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Abstract
Many powerful metamodeling platforms enabling model-driven software engineering (MDSE) exist, each with its strengths,
weaknesses, functionalities, programming language(s), and developer community. Platform interoperability would enable
users to exploit their mutual benefits. Such interoperability would allow the transformation of metamodels and models created
in one platform into equivalent metamodels and models in other platforms. Language engineers could then freely choose the
metamodeling platformwithout risking a lock-in effect. Twowell-documented and publicly availablemetamodeling platforms
are the eclipse modeling framework (EMF) and the modeling SDK for visual studio (MSDKVS). In this paper, we propose an
M3-level-bridge (M3B) that establishes interoperability between EMF and MSDKVS on the abstract syntax level and on the
graphical concrete syntax level. To establish such interoperability we (i) compare the two platforms, (ii) present a conceptual
mapping between them, and (iii) implement a bidirectional transformation bridge including both the metamodel and model
layer. We evaluate our approach by transforming a collection of publicly available metamodels and automatically generated
or manually created models thereof. The transformation outcomes are then used to quantitatively and qualitatively evaluate
the transformation’s validity, executability, and expressiveness.

Keywords MSDKVS · EMF · Metamodeling · Model transformation · MDSE · Sirius · Graphical concrete syntax · Abstract
syntax · M3B · DSL

1 Introduction

The definition and use of modeling languages offer many
benefits in how software teams and language designers can
efficiently cooperate on creating a model-based represen-
tation of the system under study. Metamodeling platforms
offer means to easily define customized languages and
many additional functionalities such as code generation,
automatic validation, and graphically representing models.
These platforms are widely used in enterprise modeling and
model-driven software engineering (MDSE). However, once
modelers work with one platform, switching to a different
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one is cumbersome, complex, and costly, especially because
automated support for metamodeling platform interoperabil-
ity is scarce.

This paper looks at the two well-established and actively
used metamodeling platforms eclipse modeling framework
(EMF) [37] andmodeling SDK for visual studio (MSDKVS)
[28, 36]. We propose a transformation bridge between EMF
and MSDKVS related to bridges reported in [6, 25, 26, 30].
Our bridging enables language designers to switch between
platforms by transforming already defined metamodels in
one platform into syntactically and semantically equivalent
metamodels in the target platform. Syntactic equivalence
refers to a mapping of source features to similar features
in the target platform, whereas semantic equivalence refers
to the equivalence of a feature’s meaning within the cur-
rent metamodeling domain, e.g., the translation of multiple
inheritances into semantically equivalent single inheritances
[24, 28]. Notably, in an ideal setting, a lossless, fully iden-
tical transformation would be aimed for. Given the many
differences in the conceptual, technical, and feature lev-
els of existing metamodeling platforms (including those
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between EMF and MSDKVS), such identical mappings are
not feasible. Instead, with this paper, we aim for an equiva-
lence relationship between concepts and features of the two
metamodeling platforms in question and discuss, where the
limitations of such an approach are. Aside from these limita-
tions, we show that syntactically and semantically equivalent
transformations between metamodels and models of EMF
and MSDKVS are possible and, therefore, enable a bridge
for users who aim to switch from one of the two platforms
to the other.

The EMF-MSDKVS bridge enables (i) migration and
reusability of existing metamodels across platforms, (ii)
decoupling the developers of the underlying programming
languages1 these platforms are built upon, and (iii) mak-
ing use of specific platform capabilities employed else-
where [27], e.g., plug-ins only available for EMF; thereby
ultimately enabling (iv) metamodeling platform-spanning
toolchains, i.e., a chain of tools developing with differ-
ent metamodeling platforms, conjointly realizing a complex
model-driven software engineering pipeline. Capabilities,
such as code generation, which are more sophisticated in,
e.g., EMF, can also be a motivational factor for transform-
ing metamodels from MSDKVS to their EMF equivalent.
In the ecosystem of metamodel repositories, many projects
exist that have been createdwith onemetamodeling platform.
Establishing a toolchain that allows the transformed meta-
model to be interpreted by other platforms thus mitigates a
platform lock-in.

Generally, transformation bridges are based on mappings
between themeta-metamodels of both platforms. Thesemap-
pings are created by analyzing the similarities and identifying
the differences between these platforms located at the M3
layer of the standardized metamodeling stack [10]. Previous
approaches implement transformation bridges targeting the
platforms’ abstract syntax elements (e.g., classes and rela-
tionships), mostly ignoring the platform’s functionalities to
graphically represent and manipulate the created models as
this is where the heterogeneity between different metamod-
eling platforms is very rich and custom solutions, often even
technologies, for each platform are in place.

This paper first analyses the EMF and MSDKVS plat-
forms and then proposes, implements, and evaluates a trans-
formation bridge. We build upon and improve our previous
work reported in [15] primarily by (i) a model layer trans-
formation, i.e., our bridge now enables also the exchange
of models between EMF and MSDKVS; and (ii) a com-
prehensive evaluation of both the metamodel and the model
transformation on a syntactic and semantic level. The eval-
uation is concerned with testing whether the transformators

1 Note that throughout this paper we will use the term platform as a
representative of all tools, frameworks, and platforms that allow meta-
modeling.

produce valid outcomes, i.e., that the produced models and
metamodels can be imported, and that the produced meta-
models can be used to start runtime instances in the target
metamodeling platform.

In the remainder of this paper, Sect. 2 explains the area in
which the implemented approach is situated and establishes
the necessary foundations. Section3 then discusses related
works. A comprehensive analysis of the EMF and MSD-
KVS platforms’ concepts is presented in Sect. 4, resulting in
mapping rulesets the transformator has to implement, which
are listed in Sect. 5. Section6 explains both parts of the trans-
formation bridge, namely the M2 transformator located on
the metamodel layer, and the M1 transformator located on
the underlying model layer. Sections7 and 8 give insight into
the evaluation process and its results. Section9 concludes this
paper with some closing remarks and an outlook on future
work.

2 Metamodeling foundations

Complete or partial representations of real-world objects,
architectures, or software systems can be realized through
the use of models. These models can then be shared and
enable communication among stakeholders [10]. Concern-
ing the validation and guidelines for defining models, an
abstraction hierarchy exists, divided into a stack of layers. An
example of such a hierarchical stack, consisting of four lay-
ers, has been standardized by the object management group
(OMG) [10, 31]:

M0 Layer (runtime instances) containing the application
data or runtime instances;M1Layer (model layer) describing
the concrete model created by a user that is conforming to a
givenmetamodel (e.g. aUMLmodel);M2Layer (metamodel
layer) defining the metamodel (e.g. a UML metamodel); M3
Layer (meta-metamodel layer) abstracting the definition for
possible metamodels. In the OMG metamodeling hierarchy,
the M3 layer is defined by the MetaObject Facility (MOF
[21]) standard.

The M3 level also establishes the foundation for realizing
interoperability between metamodeling platforms based on
a common abstraction of their metamodels. Modeling lan-
guages consist of the following elements, which should be
taken into consideration when implementing a transforma-
tion bridge: Abstract Syntax defines classes, their attributes,
and associations required to represent the relevant parts of
the modeled system and constraints for restricting the set of
valid models. Abstract syntaxes are most often specified via
metamodels [8]. Concrete Syntax defines the visual repre-
sentations for the abstract syntax elements (e.g., graphical
and/or textual) [7]. An introduction to the two types of con-
crete syntaxes is given in [10].
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Metamodeling platforms offer the ability to define meta-
models on the M2 layer. Some offer only the ability to
define the abstract syntax of a metamodel, others also allow
the definition of concrete syntaxes. As they all reference
a meta-metamodel to cover all the possibilities of defining
a metamodel, one can argue that the meta-metamodel can
define itself on an even more abstract level, making every
metamodeling platform originate from a most basic type
of “meta-metametamodel”, consisting only of elements and
links between those elements. Attributes, as they exist in
EMF and MSDKVS metamodels, can then be declared as
elements as well, and a link between a class element and an
attribute element can be regarded as a member variable of a
class on the layer underneath.

As elements and links form the basis of our abstract nota-
tion, the same can be done for the graphical syntax. Elements
can be displayed as four-sided shapes, links can be dis-
played as lines. If two elements are in relation to each other,
they are connected by these lines. As mentioned in [10], a
graphical concrete syntax (GCS) has to combine different
kinds of elements, e.g., graphical symbols (meaning figures,
lines, but also labels for displaying an element’s informa-
tion), compositional rules defining nesting and combination
of graphical symbols, and a mapping between these symbols
to the abstract syntax of a metamodel.

Metamodeling platforms with integrated graphical user
interfaces display a modeling canvas for the positioning of
elements in a two-dimensional space by assigning them x
and y coordinates. The group of placed model elements are
arranged as a graph and referred to as a diagram. Additional
properties, such as coloring and font features, to name a few,
can be edited in an additional property window. [38]

Once the language engineering part introduced previously
is finished, tool developers can shift their focus on realiz-
ing features to process the models that modelers can create
when using the engineered language. As stressed in [10],
the two core concepts of model-based software engineer-
ing aremodels and transformations. Model transformation is
an established research field in the modeling community [5,
33]. Basically, different categories of model transformation
approaches can be differentiated based on the format of the
transformation’s source and target: model-to-model trans-
formations, i.e., transformations where source and target are
models andmodel-to-text where the source is amodel and the
target format is text, e.g., scenarios where source code is gen-
erated from models. When considering the model-to-model
transformations, we can further differentiate transformations
where the source and the target model conform to the same
metamodel (endogenous transformations) from exogenous
transformations where source and target models conform
to different metamodels (i.e., modeling languages). In the
remainder of this paper, we will focus on exogenous model-

to-model transformations between metamodels and models
created with EMF and MSDKVS.

Two prominent exemplars of metamodeling platforms
with which the authors of this paper have worked with are
introduced in the following and investigated regarding their
implementation of the M3 layer and their concrete syntax.

2.1 EMF

The eclipse modeling framework (EMF) is an open source
metamodeling platform that provides a rich set of features
for, e.g., defining metamodels, creating and validating mod-
els, transforming models, and serializing models into XMI
format. EMF allows runtime support to generate Java classes
and programmatically manipulate the models through reflec-
tion. This section describes the core features of EMF and how
EMF supports metamodeling [37].

Abstract Syntax in EMF. To realize metamodel support
in EMF one needs to specify the metamodel by instantiating
concepts from the EMF meta-metamodel, called Ecore, i.e.,
an implementation in Java of a simplified version of OMG’s
standardized MOF meta-metamodel, called eMOF (i.e., the
essentialMOF [21])model. Thismeta-metamodel (see Fig. 1
for an excerpt) thus plays an essential role as it determines
the expressiveness of all possible metamodels. An explicit
definition of the Ecore meta-metamodel is given in various
sources, e.g., in [6, 10, 30].

An Ecore metamodel is comprised of one or more
EPackages. Each EPackage can contain multiple EClasses,
whereas each EClass can contain multiple EStructuralFea-
tures. These features are divided into two types, namely
EAttributes and EReferences. EAttributes resemble prop-
erties of EClasses, they have an EDataType ranging from
simple datatypes (e.g., Integer, String) to more complex ones
(e.g., user-defined external types). EReferences are used for
linking two EClasses. Inheritance relationships are realized
by defining ESuperType relations on top of an EClass. EMF
allows the definition of single and multiple inheritance rela-
tionships. A composition relationship between source and
target EClasses can be defined by setting the containment
flag of an EReference to “true.”

Concrete Syntax in EMF. The Eclipse website lists three
frameworks that can be used for visualizing Ecore meta-
models and models: Graphical Language Server Platform
[9, 34],2 Sirius,3 and Graphiti.4 For the matter of this
paper, we only consider Sirius as it is the most commonly
used framework and best resembles the possibilities of
graphical viewpoint representations compared to MSDKVS.

2 https://eclipse.dev/glsp/.
3 https://eclipse.dev/sirius/.
4 https://eclipse.dev/graphiti/.
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Fig. 1 Excerpt of the Ecore meta-metamodel [6]

Sirius uses Viewpoint Specification Projects (VSP) contain-
ing descriptive model files ending with .odesign [39].
These files contain the specification of the graphical rep-
resentation of a model and are comprised of layer definitions
and tool sections containing toolbox operations with a struc-
tured dependency tree of further inner operation mappings,
style mappings for model shapes, font layout properties, cus-
tom color definitions, and much more.

Regarding the structure of a Viewpoint Specification
Model (VSM) in Sirius, the following elements are worth
mentioning: Beginningwith the root element of the specifica-
tion file,Group, which can be compared to Ecore’sEPackage
element. A group can contain one ormoreOwnedViewpoints,
which in turn contain one or more OwnedRepresentations,
describing representations for the metamodel’s abstract syn-
tax elements. Different types of representations are available,
with themost suitable and relevant for the upcoming transfor-
mation bridge being the diagram representation. The other
types, i.e., table, tree, and matrix representations, are not tar-
geted by the M3B discussed in this paper.

Every representation has a DefaultLayer, with optional
additional layers used for grouping and also for hiding spe-
cific elements contained within these layers. Each layer
contains graphical mappings to abstract syntax elements,
most notably theNodeMappings, used for styling standalone
EClasses. Each mapping can define different styles for the
target element (e.g., size, shape, color). Classes, that are used
for containment references can be graphically attributed via
ContainerMappings. Inner or attached classes can be styled
by SubNodeMappings. EdgeMappings are used for visualiz-
ing EReferences, e.g., the style of arrows (start, end, and the
line routing style).

Zero or multiple ToolSections can be defined, grouping
tools for usage on the modeling canvas. These sections con-
tain different types of OwnedTools that can be used for, e.g.,
creating and deleting elements, connecting two elements, or
copying a group of elements. A tool can have one or more

sequentially executed operations to manipulate the model-
ing canvas. Finally, the ColorPalette can be attributed with
explicitly defined colors, usable from within the aforemen-
tioned mappings.

2.2 MSDKVS

MSDKVS supports the development of domain-specific lan-
guages by weaving abstract syntax and graphical concrete
syntax (see [16, 36] for a detailed introduction). MSDKVS
offers a graphical user interface with an integrated editor to
definemetamodels (i.e., classes, relationships, and their prop-
erties), a tree explorer, a property editor window, and several
additional features such as XML serialization of metamodels
and models, code generators using a templating engine, and
the possibility to build extensions to these features. The cur-
rently available MSDKVS NuGet Package5 was released in
2023 and still has an active community of users with around
daily 30 downloads.

Abstract Syntax in MSDKVS. As MSDKVS does not
publicly offer a representation of its meta-metamodel, the
transformation approach explained in Sect. 6 implicitly offers
the ability to reconstruct a MSDKVS meta-metamodel cor-
responding to the data of the serialized metamodel files.
Figure 2 shows the core excerpt of the reconstructed MSD-
KVS meta-metamodel represented as a UML class diagram,
containing the most apparent and most used elements and
their abstract super classes, that have been identified while
working on the transformation and defining its mapping
rules. The full representation is provided online.6

When creating a DSL in MSDKVS, one element always
has to act as the root element of themetamodel and every sub-

5 https://www.nuget.org/packages/Microsoft.VisualStudio.Modeling.
Sdk.
6 Online supplementary material: https://drive.google.com/file/d/1-
Uzz61MJAW5NPetEuPH-LcUtFgaG_iyy/view?usp=sharing.
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sequently created DomainClass, if not targeted by another
embedded relationship, is referenced by this root class. The
root class, by default, initially has the same name as the
DSL itself. Doc is the diagram document representing the
DSL, containing shapes, relationships, classes, serialization
behavior, and the mapping of shapes to abstract elements.
The possible entities that can be created on the metamod-
eling canvas are available in the DSL Designer Toolbox.
These elements include DomainClasses and different types
of DomainRelationships, like embedding relationships (i.e.,
containers) and reference relationships. Every relationship
is binary and directed and links members of a source class
(i.e., Source) to members of a target class (i.e., Target).
Such members include the classes themselves as well as the
classes inheriting from them. Both Source and Target refer-
ence their abstract elements throughDomainRoles, specified
by RolePlayers that finally contain the Moniker type of the
referenced element. Each element can further be attributed
with various DomainProperties. External types, e.g., sys-
tem types such as String, Boolean, or DateTime can also be
referenced by a DomainProperty. These elements compose
MSDKVS’s abstract syntax. Each element inherits from the
base classNamedDomainElement, containing a uniqueName
and an Id.

Regarding their XML serialization, the DslDefini-
tion.dsl file, when opened in a text editor, contains all
objects added on the DSL canvas and their mapping refer-
ences to tool palettes, shapes (i.e., graphical concrete syntax),
and other serialization properties needed for code generation.
Every added abstract or concrete element is given aMoniker
description type to be able to be referenced in different parts
of the DSL. Monikers are uniquely identifying names for
elements.

Concrete Syntax in MSDKVS. Every class, relationship,
and attribute can be visually enhanced with different shapes
and decorators that are maintained within the editor’s graph-
ical interface adjoined to the abstract syntax definitions.
Through mappings between the concrete and abstract syntax
definitions, the language designer can customize the appear-
ances and interaction possibilities like toolbox entries or
graphically editing attributes in the Visual Studio runtime
instances.

The possible shape elements are also listed inside the DSL
Designer Toolbox. As these elements are tightly included as
core features of the platform, as well as serialized in the
same file as the abstract syntax, some of the graphical syntax
elements are included in Fig. 2. To summarize all available
shapes and their common attributes, an AbstractShape has
been introduced. Similarly, an AbstractMoniker represents
all available moniker types.

Graphical concrete syntax elements include Geome-
tryShapes, defining the visual notation of the mapped
DomainClasses. Each DomainProperty of a class or a rela-

Fig. 2 Excerpt of the reconstructed MSDKVS meta-metamodel [15]

tionship, e.g., font attributes and line types, can be visually
defined throughDecoratorMaps.CompartmentShapes target
classes that can contain other classes, either as lists, ports (i.e.,
attached shapes depicting either an ingoing or outgoing inter-
face), or image shapes. ImageShapes are freely configurable
shapes that reference an image file contained within the
project’s resources folder. The appearance of relationships,
e.g., their line thickness and style can be defined by Connec-
tors. A separate PortShape object is available for graphically
defining contained classes within DomainClasses. Unique
graphical syntax elements in MSDKVS include the Swim-
lane element, used for dividing an existing diagram to create
visually sophisticated DSLs.

3 Related work

This section first offers an overview of existing works
on metamodeling platform interoperability. It then takes a
detailed look at related ambitions toward bridging EMF
and MSDKVS and compares these works to this paper’s
approach.

3.1 Transformation bridges

Interoperability deals with the exchange of information
between two or more systems, and the ability to use that
information in each system respectively [20, 27]. As mod-
eling languages for software development gained popularity
in the early 2000s, a need for establishing interoperability by
transforming the grammarware technical space (i.e., EBNF-
based grammar tools) into the modelware technical space
existed [40].Once this interoperabilitywas established,many
metamodeling platforms followed, which in turn also raised
the need for their interoperability.

Several bridges between different metamodeling plat-
forms and modeling tools have been proposed, including
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EMF and ARIS [26], EMF and MetaEdit+ [25], EMF and
Visio [30], and EMF and Generic Modeling Environment
[14]. Recently, a transformation bridge between ADOxx and
EMF has been proposed in [6]. These transformation bridges
typically consist of one or several model transformations that
are used for exchanging metamodels and models between
the two platforms. These are so-called horizontal exogenous
transformations [10, 22, 28], as the source and target of the
transformation are situated on the same abstraction level but
adhere to different meta-metamodels. Most of these works
transform metamodels, i.e., do not consider interoperabil-
ity at the model level which further requires a transformation
between concrete syntaxes. Table 14 lists these existing trans-
formation bridges (i.e., M3-level-based bridges or M3Bs)
between different metamodeling platforms. Consistently to
these related works, we also use bidirectional (or multiple
unidirectional) transformation bridges.

Many of the investigated transformation bridges are avail-
able online, either within public code repositories for down-
loading the libraries themselves or as widgets on a web page.
Nearly all of them, except for, e.g., the Aris2EMF Bridge,
have been written in Java to directly integrate EMF func-
tionalities and transformation capabilities, like ATL, into
the bridge. Links to the implementations, if available, are
provided and an indicator of whether or not the available
transformator is still executable in today’s environments (see
Table 14).

As a matter of fact, each system that can be abstracted
to a 3-level architecture can be used in a transforma-
tion bridge, thus also enabling the transformation of non-
metamodeling languages to achieve tool interoperability
[3, 28]. Consequently, Table 14 also lists transformation
approaches of tools that have an underlying structure that
can be abstracted to a metamodeling architecture, e.g. Excel.
Bézivin et al. [3] define a pivot metamodel to combine
the abstraction of features that are common among the
selected systems. The bridges in question are listed in
Table 14 as Excel2SoftwareQualityControl, SoftwareQual-
ityControl2Mantis, and SoftwareQualityControl2Bugzilla
respectively, where the SoftwareQualityControl metamodel
acts as the pivot metamodel. The specific models are, there-
fore, not directly transformed to the target tool environment.
Instead, a pivot metamodel serves as an intermediary entity.
Another interoperability approach trying to bridge different
conceptual data modeling tools like ER and ORM2 is given
in [11], where a common metamodel, namely the KF Meta-
model [19], with rules for transforming from and to these
conceptual modeling platforms is used and implemented in
a web-based tool called crowd 2.0 [12].

3.2 EMF andmicrosoft DSL tools

Research on bridging EMF and Microsoft DSL Tools has
been proposed in the past [4, 13]. Differences regarding
today’s version of MSDKVS as opposed to the transfor-
mation approach in [13] are e.g., the serialized file formats
(.dsldm compared to today’s .dsl mentioned in [4]),
the visualization of a meta-metamodel containing the Value-
Property entity compared to today’s DomainProperty, and
the representation of attributes for classes and relationships.

The previous approaches execute a chain of ATLAS trans-
formation language transformations to generate the trans-
formedmetamodel using theKM3 (KernelMetaMetaModel),
a DSL for describing metamodels [23] as an intermediate
representation of arbitrary metamodels. As a transforma-
tion already existed between KM3 and Ecore, the MSDKVS
metamodels needed to be only transformed to this pivot
KM3 metamodel. Thus, no direct transformation between
EMF and MSDKVS tools existed, which introduces poten-
tial information loss as KM3 can be considered a generic
platform-agnostic DSL to represent the ’common denom-
inator’ of several metamodels. We examined the previous
approach with preserved .dsldm files of the Atlantic-Zoo
Github7 and learned that the execution of the XML2DSL
step always resulted in empty files. This is caused by the
evolution of the MSDKVS platform (mentioned above) and
the discontinuation of some of the used components in the
previous approach.

This paper gives a detailed comparative analysis (see
Sect. 4) of the abstract and concrete syntax elements available
in the latest versions of the EMF and MSDKVS platforms
that far exceed previous works. Moreover, we present the
first direct transformation bridge that also transforms the
graphical concrete syntax. One example transformation was
explained in [13], the PetriNet metamodel, where the ques-
tion remains if the validation of the transformed metamodel
andmodelswas successful in the target platform. The sources
of this approach are still available in a repository, but as
depicted in Table 14 and explained here, the transformation
code is not working with the current versions of the plat-
forms in question. In the paper at hand, we address these
gaps by providing an exhaustive quantitative and qualitative
evaluation of the transformation bridge (see Sect. 7).

4 Comparative analysis of EMF andMSDKVS

This section analyzes EMF and MSDKVS regarding their
abstract and concrete syntax. The relevant elements were
adapted and extended from [6, 29] in terms of concrete syntax

7 https://github.com/atlanmod/atlantic-zoo/tree/main/
AtlanticDSLTools.
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concepts extracted through a detailed investigation of both
platforms. A full list of the identified, analyzed, and mapped
abstract and concrete syntax elements is provided in Appen-
dices A and B and also available together with additional
material in the online supplementary material6. In the fol-
lowing, we concentrate the analysis on the core differences
between EMF and MSDKVS as these differences establish
the challenges of designing a direct transformation bridge
(see Sect. 6).

4.1 Abstract syntax features

EMF allows the definition of classes that inherit properties
and possible relationship structures from multiple classes
(i.e., multiple inheritance) whereas MSDKVS only allows
entities to inherit from one referenced base object (i.e., single
inheritance). MSDKVS, in contrast to EMF, allows inheri-
tance between relationships, meaning source and target roles
of the super relationship are also available in the sub rela-
tionship. Furthermore, domain relationships in MSDKVS
can also act as domain classes that can then be connected
to different domain relationships as a source or a target
role. One minor but challenging difference relates to the
possibility of relationships between elements to have the
same name in EMF, which leads to name clashes on the
MSDKVS side where relationship names are required to
be unique. On MSDKVS, domain classes are not directly
referenced when creating a relationship. Instead, they are
indirectly referenced through monikers, and a domain rela-
tionship is comprised of source and target domain roles also
referencing these monikers. In [28], relationships of EMF
are defined as reference-relations and ofMSDKVS as binary
object-relations.We agree on the EMF part, althoughwe find
the definition of role-relations more suitable for the binary
relationships in MSDKVS, as they indeed explicitly create
additional model elements, namely DomainRoles, for each
source and target role of a domain relationship, which then
reference the “real” metamodel element via their moniker
types. This is the reason why we list the concept of a Role in
Appendix A and attribute them toMSDKVS and not to EMF.
When implementing a transformation between MSDKVS
and EMF, correctly resolving these indirect dependencies
to achieve syntactical and semantical equivalence, i.e. trans-
lating multi-inheritance and the different ways of treating
relationships into a semantically equivalent single inheri-
tance and relationship treatments with the same experienced
behavior by modelers, are some of the challenges addressed
in this paper.

4.2 Graphical concrete syntax features

MSDKVS offers the possibility to inherit properties among
shapes (i.e., shape inheritance), while such an inheritance is

not supported in EMF. Besides the support for widely used
basic shapes like rectangles, circles, and icons, each platform
offers special shape types that cannot be directly mapped to
an equivalent one in the opposite platform. As metamodel-
ing platforms often depend on an underlying programming
language (e.g. EMF on Java, MSDKVS on C#), the avail-
able coloring options, styles, and appearance attributes are
limited by the languages’ libraries. As for MSDKVS, three
different types of color palettes are available (system, web,
and custom). EMF offers a selection of basic system colors
per default. Metamodeling platforms also allow the use of
custom image files to adapt the appearance of model ele-
ments. EMF and MSDKVS differ in their support of various
file formats. Icons can be used to, e.g., add custom appear-
ances to tool palette items or composition shapes. Different
types of tools have to be defined to create models in a run-
time environment. However, the granularity of what types of
tools can be created and customized varies greatly.MSDKVS
only allows the definition of essential element creation tools
for domain classes and domain relationships. In contrast,
EMF offers the definition of a vast amount of additional tools
containing, e.g., edition tools, copy-paste tools, or reconnect
edge tools. This functionality is not customizable on MSD-
KVS, but some are automatically available when a creation
tool is defined. Thus, copying, pasting, or deleting modeling
canvas elements works out of the box on MSDKVS whereas
tool developers using EMF need to implement such function-
ality.

5 Transformation rulesets

Based on the comparative analysis in the previous section
and the detailed assessment documented in the online supple-
mentary material6, different rulesets composing the intended
transformation bridge have to be defined. In the follow-
ing, lists of mapping rules for the abstract syntax (Table 1
and the concrete syntax Table 2) are given for each trans-
formation direction. Two selected specific rules for each,
abstract and concrete syntax, shall explain in detail how the
rulesets generally have been defined in terms of supporting
the implementation afterward and highlight the platform-
specific features on a code level. A list with explanations for
every rule is available in the online supplementary material.6

5.1 Abstract syntax

AS.R1: ClassMapping When transforming from EMF
to MSDKVS, three types of EClassifiers can be distin-
guished regarding their type attributes, namely EClasses,
EEnums, and EDataTypes. When transforming an EClass,
a target DomainClass is created using the same Name.
As it is necessary for each element in MSDKVS to have
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Table 1 List of mapping rules for abstract syntax concepts

ID (Rule name) EMF MSDKVS

AS.R0 (Group mapping) EPackage Language

AS.R1 (Class mapping) EClass DomainClass

AS.R2 (Relationship mapping) EReference DomainRelationship

AS.R3 (Attribute mapping) EAttribute DomainProperty

AS.R4 (Role mapping) EClass DomainRole

AS.R5 (Data type mapping) System Types, Custom Types System Types, Custom Types

AS.R6 (Enumeration mapping) EEnum DomainEnumeration

AS.R7 (Inheritance) Multiple Single

Table 2 List of mapping rules
for graphical concrete syntax
concepts

ID (Rule name) EMF MSDKVS

GCS.R0 (Canvas mapping) Viewpoint Diagram

GCS.R1 (Class shape mapping) NodeMapping GeometryShape

GCS.R2 (Icon mapping) NodeMapping ImageShape

GCS.R3 (Relationship shape mapping) EdgeMapping Connector

GCS.R4 (Composition shape mapping) ContainerMapping CompartmentShape

GCS.R5 (Attribute layout mapping) Label DecoratorMap

GCS.R6 (Special shape mapping) BorderedNode Swimlane, Port

GCS.R7 (Color mapping) Named Colors, RGB Named Colors, RGB

GCS.R8 (Shape inheritance) ✗ �
GCS.R9 (Tool palette mapping) ToolSections ToolboxTab

a unique Id as an identifier, a random GUID is gener-
ated upon creation. Abstract attributes are transformed
to InheritanceModifier values. If the EMF class is
abstract, the modifier receives the value “1,” as it marks the
resultingDomainClass as abstract [36]. If the current EClass
is the identified root class of the metamodel, it must not be
abstract in MSDKVS. XmlClassData is added to the seri-
alized XML data as well to use MSDKVS’ code generation
and model editor capabilities, containing the resulting gen-
erated moniker types of the added classes to conform to the
required structure on the target side.

In the direction of MSDKVS to EMF, the class con-
cept is de facto identical, except for the specifications
like inheritance and DomainRoles used for targeting in
DomainRelationships, as they have to be included in an
EClass as EStructuralFeatures, more concretely, ERefer-
ences. These transformations are executed in Rule AS.R2.
InheritanceModifiersonMSDKVS(abstract, sealed,
public) are transformed accordingly, whereas public is the
default value, abstract directly translates to the abstract
attribute of an EClass (i.e., abstract=“true”). Descriptions
supplied in MSDKVS are mapped to documentation tags on
the transformed EClass.

AS.R2: RelationshipMapping Each EClass can con-
tain two types of EStructuralFeatures, either EReferences

or EAttributes. EReferences are transformed to DomainRe-
lationships, generating a unique identifying GUID for the
required Id attribute. EReferences can either be flagged as
containment references, simple, or bidirectional references
between two EClasses.

Figure 3 lists these reference types, their availability in
both platforms, and their mapping to the transformed plat-
form types. EMF offers uni-, bi-directional, and composition
relationships, whereas MSDKVS only offers bi-directional
and composition relationships. This is due to the fact that,
in MSDKVS, a DomainRelationship always consists of
source and target roles, represented by DomainClasses and
a specific domain role they are given regarding the relation-
ship definition, shown as separate entities derived from the
DomainClasses, referenced via monikers, each starting with
DR_ in the given figure.

Beginning from EMF, source and target entities of ERef-
erences are transformed to DomainRoles, linking each pre-
viously transformedDomainClass via Monikers using the
unique names of the classes. Multiplicities of a EReference
are transformed accordingly.

Regarding the other direction, in MSDKVS, a Domain-
Relationship always consists of source and target roles, rep-
resenting DomainClasses. A DomainRelationship in MSD-
KVS can be mapped to an EReference in EMF. The name for
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Fig. 3 Mapping of relationship types betweenEMFandMSDKVS.Unidirectional relationships (1), bi-directional relationships (2), and composition
relationships (3)

the EReference is mapped from the source domain role from
the relationship in MSDKVS, and the type from the refer-
ence is retrieved from the target domain role, relating to the
target domain class. As a consequence, only bi-directional
references are retrieved when transforming from MSDKVS
to EMF. As stated in the documentation of EMF, a single,
one-way reference can always be defined as a bidirectional,
two-way reference, thus making it possible to directly trans-
form each reference type between these two platforms.

AS.R7: Inheri tance As EMF supports multiple inher-
itance structures, concrete patterns have to be applied to
break down these structures into multiple, single inheritance
structures on the target side. The concept of Inheritance
between class structures is trivial when transforming from
MSDKVS to EMF, as both platforms support the notion of
having their classes inherit references and attributes from
other classes. These inheritance references are signaled by
the classes’ properties BaseClass in MSDKVS and ESuper-
Types in EMF. In MSDKVS, these base class references are
done via the DomainClassMoniker types. MSDKVS addi-
tionally allows Inheritance between DomainRelationships,
making the transformation of inheritance structures based on
relationships challenging tomaintain structural integrity, thus
resulting in additional elements as a DomainRelationship
first has to be transformed to a class and then two additional
references have to be created to keep the structure of the
metamodel alike.

5.2 Graphical concrete syntax

Notably, also the default values for each attribute in MSD-
KVS have to be considered in the transformation since these
default values often mean that the attributes do not have
to be defined at all. Thus, the M2 transformator has to
know which values are the default ones. These have been
received through extensive testing and reading of the avail-
able API documentation. An example of such values is the

BorderSizeComputationExpression of a shape
mapping in EMF, whichmaps to the OutlineThickness
attribute of a shape in MSDKVS. In EMF, this value
defaults to one, whereas in MSDKVS the default value
is 0.03125. In many cases, EMF provides simple default
number values which are just multiplied on the target side.
DomainPaths are used in MSDKVS for correctly map-
ping a shape entity to a domain entity. These domain paths
are defined as XPath-like syntaxes and are built as follows:
<RelationshipName.PropertyName/!Role>. To identify the
target shape on themodeling canvas, a containment reference
in addition to the source’s property name and role has to be
given.

GCS.R1: ClassShapeMapping NodeMappings in EMF
are transformed into GeometryShapes, visualizing Domain-
Classes through different geometries, like Rectangles
or Circles. The comparison tables in Appendix A are
grouped into the various identified shape types after having
investigated both metamodeling platforms. A DomainClass
is then referenced accordinglybymapping theShapeMoniker
inside the Diagram.

Geometry shapes in MSDKVS reference DomainClasses
only. The corresponding transformed graphical entity in Sir-
ius is called a NodeMapping. The customization of the
appearances (e.g., geometries), styles (e.g., border style,
font style), and layout (e.g., positioning) of the entity itself
and its domain properties are considered in rule GCS.R5.
An example of a NodeMapping resulting from a four-sided
GeometryShape has the style:SquareDescription
attribute.

GCS.R7: ColorMapping Sirius in EMF lets users define
colors through drop-down tables of predefined System
Colors, User Fixed Colors in separate user colors
palettes, Computed Colors by dynamically computing
RGB components, or as Interpolated Colors, that
dynamically change the coloring of a referenced object
through the definition of so-called Color steps [2].
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Through these steps, a color can be changed by associating
values via computation expressions. For our transformation
approach, only user-fixed colors and system colors are taken
into account.Most named systemcolors can be directly trans-
lated to MSDKVS’ color scheme, although some exceptions
have to be considered, e.g., Sirius’ dark_red color can map
to MSDKVS’ DarkRed color by removing the underscore. If
a corresponding color has not been found, background and
border colors default to black,whereas label andfilling colors
default to white in MSDKVS.

MSDKVS uses three types of color definitions: Custom,
Web, and System. System colors have names that corre-
spond to the objects in the Windows OS, like Scrollbar or
WindowBackground. Web colors consist of colors that are
identified by their uniquely standardized web names, which
are used in web development. Custom color palettes can also
be used, which are the same as in, e.g., a Paint program,
where the user can define them through a color picker. These
are usable on all objects, where colors can be applied (e.g.,
diagram background color, line colors, text colors, border
colors, etc.). A ColorMapper class acts as the middleware
that takes the color used in MSDKVS as input and looks
up the system color to get the RGB values of a selected
named color (i.e., web or system). These RGB values are
then injected separately on the target EMF metamodel. A
viewpoint specification model in Sirius can be supplemented
with an additional section of user-defined color palettes, cal-
culated by their red, green, and blue values, respectively, and
given a name by the designer. This functionality is usedwhen
transforming the MSDKVS colors to EMF.

6 Transformation bridge

Figure 4 sketches all three layers involved in realizing inter-
operability between EMF and MSDKVS. On the left, the
MSDKVS column consists of the implicitly defined meta-
metamodel on theM3 layer (see Fig. 2), with its user-defined
metamodel on the M2 layer. The metamodels are serialized
in XML format as .dsl files. These files are used as input
and output of the transformation, depending on which plat-
form is the source and the target of the transformation. The
transformator itself is divided into transforming metamodels
(M2 transformator) and models (M1 transformator). TheM2
transformator is written in C# and de-serializes the incoming
files into data structures that can be manipulated and worked
with on the code level. Abstract and concrete syntax ele-
ments represented as XML tags inside these input files are
examined, and the mapping rules, based on the M3 concepts
of both platforms, are applied sequentially to transform the
source metamodel into an equivalent metamodel of the target
platform. Section6.1 discusses some of the special cases for
each direction that have to be considered during this step.

Fig. 4 Transformation bridge between EMF and MSDKVS

An additional outcome of the M2 transformation is a map-
ping information file, containing a serialized JSON object of
all the applied strategies (e.g., renaming strategies based on
duplicate relationship names or resulting from solving mul-
tiple to single inheritance structures). This file is then used
as input in the M1 transformator to map the model elements
accordingly. TheM1 transformator iswritten in Java and uses
the ecore reflection API to serialize and de-serialize source
and target (meta)models more thoroughly (see Sect. 6.2 for
details). It requires the Ecore metamodel file as input in both
directions, the model file created in the source platform con-
forming to the previously transformed metamodel, and the
aforementioned mapping file.

6.1 M2 transformation

The identified elements in each platform and their counter-
parts in the other platform resulted in comprehensive rulesets
(cf. Sect. 5). The greatest challenges faced and detailed steps
on how these were solved during the traversal and transfor-
mation of elements in the M2 Transformator are discussed
in the following.

6.1.1 EMF2MSDKVS

Nested EPackage Flattening.We recognized different styles
of EPackage definitions in publicly available EMF meta-
models (see Table 3 in the row entitled “Grouping”). Ecore
metamodels can either have one or multiple EPackages
defined, while EPackages may also have ESubPackages.
Therefore, as MSDKVS usually only has one equivalent lan-
guage definition, these EPackage contents are flattened and
merged into one global EPackage before executing the trans-
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Table 3 Metamodel abstract syntax metrics

Source Target

EMF MSDKVS MSDKVS EMF

Min Med Max Avg Min Med Max Avg Min Med Max Avg Min Med Max Avg

Grouping 1 2 50 2.83 1 1 1 1 1 1 1 1 1 1 1 1

Classes 1 12 300 33.56 2 8.5 39 10.55 1 13 346 38.92 2 10 47 11.57

Abstract classes 0 2 83 5.77 0 1 9 1.61 0 1 109 6.59 0 1 9 1.61

Inherited classes 0 7 335 31.79 0 3.5 34 5.20 0 7 335 31.79 0 3.5 34 5.20

Multiple inheritances 0 0 134 4.75 –1 – – – – – – – 0 0 0 0

Relationships 0 11 437 36.23 0 9 40 10.86 0 12 3750 130.83 0 13 79 18.20

Inherited relationships –2 – – – 0 0 4 0.30 0 0 0 0 – – – –

Relationships as class –3 – – – 0 0 15 1.18 0 0 0 0 – – – –

Attributes 0 10 98 21.32 1 17.5 170 29.11 0 11 236 28.28 1 17.5 170 30.27

Enumerations 0 0 18 1.36 0 1 21 2.43 0 0 18 1.36 0 1 21 2.43

DataTypes 0 0 60 0.92 0 0 9 1.36 0 0 60 0.92 0 0 9 1.36

1 MSDKVS does not support multiple inheritance structures
2 EMF does not support inheritance among relationships
3 EMF does not support attributing relationships and using them as classes

Fig. 5 Adapted Expansion
Strategy [17]: a multiple
inheritance in EMF; b
transformed single inheritance
in MSDKVS

formation. Naming conventions for avoiding possible name
clashes are transformed accordingly.

Entity Name Clashes. Detecting and resolving name clashes
are essential when realizing metamodeling platform interop-
erability [6]. Different naming strategies to avoid possible
name clashes, e.g., across multiple ESubPackages, are exe-
cuted. For domain relationships, the MSDKVS names are
changed as follows: <sourceEClass.name>_<EReference.
name>_<targetEClass.name>. Name clashes on domain
classes are resolved by mapping the EPackages’ nsPrefix
attribute to the DomainClass’ Namespace attribute. Multi-
ple Inheritance. As EMF, in contrast to MSDKVS, supports
multiple inheritance, a transformation ofmultiple inheritance
structures into equivalent single inheritance structures is nec-
essary. We adapted the Expansion Strategy pattern proposed
by Crespo et al. [17] to translate the complex structures of
multiple ESuperTypes in EMF into equivalent single Base-
Class references in MSDKVS without information loss (see
Fig. 5). Important to note is that also EReferences that target a

super class have to be duplicated to the newly created domain
classes as domain relationships in MSDKVS. In addition to
the abstract syntax duplicates, this affects the transformation
of all types of graphical concrete syntax mappings from Sir-
ius aswell, which results inmore Shape classes onMSDKVS
side and Creation Tools inside the modeling editor.

Root Element pattern matching. MSDKVS metamodels
require a root element that is mapped to the diagram shape.
This diagram shape provides the modeling canvas in the run-
time instances of a domain model. As per API requirement,
this selected root element has to be the source domain role of
domain relationships marked as containment relationships,
where the targets are all domain classes that are neither part of
an existing containment relationship (e.g., children of com-
partments) nor should target any base classes they would
inherit from. When transforming an Ecore metamodel to
MSDKVS, existing EClasses arematched against these crite-
ria. If such anEClass can be found, this EClass is transformed
and acts as theMSDKVS root diagram element. If no EClass
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is suitable, then an additional default domain class is gener-
ated that acts as the diagram’s root element. Icon mapping.
Sirius supports the definition of icon styles on different node
mappings by referencing workspace images in various file
formats. For MSDKVS, a requirement to attribute a model
entity with icons is that the images have to be in the Bitmap
format. Therefore, library calls to convert these files to the
required format on the target platform are employed in the
M2 transformation.

Reserved keywords. As MSDKVS operates on C#, the type
of reserved keywords that are not allowed, e.g., used as the
name of a class or attribute differs from its counterpart. Dur-
ing the evaluation step (see Sect. 7), some Ecore metamodels
contained attributes, references, or class names that proved
invalid when the transformed DSL was opened inside the
MSDKVS environment. Thus, the employed naming strat-
egy prepends an underscore to a name when such a reserved
keyword is being found.DomainEnumeration literal validity.
For transformingEEnum entitieswith their literal values, spe-
cial attention has to be given to the fact that MSDKVS does
not allow a variety of special characters like comma, back-
slash, or white spaces in their EnumerationLiterals. Each
invalid character is transformed into an underscore, one of
the only special characters not reserved by the language’s
API. A mapping file generated on top of the M2 transforma-
tion contains mapping information for each literal value for
correct lookup in the M1 transformation step.

GUID and ID handling. Each graphical concrete or abstract
syntax element needs an Id property, which contains a gen-
erated GUID that uniquely identifies the element. When
transforming from EMF to MSDVKS, these GUIDs have
to be explicitly generated when the elements are created.
Mappings inside the DslDefinition.dsl file cross-
reference these IDs thus providing the linking functionality in
the Visual Studio IDE and the correct code generation capa-
bilities. Therefore, when transforming, a lookup of already
created elements when the XML tree is filled is done with the
help of these Id attributes. As a result, EAttributes in EMF,
which are named Id, cannot be transformed trivially because
in MSDKVS, this reserved field is a necessary property of
every element. Thus, Id names are always transformed low-
ercase and the applied naming conventions can be looked up
in the generated mapping information file.

Duplicate DomainRole names. When transforming ERefer-
ences to DomainRelationships, two different DomainRoles,
either used as source or target, must not have the same
PropertyName when their other end of the relationship
is the same. For instance: ClassA has relationships to
ClassB and ClassC. If the transformation results in, e.g.,
having a DomainRelationship from ClassA to ClassB with
its target role PropertyName being “Target” and the same
applies for relationship ClassA to ClassC, then naming con-

ventions have to be executed on the second relationship target
role. The employed naming strategy updates a counter vari-
able for how often the same target or source base names have
been used, applies it to the newly created role, and incre-
ments it. In the example above, this results in the relationship
ClassA to ClassC having its target domain role renamed to
Target_1.

Duplicate DomainRelationship names. Like for Domain-
Roles, two DomainRelationships must not have the same
name. Similar renaming conventions apply, i.e., counting the
number of already recognized equal names and adding the
current count to the newly created relationship.

6.1.2 MSDKVS2EMF

Relationship roles. DomainRelationships in MSDKVS dif-
fer from their required representation on the target EMF side
in so far, that the source and the target entities of these rela-
tionships are referencing the corresponding domain classes
through monikers. Source and target domain roles can have
different names attributed to them compared to their actual
classes used for creating the domain relationship. This con-
struct has to be considered when transforming from EMF to
MSDKVS, too, as for every EReference, at least one role has
to be created in MSDKVS. Domain classes are then refer-
enced through moniker types by their unique names. When
transforming from MSDKVS to EMF, the transformator has
to look up the source and the target domain classes and trans-
form these DomainClasses into the EReferences’ eTypes and
eOpposites accordingly.

Attributable relationships. In MSDKVS not only classes but
also relationships can have attributes. As already mentioned
in [13], this behavior can be implemented similarly, meaning
that domain relationships with attributes attached to them are
mapped to classes that are referenced from both transformed
domain classes, leading to additional EClass and EReference
entities on the target EMFside.Multiplicities are transformed
accordingly to maintain the original behavior.

Shape inheritance. MSDKVS allows inheritance on the
graphical representation of classes and relationships. There-
fore, the M2 transformator has to check possible inherited
shape classes and transform them accordingly.

Implicit modeling tool capabilities.MSDKVS supports only
the explicit definition of element creation tools on domain
classes and domain relationships, while some tooling capa-
bilities that can be explicitly defined in Sirius are inherently
available on MSDKVS’ modeling canvas, e.g., copy and
paste. To achieve an equivalent experience, the number of
tools on EMF is thus typically higher because the M2 trans-
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formator generates these additional tools for every Node or
Edge Creation Tool defined in MSDKVS.

Color naming. MSDKVS supports a variety of colors for
graphical properties (e.g., FillColor, TextColor, and Back-
groundColor). Sirius only supports a small subset of these
named colors, e.g., standardized system colors like white,
black, and green. To be able to transform the colors from
MSDKVS into equivalent colors in EMF, the M2 transfor-
mator looks up the composing red, green, and blue color
values for MSDKVS’ named colors and transforms them to
Custom User Palettes used by Sirius which can be named by
the designer.

6.2 M1 transformation

This section provides explanations of the final tasks of the
transformation process, namely the transformation of mod-
els. An analysis of how models are represented in each
platform is given, and their serialization formats are com-
pared.

6.2.1 Serialization of models

Each platform offers separate executable runtime environ-
ments for defining and editing models. Each model is
graphically represented by its metamodel’s available graphi-
cal concrete syntax. If no graphical concrete syntax has been
defined, the tree editor of each modeling instance can be
used for creating classes and relationships instead. EMF and
MSDKVS both serialize the model files in the XML meta-
data interchange (XMI) format, thus easing the realization of
the M1 transformator to some extent.

6.2.2 Transformation approach

Typically, one cannot find concrete examples ofmodels based
on defined metamodels contained within model/metamodel
zoos. Most or nearly all of the retrieved repositories con-
tain only the metamodel definitions (either within .ecore
files for EMF or .dsl files for MSDKVS) and no concrete
models conforming to these definitions are available.

To examine the transformator’s validity, a random model
generator [1] is being used to generate models as input on the
EMF side. Regarding the transformation of MSDKVS mod-
els to EMF models, the MSDKVS source models have been
created manually to best represent the underlying domain
and its features.

When comparing EMF and MSDKVS models directly,
one can infer that each (simple) attribute from a source class
maps to an equivalent attribute on a target class. The trans-
formation of relationships acts as the main difficulty here
because, in EMF, references look like attributes (when speak-

ing about XML syntax), whereas in MSDKVS, they are
expanded by default, creating sub-elements of the Domain-
Class element.

Regarding the concept of inheritance, EMF adds an
xsi:type attribute containing the subclass type to the
superclass entity, whereas, in MSDKVS, the name of the
subtype is used directly as a tag.

In MSDKVS models, eachDomainClass andDomainRe-
lationship element obtains a unique identifier (i.e., GUID) to
be referenced from inside other elements. As mentioned in
the M2 transformator, these GUIDs have to be generated
manually when transforming from EMF to MSDKVS on
the M1 layer. Special consideration must be given to these
GUIDs, as different attributes can be flagged as the identify-
ing attribute, like the name attribute of a Person entity in
the Family Tree example shown later in Fig. 7a. These class
elements are then referenced by using the generated GUID
from the diagram element (i.e., the root element) and the
value of this unique attribute value. EMF also uses a refer-
encing technique regarding relationships by giving each class
a number based on their position in the model’s list of type-
equivalent XML elements, which, in addition to their class
name, can be used for interpreting simple and bi-directional
references.

6.2.3 EMF to MSDKVS

The files containing the source metamodel and its model are
used in addition to the generatedmapping file, providing crit-
ical mapping information for each abstract syntax element.
Through iterating each EClass, and then every EStruc-
turalFeature, i.e., EAttributes or EReferences, contained
within these class elements, all elements are transformed
by applying corresponding transformation rules. The main
challenge in loading the model file into the M1 transforma-
tor was that, after investigating the models either randomly
generated via the library mentioned in Sect. 8.1 or manually
created inside EMF, their root XML tags could differ from
each other. As MSDKVS has to have a class defined as the
diagram’s root class on the M2 layer, the generated model
file also has to have that same class as the root of its content.
If that is not the case, the first element corresponding to the
identified or generated root element, extracted from the gen-
erated mapping.json file in the previous transformation step,
is used.

The following list contains information on how the M1
transformation tackles the mapping of the abstract syntax
elements from the platform’s metamodel layers using the
created mapping.json file from the M2 step:

Class mapping. When a class entity is transformed, the
target name is extracted from the generated mapping file
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and with it, an XML tag in the resulting modeling repre-
sentation is created.
Attribute mapping. Attributes from one class entity can
be mapped using the naming conventions documented
in the mapping.json file to a target attribute con-
tained within the previously transformed target class
entity.Attributes are used the sameway in both platforms,
as the M2 transformator does not attribute the resulting
DomainProperty XML data with the ElementReference
indicator.
Relationship mapping. Relationship mappings are the
most challengingmappings as their representationdepends
on their relationship type.
Containment references are contained within the com-
posite class. Regarding the serialization of containment
references intoXML format, EMF lists the contained ele-
ments inside the containing class elements’ tag, whereas
in MSDKVS, additional XML tags for the relationship
itself, e.g., the relationship name, have to be generated
and inserted during the transformation. As mentioned
before, simple and bi-directional references use a num-
bering mechanism to target different class elements
inside the model. When transforming such relationships,
the list of available elements filtered by the target classes
has to be collected and the correct index selected.
Inheritance mapping. Inheritance mapping is cumber-
somewhenmultiple inheritance relationships are involved,
as they are distributed among several single inheritance
relationships and copied classes in MSDKVS as a result
of the M2 transformation. Thus, the mapping.json
file has to be consulted to find the correct inheritance
structure to use for transforming the model entity. Each
class mapping contains a superclass mapping, referenc-
ing the targeted transformed superclass, filtered by the
source’s used superclass.
Additional information. Information such as namespace
declarations inside the models’ root tags or the root class
mapping has to be handled accordingly. Themapping file
contains additional information on how the transformed
metamodel and its file extensions were named after hav-
ing executed theM2 transformations in order to add these
namespaces into the XMI.

The transformation implementation follows a sequential
execution as follows. First, the transformation direction is
determined based on the first input parameter of the pro-
gram. Afterward, the submitted input files are de-serialized
into corresponding structures (i.e., source Ecore metamod-
els and models as well as the mapping information). Then,
the root element of the Ecore model is extracted and trans-
formed into the equivalently mapped target root element.
Afterward, the remaining classes and their attributes as well
as their relationships are transformed, whereas relationships

targeting not yet transformed class elements are temporar-
ily queued to be transformed once the required classes have
been transformed. Lastly, the resulting element tree based on
the acquired mapped target elements, where each element
contains a list of key-value pairs resembling an XML-like
structure, is serialized into a model file, properly readable in
the runtime instance of MSDKVS.

6.2.4 MSDKVS to EMF

When transforming models from MSDKVS to EMF, the
transformed Ecore metamodel in combination with the
Reflection API is used to create the target model entities.
The procedure differs in terms of loading the source model
files into code, as no equivalent API is available in Java for
interpreting them properly. Thus, a basic XML reader library
is used for de-serializing the generic XMI structure of the
model into code. Similar to the serialization structure of the
transformation result for the direction of EMF to MSDKVS,
the models are de-serialized to a tree-based data template
containing several key-value pairs resembling their various
tags and attributes referencing themetamodel attribute defini-
tions. The following list contains information on how theM1
transformation tackles themapping of the abstract syntax ele-
ments from the metamodel layer using the mapping.json
file from the M2 step.

Class mapping. Class mappings are transformed to corre-
sponding class name tags in Ecore. Lists for each class
already transformed are maintained to get their exact index
inside the XMLfile for reference transformations that are not
containment references.

Attribute mapping.Attribute elements are added to the trans-
formed class elements as attributes. Important to note here
is that the serialization of attributes can be different for each
attribute, depending on if their Reference flag has been
set to, e.g., “Element.” Thus, the mapping file has to be con-
sulted for each attribute to retrieve the mapping information
containing the value of the flag. Normally, the flag defaults
to “null”, meaning the attribute is used as a normal attribute.
When the flag’s value is “Element”, the attribute has been
de-serialized to a separate sub-element with one ValuePair
object, where the key is the name of the attribute and the
value equals the attribute’s value, easily being translatable
into an EMF model entity’s attribute.

Relationship mapping.Contained classes are wrapped inside
their composite class, with additional tags denoting their
domain relationship names. Other types of relationships,
i.e., bi-directional references with source and target domain
roles, are serialized differently. Similar to the M2 layer, tar-
get classes of relationships are referenced through monikers,
their name assembled as follows:<class_name>Moniker. If
such a class has an attribute other than theirGUIDattribute set
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as their naming attribute (i.e., IsMonikerKey), the value
of this naming attribute, which must be unique, is used for
further referencing the correct target classes. Domain rela-
tionships, that were transformed into EClasses, are flagged
specifically, as the M1 transformator has to do a class lookup
and add two additional references to solve the “Relation-
ship as a Class” functionality correctly. Depending on the
UseFullForm andOmitElement attributes for theXML
serialization behavior defined on the M2 layer, the relation-
ships have to be transformed differently (an explanation and
evaluation is given in Sect. 8).

Inheritance mapping. As the transformed Ecore metamodel
cannot contain any multiple inheritance structures, this
makes it easier to find the target element as opposed to solv-
ingmultiple inheritances tomultiple single inheritances from
EMF to MSDKVS.

The following code sections are executed sequentially to
realize the MSDKVS to EMF M1 transformation. First, the
Ecore metamodel file, the model file for MSDKVS, and
the mapping file generated in the M2 transformation are
being loaded into memory. Using the Ecore API, an empty
Resource is created based on the metamodel content. The
resulting EPackage element is retrieved, set as the target
root element, and registered as a dynamic package in the
EPackage Registry Instance. Then, the MSDKVS model is
de-serialized and put into a tree of Elements, resulting from
the existingXML tags inside themodel file. A tag’s attributes
are resembled by key-value pairs contained within the result-
ing elements. These XML tag elements are then iterated and
mapped, with the help of the mapping information, to corre-
sponding Ecore elements.

After obtaining all elements inside the source model file,
the root element is first transformed. As each XML tag is
saved as an element inside the resulting tree, the traver-
sal of these elements differs greatly in comparison to the
other direction, as the correct type of each element has to be
distinguished properly before transforming it. The mapping
information containing the names of the source and the target
elements helps in finding the correct target element. A sepa-
rate table is maintained, containing the created EObjects and
their moniker key values for every node of the model file.
If an element has been traversed, it is flagged to omit dupli-
cate processing. All key-value pairs are then transformed into
EAttribute values with the correct EDataType.

The transformation of relationships takes the different
serialization types into account, possibly skips elements if
theUseFullFormmethod has been used, and the correct refer-
encing of transformed class entities by looking at themoniker
key values. Finally, the resulting Ecore data is saved inside a
model file using the Ecore API.

6.3 MSDKVS2EMF transformation example

For showcasing the transformation bridge, wewill, in the fol-
lowing, refer to a small example of a family tree metamodel
that we created in MSDKVS and subsequently transformed,
using our transformation bridge, into a valid EMF meta-
model. The example, adapted from the tutorial of Sirius,8

comes also with a graphical concrete syntax specification on
MSDKVS’ side, which enables to exemplify the feasibility
of the transformation bridge. The goal of this example case
is thus to illustrate the feasibility of realizing syntactic and
semantic equivalence between the two platforms involving
the abstract and the graphical concrete syntax. Full images
are provided online.6

Figure 6a shows the source metamodel inside the Visual
Studio IDE. In this example, a basic family tree metamodel
with graphical concrete syntax descriptions has been created
that contains a compartment relationship between Country
and Town and an inheritance structure between the Person
domain class as the base class ofMan andWoman. Figure 7a
shows a manually created model of an excerpt of the family
tree of the British House of Windsor based on the previously
defined metamodel in MSDKVS. The result of executing
the M2 transformator on the source MSDKVS metamodel
is shown in Fig. 6b, showing the resulting Ecore metamodel
both graphically and in a tree structure. The resulting EMF
model and its entities depicted in Fig. 7b is created using
our realized M1 transformator. For better comparability, the
EMF model elements have been positioned accordingly on
the canvas.

7 M2 evaluation

This section reports on the results of experimenting with
the M2 transformator. The transformation is implemented
as two uni-directional transformations which means that
either MSDKVS metamodels (*.dsl files) or EMF meta-
models (*.ecore files) with optional .genmodel and
.odesign files for graphical concrete syntaxmappings and
code editor generation settings serve as input.

We searched and selected a representative set ofmetamod-
els of both platforms from publicly available collections and
also through dedicated metamodel search engines [32]. A
collection of 44 metamodels from MSDKVS and 75 ran-
domly selected metamodels from the AtlanMod Atlantic
Zoo9 with additional 22 metamodels referencing and con-
taining Sirius VSMs and 18 metamodels (some of which
overlapping with VSM available metamodels) containing
EMF specific features like multiple inheritance or nested

8 https://wiki.eclipse.org/Sirius/Tutorials/StarterTutorial.
9 https://github.com/atlanmod/atlantic-zoo.
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Fig. 6 Family Tree metamodel in MSDKVS and transformed into EMF
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Fig. 7 Family Tree model in MSDKVS and transformed into EMF

Table 4 Metamodel concrete syntax metrics

Source Target

EMF MSDKVS MSDKVS EMF

Min Med Max Avg Min Med Max Avg Min Med Max Avg Min Med Max Avg

Class shapes 0 0 12 0.60 0 2 16 3.48 0 0 12 0.60 0 3 23 4.27

Inherited class shapes – – – – 0 0 10 0.43 0 0 0 0 – – – –

Icon shapes 0 0 18 0.77 0 0 11 0.39 0 0 18 0.77 0 0 11 0.39

Relationship shapes 0 0 39 1.73 0 2 10 3.30 0 0 39 1.73 0 2 17 3.98

Containment shapes 0 0 27 0.79 0 0 5 1.23 0 0 27 0.79 0 0 5 1.20

Tools 0 0 398 9.81 0 6 25 7.84 0 0 14 1.39 0 10 41 13.82

1 22 out of 75 Ecore metamodels had a Sirius VSM

EPackages was composed. Thus, the metamodels have been
selected mostly at random; all manual additions were moti-
vated by the goal to have a representative set of metamodels
(i.e., a set that differs in size, contains metamodeling con-
cepts, and is equipped with a graphical concrete syntax
specification).

With the evaluation, we thus aim to respond to the follow-
ing research questions:

RQ1: Are the transformed metamodels valid when opened
in the target platform?, and

RQ2: Are the transformedmetamodels executable, i.e. can
editor code be generated and runtime instances successfully
started?

7.1 Experimental setup

In the following, we dive deeper into the analytical aspects of
the metamodel transformation approach. First, quantitative
aspects are listed and compared. Table 3 shows statisti-

cal information about the experiment’s source metamodels’
abstract syntax, as well as the metrics of the resulting trans-
formed metamodels in the target platforms. Table 4 depicts
the metamodels’ concrete graphical syntax metrics, show-
ing both source and target metamodel values. To analyze the
qualitative aspects, the transformed metamodels are opened
with the target platform. Both platforms offer automatic val-
idation, meaning that when the project files are opened, their
internal structure is validated.Validation errors, if present, are
listed accordingly. As the MSDKVS diagram editor on the
M2 layer offers the ability to define concrete syntax elements
upon the abstract syntax entities, the validation step checks
both areas for errors. On the EMF side, the transformed
.odesignfiles containing the definitions for graphical con-
crete syntax mapping required separate, manual validation.
An overview of the success rates for both directions is pro-
vided in Table 7. If the validation yielded no errors, the
platforms’ functionalities upon creating models were tested.

123



882 F. Cesal, D. Bork

7.2 Semantic analysis

As a final part of the evaluation process for the M2 transfor-
mator, a selection based on the source and their transformed
targetmetamodels used for each directionwas defined. These
metamodels were analyzed in-depth regarding their behavior
while creating and operating with models inside their gener-
ated runtime environments. The goal was to investigate the
metamodel functionalities to further strengthen the interop-
erability aspect of this paper’s transformation bridge.

The following aspects, comprising mainly the mapping
of meta-metamodel concepts from one platform to the other,
were chosen to investigate semantical equivalence between
the source and the transformed metamodels:

• Class mapping: Correct mapping of class entities, their
names, number of attributes, inheritance relationships,
and, if applied, possible renaming strategies in the target
environment.

• Relationship mapping:Multiplicity mapping, source and
target class mappings, and the special types of relation-
ships like containment and bi-directional references. This
includes, e.g., a correct cascading of delete behavior in
containment references.

• Attribute and enumeration mapping: Datatype confor-
mity, identical default values, and enumeration literals
(taking into account the naming conventions listed in
Sect. 6.1.1)

• Class shape mapping: Correct coloring and styling of
classes and attributes as well as mapped geometries.

• Relationship shape mapping: Routing styles, source and
target styling, line styles, and attributes must be consid-
ered.

• Tool mapping: Sectioning of tools, tool icons, and their
interaction with the modeling canvas (e.g., creation of
relationships between two valid entities, creation of
classes).

Subsets of ten metamodels for each direction used in the
quantitative and qualitative analysis were selected for the
investigation of these defined aspects. The metamodels are
chosen by setting up scattered plot diagrams, each for two
selected metamodel characteristics standing in correlation
to one another based on representative metrics calculations
discussed in [18]. These metamodels then also act as the ref-
erencing metamodels for the M1 transformation evaluation
done in Sect. 8.

The steps taken to evaluate the semantic properties of the
selected metamodels are the following:

1. Transform source to target metamodel
2. Copy the resulting files into the target environment
3. Confirm the validity of both abstract and concrete syntax

4. Generate executable code based on the metamodel
5. Run an experimental instance of the platform
6. Create empty model files based on the transformedmeta-

model
7. Initialize the graphical modeling canvas, if available
8. Interact with the modeling canvas and the tree editor,

i.e., create classes and relationships, edit attributes, delete
elements

9. Investigate the resulting shapes and compare their prop-
erties to the source definition

7.2.1 EMF to MSDKVS

By having selected a subset of metamodels using a variety of
different aspects spread among all the available metamodels,
this evaluation aims to give an adequate overview of how
semantic equivalence regarding model behavior and interac-
tion is achieved.

Figure 8 shows the approach used for selecting the set of
metamodels that have to be investigated further for semantic
evaluation. Each diagram, having two distinct but connected
metamodel metrics as its x and y axes, gives further insight
into how distributed the values among the collected source
metamodels are. The yellow dots represent the x and y coor-
dinates, i.e., metric values, for the metamodels that have
been chosen for semantic evaluation, which will be listed
afterward in Table 5. The blue dots visualize the remaining
metamodels used inside the feasibility approach in the pre-
vious section.

When looking atTable 5, four of the ten selectedmetamod-
els had graphical representations available, namely poosl,
behaviortree, sensorProject, and simplePDL. Their shape
mappings to abstract syntax elements and their tooling sec-
tions were transformed and usable in MSDKVS correctly.

The ATL and KDM metamodel definitions could also be
transformed eventually after some minor fixes had to be
made in order for MSDKVS’ code serialization to work,
as two XmlRelationshipData constructs for the same
DomainClass or its base classes must not have the same
RoleElementName attribute, or else a validation error
would be thrown.

The more cumbersome metamodels are deemed to be
UML2 and c_sharp, as they contain multiple inheritance
structures with many supertype definitions and a number of
SubEPackages. This made evaluating the correct nam-
ing conventions for domain roles and domain relationships
difficult at first, since also opening the resulting DSLs in
Visual Studio resulted in performance issues due to their file
sizes and entity counts. The problems during validation of
the transformed c_sharp DSL were eventually eliminated,
as they only resulted from duplicated source domain role
names. The UML2 DSL, on the other hand, could not be
solved completely as of yet, as (1) the number of relation-
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Fig. 8 Metric distribution and highlighted metamodels used for manual evaluation for EMF

Table 5 Semantic evaluation
results for transformation
direction EMF to MSDKVS

Metamodel Validity Tools

Classes Relationships Attributes/Enums Shapes

Ant � � � - -

ATL � � � - -

behaviortree � � � � �
c_sharp � � � - -

HAL � � � - -

KDM � � � - -

poosl � � � � �
sensorProject � � � � �
simplePDL � � � � �
UML2 � ✗ � - -
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Fig. 9 Metric distribution and highlighted DSLs used for manual evaluation for MSDKVS

ships being rendered on the metamodeling canvas made the
interaction and finding the source of the problem impossi-
ble, and (2) the number of faulty domain relationships with
errors due to the applied nested renaming strategies as the
Ecore metamodel contained multiple eSuperType relation-
ships with these supertypes also having multiple eSuperType
relationships was still error-prone during model evaluation,
thus resulting in the UML2 metamodel not being targeted in
the model transformation evaluation. As this metamodel far
exceeds the average representation value of multiple inher-
itance structures being 4.75 contained within the source
metamodels used for the feasibility study of the M2 transfor-
mation, namely 42 in combination with 437 relationships
(i.e., the highest value of all used source metamodels), fur-
ther investigation has to be done for these large metamodels
in order to achieve better generalizability of the interoper-
ability.

7.2.2 MSDKVS to EMF

The size of MSDKVS metamodels (i.e., the number of
domain classes) is usually much smaller compared to EMF,
making it easier to appropriately test the transformation. Fig-
ure 9 shows five scatter plot diagrams for the source DSLs
used to evaluate the M2 transformation, each containing dif-
ferent metric values on their respective x and y axes. The
yellow dots symbolize the selected DSLs, identical to the
diagrams for the transformation direction EMF to MSD-
KVS. Table 6 displays the evaluation results. Every language
definition, except fwk_dsl, contained at least one attributed
DomainRelationship, resulting in an EClass with additional
EReferences from and to it. cqrsdsl contained 15 class-like
relationships and could not be rendered by Sirius in general,
as the references were all embedding relationships. For each
contained class, a separate model instance had to be created
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Table 6 Semantic evaluation
results for transformation
direction MSDKVS to EMF

DSL Validity

Classes Relationships Attributes/Enums Shapes Tools

Agilemodeler � � � � �
Candle � � � � �
cqrsdsl � � � ✗ ✗

fwk_dsl � � � � �
Generatorlanguage � � � � �
Hostdesigner � � � � �
Mbrdcmdmi � � � � �
Mobiledsl � � � � �
Nhmodelinglanguage � � � � �
Spllanguage � � � � �

to cross-reference them, thus resulting in invalid shape and
layout analysis but valid abstract syntax. Furthermore, this
DSL uses containment references for source domain classes
that are mapped to GeometryShapes, which, in the transfor-
mator’s current state, is not possible to visualize correctly
after being transformed to EMF and Sirius, as no sub-nodes
can be added to the resulting NodeMappings, and EdgeMap-
pings cannot visualize containment references. A possible
solution would be generating a Sirius representation per such
containment structure to visualize them appropriately from
separate models.

7.3 Results

RQ1: Validity of transformed metamodels. For the transfor-
mation validity (see Table 7) we were not only concerned
about the abstract syntax but also about the constraints on
the concrete graphical syntax. In the currently implemented
version of the transformations, we were able to address and
correct all previously mentioned errors [15] thus resulting in
a 100% success rate among graphical concrete syntax ele-
ments in the direction of MSDKVS to EMF.

EMF → MSDKVS is also yielding a 100% success rate
(based on 75 cases) considering the abstract syntax. The addi-
tional Sirius validation considered the 22 metamodels which
contained a graphical concrete syntax specification. In the
runs that followed, two out of 22 were faulty, stemming from
the fact that multiple Ecore metamodels were referenced

from within the .odesign file, therefore creating shapes
for not available entities. Future work will investigate how to
consider multiple referenced Ecore metamodels during the
transformation.

As the M2 transformator is implemented as a bridge
between two XML serialization formats, most of the ini-
tial problems that occurred originated from de-serializing the
input metamodel files to data structures. XML namespace
errors were among the most common types of excep-
tions because of limitations the default C# library provides
when de-serializing Ecore metamodel files, as they contain
numerous classes using the same typed attributes (e.g., first-
ModelOperations and subModelOperations in tool sections).
These errors could be eliminated eventually by changing the
content of the metamodel files before the de-serialization.

RQ2: Executability of transformed metamodels. The exe-
cutability assumes a valid metamodel to run the code genera-
tors for creating and executingmodeling runtime instances in
the platforms. When the code generation throws errors or the
modeling canvas cannot be initialized, the transformedmeta-
model files are deemed faulty regarding their executability
and semantic evaluation. All transformed metamodels that
threw no errors during their validation phase could be used
to generate model code on the target platforms and thus ini-
tialize runtime editor instances for modeling purposes. As a
final step, a small subset ofmetamodels on each side and their
transformed results were selected for manually evaluating
and comparing their interaction on the modeling layer, simi-

Table 7 Transformation success
rates

Direction Abstract syntax Concrete syntax

Cases Errors Rate Cases Errors Rate

MSDKVS → EMF 44 0 100% 44 0 100%

EMF → MSDKVS 75 0 100% 221 2 2 90.91%

1 Only 22 collected metamodels were bundled with custom.odesign files
2 VSMs contained references to multiple Ecore metamodels
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lar to how the example in Sect. 6.3was conducted.Regarding,
e.g., their tool palette functionalities, interaction on the mod-
eling canvas, and entity styling, no significant inequalities
were observed besides the ones mentioned in the previous
section.

7.3.1 Limitations

A few limitations adhere to the transformation approach
based on the M2 layer. The M2 transformator is specific to
the EMF and MSDKVS metamodels. Each additional plat-
form requires a mapping according to the identified rule sets
and each rule requires an implementation in C#. For serial-
izing the new metamodel representations, the XML schema
has to be analyzed and corresponding data structures for (de-
)serialization have to be added. Existing transformations can
afterward be reused, thus creating M3-level bridges span-
ningmultiplemetamodel platforms. Another limitation is the
realization of the transformator on the current platform ver-
sions. Core updates to these platformmetamodels, therefore,
require similar updates to the transformator.

Regarding the involved metamodel entities and unique
features of each platform, some limitations in the transforma-
tion’s current state are present as well. Many of the advanced
model operations supported by Sirius (e.g., filtering using
query languages, flow control operations like Begin, For and
If, Dialog) cannot be mapped directly to available operations
in MSDKVS. As mentioned in Sect. 4, only element creation
tools are supported, which target specific metamodel enti-
ties. These features are correctly mapped to and from Sirius’
model operations Change Context, Create Instance, and Set.

8 M1 evaluation

In addition to the feasibility study of the first part of the
transformation, this section considers the transformation
implementation on the model layer to investigate the com-
plexity and degree of completion, i.e., if and how all possible
definitions can be transformed.

8.1 Model generation

For testing the transformation approach on the M1 layer, a
random model generator, customizable with several param-
eters and presented in [1], is used for generating different
models based on an Ecore metamodel. A selection of pre-
viously transformed metamodels is used, with the generated
mapping.json file, for evaluating the model transforma-
tion approach for the direction EMF → MSDKVS. For the
opposite direction, the underlying models have been created
manually as no model generator is available.

The Ecore model generator can be configured with a vari-
ety of optional parameters, like the average size of a model,
the average number of references per class element, and
attribute value lengths. For this paper’s purposes and for bet-
ter readability of the generatedmodel files, an average size of
20, an average number of references of four per object, and
an average variable length of eight for attributes were used
to create models that are comprehensible by humans.

8.2 Transformation results

Tables 8 and 9 list the selected transformedmetamodels used
in the M2 transformator discussed in Sect. 7, the number of
manually created or generated models based on these results,
and the execution results of the M1 transformator. Each cat-
egory identified in Sect. 6.2 structures the evaluation. The
numbers indicate how many generated models are valid on
the target platform. Next, each column is analyzed individu-
ally, explaining its purpose and results regarding the source
and their transformed models, listing found errors or unin-
tended behavior, and possible solutions and improvements
for future releases.Afterward, the limitations of theM1 trans-
formator based on the Ecore Reflection API for EMF →
MSDKVS and JAXB library for serializing and de-serializing
the input models of MSDKVS, used for the direction MSD-
KVS → EMF, and output models are discussed.

As the semantic evaluation regarding the interoperability
ofmodels based on theM2 transformation results has already

Table 8 Model transformation
results for transformation
direction EMF to MSDKVS

Metamodel Validity

Class Attribute Relationship Inheritance Layout

Ant 10/10 10/10 10/10 10/10 –

ATL 10/10 10/10 10/10 10/10 –

behaviortree 10/10 10/10 10/10 10/10 10/10

c_sharp 10/10 10/10 0/10 0/10 –

HAL 10/10 10/10 10/10 10/10 –

KDM 10/10 10/10 10/10 10/10 –

poosl 10/10 10/10 10/10 10/10 10/10

sensorProject 10/10 10/10 10/10 10/10 10/10
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been done in the previous section, the following results take
only the validity of the transformed models into account,
especially regarding the validity of the mapping strategies
discussed in Sect. 6.2 in addition to the comparison of their
graphical representation, if available, depicted in column
“Layout.” If no graphical concrete syntax is available, the
model explorer’s embedding tree is used for investigating
the model contents. Reference relationships are not available
inside this tree editor and are only visible if a Connector
has been defined for these types of relationships. Therefore,
they cannot be checked for validity inside the modeling run
time in Visual Studio. As no model generator in MSDKVS
is currently available, basic reference links are added inside
the model’s XMI representation file to check the validity of
those.

8.2.1 EMF to MSDKVS

A subset of eight Ecore metamodels was chosen based on
the previous quantitative metrics distribution and qualitative
analysis. Table 8 shows the results of the validity checks for
different criteria in addition to the layout of the transformed
Sirius components in terms of coloring, labeling, and more.
Each metamodel was used to generate ten different model
files. These files were then transformed using the M1 trans-
formation.

• Class transformation: For every model used, the class
transformation resulted in correctly mapped class enti-
ties on the target platform, having the correct naming
based on the mapping information created in the M2
transformator. If a class had been duplicated and renamed
by applying the strategies on the M2 transformator as a
result of the expansion strategy, transforming multiple
inheritance structures to single inheritance structures, the
correct type could be identified accordingly.

• Attribute transformation: Same as for the class transfor-
mation, every class entity contained the correctlymapped
attributes, data types, default values, and enumeration lit-
erals.

• Relationship transformation: Regarding the validity of
the relationship transformation part, only the c_sharp
metamodel proved to be invalid, as it contains multiple
inheritance structures nested within multiple inheritance
structures, thus resulting in wrongly resolved references.
Regarding the containment, simple, and bi-directional
references, the transformed MSDKVS models proved to
be valid in terms of syntax and semantics.

• Inheritance transformation:Asmentioned before, inher-
itance relationships regarding nested multiple inheri-
tances were the only recognized error-prone aspect of
the M1 transformation. As nearly all of the metamodels
used in the M2 transformator did not use such complex
multiple inheritance trees, one can infer that these occur
very rarely.

• Layout behavior: Regarding the correct and identical
visualization of model content on the modeling canvas
inside the platform’s run time instances, half of the mod-
els had Sirius VSMs available, all of them showing valid
and identical model shapes based on the transformed
metamodel files. If there was no graphical representa-
tion available, the inherent tree structures were used for
comparing both model contents, which is reflected in the
abstract syntax information listed in the other columns.

8.2.2 MSDKVS to EMF

In the scope of this paper’s M1 transformator evaluation,
models for the selected DSLs have been created manually,
best resembling the mentioned parameterized generation of
models on the EMF side. As creating different models based
on the transformed metamodels is a time-consuming task,

Table 9 Model transformation
results for transformation
direction MSDKVS to EMF

DSL Validity

Class Attribute Relationship Inheritance Layout OE1 UFF2 ER3

Agilemodeler 4/4 4/4 4/4 4/4 4/4 ✗ � ✗

Candle 4/4 4/4 4/4 4/4 4/4 ✗ � �
fwk_dsl 4/4 4/4 4/4 4/4 4/4 ✗ � ✗

Generatorlanguage 4/4 4/4 4/4 4/4 4/4 ✗ � ✗

Hostdesigner 4/4 4/4 4/4 4/4 4/4 ✗ ✗ ✗

mbrdcmdmi 4/4 4/4 4/4 4/4 4/4 ✗ � ✗

Mobiledsl 4/4 4/4 4/4 4/4 4/4 ✗ � ✗

Spllanguage 4/4 4/4 4/4 4/4 4/4 ✗ � ✗

1 Indicator for containing at least one OmitElement XmlRelationshipData
2 Indicator for containing at least one UseFullForm XmlRelationshipData
3 Indicator for containing at least one XmlPropertyData data having Representation attribute set to
“Element”
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we created four models per DSL to show the feasibility and
validity of the M1 transformator.

Table 9 shows the selected DSLs, the number of valid
models for different validity criteria, and also the three
important flags mentioned before that influence how the
model entities are serialized inside the XML files. Typically,
OmitElement has not been set in any of the looked-at
DSL definitions. As UseFullForm is, per default, set to
true when a domain relationship is created, most DSLs use
this feature.

• Class transformation:All class entities to EClass objects
transformations have been executed properly.

• Attribute transformation: Every DSL except candle uses
the default serialization technique for attributes, i.e.,
identical to an XML tag attribute. Candle DSL uses
customized serialization data for one or more domain
properties, such that the model attributes are serialized as
subsidiaryXML tags for the domain class or domain rela-
tionship. TheM1 transformationworks for bothways and
all transformed models were interpreted and displayed
correctly.

• Relationship transformation:TheMSDKVS relationship
serialization is primarily influencedby theOmitEleme-
nt and UseFullForm flags attached to a domain
relationship’s XML data. The mapping information cre-
ated in the M2 step attaches each of these flag values
to the resulting reference mapping, thus being able to
check the valid structure in the model de-serialization to
an element tree used for traversing and transforming to
the correct representation on the EMF side. Regarding
our input DSLs, typically, elements were not flagged as
omitted, as this is the default setting. The hostdesigner
DSLwas the only one,where no full formof relationships
was serialized, thus skipping the XML tags named after
the domain relationship name itself. The M1 transforma-
tor works either way, correctly identifying and looking
up the corresponding EReference based on the source
and target values available through the Class Mappings
retrieved from the Reference Mappings.

• Inheritance transformation: As MSDKVS only offers
single BaseClass references from domain classes and
domain relationships, no complex structureswere present
in the source model collection. This resulted in equal sin-
gle inheritance ESuperType relationships on the target
side, simplifying finding the correct type of an EClass,
with or without having multiple nested inheritance rela-
tionships.

• Layout behavior:MostMSDKVSDSLs found contained
graphical syntax elements, resulting in Sirius VSMs
on the EMF-side after transformation. This enabled us
to also validate the correct visualization properties for
those DSLs. Regarding the input set of manually created

models, the M1 transformation produced satisfying and
graphically similar results on the target side, with some
minor changes regarding especially the sizes of produced
shapes when the diagram representation is first opened,
as these values are dynamically created.

• OmitElement behavior: As no DSL contained domain
relationships flagged by the “OmitElement” attribute,
this behavior could not be evaluated entirely.

• UseFullForm behavior:As mentioned before, by default
this is set to true, meaning that the references inside the
model classes result in more subsequent XML tags. The
M1 transformator adapts its de-serialization of the model
file based on the instructions received from finding the
correct reference mapping.

• ElementReference behavior: Both MSDKVS styles for
serializing domain properties (i.e., as Attribute and
as Element) resulted in valid target models correctly
interpreted by the Ecore system.

8.3 Limitations

One major limitation is the requirement of always having
an element from the abstract syntax definition acting as the
root element, be it either in MSDKVS, where this require-
ment for the M2 transformator originated (see Sect. 6), or
EMF, to read the model file correctly. The generator [1]
used for generating a number of models based on Ecore
metamodels, as stated, targets “... any non-abstract EClass
without a required containing EReference...” for a potential
root element. This sometimes results in XMImodel files with
no concrete metamodel root element as the XML root tag,
making transforming them impossible based on the current
approach. When a model is manually designed in a runtime
instance of a metamodel in Eclipse, one has to define the root
element beforehand when the model file is created. There-
fore, only metamodel instances in EMF where a designated
root element could be extracted that is able to contain all
remaining syntax elements were used for model generation
and evaluation of the M1 transformator.

This also leads to the M1 transformation only being able
to transform one model file at a time, thus no referencing
model entities in other files, especially in EMF, is supported.

The next limitation relates to the unavailability of an
MSDKVS model generator. Although, with the help of the
platform’sAPI and theT4 templating engine, itwould be pos-
sible to edit model files in the experimental runtime instances
ofVisual Studio programmatically and thus eventually realiz-
ing a rudimentarymodel generator, the evaluationmentioned
above relied on manually creating the source models. This
can be added to the list of future work.
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9 Conclusion

In the course of this paper, interoperability between the two
metamodeling platforms EMF and MSDKVS has been con-
ceptualized, implemented, and evaluated. A bidirectional
transformation bridge to transform metamodels and models
between both platforms was implemented. The evaluation
was conducted by using a representative set of diverse and
publicly available metamodels and DSLs6, and generated
or manually created models. By providing mapping rules
for the graphical notations available in both metamodel-
ing platforms, we showed that it is possible to transform
means of graphically representing elements of transformed
metamodels to achievenot only syntactic but alsovisual inter-
operability.

Future research aims to further extend the interoperability
by looking at the available query languages, like OCL and
AQL. Another line of research targets round-trip transforma-
tions by, e.g., extending the available mapping information
file resulting from the M2 transformation with additional
information. Moreover, the bridge itself does offer a wide
variety of opportunities, not only from a scientific point of
view but also from a more practical one, e.g.:

• Developers can benefit from our concrete syntax map-
pings when realizing their own bridges. Our approach
adds insights into recognizing, abstracting, and grouping
concrete syntax structures on top of the known abstract
syntax.

• With every new bridge, like the one we presented,
the community gains insight into what the most pop-
ular structures and features, regarding graphical and
abstract syntax, of metamodeling platforms are. This
could inform a deep systematic comparison of the avail-
able (and future) platforms.

• Developers, having decided to use EMF or MSDKVS,
are not locked in anymore. Instead, they can now trans-
form their developedmetamodels into initially equivalent
artifacts on the respective target platform.

As new metamodel platforms are being developed regu-
larly, seeing the importance of bridging these environments
and chaining them together can be beneficial and motiva-
tional in terms of integrating possible access points early on
in the new metamodeling platforms themselves, e.g., an API
that can be easily integrated into existing M3B tools, a stan-
dardized exchange format, or a graphical interface for easy
usage and extractability. Web-based platforms like GLSP

[34] and the development of (web-based) modeling tools are
receiving a huge focus in the modeling communities [35].
The paper at hand has the potential to inform the development
of these newplatformswith the intent to have interoperability
with currently established metamodeling platforms in mind.

Stronger toolchains and the possibility to migrate legacy
systems developed in old environments that are no longer
receiving support from the developers are a welcoming
change that eliminates the burden for developing teams using
these legacy systems to transport their code bases to new
platforms. With the help of developers working on bridging
frameworks, the fear of having to scratch existing projects to
use newer technologies is reduced.

The bridge’s code, as well as the full list of selected meta-
models, are available open source, and the transformation
bridge has been deployed as a freely usable ’MSDKVS -
EMF Converter’ service at: http://me.big.tuwien.ac.at/.
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Appendix A Abstract syntaxmapping table

See Table 10.
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Table 10 Comparison of abstract syntax features in MSDKVS and EMF

Criteria Ecore MSDKVS

ASM concepts

Class EClass DomainClass

Relationship EReference DomainRelationship

Attribute EAttribute DomainProperty

Enumerations EEnum DomainEnumeration

Role ✗ DomainRole

Grouping EPackage Language, Namespace

Classes

Abstract classes � �
User-defined root element � ✗

Relationships

Arity binary binary

Composition � �
Multiplicity � �
Inverse � ✗

Endpoints EClass DomainRole

Unique names � (per Class) �
Link to model ✗ �
Attributes

Applicable to EClass DomainClass, DomainRelationship, Shapes

Multiplicity single-/multi-valued single-/multi-valued

Unique � �
Ordered � ✗

Default value � �
Custom data type � �
Access modifier � �
Enumerations � �
Roles

Multiplicity - �
Dependency - DomainRelationship

Inheritance

Single/multiple multiple single

Instantiation single single

Class inheritance � �
Relationship inheritance ✗ �
Validation � �
Constraint language OCL GPL (C#, VB)

Appendix B Graphical concrete syntax map-
ping table

See Tables 11, 12 and 13.
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Table 11 Comparison of graphical concrete syntax features in MSDKVS and EMF with regards to their meta-metamodeling concepts

Criteria Ecore (with Sirius) MSDKVS

GCM concepts

Integrated Sirius �
Diagram canvas � �
Diagram elements

Mapped to EClass, ERelationship, EAttribute DomainClass, DomainRelationship, DomainProperty

Class shapes NodeMapping GeometryShape, ImageShape

Relationship shapes EdgeMapping Connector

Composition shapes ContainerMapping CompartmentShape

Attribute layout Labeling DecoratorMap

Special shapes BorderedNode Swimlane, Port

Layers � ✗

Class shapes

Geometries � �
Icons � �
Coloring � �
Layout � �
Class geometries

Four sided shapes Square, Diamond Rectangle

Curved shapes Ellipse, Dot Ellipse, Circle, RoundedRectangle

Special shapes Basic shape, Note, Gauge ✗

Class icons

Image file format � bitmap

Relationship shapes

Line style solid, dot, dash, dash-dot solid, dot, dash, dash-dot, dash-dot-dot, custom

Routing style straight, manhattan, tree rectilinear, straight

Arrowing � �
Coloring � �
Sizing � �
Line styles

Solid � �
Dot � �
Dash � �
Dash-dot � �
Dash-dot-dot ✗ �
Custom ✗ �

Table 12 Comparison of
graphical concrete syntax
features in MSDKVS and EMF
with regards to their
meta-metamodeling concepts
continued

Criteria Ecore (with Sirius) MSDKVS

Tool palette

Sectioning � �
Creation tools � �
Edition tools � implicit

Deletion tools � implicit

Copy paste tools � implicit

Creation tools

Class creation tool Node Creation Element Tool

Relationship creation tool Edge Creation Connection Tool
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Table 12 continued Criteria Ecore (with Sirius) MSDKVS

Composition creation tool Container Creation Element Tool

Filter mechanisms

Mapping filter � ✗

Variable filter � ✗

Table 13 Comparison of
graphical concrete syntax
features in MSDKVS and EMF
with regards to their
meta-metamodeling concepts
continued

Criteria Ecore (with sirius) MSDKVS

Routing styles

Straight � �
Manhattan � rectilinear

Tree � ✗

Composition shapes

Geometries � �
Icons � �
Coloring � �
Layout � �
Background style � �
Inner shapes � ✗

Composition geometries

Gradient � �
Parallelogram � ✗

Image � ✗

Appearance

Fill Color � �
Gradient � �
Coloring

Named colors � �
RGB � �
Style

Border Line Style, Size, Color Line Style, Size, Color

Background � �
Foreground � �
Labeling � �
Labeling

Sizing � �
Formatting � �
Alignment � �
Offsetting ✗ �
Positioning � �
Inheritance

Shape inheritance ✗ �

Appendix C Transformation approaches

See Table 14.
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Table 14 List of approaches and implementations regarding the transformation of investigated tools and their metamodeling concepts

Tools Language Source available Executable

ADOxx2EMF [6] Java �1 �
MetaEdit+2EMF [25] Java (Eclipse Plug-in) �2 -8

Visio2EMF [30] Java �3 -8

Aris2EMF [26] ARIS-Script ✗ ✗

DSLTools2EMF [4] Java �4 ✗

Excel2SoftwareQualityControl [3] Java �5 ✗

SoftwareQualityControl2Mantis [3] Java �6 �
SoftwareQualityControl2Bugzilla [3] Java �7 �
GME2EMF [14] Java ✗ ✗

1https://me.big.tuwien.ac.at/adoxxemf/
2http://www.informatik.uni-leipzig.de/~kern/metaedit.emf.bridge_1.1.0.jar
3http://sourceforge.net/projects/visioemfbridge/
4https://www.eclipse.org/atl/atlTransformations/DSL2EMF/DSLBridge.zip
5https://www.eclipse.org/atl/atlTransformations/MSOfficeExcel2SoftwareQualityControl/MicrosoftOfficeExcel2SoftwareQualityControl.zip
6https://www.eclipse.org/atl/atlTransformations/SoftwareQualityControl2MantisBT/SoftwareQualityControl2MantisBugTracker.zip
7https://www.eclipse.org/atl/atlTransformations/SoftwareQualityControl2Bugzilla/SoftwareQualityControl2Bugzilla.zip
8 Could not be validated due to involvement of proprietary platforms
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