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Abstract: Amplification of bursts of ultrashort pulses is very challenging when the intraburst
repetition frequency reaches the THz range, corresponding to (sub)-ps intervals between
consecutive pulses. Periodic interference significantly modifies conditions for chirped pulse
amplification (CPA), leading to temporal and spectral distortions during CPA due to optical
Kerr nonlinearity. Multi-pulse chirped amplification to mJ energies may lead to a pronounced
degradation of burst fidelity and the appearance of periodic temporal satellites after de-chirping
the amplified waveform. We study, experimentally and numerically, the limitations of THz
burst-mode CPA caused by self- and cross-phase modulation. A number of practical recipes to
suppress nonlinear distortions and improve energy scaling by optimizing burst parameters and
applying modulation techniques are presented.
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1. Introduction

Chirped Pulse Amplification (CPA) allows the generation of high-energy ultrashort laser pulses
[1], up to multiple hundreds of Joules [2]. However, a problematic case is given in CPA when
chirped pulses are amplified at once in a single amplifier with a chirped pulse duration τs that is
much larger than their temporal spacing ∆t (τs ≫ ∆t). If the burst pulses are strongly stretched,
the pulse overlap and interference effects determine the chirped waveform. The result is a
sequence of intensity peaks centred around wavelengths λi (See Fig. 1). For sub-millijoule
amplification or higher, each λi-maximum experiences Kerr-induced Self-Phase Modulation
(SPM) within the amplifier. The consequence is the generation of ∆t-periodic satellite pulses in
CPA [3].

This is especially problematic for petawatt systems where parasitic reflections give satellite
postpulses up to mJ energies spaced by only a few ps [4,5]. In this case, postpulses are responsible
for the generation of prepulses. In turn, this leads to plasma generation or the burning of the
sample by the generated prepulse. In contrast to single-pulse generation, burst-mode systems
providing intraburst pulse spacings in the picosecond range, or lower, offer various advantages,
such as an improved molecular orientation and alignment control [6–8], providing techniques in
plasma-wave [9] and electron-bunch [10] generation, an increased ablated volume [11] or the
generation of holes with an increased depth-width aspect ratio [12] in materials processing [13],
and novel approaches in nonlinear spectroscopy that allow signal acquisition with an improved
fidelity [14,15].

The increased demand for burst-mode sources was accompanied by the development of a
multitude of techniques of ultrashort-pulse burst formation over the previous decades. The
formation of a burst prior to amplification by the application of either a pulse shaper [16–18] or
utilizing the Vernier effect, that is based on a synchronous accumulation of pulses within an either
fiber-based [19] or a free-space cavity-based [20] active time loop, provides an advantageous
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approach with respect to the burst-shaping capabilities. This includes a tunable pulse spacing,
individual pulse amplitude and phase modulation, and an easy scalability in the number of pulses.
It raises, however, the challenge of common-pulse CPA when ultrashort pulses amplified to
multiple dozens of microjoules, or much higher, are involved.

For burst-mode CPA systems providing picosecond pulse spacings [15,20,21], the satellite-
formation effect has not yet been investigated. The effect sets a crucial upper burst-energy limit
at low pulse numbers N with amplifiers with non-negligible nonlinearity. The peak intensity of
a chirped few-pulse burst is N-times higher than that of a single chirped pulse with the same
energy, due to intensity peak formation (see Fig. 1). Therefore, a useful guideline is, that for
a single-pulse amplifier that is designed to work with negligible SPM (single-pulse B-Integral
maximum Bsp,max<1) at a given energy, the criterion for SPM-negligible operation in N-pulse
burst mode is Bmax = N ·Bsp,max<1. This does not hold for a sufficiently high pulse number N ≫ 1,
where the spacing between the first and last burst pulses becomes comparable to the chirped
pulse duration [22]. Finding solutions to overcome the low-pulse-number limit is motivated
because applying only a few pulses allows for the highest pulse energies at a given burst energy.
In this paper, we investigate numerically and experimentally the effect of SPM on burst-mode
CPA systems up to millijoule (mJ) burst energies, give practical criteria of its relevance, and
provide means to suppress its effects. Typically, the presence of nonlinearities is notable in an
experiment by investigation of the burst spectrum. In the considered case, however, SPM can
lead to a burst-peak narrowing (See Fig. 2). This may easily be overlooked in an experiment with
spectrometers providing finite spectral resolution. At the same time, the satellite peak intensities
can become quite comparable to the burst pulses, with relative satellite peak intensities of a few
tens of percent. In the following, we will elaborate on the SPM effect on a chirped waveform in a
time-frequency model based on the Wigner distribution [23], which gives a useful qualitative
understanding of the underlying process. Experimentally, we generate a pulse pair using our
home-built Yb CPA burst-mode system and compare the burst and satellite characteristics with a
numerical model. Further, we investigate experimentally the satellite generation in bursts with
more than two pulses, and modulate the pulses in their phase, such that suppression of satellite
pulses generated by the Kerr effect during amplification is achieved. The underlying results
give promising insights that help to deal with nonlinearities arising during the amplification of
multi-pulse formats.

Fig. 1. Satellite formation in multi-pulse Chirped-Pulse Amplification (CPA). When
stretching ultrashort pulses with sub-picosecond pulse duration τc and few-picosecond
spacing ∆t to a sufficiently long chirped pulse duration τs with a chirp rate dω(t)/dt = α, a
sequence of intensity peaks is formed by spectral interference centred around wavelengths λi.
These peaks are delayed from each other at times ti and experience Self-Phase Modulation
(SPM) when being amplified to (sub-)mJ energies. After compression, this results in satellite
pulses.
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Fig. 2. Multi-pulse satellite formation with an increasing nonlinearity N · Bsp (from
top to bottom). Left: Temporal intensity. Right: Spectrum. The chirped pulse duration τs
is much larger than the pulse spacing ∆t (τs ≫ ∆t). As the maximum of the total B-Integral
approaches 1 (Bmax = N ·Bsp,max → 1), the number and peak intensities of satellites increase,
while the spectral peaks become narrower until they start to broaden again due to the action
of SPM. Note, that with increasing nonlinearity, there is no spectral broadening unlike in the
case of single-pulse SPM.

2. Analytical description

In the following, we give an overview of the analytical description on which the numerical
calculation is based on. The authors refer to the Supplemental material for a more detailed
formulation and further derivations.

We assume a stretched burst E(B)
s (t) of N chirped Gaussian pulses E(P)

s that are spaced by a
given period ∆t and have individual carrier-to-envelope (CEP) phases ϕn

E(B)
s (t) =

N−1∑︂
n=0

E(P)
s (t − n∆t) exp (iϕn). (1)

For a compressed pulse duration τc, a chirped pulse duration τs, and a time-bandwidth product
p0 = τc∆ω, the chirped duration of the burst pulses can be much larger than the compressed
duration of the burst TB = (N − 1)∆t. In the special case of T2

B ≪ τcτs/p0, the spectral electric
field of the compressed burst Ẽ(B)

c (ω) dictates the time-dependent electric field E(B)
s (t) that is

realized by the chirping [22]

E(B)
s (t) ∝ exp (iϕ(t))Ẽ(B)

c (ω(t)) (2a)

dϕ(t)
dt
= ω(t), ω(t) = ω0 + αt (2b)
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Ẽ(B)
c (ω) = Ẽ(P)

c (ω) ·

N−1∑︂
n=0

exp (i(ϕn − nω∆t)), (2c)

where ω0 is the center frequency of the pulses, α the chirp rate, Ẽ(P)
c (ω) the compressed pulse

spectral electric field, and ϕn the CEPs of the burst pulses. In the case of in-phase pulses (ϕn = 0),
Eq. (2c) gives a burst-typical periodic modulation. Controlling the individual CEPs ϕn enables
the shaping of the burst spectrum, including suppression of the periodic modulation (phase
scrambling). For this, it is sufficient to control the relative CEPs within the burst ϕn,0 = ϕn − ϕ0,
where ϕ0 is the first burst pulse’s CEP [20].

The B-integral is commonly defined as

B(t) :=
2πn2
λ

∫ d

0
|E(z, t)|2dz ∝ |E(B)

s (t)|2, (3)

and is directly proportional to the stretched burst intensity |E(B)
s (t)|2, assuming a homogeneous

nonlinear refractive index n2 and a given thickness d of the Kerr medium.
The Kerr-modulated burst waveform E(B)

mod(t) is calculated to be

E(B)
mod(t) = E(B)

s (t) exp (iB(t)). (4)

We multiply the Kerr-modulated burst E(B)
mod(t) in the frequency domain with the frequency-

dependent compressor response H(ω) for compression of the burst pulses with a chirp rate
a = 1/α that corresponds to compression to their initial transform-limited duration

H(ω) = exp
(︃
−i

a(ω − ω0)
2

2

)︃
. (5)

The resulting compressed Kerr-modulated pulses are not purely Gaussian. For determining
the pulse characteristics of peak power P0,n, pulse position t0,n, and pulse duration τ0,n, fits of the
modulated compressed waveform with Gaussian-Lorentzian sums [24]

Pfit,n(t) = P0,n exp

(︄
−4 ln (2)(1 − mn)

(︃
t − t0,n

τ0,n

)︃2
)︄
· (6)

1

1 + 4mn

(︂
(

t−t0,n
τ0,n

)2 + 1
)︂ (7)

led to satisfying results, with Gauss-Lorentz indices mn, for which m = 0 correspond to a purely
Gaussian and m = 1 to a purely Lorentzian pulse.

3. Experimental methods

For the experiment, we used a mode-locked Yb:KGW oscillator (LightConversion PHAROS,
76 MHz, 1030 nm, 80 fs pulse duration) generating nanojoule pulses that are consequently
stretched to 300 ps (FWHM) by a dual-pass transmission grating stretcher in which we applied
spectral shaping to precompensate spectral gain narrowing. The burst pulses are picked by an
Acousto-Optic Modulator (AOM) where we set the amplitude and phase of the seed pulses. We
used the regenerative preamplifier cavity as a time loop in which the round-trip time is slightly
different from the oscillator round-trip time for burst pulse accumulation at ps spacings (Vernier
Effect) [20]. For this, the Pockels Cell (PC) voltage is set to a level such that the round-trip
losses compensate for the gain during the burst formation before we preamplify the burst to
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50 µJ. In synchronous, we amplified a pulse from the non-AOM-diffracted oscillator train to
µJ energies. The spectral gain narrowing precompensation is hereby optimized for the burst
channel, leading to a slightly longer reference-pulse duration after recompression as compared
to the burst pulses. The preamplified burst was sent into a cryogenically cooled regenerative
booster amplifier for further energy increase. The relevant Kerr media are the BBO crystal in the
Pockels cell (n2,BBO = 2.88 · 10−20 W/cm2 [25], dBBO = 40 mm) and the Yb:CaF2 laser crystal
(n2,CaF2 = 1.9 · 10−20 W/cm2 [26], dCaF2 = 10 mm). The 1/e2 beam diameter was 350 µm inside
the crystal and 850 µm in the Pockels cell. While satellites generated by the gain saturation are
negligible, they can affect the Kerr-induced satellites [3]. Therefore, we set the number of round
trips to 36, which is lower than our booster amplifier’s number of round trips for the most efficient
energy extraction to avoid saturation effects on the Kerr-induced satellites in this study. In the
end, the burst pulses and the reference pulse were compressed by a single spatially multiplexed
dual-pass transmission grating compressor. The duration of the burst pulses were determined via
Second-Harmonic Generation Frequency-Resolved Optical Gating (SHG-FROG) to be 207.4 fs,
while the generated reference pulse duration was measured to be 231.6 fs. The full laser system
is described in detail in [20,22].

Experimental characterization was performed by Sum-Frequency Generation cross-correlation
(SFG-XC) of the pulse burst with the reference pulse (See Fig. 3). The reference pulse was slightly
longer than the burst pulses because we optimized the gain-narrowing precompensation towards
the burst channel. Thus, the individual durations of the burst pulses cannot be determined from
the SFG-XC alone. We characterized the single reference pulse by a SHG-FROG measurement
and fitted the time-discrete SFG-XC data with Equ. 7 to acquire the values of peak powers P0,n,
pulse positions t0,n and Gauss-Lorentz parameters mn. For determining the correct pulse duration
τ0,n, we considered the measured reference pulse duration of 231.6 fs to calculate an accurate
value from the SFG-XC fit. This could be done by taking the definition of the cross-correlation

yXC,n =

∫ +∞

−∞

|En(t)Eref (t + τ)|2dτ (8)

with the individual pulse fields En(t) and the reference pulse field Eref (t) formulated as Gaussian-
Lorentzian sum (Eq. (7)). For the individual pulse fields, we used the parameters acquired
(P0,n, t0,n, mn), and for the reference field Eref (t), we applied the pulse duration determined by
SHG-FROG. Then, we optimized the resulting data yXC towards a fit of the measured SFG-XC
with the pulse duration τ0,n as the optimization variable.

4. Results

4.1. Discussion in the two-dimensional Wigner space

For a deeper insight into the burst-mode SPM process, we modelled numerically the effect
of the B-Integral according to Eqs. (1–5) and calculated the resulting fields of the stretched
SPM-modulated burst E(B)

s,mod(t) (see Fig. 4) and the compressed SPM-modulated burst E(B)
c,mod(t).

With those results, we could determine the corresponding real-valued Wigner distribution
W(t,ω) according to its common definition [23]

W(t,ω) :=
∫ ∞

−∞

E(t + s/2)E∗(t − s/2) exp (−iωs)ds. (9)

We do so because the time- and frequency-dependent Wigner distribution W(t,ω) gives useful
insights into the temporal distribution of the frequency components of a complex-valued signal
representing the burst electric field [27]. It helps in the qualitative understanding of how SPM,
being a pure time-dependent phase modulation of the stretched burst, affects the spectrum and



Research Article Vol. 32, No. 22 / 21 Oct 2024 / Optics Express 38599

(a) (b)

Fig. 3. Temporal characterisation via SHG-FROG and SFG-XC. a) Reference pulse
power retrieved via SHG-FROG. b) SFG-XC measurement of a 2-pulse burst at 3 mJ and
1.5 ps spacing. Blue: SFG-XC raw data. Black Solid: Fit line. Black Dashed: Power of
individual pulses derived from the SFG-XC fit under consideration the reference pulse power
of a).

the compressed amplified waveform. From the Wigner Distribution, the temporal intensity and
the spectrum represent the marginals

S(ω) =
1

2
√︁
(µ0/ϵ)

∫ ∞

−∞

W(t,ω)dt (10a)

I(t) =
1

2
√︁
(µ0/ϵ)

∫ ∞

−∞

W(t,ω)dω (10b)

In Fig. 4, the effect of SPM on the chirped burst is shown for increasing amplified energy. We
simulate the amplification in our booster amplifier, where the input burst energy coming from
the preamplifier is 50 µJ at which SPM can be neglected (Fig. 4(a)). The Wigner distributions
show non-zero values located on a diagonal line, resembling a linear distribution of frequencies
in time. The spectra shown on the right side determine the temporal waveforms on top due to
the linearly chirped pulse duration being sufficiently large compared to the compressed burst
duration (τs ≫ T2

Bp0/τc). The Wigner distribution reflects this behaviour by featuring regions of
purely non-negative values (Γ in Fig. 4(a2)). The much smaller side lobes between the peaks are
represented by regions where positive and negative values cancel each other (Λ in Fig. 4(a2)).
For this example, we chose a down-chirped waveform as realized in the experiment. In this
case, the time-dependent SPM frequency-shift ∆ω(t) can counteract the linear chirp, as seen
in Fig. 4(b). By this frequency shift, we acquire a horizontal distribution of positive-valued
components within the Wigner space, leading to sharper spectral lines visible in the spectrum of
Fig. 4(b1). As SPM becomes stronger due to higher amplification, the spectral peaks broaden
comparable to the SPM of individual pulses. We further note, that the effect of SPM on the
spectrum is not uniform over the pulse bandwidth, but strongest at the center frequency where
the intensity is the highest. Another worthy remark is, that the SPM effect is also visible on the
Wigner areas that represent the side lobes, despite the absence of strong temporal intensity at
the corresponding temporal coordinates. This indicates an interplay between interference and
nonlinear action whose result is the suppression of spectral side lobes in Fig. 4(b1,c1).

In Fig. 5, we demonstrate the SPM effect on the compressed burst. First, we explain the Wigner
distribution of the non-modulated compressed waveform depicted in Fig. 5(a): The interference
of each pulse pair located at times ti and tj exists in their temporal midpoint (ti + tj)/2. Thus, the
pulse-pair interferences overlap with the individual pulse terms because the burst is periodic. Due
to the inversion symmetry of the burst field in time and wavelength, the Wigner distribution results



Research Article Vol. 32, No. 22 / 21 Oct 2024 / Optics Express 38600

Fig. 4. Wigner distribution of a strongly stretched burst with increasing SPM. The
burst consists of 5 pulses with 1.5 ps spacing, 200 fs TL pulse duration (FWHM) and is
chirped to 300 ps (FWHM) a) without SPM. b-d) experiencing SPM while being amplified
from 50 µJ to b) 500 µJ. c) 1 mJ. d) 2 mJ. The upper plots show the Wigner distribution
over a large range, while the lower plots show the corresponding magnification into the area
marked with a black square in the upper plot.

in an inversion-symmetric pattern of the compressed burst without SPM. Horizontal and vertical
lines can be drawn along purely non-negative values. Summing up along those lines results in
temporal and spectral maxima. In Fig. 5(b), we included the plot of the chirped SPM-modulated
burst at 500 µJ, which is the same as in Fig. 4(b). Because SPM is strongest around the center
wavelength, the compressed Wigner distribution from Fig. 5(a) is transformed into a distribution
that lies within a two-dimensional diamond-shaped envelope (Fig. 5(c)) and satellite pulses are
generated with a lower bandwidth than the burst pulses. This is why the satellite pulses have a
longer pulse duration than the original burst pulses at lower energies. The burst pulses are not
recompressed to their transform limit even though they conserve their bandwidth. Neither in
our numerical calculations nor in the experiment, we observed the generation of wavelength
components outside the individual pulse bandwidth, in contrast to the SPM of ultrashort single
pulses.



Research Article Vol. 32, No. 22 / 21 Oct 2024 / Optics Express 38601

Fig. 5. Wigner distribution of a strongly stretched 5-pulse burst a) compressed without
SPM. b-c) experiencing SPM while being amplified from 50 µJ to 500 µJ with CPA. b)
Stretched modulated waveform before recompression. c) Recompressed waveform. 1.5 ps
pulse spacing, 200 fs TL pulse duration (FWHM). 300 ps chirped pulse duration (FWHM).

4.2. Satellite formation in burst-mode CPA with 2 pulses

We validate our calculation and the characterization method by generating a pair of pulses with
equal energies at several above-mJ energies and compare the theoretical and experimental results.
Spacings of 1.5 ps and 8.9 ps were chosen to study SPM for small and high temporal separations
of pulses.

Figure 6 shows the peak powers of the first-order satellite pulses depending on the output burst
energy. We see a good agreement between the calculated curve and the experimental results.
For small modulation depths, the l-th order satellite peak power depends on the l-th power of
the B-integral [3]. With equal pulse energies, the modulation depth is much stronger. Thus, the
increase of first-order satellite peak power is nonlinear. SPM does not have substantial effects
during single-pulse operation in our amplifier by design (Bsp,max<1) at the considered energies.
However, the calculated maxima of the burst-mode B-Integral (Bmax = N · Bsp,max) were for burst
energies higher than 1 mJ consistently above 1 (see Fig. 6(b)), usually taken as a limit below
which nonlinear effects can be neglected. An interesting aspect is the calculated independence
of the satellite peak power on the pulse spacing. This is consistent with the ∆t-independent
relationship of the burst spectrum |Ẽ(B)(ω)|2 and the pulse spectrum |Ẽ(P)(ω)|2 maxima, that is
given by

|Ẽ(B)(ω)|2 =
1
N
|Ẽ(P)(ω)|2 ·

⎛⎜⎜⎝
sin

(︂
N(∆tω−φslip)

2

)︂
sin

(︂
∆tω−φslip

2

)︂ ⎞⎟⎟⎠
2

(11a)

max
[︂
|Ẽ(B)(ω)|2

]︂
= max

[︂
|Ẽ(P)(ω)|2

]︂
· N, (11b)

under consideration that a pulse carries a 1/N-fraction of the burst energy. Thus, the independence
of nonlinear effects on the pulse spacing indicates that the relationship described in Eq. (2a) holds
and that the chirped waveform in time is in good approximation given by the burst spectrum
because of the dominant linear chirp. Deviations from this behaviour at larger pulse spacings can
be attributed to a higher-order chirp. Considering the measured pulse positions (Figs. 6(c) and
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6(d)), we observed that the satellite pulse spacings from the burst are close to the fundamental ∆t
spacing. However, in the case of the larger 8.9 ps spacing, the satellite positions depart from
the burst pulse spacing ∆t for smaller energies and approach it for higher energies. This could
be given due to the fact, that the Kerr modulation becomes sufficiently pronounced at higher
energies. The measured Kerr-modulated burst pulse durations were consistently smaller than
the calculated ones (Figs. 6(e) and 6(f)). Further, the calculated satellite pulse durations did not
change notably in the considered energy range. However, the measured satellite pulse durations
became smaller at larger energies and were approaching the duration of about 207.4 fs of the
burst pulses. The latter would be in agreement with Ref. [3], where the satellite pulse durations
were comparable to that of the burst pulses. Variations in the behaviour between the pre- and the
post pulse can be attributed to differences in the burst-pulse energies of a few percent and due
to asymmetries in the experimental spectrum, since it is not purely of Gaussian shape, and to
saturation onset in the gain material at higher energies.

Fig. 6. a) Satellite peak powers vs. output burst energy with pulse spacings of 1.5 ps and
8.9 ps. The satellite peak power is normalized to the average peak power of the burst pulses.
Thin Black: Linear approximation from the first two values. b) Calculated B integral vs.
burst energy with pulse spacings of 1.5 ps and 8.9 ps. Burst pulse and satellite positions
vs. burst energy at a pulse spacing of c) 1.5 ps. d) 8.9 ps. The prepulse/postpulse
positions are relative to the first/second burst pulse. Pulse durations at an 8.9 ps spacing
of the e) burst pulses. f) satellites. For all subfigures: Black lines correspond to calculated
values and coloured lines correspond to measured values. bx: burst pulse x, -1: prepulse,
+1: postpulse.

4.3. Satellite formation and suppression in burst-mode CPA with 5 pulses

For more than two burst pulses, it is possible to suppress the spectral periodic modulation by
modulating individual pulses in their CEP (phase scrambling). By this, the Kerr-induced satellite
generation can be suppressed. Considering relative phases of 0 or π, we modulated only the
fourth of the 5 pulses by π in its phase for the optimum smoothing effect according to its spectrum
[20]. We note that a inferior performance of this approach indicates that Equ. 2a does not hold
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anymore. SFG-XC measurements were performed together with the measurement of spectra to
demonstrate the phase scrambling effect.

4.3.1. Peak-forming region

In Fig. 7, we show the calculated and experimental results in peak power with a varying burst
pulse spacing and burst energy. The satellite pulse spacings typically deviate from the burst
pulse spacing in the phase-scrambled case, because the shaped spectrum does not consist of a
single periodic modulation but has a more complex structure. Thus, we evaluated the maximum
parasitic signal power and denote the y-axis in Figs. 7,8 generalized as preburst/postburst peak
power. The considered pulse-spacing region is ranging from the compressed single-pulse duration
τc (for which 200 fs was assumed in the calculation) to ten times the compressed single pulse
duration (10 · τc = 2 ps). We will call this range followingly "peak-forming region", where
peak formation in the chirped waveform is the most pronounced, with few peaks carrying the
whole burst energy. The satellites started to appear in the SFG-XC measurements when the burst
energy was increased to above a few hundred µJ, which is why we decided to use 200 µJ as
the start energy. Agreement with the experimental results can be seen in Fig. 7, except for an
underestimation of the preburst peak intensity in the phase-scrambled case at higher energies.
For pulse spacings larger than twice the compressed pulse duration (∆t>2 · τc), we can see a
decrease in the normalized parasitic peak power over the whole energy range to at least one order
of magnitude when applying phase scrambling, as compared to the non-phase-scrambled case.
The parasitic peak power decreases linearly with the pulse spacing in the peak-forming region.
The spectral width of a non-modulated burst peak is inversely proportional to the pulse spacing,
therefore the spectral peak intensity is directly proportional to the pulse spacing. Because Equ. 2a
holds in the peak-forming region, this holds also for the maximum peak intensity of the chirped
waveform, and hence for the nonlinearity. The comparison of cross-correlations between 400 µJ
and 1 mJ can be seen in Fig. 9(a)-(b), where the relative preburst/postburst peak power is about
13%/13% and 29%/24%, respectively, without satellite suppression. However, as soon as we turn
on the phase scrambling, visible by a smoothed spectrum, the parasitic peak powers could be
suppressed to only a few percents. In Fig. 9(c), the result of a 3 mJ burst can be seen where the
already mentioned deviation of the satellite positions due to the phase-scrambling can be seen.
The maximum relative preburst peak power was in this case about 17%.

4.3.2. Beyond the peak-forming region

When increasing the pulse spacing within the peak-forming region, the parasitic preburst/postburst
peak power gets consistently smaller, see region A in Fig. 8, indicating the peak-forming region.
This goes as far, as the non-phase-scrambled peak power becomes the same as the phase-scrambled
peak power, which marks the end of the peak-forming region (see Fig. 10). In our calculations,
we determined this point at ∆t = 21 · τc. Since the phase-scrambling approach that we chose,
is optimized according to the optimum spectral-smoothing effect, this indicates that Equ. 2a
is not valid anymore. Correspondingly, we refer again to the general rule for linear chirps,
that Equ. 2a is given if the compressed burst duration TB is sufficiently small compared to the
chirped pulse duration (T2

B ≪ τsτc/p0). Therefore, there can also be strong peak formation in the
phase-scrambled case. The phase-scrambled peaks can be even larger than the non-scrambled
peaks, as shown in this case between ∆t = 21 · τc and ∆t = 36 · τc, marked as region B.

While in region B multi-pulse CPA can be well applied without phase-scrambling, there is a
recurrence of peaks in the stretched waveform of the non-modulated burst in region C, spanning
from 36 ·τc until 46 ·τc. Followingly, we investigated, if in region C, the phase-scrambling method
can lead to a suppression of preburst/postburst peak intensities. For this we observed the satellite
and suppression characteristics with a larger 8.9 ps pulse spacing which would correspond to
44.5 · τc (see Fig. 11). For in-phase burst pulses at this spacing, the periodic spectral modulation
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(a) (b)

Fig. 7. Calculated normalized pre- (left) and postburst (right) peak powers with various
pulse spacings ∆t going from the compressed burst pulse duration 1 · τc = 200 fs (dark
blue) until 10 · τc = 2 ps (dark red). The measured values with a pulse spacing of 1.5 ps,
corresponding to 7.5 · τc, are shown in green. Point symbols are referring to cases without
phase scrambling applied, triangles to cases with phase scrambling applied.

(a) (b)

Fig. 8. Calculated normalized pre- (left) and postburst (right) peak power vs. pulse spacing
∆t going from the compressed burst pulse duration 1 · τc = 200 fs (dark blue) until 10 · τc
= 2 ps (dark red). Point symbols are referring to cases without phase scrambling applied,
triangles to cases with phase scrambling applied.

was already too small for our spectrometer to be resolved. Further, the periodic modulation of the
chirped waveform in time is less pronounced because of the stronger separated pulses [22]. At 8.9
ps, the first-order prepulse/postpulse peak intensities were about 11%/7% at 1 mJ, in contrast to
29%/24% at 1.5 ps spacing at the same burst energy. Preburst/postburst peak intensities increased
to about 16%/9% at 1.5 mJ. These values of ⪆ 10% agree well with the calculations shown in
Fig. 10. When applying the satellite suppression, we see only a few dominant satellites whose
relative peak powers are given by a few percents at energies up to 1.5 mJ. For further measured
cross-correlations and spectra at various energies, we refer to the Supplement 1.

4.4. Satellite formation in burst-mode CPA with arbitrary pulse number

For smaller pulse spacings at a given number of 5 pulses, stronger SPM was observed
(Fig. 10(a),(b)) as long as the pulse spacing was within the peak-forming region ∆t<21τc.

https://doi.org/10.6084/m9.figshare.27016444
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(a) (b)

(c)

Fig. 9. Cross-correlations (blue) and spectra (red) of 5-pulse bursts with 1.5 ps spacing
and burst energies of a) 400 µJ, b) 1 mJ and c) 3 mJ by applying no phase modulation
(dashed lines) and phase-scrambled modulation (filled areas). At higher energies, we avoid
amplification with strong peak formation. Thus, there is only a phase-scrambled result in c).

(a) (b)

Fig. 10. Calculated normalized pre- (left) and postburst (right) peak power vs. pulse spacing
∆t going from the compressed burst pulse duration 1 · τc = 200 fs (dark blue) to 50 · τc = 10
ps (dark red) at 1 mJ. Within the accuracy of the calculation, there is no difference between
the preburst and the postburst peak power in this dataset. Point symbols are referring to
cases without phase scrambling applied, triangles to cases with phase scrambling applied.

The nonlinearity decrease is governed by Equ. 2a becoming invalid, and leading to a smoothing
effect of the temporal peaks [22]. However, this can be also achieved by increasing the number
of pulses to a sufficient extend, as can be seen when comparing the temporal intensity profile of
bursts consisting of 5 and 20 pulses spaced by 1.5 ps, see Fig. 12(a) and 12(b), respectively. This
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Fig. 11. Cross-correlations (blue) and spectra (red) of 5-pulse bursts with an 8.9 ps
spacing and burst energies of 1 mJ (left) and 1.5 mJ (right) while applying no phase
modulation (dashed lines) and phase-scrambled modulation (filled areas).

Fig. 12. Comparison of bursts with pair-wise equal parameters of pulse number N,
pulse spacing ∆t, and burst duration TB. Shown are cross-correlations of bursts amplified
to a 1 mJ burst energy with a) N=5, ∆t=1.5 ps, b) N=20, ∆t=1.5 ps, and c) N=5, ∆t=8.9 ps,
while applying no phase modulation (dashed lines) and phase-scrambled modulation (filled
areas).

behaviour reflects the transition of a low-N regime lying within the peak-forming region, to a
high-N regime lying outside the peak-forming region, which for our system could be identified to
start at around 20 pulses at a sub-2 picosecond spacing [22]. In the low-N regime, pronounced
constructive interference of chirped pulses and thus temporal interference peak formation happens.
In the high-N regime, the increase in pulse number leads to a smearing of the interference peaks,
and thus, to a CPA-typical decrease of the chirp burst waveform. These explanations are further
confirmed by the fact, that phase scrambling does not lead to an improved burst waveform in the
measured case with 20 pulses (Fig. 12(b)). Another remark needs to be given to the comparison



Research Article Vol. 32, No. 22 / 21 Oct 2024 / Optics Express 38607

of Fig. 12(b) (N = 20,∆t = 1.5 ps, TB = 28.5 ps), and Fig. 12(c) (N = 5,∆t = 8.9 ps, TB = 35.6
ps). Given the comparable burst duration TB = (N − 1)∆t, both cases are accompanied by a
comparable generation of multiple satellite pulses, up to more than 10% of relative peak intensity.

5. Conclusion

To conclude, an investigation of SPM effects in multi-pulse CPA up to few-mJ energies has been
carried out that is motivated to overcome the CPA challenges when amplifying only few pulses
at picosecond spacings. We discovered the peak-forming regime, which is independent on the
amplified burst energy and solely governed by the pulse spacing, that exists for pulse spacings
between 1 · τc and 21 · τc for 5 pulses, where τc is the compressed pulse duration. Within the
peak-forming regime, we demonstrated the suppression of Kerr-induced satellite pulses by at
least an order of magnitude by applying the phase-scrambling technique. The generation of
satellites can be further reduced by an increase in the pulse spacing, or the number of pulses. It
was shown, that also in a region of recurrent peaks in the chirped waveform the phase-scrambling
technique can still be applied to suppress preburst/postburst peak powers. The decreasing trend
of preburst/postburst peak powers at increasing pulse spacings is a promising phenomenon
for systems, where prepulses are generated from postpulses coming from parasitic reflections,
indicating that the use of parasite-generating components with thicker substrates should further
reduce the effect of prepulse generation, due to the smearing effect of the chirped waveform at
larger pulse spacings. Another improvement could be given by minimizing the B-Integral by
the amplifier design, such as using thinner crystals or increasing amplifier efficiency to reduce
the number of round trips. In total, the findings of this work give vital insights into the further
development of multi-pulse CPA systems.
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