packed crystals. Placing the patches closer to the edge increases the pore size, as
their center-to-center distance increases with ∆. These states are labeled as offset
crystals.
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(a)
Liquid

∆ = 0.3; T = 0.175;
ϕ = 0.25

(b)
Rhombic chains
∆ = 0.1; T = 0.16;

ϕ = 0.25
(c)

Offset gel
∆ = 0.1; T = 0.115;

ϕ = 0.25

(d)
Close-packed crystals
∆ = 0.5; T = 0.145;

ϕ = 0.25
(e)

Offset crystal
∆ = 0.2; T = 0.115;

ϕ = 0.25

Figure 17: The liquid phase (a) of the 2asym1c topology does not form stable
bonds and therefore the clusters remain relatively small in size. The centered patch
allows two particles to form rhombic pairs which then further assemble into chains
for (b) via the patch spillover. Offset gels as seen in (c) appear to be the most
disordered assembly of the cluster phases. While they also show rhombic pairs, the
overall structure is less positionally and orientationally ordered. Crystals can be
classified into two types, depending on their pore size: close-packed crystals (d),
which are almost perfectly aligned at their edges and vertices, and offset crystals
(e), which generally form larger pores. This difference is a result of how centered
the patches are placed. Off-centered patches lead to porous structures, whereas
centered patches result in compact assemblies.
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Figure 18: Visually classified ∆-T state diagram of the 2asym1c patch topology
for ϕ = 0.3. The patchy triangles show significantly different behavior at ∆ = 0.1
due to the patch spillover explained in figure 5. For high temperatures of T ≤ 0.145
they form more stable rhombic chains, while below this threshold ∆ results in the
self assembly of offset gels. All other ∆ possibilities can be found in 1 of two
states: liquid or crystallized. Depending on ∆, these crystals form pores between
the particles, which requires the classification of two types of crystals: close-packed
crystals without pores, and offset crystals with pore sizes depending on ∆. When
visual classification as one specific type of state is not obvious, systems are colored
with both of the potential state colors found above.

Furthermore, it appears that Φ4, the square positional order parameter, works
best at identifying a difference between liquid and crystallized states. The average
for ϕ = 0.3 of this order parameter per T and ∆ is shown in figure 19. Particle pairs
or triplets occasionally found in liquids can be misleading in the interpretation
of the diagram, since the positional order is only evaluated per cluster and not
globally. This suggests square lattice structures where pairs of particles are found.
In the realm of close-packed crystals the partially found square lattice structure
disappears (T = [0.115, 0.145] and ∆ = [0.4, 0.5]).
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Figure 19: Average of the positional order parameter Φ4 for each ∆-T combina-
tion of the 2asym1c patch topology with a particle density of ϕ = 0.3. For systems
that show no square lattice structure, this order parameter reaches 0 (blue). With
an increasing appearance of a square lattice structure Φ4 increases to 1 (orange).
A more detailed description of the positional order parameters can be found in
section 3.2.2.

The order parameter Φ6 still successfully detects the difference between the gel
states found at ∆ = 0.1 and all others, which is shown in figure 20. Additionally
there is a slight difference found at the lower end of the ∆-T spectrum (T =
[0.115, 0.145] and ∆ = [0.15, 0.25]), where porous crystals can be found. As a
positional order parameter it suffers from the same flaw as Φ4, where it detects
systems of small clusters as ones with hexagonal lattice structure.
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Figure 20: Average of the positional order parameter Φ6 for each ∆-T combina-
tion of the 2asym1c patch topology with a particle density of ϕ = 0.3. For systems
that show no hexagonal lattice structure, this order parameter reaches 0 (blue).
With an increasing appearance of a hexagonal lattice structure, Φ6 increases to 1
(orange). A more detailed description of the positional order parameters can be
found in section 3.2.2.

The orientational order parameter Φθ reacts to the higher degree of bond angle
flexibility found at ∆ = 0.1, as seen in figure 21. This is a result of more than three
patches forming a single bond combined with the patch spillover, leading to the
formation of rhombic chains and offset gels, which show a higher variety of bond
angles. The two particles connected via a central particle show a higher relative
orientation towards each other, leading to triangles with orientations between anti-
parallel and parallel orientations. Due to steric effects, this difference is not as
significant at ∆ = 0.1 compared to crystals or liquids. Once the patches are
more centered at the edges, the triangles of the 2asym1c patch topology connect
exclusively in an anti-parallel manner. Therefore, Φθ is close to 0 for all other
patch placements ∆ in the 2asym1c patch topology.
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Figure 21: Average of the orientation order parameter Φθ for each ∆-T combina-
tion of the 2asym1c patch topology with a particle density of ϕ = 0.3. For systems
with mostly anti-parallel alignment of triangles,, this order parameter converges
to 0 (blue). If the assemblies show more triangles facing the same direction, Φθ

increases up to its limit of 1 (orange). A more detailed description of the orienta-
tional order parameter can be found in section 3.2.3.

To describe the systems found for the 2asym1c patch topology, it helps to study
the overview of the porosity order parameter shown in figure 22. The 2asym1c
patch topology shows porosity mostly in the offset gel state or in offset crystals.
Thus, the highest porosity is found at ∆ = 0.1 and T = 0.115. With an increase
in ∆, the porosity decreases as crystals become more compact. An increase in
temperature leads to the formation of rhombic gels or a liquid state, which shows
less porosity.
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Figure 22: Average of the porosity order parameter Φϕ for each ∆-T combination
of the 2asym1c patch topology with a particle density of ϕ = 0.3. This order
parameter converges to 0 (blue) when there is no unoccupied space enclosed by
connected triangles. The porosity order parameter is related to the largest pore
space (space enclosed by connected particles) found within all systems. If the
order parameter reaches 1 (orange), the system has the largest pore space out
of all systems in this analysis. A more detailed description of the porosity order
parameter can be found in section 3.2.4.

The last order parameter to be looked at for the 2asym1c patch topology is Φb,
which describes the average amount of bonding partners per particle and is shown
in figure 23. The lowest average number of bonds per particle is found for systems
in a liquid state (∆ = [0.15, 0.5] and T = [0.175, 0.19]). As expected, the offset
gels and rhombic chains at ∆ = 0.1 show more patches that are engaged in bonds.
The highest number of bonded patches per particle is found for the crystallized
systems at ∆ = [0.15, 0.5] and T = [0.115, 0.145].
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Figure 23: Average of the bond order parameter Φb for each ∆-T combination
of the 2asym1c patch topology with a particle density of ϕ = 0.3. The order
parameter is 0 (blue) if there are no bonded patches and 1 (orange) if all particles
contain six patches that are engaged in bonds. In the case of the 2asym1c patch
topology, Φb = 3/6 once all bonds are satisfied. The details for this choice are
explained in section 3.2.1.

3.3.2 3asym

The different phases observed for the 3asym patch topology are shown in figure 24
and the corresponding state diagram for ϕ = 0.3 reported in figure 25 shows
similarities to the one of the 2asym1c patch topology. Similar to previously seen,
liquids are found at the high end of the temperature interval at T ≥ 0.175, as
at relatively high temperatures bonds are not long-lived. For the 3asym patch
topology, one can distinguish between offset and compact gels, where compact is
used for gels where particles share most of their edges with adjacent triangles.
The compact gel is the only phase that appears when all patches are placed at the
vertices and is labeled type 1 compact gel, to remain distinguishable from the other
compact gel types seen later on. The numbers in this naming scheme are chosen
at random and carry no additional descriptive or hierarchical information. This
geometry with ∆ = 0 allows for very compact growth and at this patch position
these gels are energetically very favorable. The rhombic crystals and the offset gel
observed at ∆ = 0.1 are similar to the ones observed in figure 17 as for this patch
topology, the patch spillover occurs. With T = 0.145, there is a similar threshold
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between rhombic structures and the offset gel found at temperatures below the
threshold, while the former is found above. The 3asym patch topology also forms
offset and close-packed crystals in a similar manner to the 2asym1c state diagram.
Offset crystals are found for 0.15 ≤ ∆ ≤ 0.45, which is the point where the size
of the patch radius allows for the formation of close-packed crystals without any
offset between their edges.

(a)
Liquid

∆ = 0.2; T = 0.19;
ϕ = 0.25

(b)
Offset gel

∆ = 0.1; T = 0.115;
ϕ = 0.25

(c)
Type 1 compact gel
∆ = 0.0; T = 0.1;

ϕ = 0.25

(d)
Rhombic crystals
∆ = 0.0; T = 0.115;

ϕ = 0.25
(e)

Offset crystals
∆ = 0.3; T = 0.16;

ϕ = 0.25
(f)

Close-packed crystals
∆ = 0.5; T = 0.16;

ϕ = 0.25

Figure 24: Observed phases of the 3asym patch topology. Liquids (a) only appear
at higher temperatures where bonds are not long-living. One can distinguish
between open (b) and compact (c) gels, depending on the relative orientation and
distance of the particles. Crystals appear in three different possible structures:
rhombic (d) where triangle pairs form rhombic particles which assemble into larger
crystals, porous (e) and compact (f).
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Figure 25: Visually classified ∆-T state diagram of the 3asym patch topology
for ϕ = 0.3. For ∆ = 0, triangles form a type 1 compact gel for all of the
chosen temperatures. The patchy triangles show significantly different behavior
at ∆ = 0.1 due to the patch spillover explained in figure 5. Rhombic crystals
can be found from T = 145 and above, whereas offset gels are found below that
temperature. All other possible ∆ variations of the 3asym patch topology either
self-assemble into crystals or remain in a liquid state due to the temperature.
Close-packed crystals can only be found for ∆ = 0.45 and ∆ = 0.5, where the patch
placement allows for the self-assembly of crystals without pores. Offset crystals
can be found under suitable temperatures (T ≤ 0.175) and ∆ (0.15 ≤ ∆ ≤ 0.45).
When visual classification as one specific type of state is not obvious, systems are
colored with both of the potential state colors found above.

The Φ4 order parameter seen in figure 26 detects square lattice order in the
liquid regime of the 3asym patch topology. With a decrease in temperature, clus-
ters start forming from the particle pairs responsible for the results of this order
parameter. These larger structures don’t adhere to a square lattice structure, lead-
ing to a decrease in Φ4. Also, the crystals and gels found at ∆ = 0.1 show some
square lattice structure. For compact structures such as the compact gel at ∆ = 0,
close-packed crystals, as well as regular porous crystals, the positional order is far
away from resembling a square lattice structure.
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Figure 26: Average of the positional order parameter Φ4 for each ∆-T combina-
tion of the 3asym patch topology with a particle density of ϕ = 0.3. For systems
that show no square lattice structure, this order parameter reaches 0 (blue). With
an increasing appearance of a square lattice structure Φ4 increases to 1 (orange).
A more detailed description of the positional order parameters can be found in
section 3.2.2.

The particle pairs found in liquids, as well as the crystal structures which self-
assembled using the 3asym topology, all show hexagonal lattice structure, as seen
in figure 27. The only exceptions are the rhombic crystals which can be found
at ∆ = 0.1. These, as well as gel types of the 3asym patch topology, show little
hexagonal lattice structure.
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Figure 27: Average of the positional order parameter Φ6 for each ∆-T combina-
tion of the 3asym patch topology with a particle density of ϕ = 0.3. For systems
that show no hexagonal lattice structure, this order parameter reaches 0 (blue).
With an increasing appearance of a hexagonal lattice structure Φ6 increases to 1
(orange). A more detailed description of the positional order parameters can be
found in section 3.2.2.

In figure 28 the orientational order is shown for the gels and rhombic crystals
found at ∆ = 0 and ∆ = 0.1. The small clusters found in liquids, as well as the
crystal structures, show anti-parallel orientational order due to steric effects.
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Figure 28: Average of the orientation order parameter Φθ for each ∆-T combina-
tion of the 3asym patch topology with a particle density of ϕ = 0.3. For systems
with mostly anti-parallel alignment of triangles, this order parameter converges
to 0 (blue). If the assemblies show more triangles facing the same direction, Φθ

increases up to its limit of 1 (orange). A more detailed description of the orienta-
tional order parameter can be found in section 3.2.3.

The porosity order parameter for the 3asym patch topology is shown in fig-
ure 29. The gels show a higher porosity at lower temperatures T = [0.115, 0.145].
In crystal structures, the order parameter correctly reflects the correlation between
porosity and patch placement. The offset crystals with ∆ = 0.2 are recognized as
more porous than the close-packed crystals found at ∆ = 0.5.
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Figure 29: Average of the porosity order parameter Φϕ for each ∆-T combination
of the 3asym patch topology with a particle density of ϕ = 0.3. This order parame-
ter converges to 0 (blue) when there is no unoccupied space enclosed by connected
triangles. The porosity order parameter is put into relation to the largest pore
space (space enclosed by connected particles) found within all systems. If the
order parameter reaches 1 (orange), the system has the largest pore space out of
all systems in this analysis. A more detailed description of the orientational order
parameter can be found in section 3.2.4.

In figure 30 provides insight into the bonding behavior of the 3asym patch
topology for different ∆-T combinations. As expected, the systems found in the
liquid state at ∆ = [0.15, 0.5] and T = [0.175, 0.19], contain fewer patches in
bonds per particle. The type 1 compact gel found at ∆ = 0 contains more bonded
patches per particle than the offset gel and rhombic chains found at ∆ = 0.1. An
interesting anomaly is the higher number of bonded patches per particle found at
∆ = [0.15, 0.3] and T = [0.115, 0.13] compared to crystals of higher ∆. A short
investigation led to the conclusion that this is the result of a higher surface to
boundary size found for the porous crystals.
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Figure 30: Average of the bond order parameter Φb for each ∆-T combination of
the 3asym patch topology with a particle density of ϕ = 0.3. The order parameter
is 0 (blue) if there are no bonded patches and 1 (orange) if all particles contain
six patches that are engaged in bonds. In the case of the 3asym patch topology,
Φb = 3/6 once all bonds are satisfied. The details for this choice are explained in
section 3.2.1

3.3.3 Mouse

The mouse patch topology shows some slight variations of previously discussed
phases in figure 31. Visually different from previously seen gels, the type 2 com-
pact gel is expected to behave similarly in the order parameter analysis compared
to other types of compact gels. Furthermore, the offset crystals show a unique
hexagonal substructure and are therefore labeled open hexagonal crystals. When
studying the state diagram in figure 32 for ϕ = 0.3, it becomes clearer why the
comparisons are made to other patch topologies and their state diagrams. Even
with slight variations in behavior compared to other topologies, the state diagram
closely resembles the ones for the 2asym1c and 3asym patch state diagrams, fig-
ure 17 and figure 24. Also in this patch topology, the effects of the patch spillover
can be observed at ∆ = 0.1.
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(a)
Liquid

∆ = 0.3; T = 0.19;
ϕ = 0.25

(b)
Type 2 compact gel
∆ = 0.1; T = 0.13;

ϕ = 0.25

(c)

Open hexagonal
crystals
∆ = 0.25;

T = 0.13; ϕ = 0.25

(d)
Close-packed crystals
∆ = 0.5; T = 0.145;

ϕ = 0.25

Figure 31: Some phases of the mouse patch topology appear as slight varia-
tions of previously discussed phases. A liquid phase (a) can be found at higher
temperatures, where the bonds are not stable. The type 2 compact gel (b) and
open hexagonal crystals (c) are new variations of possible gel or crystal phases.
For ∆ ≤ 0.45, the hexagonal substructure disappears in crystals and the triangles
self-assemble into a close-packed crystal phase.
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Figure 32: The visually classified ∆-T state diagram for ϕ = 0.25 of the mouse
patch topology is similar to the 2asym1c or 3asym state diagram, but shows a less
rich collection of phases in the chosen ∆-T range. For ∆ = 0.1 and ∆ = 0.15
systems are found as type 2 compact gels. From ∆ = 0.15 on, temperatures
T ≤ 0.16 result in systems that remain in their liquid state. When possible
crystals are of the close-packed crystal type (∆ = 0.45 and ∆ = 0.5), otherwise
they appear with hexagonal substructure and are categorized as open hexagonal
crystals.

The occasional particle pairs in liquids lead to higher values of Φ4 which de-
scribes the appearance of cubic lattice structures. This structure only disappears
in the close-packed crystal regime (T = [0.115, 0.145] and ∆ = [0.45, 0.5]). For
the gels at ∆ = 0.1 it appears even less than in liquid or open hexagonal crystal
states.
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Figure 33: Average of the positional order parameter Φ4 for each ∆-T combina-
tion of the mouse patch topology with a particle density of ϕ = 0.3. For systems
that show no square lattice structure, this order parameter reaches 0 (blue). With
an increasing appearance of a square lattice structure Φ4 increases to 1 (orange).
A more detailed description of the positional order parameters can be found in
section 3.2.2.

The order parameter Φ6 reveals the appearance of open hexagonal crystal sub-
structures at T = [0.115, 0.145] and ∆ = [0.25, 0.35] in figure 34. These small and
local hexagonal substructures result in defects in terms of the global hexagonal
structure, which leads to a decrease in Φ6. At ∆ = 0.1 the 3asym patch topol-
ogy assembles into type 2 compact gels, which also show less hexagonal lattice
structure. The transition at ∆ = [0.15, 0.2] and T = [0.115, 0.145] from type 2
compact gels to hexagonal clusters results in mixed systems with higher hexago-
nal lattice structure. Once the hexagonal substructure starts disappearing with
the increase in ∆ > 0.35, the global hexagonal lattice structure described by Φ6

increases. As discussed previously, the few small clusters found in liquid systems at
T = [0.16, 0.19] are misleading for this order parameter, since they show hexagonal
lattice structure from a very small scale.
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Figure 34: Average of the positional order parameter Φ6 for each ∆-T combina-
tion of the mouse patch topology with a particle density of ϕ = 0.3. For systems
that show no hexagonal lattice structure, this order parameter reaches 0 (blue).
With an increasing appearance of a hexagonal lattice structure Φ6 increases to 1
(orange). A more detailed description of the positional order parameters can be
found in section 3.2.2.

The orientation order parameter shown in figure 35 behaves similarly to the
other patch topologies containing 3 patches. The type 2 compact gel found at
∆ = 0.1 allows for different bond angles due to the patch spillover. All other
patch placements ∆ result in anti-parallel orientation due to steric effects. This is
true even for the small clusters found in the liquid states at T = 0.16 and above.
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Figure 35: Average of the orientation order parameter Φθ for each ∆-T combina-
tion of the mouse patch topology with a particle density of ϕ = 0.3. For systems
with mostly anti-parallel alignment of triangles, this order parameter converges
to 0 (blue). If the assemblies show more triangles facing the same direction, Φθ

increases up to its limit of 1 (orange). A more detailed description of the orienta-
tional order parameter can be found in section 3.2.3.

The hexagonal substructures which can be found in the mouse topology show
smaller pore sizes than the offset crystals seen before. This is shown in figure 36,
by the lack of a significant increase in Φϕ at ∆ = [0.15, 0.4] and T = [0.115, 0.145],
which is observable in the previous patch topologies for offset crystals. At ∆ = 0.1
there is a slight increase in porosity, but the type 2 compact gels are not the most
porous gel variation.
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Figure 36: Average of the porosity order parameter Φϕ for each ∆-T combination
of the mouse patch topology with a particle density of ϕ = 0.3. This order parame-
ter converges to 0 (blue) when there is no unoccupied space enclosed by connected
triangles. The porosity order parameter is put into relation to the largest pore
space (space enclosed by connected particles) found within all systems. If the
order parameter reaches 1 (orange), the system has the largest pore space out of
all systems in this analysis. A more detailed description of the orientational order
parameter can be found in section 3.2.4.

The number of bonded patches per particle is the last order parameter discussed
for the mouse patch topology and shown in figure 37. The type 2 compact gels
found at ∆ = 0.1 show a similar number of bonded patches per particle as the
crystals found at ∆ = [0.4, 0.5] and T = [0.115, 0.13]. At the transition boundary
from gel to crystal around ∆ = [0.15, 0.2] and T = [0.115, 0.145] there is a slight
drop in bonded patches per particle. With an increase in temperature, this number
is further decreased until systems reach a liquid state at ∆ = [0.15, 0.5] and T =
[0.16, 0.19].
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Figure 37: Average of the bond order parameter Φb for each ∆-T combination of
the mouse patch topology with a particle density of ϕ = 0.3. The order parameter
is 0 (blue) if there are no bonded patches and 1 (orange) if all particles contain
six patches that are engaged in bonds. In the case of the mouse patch topology,
Φb = 3/6 once all bonds are satisfied. The details for this choice are explained in
section 3.2.1

3.3.4 6patch

In the selected temperature range the 6patch patch topology only appears in 3
phases: offset gel, type 3 compact gel and type 4 compact gel, which are all
displayed in figure 38. Figure 39 displays the state diagram of this patch topology
for ϕ = 0.3. A temperature above T = 0.145 can lead to a more compact self-
assembly and therefore one can differentiate between the resulting type 3 and type
4 compact gels. The offset gel only appears for ∆ = 0.1, due to the patch spill
over explained in figure 5. This time both patches close to a vertex can bond with
the same patch of a different particle. Offset and type 3 compact gels show a low
number of average bonds per particle compared to type 4 compact gels. Due to
the symmetry of the 6patch topology, particles are more inclined to form compact
connections instead of offset ones.
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(a)
Offset gel

∆ = 0.1; T = 0.19;
ϕ = 0.25

(b)
Type 3 compact gel
∆ = 0.45; T = 0.19;

ϕ = 0.25
(c)

Type 4 compact gel
∆ = 0.15; T = 0.19;

ϕ = 0.25

Figure 38: The three different phases found in the 6patch patch topology. Offset
gel (a), type 3 compact gel (b) and type 4 compact gel (c). The offset gels show
a less ordered structure since patches are placed closer to a vertex. This allows
the patches along the same edge to bond with patches of different particles, which
results in gaps being formed. The type 3 compact gel forms compact branches
of particles with two neighbors. Type 4 compact gels are a mix between gel and
crystals states. They show multiple branched out close-packed clusters.
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Figure 39: The visually classified ∆-T state diagram of the 6patch patch topology
for ϕ = 0.3. Offset gels only appear at ∆ = 0.1 and are a result of the patch
spillover explained in figure 5. The temperature T appears to be the relevant
parameter to separate type 3 from type 4 compact gels at this temperature range.

The average positional order parameter Φ4 shown in figure 39 shows unexpected
results. The lattice structure for the compact gels at ∆ = 0.2 and ∆ = 0.25
appears to be significantly different, especially at T < 0.145. A closer visual
examination of those systems revealed a higher occurrence of triangles that have
bonded with two different triangles at the same edge due to the patch position.
These irregularities disappear for ∆ = 0.1 where a more compact structure appears
to be more favorable. The type 4 compact gels found at ∆ = [0.15, 0.4] and
T = [0.16, 0.19] have a slight increase in thickness compared to the type 3 compact
gels. This comes with a decrease in square lattice structure, since those close-
packed areas show hexagonal lattice structure. At ∆ = 0.1 the 6patch patch
topology assembles into offset gels, which are recognized to have a higher square
lattice structure. This is presumably a result of the disappearance of larger close-
packed sections and a rather porous structure.
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Figure 40: Average of the positional order parameter Φ4 for each ∆-T combina-
tion of the 6patch patch topology with a particle density of ϕ = 0.3. For systems
that show no square lattice structure, this order parameter reaches 0 (blue). With
an increasing appearance of a square lattice structure Φ4 increases to 1 (orange).
A more detailed description of the positional order parameters can be found in
section 3.2.2.

With the increase in square lattice structure observed for the offset gels found at
∆ = 0.1 comes a decrease in hexagonal lattice structure, as seen in figure 41. This
correlation does not translate into the observed differences in hexagonal lattice
structure described by Φ6 between the type 3 and type 4 compact gels. Only
for ∆ = 0.2 and ∆ = 0.25 a decrease is observed Φ6 for all temperatures. As
explained above, these systems show a higher occurrence of triangles with two
different bonded neighbors along the same edge. These defects could result in a
decrease in Φ6.
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Figure 41: Average of the positional order parameter Φ6 for each ∆-T combina-
tion of the 6patch patch topology with a particle density of ϕ = 0.3. For systems
that show no hexagonal lattice structure, this order parameter reaches 0 (blue).
With an increasing appearance of a hexagonal lattice structure Φ6 increases to 1
(orange). A more detailed description of the positional order parameters can be
found in section 3.2.2.

The orientational order parameter Φθ responds to the bond flexibility, which
occurs with a patch placement of ∆ = 0.1 and can be seen in figure 42. While
this patch placement allows a wider range of bond angles, all other ∆ result in
anti-parallel orientation, as expected for close-packed triangles.
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Figure 42: Average of the orientation order parameter Φθ for each ∆-T combina-
tion of the 6patch patch topology with a particle density of ϕ = 0.3. For systems
with mostly anti-parallel alignment of triangles, this order parameter converges
to 0 (blue). If the assemblies show more triangles facing the same direction, Φθ

increases up to its limit of 1 (orange). A more detailed description of the orienta-
tional order parameter can be found in section 3.2.3.

The porosity order parameter Φϕ is shown in figure 43 and describes the space
enclosed by connected particles. This chosen definition of Φϕ does not properly
detect the behavior at ∆ = 0.2 and ∆ = 0.25 described above. These small and
still somewhat rare pores created by those defects do not carry enough weight
when the space enclosed by connected particles is used as the only contributor
in the porosity order parameter. Otherwise it successfully detects the differences
between the type 4 compact gels found at ∆ = [0.15, 0.4] and T = [0.16, 0.19] and
the type 3 compact gels otherwise found for ∆ > 0.1. The offset gels at ∆ = 0.1
are also recognized as more porous than the other structures.

58



Figure 43: Average of the porosity order parameter Φϕ for each ∆-T combination
of the 6patch patch topology with a particle density of ϕ = 0.3. This order
parameter converges to 0 (blue) when there is no unoccupied space enclosed by
connected triangles. The porosity order parameter is put into related to the largest
pore space (space enclosed by connected particles) found within all systems. If the
order parameter reaches 1 (orange), the system has the largest pore space out
of all systems in this analysis. A more detailed description of the porosity order
parameter can be found in section 3.2.4.

The bond order parameter Φb seen in figure 44 appears to be the weakest order
parameter to classify the structures found within the 6patch patch topology. For
the type 4 compact gels found at ∆ = [0.15, 0.4] and T = [0.16, 0.19] it detects the
highest number of bonded patches per particle. Between the offset gel and type 3
compact gels the difference seems to be negligible.
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Figure 44: Average of the bond order parameter Φb for each ∆-T combination of
the 6patch patch topology with a particle density of ϕ = 0.3. The order parameter
is 0 (blue) if there are no bonded patches and 1 (orange) if all particles contain
six patches that are engaged in bonds. The details for this choice are explained in
section 3.2.1

3.3.5 VN

The VN patch topology introduces liquids consisting of small clusters, which is seen
in figure 45. These liquids are present across most of the investigated parameter
space. At ∆ = 0.1 and ∆ = 0.15 these small clusters consist mostly of triangle
triplets and hexagonal clusters. The triplets appear when triangles bond at the
edge patch, whereas the hexagons are a collection of triangles that have bonded
with their vertex patch. For liquids with ∆ ≥ 0.2, the triangle triplets disappear
and the liquids consist mostly of hexagonal clusters. To separate it from this second
liquid type, the first one is labeled small-cluster liquid and the second hexagonal
liquid. As soon as ∆ ≥ 0.9, the hexagonal liquid transitions into a type 5 compact
gel phase, as seen in figure 46, since the patch position enables the formation of
larger structures.
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(a)
Small-cluster liquid
∆ = 0.1; T = 0.19;

ϕ = 0.25
(b)

Hexagonal liquid
∆ = 0.9; T = 0.19;

ϕ = 0.25
(c)

Type 5 compact gel
∆ = 1.0; T = 0.19;

ϕ = 0.25

Figure 45: The VN patch topology results in three different phases: small-cluster
liquids (a), hexagonal liquids (b), and type 5 compact gels (c). When six triangles
are connected via their vertex patch at their center, they form isolated hexagons.
Most clusters found in hexagonal liquids only consist of five to six particles, whereas
in small-cluster liquids clusters are as small as three triangles. Unlike the small
clusters of size five or six, those triplets are connected not just via their vertex
patch, but also their edge patch. Type 5 compact gels are a new variety of gels
with a mix of highly flexible bonds between two particles and compact structures.
This is enabled by the vertex patch of the VN topology.

Figure 46: The state diagram for the VN patch topology at ϕ = 0.3 shows that
gels only become energetically favorable once the edge-patch is placed close to
the second vertex. Otherwise the triangles form small clusters. At ∆ = 0.1 and
∆ = 0.15 these clusters are of size 3 and above. The hexagonal liquids found
between ∆ = 0.2 and ∆ = 0.9 show cluster sizes of five or six particles.
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The positional order parameter Φ4 responsible for detecting square lattice
structures is shown in figure 47. Within the small clusters found in the hexag-
onal liquid, Φ4 detects some square lattice structure. This is probably a result of
the small sample size within each cluster. For the large clusters of the type 5 com-
pact gels found at ∆ = 0.95 and ∆ = 1.0, Φ4 decreases substantially. Furthermore,
it indicates the small-cluster liquid found at ∆ = 0.1 and ∆ = 0.15.

Figure 47: Average of the positional order parameter Φ4 for each ∆-T combi-
nation of the VN patch topology with a particle density of ϕ = 0.3. For systems
that show no square lattice structure, this order parameter reaches 0 (blue). With
an increasing appearance of a square lattice structure Φ4 increases to 1 (orange).
A more detailed description of the positional order parameters can be found in
section 3.2.2.

The small-cluster liquid found at ∆ = 0.1 and ∆ = 0.15 is more distinctly
identified through Φ6 as seen in figure 48. The small clusters found in this liquid
next to the hexagonal cluster lower Φ6 noticeably. For the hexagonal liquid found
from ∆ = 0.2 to ∆ = 0.85, Φ6 increases due to the small local hexagonal structures.
As soon as type 5 compact gels emerge at ∆ = 0.85 and above, the positional order
parameter Φ6 decreases.
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Figure 48: Average of the positional order parameter Φ6 for each ∆-T combi-
nation of the VN patch topology with a particle density of ϕ = 0.3. For systems
that show no hexagonal lattice structure, this order parameter reaches 0 (blue).
With an increasing appearance of a hexagonal lattice structure Φ6 increases to 1
(orange). A more detailed description of the positional order parameters can be
found in section 3.2.2.

The orientation order parameter Φθ seen in figure 49 appears to be flawed for
the case of VN. Since ideal small hexagonal clusters are typically close-packed, all
triangles are anti-parallel to their neighbors. For the calculation of Φθ all bonds
of a triangle are taken into account, thus all other five triangles of a hexagon.
The decrease in Φθ observed at ∆ = [0.2, 0.9] and T = [0.145, 0.19] correlates to a
higher average cluster size. The hexagons found at these temperatures are either
fully satisfied, thus consisting of six triangles, or of five, For the temperatures
T < 0.145, a higher number of clusters with a size of three our four particles are
observed.
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Figure 49: Average of the orientation order parameter Φθ for each ∆-T combi-
nation of the VN patch topology with a particle density of ϕ = 0.3. For systems
with mostly anti-parallel alignment of triangles, this order parameter converges
to 0 (blue). If the assemblies show more triangles facing the same direction, Φθ

increases up to its limit of 1 (orange). A more detailed description of the orienta-
tional order parameter can be found in section 3.2.3.

Since the VN patch topology mostly assembled into liquids consisting of small
clusters or individual close-packed hexagons, the porosity order parameter Φϕ re-
turned mostly values close to 0, which is shown in figure 50. Only for larger
assemblies, in this case the type 5 compact gel found at ∆ = 0.85 and above, does
Φϕ increase significantly.

Figure 50: Average of the porosity order parameter Φϕ for each ∆-T combination
of the VN patch topology with a particle density of ϕ = 0.3. This order parameter
converges to 0 (blue) when there is no unoccupied space enclosed by connected
triangles. The porosity order parameter is put into relation to the largest pore
space (space enclosed by connected particles) found within all systems. If the
order parameter reaches 1 (orange), the system has the largest pore space out of
all systems in this analysis. A more detailed description of the orientational order
parameter can be found in section 3.2.4.

The bond order parameter Φb works great at identifying the hexagonal liquids,
which can be seen in figure 51. From ∆ = 0.2 to ∆ = 0.9, most particle only
consist of one patch that has engaged in any bond, the vertex patch. At patch
positions below ∆ = 0.2, the edge patch is utilized to form small clusters, such as
the triangle triplets. For ∆ ≥ 0.9, the edge patch is also engaged in bonds to form
the type 5 compact gel.
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Figure 51: Average of the bond order parameter Φb for each ∆-T combination
of the VN patch topology with a particle density of ϕ = 0.3. The order parameter
is 0 (blue) if there are no bonded patches and 1 (orange) if all particles contain
six patches that are engaged in bonds. In the case of the VN patch topology,
Φb = 2/6 once all bonds are satisfied. The details for this choice are explained in
section 3.2.1

3.3.6 VO

As a result of the patch placed along the edge opposite to the vertex patch, the
VO patch topology assembles into structures containing local hexagonal structures
which are linked together via the edge patch. The found assemblies are shown in
figure 52. For T ≤ 0.145, offset gel phases are favorable, which is shown in the
state diagram figure 53 for ϕ = 0.3. From ∆ = 0.1 to ∆ = 0.4, the assemblies
appear in the form of hexagonal gels or even hexagonal liquids. The centered edge
patch at ∆ = 0.45 or ∆ = 0.5 results in type 6 compact gels. All of the states
found for the VO patch topology gain a lot of bond flexibility due to the vertex
patch.
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(a)
Hexagonal liquid
∆ = 0.4; T = 0.19;

ϕ = 0.25
(b)

Hexagonal gel
∆ = 0.1; T = 0.175;

ϕ = 0.25

(c)
Offset gel

∆ = 0.1; T = 0.115;
ϕ = 0.25

(d)
Type 6 compact gel
∆ = 0.5; T = 0.145;

ϕ = 0.25

Figure 52: Possible states found for the VO patch topology. Due to the ver-
tex patch, triangles can form liquids consisting mostly of hexagonal clusters (a).
Similar to the hexagonal liquid found in the VN topology, most sub-clusters are
not fully satisfied but only consist of five particles, leaving room for one more.
The small hexagonal sub-clusters can connect via the edge patches to each other
to form hexagonal gels (b). These substructures disappear at lower temperatures
and where offset gels can be found (c). The flexibility given by the vertex patch
creates highly disordered gel structures. With a centered edge patch, these gel
structures show an increase in orientational and positional order, due to close-
packed regions. This gel type is the type 6 compact gel (d).
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Figure 53: The visually classified ∆-T of the VO patch topology for ϕ = 0.3.
Offset gels are more likely to form at the low temperatures of T = [0.115, 0.145].
An increase in temperature gives rise to the appearance of hexagonal sub clusters
for ∆ ≤ 0.4. For ∆ ≥ 0.45, compact regions become more common with the
temperature increase, thus leading to the assembly of type 6 compact gels. At
T = 0.19, and in some cases even T = 0.175, large structures become less favorable
than hexagonal liquids.

The assemblies found for the VO patch topology don’t show any distinctive
behavior in Φ4, which is shown in figure 54. The most significant results are the
ones of the type 6 compact gel found at ∆ = [0.45, 0.5] and T = [0.115, 0.175],
where the square lattice structure is the weakest. All other assemblies do not
show distinguishable differences in terms of their square lattice structure and thus
Φ4. One possible explanation could be the bond flexibility, leading to irregular
positional structure.

67



Figure 54: Average of the positional order parameter Φ4 for each ∆-T combi-
nation of the VO patch topology with a particle density of ϕ = 0.3. For systems
that show no square lattice structure, this order parameter reaches 0 (blue). With
an increasing appearance of a square lattice structure Φ4 increases to 1 (orange).
A more detailed description of the positional order parameters can be found in
section 3.2.2.

In figure 55, the results of Φ6 are shown for the VO patch topology. The type
6 compact gel found at ∆ = [0.45, 0.5] and T = [0.115, 0.175] show the strongest
results at T = [0.115, 0.13]. The bond angle flexibility due to the vertex patch,
leads to weaker positional structure in other assemblies. This is reflected in Φ6,
since those systems therefore show little hexagonal lattice structure.
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Figure 55: Average of the positional order parameter Φ6 for each ∆-T combi-
nation of the VO patch topology with a particle density of ϕ = 0.3. For systems
that show no hexagonal lattice structure, this order parameter reaches 0 (blue).
With an increasing appearance of a hexagonal lattice structure Φ6 increases to 1
(orange). A more detailed description of the positional order parameters can be
found in section 3.2.2.

The results of the orientational order parameter Φθ for the VO patch topology
suffer from the same issue as the VN patch topology and are shown in figure 56.
The calculation of Φθ relies on the bond orientation between connected triangles,
which can lead to mixed results when multiple triangles connect at the same patch.
While there is a trend towards anti-parallel alignment, the multiple triangles con-
nected via a single patch in different orientation lead to higher values of Φθ.
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Figure 56: Average of the orientation order parameter Φθ for each ∆-T combi-
nation of the VO patch topology with a particle density of ϕ = 0.3. For systems
with mostly anti-parallel alignment of triangles, this order parameter converges
to 0 (blue). If the assemblies show more triangles facing the same direction, Φθ

increases up to its limit of 1 (orange). A more detailed description of the orienta-
tional order parameter can be found in section 3.2.3.

When it comes to porosity within the VO systems, Φϕ works well at recognizing
the appearance of offset gels, as seen in figure 57. These gels can be found at
temperatures T = 0.115 and T = 0.13 and appear as the most porous. The other
gel types, the hexagonal gel found at ∆ = [0.1, 0.4] and T = [0.145, 0.19], and
the type 6 compact gel found at ∆ = [0.45, 0.5] and T = [0.115, 0.175], show a
significantly lower amount of unoccupied area enclosed by clusters of triangles.
The hexagonal liquids appearing at ∆ = [0.15, 0.5] and T = [0.175, 0.19] also show
low values of Φϕ.
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Figure 57: Average of the porosity order parameter Φϕ for each ∆-T combination
of the VO patch topology with a particle density of ϕ = 0.3. This order parameter
converges to 0 (blue) when there is no unoccupied space enclosed by connected
triangles. The porosity order parameter is put into relation to the largest pore
space (space enclosed by connected particles) found within all systems. If the
order parameter reaches 1 (orange), the system has the largest pore space out of
all systems in this analysis. A more detailed description of the orientational order
parameter can be found in section 3.2.4.

The last order parameter discussed for the VO patch topology is Φb, the bond
order parameter, which can be seen in figure 58. Systems with a higher number
of small hexagonal clusters, such as the hexagonal liquid found at ∆ = [0.15, 0.5]
and T = [0.175, 0.19] or any of its mixed phases, show a lower number of bonded
patches per particle. Otherwise, Φb does not recognize any differences in bonding
behavior between the different gel types.
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Figure 58: Average of the bond order parameter Φb for each ∆-T combination
of the VO patch topology with a particle density of ϕ = 0.3. The order parameter
is 0 (blue) if there are no bonded patches and 1 (orange) if all particles contain
six patches that are engaged in bonds. In the case of the VO patch topology,
Φb = 2/6 once all bonds are satisfied. The details for this choice are explained in
section 3.2.1
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4 Machine Learning

4.1 Dimensionality reduction and order parameters

To summarize, the systems considered are all possible combinations of the ther-
modynamic parameters reported in table 1 for each ∆ of each of the six patch
topologies. Dimensionality reduction of a given data set can speed up computa-
tion times and simplifies the accuracy analysis of the clustering algorithms later
on. Additionally, the ”curse of dimensionality” can be mitigated. A common al-
gorithm for dimensionality reduction is the Principal Component Analysis (PCA).
The principal component analysis searches for the parameters that explain the
highest amount of variance by computing the covariance matrix to identify corre-
lations. A helpful way to gain a deeper understanding of the PCA’s results is the
component-wise study of the percentage of explained variance. This is shown in
figure 59 as blue bars, which provide insight into the ratio of information retained
in each component during dimensionality reduction. Additionally, the plot shows
the cumulative sum of this percentage in orange. This sum reveals the necessary
principal components needed to describe the data in the parameter space with a
desired amount of explained variance. Using the first three principal components,
the sum of the explained variance is equal to 94.04%.
The composition of each principal component is shown in figure 60, by displaying
the square of the explained variance per component. By studying this plot, it
becomes possible to better understand each order parameters’ overall success at
classifying the different assemblies. When studying the parameter contribution
to each principal component, the positional order parameter Φ6 which recognizes
hexagonal lattice structures, seems to be the most relevant out of the chosen order
parameters. Next to it is the orientational order parameter Φθ. The combination
of mostly these two parameters already explains 86.15% of the variance.
The second principal component is made up of mostly the average amount of
bonded patches per particle Φb and the positional order parameter Φ4, which rec-
ognizes square lattice structures. The orientation order parameter Φθ responded
mostly to the difference in systems at ∆ ≤ 0.1 to larger ∆. This suggests that
if systems with the patch spillover explained in figure 5 were to be removed, it
would not be as crucial for explaining the variance. Regardless, in combination
with Φ6, Φ4, and Φb, the system are well described. Since close-packed triangles
assemble into hexagonal lattice structures, it makes sense that Φ6 is effective at
describing the variety of different systems. It successfully recognizes any close-
packed areas, independently of the overall physical state and thus even recognizes
differences in some of the variations of gels, crystals, or liquids. Since the small
clusters occasionally found within liquids can mislead the order parameter Φ6 into
recognizing hexagonal lattice structure despite it only being short range order.
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Figure 59: The percentage of explained variance for each principal component
(blue) and their cumulative sum (orange). By using the first three principal com-
ponents, one can explain 94.04% of the variance.

This flaw is mitigated through Φb, which served well at recognizing systems in a
liquid state. The contribution of Φ4 could be traced back to two different origins.
With the appearance of close-packed hexagonal lattice structures, Φ4 tends to de-
crease. Additionally, a sparsely-packed periodic structure of triangles resembles a
square lattice structure where each triangle connects with two others at each of
its vertices.
The porosity order parameter Φϕ shows some contribution to PC 1 and PC 2, but
becomes relevant for PC 3 and PC 4. It is decent at describing the transition from
gel or porous crystal states to close-packed crystals, compact gels, or liquids, but
fails at more nuanced recognition of different gel variants.
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Figure 60: Contribution of each order parameter in our dimensionality reduc-
tion displayed by showing their contribution to each principal component. The
explained variance of each contributor to a principal component is squared to re-
flect a scale where 0 (blue) contributes nothing to a principal component and 1
(orange) in case a principal component is described only by this order parameter.

The results of the PCA, specifically the values of the first two principal compo-
nents, are shown in figure 61. This plot shows the data after it has been reduced to
two dimensions, thus delivering the first comprehensive visualization of the chosen
order parameters’ results.
Around (0.3,0.1), there is a cluster consisting of all patch topologies, except the
6patch patch topology. Contained in this cluster are all systems of the VN (dark
blue) and VO (light blue) patch topology and a small set of the patch topologies
consisting of three patches: 3asym (green), 2asym1c (red), and mouse (ocher).
This suggests that these systems are liquids made up of small clusters or hexagons
found in the two patch patch topologies VN and VO, as well as the systems of
∆ ≤ 0.1 from the patch topologies 3asym, 2asym1c, and mouse, due to the clusters
size.
At (0.4,0.5) is an area where all the three-patch patch topologies converge. A
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physical state in which all of them appear, would be the liquids with a low amount
of small clusters. With a decrease in temperature, these patch topologies start to
show different behaviors in their assembly, which is why they start to branch out
with an increase in PC 1 and PC 2.
For the 6patch patch topology (purple), two clusters are found: A larger one at
(-0.4,0.4) and a smaller one at (0,0.4). Within the 6patch patch topology, there
is one type of state, the offset gels found at ∆ = 0.1, which appeared less often
than the compact gels found for all other deltas. The gel types from the 6patch
patch topology appear to deliver significant different results after the PCA, than
all the other gels which are found in the first mentioned cluster at (0.3,0.1). The

Figure 61: Result of reducing the order parameter space dimensions by using
PCA. In this case, it is reduced to two dimensions, the first two principal compo-
nents, PC 1 and PC 2. This combination explains 86.15% of the variance, which
is seen in figure 59. Each patch topology is shown in a different color.

order parameter that behaves significantly differently for the 6patch systems is Φb,
the bond order parameter. The reason for this behavior is the norm that is used
for this order parameter, the maximum number of patches on any single particle,
which is the highest for the 6patch topology. In figure 62 the correlation of each
order parameter and the principal components is shown, which also reveals the
order parameter values for each data point. The image for Φb shows a significant
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increase for all systems of the 6patch topology. Additionally, Φb contributes more
to PC 2 and therefore shows an increase with the increase in PC 2, thus systems
with a higher number of bonds per particle can be found at higher values of PC
2. The other two order parameters correlated to the second principal component
are Φ4 and a lesser contribution of Φϕ. Despite its minor contribution to PC 2,
the porosity order parameter Φϕ shows a correlation with the increase in PC 2.
Systems with a higher porosity can be found at higher values of PC 2. Lastly,
the positional order Φ4 which indicates the occurrence of square lattice structures,
reveals a higher amount of square lattice order towards the lower end of PC 2.
Here, assemblies in a liquid state are found. These liquids contain a small amount
of small clusters, which Φ4 recognizes as clusters with a high amount of square
lattice order. As larger clusters appear and therefore PC 2 increases, Φ4 starts to
decrease.
PC 1 mostly consists of the positional order parameter Φ6 and the orientational
order parameter Φθ. The orientational order parameter decreases with a reduction
of PC 1, thus systems with primarily anti-parallel orientation order are found at
low PC 1 values. At higher values of PC 1 (0.35 and above), Φθ mostly detects
systems with random orientations. The last order parameter, Φ6, identifies hexag-
onal lattice structure. The clusters occurring in systems with high values of Φ6

show close-packed areas, leading to low values of PC 1.
To summarize, systems with low values of PC 1 exhibit anti-parallel order and
hexagonal lattice structure, while systems with high PC 1 exhibit random orien-
tational order or even parallel orientations and less hexagonal lattice structure. If
a system has low PC 2 values, it has square lattice structure, a small sum of area
of unoccupied space enclosed by particles and a low number of patches engaged in
bonds per particle.
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Figure 62: Each order parameter Φi where i = {b, ϕ, θ, 4, 6} of each system
after application of the principal component analysis and thus a reduction to two
dimensions. Some order parameters, such as the orientation order parameter Φθ

and the porosity order parameter Φϕ never reach their potential maximum value
of 1. On the other side, the positional order parameters Φ4 and Φ6 return rarely
reach 0. The bond order parameter Φb responds strongly to the 6patch topology
due to the definition of its norm.

4.2 PCA results by topology

The combination of the different principal components ideally results in a complete
description of a system’s physical state. For the 2asym1c patch topology, this is
shown in figure 63, by comparing the principal components to the visually classified
state diagram. The first principal component succeeds in identifying the differences
between offset gels and rhombic chains found at ∆ = 0.1 versus all other possible
states. There is a slight increase in PC 1 at ∆ = [0.15, 0.25] and T = [0.115, 0.145],
which describes the appearance of offset crystals. In case of the 2asym1c patch
topology, the second principal component works well at identifying systems in a
liquid state. By using the third principal component, separation between different
crystals types becomes even easier.
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(a) Visually classifed 2asym1c state diagram (b) Average principal component 1

(c) Average principal component 2 (d) Average principal component 3

Figure 63: Comparison of the visual classification results (a) with the first three
principal components of the 2asym1c patch topology with ϕ = 0.3. The different
physical states of this patch topology are shown in different colors and are manually
classified. Each of the principal components reveals a different trend in the chosen
set of order parameters. The first principal component (b) is a combination of the
positional order parameter Φ6, revealing a high amount hexagonal lattice structure
for low PC 1 values, and the orientational order parameter Φθ, which is 0 for
systems with anti-parallel orientations and 1 for parallel ones. A low value of Φθ

is reflected as a higher value in PC 1 and a high value of Φθ as a lower value
in PC 1. The second principal component (c) decreases with Φb, the average of
bonded patches per particle, and is inversely related to Φ4, which describes the
square lattice structure found in the systems. The third principal component (d)
increases with the porosity Φϕ and the amount of square lattice structure Φ4.

In case of the 3asym patch topology, the first principal components delivers
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the same results as seen above, which is shown in figure 64 PC 1 successfully
identifies the appearance of different structures at ∆ ≤ 0.1. Also similar to before
is the behavior of the second principal component, describing the appearance of
systems in a liquid state. The third principal component appears to be weaker
at recognizing the appearance of close-packed crystals, but captures a difference
between the gels found at ∆ = 0 and ∆ = 0.1.

(a) Visually classified 3asym state diagram (b) Average principal component 1

(c) Average principal component 2 (d) Average principal component 3
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Figure 64: Comparison of the visual classification results (a) with the first three
principal components of the 3asym patch topology with ϕ = 0.3. The different
physical states of this patch topology are shown in different colors and are manually
classified. Each of the principal components reveals a different trend in the chosen
set of order parameters. The first principal component (b) is a combination of the
positional order parameter Φ6, revealing a high amount hexagonal lattice structure
for low PC 1 values, and the orientational order parameter Φθ, which is 0 for
systems with anti-parallel orientations and 1 for parallel ones. A low value of Φθ

is reflected as a higher value in PC 1 and a high value of Φθ as a lower value in PC
1. The second principal component (c) decreases with Φb, the average of bonded
patches per particle, and inversely relates to Φ4, which describes the square lattice
structure found in the systems. The third principal component (d) increases with
the porosity Φϕ and the amount of square lattice structure Φ4.

When it comes to the mouse patch topology, PC 1 displays slightly different
results, which can be seen in figure 65. The hexagonal substructures found in
the open hexagonal crystals lead to an increase in PC 1 at ∆ = [0.25, 0.45] and
T = [0.115, 0.145]. Otherwise, it also behaves similar to the PC 1 of the other
three-patch patch topologies and shows the appearance of gels at ∆ = 0.1. The
second principal component describes the appearance of systems in a liquid state,
similar to what was previously observed. For the mouse patch topology, the third
principal component successfully identifies the close-packed crystals as a different
physical state.
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(a) Visually classified mouse state diagram (b) Average principal component 1

(c) Average principal component 2 (d) Average principal component 3

Figure 65: Comparison of the visual classification results (a) with the first three
principal components of the mouse patch topology with ϕ = 0.3. The different
physical states of this patch topology are shown in different colors and are manually
classified. Each of the principal components reveals a different trend in the chosen
set of order parameters. The first principal component (b) is a combination of the
positional order parameter Φ6, revealing a high amount hexagonal lattice structure
for low PC 1 values, and the orientational order parameter Φθ, which is 0 for
systems with anti-parallel orientations and 1 for parallel ones. A low value of Φθ

is reflected as a higher value in PC 1 and a high value of Φθ as a lower value in PC
1. The second principal component (c) decreases with Φb, the average of bonded
patches per particle, and inversely relates to Φ4, which describes the square lattice
structure found in the systems. The third principal component (d) increases with
the porosity Φϕ and the amount of square lattice structure Φ4.
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Also in the case of the 6patch patch-topology, the first principal components
main information is the appearance of a gel state at ∆ = 0.1, which is shown in
figure 66. Additionally, it also captures the slightly different behavior at ∆ = 0.2
and ∆ = 0.25, which is explained in section 3.3.4. With the 6patch patch topology,
PC 2 delivers different results than before, since all of the studied systems are in
a gel state. It captures the slight difference in gel types, identifying a different gel
type at T ≥ 0.175 than below. Lastly, the third principal component appears to
work exceptionally well for this patch topology. It identifies the appearance of the
offset gel at ∆ = 0.1 and a difference between type 3 and type 4 compact gels.

(a) Visually classified 6patch state diagram (b) Average principal component 1

(c) Average principal component 2 (d) Average principal component 3
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Figure 66: Comparison of the visual classification results (a) with the first three
principal components of the 6patch patch topology with ϕ = 0.3. The different
physical states of this patch topology are shown in different colors and are manually
classified. Each of the principal components reveals a different trend in the chosen
set of order parameters. The first principal component (b) is a combination of the
positional order parameter Φ6, revealing a high amount hexagonal lattice structure
for low PC 1 values, and the orientational order parameter Φθ, which is 0 for
systems with anti-parallel orientations and 1 for parallel ones. A low value of Φθ

is reflected as a higher value in PC 1 and a high value of Φθ as a lower value in PC
1. The second principal component (c) decreases with Φb, the average of bonded
patches per particle, and inversely relates to Φ4, which describes the square lattice
structure found in the systems. The third principal component (d) increases with
the porosity Φϕ and the amount of square lattice structure Φ4.

The small clusters found using the VN patch topology are recognized as sig-
nificantly different from the type 5 compact gel by PC 1, which can be seen in
figure 67. By using PC 2, even the small-cluster liquid and hexagonal liquid states
can be separated from another. With a slight temperature gradient at ∆ ≥ 0.9,
PC 3 carries a little more information about potential variations of the type 5
compact gel state.

(a) Visually classified VN state diagram (b) Average principal component 1

(c) Average principal component 2 (d) Average principal component 3
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Figure 67: Comparison of the visual classification results (a) with the first three
principal components of the VN patch topology with ϕ = 0.3. The different
physical states of this patch topology are shown in different colors and are manually
classified. Each of the principal components reveals a different trend in the chosen
set of order parameters. The first principal component (b) is a combination of the
positional order parameter Φ6, revealing a high amount hexagonal lattice structure
for low PC 1 values, and the orientational order parameter Φθ, which is 0 for
systems with anti-parallel orientations and 1 for parallel ones. A low value of Φθ

is reflected as a higher value in PC 1 and a high value of Φθ as a lower value in PC
1. The second principal component (c) decreases with Φb, the average of bonded
patches per particle, and inversely relates to Φ4, which describes the square lattice
structure found in the systems. The third principal component (d) increases with
the porosity Φϕ and the amount of square lattice structure Φ4.

The state diagram of the VO patch topology appears as the most complex and
the states’ descriptions in terms of their principal components are displayed in
figure 68. The first principal component shows significantly different behavior at
∆ = 0.1 as well as ∆ = [0.4, 0.5] and T = [0.115, 0.145]. To further analyze this
patch topology, the second principal component becomes necessary, which intro-
duces a temperature gradient for PC 2, recognizing the appearance of hexagonal
gels and hexagonal liquids at higher temperatures and offset gels at lower temper-
atures. The focus of the third principal component appears to be similar to the
second, but it is suggesting the differences between hexagonal gels and liquids as
well as a difference between compact and offset gels in their order paramters.
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(a) Visually classified VO state diagram (b) Average principal component 1

(c) Average principal component 2 (d) Average principal component 3

Figure 68: Comparison of the visual classification results (a) with the first three
principal components of the VO patch topology with ϕ = 0.3. The different
physical states of this patch topology are shown in different colors and are manually
classified. Each of the principal components reveals a different trend in the chosen
set of order parameters. The first principal component (b) is a combination of the
positional order parameter Φ6, revealing a high amount hexagonal lattice structure
for low PC 1 values, and the orientational order parameter Φθ, which is 0 for
systems with anti-parallel orientations and 1 for parallel ones. A low value of Φθ

is reflected as a higher value in PC 1 and a high value of Φθ as a lower value in PC
1. The second principal component (c) decreases with Φb, the average of bonded
patches per particle, and inversely relates to Φ4, which describes the square lattice
structure found in the systems. The third principal component (d) increases with
the porosity Φϕ and the amount of square lattice structure Φ4.
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The third principal component can be visualized as a third dimension, which is
represented by a color gradient in figure 69. It reveals not just differences between
the selected patch topologies, but also a gradient within each of those. This is
particularly visible for the 6patch clusters found at (-0.4,0.4) and (0,0.4).

Figure 69: All three principal components visualized which allow the explanation
of 94.04% of the variance. The third principal component is introduced to the
two-dimensional plot through the use of a color gradient. PC 3 increases with the
porosity Φϕ and square lattice structure Φ4.

To show the similarities between all patch topologies, PC 1 and PC 2 are plotted
against each other and shown in figure 70. The three-patch patch topologies
3asym (green), 2asym1c (red), and mouse (ocher) appear as a large cluster of
systems at (-0.3,0.4), which are in a liquid state at T ≥ 0.175. There are some
outliers: the systems with ∆ ≤ 0.1 which show a different behavior from the
rest of systems of their patch topology at all temperatures. At T = 0.175, the
first systems of these topologies show an increase in PC 2, which continues for
all temperatures. This suggests the disappearance of square lattice structure, an
increasing porosity and an increase in the number of patches engaged in bonds per
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particle, thus a transition from the liquid phase to larger clusters. At T = 0.145,
most systems of these topologies were manually classified as different varieties of
gels or crystals. These variations can be seen as the different branches of the
fanned out cluster. Branches to the left show higher hexagonal lattice structure
and greater anti-parallel orientational order, as indicated by PC 1. This means
close-packed variations are found more to the left, whereas open structures at the
right-hand branches of the fanned out cluster.
The VO patch topology (light blue) converges to a denser cluster with increasing
temperature, accompanied by an average decrease in PC 2. This is where the
systems of the VO patch topology are in a hexagonal liquid state, thus correlating
with the decrease in Φϕ, the porosity order parameter, which detects a smaller
area enclosed by the clusters in hexagonal liquids compared to the larger clusters
found for the VO patch topology.
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Figure 70: The first two principal components of every system divided by temper-
atures, where each color reflects a different topology. Overlapping clusters suggest
similarities between assembles of different patch topologies. The three-patch patch
topologies 3asym (green), 2asym1c (red), and mouse (ocher) show similar behav-
ior. The gels found at ∆ ≤ 0.1 perform distinctively different from the rest of their
family, yet show similarities to the two-patch patch topologies VN (dark blue) and
VO (light blue) in the results of the PCA. This can be seen at all temperatures,
as the clusters of systems where PC1 ≥ 0. The 6patch patch topology (purple)
shows a few different clusters, two located around (0.4,0.4) and one at (0,0.4). The
second one is also a result of the anomaly at ∆ = 0.1

In the case of the 6patch patch topology (purple), there is little difference be-
tween the systems of different temperatures. They are roughly separable into two
to three clusters, which will be further discussed with the help of figure 71. Also
the VN (dark blue) patch topology shows little variation in its physical states at
different temperatures. Most of the chosen patch topologies show significantly dif-
ferent behavior at ∆ ≤ 0.1, which results in a general shift to higher values of PC
1, due to the loss of hexagonal lattice structure and orientational order.
When the VN patch topology is studied for different ∆, it shows consistent behav-
ior from ∆ = 0.2 to ∆ = 0.55, where hexagonal liquids are found. At ∆ ≤ 0.15
small cluster liquids can be found, recognizable as a small increase in PC 2 and
decrease in PC 1. With the appearance of gel structures found at ∆ ≥ 0.9, VN
shifts to higher values of PC 1.
The most significant behavior in terms of the principal component that can be
observed for different ∆ of the VO patch topology, is the direction in which the
top end of the linear cluster points. When keeping ∆ fixed, this patch topol-
ogy appeared as variations of offset gels at low temperatures, then transitioning
to hexagonal or compact gel structures before turning into hexagonal liquids for
some ∆ at high temperatures. At ∆ ≥ 0.45 systems transitioned into a compact
gel state before reaching the hexagonal liquid state, resulting in a substantial de-
crease in orientational, explaining the tilt, since this correlates with a decrease in
PC 1 as explained above. As mentioned previously, the orientational order param-
eter calculates the average pair-orientation of particles connected via one patch.
The fact that these hexagonal clusters are connecting to the same patch of each
particle leads to lower average pair-orientation for each particle, when compared to
the compact gels which show larger close-packed areas due to the edge patch. This
decrease in Φθ is reflected as an increase in PC 1. Since the hexagonal substruc-
ture does not increase long range hexagonal lattice structure, systems of ∆ ≤ 0.4
are shown as vertical linear clusters. The different ∆ of the VO patch topology
converge to the lower point of the linear clusters, which is where the hexagonal
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liquid state systems are found. The elongation of the clusters of VO for each ∆
is explained by the different values of Φϕ, the porosity order parameter. A higher
sum of area enclosed by connected particles leads to higher values of Φϕ and thus
PC 2.
When it comes to the elongated shape of the three-patch patch topologies 3asym
(green), 2asym1c (red), and mouse (ocher), there is a different origin. Here, the
appearance of a square lattice structure, identified by Φ4 within the rare small
clusters in liquids, results in low values of PC 2. As the cluster size increases, the
square lattice structure disappears, thus leading to higher values of PC 2. The
lower the value of PC 1 is for a branch, the more hexagonal lattice structure is
observed, even at lower temperatures (larger clusters), which can be recognized as
increasingly close-packed assemblies.
The last patch topology reviewed for each ∆ in terms of its order parameters after
dimension reduction, is the 6patch topology (purple). At ∆ ≥ 0.15 it remains
relatively consistent up to ∆ = 0.4. Since the systems of the 6patch patch topol-
ogy for ∆ = 0.45 all assembled into one kind of compact gel, the cluster is denser
compared to those at lower ∆.
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Figure 71: The first two principal components of every system divided by temper-
atures, where each color reflects a different topology. Overlapping clusters suggest
similarities between assembles of different patch topologies. The three-patch patch
topologies 3asym (green), 2asym1c (red), and mouse (ocher) show similar behav-
ior. The gels found at ∆ ≤ 0.1 perform distinctively different from the rest of their
family, yet show similarities to the two-patch patch topologies VN (dark blue) and
VO (light blue) in the results of the PCA. Elongated shapes appear when there
are transitions into different states occurring with a change in temperature while
∆ remains constant. The VN topology behaves consistently from ∆ = 0.15 to
∆ = 0.85. For patch positions ∆ ≥ 0.9, the VN systems jump to higher values of
PC 1 and PC 2, where they remains constant up to ∆ = 0.1 The 6patch patch
topology (purple) appears at one cluster at (0,0.4) for ∆ = 0.1 and at (0.4,0.4) for
all other deltas.

4.3 Clustering and automated classification

The final step to classify the state points using machine learning is the application
of clustering algorithms on the data set. Multiple options are available nowadays,
which are suitable for different problems. Based on the given data set and desired
outcome, HDBSCAN is selected. As a density-based clustering algorithm, it is
robust to any differences in densities or shapes between clusters. Additionally, it
requires no prior knowledge of the number of clusters, therefore reduces any pos-
sible bias or limitation due to human error. A probability is assigned to each data
point whether it is part of any cluster. There are three parameters to adjust for
the available dataset to improve clustering using the scikit-learn algorithm [71].
The parameter min cluster size (mcs) filters all groups by their size, with any clus-
ters smaller than its value are considered noise. For this density-based algorithm,
min samples (ms) determines whether points are categorized as core points or part
of the outer region of a cluster. This choice is based on the minimum number of
points in a neighborhood, where min samples includes the point in question itself.
The last parameter adjusted is cluster selection epsilon (cse), which serves as a
distance threshold for grouping close clusters together. Other parameters are left
untouched at their default setting. The HDBSCAN algorithm is applied on the
three-dimensional data set spanned by PC 1, PC 2, as well as PC 3. The results
are tested for a range of different parameter values expressed in table 3.
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parameter values
mcs {30, 50, 80, 100, 130, 150, 250, 350, 450}
ms {1, 5, 10, 15, 20, 30, 45, 60, 80, 100, 200, 300, 400}
cse {0.01, 0.015, 0.02, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.065, 0.07, 0.1}

Table 3: The ranges of parameters which were utilized when using the HDBSCAN
algorithm on the dataset. The parameter min cluster size (mcs) sets a minimum
size threshold for clusters, min samples (ms) the number of neighbors a point
must contain to be part of a cluster, and cluster selection epsilon (cse) a distance
threshold, responsible for grouping clusters together.

The number of unique states which are found manually by visual classifica-
tion is 16. A minimum cluster size of 350 data points led to the identification
of fewer than nine clusters on average, thereby not providing the desired insights
within each topology. With the given dataset, the goal is to assign as many data
point clouds as possible with at least one cluster. Using the clusters recognized
by HDBSCAN, one can create state diagrams. One approach when creating the
automatically classified state diagrams, is to ignore points which are recognized as
noise (not assigned to a cluster) for the creation of the state diagram. The mode
of each parameter combination is calculated to reveal which cluster the systems
with a specified ∆-T combination are most commonly assigned to. The results
of different HDBSCAN parameters can be broadly categorized into five different
groups, all of which are shown in figure 72.
First, there are those HDBSCAN results with a smaller number of clusters than
number of visually classified physical states. Their state diagrams for each topol-
ogy are monotonous, and mostly don’t show any differences between states. The
resulting state diagrams for each topology are shown in figure 74.
The next group of results shows a much higher number of clusters than expected.
Results within this group split the systems into more groups than expected, result-
ing in potentially over-classified state diagrams with too many different options,
which can be seen in figure 73.
The third type of result delivers state diagrams for the three-patch patch topolo-
gies (3asym, 2asym1c, and mouse) that are close to what was predicted. This
type of clustering fails at the nuanced classification of different gel types found
within the VO and 6patch topology, as well as recognizing a difference between
the small-cluster liquids and hexagonal liquids of the VN patch topology. This is
shown in the state diagrams in figure 75.
Attempting to find a parameter combination that performs better for the other
patch topologies has some drawbacks. The three-patch patch topologies are typi-
cally either over-classified (figure 76) or a much higher number of data-points are
considered noise (figure 77).
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Ideally, there would be at least one recognized cluster for each visually identified
physical state. To get this result, it appears that some points have to be accepted
as noise or to accept over-classification for some physical states. A result closely
resembling the manually created state diagrams is achieved using the parameter
combination mcs = 250, ms = 100, cse = 0.03. The resulting state diagrams are
shown in figure 78.

(a) Over-classified
mcs = 50; ms = 30; cse = 0.01

(b) Under-classified
mcs = 100; ms = 45; cse = 0.055

(c) Under-classfied 6patch, VO, VN
mcs = 50; ms = 45; cse = 0.045

(d) Over-classified 3asym, 2asym1c, mouse
mcs = 50; ms = 45; cse = 0.01
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(e) Increased noise
mcs = 30; ms = 100; cse = 0.01

(f) Decent classification
mcs = 250; ms = 100; cse = 0.03

Figure 72: Different HDBSCAN results for different min cluster size (mcs),
min samples categorizes (ms), and cluster selection epsilon (cse) for ϕ = 0.3. Each
cluster identified by HDBSCAN is drawn in a different color, while noise is drawn
in gray.

Using the parameter combination mcs = 50, ms = 30, cse = 0.01, HDBSCAN
identifies 54 different clusters.. This is twice the number expected by the prelimi-
nary analysis. Especially for the three patch topologies this is particularly evident,
as seen in figure 73. If the goal is to detect more nuanced variations, this combina-
tion seems promising. In addition to the detailed cluster detection for ∆ ≥ 0.1 in
the three-patch topologies, the chosen parameters effectively separated gel, liquid,
and crystal states. For the two-patch patch topologies, this parameter combination
performs very well, identifying the variations within VO and VN systems, with-
out running into the problem of over-classification. In the 6patch patch topology,
two different gel types are observed at opposite ends of the temperature range.
However, these variations are not captured using this parameter combination.
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(a) 2asym1c (b) 3asym (c) Mouse

(d) 6patch (e) VO (f) VN

Figure 73: HDBSCAN clustering results of PC1, PC2, and PC3 of each system,
depicted as a ∆-T state diagram for ϕ = 0.3. The mode of each ∆-T combination
is calculated to determine the most commonly assigned cluster after noise points
are removed. Every different shade represents a unique cluster and squares are left
empty where none of the systems for this ∆-T combination is assigned to a cluster.
In this case, HDBSCAN identified more clusters than expected, especially for the
three-patch topologies (a)-(c), leading to an over-classification of the data. The
chosen HDBSCAN parameters are mcs = 50, ms = 30, and cse = 0.01.

An opposite result is observed when using the parameters mcs = 100, ms =
45, and cse = 0.055, which can be seen in figure 74. In this case, HDBSCAN only
distinguishes between physical states where the patch spillover occurs at ∆ ≤ 0.1
and the rest. HDBSCAN detects six clusters, which is far fewer than the number
of visually determined systems.”
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(a) 2asym1c (b) 3asym (c) Mouse

(d) 6patch (e) VO (f) VN

Figure 74: HDBSCAN clustering results of PC1, PC2, and PC3 of each system,
depicted as a ∆-T state diagram for ϕ = 0.3. The mode of each ∆-T combination
is calculated to determine the most commonly assigned cluster after noise points
are removed. Every different shade represents a unique cluster and squares are left
empty where none of the systems for this ∆-T combination is assigned to a cluster.
In this case, HDBSCAN identified fewer clusters than expected, indicating that
this parameter selection is not suitable for investigating this data. The chosen
HDBSCAN parameters are mcs = 100, ms = 45, and cse = 0.055.

An intermediate solution is achieved using the parameters mcs = 50, ms =
45, and cse = 0.045, as shown in figure 75. In this case, each of the three patch
topologies is only assigned to a few clusters. There is a reasonable detection of the
liquid state, the different states at ∆ ≤ 0.1, and some distinction between porous
and close-packed crystals. The other topologies remain under-classified, meaning
the clusters found by HDBSCAN contain almost information about the different
state variations. This time, HDBSCAN identified 14 different clusters, which is
close to ideal, but it is not fully successful for all patch topologies.
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(a) 2asym1c (b) 3asym (c) Mouse

(d) 6patch (e) VO (f) VN

Figure 75: HDBSCAN clustering results of PC1, PC2, and PC3 of each system,
depicted as a ∆-T state diagram for ϕ = 0.3. The mode of each ∆-T combination
is calculated to determine the most commonly assigned cluster after noise points
are removed. Every different shade represents a unique cluster and squares are
left empty where none of the systems for this ∆-T combination is assigned to a
cluster. In this case, HDBSCAN worked well for the three-patch patch topologies,
but failed to identify more than two physical states for the other patch topologies.
The chosen HDBSCAN parameters are mcs = 50, ms = 45, and cse = 0.045.

Revealing more information within the two-patch patch topologies and the
6patch topology comes with some difficulties. The combination mcs = 50, ms
= 45, and cse = 0.01 seen in figure 76 works better for these patch topologies.
Nevertheless, it is not a suitable parameter combination, since the issue of over-
classification increases in the case of the three-patch patch topologies, which is
reflected by the number of clusters found by HDBSCAN: 50.

100



(a) 2asym1c (b) 3asym (c) Mouse

(d) 6patch (e) VO (f) VN

Figure 76: HDBSCAN clustering results of PC1, PC2, and PC3 of each system,
depicted as a ∆-T state diagram for ϕ = 0.3. The mode of each ∆-T combination
is calculated to determine the most commonly assigned cluster after noise points
are removed. Every different shade represents a unique cluster and squares are
left empty where none of the systems for this ∆-T combination is assigned to a
cluster. In this case, the number of clusters identified by HDBSCAN is very high
for the three-patch topologies, but for all others revealed a very well fitting state
diagram. The chosen HDBSCAN parameters are mcs = 50, ms = 45, and cse =
0.01.

Tuning the parameters to mcs = 30, ms = 100, and cse = 0.01 results in
a clustering with more noise and The results can be seen in figure 77. While
some noise is acceptable, this combination of HDBSCAN parameters loses more
information to noise than desired, while still over-classifying in some areas. The
effect of over-classification has been reduced to 32 clusters found by HDBSCAN.
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(a) 2asym1c (b) 3asym (c) Mouse

(d) 6patch (e) VO (f) VN

Figure 77: HDBSCAN clustering results of PC1, PC2, and PC3 of each system,
depicted as a ∆-T state diagram for ϕ = 0.3. The mode of each ∆-T combination
is calculated to determine the most commonly assigned cluster after noise points
are removed. Every different shade represents a unique cluster and squares are
left empty where none of the systems for this ∆-T combination is assigned to a
cluster. In this case, the number of clusters identified by HDBSCAN is very high
for the three-patch topologies, but for all others revealed a very well-fitting state
diagram. The chosen HDBSCAN parameters are mcs = 50, ms = 45, and cse =
0.01.

The final set of parameters reveals that a broad classification using HDBSCAN
is possible on this data set. For each patch topology, a handful of systems are
assigned to a small number of clusters when using mcs = 250, ms = 100, and cse
= 0.03. The number of detected clusters is equal to thirteen and the collection of
state diagrams is shown in figure 78.
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(a) 2asym1c (b) 3asym (c) Mouse

(d) 6patch (e) VO (f) VN

Figure 78: HDBSCAN clustering results of PC1, PC2, and PC3 of each system,
depicted as a ∆-T state diagram for ϕ = 0.3. The mode of each ∆-T combination
is calculated to determine the most commonly assigned cluster after noise points
are removed. Every different shade represents a unique cluster and squares are left
empty where none of the systems for this ∆-T combination is assigned to a cluster.
In this case, HDBSCAN reveals a state diagram close to what is expected, besides
the large number of data points which are not classified. The chosen HDBSCAN
parameters are mcs = 50, ms = 45, and cse = 0.01.
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5 Summary

The goal of this work was to gain an understanding of the self-assembly of patchy
triangles while testing the usability of machine learning algorithms for an auto-
mated large scale classification. To do so, a collection of different patch topologies
was simulated using a Monte Carlo simulation. The self-assembly occurred in
a canonical ensemble for different patch positions and temperatures. A handful
of order parameters were chosen to quantitatively describe the resulting systems.
This data was then investigated using modern machine learning algorithms, which
were able to identify clusters of systems within the order parameter space.
Although the selection of patch topologies was not exhaustive for the description
of triangular patchy particles, it resulted in a good overview of these systems. The
topologies 2asym1c, 3asymc, and mouse behave similarly in the studied parameter
ranges: a liquid phase for the higher half of the temperature range and aggregates
(gels or compact clusters) at low temperatures. These clusters turn into gels or
porous crystals for the peripheral patch placement variations and into increasingly
compact aggregates for centered patches. Similar to the previously studied patchy
rhombi, it is possible to control the pore size through variation of the distance
from patches to a vertex.
The two-patch topologies VO and VN both generated hexagonal patterns. VN
systems mostly remained in a liquid state with a large number of hexagon-like
clusters without any peripheral patches. The VO patch topology allowed for the
self-assembly of a gel type that contained these hexagonal sub-clusters. With a
high delta, bonds become possible in the gaps in the hexagonal shape, creating its
own type of gel. The hexagonal clusters of the VO topology kept their shape and
bonded with others at low temperatures, forming a unique gel. At higher tem-
peratures, this short-range order disappeared and self-assembled into yet another
gel type. Lastly, the 6patch topology showed more porous gel types at higher
temperatures and close-packed ones at lower temperatures. Due to the rotational
symmetry of triangles, there appeared only one type of close-packed tiling, unlike
previously studied patchy rhomboids.
Modern machine learning algorithms proved themselves as a useful tool for the
classification of such a large variety of systems. With an intentional selection of
order parameters, it is possible to quantitatively distinguish between gels, crystals
and liquids. In this case the order parameters could be improved to differentiate
better between porous and close-packed crystals as well as different gel types.
The positional order parameters suffered from the appearance of small clusters
in liquids, which make it seem like ordered systems, as the free particles are not
considered in Φ4 and Φ6. One solution to deal with this would be the introduction
of a cluster size threshold for the calculation of these order parameters. One has
to be careful with the implementation of this idea, since there could be states such
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as the hexagonal liquid found in the VN topologies, which consists only of small
clusters. Another way to improve the understanding of positional order would be
the inclusion of the local bond order parameters proposed by H. Eslami [72]. They
could reveal a more intricate understanding of different assemblies that go beyond
the appearance of square or hexagonal lattice structures. Another idea that came
up during this work was to define a position order parameter based on the infor-
mation contained within the radial distribution function: a linear combination of
the relative maximum peak height and the mean squared deviation from 1. This
would reveal information on short as well as long range positional order.
The bond order parameter Φb also has room for improvement. Crystals simulated
in the canonical ensemble can be left with border particles that show a lower num-
ber of bonding partners than the bulk of the crystal. The same applies for the end
of gels, although the influence on the bond order parameter is most likely smaller
here with sufficiently long gels. To deal with this issue the simulation could be
done in a grand canonical ensemble, which potentially allows the growth of clus-
ters to a point where there are no more border or dangling particles. Alternatively
one could try to identify such particles and skip them during the order parameter
calculation.
The orientation order parameter Φθ is calculated as the average orientation be-
tween connected particles. As long as multiple bonds per patch are allowed, a
hexagon connected via vertex patches at its center will therefore deliver different
results than a hexagon which is composed of triangle pairs connected via patches
along their edges.
It is best to perform a pre-analysis of possible results in order to find suitable
order parameters, such that the machine learning algorithms work as desired. The
combination of PCA and HDBSCAN found dense groups of systems with similar
order parameters and successfully recognized systems of the same type, even if
they originated from different patch topologies. Different HDBSCAN parameters
result in various levels of noise and classification sensitivity, which can be adjusted
to reach the desired clustering. By taking the mode of each ∆-T combination
after removing noise, it is possible to assign each combination to a cluster, as long
as HDBSCAN assigned at least one point of any given combination to a cluster.
Overall, the application of dimensionality reduction in combination with a cluster-
ing algorithm has proven itself as a good approach to investigate the large amount
of systems.
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