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Charge Transport in Interband Cascade Lasers: An Ab-Initio
Self-Consistent Model

Andreas Windischhofer,* Nikola Opačak, and Benedikt Schwarz*

Interband cascade lasers (ICLs) stand out due to their low threshold current
and minimal power consumption, rendering them viable sources for compact
and mobile devices in the mid-infrared. Since their first demonstration, they
experienced major performance improvements. Mostly they originate from
either improved material quality or the outcomes of numerical analysis of
secluded parts. Encouraged by the impact of secluded models, an ICL-specific
simulation tool can lead to performance breakthroughs and a better
comprehension of governing mechanisms. Drawing from an evaluation of
existing tools designed for quantum cascade structures, a self-consistent
density matrix rate equation model is implemented to simulate the transport
in both conduction and valence band heterostructures. Albeit the extensive
inclusion of the quantum effects, special care was taken to maintain a high
numerical efficiency. The charge transport model additionally considers optical
field calculations, allowing for predictive calculations of light–current–voltage
curves. The model is benchmarked against well-established ICL designs and
demonstrate reliable performance predictability. Additionally, detailed insights
into device characteristics extracted from the model are provided. This
ultimately allows to deepen the understanding of ICL and not only refine
existing ones but also generate novel optimized designs.

1. Introduction

The mid-infrared (MIR) spectral region offers a variety of
unique applications, such as gas trace sensing, spectroscopy, and
telecommunication. Coherent and compact light sources avail-
able for 3–10𝜇m are mostly Quantum cascade lasers (QCLs) and
Interband cascade lasers (ICLs). When the demands come to
low threshold currents and low power consumption in the 3–
5𝜇mwavelength range, the ICLs are the go-to sources.[1] Modern
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applications that prioritize compact and
battery-operated devices can largely ben-
efit from the unique characteristics of
an ICL.
The concept of ICLs was first in-

troduced in the seminal work of
Yang,[2,3] around the time of the first
QCL demonstration.[4] Driven by appli-
cations, significant work was put into
QCL-related research over the years,
which continuously enabled new perfor-
mance records. The first demonstration
of an ICL was shown in 1997 at cryo-
genic temperature.[5] In the following
years, ICLs have garnered increasing
attention and undergone significant
enhancements, resulting in their cur-
rent capability to emit several hundred
milliwatts of optical power.[1,6–9]

ICLs incorporate the cascading prin-
ciple of QCLs, wherein electrons tra-
verse multiple periodic stages, leading
to photon emission via an optical tran-
sition within each period. While the op-
tical transition in QCLs takes place be-
tween subbands within the conduction

band, the ICL adopts an interband transition, typically within the
so-called W-quantum well (QW).[2,3]

The rapid progress of theQCL performance was facilitated by a
tight interplay between experimental observations and solid the-
oretical and numericalmodels.[10–14] Over the years, various types
of models evolved into regular tools for understanding and opti-
mizing QCLs.
On the other side, most of the progress in ICLs emerged

from enhanced technology and design adaptations deduced from
experimental and phenomenological observations. While some
works backed up their observation with theoretical descriptions,
they emphasized on secluded parts. Nowadays ICLs profit from
important design innovations, such as deploying aW-shapedQW
as an active region[15] and adapting the doping to rebalance the
carriers.[16] A recent fundamental insight in ICL design demon-
strated that intervalence-band absorption represents a major ob-
stacle for ICL performance.[17] By careful adjustment of the layer
thicknesses, the authors of Ref. [17] could show that the losses
due to intervalence-band absorption can be reduced and thereby
also reduce the threshold current.
While already restricted models of secluded parts can lead

to new designs, a full transport model promises a comprehen-
sive deepening of our understanding of the governing mecha-
nisms in these devices. We expect a full transport model to be
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capable of calculating the characteristic light–current–voltage
(LIV). Thereby, it shall rely only on known material parameters
andmake sure all parts are logically consistent among each other.
Such an ab-initio model enables predictive calculations.
Within this work, we will present a numerical cost-effective

model for ICLs that incorporates ab-initio charge transport and
calculations of the light field. We initially provide a concise
overview ofmajormodeling approaches established in QCLs, fol-
lowed by the presentation of the necessary generalization of the
model for its application to ICLs. We will discuss encountered
challenges and the approaches to tackle them. In order to push
the performance of ICLs further, we aimed to develop a model
that allows us to gain an understanding of the underlying mech-
anisms and enable predictive design improvements. The simula-
tion tool is evaluated based on selected experimental results from
the literature, where we also gain new insights into key properties
of ICLs.

2. Results

2.1. General Introduction to the Model

In order to choose a suitable model for ICLs, we first evalu-
ate existing models for QCLs. The development of QCLs has
been significantly pushed since its discovery, owing much to
extensive modeling efforts. The approaches to the modeling
span from simple and numerically-efficient empirical rate equa-
tion models, up to computationally expensive and sophisticated
non-equilibrium Green’s functions. The twofold intention for
our ICL model is to enable design improvements and to quickly
test new innovative ideas. This clearly underscores the need for
reasonable computation times, while also emphasizing the ne-
cessity for a detailed description to accurately predict all rele-
vant mechanisms.
A good compromise between computational effort and accu-

racy is a semi-classical rate equation approach. In this case, a
QCL is described as a set of quantized eigenstates, also called sub-
bands, which result from the confining heterostructure potential.
The carrier transport is described by rate equations with explicitly
calculated transition ratesWif from a subband i to f - often also
expressed as inverse lifetime 1∕𝜏if . In order to find the popula-
tion of each subband, the summation of all rates—possibly orig-
inating from various scattering mechanisms—is fed into a rate
equation that collects the currents going out and in of a subband.
The rate equations can be written by explicit sums[18]

dni
dt

=
f =Nsb−1∑
f =0 , f ≠i

nf
𝜏fi

−
ni
𝜏if

(1)

or also denoted in a linear matrix representation

d
dt
n = An (2)

where ni is the population of the i-th subband and n a vector of
the length Nsb that collects the populations of all subbands, and
A being a matrix whose elements are the inverse lifetimes. In

such a semiclassical rate equation model, all rates originate from
incoherent scattering mechanisms described by Fermi’s golden
rule. The Ref. [19] gives an excellent review of various scattering
mechanisms. Extending this approach leads to a microscopic 3D
description that includes an explicit k-space-resolved dispersion
Ei(k).

[20]

An extension of the semi-classical model by means of a
density-matrix formalism can also consider quantummechanical
processes such as coherent resonant tunneling.[20,21] Compared
to the semiclassical rate equation model, the numerical cost of a
density-matrix model scales up rapidly, especially when employ-
ing k-space-resolved subbands. In order to alleviate the numeri-
cal cost of the model, a single period of the QCL structure can be
split into sub-period sections as indicated in Figure 1a on the ba-
sis of an ICL.[22] Within such sections, the charge transport can
be solved using self-consistent incoherent rate equations. The
transport between neighboring sections is modeled by sequen-
tial resonant tunneling.[22,23] Due to the strict separation between
tunneling and incoherent scattering, there are never both mech-
anisms acting on one transition between two subbands. This al-
lows a reduction of the density matrix problem to a linear rate
equation in the form of Equations (1) and (2), with a resonant
tunneling contribution.[22] By this strategy, the complexity of a
full density-matrix formalism can be reduced, while still includ-
ing selected quantummechanical effects. In fact, this chosen ap-
proach is actually computationally more efficient than a pure in-
coherent model, as splitting one cascade into multiple smaller
sections leads to a speed-up due to a smaller total number of sub-
band pairs, which outweighs the added costs to calculate tunnel-
ing.
In order to calculate a LIV curve, a term that accounts for

the stimulated emission is included in the rate equationWopt
if ∝|||Oif

|||2 PL(𝜔). The optical transition rate Wopt
if depends on the

intracavity intensity P and the optical matrix element Oif . For
a slightly detuned transition, we consider a lineshape function
L(𝜔), typically a Lorentzian function. An increasing P leads to
gain saturation due to a reduced population inversion. Within a
root finder (indicated by the second loop in Figure 1b), the popu-
lation solver runs with adapting P until the condition Γg − 𝛼 = 0
is satisfied, with 𝛼 being the waveguide losses, Γ the confinement
factor to the active region, and g the total optical gain. Figure 1c
shows the spectral behavior of the calculated gain, with clearly
visible shifting of the position of the gain peak with increasing P,
which is also considered by the root finder.
With this, we introduced the concept for a k-space resolved

rate equation model that includes sequential resonant tunneling
mechanisms derived from the density matrix formalism. This is
a known modeling strategy for QCLs in the MIR as well as in the
THz.[22,26] We chose this method for its balanced degree of com-
plexity versus efficiency. The main advantage for ICLs is that it
allows modeling the semimetallic interface, which constitutes a
special band alignment with the valence band maximum above
the conduction band minimum, without the need for mixed
valence-conduction band states.[24] In the following, we focus on
the requiredmodifications to the individual building blocks illus-
trated in Figure 1b. These modifications are needed to support
combined transport in conduction- and valence-subbands.
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Figure 1. a) Bandstructure of an exemplary ICL. The displayed heterostructure shows the three sections of an ICL period, the W-QW, h-injector, and
e-injector. Additionally, the first section of the subsequent period Λ = +1 and the last section of the preceding period Λ = −1 are shown. The potential
landscape includes a linear drop due to an applied bias, and bending from the electrostatic Hartree potential. We display only subbands that are relevant
for transport. A red/blue hue represents the relative hole/electron concentration. b) A flowchart of the simulation tool indicating the individual steps
and the necessary loops to facilitate self-consistency. c) Gain saturation due to the increasing light intensity. The correct output power P is found by
increasing the internal photon flux until the gain saturates to zero. d) Exemplary inelastic intervalence-band transition. Due to the non-trivial and possible
non-injective nature of the dispersion relation of subbands E(k), rate calculations need to take into account multiple target states ik → f k′1, f k

′
2.

2.2. ICL-Specific Extensions

Even for QCLs, a complete transport model can lead to extensive
numerical costs, which only worsen in the case of ICLs. Many
works simplify certain parts of their model to speed up the calcu-
lation, such as neglecting non-parabolicity, Pauli-blocking due to
a finite final state population, or a self-consistent Schrödinger–
Poisson solution. In the following, we will discuss the conse-
quences of extending typical QCL models to ICLs. The structure
follows the flowchart from Figure 1b.
k ⋅ p-Solver: The basis of all the following calculations is the

electronic structure. The multiband k ⋅ p-method combined with
the envelope function approximation is a widely used method
for modeling semiconductor heterostructures, such as quantum
wells, superlattices, and semiconductor lasers.[27] The number
of involved bulk bands used in the applied k ⋅ p-method needs
to be carefully chosen. To model QCLs, it is sufficient to use a
two-band k ⋅ p-model. For large band gap materials, considering
conduction and valence bands separately can be a good approxi-
mation. On the other side, for narrow band gapmaterials, such as
InAs and InSb, it is advised to consider multiple bands and their
coupling.[28,29] An eight-band k ⋅ p-model includes the coupling
between the lowest conduction band (CB), the three highest va-
lence bands (heavy holes HH, light holes LH, and split-off SO),
and the spin-orbit interaction.[30] Within this formalism, strain is
considered, so an arbitrary strain configuration still leads to the
expected electronic properties.
The coupling of the bulk bands affects the energy at the Γ-point

as well as the in-plane dispersion relation E∥(k). This leads to a

dispersion relation that is hardly approximated by a constant ef-
fective mass, which becomes highly relevant in type-II W-QW
structures. The subbands in the valence band particularly exhibit
a k-dependent effective mass with values smaller around the Γ-
point than for higher momentum.[31] In general, we expect arbi-
trary forms of dispersion relations.
For the results presented here, we used an exact block-

diagonalized four-band k ⋅ p-model[30] with spin-degenerated
subbands instead of an eight-band model.[32–34] It works in sym-
metry directions exactly. The approximation assumes using only
one spin direction. We samplewise verify that the solution does
not differ significantly from the eight-band model. We chose this
to speed up the calculations. In order to reconstruct the disper-
sion, we run the k ⋅ p-solver for multiple k (N = 16) in the range
from 0 to 1.6 ⋅ 109m−1 and subsequently do a cubic-spline fit for
each subband. We employ the material parameters based on the
Ref. [34].
Poisson Equation: In ICLs, the typical populations are signif-

icantly larger than in QCLs, and thus, the impact of the charge
distribution onto the electronic potential via the so-called Hartree
potential 𝜙Hartree must be considered. It can be obtained from
the Poisson equation and is a result of the electrostatic poten-
tial due to charge accumulation. Since the charge distribution is
not known a priori, a self-consistent Schrödinger–Poisson loop is
required, as illustrated in Figure 1b. Figure 1a indicates the sub-
bands of an ICL including the Hartree potential that is obtained
from consequently solving the transport.
Tunneling Rates: Various works suggest a so-called first-order

tunnelingmodel[12,22] as suitable for QCLs. The first-order model
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conserves the momentum, which only holds for subband dou-
blets with a small energy difference, and thereby it holds suf-
ficiently for QCLs.[12] At a semimetallic interface, this does not
hold anymore due to the opposite in-plane band curvature. With
larger momentum, the energy difference grows. The second-
order treatment as shown in Ref. [35] and discussed in Ref. [23],
allows transitions between subbands with different momentum.
For our model, we chose an effective modification to the first-
order model as suggested in Refs. [22, 23, 36]. The tunneling rate
gets modified by an additional term 𝜎ik,jk′ . This effective parame-
ter depends on the population and enforces energy conservation.
Its application is equivalent to applying the tunneling rate in the
rate equation as an elastic-like process.[26] Effectively this forbids
transitions outside the energy region where there is no energetic
overlap between the subbands.
A flaw becomes apparent for low bias as long as there is no

energetic overlap. Our model would forbid any current flow in
such a case. From a numerical point of view, this blockade be-
tween the two sections, leads to unstable solutions of the rate
equation solver. To tackle this problem we added an empirical
rate with a lifetime of 180 ps between the energetic highest sub-
band from the hole (h)-injector to the lowest subband from the
electron (e)-injector. This introduces a small transition across the
semimetallic interface, which becomes negligible as soon as the
subbands align and the tunneling transitions set in.
Scattering Rates: From Fermi’s golden rule we obtain the

transition rateWik,f k′ in a k-space resolved form

Wik,f k′ =
2𝜋
ℏ
|⟨f k′|V|ik⟩|2𝛿(Ef k′ − Eik ± ℏ𝜔

)
(3)

where V is the interaction potential and ik and f k′ are the ini-
tial and final scattering states. The Dirac function 𝛿(E) enforces
the energy conservation and consequently determines the k′

matching to an initial state k for a given interaction energy ℏ𝜔.
For parabolic subbands, k′ can be calculated analytically using
effective masses.[18,19] In the case of non-parabolic subbands,
k′ needs to be numerically computed. The computation of the
matrix element accounts for all contributions given from the
Hamiltonian—in our case the CB,HH, LH, and SO.We consider
longitudinal optical phonons and interface roughness scattering
within this formalism. For elastic processes, no energy transfer
is involved, and therefore 𝜔 = 0.
Our implementation of the k ⋅ p-model gives a set of subbands

whose dispersion relation is saved as a cubic spline fit. Via an ef-
ficient root solver for the cubic splines, we can find the final state
f k′ given the initial states ik and the scattering transition energy
ℏ𝜔. Due to the non-injective nature of valence subbands’ disper-
sion E(k), multiple final states can occur. They are all treated as
viable individual transitions from ik to f k′n with n denoting the
n-th root of the spline, as illustrated in Figure 1d.
In order to decouple the computation of the scattering

rates from solving the rate equations, we seek a population-
independent form of the scattering rates. For subbands with low
carrier density, one can assume Boltzmann statistics within the
subband. When Boltzmann statistics are used, an averaged rate
Wif between two subbands can be given without prior knowledge
of the population and, therefore, independent from the solution

of the rate equation.[19] In QCLs, this assumption is typically a
valid approximation and simplifies the numerical implementa-
tion. However, for ICLs, we need to use Fermi–Dirac statistics,
since we expect significantly higher carrier densities. In order to
keep a constant scatteringmatrix for this case as well, we save the
non-averaged, k-resolved transition rate. This is required, as the
calculation of the transition rates is among the most computa-
tionally demanding parts of the model. Any recalculation of rates
should be avoided if possible.
For our implementation, we decided to define an equidistant

grid in the in-plane wavevector k instead of the energy. An im-
mediate advantage is that all subbands can be discretized using
the same grid, independent of their energy. Furthermore, this
approach offers inherently higher energy resolution around the
Γ-point, where we expect the majority of the relevant scattering
processes to happen. Note that, we nevertheless perform the nu-
merical integration of the rates on the resulting non-equidistant
energy grid, derived from the k grid, in order to ensure energy
conservation. All transition rates are assigned and saved to their
k grid point. The following calculations give more details about
these essential transformations.
The current from an initial subband i to a final subband f can

be described with averaged rates as Jif = −e(Wif −Wfi) whereas

Wif is obtained as averaged rate fromWik,f k′

Wif =
∑
k

∑
k′

Wik,f k′ fi (Eik)
(
1 − ff

(
Ef k′

))
(4)

where fi is the Fermi–Dirac distribution for the subband i with a
quasi-Fermi energy EFi which is omitted in the notation. The term
(1 − ff (Ef k′ )) accounts for Pauli’s exclusion principle. The sums
can be converted to integrals using the density of states.[18,19] To
this point, we are handling 2D in-plane wave vectors that can be
further expressed in polar coordinates, which is especially con-
venient for symmetric subbands. For a single wave vector, this
conversion is written as

∑
k

… →
2

(2𝜋)2 ∬
∞

−∞
… d2k

= 2
(2𝜋)2 ∫

∞

0 ∫
2𝜋

0
… kdkd𝜙 ≈ 1

𝜋 ∫
∞

0
… kdk

= 1
𝜋 ∫

∞

E(0)
… k

(
dE
dk

)−1

dE , (5)

with a factor 2 for the spin degeneracy. The integral d𝜙 is re-
solved by assuming an axial-symmetric subband – and therefore
is constant in 𝜙. Especially for transport in valence subbands, the
anisotropy in the in-plane k-space can play a crucial role as indi-
cated in.[37–39] We tested the axial-symmetric approximation for
the optical matrix element and, thereby, for the photon scattering
rate, to hold sufficiently, as further shown in the Supporting In-
formation.
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This conversion is now applied to Equation (4) for final and
initial wavevectors, and together with Equation (3) gives

Wif =
2
𝜋ℏ ∫

∞

Ei(0)
∫

∞

Ef (0)
|⟨f k′|V|ik⟩|2 𝛿(Ef k′ − Eik ± ℏ𝜔

)
fik(1 − ff k′ )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
g(ik,f k′)

× kikf

(
dEi
dki

)−1
(
dEf
dkf

)−1

dEidEf , (6)

with ki and kf describing the magnitude of k and k′. In the next

step, we discretize it on the k-grid notated with kim (k
f
n) where i (f )

stands for the initial (final) subband and m (n) are the element
indices,

Wif =
2
𝜋ℏ

∑
m

∫
Ei(k

i
m+Δk)

Ei(k
i
m−Δk)

∑
n
∫

Ef (k
f
n+Δk)

Ef (k
f
n−Δk)

g(ik, f k′) kikf

(
dEi
dki

)−1

×

(
dEf
dkf

)−1

dEidEf (7)

The non-injective nature of the subbands needs to be considered
whenwe evaluate the Dirac function. The summation ofmultiple
final states follows the fundamental principle of the Dirac delta
function 𝛿(g(x)) =

∑
n

1|g′(xn)|𝛿(x − xn). We omit this sum in the

calculations for readability; it simply allows us to add the rates
for each solution of f k′n.
Both integrals with their finite intervals can be rewritten for

infinite intervals using a rectangular window function defined
as

hi,m(Ei) =

{
1 Ei(k

i
m − Δk) ≤ Ei ≤ Ei(k

i
m + Δk)

0 else,
(8)

and analogously for f , as sketched in Figure 2. This transforma-
tion gives

Wif =
2
𝜋ℏ

∑
m

∫
∞

−∞

∑
n
∫

∞

−∞
hi,m(Ei)hf,n(Ef )g(ik, f k

′) kikf

×
(
dEi
dki

)−1
(
dEf
dkf

)−1

dEidEf (9)

In this form, we can easily evaluate the integral dEf and the Dirac
function, so we get

Wif =
2
𝜋ℏ

∑
m

∑
n
∫

∞

−∞
hi,m(Ei)hf,n(Ei)|⟨f k′|V|ik⟩|2 fik(1 − ff k′ ) kikf

×
(
dEi
dki

)−1
(
dEf
dkf

)−1

dEi (10)

We can unite the two window functions to a new one h(Ei) =
hi,m(Ei)hf,n(Ei) with thewidthΔEm,n. For the numerical implemen-
tation, we approximate the remaining integral

Wif ≈
∑
m

∑
n

2
𝜋ℏ

ΔEm,n|⟨fkfn|V|ikim⟩|2kimkfn(dEi
dki

)−1|||||ki=kim
(
dEf
dkf

)−1|||||kf =kfn
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Am,n

fi(Ei(k
i
m) − EFik)(1 − ff (Ef (k

f
m) − EFfk)) (11)

The presented notation allows us to perform the computationally
expensive calculations of the elements Am,n only once for a given
electronic structure. However, the elements do not directly read
as scattering times. Only after establishing the Fermi-energies
through our population solver presented in the next section can
we calculate the rateWif as shown in Equation (11).
Population Solver: The population is obtained by setting up

the system of rate equations and solving it in a steady state
dn∕dt = 0. As discussed above, for ICLs we must use the Fermi–
Dirac distribution within the subbands, which makes the scatter-
ing rates between subbands dependent on the population. How-
ever, a system of equations with constant rates is desirable be-

Figure 2. To obtain a scattering rate independent from the population, we
calculate and save the scattering rates k-space resolved. The discretization
in k leads to a grid denoted with an indexm or n and a non-equidistant grid
in energy. The borders of the integral are limited by the overlap of both
window functions hi,m and hf,n. For a discretization of the integral for one
scattering transition from m to n, we take the width ΔEm,n and evaluate
the matrix element at corresponding k values.

Laser Photonics Rev. 2024, 2400866 2400866 (5 of 10) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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cause it can then be solved separately from the rate calculations.
As the k-space ratesWik,f k′ do not depend on the population, we
write a k-space resolved rate equation in matrix form according
to Equation (11), where the populations for subband i at k-point
kim are represented with a vector n of length number of subbands
Nsb times number of k-grid points Nk,

d
dt
n = diag(1 − f )Af (12)

where f = f (Ei(k
i
m) − EFik) is a vector of same dimension as n, EFik

is the Fermi-energy of the state |ikim⟩. Note that the elements of
A implicitly contain the density of states. In such a system the
scattering matrix A is constant for non-radiative and single elec-
tron scattering mechanisms. Stimulated emission and electron–
electron scattering to describe the Auger recombination are thus
treated separately.
The rate equations, being a set of ordinary differential equa-

tions, are robustly solved for the Fermi-levels EFik by numerical
integration from an initial value with an implicit method based
on backward-differentiation formulas as described in Ref. [40].
The implemented direct nonlinear steady-state solver is compu-
tationally more efficient but requires a proper initial condition
for reliable operation.We assume that intrasubband scattering ef-
fects are sufficiently strong in order to thermalize the subbands,
which was realized by adding an artificial intrasubband thermal-
ization rate. Thereby, all EFik within one subband i converge to one
value, which consequently allows us to use reduced quasi-Fermi
energies EFi for further calculations.
For both numerical solvers, it is absolutely crucial to utilize

an analytic Jacobian of Equation (12) with the set of input vari-
ables EFik to ensure a stable numerical solution. The Jacobian ma-
trix is commonly used in root solvers and describes a first-order
derivative. For general vector-functions g(xn) with multiple input
variables xn, the elements of the Jacobian matrix are given by
Jij = 𝜕gi∕𝜕xj. A numerically approximated Jacobian is challenged
by the Pauli-blocking term 1 − f when f is close, but not equal, to
one. More details on the implementation of the Jacobian matrix
are shown in the Supporting Information.
A final modification to the non-linear rate equation is needed

to allow the incorporation of Auger-type processes. Auger recom-
bination is recognized as a significant factor in ICLs, operating as
a competing interband transition mechanism that obstructs the
lasing transition. These are considered to be higher-order scatter-
ing processes, which prevent the implementation into the scat-
tering matrix A in the same way as the other one-body scattering
effects. Albeit its importance, a first-principle, microscopic im-
plementation of Auger recombination is complex and extremely
computationally expensive, especially when compared to one-
body scattering effects such as phonon-induced scattering.[18] In
our model, we implemented the Auger process only for the las-
ing levels, using a phenomenological model that is benchmarked
against experimental data. Thus the Auger rate WAuger

ul from the
upper u to the lower l lasing level is given by

WAuger
ul = wnnpn

2p + wnppnp
2 (13)

with n (p) being the electron (hole) sheet densities in the up-
per (lower) lasing level, and wnnp (wnpp) as Auger coefficients. In

agreement with the literature, we keep the coefficients equal.[16]

We found 2 ⋅ 10−23cm4 s−1 to give a great match with the experi-
mental data.
Calculate Gain: For the computation of the rate due to in-

teraction with photons, we once again need to carefully evalu-
ate the matrix element for each k. This needs to be done with
careful consideration of the polarization selection rules since op-
tical transitions in the valence band exhibit nontrivial polariza-
tion selection rules.[34] To correctly calculate the gain crosssec-
tion we implemented a generalized momentum matrix element
model.[34,41,42] This includes contributions fromHH, LH, and SO
bands. From the nonparabolicity, the optical matrix element is ex-
pected to strongly depend on k and is therefore calculated in the
k-space.
We chose a semi-empirical model for the dephasing times T2

in the gain calculations. The required phenomenological param-
eters were obtained by adapting the affected characteristics to ex-
perimental data, as elaborated in Section 2.3. For the photon rate,
we use a Lorentzian function

L(𝜔) = 1
𝜋

1∕T2
(1∕T2)2 + (𝜔 − 𝜔ph)2∕ℏ2

(14)

that accounts for line broadening, which is used for all the optical
transitions |ik⟩ to |f k′⟩. A calculation of the dephasing times in-
volves the population and cannot be calculated without its knowl-
edge in the case of highly populated subbands. Therefore, we use
empirical dephasing times T2 that are constant for all k values.
An adequate fit of the model to the experimental data required
at least two different dephasing times depending on whether the
transition is interband or intersubband. In accordance with the
literature, interband transitions (e.g., CB-HH) exhibit a different
broadening than the intersubband transitions (e.g., HH-HH).[43]

We omitted a separate T2 for CB-CB transitions, as they were not
relevant in the energy range of interest. Good values for the inter-
band transitions T Inter

2 were found to be 100 fs and for intraband
transitions T Intra

2 = 70fs.

2.3. Model Benchmark

On the basis of two major experimental design studies,[16,17] we
want to give a qualitative assessment of the model’s predictions.
Intervalence-Band Absorption: The authors of Ref. [17] stud-

ied the influence of the width of the hole-quantum well (h-QW)
from the active W-QW on typical laser performance parameters,
such as threshold current density Jth and its temperature depen-
dence. By a carefully chosen design to minimize valence inter-
subband absorption, they enabled a performance boost toward
longer wavelengths. This approach was further applied to achieve
continuous-wave operation of ICLs above 6𝜇m.[44]

Our novel simulation tool confirms the essential role of va-
lence intersubband absorption, as seen in Figure 3a. For this cal-
culation, we could access the population given by the solution of
the transport model. Note that in Ref. [17], the authors relied on a
best guess for the population of the involved subbands. A reduced
internal absorption consequently leads to a reduced Jth. Further-
more, a guideline for designing the ICL active region is provided
in terms of choosing the optimal h-QWwidth for a desired wave-

Laser Photonics Rev. 2024, 2400866 2400866 (6 of 10) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH

 18638899, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/lpor.202400866 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [25/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.lpr-journal.org
https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Flpor.202400866&mode=


www.advancedsciencenews.com www.lpr-journal.org

Figure 3. a) Absorption spectra for various h-QW widths. Changing the
h-QW width in the W-QW causes a change in the absorption spectra.
Thereby, the structure can be tuned to have the lowest losses at the tar-
get wavelength. At around 𝜆 = 4.3𝜇m a device with a 3.5 nm h-QW has
high losses compared to one with 3 nm, while a 2.5 nm h-QW would have
the lowest losses among those designs. b) Simulated LIVs for three h-QW
widths. The LIVs of the designs from Ref. [17] were simulated using a den-
sity matrix formalism with a self-consistent Schrödinger–Poisson solver.
Grey dashed lines are a linear fit close to the threshold to accentuate the
efficiency droop. The electric field in kVcm−1 can be converted to a voltage
V via a conversion factor 0.0175 with a limited validity. c) Experimental LIVs
for three h-QW widths. For comparison with the simulation results, we re-
ported experimental data from the Supporting Information of Ref. [17] for
the 1.8mm long devices.

length, aiming at the lowest losses due to intervalence-band ab-
sorption. On the basis of three designs with different thicknesses
of the h-QW – 2.5 nm, 3 nm and 3.5 nm – they also showed ex-
perimentally the impact of this mitigation strategy.
We were able to simulate the LIVs for all three design varia-

tions in Ref. [17], as seen in Figure 3b. The calculation of a single

LIV with 24 discrete bias points, took ≈25min on an Intel Core
i9-10980XE central processing unit. The simulated curves follow
the trends of the experimental data, with an excellent match of
the threshold current densities. The 2.5 nm thick h-QW gives
JSimth = 251kA cm−2 from the simulation and JExpth = 247kA cm−2

from experiment. The 3 nm and 3.5 nm thicknesses compare
with JSimth = 307kA cm−2 versus JExpth = 310kA cm−2, and JSimth =
373kA cm−2 versus JExpth = 372kA cm−2, respectively. As it can be
seen in Figure 3b, the slope efficiency also improves for thinner
h-QW, which is also in accordance with the experimental data,
displayed in Figure 3c. Our simulation results suggest a higher
slope efficiency for all three devices. In reference to the exper-
imental data, the simulation differs by 76% for the 2.5 nm de-
vice, and 56%/28% for the 3.0 nm/3.5 nm devices, respectively.
We see themajor contribution to thismismatch, by a reduced col-
lection efficiency in the experiment. The devices presented inRef.
[17] were fabricated as broad area ridges for pre-production tests,
which are known to allow lateral multi-mode states. This again,
leads to a broad emission angle, hindering a rigorous collection of
the entire outputted light. A reduced collection efficiency would
lead to a reduced slope efficiency in the experimental data. Addi-
tionally, our guess for the waveguide losses is subject to uncer-
tainty. This would affect both slope efficiency as well as threshold
current density.
We observed that the experimental current–voltage (IV) rela-

tion shows a steeper slope in the conducting part, as well as a
higher voltage threshold than our simulation results. A possi-
ble explanation is parasitic resistances in laser structures. These
could arise from a small serial resistance given by the cladding,
as well as a large parallel resistance given by side wall currents
and leaky passivation layers. Besides these parasitic influences,
we identified a large influence of the semimetallic interface onto
the IV-relation.More detailed studies on precise band alignments
and higher-order transport effects might be beneficial.
For the gain saturation, we modeled the Fabry–Pérot cavity

with length 1.8mm, width 100𝜇m, as given in Ref. [17], a re-
flectivity of the facets of 32% in accordance with Ref. [45], modal
overlap with the active region of 16%,[46] and waveguide losses
𝛼 = 2.7cm−1. The estimate for the waveguide losses is based on
results from Ref. [17], where the value was extracted by mea-
suring lasers with different cavity lengths. We assume the cav-
ity losses to be in the order of the most optimized device, which
mitigates intervalence-band absorption.
In a prior step, we tuned empirical coefficients for a better

match. From the Auger coefficient, we expected a linear shift of
Jth with respect to wnnp. Our simulations reflect this as depicted
in Figure 4a. Note that not all devices are equally sensitive to the
Auger coefficient. Also, the dephasing times T Inter

2 for interband
transitions, and T Intra

2 for intraband transitions influence the sen-
sitivity of the threshold current on the Auger coefficient, as seen
in Figure 4a. We carefully tuned the dephasing times to match
both the threshold currents and slope efficiency. Searching for
a good agreement between the experimental data from Ref. [17]
and our simulation results, we came to use the following em-
pirical coefficients: wnnp = wnpp = 2 ⋅ 10−23cm4 s−1, T Inter

2 = 100fs
and T Intra

2 = 70fs.
Unquestionably, the lasing subbands are by far the most rel-

evant subbands for optical transitions in ICLs. Nevertheless, we
show that other optical transitions are of relevance as well. Our

Laser Photonics Rev. 2024, 2400866 2400866 (7 of 10) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 4. a) Artificially limiting the optical transitions to just the indicated
levels suggests their impact on the output power. The inclusion of optical
transitions in the h-injector leads to increased losses at higher bias. b) The
impact of dephasing times on the current threshold. The sensitivity of the
Auger coefficient on the current threshold depends on device design, and
also on the dephasing times.

simulation tool can give an idea of the impact of various optical
transitions. When we only consider the lasing levels for the pho-
ton rate, themaximumoutput is obtained, see Figure 4b. Further,
the light-current relation is strictly linear above the threshold.
This does not reflect experimental data, which shows that the effi-
ciency goes down for higher bias currents. Commonly, this effect
is known as efficiency droop.[45] Pulsed measurements ensure
that this is not a thermal-related effect. By including further tran-
sitions within the active W-QW, the output is reduced due to the
intervalence-band absorptions in this section. Both the thresh-
old current and slope efficiency deteriorate. Apart from obvious
deterioration, we note that the output power increases linearly
with current. For a more accurate picture, the intervalence-band
transitions within the h-injector also need to be considered. Note
that no diagonal optical transitions between the sections (indi-
cated by dashed lines in Figure 1a) are included in this model.
The simulation results show an efficiency droop to appear only
when intervalence-band absorption within the h-injector is in-
cluded. When the bias increases, more holes accumulate in the

h-injector. Thereby, the absorption losses are increasing, leading
to the efficiency droop.
Carrier Rebalancing: A major breakthrough in ICL design

was made by adapting the doping in the e-injector.[16] Based on a
quasi-equilibrium distribution calculation, it was shown that ear-
lier devices with low doping have a significantly higher number
of holes in the W-QW than electrons. Highlighting the impor-
tance of the Auger recombination as a limiting factor, both nnp
and npp processes have similar strengths. Therefore, the opti-
mum in terms of Jth is when both n and p concentrations are ap-
proximately balanced. By increasing the doping in the e-injector,
a higher electron density is generated in the W-QW.
Our simulations of the full transport of the structures from

Ref. [16] recreate the experimentally observed trend. In Figure 5a,
we compare two identical designs, only the doping was modified
from 4 × 4 ⋅ 1017 to 4 × 5 ⋅ 1018cm−3. Both designs are simulated
at their respective threshold bias to ensure good comparability.
Increased doping causes a band bending due to the Hartree

electrostatic potential 𝜙Hartree, obtained from the Poisson equa-
tion. The band structures depict the bending due to the Hartree
potential, clearly visible in the e-injector, see Figure 5a. In the
lower subplots of Figure 5a a direct comparison of 𝜙Hartree is
shown beside the carrier densities. In the direct comparison, the
shift of the ratio n to p becomes obvious.
It was experimentally found that a balanced charge carrier den-

sity reduces Jth.
[16] In our first approach, we kept the simulation

parameters identical to the one from the previous study, which
gave us the results shown in Figure 5b in green (Simulation A).
These results indicate an optimumdoping but underestimate the
impact as well as the optimal doping amount. A deviation was
to be expected due to not well-adjusted empirical parameters. It
needs to be considered, that those studies looked at lasers operat-
ing at different wavelengths (≈4.3𝜇m[17] vs ≈3.7𝜇m[16]), which is
expected to affect the Auger coefficients. A detailed microscopic
model is expected to lift this limitation [18,47]. Further, the studies
were grown by different reactors by different groups, which can
affect the dephasing times via the interface roughness.[48,49]

The data from Ref. [16] suggests different losses for the de-
signs, following the trend of the thresholds. In our simulation,
we assume a passive waveguide loss equal for all designs and
assume additional losses to be due to resonant transitions. To
adequately match the increasing losses with higher doping, we
added a model for free carrier absorption,[50] see Figure 5b (Sim-
ulation B). For polarization in x-y, thematrix element of intrasub-
band transitions does not vanish, also not for transitions within
the conduction-subbands. Thereby, an increasing electron con-
centration in the e-injector causes increasing losses, which cause
an increase in threshold current density. Also, the free carrier ab-
sorption in valence-subbands is considered and changes with the
doping. For intrasubband transitions in the conduction band, we
found T2 = 120fs to give a good match. For interband transitions
we kept T2 = 100fs and for transitions in the valence band, we
kept T2 = 70fs. The Auger coefficient for this simulation was set
to 6.5 ⋅ 10−24cm4 s−1 to achieve the bestmatch of the three highest
doped samples.
For lower doping, we suspect the losses to increase due to

unbound-bound transitions in the valence band. For the low-
doped devices, the hole density in the W-QW is higher (see
Figure 5a). Therefore, we expect higher losses from additional

Laser Photonics Rev. 2024, 2400866 2400866 (8 of 10) © 2024 The Author(s). Laser & Photonics Reviews published by Wiley-VCH GmbH
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Figure 5. a) Comparison of a low-doped and a high-doped design. A change of the doping concentration from 4 ⋅ 1017 to 5 ⋅ 1018cm−3 impacts the ratio
of hole to electron concentration in the W-QW. A balanced ratio is expected to lower the threshold currents.[16] A higher doping concentration leads to
a significant Hartree potential 𝜙Hartree that impacts band alignment. b) Comparison of simulated data and experimental data. The simulation results by
our tool of the designs investigated in Ref. [16] are compared with the respective experimental data from the same work. Data from Simulation A takes
the same parameters as in Figure 3, while Simulation B has an additional model for free carrier absorption and lower Auger coefficients.

losses in the valence band that are not yet covered by the model.
Especially for shorter wavelength ICLs, this can be a limiting fac-
tor. Experimentally, this should become obvious when exploring
various material compositions that push the unbound states fur-
ther away.

3. Conclusion

In summary, we have pioneered the development of a self-
consistent charge transport model for ICLs, employing a first-
principle approach. Based on existing models for QCLs, we fol-
lowed a density matrix approach with sequential tunneling to
model the semimetallic interface. Our endeavor involved care-
ful generalizations to adequately describe transport phenomena
within valence subbands.
For a successful numerical implementation, we made a great

effort to keep the scattering matrix in the rate equation indepen-
dent from populations, which led to a k-space resolved rate equa-
tion. To facilitate the convergence of the solver, we made use of
an implicit solving algorithm for the nonlinear k-space resolved
rate equations, as well as provided an analytical Jacobian func-
tion. For the Auger recombination, we resorted to a macroscopic
model with empirical coefficients. The model allows predictive
simulations of LIV characteristics. While this model is capable of
predicting trends and describing complex transport phenomena,
it is lightweight enough to efficiently study design improvements
and implementation of innovative designs.
In our validation process, we conducted a qualitative compar-

ison of our simulation results with findings from two design
studies,[16,17] with good agreement. Despite the few empirical pa-
rameters that were needed, we could show that the sensitivity
to those parameters is reasonably low. This underscores its ef-
ficiency in describing essential transport mechanisms in ICLs

and its viability in studying design modifications. Moreover, the
evaluation of the model yielded deeper insights into the mechan-
ics of ICLs, such as the importance of intervalence-band absorp-
tion in the h-injector and how it induces a significant efficiency
droop. Also, we found indication that free carrier absorption is
another loss mechanism that needs to be considered when de-
signing ICLs. This supports that a significant performance boost
is possible by reducing internal losses.
Future steps on our road map include replacing the empirical

models with exact calculations. We envision that implementing a
microscopic Auger model would make one empirical parameter
dispensable and, therefore, lead to a more generalized model.
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