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“L’inferno dei viventi non è qualcosa che sarà. . . è già qui, è quello che formiamo stando
insieme tutti i giorni. Due modi ci sono per non soffrire. Il primo riesce facile a molti:
accettare l’inferno e diventarne parte fino a non vederlo più. Il secondo è rischioso ed esige
attenzione ed apprendimento continui: cercare e riconoscere chi e cosa in mezzo all’inferno,
non è inferno, e farlo durare e dargli spazio.”

Italo Calvino

“Wenn wir einen Menschen hassen, so hassen wir in seinem Bild etwas, was in uns selber
sitzt. Was nicht in uns selber ist, das regt uns nicht auf.”

Herman Hesse
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Abstract

Since the discovery of Bose-Einstein condensation in 1995, many beautiful experi-
ments have followed that have taken advantage of its macroscopical quantum prop-
erties. Different laboratories worldwide have achieved various goals, from purely
theoretical and fundamental investigations to applications in metrology, quantum
simulation of more complex systems, atom interferometry, and quantum informa-
tion. Atom chip technology enables trapping Bose gases and creating versatile con-
fining geometries: on the one hand, it provides a miniaturized circuit where low
static currents can generate strong confining magnetic traps for cold atomic ensem-
bles; on the other hand, a combination of static and oscillating currents can modify to
a substantial degree the confining geometry, for example by creating a double-well
configuration.
Nearly ten years ago, our group in Vienna transformed an optimally excited Bose
gas into an atomic gun, shooting pairs of atoms moving in opposite directions along
a single atom-waveguide potential created below the atom chip. These momentum-
correlated pairs of atoms showed nearly zero atom-number squeezing between the
two momenta modes demonstrating the highly correlated nature of the emission
and were later referred to as twin-atom beams.
The fundamental idea motivating this project was: can we arrange the twin-atom
emission to happen in a double-well configuration? And if that is so, can we then
produce an atomic qubit in the double-well spatial degree of freedom? We show
that, given our setup, the emitted double twin atoms are expected to be in a max-
imally entangled state of the double-well’s left and right well states. Even though
we cannot directly prove entanglement yet, we show that there is strong evidence
for it. Firstly, we demonstrate the state inversion of a 1d Bose gas in a double-well
potential for the first time and estimate the percentage of the transferred population
by a fit of the observed final state evolution. Secondly, we characterize the emis-
sion with atom-number squeezing techniques and second-order correlation analy-
sis. Both methods point to the generation of a maximally entangled state of two
atoms, and, in particular, the second-order correlation analysis reveals the presence
of two-particle interference effects.



Zusammenfassung

Seit der Entdeckung von Bose-Einstein Kondensation habe sich viele Experimente
deren makroskopischen Quanteneigenschaften zunutze gemacht. Labore weltweit
haben verschiedene Ziele erreicht, von rein theoretischen und grundlegenden Un-
tersuchungen bis hin zu Anwendungen in der Metrologie, Quantensimulation kom-
plexer Systeme, Atominterferometrie und Quanteninformation.
Die Atomchip-Technologie ermöglicht das Einfangen von Bose-Gasen und die Erzeu-
gung flexibler Fallengeometrien: Einerseits stellt der Atomchip einen miniaturisierten
Schaltkreis bereit, in dem niedrige statische Ströme starke einschließende magnetis-
che Fallen für kalte atomare Ensembles erzeugen können; andererseits kann eine
Kombination aus statischen und oszillierenden Strömen die Fallengeometrie in er-
heblichem Maße modifizieren, beispielsweise durch das Erzeugen eines Doppel-
muldenpotentials.
Vor fast zehn Jahren verwandelte sich in unserer Gruppe in Wien ein optimal an-
geregtes Bose-Gas in eine Atomkanone, die Atompaare schoss, die sich in entge-
gengesetzte Richtungen entlang eines einzelnen Atom-Wellenleiter-Potentials be-
wegten, das unter dem Atomchip erzeugt wurde. Diese impulskorrelierten Atom-
paare zeigten gequetschte Atomzahlfluktuationen von nahezu null zwischen den
beiden Impulsmoden, was die stark korrelierte Natur der Emission demonstriert,
und wurden später als Zwillingsatomstrahlen bezeichnet.
Die grundlegende Idee, die dieses Projekt motivierte, war: Können wir die Zwill-
ingsatomemission so anordnen, dass sie in einem doppelmuldenpotential stattfindet?
Und wenn dem so ist, können wir dann ein atomares Qubit im räumlichen Freiheits-
grad des Doppelmuldenpotentials erzeugen? Wir zeigen, dass aufgrund unseres
Aufbaus erwartet wird, dass sich die emittierten Doppelzwillingsatome in einem
maximal verschränkten Zustand des linken und rechten Zustands des Dopplemulden-
potentials befinden. Auch wenn wir die Verschränkung noch nicht direkt beweisen
können, zeigen wir, dass es starke Indizien dafür gibt. Wir demonstrieren zum er-
sten Mal die Zustandsumkehr eines 1d-Bose-Gases in einem Doppelmuldenpoten-
tial und schätzen den Prozentsatz der übertragenen Population durch Anpassung
der beobachteten Endzustandsentwicklung ab. Des Weiteren charakterisieren wir
die Emission mit Atomzahl-Squeezing-Techniken und Korrelationsanalysen zweiter
Ordnung. Beide Methoden weisen auf die Erzeugung eines maximal verschränk-
ten Zustands zweier Atome hin, und insbesondere die Korrelationsanalysen zweiter
Ordnung offenbarten das Vorhandensein von Zwei-Teilchen-Interferenzeffekten.
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Chapter 1

Introduction

Can we efficiently produce correlated pairs of atoms and, at the same time, envi-
sion an experimental configuration that allows quantum entanglement [1, 2]? Since
the famous EPR paper of 1935 [3] and over the last many decades, several efforts
were made into the generation of nonclassical states and investigation of their prop-
erties, since these states find application in fundamental research [4] and quantum
technologies [5] as quantum-enhanced metrology [6–8], imaging [9], and quantum
information and quantum communication [2, 10, 11].
While the photonic community has been researching nonclassical states of light and
their applications for many decades, the interest has grown only recently among
the atomic community. In particular, only a few groups working with Bose-Einstein
condensates around the globe have devoted their ultracold gases machines to the
generation and characterization of correlated pairs of atoms [12–17].
The fundamental idea at the basis of this thesis project stems from Ref. [18]. In
this thesis work, we present an optimally excited one-dimensional Bose-Einstein
condensate that becomes the source for an atom-laser of double twin-atom beams
(DTBs), i.e., atom pairs highly correlated in their momenta along an atomic waveg-
uide (twin atoms) that can be detected on either side of a double-well potential. The
presence of the double waveguide has two advantages: on the one hand, it forces
the emission to happen along the waveguide; hence it is more efficient than experi-
ments where the emission happens in free space [12, 19, 20]. On the other hand, the
presence of two such parallel waveguides from the double-well potential allows the
possibility for the twin pair to be emitted into either the left waveguide (L waveg-
uide) or into the right waveguide (R waveguide); hence an entangled state of two
atoms only involving motional degrees of freedom is attainable, in principle. We
measure momentum correlations between the atoms in the twin pairs and observe
a fringe pattern in the normalized second-order correlation function G(2) that stems
from a two-particle interference phenomenon.

1.1 The experiment in short

Our project aims at generating highly correlated pairs of rubidium-87 atoms via
spontaneous parametric down-conversion from a one-dimensional Bose-Einstein con-
densate (BEC) trapped in a double waveguide magnetic confinement below an atom
chip.
We excite the system by controlled deformations of the trapping potential mainly
along one of the transverse, highly confining directions, which we will refer to as the
double-well axis. The deformations are achieved by radio-frequency (rf) dressing of

1





1.2. GENERAL TOPICS 3

the atomic magnetic states until we reach a final double waveguide configuration.
The optimal-control theory was employed to compute the best trajectory for the rf
amplitude (control parameter) to transfer the atoms to the second vibrational mode
of the double-well.
Once enough atoms are populating the excited vibrational mode, they can decay
back into the lowest vibrational modes of the double-well in the form of pairs of
atoms moving in opposite directions along the elongated axis, which we named
double twin-atom beams (DTBs, see Fig. 1.1).
The emitted DTB atoms constitute our main subject of investigation. These carry
two labels: the momentum at which they separate from the source (first atom and
second atom) and the position (left or right) along the double-well axis, perpendicu-
lar to the direction in which they move. In other words, they constitute an example
of two atomic qubits, which find applications both in theoretical research and in
metrological and quantum computing applications.
The detection stage consists of a free fall step, tens of milliseconds long, during
which expansion of the atomic wave function takes place, followed by a fluores-
cence imaging stage where all the atoms (remaining BEC and DTBs) cross a thin
sheet of nearly resonant light. The fluorescence photons scattered by the atoms are
finally collected by a high-NA objective and focused onto an EMCCD camera.

1.2 General topics

Bose-Einstein condensation is the starting point of our experiments with matter
waves. We produce a one-dimensional Bose-Einstein condensate (BEC) using magneto-
optical trapping and subsequent evaporation cooling from a background gas of rubidium-
87 particles.
Optimal control theory (OCT), applied to many-body quantum systems and their
dynamics, allows computing the optimal trajectory across the values of an external
control parameter to reach some final state of the system. In our case, the radiofre-
quency dressing amplitude used to modify the chip trap potential from single to
double-well geometry constitutes the external parameter under optimal control in-
vestigation. Moreover, the second transverse vibrational state of the final double-
well potential used to produce double twin-atom beams is the source state to be
reached.
Atom chip is the primary experimental tool in our laboratory. It carries microscopic
wire structures (10 to 80 µm in width, 1 µm of thickness up to several mm in length)
used to produce inhomogeneous magnetic fields that, in combination with homo-
geneous external magnetic fields, can be used to trap atoms below its surface. Fur-
thermore, it features wires capable of delivering radiofrequency fields to generate
versatile trapping schemes, among which the possibility to create double-well po-
tentials of variable barrier heights.
Correlated and entangled pairs constitute a fundamental tool in the hands of a
quantum engineer with a wide range of possible applications, from probing fun-
damental questions concerning the nature of the quantum world to building blocks
for quantum communication and computing, to sensors and development of metro-
logical devices. In particular, freely propagating massive objects have the advantage
that their mass could probe the interplay between quantum phenomena (entangle-
ment) and gravity (mass).
Twin-atom beams are pairs of atoms highly correlated in their momentum external
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degree of freedom. In 2011, our group discovered a way to produce them from a one-
dimensional BEC trapped in a waveguide and motionally optimally excited through
OC techniques. Unlike other methods that involve collisions of two condensates or
the superposition of a laser lattice (where the twin atoms are emitted into the solid
angle with equal probability), collisional de-excitation of an excited BEC in an atom
waveguide potential forces the emission to happen along the waveguide axis. This
restricted geometry increases the efficiency of the twin atom emission compared to
previously mentioned experiments.
Double twin-atom beams (DTBs) Building upon the previous work on twin atoms
of 2011, the fundamental achievement of this thesis work is to reach the same level
of correlations between twin atoms but in a double waveguide scheme. This critical
step enables the possibility of assigning a second spatial label to the atoms, ideally so
that the particles become entangled. Aside from its importance per se in fundamen-
tal physics research, entanglement constitutes the basis of a wide range of quantum
information processes, such as quantum cryptography, quantum teleportation, and
quantum metrology.
Atom optics The characterization of the correlated emission happens in momentum
space, using a long time of flight imaging. When the atoms are released from the
magnetic trap, they fall under gravity, and at the same time, their wavepackets ex-
pand along the double-well axis due to the conversion of the confining potential
energy into kinetic energy. This operation acts as the matter-wave analog of a beam
splitter: the expansion mechanism mixes the initially separated left and right-well
wavepackets, making it impossible to distinguish them at the detection site. Fur-
thermore, the long1 time of flight allows for resolving the momentum components
of the wavepackets at the time of their release from the trap. In other words, at the
detector site, we are imaging the wavepackets in momentum space rather than in
position space. This operation acts as the matter-wave analog of far-field imaging of
a light beam.

1.3 Outline

The thesis is organized as follows.
The first part (Chapter 2) contains the main theoretical ideas behind Bose-Einstein
condensation, in particular in an elongated trap.
The second part (Chapter 3) describes the experimental setup, with a focus on the
radiofrequency dressing of the internal atomic states and the imaging system that
constitute the main tools for achieving the goal of generating double twin atoms
and characterizing them.
The third part (Chapter 4) introduces the main object of this thesis report: the double
twin atom beams (DTBs). These are atomic beams consisting of pairs of atoms with
opposite momentum, flying away from the central BEC (at rest). We want to show
that they are in a maximally entangled state of the left and right well of the final
double-well potential. We investigate the theory behind the DTB emission process
(Section 4.1). We then describe the state inversion mechanism that allows transform-
ing an elongated BEC into the source of double twin atoms (Section 4.2). A theo-
retical calculation of the elements of the transition matrix shows that the predicted
double twin atom state is maximally entangled (Section 4.3). A possible extension
to a fermionic system is discussed (Section 4.3.3). Section 4.4 contains a detailed de-
scription of the image processing methods used during the analysis of the data is

1compared to the inverse of the transverse trap frequency
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presented and some possible extensions. We finally discuss the important concepts
of atom-number squeezing (Section 4.5) and of second-order correlation functions
(Section 4.6) that are later widely used for the analysis of the experimental data in
Chapter 5.
The fourth part (Chapter 5) outlines the main results of this thesis work. We start by
characterizing the efficiency of the state inversion procedure, in Section 5.1. Then,
in Section 5.2, we verify the twin character of the DTB emission using the number-
squeezing parameter. In Section 5.3, we analyze the data with number-squeezing
techniques (Section 5.3.1), and density-density correlation functions (Section 5.3.2).
This last analysis, in particular, constitutes the main result of the thesis, that is the
detection of a two-particle interference effect with density-density correlation tech-
niques.
Lastly, in the fifth part (Chapter 6), we give a hint of some possible future directions.
In Section 6.1, we discuss a more general description of the DTB state in terms of the
spontaneous parametric down-conversion effects. This generalization was recently
added to discuss the more general solution to the emission process in the realistic
scenario of a multi-pair emission. In Section 6.2, we observe how the atom-atom cor-
relations evolve in time. Finally, in Section 6.3, we see how a simple modification of
the DTB procedure can lead to a modified density-density correlation pattern. This
last part constitutes a significant and exciting result on state control and manipula-
tion that may lead to further developments on this subject. In Section 6.4 we discuss
possible new experimental tools. In particular, the inclusion of two Bragg deflec-
tors would allow performing a Bell test of quantum mechanics in a configuration
where massive particles entangled in a spatial degree of freedom are freely moving
away from each other. Such a Bell test configuration is ideal for investigating the
relationship between the quantum realm and the gravitational world.
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Chapter 2

Theoretical bits

2.1 Elements of Bose-Einstein condensation

There is a fundamental dichotomy between bosonic and fermionic particles in the
quantum realm. Bosons are characterized by an integer spin (photons, 87Rb atoms,
etc.) and have a friendly character, and like to come in groups of many peers. In con-
trast, fermions have a half-integer spin (electrons, neutrons, protons, etc.) and are
incredibly unsocial and do not like the company of any other particle sharing the
same quantum numbers with them. Due to the exclusion principle, first formulated
by W. Pauli for electrons in the attempt to explain the anomalous Zeeman effect [21],
no more than one fermionic particle with all identical quantum numbers can oc-
cupy the same quantum state. The exclusion principle does not apply to bosons,
which can all “condense” in the same quantum state. When a significant fraction of
the atoms shares the same quantum state, we witness a macroscopically enhanced
quantum effect. In this enhancement of the otherwise tiny quantum effects lies the
interest in the Bose-Einstein condensation.
This section will discuss Bose-Einstein condensation and how it can be derived using
thermodynamic considerations. Moreover, it will deal with the case of the trapped
quasi-condensate.

2.1.1 Ideal Bose gas

Let us consider a gas of N bosonic atoms (integer spin) confined in a 3d box of vol-
ume V at a temperature T. Each particle in the box will have a thermal velocity vT
associated with that temperature. In the context of the particle-wave duality, as de
Broglie first pointed out [22], we can associate a matter-wave with a massive particle.
In terms of matter waves, this translates into a de Broglie thermal wavelength asso-
ciated with each atom λT = h/mvT, where m is the atomic mass and h is Planck’s
constant. Another critical length scale of the system is the inter-particle distance
d0 = (N/V)−1/3, set by the number of particles present in a fixed region of space.
When the temperature is lowered enough such that d0 ≤ λT, we reach quantum
degeneracy [23] i.e., all degrees of freedom of the gas must be treated quantum me-
chanically. New effects may appear, among which the onset of Bose-Einstein con-
densation (BEC) describes the situation of a macroscopic population of the lowest
energy state available.
The value of the temperature at which quantum effects start becoming important,
or critical temperature Tc, the condensed fraction, and other thermodynamic quan-
tities strongly depend on the particular energy spectrum of the system under in-
vestigation, which in turn depends on the dimensionality, confining geometry, in-

7
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At zero temperature, when all the atoms occupy the lowest state, the density profile
of the cloud is n(�r) = N

%%φ0(�r)
%%2; hence its amplitude is proportional to the number

of atoms in the ground state. Its size is given by:

aho =

�
h̄

mωho

�1/2

(2.6)

and is independent of N.
At finite temperature, some of the atoms will occupy higher states. The density
profile associated with these "hot" atoms is much larger than the condensate radius
aho ∼ 1 µm, and we can use this information to reveal the condensed fraction. For
example, if we approximate the thermal distribution with a classical Boltzmann dis-
tribution such that ncl(r) ∝ exp

�−Vext(r)/kBT
�

for Vext(r) = 1/2mω2
hor2, the width

of the thermal cloud is given by RT = aho(kBT/h̄ω0)1/2. In the limit kBT � h̄ωho
we get RT � aho. In the Fourier space, when looking at the momentum profiles of
both the thermal and condensed fractions, the profiles will also be different; hence
we can identify the condensate in the momentum space. In the previous example,
after a long time of flight, the width of the condensate is proportional to (aho)

−1, and
the width of the thermal part is proportional to (kBT)1/2, which is how the first BEC
reveal took place [27, 28].
The shape of the trapping potential defines the symmetry of the problem. In our
case, as we will later discuss in the thesis, we deal with axial symmetry. This means
we can define an axial or longitudinal coordinate x and a radial or transverse coor-
dinate r⊥ =

"
y2 + z2, with the corresponding angular frequencies, ω� = ωx and

ω⊥ = ωy = ωz.

2.1.2 Weakly interacting Bose gas

Most of the remarkable different quantum regimes that can be achieved for ultracold
atoms in lower dimensions depend on the interactions between atoms. For this rea-
son, it is helpful to introduce here the general description of interacting Bose gases.
In second quantization formalism, the general Hamiltonian for an interacting gas of
Bosons is given by:

Ĥtot =
�

d�rΨ̂†(�r, t)Ĥ0Ψ̂(�r, t) +
1
2

��
d�r d�r"Ψ̂†(�r, t)Ψ̂†(�r", t)V(�r −�r")Ψ̂(�r", t)Ψ̂(�r, t),

(2.7)
where Ĥ0 = −h̄2∇2/(2m) + Vext(�r, t) is the single-particle Hamiltonian with the
confinement potential Vext, and where V represents only the atom-atom interaction
term. In this formalism, the collective Bose field operator is given in terms of the
single-particle annihilation operator âi corresponding to modes with wave functions
ψi:

Ψ̂(�r, t) =
M

∑
i=0

ψi(�r, t)âi(t). (2.8)

In the case of a very dilute gas, where particles have little chance to encounter them-
selves, we can replace the general V(�r −�r") term by a pseudo-potential gδ(�r −�r"),
where the coupling constant g is linked to the scattering length as by:

g3d =
4πh̄2as

m
. (2.9)
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With this approximation, we can rewrite Eq. (2.7) as:

Ĥtot =
�

d�r

�
Ψ̂†(�r, t)Ĥ0Ψ̂(�r, t) +

g3d

2
Ψ̂†(�r, t)Ψ̂†(�r, t)Ψ̂(�r, t)Ψ̂(�r, t)



. (2.10)

Instead of trying to solve the full Heisenberg equation corresponding to the Hamilto-
nian above, one common approach is to adopt a mean-field description and replace
the operator for the condensate mode Ψ̂0(�r, t) that has a macroscopic population N0
with a complex field ψ0(�r, t):

Ψ̂0(�r, t) = ψ0(�r, t) + δ̂(�r, t). (2.11)

This ansatz, known as the Bogoliubov approximation [29], leads to the well known
Gross-Pitaevskii equation (GPE) for the condensate wave function ψ0(�r, t):

ih̄
∂

∂t
ψ0(�r, t) =

�
− h̄2

2m
∇2 + Vext(�r, t) + g3d

%%ψ0(�r, t)
%%2
 ψ0(�r, t). (2.12)

Its static counterpart can be found with the substitution ψ0(�r, t) = ψ0(�r)e−iµt/h̄:

µψ0(�r) =

�
− h̄2

2m
∇2 + Vext(�r, t) + g3d

%%ψ0(�r, t)
%%2
 ψ0(�r, t), (2.13)

where µ represents the chemical potential. A typical solution of the static GPE equa-
tion for a trapped BEC can be found in the case of the chemical potential µ being
larger than the trap level spacing h̄ωho. In this case, we can neglect the kinetic term
in Eq. (2.13), known as the Thomas-Fermi (TF) approximation, and solve for n0(�r) to
obtain:

n0(�r) =

�
g−1

3d [µ − Vext(�r)], for µ > Vext(�r)
0, otherwise

. (2.14)

The Thomas-Fermi profile n0(�r) of Eq. (2.14) corresponds to an inverted parabola
with radius li:

li =

!
2µ

mω2
i

, (2.15)

along the i direction. As we will see in the following, in the case of a BEC in a
very elongated trap with transverse symmetry, the Thomas-Fermi approximation
µ � h̄ωx is well satisfied along the elongated x direction.

One-dimensional trapped Bose gas

Low-dimensional Bose gases were the subject of an intensive theoretical investiga-
tion, initially without the possibility of any experimental test. Here we collect the
main points worth mentioning for understanding the raw material of this thesis
work: the trapped 1d quasi-condensate of 87Rb atoms, following the review [30].
The usual conditions for treating a system as one-dimensional are defined by the
relation between its typical energy scales. Consider a Bose gas confined in a cigar-
shaped trap where ω⊥ � ω�. Its typical energy scales are the chemical potential µ,
its thermal energy kBT, and its transverse and longitudinal energies h̄ω⊥ and h̄ω�
respectively. We can describe the system as one-dimensional (1d) when both the
chemical potential and the thermal energies are small compared to the strength of
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the transverse confinement: µ, kBT � h̄ω⊥. Along y, z the condition µ � h̄ω⊥ inval-
idates the Thomas-Fermi approximation, and the wave function along this direction
approaches the single-particle ground state φ0 of the confining potential [31]. In this
case, we talk about the “freeze-out” of the transverse dynamics, the condensate be-
ing in the transverse ground state Ψ⊥ = φ0(y)φ0(z). As we will see later, when twin
pairs are emitted with non-negligible kinetic energy in such 1d geometry, they can
only move along the longitudinal axis, where the potential is shallow, and dynamics
are still possible. The radius of the single-particle ground state φ0 is given by:

l⊥ =

!
h̄

mω⊥
. (2.16)

Suppose the radial extension of the wave function l⊥ = (h̄/mω⊥)1/2 is much larger
than the characteristic radius of the inter-atomic potential Re. In that case, the inter-
action among particles has a 3d character and can be described by the 3d scattering
length as � a⊥. In this case, we can average the 3d interaction over the radial den-
sity profile to obtain an effective 1d scattering amplitude [32]:

g1d =
2h̄2as

ma2
⊥

= 2h̄ω⊥as. (2.17)

However, along the elongated x direction where the condition µ � h̄ωx holds one
can use Eq. (2.15) to compute the size of the condensate along this direction.

Different regimes

It is possible to identify different regimes of a one-dimensional Bose gas. Consider
first a homogeneous gas. The one-dimensional Lieb-Liniger Hamiltonian defines its
properties:

Ĥ1d =
�

dx

�
− h̄2

2m
Ψ̂†(x) ∂2

∂x2 Ψ̂(x) +
g1d

2
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)



, (2.18)

where we introduced the one-dimensional interaction constant:

g1d = g3d

� %%φ(y)%%4 dy
� %%φ(z)%%4 dz. (2.19)

The parameter γ = Eint/Ekin = g1dm
h̄2n

distinguishes two regimes: (a) weakly interact-
ing regime (γ � 1) is characterized by "high densities". In this limit, a mean-field
theory (see Eq. (2.12)) is well justified and condensation is possible. Also, µ � h̄ω⊥
holds, so the transverse dynamics is frozen; (b) lower densities along the longitudi-
nal dimension determine the Tonks-Girardeau regime (γ � 1), where bosons start
exhibiting some fermionic properties. In this thesis, we will only be concerned with
the first type.

Trapped quasi-condensates

Early theoretical studies focused on low-dimensional Bose gases with repulsive in-
teractions. We already mentioned that no condensation is expected at finite tempera-
ture in the thermodynamic limit for spatially homogeneous systems, which is phys-
ically due to large phase fluctuations and a consequent finite coherence length [33]:

λc =
2h̄2n
mT

, (2.20)
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where n represents the one-dimensional atomic density that in our experiment with
N ≥ 800 atoms has typical values of n ≥ 30 atoms/µm.
We introduce the local density approximation (LDA): assuming that the density varies
slowly with respect to the relevant length scales, we consider the gas locally homo-
geneous so that we can still apply all the previous theoretical machinery. The entire
gas is at thermal equilibrium with the temperature T and the global chemical poten-
tial µ0. However, the local chemical potential µ is shifted by the external potential:
µ(x) = µ0 − Vext(x) (cross-over regime, see [34]).
In this thesis, we work with a Bose-Einstein condensate (BEC) of 87Rb trapped in a
cylindrical trap below an atom chip. If the relevant energy for a BEC (chemical po-
tential µ) is much smaller than the energy h̄ω⊥ associated with the transverse level-
spacing, any dynamics along this direction is frozen. The Hamiltonian describing
such a system is the Gross-Pitaevskii equation (GPE) for 1d systems [35]:	

− h̄2

2m
d2

dx2 + Vtrap(x) + g1dN
%%ψ(x)

%%2 − µ

�
ψ(x) = 0, (2.21)

where ψ(x) denotes the longitudinal BEC wavefunction, µ is the chemical poten-
tial, Vtrap is the trapping potential, and g1d is the effective one-dimensional coupling
strength.
87Rb has a positive scattering length, which means it is mutually repulsive at low
temperatures. Also the coupling constant g1d present in the short-range interaction
term between particles is positive since

g1d = 2h̄2ω⊥as, (2.22)

where as = 5.2 nm for the |F = 1, mF = −1� state of 87Rb [36]). When dealing with
around 800-1500 atoms trapped in an elongated trap with ω⊥ % 2π × 1 kHz and
ω� % 2π × 12 Hz, we can assume that

µ = g1dn0, (2.23)

where n0 % 30 atoms/µm is the central density. We can then compute the Thomas-
Fermi radius lx along the longitudinal direction as:

lx =

!
2µ0

mω2
�
% 23 µm. (2.24)

On the other hand, considering a temperature of the condensate of T = 40 nK one
obtains that the coherence length λc ∝ T−1 from Eq. (2.20) is

λc % 8.3 µm. (2.25)

2.2 Quantum collisions

Let us consider a gas made of neutral atoms, and let us call d the relative distance
between two atoms of the gas. When neglecting the magnetic dipole term, we get a
contact potential V(d) of the Lennard-Jones type:

V(d) =
C12

d12 − C6

d6 . (2.26)

In a very dilute gas, the most likely collisions involve two atoms at a time. These
are generally elastic collisions, i.e., the two atoms will bounce off each other, and
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no molecule is formed. Three-body collisions are the first case where the presence
of a third entity allows the conservation of the total momentum, allowing for the
formation of molecules and atom losses (inelastic collisions).
From a classical point of view, given the potential in Eq. (2.26), two atoms that come
close enough can interact via a Van der Waals ∝ −1/d6 type of attractive force and
for a short time (short-range interaction), hence give rise to a collision.
Quantum mechanically (see the distinction between the classical and quantum the-
ory based on the comparison between the de Broglie wavelength λT and the inter-
particle distance d in Section 2.1.1), the Hamiltonian describing two interacting atoms
with masses m1 and m2 and momenta �p1 and �p2 is given by:

Ĥ =
p̂2

1
2m

+
p̂2

2
2m

+ V
�
|�r1 −�r2|

�
. (2.27)

Let us assume an isotropic potential (as it is the van der Waals one for example) and
rewrite Eq. (2.27) in the center-of-mass (CoM) coordinates:

Ĥ =
P̂2

2M
+

p̂2

2µ
+ V(r) (2.28)

where M = m1 + m2, µ = 1/(m−1
1 + m−1

2 ), P = p1 + p2, p = p1 − p2. Since the
P-term is just a constant, we can neglect it. The correspondent Schrödinger equation
reads: �

p̂2

2µ
+ V(r)



Ψ(�r) = EΨ(�r) (2.29)

where r = |�r1 −�r2| and E = h̄2k2

2µ with k = k1 − k2. We seek for solutions of the type:

Ψ(�r) = Ψin(�r) + Ψs(�r) → eikz + f (k, θ)
eikr

r
, for r � b (2.30)

where Ψin and Ψs are the incident and scattered wave components, and we assumed
the collision happened along z. The right arrow describes the limit at large distances
r � b, where b is the range of the potential. This limit is interesting in most cases
since we usually need to know how the particles behave far from the collision point,
where we expect the wavefunction linked to the particle to be the solution of the free
Schrödinger equation. The amplitude of scattering f (k, θ) is such that:

dσ

dΩ
=

%% f (k, θ)
%%2, (2.31)

where σ is the cross section and Ω the solid angle. From partial wave analysis
(see [37]) one can write:

f (k, θ) =
1
k

∞

∑
l=0

(2l + 1)Pl(cos θ), eiδl(k) sin δl(k) (2.32)

as a special case for a central, static potential.
Let us now consider the limit of low energy (ultracold gases). Let us write the Ψ(�r)
as an expansion in the partial waves basis:

Ψ(�r) =
∞

∑
l=0

m=+l

∑
m=−l

ulm(r)
r

Ylm(θ, φ). (2.33)
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Since V(r) is isotropic (no explicit dependence on azimuthal angle φ) one can retain
only the term m = 0 in the expansion:

Ψ(�r) =
∞

∑
l=0

ul(r)
r

Pl(cos θ). (2.34)

We rewrite Eq. (2.29) in cylindrical coordinates to obtain:�
− h̄2

2µ
∂2

r +
h̄2l(l + 1)

2µr2 + V(r)− E



ul(r) = 0, ∀l (2.35)

where the l(l + 1) term is a centrifugal term that generates a repulsive potential for
atoms, i.e., it acts as a potential barrier that needs to be overcome for the atoms to
come into contact and collide. In the limit of low energies, only the l = 0 term will
give rise to collisions and scattering of two atoms off each other: this represents the
so-called s-wave approximation, for which one finds:

δ0(k) = −ka

σ =
4π

k2 sin2(−ka) % 4πa2, (2.36)

where a is the scattering length.
Let us now consider the case of two identical particles coming close enough to be
able to interact via the Lennard-Jones potential of Eq. (2.26). Since the particles are
indistinguishable, quantum statistics plays an important role. In particular, the gen-
eral expression for the differential cross-section of Eq. (2.31) reads:

dσ

dΩ
=

1
2

%% f (k, θ) + � f (k, π − θ)
%%2 (2.37)

where � = 1 stands for bosonic particles and � = −1 stands for fermionic particles.
The cross section is then given by:

σ =
8π

k2

∞

∑
l=0

(2l + 1)(1 + �(−1)l) sin2 δl(k), (2.38)

where l = 0, 2, 4...∞ (positive even integer numbers) for bosons and l = 1, 3, 5...∞
(positive odd integer numbers) for fermions. This means that at very low tempera-
tures (when only the lowest values of l are relevant), the cross-section has different
values for bosons (B) and fermions (F). In particular, we get σB = 8πa2 and σF = 0.
In s-wave approximation, fermions do not interact and behave as an ideal noninter-
acting gas due to their statistics.

2.3 Twin-atom entanglement in double-well potentials

More than 30 years ago, Ghosh and Mandel sent twin photons entangled in momen-
tum through a double slit and measured two-photon coincidence detections in far
field [38]. They then observed conditional1 fringes, which were later shown to be
related with entanglement [39]. Our system constitutes the matter analog of such an
optical experiment in that we use atoms instead of photons and atomic waveguides
instead of optical beam splitters.

1Conditional in the sense that they only show up when correlating the detection events of the twin
photons.
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tion of a two-particle state must rely on two-particle properties. For this reason, one
starts by looking at the second-order correlator

G(2)(ξ1, ξ2) = �Ψ̂†(ξ1)Ψ̂†(ξ2)Ψ̂(ξ1)Ψ̂(ξ2)� = Tr[ρ̂Ψ̂†(ξ1)Ψ̂†(ξ2)Ψ̂(ξ1)Ψ̂(ξ2)], (2.39)

where ξ1 (ξ2) are the coordinates of the first (second) atom, and Ψ(ξn) is the wave-
function of the n-th atom.
The real part of the atom-atom correlator in Eq. (2.39) is experimentally accessible ei-
ther by looking at the left and right components of the two-particle state separately
(position measurement) or by letting them overlap and interfere (momentum mea-
surement). We can obtain different information on the initial state by preparing dif-
ferent experimental sequences, which we have named as separation procedure when
we perform a position measurement, and interference procedure when we measure
in momentum space.
In our experimental setup, we are limited by the difficulty of emitting and detecting
only one pair at a time. Our detector [41] cannot reliably distinguish single atoms
from electronic noise. For this reason, we mostly rely on number-squeezing tech-
niques that do not require identifying the partner of each atom and use G(2)(ξ1, ξ2)
based analysis only on those data sets where it is strictly required while keeping the
average pair emission as low as possible.
The two detection schemes that are, in principle, available to our setup (position
and momentum-space-based detection schemes) are equivalent to the experiment
performed by Ghosh and Mandel [38].

2.4 Bell tests of Quantum Mechanics

In 1935 Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR) wrote a paper [3]
where the following paradox was presented in order to challenge the quantum me-
chanical theory and save a local-realistic point of view.
Let us consider two half-integer spins in the two-particle singlet state

%%ψ−� at two
far locations identified by the indices 1(2):%%ψ� ∝ |1+, 2−� − |1−, 2+� (2.40)

where we fixed a certain direction z for the spin projections and where |1±� (|2±�)
are the two eigenstates of S1z (S2z) along the same direction. If the observer O1 at
location 1 measures the spin component S1z of spin 1 and finds the result +1/2, then
when O2 at location 2 measures S2z we can predict with certainty that he will find
the result −1/2, given the state in Eq. (2.40).
The EPR authors assumed that the measurement on spin 1 by O1 cannot influence
the state of spin 2 at the remote location. However, we can indeed predict the result
of the measurement of spin 2 given the result of the measurement on spin 1. There-
fore, concluded the EPR authors, S2z must be a pre-existing element of reality. This
way of reasoning is called local realism. A paradox arises from the fact that the state
in Eq. (2.40) cannot be factorized as the product of the separate single-particle spin
states in any of the x, y, z-directions. Therefore, also S2x (and S2y) should possess
the same pre-existing property. This clashes with the requirements imposed by the
uncertainty principle on non-commuting observables (Sz and Sx or Sy in this case),
which cannot simultaneously have well-defined values in a quantum state.
Although this paradox was presented by the authors as a challenge against the non-
local quantum mechanical view of the world and was intended as a mere thought ex-
periment or Gedankenexperiment, in 1964’s paper by J. S. Bell "On the Einstein Podol-
sky Rosen Paradox" [42], he derives an inequality for the value of an observable
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linked to the measurements carried out by the two distant observers which, if not
satisfied, rules out the possibility of hidden variables and EPR’s attempt to save both
local-realism and quantum mechanical prediction. Since 1972 physicists worldwide
have tested Bell’s inequalities in the laboratory with more and more refined exper-
iments and techniques. All the experiments so far, whether with photons [43–48]
or massive particles like protons [49], ions [50], electrons [51], or internal states of
atoms [52] have confirmed the non-local predictions of quantum mechanics.
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Chapter 3

The experimental setup

This chapter will mention the main components of the experimental setup, internally
referred to as the Rb2 experiment, to distinguish it from the other Rubidium-87-
based experiment at the Atominstitut in Vienna. We will only pay attention to those
most relevant parts to produce double twin-atom beams and detect them. The setup
did not change significantly from previous works [53–55], to which we refer the
interested reader for more information.
In short, our recipe for a Bose condensate contains five main ingredients: gaseous
rubidium atoms, ultra-high vacuum technology, two main laser sources, magnetic
trapping, and evaporative cooling. In addition to these basic ingredients, we use
radiofrequency dressing techniques to modify the shape of the confining potential.
Compared to previous setups, we replaced the empty rubidium dispensers and the
large bottom window of the science chamber. Lastly, we implemented a new ab-
sorption camera (see Section 3.4.1) to replace the previous one, which failed.

3.1 The main experimental components

The Rb2 machine is a complex setup, with several parts working together to create a
Bose-Einstein condensate of rubidium atoms and manipulate it. It comprises ultra-
high vacuum components (main chamber, three or four different vacuum pumps,
pressure monitoring), electro-optical elements (rubidium rods, atom chip, and its
supplies, magnetic fields supplies, rf-field generators, lasers, mirrors, beam-splitters,
AOMs, fibers), and monitoring and control system (various computer stations, the
ADwin control), to name a few. Let us now review in more detail some of them.

3.1.1 Vacuum technology

Part of the work of this thesis was opening the vacuum system and replacing the
empty rubidium dispensers. We also replaced the large window below the science
chamber during this procedure.
As we mentioned in the theoretical sections, Bose-Einstein condensation happens at
extremely low temperatures of tens of nK. Even if these temperatures are impres-
sively low, no cryogenic device is required. Apart from the atoms, all the other
instruments used in our laboratory are at room temperature.
Instead, the price we need to pay to reach some of the coldest temperatures in the
whole Universe is ultra-high vacuum (UHV) technology. A low background pres-
sure of the order of 10−11 mbar is necessary to prevent atom loss and heating due
to collisions with background atoms at room temperature. For this reason, we need
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to first achieve UHV by a combination of different pumps characterized by different
pressure ranges.
The UHV main pump is an Agilent ion getter pump1. Such technology aims first to
ionize any background atom or molecule and trap them inside the Titanium made
cathodes. The ion pump works in the pressure range 10−11-10−8 mbar. To cover
the range from atmospheric pressure to 10−8, we used a Rough pump and a Turbo
Molecular pump. There are also two side UHV pumps: one Titanium Sublimation
Pump (TSP) and one Non-Evaporative Getter (NEG) pump. The first is activated
roughly every two weeks, while the latter is a passive pump that acts like a sponge
and helps capture background atoms that stick to its large surface. A UHV Gauge
at the science chamber monitors the pressure pc inside the science chamber. If pc ≤
1 × 10−10 mbar, we have a stable and reproducible BEC production. If not, one can
still activate the TSP pump to try restoring the proper pressure inside.

3.1.2 Rubidium source

Rubidium atoms are stored in dispensers made of metallic rods in a Rubidium chro-
mate compound. A water-cooled side flange holds the metallic rods located on
one of the eight side apertures of the octagonal-shaped stainless-steel science cham-
ber, while copper feed-troughs provide the current. Increasing the current running
through the dispensers produces a higher Rubidium background pressure since
more atoms are released due to the Joule effect. Because we only have one chamber,
the atomic flow must be regulated. It is higher in the first half of the experimental
cycle when atoms are gathered together in a magneto-optical trap. In the second
half of the cycle, the current in the metallic rods is decreased to avoid collisions with
background atoms at higher temperatures, resulting in heating and losses. Water
cooling helps cool down the rods faster and stops the Rubidium flow in the second
part of the experimental cycle.

3.1.3 The science chamber

Our experiment features a single-chamber design. The price we need to pay for a
more compact setup than experiments with two chambers is a longer experimental
cycle since the higher and lower background phases mentioned before coexist in the
same chamber.
One window aperture hosts the rubidium source, and the other seven apertures of
the octagonal chamber provide optical access. A large window at the bottom is used
to image the atoms after their release from the trapping potentials.

3.1.4 The copper structure

On top of the science chamber, a flange with water-cooling connectors hosts the
mounting for the atom chip connections. It comprises two different structures: one
is made of large 5-mm thick copper wire connectors for high DC currents up to 60
A; a second, more internal structure, comprises a 36-pin feedthrough structure to
connect to the thinner atom chip wires.
The copper wires are a flat U-shaped wire, a smaller Z-shaped wire with a length of
4 mm, and two bars. We use them as follows (see Fig. 3.1):

1Varian StarCell, 500 L/s
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• A large H-structure connected to form a U-shaped copper wire is used with an
external bias field to produce the magnetic quadrupole field needed during the
magneto-optical trap (MOT) phase. It is also used later in the experimental cy-
cle as an antenna for evaporative cooling when carrying an oscillating current
(in blue in Fig. 3.1).

• A Z-shaped copper wire separated by a gap from the larger U-structure, com-
bined with an external bias field and Ioffe field, produces an intermediate large
volume trap (green).

• Two I-shaped wires running along y serve either as Stern-Gerlach separators
for the different magnetic mF states or for additional longitudinal confinement
(red).

3.1.5 The atom chip

Figure 3.1: Adapted from Ref. [56]. (a) The chip mounting. (b) Schematics of the
copper wire structure below the atom chip surface. Z-, U-, and I-shaped wires are
depicted in green, blue, and red, respectively.

The actual atom chip lies on top of the aforementioned copper structure. It was
designed and manufactured at the Weizmann Institute in the group of I. Bar-Joseph
in Israel by Sönke Groth using different lithographic techniques [53].
A sketch of the layout appears in Fig. 3.2. Its gold surface serves as a mirror dur-
ing the MOT phase. It has a double-layer structure, enabling a three-wire H-shaped
trapping scheme where wires from different layers can cross each other. As the main
structure for trapping, it uses a straight wire of 80 µm width on the most external
chip layer along the longitudinal x axis, in conjunction with a pair of perpendicular
(along y) wires on the deeper layer, of 500 µm width, responsible for the weak lon-
gitudinal confinement. Finally, 10 µm-wide wires running alongside the main wire
are used as antennae for radiofrequency dressing (Section 3.3).
The atom chip wires are much thinner than the copper wires underneath and can
carry currents up to 1 A. The current driver for each wire is floating and connected
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Figure 3.2: Adapted from Ref. [56]. (a) The atom chip. (b) Schematics of the wire
structure of the most external layer used to generate the final chip trap. Left: an
overview. The connection pads are placed all around the chip except in the central
regions to avoid obstruction of imaging beams. Red, green, and black pads corre-
spond to the wires used in this thesis. Right: zoom on the central part, where the
actual experiment occurs. Black: main trapping wire. Green: longitudinal confine-
ment wires. Red: radiofrequency wires. Blue: not used.

to an independent set of car batteries (±12 V) to supply the wire and the current
source. When used continuously, the car batteries need to charge every week or
when the voltage reaches 12 V.

3.1.6 Laser system

Lasers are a fundamental ingredient in every ultracold atom setup, which allowed
physicists to achieve all the steps needed to go from a gas of neutral atoms at room
temperature to a quantum condensate. They serve many tasks, from slowing down
the atoms emitted by the rubidium dispensers, cooling and gathering them below
the atom chip’s surface, to optical pumping them in the right magnetic state for the
following magnetic trapping stage (see Section 3.2). Furthermore, they detect the
atoms after they have been released from the chip trap (see Section 3.4).
In the Rb2 setup there are two main lasers, one addressing the lowest hyperfine state
of 87Rb (F = 1), internally referred to as repumper laser, and the other addressing
the second hyperfine ground state (F = 2), referred to as cooler laser, as showed in
Fig. 3.3. Both cooler and repumper lasers originate from an ECDL structure. Only
the cooler laser is amplified with a MOPA system before being injected into a single-
mode fiber.
All the laser beams in the experiment come from a frequency-shifted cooler or re-
pumper beam. Frequency shifting is done via single or double-pass acousto-optic
modulators (AOMs).
A scheme of the laser setup is shown in Fig. 3.4. The cooler laser (red) and the
repumper laser (orange) are generated in separate boxes for thermal and acoustic
isolation. Both lasers undergo free-Doppler spectroscopy, and then the cooler un-
dergoes two amplification stages. In July 2018, we exchanged the tapered-amplified
(TA) laser chip at the first amplification stage. We currently operate the TA at 1240 mA
and produce around 130 mW of optical power from the optical fiber: 90 mW is used
for imaging (absorption and light-sheet beams) and pumping F = 2; 40 mW is used
to seed a second amplification system, referred to as BoosTA4. We currently operate
the BoosTA at 1850 mA of current, which outputs around 600 mW of optical power
at the exit of the optical fiber, devoted to the MOT beams entirely.
The repumper beam outputs around 35 mW at the exit of the first optical fiber and

4Toptica Photonics BoosTA
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600mW

35mW

10uW

1mW

90mW

40mW

Figure 3.4: From [57]. The beam paths of the cooler (red) and repumper (orange)
lasers are indicated. The grayed-out part corresponds to a previously used longi-
tudinal absorption-based imaging scheme, not used anymore. On the upper part
of the panel, we see the two beams that are generated in separate boxes for ther-
mal and acoustic isolation. Doppler-free spectroscopy is performed on both beams3.
The beams are then amplified and brought to the lower panel via single-mode
polarization-maintaining fibers. On the lower panel, the beams are frequency shifted
using AOMs and finally guided to their final locations, either in free-space (MOT)
or single-mode fibers (imaging, optical pumping).
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cently a new device replaced the Tabor instruments6. The oscillating currents of
different amplitudes and frequencies are sent to the U-shaped copper wire for evap-
orative cooling, and to the two radiofrequency wires on the atom chip for radiofre-
quency dressing (see Fig. 3.2).
The modification of the potential is achieved by rf fields oscillating at a frequency
resonant with the energy difference among the magnetic sublevels of the hyperfine
ground state of 87Rb. In the case of evaporative cooling, we employ an rf field with
constant amplitude and ramp down the rf frequency until the hotter atoms have
left the trap. During the rf dressing stage, we instead send out a fixed rf frequency
and vary the amplitude according to the optimal trajectory or OCT ramp (see Sec-
tion 4.2.2 and Fig. 4.4).

3.2 Preparation of quasi-condensates

Each experimental cycle lasts approximately 34 s. Each time the cloud is loaded
and imaged, it is lost under gravity, and the cycle starts again iteratevely. The sci-

Figure 3.5: Picture of the experiment, the science chamber, and elements surround-
ing it from different points of view: front, reactor side (side facing the nuclear reactor
facility at the Atominstitut), fermi side (fermi is the way we internally refer to the
lab next door). The x,y, and z axis are defined with respect to the main experimental
components.

ence chamber is where the experiment takes place. It is kept at ultrahigh vacuum at
around 10−11 mbar (during the MOT phase, the pressure is higher) and has several
windows to optically access its central core where the cold atomic ensemble is.
A Magneto-Optical Trap (MOT) is used to collect, trap and slow down rubidium
atoms from the background vapor. The atoms are then cooled down and moved
up by optical molasses and then optically pumped to the weak field seeking state
|F = 1, mF = −1� of 87Rb. The Z-shaped wire from the copper structure creates a
magnetic Ioffe-Pritchard trap that traps the cold atoms from the molasses. After
a first compression and evaporative cooling stage within the Z-trap, the atoms are
transferred to the atom chip trap and undergo a further evaporative cooling stage.
Eventually, the condensate is released, atoms fall under gravity, and are finally de-
tected in time-of-flight (TOF), either by absorption or fluorescence imaging tech-
niques.
In Fig. 3.5 we show an overview of the current Rb2 setup, from different orientation,
denoted, from left to right, “Reactor side”,“Front view”, and “Fermi side”. The ex-
periment lies in a single optical table and comprises two parts: lasers are prepared
and fiber injected on one half of the optical table; on the other half, the experiment
takes place in the octagonal science chamber.

6Keysight 33622A.
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3.2.1 Theory of magnetic trapping of neutral atoms

Let us now review the physics behind static magnetic traps. In general, the inter-
action of a magnetic dipole moment �µ of an atom with an external magnetic field �B
can be expressed as (see [58]):

HB =
µB

h̄
(gS�S + gL�L + gI�I) · �B, (3.1)

which leads to a ground state energy shift given by:

ΔEB = �µ · �B, (3.2)

where Bohr’s magneton is given by µB = eh̄/(2me) % h · 1.4 MHz/G with me the
electron mass, and µ the atom magnetic moment defined by the relation:

�τ = �µ × �B, (3.3)

where we introduced the torque �τ exerted on the atom by the external field �B.
Maxwell’s equations restrain the search of trappable states to low-field seekers, i.e.,
atomic states for which the state with lowest energy corresponds to the magnetic
dipole moment �µ being anti-parallel to the external field �B.
If the magnetic moment�µ of the atom has a component perpendicular to the external
field, the atom undergoes a Larmor precession around the external magnetic field
due to the torque �τ with a frequency given by:

ωL = gFµB|�B|/h, (3.4)

known as Larmor frequency. Since the field orientation changes in space, the atom
will see a change of �B as it spins around it. The adiabaticity criterion states that if
the relative change of the magnetic field is small compared to the Larmor frequency,
i.e., if the condition:

|∂�B/∂t| < ωL|�B|, (3.5)

holds, then the atom’s precession can follow the external field adiabatically, which
means the atom will remain in its magnetic substate mF even if the quantization axis
will continuously rearrange its direction following the magnetic field orientation. In
this case, the interaction takes the form of a potential:

Vmag(�r) = mFgFµB|�B(�r)|, (3.6)

where F, mF are the hyperfine quantum number and its projection along the quanti-
zation axis, and gF is the hyperfine Landé factor given by (see [58]):

gF % gJ
F(F + 1)− I(I + 1) + J(J + 1)

2F(F + 1)
. (3.7)

The hyperfine structure of 87Rb in its ground state (52S1/2) is given by (see [58]):

Hh f s = Ah f s�I ·�J, (3.8)

which leads to a ground state hyperfine energy splitting:

ΔEh f s =
1
2

Ah f sK % 6.8 GHz, (3.9)
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where
K = F(F + 1)− I(I + 1)− J(J + 1), (3.10)

and Ah f s is the magnetic dipole constant. Depending on the intensity of the mag-
netic interaction, different regimes occur. If the energy shift ΔEB due to the inter-
action with the external magnetic field is small compared to the energy scale of the
hyperfine structure (F, mF) of the ground state of 87Rb atoms, we can treat HB as a
perturbation of the zero-field eigenstates of the hyperfine Hamiltonian Hh f s, so the
interaction Hamiltonian becomes:

HB = µBgF�F · �B. (3.11)

The corresponding energy splitting (to lowest order) is given by:

ΔE|F,mF� = µBgFmFB, (3.12)

which is known as anomalous Zeeman effect.
For increasing values of the external magnetic field, a more general formula is avail-
able in an explicit form to compute the energy levels in the J = 1/2 ground state of
the 87Rb manifold, known as Breit-Rabi formula [58]:

E+

|JmJ ImI� = − ΔEh f s

2(2I + 1)
+ gIµB(mI + 1/2)B +

ΔEh f s

2
F+(x),

E−
|JmJ ImI� = − ΔEh f s

2(2I + 1)
+ gIµB(mI − 1/2)B − ΔEh f s

2
F−(x), (3.13)

where mI = (−3/2,−1/2, 1/2, 3/2) are the projections of the nuclear magnetic mo-
ment quantum number I along the quantization axis, gI = −0.000995 is the nuclear

g-factor, and F±(x) =
 

1 + 4(mI±1/2)x
2I+1 + x2 where we defined:

x =
(gJ − gI)µBB

ΔEh f s
. (3.14)

In Fig. 3.6, we display the level structure of 87Rb lowest manifold as a function of an
external magnetic field B, as prescribed by Eq. (3.13) (apart from the lowest state in
the upper manifold for which we used the formula given by [58] for the Paschen-
Back regime). In green, we show the states that can be trapped in the minimum of
a static magnetic potential landscape (low-field seekers). It is possible to distinguish
a weak-field region where F is still a good quantum number (anomalous Zeeman
effect regime), followed by an intermediate region of magnetic field values where
the different hyperfine states mix and I, J become the good quantum numbers (Breit-
Rabi formula for the hyperfine states). For even larger magnetic field values, the
hyperfine Hamiltonian of Eq. (3.8) perturbs the strong-field eigenstates

%%JmJ ImI
�
,

known as Paschen-Back regime.
We exploit the magnetic interaction of atoms in their ground state with an exter-
nal field to generate magneto-optical or purely magnetical trapping schemes. For
87Rb atoms only the states |F = 1, mF = −1�, |F = 2, mF = 1�, and |F = 2, mF = 2�
(in green and red in Fig. 3.6) can be used to trap atoms in free space around regions
where the field modulus presents a local minimum. In the Rb2 experiment, we trap
the ground state |F = 1, mF = −1� (in red in Fig. 3.6) to whom corresponds a mag-
netic moment µ = mFgFµB = 0.70 MHz/G.
Let us now review some possible trapping geometries for neutral atoms with a finite
magnetic moment in an external static magnetic field. The simplest trapping scheme
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Figure 3.6: Energy structure of 87Rb hyperfine ground states in the presence of an
external magnetic field, calculated using Eq. (3.13). The energy of the lowest state
of the upper manifold was calculated using the Paschen-Back formula [58]. In green
and red are the low-field seeking states. In red is the state we used to trap atoms
during this thesis.
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Figure 3.7: Static transverse yz trapping scheme. Left: Magnetic field distribution
�Bwire
⊥ generated by an infinite wire running along x (direction of the current flow

entering the page, x axis not drawn) and positioned at (y, z) = (0, 0), calculated
using the Biot-Savart’s law of Eq. (3.15) (in black); uniform magnetic bias field �Bb
along y axis (in red). Right: Modulus of the magnetic field distribution resulting
from an infinite wire along x and a uniform field along y, producing a quadrupole
field centered at d0 % 60 µm, assuming a value of Bb = 34.1 G and I = 1 A (typical
values of the final chip trap).

is a quadrupole trap. The main idea is that for the transverse yz part, the inhomo-
geneous field generated by a single current-carrying wire is canceled by an external
field (bias field) at one position in the yz plane. An extra homogeneous field along
x will realize the Ioffe-Pritchard radial trap by lifting the zero-field minimum (Ioffe
field) to avoid atom losses due to Majorana spin flips.
Transverse confinement Assuming an infinitely thin wire carrying a current it along
x, the absolute value of the magnetic field Bwire generated at a distance d is given by:

Bwire =
µ0

2π

it

d
, (3.15)

known as the Biot-Savart’s law.
Adding a homogeneous bias field of modulus Bb along y cancels the transverse field
at a distance d0 given by:

d0 =
µ0i

2πBb
. (3.16)

Around this zero-field minimum, a two-dimensional quadrupole configuration is
generated with axes tilted by 45◦ with respect to y, z (see Fig. 3.7) with a field gradi-
ent given by:

|∂B/∂y| = |∂B/∂z| = |Bb/d|. (3.17)

For typical parameters in the final atom chip trap, Bb = 34.1 G, i = 1 A, we find
d = 58.6 µm and transverse field gradients |∂B/∂y| = |∂B/∂z| = 0.6 G/µm.
A simple quadrupole configuration with the value of the magnetic field modulus
growing linearly in all directions starting from a local zero-field minimum must
be excluded because of Majorana losses. Since the quantization axis has no defi-
nite orientation in space around the zero-field value at the trap’s center, atoms can
quickly escape into other magnetic states and be lost. A widespread solution is the
Ioffe-Pritchard trap, which is also implemented in Rb2. It consists of a transverse
quadrupole trap that superimposes a homogeneous field BI along the longitudinal
x axis, produced by the Ioffe coils. This extra Ioffe field BI will determine the lowest
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Larmor frequency experienced by the atoms in the trap, internally referred to as trap
bottom.
The total harmonic potential in the transverse ⊥ direction is then given by:

V⊥(y, z) = V0 +
1
2

mω2
⊥(y

2 + z2), (3.18)

with

V0 = µBI , (3.19)

ω⊥ =

#
µ

m
B"
√

BI
∝

B2
b

it
√

BI
, (3.20)

where BI = 1.18 G is the modulus of the magnetic field at the trap center, to which
corresponds a trap bottom ω0 = V0/h ≈ 824 Hz, and ω⊥ ≈ 2π × 4.14 kHz.
The chip trap allows much stronger confining traps than geometries using only ex-
ternal coils, exploiting the tiny distances (a few tens of micrometers) achievable be-
tween the trapping wires and the atoms. In order to increase the trapping frequency,
it is simply necessary to move the trap center closer to the chip by varying the bias
field intensity. In particular, higher bias fields achieve a cancellation of the trapping
wire magnetic distribution closer to the atom chip surface, at a location where the
transverse magnetic field gradients are higher (see Eq. (3.17) and Fig. 3.7).
Longitudinal confinement The trapping scheme discussed above produces an atomic
waveguide with tight and isotropic transverse confinement in the yz-plane. The
most common solution to trap atoms along the longitudinal x direction is to use a
pair of wires located at a distance L/2 on each side of the main trapping wire and
orthogonal to it. Let us discuss the case of the final trap and then see the variations
of this scheme used during the U-MOT and Z-trap phases in their sections.
During the final chip trap, Rb2 uses a pair of H-wires running along y at a distance
L/2 = 1 mm from the trap center. When a current iH is sent through each of them
with the same orientation, a field along x is produced, which gives rise to a magnetic
potential VH(x) = VTB + 1

2 mω2
xx2 with

VTB = gFmFµB(B0 +
4dµ0ih

πL2 ), (3.21)

ωx =

#
gFmFµB

m
4µ0

πL2
iH√
B0

∝
iH√
B0

,

provided z, d � L. Since L is much larger than the other length scales, the longitu-
dinal potential is much more shallow. The total three-dimensional trap can then be
approximated by an elongated harmonic potential. For typical current iH = 0.5 A
along the H-wires, we get a 10% correction to the trap bottom due to the longitudi-
nal confinement and a typical longitudinal trapping frequency ωx = 12 Hz, which
yields an aspect ratio ω⊥/ωx ∼ 200.

3.2.2 U-MOT and molasses

In the first half of the cycle (18 s) the dispensers of rubidium atoms are heated up
and the gas is liberated into the chamber. At the same time, lasers and uniform
magnetic fields are switched on and are used to pre-cool the background vapor in a
magneto-optical trap (MOT) a few centimeters below the atom chip.
The laser beams used for the MOT phase are four beams tuned to the F = 2 ↔ F" = 3
closed transition of the D2 line of the atoms (see Fig. 3.3). Because one direction in
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space is occupied by the atom chip, we make use of a mirror U-MOT configura-
tion [61], where two of the six beams used in a conventional MOT are replaced by
the reflections off the chip surface of two beams impinging at an angle of 45◦.
The transverse quadrupole field is approximated by the current running through
the U wire together with a homogeneous bias field parallel to the wire plane and
perpendicular to the central bar of the U connector. The bias field can be rotated in
the plane parallel to the wire and this will move the trap minimum, but the field
always vanishes at the trap minimum [62]. Along the longitudinal direction, the
minimum of the potential is displaced from the central point of the bar, in a direction
opposite to the location of the side wires. A more symmetric quadrupole can be
created by using three wires in an H configuration, as for the final atom chip trap.
An additional laser beam, the repumper beam, tuned with the F = 1 ↔ F" = 2
optical transition is superimposed with the goal of bringing back in the cooling tran-
sitions atoms that fell in the dark F = 1 state (see Fig. 3.3).
MOT beams and fields are on for 17 s, then the MOT is held in place for 1.5 s during
which dispensers are switched off and the residual gas is pumped away by the vac-
uum pumps to avoid collisions with the trapped atoms. Moreover the optical power
of the MOT beams is decreased to reduce the effect of light-induced collisions within
atoms.

3.2.3 Magnetic Z-trapping and evaporative cooling

After the U-MOT phase where only lasers and external coils are involved, atoms
are optically pumped into the |F = 1, mF = −1� state, which is one of the low-field
seekers of the 87Rb ground state manifold (Fig. 3.6).
The Z-shaped wire within the copper structure below the atom chip is ramped up
together with an external bias field (Big bias) to achieve a three-dimensional Ioffe-
Pritchard trap. In fact, due to the wire’s shape, the currents of the side bars now
add up instead of canceling each other like in the U geometry, leading to a non-
vanishing field minimum [62]. However, since the absolute field magnitude at the
trap bottom is too high, a counterbalancing anti-Ioffe field is superimposed in the
opposite direction [53].
In order to further cool down the atomic ensemble, an oscillating radiofrequency
field tuned with the splitting energy between the different Zeeman substates re-
moves the hotter7 atoms from the trap. The remaining atoms collide and rether-
malize to a lower temperature. The rf field is continuously ramped down to lower
frequencies in order to remove more and more atoms, thus reaching lower tempera-
tures.
The U-shaped wire is used as a rf antenna because of its vicinity with the atoms
position. The resolution of this method is limited by the chemical potential of the
BEC to % 2 kHz [63].

3.2.4 Atom chip phase

The main trapping wire together with the H-shaped wires running perpendicularly
achieve a Ioffe-Pritchard trapping scheme, where the Ioffe field points along the
same direction of the field along x generated by the H wires. The H wires are located
at a distance L/2 = 1 mm on each side of the main trapping wire. Typical parameters
for the currents used are i = 1 A for the main wire, and iH = 0.5 A for the H wires,

7With higher kinetic energies.
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(a) (b) (c)

Figure 3.9: Effects of rf dressing on the three spatial directions. (a) Potential along
the double-well y direction in rotating wave approximation, as a function of the
coupling strength at the trap bottom Ω0. The static trap is displayed for comparison
(black curve). Highlighted in green the potential curves at R f = 0.3 and R f = 0.51,
respectively the first and the final traps created during the optimal control ramp to
initialize the source state in the DTB sequence (see Chapter 4). (b) Potential along
the vertical z axis in rotating wave approximation, as a function of the coupling
strength at the trap bottom Ω0. All the curves have the same meaning as in (a).
From this plot, we can see how a tight single wave guide confinement is maintained
at all times along the vertical z axis during the DTB sequence. (c) Potential along the
longitudinal x axis. Notice the much larger range of 100 µm used. Here the potential
is much more shallow compared to the transverse directions.

mental configuration in Fig. 3.8.
As we couple magnetic substates of an atom trapped in a static, spatial varying mag-
netic field landscape BS(�r) to an oscillatory field �BRF(�r, t) with frequency ω, the re-
sulting potential landscape is given by:

VRF(�r) = h
 

δ2(�r) + Ω2(�r) (3.22)

with detuning δ(�r) = νL(�r) − ν(�r) from the atoms’ Larmor frequency at the trap
bottom ωL, and coupling strength or Rabi frequency Ω(�r) = 1

2 µB $mFBRF,⊥(�r), where
BRF,⊥(�r) represents the perpendicular component of the rf field with respect to the
local static field. We can also define the Rabi frequency at the trap bottom Ω0 =
1
2 gF $mFµBBRF,0, where BRF,0 is the magnitude of the perpendicular component of the
rf field with respect to the static field.
The static potential is approximately harmonic and isotropic along the transverse
axis in the yz plane. When the rf amplitude is increased (with a constant frequency),
the potential becomes anisotropic and flattens along a direction that depends on the
polarization of the rf field [57]. The dressing is only along the direction perpen-
dicular to the rf polarization. Typical parameters for the rf dressing in our experi-
ment are an rf field of BRF ≈ 0.68 G peak-to-peak amplitude (R f = 0.51, see Sec-
tion 4.2.2), corresponding to a coupling Ω0 ≈ 220 kHz, at a frequency red-detuned
by δ0 = −54 kHz near the trap bottom with νL = 824 kHz.

3.4 Detection

3.4.1 Absorption imaging

Absorption imaging is used to estimate the atom number of the ultracold ensemble.
We recently replaced the old camera with a new one that communicates via a single
cable with a computer. We currently take absorption pictures of the atoms with a
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Table 3.1: Main specifications of the current absorption camera.
Quantum Efficiency at 780 nm 40 %

Resolution 2048 px x 1088 px
Max. Frames Per Second 165 fps

Pixel Size 5.5 µm x 5.5 µm
Dark Noise 13.9 e−

Saturation Capacity 9.3 ke−
Dynamical Range 56.5 dB

Signal-to-noise Ratio 39.7 dB

BASLER R� acA2000-165 µm USB 3.0 camera featuring a CMOS sensor (CMV2000).
In Table 3.1 we summarize its main features.
The sensor (with its housing for the reading out) was aligned on a mechanical trail
comprising the previous lens system [64].
The number of atoms Ni on a pixel i of the CMOS sensor is given by [56]

Ni =
A
σS

ln
�

S0,i

Si

�
, (3.23)

where S0,i and Si correspond to the signal (arbitrary units) detected in that pixel with
and without atoms (only light beam present), respectively. To achieve this result,
two images are acquired, separated in time by 10 ms. A/σS is equal to the number
of atoms in the pixel column required to achieve unit optical density. The value of
the object-space pixel size

√
A was measured to give A = 11.8 µm2 [56]. In the

limit of low intensities and sigma polarized absorption beam, the value of σS was
estimated to be σS = 3λ2/(2π) ≈ 0.291 µm2 [58].
A Matlab script was written to communicate with the new camera. Practically, we
take two images with a 800 µs exposure time at specific time steps dictated by an ex-
ternal TTL signal controlled by an ADwin channel, one with and the second without
atoms.

3.4.2 Fluorescence imaging

Our fluorescence-based imaging system consists of a nearly resonant sheet of light
made of two counter-propagating laser beams with extremely thin focus (20 µm min-
imum radius) paired with a high-NA objective placed below the vacuum chamber
and an EMCCD camera 8. The thin light sheet serves as a selective element that
avoids collecting photons from the cloud as a whole at the same time, which would
result in a blurring effect due to layers that are not in focus. Instead, each slice is
imaged separately, and the signal from different vertical layers gets summed up.
Fluorescence imaging is conceptually different from absorption imaging. Since it
aims to collect the photons re-emitted by the atoms in the full solid angle, the detec-
tor can be placed at any location regarding the incident light. The portion of photons
that can be collected with respect to the full solid angle makes up the geometrical fac-
tor fg = Ω

4π ≈ NA2

4 , where Ω is the solid angle covered by the stop of the objective
and NA the numerical aperture of the imaging system. Around 2% of all photons
emitted by the atoms are collected on an EMCCD sensor placed below the atom
chip and converted into electrons. The conversion factor amounts to typical val-
ues of m = 10-30 photons detected per single atom for typical light-sheet power of

8Andor iXon+ 897
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≈ µW. The photon-per-atom parameter m is crucial to converting the fluorescence
signal detected with our light-sheet camera to atom numbers. In principle, single
atom recognition is possible and was already demonstrated in this system [41]. In
practice, due to deterioration and aging of the camera, the electronic signal has re-
cently increased and made it extremely difficult to achieve single-atom detection.
The imaging objective leads to a magnification of M = 4, which in turn gives an
object-space pixel size of 4 µm, since the physical pixel area is 16x16 µm2 [56].
If the two counter-propagating laser beams are not overlapping or their power is un-
balanced, a light-pressure effect can appear in the fluorescence picture. We currently
aligned the imaging system such that the focus corresponds to pictures being taken
after a time-of-flight tTOF = 44 ms.

Far-field regime for the transverse direction

The final position xF of a trapped particle along a certain spatial direction x after
its release from the trap at time t = 0 and a time-of-flight tTOF ≡ tF reads xF =
x0 + ẋ0 · tF = x0 + p0/m · tF, where x0 (ẋ0 = p0/m) represents the initial position
(velocity) of the particle in the trap at the moment of the release and p0 its initial
momentum. Assuming a harmonic trapping (ẋ = iωxx) with angular frequency ωx
along the x axis, we derive the expression xF = x0 + iωxx0 · tF = x0 + p0/m · tF. The
condition of the final position expressing the initial momentum of the particle in the
trap at the moment of the release is then p0/m · tF � x0, which translates into the
requirement iωxx0 · tF � x0 → tF � 1/ωx,y,z, independently of the spatial direction
we are referring to.
In our experimental setup we have ωx % 2π · 10 Hz and ωy,z = 2π · 2 kHz, which
corresponds to 1/ωx % 16 ms and 1/ωy,z % 0.1 ms. Since in our setup tF = 44
ms, the condition tF � 1/ωx,y,z is well satisfied along the transverse y, z axes and
only partly satisfied along the x axis. This shows that the transverse expansion of
the atomic cloud after its release from the chip trap is fast compared to tTOF, hence
the fluorescence image of the final cloud shows the in-situ momentum distribution
along the y axis.
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Chapter 4

Double twin-atom beams

This chapter introduces the main subject of this thesis work: the double twin-atom
beams system and the quantum state originating from it.
In Section 4.1 we give a theoretical description of our system, starting from Ref. [56]
and the more recent [65]; Section 4.2 presents the experimental procedure to gener-
ate the DTB atoms and Section 4.3 introduces the calculation from Igor Mazets that
shows what output state we expect with our current trap geometry. Finally, in Sec-
tion 4.4, we explain the main methods used for the analysis of the data in Chapter 5.

4.1 Theoretical background

The theoretical description of the system relies on Ref. [65]. The novelty of this thesis
work is the use of double waveguide confinement for the twin atoms. This part is
crucial to be able to generate a maximally entangled state.
Let us first consider a dilute 3d gas trapped in a waveguide potential V(�r). Con-
sidering only s-wave scattering events among the atoms inside the condensate, the
general Hamiltionian describing the system reads:

Ĥ =
�

d�r

�
ψ̂†(�r)

�
− h̄2

2m
∇2 + V(�r)



ψ̂(�r) +

g3d

2
ψ̂†(�r)ψ̂†(�r)ψ̂(�r)ψ̂(�r)

�
, (4.1)

where g3d = 4πh̄2as/m describes the strength of the interactions characterized by
s-wave scattering length as and atomic mass m.
To simplify the Hamiltonian of Eq. (4.1), we take into account the geometry of the
trapping potential V(�r). The trapping potential constitutes an atom waveguide (the
atoms are loosely confined along one direction but tightly confined transversally),
which allows us to derive an effective one-dimensional model of the system’s dy-
namics, where only the dependence on the spatial x direction is explicit. Consid-
ering the vibrational transverse energy levels ny,z, the quasi-condensate is initially
formed in the transverse ground state (ny, nz) = (0, 0).
The experimental sequence used to generate double twin-atom beams (DTBs) in-
volves an initialization stage, where the trapping potential is deformed along the y
axis according to optimal control theory [66]. This allows to achieve a double-well
configuration and, at the same time, coherently transfer the quasi-condensate from
the vibrational ground state (ny, nz) = (0, 0) to the second excited state (ny, nz) =
(2, 0) of the final double waveguide potential.
We now assume that the system is prepared in the (ny, nz) = (2, 0) state. We can
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expand the field operator of the quasi-condensate as

ψ̂(�r) ≡ ∑
mx ,ny,nz

âmx ,ny,nz ϕmx(x)φny(y)φnz(z), (4.2)

where φny(y) [φnz(z)] is the harmonic oscillator basis function of the nyth (nzth)
mode, ϕmx(x) are a set of basis function along the x dimension, and âmx ,ny,nz the
bosonic annihilation operator for the corresponding mode. A few assumptions are
now made based on the cylindrical shape of the trapping potential. Since the dy-
namics along the vertical z direction are frozen-out, we hereafter assume nz = 0 and
suppress the corresponding subscript in the expansion of the bosonic field. Further-
more, we assume that only the levels ny = {0, 1, 2} are involved in the initialization
and de-excitation stage. This assumption is justified by the anharmonicity intro-
duced along the y axis, which brings out of resonance the energy levels with ny > 2,
and by symmetry reasons: the initialization ramp, which produces a barrier of the
double-well and increases and decreases it iteratively until the ramp is finished, does
this operation symmetrically with respect to the minima of the double-well; hence
all terms involving the asymmetrical wavefunctions are drastically reduced during
the initialization process. As explained in Section 5.1, this assumption is verified by
looking at the evolution of the quasi-condensate wavefunction after the initialization
stage. Suppose we substitute the expression of the expansion of the field operator
back into Eq. (4.1). In that case, the assumptions above let us integrate the y and z
dimensions to yield an effective 1D Hamiltonian. With the definition of the 1D field
operator ψ̂i(x) = ∑mx

âmx ,i,0ϕmx(x) where i ≡ ny = {0, 1, 2}, we can write the 1D
Hamiltonian Ĥ = Ĥ0 + Ĥint, where

Ĥ0 =
�

dx ∑
i=0,1,2

ψ̂†
i (x)

�
− h̄2

2m
∂2

∂x2 + V(x) + δi,2h̄ωy



ψ̂i(x), (4.3)

is the single-body Hamiltonian, and

Ĥint =
�

dx

�
g00

2
ψ̂†

0(x)ψ̂†
0(x)ψ̂0(x)ψ̂0(x)

+
g11

2
ψ̂†

1(x)ψ̂†
1(x)ψ̂1(x)ψ̂†

1(x)

+
g22

2
ψ̂†

2(x)ψ̂†
2(x)ψ̂2(x)ψ̂†

2(x)

+2g01ψ̂†
0(x)ψ̂0(x)ψ̂†

1(x)ψ̂1(x)

+2g02ψ̂†
0(x)ψ̂0(x)ψ̂†

2(x)ψ̂2(x)

+2g12ψ̂†
1(x)ψ̂1(x)ψ̂†

2(x)ψ̂2(x)

+
g01

2

�
ψ̂†

0(x)ψ̂†
0(x)ψ̂1(x)ψ̂1(x) + h.c.

�
+

g02

2

�
ψ̂†

0(x)ψ̂†
0(x)ψ̂2(x)ψ̂2(x) + h.c.

�
+

g12

2

�
ψ̂†

1(x)ψ̂†
1(x)ψ̂2(x)ψ̂2(x) + h.c.

��
(4.4)

is the interaction Hamiltonian, where H.c. refers to the Hermitian conjugate and we
defined the effective 1D coupling strengths as gij =

�
dz[φ(ho)

0 (z)]4 ×�
dy[φ(ho)

i (y)]2
�

dy[φ(ho)
j (y)]2.
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The last terms in Eq. (4.4) describe the four-wave-mixing process at the basis of the
bosonic pair-production. In particular, the relevant terms are the ones where two
particles from the second excited state get emitted in the first excited state or in the
ground state of the transverse manifold:

ĤFWM =
g02

2

�
dx ψ̂†

0(x)ψ̂†
0(x)ψ̂2(x)ψ̂2(x) +

g12

2

�
dx ψ̂†

1(x)ψ̂†
1(x)ψ̂2(x)ψ̂2(x) + H.c.

(4.5)
This effective Hamiltonian describes the collisional de-excitation process, by which
two atoms in the excited state

%%%ny = 2
�

relax to the almost degenerate first excited%%%ny = 1
�

and ground state
%%%ny = 0

�
. In doing so, they can convert the potential en-

ergy 2h̄ωy from the strongly confining trap along y into kinetic energy along the
weakly trapped longitudinal direction x [see Eq. (4.3)]. The remaining terms of
Eq. (4.4) can be interpreted as spatially and time-dependent mean-field potentials
in which the scattered atoms move in [65]. Assuming their energy contribution is
small compared to the 2h̄ωy energy term, their effect amounts to a general phase
shift that can be ignored. Furthermore, due to the conservation of energy and ap-
proximately the momentum, the atom pairs scattered from the initial transverse ex-
cited state (where the atoms are at rest longitudinally) into the

%%%ny = 0, 1
�

states will
then have counter-propagating longitudinal momenta kx ≈ ±k0, where k0 is given
by

k0 =
 

2mωy/h̄ =
√

2m�/h̄, (4.6)

where we defined the surplus potential energy �. As we will see in Section 4.3, the
degeneracy of the transverse final states

%%%ny = 0, 1
�

can be also represented in the
left |L� and right well |R� state basis representation. This representation is the most
natural one since we are here dealing with a double-well potential. Furthermore,
the presence of an atom in the left or in the right well is at the basis of the qubit we
want to produce. The other degree of freedom is given by the momentum assigned
to each atom along the longitudinal direction, which, as we have seen, it can take
approximately the two values ±k0.

4.2 Generating twin beams in a double wave guide

Double twin atom beams are produced by collisions among atoms in a one-dimensional
BEC in a vibrationally excited state of a confining potential. The experimental pro-
cedure to realize such a configuration is illustrated in Fig. 4.1.
As we already have seen in Section 3.2, each experimental cycle lasts approximately
34 s. This chapter focuses on the experimental steps strictly related to the DTB gen-
eration alone and not common to any other experiment performed in this laboratory.
In the following, we will divide the DTB sequence into three main steps or stages:
a first part called trap characterization is necessary to adjust the initial potential land-
scape (single well); the main DTB step is the state inversion, where the potential (and
the trapped BEC’s wavefunction with it too) undergoes a series of controlled defor-
mations computed by optimal control techniques, to transfer the atoms to the second
excited state of the transverse vibrational manifold of the final double-well poten-
tial. In this way, the system is initialized for the generation of DTB pairs; a third
part called detection, where we choose on which basis (position or momentum) we
measure the atomic profiles and then image the atoms.
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Figure 4.2: Trap bottom spectroscopy (upper panel). A weak rf pulse is applied to
outcouple atoms from the trap resonantly. The maximum loss (dip) occurs when the
rf frequency is equal to the Larmor frequency in the center of the trap. The fit is done
using a Gaussian function (red curve). The lower panel shows the residuals plot.
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Table 4.1: Static (no dressing) trap calibration. Upper part:
measured trap parameters, with the corresponding experi-
mental uncertainty. Lower part: Parameters used in the chip
trap simulations.

Measured parameters
Trap bottom VTB/h 824 ± 1 kHz

horizontal transverse trap freq. ωy/2π 4.14 ± 0.01 kHz
Settings used for simulations

Current in main trapping wire 1 A
Current in long. confinement wires Ih 0.5 A

Bias field Bb 34.1 G
Ioffe field B0 1.07 G

Max. rf current (each wire) Imax
0 80.25 mA

rf frequency 770 kHz
rf relative phase φ12 0

4.2.2 State inversion

The experiment presented in this thesis aims at exciting a non-classical (Fock) state
of the transverse confinement potential, in particular the second excited state of the
transverse vibrational manifold of the final double-well potential, defined as source
state. However, in a quantum harmonic oscillator, all states that can be addressed
by a deformation of the potential are quasi-classical coherent states [67]. This state-
ment also holds for a harmonically trapped interacting many-body system, where
a quasi-classical collective oscillation at the trap frequency fully decouples from
more complex internal dynamics. Hence, to transfer the condensate population into
an internal excited state necessitates an anharmonic potential along the displace-
ment direction y, where the decoupling of collective and internal dynamics breaks
down. Furthermore, to be robust against excitation in the perpendicular direction z,
anisotropy in the transverse plane of the potential is required, causing a detuning of
trap levels between the directions [56].
We start off with a quasi-BEC formed in a harmonic trap, following a well-established
sequence that we summarized in Section 3.2. Once the BEC is formed, the confin-
ing trap is dressed with a constant radiofrequency field (Section 3.3) with the goal
of introducing anharmonicity and anisotropy to the potential landscape. Next, the
DTB sequence takes place. The most important task we want to achieve is to go
from a single to a double waveguide geometry and, at the same time, transfer the
atomic population to the second vibrational state of the final double-well potential.
As already shown in previous works [59, 63], in our setup, we can achieve a sym-
metric splitting of a single-well potential simply by increasing the amplitude of the
rf dressing. The new challenge during this thesis work was to combine well-known
rf dressing tools with state-of-the-art optimal control techniques that helped find the
best amplitude ramp for the rf field that would achieve the transfer of the main BEC
to the source state. We will explain the main idea behind the initialization process in
the following.
The excitation of the condensate is based on symmetry considerations. The target
wavefunction (second excited state) is symmetric with respect to the center of the
double-well, and so is also the initial wavefunction (ground state of a single well). It
is then possible to connect the two by a symmetric excitation that consists of a con-
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Figure 4.4: The ramp R f (t) of the amplitude of the radiofrequency field against time.
The dashed black line points at the end of the initialization stage. The trap can then
be switched off and the atoms imaged, or an in-trap holding time can be added. In
this case, the value of the rf amplitude parameter R f (t) is kept at the final OCT ramp
value of 0.51.

tinuous formation and deformation of a potential barrier at the center of the dressed
single well. In particular, the method used to compute the trajectory of the bar-
rier height versus time to perform the given task is based on a collaboration with
the group of Tommaso Calarco and their initial publication on this matter [68]. We
provided them with the parameters defining our harmonic confinement (see also Ta-
ble 4.1) and asked them to provide us back with an amplitude ramp for the rf field
necessary to achieve our goal. In Fig. 4.4 we plot the ramp of the rf dressing R f (t)
versus time as a result of the optimization routine. As already mentioned, at the
start of the initialization routine, the potential waveguide is only slightly dressed
(R f = 0.3), i.e., the trapping potential is still in a single-well configuration. At the
same time, at the end of it, the atoms are trapped in a final double-well configu-
ration, which is kept constant until the switch-off of the trap. Overall, the optimal
control-based ramp or the initialization of the condensate lasts 1.4 ms.
In the following, we will report the main considerations used to compute the ramp
in Fig. 4.4.
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The OCT ramp

The system consists of a one-dimensional quasi-condensate, i.e., a weakly interact-
ing bosonic ensemble that is loosely confined longitudinally but tightly confined
transversally, as in previously realized optimal control experiments with atom chips [69,
70]. In the transverse direction that hereafter we denote as the y-axis, the potential
is initially a single (anharmonic) well, as in Refs. [69,70], but then it is controlled dy-
namically using an external radiofrequency field to transform it into a double-well
potential. We describe the system dynamics along the y-axis through an effective
one-dimensional Gross-Pitaevskii equation, whose nonlinear Hamiltonian is given
by:

Ĥgp[ψ, t] = − h̄2

2m
∂2

∂y2 + V(y, t) + gN|ψ(y, t)|2. (4.7)

Here, m is the mass of the boson, specifically of the alkali atom 87Rb, V(y, t) is
the time-dependent potential that we manipulate optimally, g is the effective one-
dimensional boson-boson coupling constant (see Ref. [70] for further details), N is
the number of bosons, and ψ(y, t) is the condensate wavefunction normalized to
unity. We note that because of the significant separation of time scales between the
transverse and longitudinal degrees of freedom, the quantum dynamics of the latter
can be effectively assumed to be frozen during the excitation process in the trans-
verse direction.
The external potential V(y, t) produced by the atom chip is approximated by:

V(y, t) = a0(t) + a2(t)y2 + a4(t)y4 + a6(t)y6,

an(t) =
6

∑
j=1

α
(n)
j [R f (t)]j for n = 0, 2, 4, 6, (4.8)

where the time-independent parameters α
(n)
j , which are provided Table 4.2, have

units of kHz/mn.
The numerical values of the parameters α

(n)
j have been obtained by numerically fit-

ting the simulated and experimentally calibrated potential generated by the atom
chip with a polynomial of sixth order. This strategy has been adopted to simplify
the numerical effort of the optimization. The dimensionless time-dependent func-
tion R f (t) is proportional to the strength of the radiofrequency field applied to the
atom chip, and it is the control parameter we optimize on. In particular, we fix the
maximum rf current to Imax = 0.825 A, and we define the parameter R f as:

IRF(t) = R f (t)× Imax, (4.9)

where IRF(t) is the rf current running through the rf wires.
In the present experiment, the quasi-condensate is initially prepared in the ground
state, ϕ0(y), of the initial single well potential V(y, 0). Our goal is to bring the quasi-
condensate to the second excited state, ϕ2(y), of the external potential V(y, t f ) in a
double-well configuration a time t f shorter than the decoherence time of the system.
Here, the nonlinear eigenstates ϕ0,2(y) of the Hamiltonian in Eq. (4.7) are determined
numerically by the imaginary-time technique with N = 700. To this end, we employ
optimal control techniques to generate the optimal radiofrequency field R f (t) that
minimizes the cost function defined at the final time t f as:

J = 1 −
%%%%�

R
dy ϕ∗

2(y)ψ(y, t f )

%%%%2 . (4.10)
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Table 4.2: The parameters α
(n)
j in units of kHz/µmn for n = 0, 2, 4, 6.

j α
(0)
j α

(2)
j α

(4)
j α

(6)
j

0 54.451 74.025 -3.4221 0.2406

1 -8.6264 -19.429 24.648 -6.0581

2 3570.3 - 3309.1 1231.6 -153.85

3 -12650 18497 -8450.8 1221.2

4 25646 -46369 23425 -3661.4

5 -27546 56311 -30416 5049.5

6 12106 -26894 15268 -2663.3

Specifically, we employ the CRAB optimization method [66], and expand the ra-
diofrequency field parameter R f (t) into a (not necessarily orthogonal) truncated ba-
sis:

R f (t) = 0.3 +
1

λ(t)N f

%%%%%%
N f

∑
j=1

cj cos

�
2π f jt

t f

�
+ dj sin

�
2π f jt

t f

�%%%%%%+ 0.21 e−8(t f −t),

(4.11)
for 0 ≤ t ≤ t f . Here N f = 10 denotes the total number of frequencies considered
in Eq. (4.11); the multiple frequencies allow us to engineer non-trivial pulses with
multiple maxima and minima, as shown in Fig. 4.4. The dimensionless function:

λ(t) = 0.5 + 104
�
e−8t + e−8(t f −t)

�
(4.12)

is large and positive at t = 0, t f , thereby fixing the initial and final values of the rf
field. On the other hand, λ(t) assumes the value 0.5 at intermediate times, so as to
allow for variations of the rf field within the interval (0, t f ). Furthermore, owing
to experimental constraints, we impose the condition 0.3 ≤ R f (t) ≤ 0.55 ∀t. We
note that the field Eq. (4.11) is already given in dimensionless units, where times
are rescaled with respect to 1/ω0. The optimisation is carried out by varying the
parameters cj, dj and f j. Thus, the optimisation has been performed in such a way
that the double-well potential V(y, t f ) is obtained by setting R f (t f ) = 0.51 at final
time t f /ω0 = 1.4 ms, while R f (0) = 0.3 results in the initial single-well potential.
The exponential function appearing in Eq. (4.11) and its width 1/8 have been chosen
such that it increases smoothly and monotonically to the numerical value 0.21 as
t → t−f , such that the control parameter reaches the target value R f (t f ) = 0.51
and we avoid excitation of the condensate along the vertical z axis. In Fig. 4.4 the
optimised curve of the parameter R f (t) is plotted against time. The values of R f (t)
for t < 0 and t > t f = 1.4 ms in Fig. 4.4 signify that R f (t) is time-dependent only for
the intermediate optimization times (0, t f ), while it assumes constant values outside
this time-interval.
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4.2.3 Detection: position and momentum measurements

After state inversion, thanks to the OCT ramp (Section 4.2.2), the main BEC is ca-
pable of emitting twin atoms in double waveguide confinement (DTB atoms). The
DTB population grows with increasing holding time in the trap. We are interested in
the low-pair emission regime and consider a small depletion of the source state (see
Ref. [56]), so we usually directly switch off the trap at this moment of the sequence,
right after the OCT ramp has finished. However, depending on the final analysis, an
extra step may be necessary before the trap is switched off. We have the possibility of
choosing the measurement basis to be either in position or momentum. In practice,
since we observe the atomic profiles after a long time of flight, we always measure in
momentum space (far-field limit). However, suppose we imprint a large transverse
momentum to the left and right wavepackets right before the trap is switched off.
We can separate the two wavepackets, hence performing a left and right position
measurement.
In our setup, we imprint a large momentum kick to the atoms with a very fast in-
crease of the barrier height separating the two waveguides1. Such a rapid increase
of the barrier height results in an extra transverse acceleration that allows the left
and right-well wavepackets to acquire a large transverse momentum and separate
from each other after time of flight. This allows to define four distinct zones on the
final picture and count the atoms in the four single-particle states separately (see
Fig. 4.5.a). The goal of the separation procedure is to project the DTB emission into
the four single-particle states |L−� , |L+� , |R−� , |R+� in order to be able to measure
number squeezing among any two of them (see Sections 4.5 and 5.3.1). This analysis
will help us confirm the result in Eq. (4.14).
Instead, if we were to simply switch off the final trap and detect the twin beams after
time of flight, we would not see four different outputs but only two since a long time
of flight makes the initial position difference negligible compared to the expansion
of each wavepacket (see Section 3.4.2). The interference procedure aims at detecting
two-particle interference effects, as expected by the state expressed in Eq. (4.14). We
employ a sequence where the initially separated left and right wavepackets expand
and overlap.
The tight confinement along the horizontal transverse direction of the final double-
well potential allows the left and right wavepackets to overlap in time-of-flight (see
Fig. 4.5.b) To extract useful information from the images obtained with the interfer-
ence procedure, we need to correlate the transverse profiles at different longitudinal
momenta with each other and then take the average, i.e., compute the G(2)(ky, k"y)
function. If we were to consider the averages directly of each transverse profile, we
would only expect Gaussian profiles with no information on the coherence of the
state [18].

4.3 The predicted final state

The outcome of the DTB procedure outlined in the previous Section 4.2 depends on
the final double-well geometry and on the in-trap holding time after the source state
initialization has happened. A crucial parameter to decide which type of state we
expect is the tunneling coupling strength parameter J [57, 72, 73]. In the following,
we will consider two cases: firstly, in Section 4.3.1 we will consider the situation of
a decoupled double-well and almost zero in-trap holding time. Secondly, in Sec-

1The rf amplitude is increased from 0.51 (final double-well potential) to 0.81 in 0.025 ms
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(a) (b)

Figure 4.5: DTB emission in different measurement conditions (a) Separation scheme:
experimental fluorescence image averaged over 825 experimental runs obtained
with the separation procedure. Each run involves 2000-2200 total atoms, in average
150 of which are DTB atoms (75 pairs). The central cloud corresponds to the source
state, while the emitted DTB atoms are found at ±k0. (b) Intereference scheme: ex-
perimental fluorescence image averaged over 1498 experimental runs obtained with
the interference procedure. Each run involves 500-1100 total atoms, in average 20-50
of which are DTB atoms (10-25 pairs). The central cloud corresponds to the source
state, while the emitted DTB atoms are found at ±k0. The three mF states that were
separated using a Stern-Gerlach experiment have been superimposed to the mF = 0
state to help visualization.

tion 4.3.2, we will allow some tunneling dynamics between the two wells for some
time before we switch off the trap and measure.

4.3.1 Zero-tunneling

The twin pair is created by s-wave scattering (δ-function interaction) between two
bosonic atoms in the source state and emitted along the symmetric double waveg-
uide with negligible overlap between the φL and φR wavefunctions relative to the
transverse |L� and |R� states. In Fig. 4.6 we approximated the double-well potential
by two harmonic potentials centered in ±x0 [72]. The coupling strength J governs
the probability of tunneling of one particle between the two modes, which is given
by [57, 72]:

J = −
�

d�r

�
− h̄2

2m
∇φL∇φR + φLVφR

�
. (4.13)

For J ≈ 0, the state of the atom pair is expected to be in the maximally entangled
state:

|ΨDTB�(J=0) =
1√
2
(|L�1 |L�2 + |R�1 |R�2) =

1√
2
(|LL�+ |RR�), (4.14)

where |i�1 |i�2 ≡ |i�−k0
⊗ |i�+k0

and i = {L, R}, and where we also adopted the
notation |LL� ≡ |L�1 |L�2.
In order to explain why we expect such a state as the final outcome of our experi-
mental procedure, let us consider a wave function

Ψ(�r1,�r2) ≡ Ψ(x1, y1, z1; x2, y2, z2) (4.15)
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where p20 =
"
(h̄k)2 − mh̄ω20 and p21 =

"
(h̄k)2 − mh̄ω21 are the momenta relative

to the two lower-energy states 0 and 1, while M± =
�

dy
�

dz
�
2
%%y, z

�2
� �

y, z
%%L�2

+�
y, z

%%R�2 ± 2
�
y, z

%%L� �y, z
%%R� �

.

Also A(p20) = exp
�
− 1

2 λ2
T l−2

J

�
A(p21), where we introduced the tunneling length

lJ = 1/
√

4mJ and such that 2J = h̄(ω20 − ω21).
Let us first see how we can recover Eq. (4.14) in the limit of zero tunneling J → 0.
If J % 0, then M+ = M− and they can be factored out in Eq. (4.20). Furthermore,
the two lowest vibrational states 0 and 1 are degenerate compared to the 2 state and
ω20 = ω21 holds true. This means that also A(p20) = A(p21) holds and the second
line of Eq. (4.20) vanishes, thus recovering the expression for the predicted final state
discussed in Eq. (4.14).
The switching on of a particular tunneling coupling strength between the two wells
has two effects: firstly, it increases the overlap between the left and right well wave-
functions φL,R (see also Fig. 4.7). In doing so, since the coefficients M+,− depend
on the amount of overlap, these acquire different values and cannot be factored out.
Secondly, the vibrational level structure of the double-well potential gets slightly
modified, and in particular, the lowest energy levels 0 and 1 become less and less
degenerate. In this case, we need to look at Eq. (4.20) to get an insight into how the
DTB state can be modified by the turning on of a tunneling process between the two
wells. In particular, we do expect an admixture of the states |LR� , |RL� as an out-
come. On the other hand, J should not be too large. Otherwise, the lowest energy
levels become spectroscopically resolved, and the interference is lost. In Section 6.3
we will see a modified interference procedure where we slowly ramp down the final
double-well barrier height to slightly increase the tunneling before we switch off the
trap and image the atoms.

4.3.3 Extension to a fermionic system

In our present experiment, the source state from which the atom pairs are emitted
relies on a Bose-Einstein condensate with a defined longitudinal momentum kx = 0.
Moreover, the emitted double twin-atom beams are created by an s-wave scatter-
ing process. The same procedure does not apply to a fermionic gas. The atoms in
a fermionic source state would have many longitudinal momenta up to the Fermi
momentum kF; hence the total momentum of the emitted atom pairs would not be
well defined. Moreover, spin-polarized fermions do not experience s-wave scatter-
ing. Thus the collisional process at the basis of the emission of twin beams would
be completely different. So a source of fermionic twin atoms would have to look
completely different. One can imagine breaking up a bosonic diatomic Feschbach
molecule into its fermionic components, as suggested in [74], but imprinting a sig-
nificant momentum on them would require additional processes like transferring
the molecule before the break-up into a higher excited quasi bound state. We could
then envision a system that produces twin fermionic atoms in a single waveguide.
The spin degree of freedom would replace the double waveguide transverse degree
of freedom of our setup and the emitted state would be a maximally entangled spin
state |Φ−� = (|↓�− |↑�+ − |↑�− |↓�+)/

√
2.
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4.4 Methods

In this Section, we will describe the methods used to treat the experimental raw pic-
tures in Sections 4.4.1 and 4.4.2, and then we outline number-squeezing techniques
in Section 4.5.
As for imaging processing, we treat the raw images derived from the Andor camera
(.sif) using background level subtraction and etaloning artifacts correction. All the
image processing is performed with Matlab-based custom programs written over
the years on the Rb2 experiment.
The initial part consists of deriving the correct parameters that allow converting the
secondary electron signal from the initial pictures into primary electrons, which can
then be converted into the fluorescence photons emitted by the atoms using the mul-
tiplicative factor m (photons-per-atom parameter). These initially processed images
constitute the starting for further processing considered in the following paragraphs
and will be referred to as raw images, even if some processing (namely the conversion
from secondary to primary electrons) has already taken place2. In the following, we
describe:

• the typical background and etaloning correction procedure, in Section 4.4.1

• the filtering process, in Section 4.4.2

• how to derive number-squeezing parameters, in Section 4.5

4.4.1 Background and etaloning correction

The raw images containing the fluorescence signal can be further processed. In par-
ticular, when observing in a log plot the averaged raw picture (see Fig. 4.8), obtained
by many realizations of the same experiment, one can notice two main effects: a
gradient-like background level and an etaloning effect. In Fig. 4.9.a, we display a
typical gradient-based background subtracting map. This map is obtained for each
single shot realization and is derived by fitting the image’s contour where no atoms
are present. In Fig. 4.9.b, we display the etaloning map used to correct the exper-
imental pictures. This map is derived by normalizing the pattern obtained by the
average over many realizations of a very dilute atomic cloud. The normalization is
done by imposing that the sum on the signal over the whole matrix is equal to the
number of pixels. In this way, dividing any matrix by the etaloning map does not
modify the overall mean values but only the relative intensities (signal variance).
These are well-known effects that have been already discussed in detail on previous
works dealing with the same imaging system.
The usual image treatment consists of subtracting the gradient-like background and
then divide by the etaloning map in Fig. 4.9.b. The etaloning effect is due to the
read-out electronics of the camera chip that imprints a wavy pattern on the original
signal (it acts as an unwanted Fabry-Perot element).
In Fig. 4.10, we compare the averaged image over 1497 realizations of a typical ex-
periment. Here, the meaning of the experiment is not relevant. Instead, we are inter-
ested in the variance and the mean value of the corrected signal on each matrix. The
upper row displays the 2-dimensional experimental pictures averaged over the same

2The conversion is performed using the information provided by additional images taken with light
off. Fitting the histograms of these other pictures allows reconstructing the fluorescence signal [56].
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(a) (b)

Figure 4.9: (a) First correction map: background correction. This map is used to
eliminate the residual background plateau from each experimental raw picture. It is
obtained by fitting a linear regression curve to the mean values of the frame of the
picture containing no atoms (see the background part in Fig. 4.8). Since there is no
significant difference along the plot’s vertical direction, we are left with a gradient-
like one-dimensional correction along the plot’s horizontal axis. The background
level correcting map is applied by simple subtraction to the raw image. (b) Second
correction matrix: etaloning map. This map is used to attenuate the etaloning arti-
facts produced by the structure of the read-out electronics in the back-illuminated
CCD camera. It is obtained by averaging over many realizations of a dilute atomic
cloud that act as a uniform illumination medium for the CCD camera. The resid-
ual Gaussian signal profile is subtracted, and the resulting signal is normalized. We
divide the background-treated image by the etaloning map.
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Figure 4.10: Comparison of different image processing methods. From left to right:
no treatment, background treatment alone, background and etaloning treatment.
On the upper row, the averaged images are displayed. The most striking differ-
ence is visible in the color change from the raw to the corrected pictures due to the
background subtraction. The same effect can be visualized when plotting the mean
value of the signal as a function of the image processing method (last row at the bot-
tom). The etaloning effects can be drastically reduced by dividing the image from
the background treatment by the etaloning map in the last column (usual treatment
method), as it is clear by looking at the variance plot as a function of the different
methods (central row).
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number of realizations, where each column correspond to the different image correc-
tion methods here taken into consideration. The second row displays the signal vari-
ance of the averaged picture obtained with each method. The last row displays the
corresponding mean values. Considering the different image processing methods
here, the first column (from left to right) refers to the raw signal without any correc-
tion. The second column, in the center, refers to the raw signal to which a gradient-
like background has been subtracted. The last column, to the right, corresponds to
the usual treatment mentioned above: we first apply the gradient-like background
subtraction using the matrix in Fig. 4.9.a, and then we correct for etaloning effects us-
ing the etaloning map in Fig. 4.9.b. As one can see from the 2-dimensional images in
the first row and the lowest plot at the bottom, the mean value of the second matrix
is drastically reduced compared to the first one, as expected from an image process-
ing method aiming at getting rid of the gradient-like background plateau. We see
the effect of the etaloning map of Fig. 4.9.b onto the variance of the signal, the low-
est value of which is reached with the usual treatment method using the etaloning
map. We can also assume we do not know whether it is better to apply the etaloning
map after the background subtraction (as in the usual treatment) or before the back-
ground treatment. Also, it might be interesting to see what happens when, instead
of dividing each background-treated image by the etaloning map, we instead multi-
ply the result by the etaloning map. These different possibilities can be compared
with the usual treatment in Fig. 4.11. The plot is conceived similarly to Fig. 4.10, but
here we compare the averaged picture obtained from background+etaloning cor-
rected pictures (first column to the left), and the etaloning+background corrected
pictures (second column in the center), where the etaloning map is applied before the
background-subtraction step, and the background+etaloning-as-product (last col-
umn to the right), where the etaloning map is multiplied instead of divided. As we can
see from the signal variance plot (second row to the center) and from the mean value
plot (last row at the bottom), the etaloning must be applied as a division since when
used as multiplication, we obtain larger mean and variance values. Moreover, when
comparing the first two methods, already from the 2-dimensional images displayed
in the first row on top, it is clear that the etaloning-first method leaves a residual
wavy pattern. Moreover, even if the variance is only slightly lower for the usual
treatment than the etaloning-first method, the first method does not allow prop-
erly subtracting the background level, as it is clear by looking at the corresponding
higher mean background level.
In summary, we have seen that the best method to correct for residual background
effects and etaloning artifacts is to first correct for the background effect using the
subtraction map in Fig. 4.9.a, and then divide the result by the etaloning map in
Fig. 4.9.b.
In the following, the results presented will follow from the analysis of pictures that
have been processed using this procedure. Nevertheless, the qualitative results (the
presence of a fringe pattern in the G(2)(k1, k2) correlation function, for example) do
not depend on the correction method used, and they can be obtained using the raw
images. This excludes the possibility of emerging the results only from imaging
processing-dependent effects.

4.4.2 Filtering and cut-off

Other image processing methods that have been considered in this thesis work and
have been used to a certain extent to produce some results of Chapter 5 are the
filtering and the cut-off methods.
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Figure 4.11: Comparison of different image processing methods. From left to right:
usual treatment, etaloning first, etaloning as a product. On the upper row, the av-
eraged images are displayed. The most striking difference is visible in the residual
etaloning artifacts present in both the last two methods as compared to the usual
treatment in the first column. The same effect can be visualized when looking at the
variance plot as a function of the different methods (central row). The first method
must also be excluded because of the higher mean background value (see the last
plot at the bottom).
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Filtering The filtering method takes as an input matrix A(p, q) the experimental
image treated with the usual treatment explained in Section 4.4.1. It then computes
the 2-dimensional discrete convolution C(j, k) = conv2(A, B) operation given by

C(j, k) = ∑
p

∑
q

A(p, q)B(j − p + 1, k − q + 1) (4.21)

of the input matrix A(p, q) with a 2-dimensional normalized Gaussian envelope,
which is given by

B(l, m) =
1√
2πσ

e−
l2+m2

2σ2 , (4.22)

where we set σ = 1 pxl, and where p and q run over the full image area 512x512 pxl2.
Usually, the signal from an atom will occupy more than one pixel, on average, a 3x3
sub-matrix of nearby pixels [56]; hence, the filtering process smears out the intensity
over a larger amount of pixels. It is then convenient to set an intensity threshold to
eliminate the signal originating from isolated pixels (mainly noise) from atoms.
Cut-off The cut-off method takes the filtered pictures as input, and it consists of
defining an intensity threshold t and then setting all the pixels with intensities lower
than t equal to zero intensity. The threshold is chosen by looking at the DTB signal
and the background level, as defined in Fig. 4.8 for example. We want to eliminate
those pixels whose intensity comes from residual read-out artifacts or camera noise
and not significantly diminish or erase atomic signals. It is nevertheless quite arbi-
trary to define it, and its choice can be justified by looking at the histogram of the
leftover signal and noise pixels. In Fig. 4.12, we display the result of filtering alone
and filtering followed by a cut-off image processing method, shown with histograms
reporting the frequency of a certain pixel intensity event over 100 realizations of the
same experiment yielding each time a 512x512 pxl2 fluorescence intensity matrix, as
a function of the image processing method used to treat the images. In this example,
we have arbitrarily set the width of the filtering envelope function to σf ilter = 1 pxl,
and the cut-off threshold tcut−o f f = 0.5 counts/pxl.

4.5 Number-squeezing parameter

Let us consider a source of atoms that emits N1 atoms with momentum k1 and N2
atoms with opposite momentum k2 = −k1 . Let us also assume a constant total
atom number N+ = N1 + N2. The atoms could be emitted randomly in the two
possible momentum modes or originate from a twin-atom source. Suppose we want
to certify that the atoms are coming from a twin-atom source and are always emit-
ted in pairs characterized by opposite momenta. We employ a statistical analysis.
Let us suppose that, at the end of an experimental cycle we got N1 atoms charac-
terized by the momentum k1 and N2 atoms with momentum k2. We then repeat the
experiment several times and collect many copies i = 1 . . . N of the variable signal
difference Ni−, where Ni− = Ni

1 − Ni
2 for each experimental realization i and we look

at the histogram of its distribution3. If the atom source generates atoms with oppo-
site momenta that fall at random in one of the two outputs with equal probability,
the distribution of the signal difference is a normal or binomial distribution, centered
around the value zero and characterized by a variance σ2

b N− = N+. Tossing a fair
coin is a possible example of an experiment where the output is either head or tail

3In the following, we will drop the index i, but sill consider the variables as statistical quantities,
where the mean and the standard deviation have a meaning as referred to the many realizations.
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Figure 4.12: Comparison of different image processing methods. From left to right:
usual treatment, filtering method, cut-off method. On the upper row, the single-shot
images as a function of the method used to compute them are displayed. We iden-
tify two region-of-interest (ROI) ellipses: the red one is the ROI corresponding to the
background level or rbg; the black one is the ROI of the atomic signal correspond-
ing to one of the two momenta of the DTB atoms or simply ROI. On the lower row,
we display the histograms of the pixel intensities within the regions of interest, red
for rbg and dark gray for ROI. The histograms are in log scale on the vertical axis.
We display a single shot image on the first row, but we have used 100 images cor-
responding to the same experiment to produce the histograms at the bottom. The
filter method uses σ = 1 pxl. The cut-off method applies an intensity threshold
t = 0.5 counts/pxl.



60 CHAPTER 4. DOUBLE TWIN-ATOM BEAMS

with equal probability. On the other hand, if the source is a twin-atom source, then
the atom number difference is expected to be characterized by a narrower distribu-
tion centered around the value N− = 0, since we here deal with the generation of
pairs of atoms, where N1 = N2 exactly. In this case, we talk about atom number
squeezing since the distribution of N− is squeezed with respect to the corresponding
binomial distribution having the same total atom number N+. It is helpful to define
a number squeezing parameter ξ2 as the ratio between the observed variance of the
twin pairs and the correspondent binomial variance

ξ̃2 =
σ2N−
σ2

b N−
. (4.23)

Experimentally we cannot access the atom number directly, but we measure the
number of photons hitting the camera instead. Having considered two boxes 1 and
2 on a typical fluorescence image, we define the sum and difference photon signal
relative to the two boxes S± = S1 − S2, where S1 (S2) is the measured fluorescence
signal from box 1 (2). If we assume that to each imaged atom correspond exactly m
photons, then we can write

S± = mN±, (4.24)

where N± is the sum or difference atom number relative to the same two boxes.
Having assumed m constant, we can derive an expression for the variance of the
signal difference σ2S− ≡ var(mN−) = m2σ2N−. Using Eq. (4.24) and the expression
σ2

b N− = N+ we get

ξ̃2 ≡ σ2N−
σ2

b N−
≡ m2

m2 · σ2N−
N+

=
σ2S−
mS+

. (4.25)

To evaluate the average number of photons m scattered by each atom, we compare
fluorescence images to absorption images for increasingly larger atomic clouds [75].
From this comparison, we derived m = 29.4 for the separation data and m = 20.7 for
the interference data, meaning each atom generates clusters of around 20-30 photons
when crossing the light sheet.
We come now to the discussion on detection noise [56]. The final number of counts
created by each photon hitting the camera is a random variable whose statistics are
governed by photonic shot noise. On top of the usual shot noise level, there is an
additional noise generated by the amplification stage at the electron-multiplication
register of the camera. To account for it, the variance due to shot noise gets dou-
bled [76]: σ2

snS− = 2S+. A second contribution comes from the background signal b̂,
which is important when regions with a low signal are considered. Since the back-
ground signal is indistinguishable from the actual signal coming from the atomic
fluorescence, the same considerations made above apply and σ2

snb− = 2b+. We de-
fine the total noise contribution to the variance σ2

nS− = σ2
snS− + σ2

snb− and modify
the expression for the uncorrected number squeezing to take into account the total
noise as

ξ2 =
σ2S− − σ2

nS−
σ2

b S−
. (4.26)

We can then define the minimum value of atom number squeezing ξ2
n between the

momentum states detectable in our system as

ξ2
n =

σ2
nS−

σ2
b S−

=
2S+ + 2b+

mS+
% 2/m,

for b+ � S+. (4.27)
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Typical values are ξ2
n % 0.07 (separation data) and ξ2

n % 0.097 (interference data).
The difference can be explained by the different photon-per-atom values p for the
two different data sets.
To compute the error on the squeezing parameter ξ2 and ξ2

n, we propagate the er-
rors of the quantities that appear in the expressions Eqs. (4.25) and (4.26). We also
consider an error on the order of 10% in the determination of the exact photons-per-
atom parameter m.

4.5.1 Simulation of emitted DTB pairs

Let us know simulate the emission of double twin-atom pairs in a straightforward
scenario. Each emitted atom pair is a twin pair; hence it must have exactly one atom
with momentum −k0 labeled as 1 and exactly one atom with momentum k0 labeled
as 2. In this scenario, there are only four possible outcomes of twin pairs in a double-
well: |L1, L2�, |L1, R2�, |R1, L2�, |R1, R2�. In general, the final state is then made of a
mixture of those states or, more interestingly, of a coherent superposition (see also
Section 4.3).
The populations p̂LL, p̂LR, p̂RL, p̂RR

4 corresponding to each of the above mentioned
pairs are statistical distributions centered around a mean value p = � p̂� and with
shot-noise fluctuations (the variance of p̂ is equal to its mean value). We assume that
we generate Np total pairs (DTB atoms are Na = 2Np).
We also assume a population parameter Fi for each of the four pair outcomes |LL�,
|LR�, |RL�, |RR� given by:

FLL = cos2 θ,

FLR = sin2 θ,

FRL = sin2 θ,

FRR = cos2 θ, (4.28)

where θ ∈ [0, π/2] is a parameter that modifies the population distributions, θ = 0
being the situation where we only emit pairs in the |LL� and |RR� modes, θ = π/2
corresponding to the opposite scenario where we only emit |LR� and |RL� pairs.
In the case of θ = 0, we do not distinguish whether the emission is coherent as in
Eq. (4.14), or totally mixed: both these scenarios will produce a balanced emission
of |LL� and |RR� pairs. Similarly, for the other values of θ.
So, the mean and the variance of each pair population is given by

� p̂i� = Np · Fi, (4.29)
var( p̂i) = � p̂i�, (4.30)

where i = {LL, LR, RL, RR} runs on the four possible outcomes, and where the vari-
ance equals the mean value since we assumed shot-noise dominated statistics. As-
suming a photon-per-atom parameter m = 20 (see Section 3.4.2), the populations p̂
in each single-particle mode |L1� , |L2� , |R1� , |R2� in fluorescence signal can be com-
puted from the pairs with the formulas

p̂L1 = m · ( p̂LL + p̂LR),
p̂L2 = m · ( p̂LL + p̂RL),
p̂R1 = m · ( p̂RL + p̂RR),
p̂R2 = m · ( p̂LR + p̂RR).

4We dropped the indices 1,2 since we adopted the notation that the first (second) letter always
corresponds to the momentum labeled 1 (2).
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(a)

(b)

Figure 4.13: Simulation of the emission. (a) Histograms of the pairs of atoms p̂i
emitted in the four emission channels i = {LL, LR, RL, RR}, assuming a normal
distribution dominated by shot-noise fluctuations. We here assume that only LL
and RR pairs can be generated (no pairs present in the LR and RL histograms).
On top, we reported the calculated mean values and the variances. (b) Histograms
of the single-particle populations p̂j for j = {L1, L2, R1, R2}. The single-particle
population represents the distribution of the number of atoms present in that single-
mode channel. To make these histograms we assumed Np = 50, Ns = 10k and
m = 20.

We then let the simulation run for Ns = 10000 times and record the distributions of
the pair populations. In Fig. 4.13.a we show the histograms of the pair populations
(as number of pairs produced), and in Fig. 4.13.b the single-particle mode popula-
tions (as fluorescence signal). To make these histograms we assumed Np = 50 total
pairs emitted, shot-noise fluctuations of the number of pairs in each channel, the
population angle θ = 0 (no pairs emitted in the LR or RL channel), the photon-per-
atom parameter m = 20, and we acquired Ns = 10000 repetitions of the emission
process.
Finally, we can compute different atom number-squeezing parameters Section 4.5
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4.6 Atom-atom correlation analysis

As already pointed out in previous works [18], if we want to characterize a two-
particle state we need to look at two-particle properties. In particular, let us look at
the atom-atom correlator G(2)(η1, η2) given by:

G(2)(η1, η2) = �Ψ̂†(η1)Ψ̂†(η2)Ψ̂(η1)Ψ̂(η2)� = Tr[ρ̂Ψ̂†(η1)Ψ̂†(η2)Ψ̂(η1)Ψ̂(η2)], (4.32)

where η1(η2) is the coordinate of the first (second) atom (it will be the longitudinal
momentum in our experiment), and where the n-th atomic field Ψ̂n can be expressed
in the left and right well basis representation {|L� , |R�} as:

Ψ̂(ηn) = ∑
i=L,R

Φi(ηn)âni (4.33)

with âni being the annihilation operator for the n-th atom in the mode |i� of wave-
function Φi.
It can be shown that the atom-atom correlator can be linked to the elements of the
density matrix ρ̂ of the two-particle state as:

G(2)(η1, η2) = ∑
i,j,k,l=L,R

ρijklΦi(η1)Φj(η2)Φ�
k (η1)Φ�

l (η2). (4.34)

G(2)(η1, η2) is experimentally accessible by looking at the atomic density profiles
along the transverse direction at the two longitudinal momenta 1 and 2:

G(2)(η1, η2) = �n(η1)n(η2)�. (4.35)

In principle, by detecting the DTB atoms at different longitudinal momenta, we can
gain information on the density matrix by looking at atom-atom density correla-
tions. Practically, it is tough to gain helpful information with this method since it is
required, for this analysis to work, to identify the partner of each atom in the twin
pair. When we emit, on average, N pairs, it is impossible to know which atom is
linked to only which atom thus, the contrast on the fringe patterns of the coherence
terms of Eq. (4.39) will decrease automatically by a factor

√
N. Given these intrinsic

difficulties, we will show that it was possible to acquire some information from this
technique when applied to the momentum space.
If we now focus our attention on the momentum space, we can rewrite Eq. (4.34) as:

G(2)(p1, p2) = ∑
i,j,k,l=L,R

ρijklφijkl(p1, p2), (4.36)

with φijkl(p1, p2) = Φi(p1)Φj(p2)Φ�
k (p1)Φ�

l (p2). The momentum-space wavefunc-
tions of the left |L� and right |R� states are given by:

ΦL(p) = e−iy0 p/h̄A(p) = [cos
�

y0ky

�
− i sin

�
y0ky

�
]A(p),

ΦR(p) = eiy0 p/h̄A(p) = [cos
�

y0ky

�
+ i sin

�
y0ky

�
]A(p), (4.37)

where y0 is half the inter-well spacing and ky the wave number, while A(p) is
the envelope that assures the wavefunctions ΦL,R(p) are correctly normalized. In
the case of a perfectly balanced double-well, the envelope is Gaussian and we get

A(p) = e−p2/2σ2
p

√
2/

√
πσp . We can now rewrite the φijkl(p1, p2) wavefunctions in

Eq. (4.36) using Eqq. (4.37) to get:

φijkl(p1, p2) = A2(p1)A2(p2)Fijkl(p1, p2), (4.38)
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Figure 4.15: Real part of the φijkl(p1, p2) functions in Eq. (4.38). The order of the
plots follows the one for the F-functions in Eq. (4.39). To generate these plots we
assumed the half inter well spacing to be y0 = 0.75 µm and the envelope A(p) =

e−p2/2σ2
p

√
2/

√
πσp , with σp = 0.5 µm−1.

where Fijkl(p1, p2) is given by:

Fijkl(p1, p2) LL LR RL RR

LL 1 e−2iy0k2 e−2iy0k1 e−2iy0(k1+k2)

LR e2iy0k2 1 e−2iy0(k1−k2) e−2iy0k1

RL e2iy0k1 e2iy0(k1−k2) 1 e−2iy0k2

RR e2iy0(k1+k2) e2iy0k1 e2iy0k2 1

(4.39)

In Fig. 4.15 we plot the real part of the φijkl(p1, p2) functions, assuming y0 = 0.75 µm
and a Gaussian envelope with σp = 0.5 µm−1. In general, if we do not know which
state we are generating, all these terms can in principle contribute to the G(2)(p1, p2)
function (see Eq. (4.36)). Along the main diagonal there are the terms known as
populations: these terms show up when we emit only two-particle states as LL or
RR states, or a mixture of the two. The other terms, known as coherences, show in-
teresting fringe patterns. The coherences present oscillations along one momentum
coordinate when they involve both the |L� and the |R� mode for the corresponding
atom in the twin pair. Therefore, the diagonal φLRRL and anti-diagonal term φLLRR
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contribute with diagonal and anti-diagonal fringes, respectively. These terms are
unique: the diagonal (anti-diagonal) fringe can only come from the φLRRL (φLLRR)
term. The other coherence terms present horizontal or vertical fringes, each term
being identical to a second one: φLLRL = φLRRR and φLLLR = φRLRR.
In the following, we will apply the atom-atom correlator of Eq. (4.35) to our final
DTB state, with the goal of extracting helpful information on the underlying density
matrix.



Chapter 5

Analysis of the experimental
results

The first significant result of this thesis work is demonstrating the state inversion
procedure with optimal control techniques. Employing an optimally computed ramp
of the dressing rf field shone on the atoms, we were able to efficiently transfer almost
all of the atomic population to the desired quantum state (Section 5.1).
The second main result of this work is the demonstration of the generation of twin
atoms (atoms that are produced at the same time with opposite momenta) in a dou-
ble waveguide confinement potential. In Section 5.2 we apply atom number squeez-
ing analysis techniques and show that the twin character is well confirmed (inde-
pendently of the detection procedure).
However, such a state shows more features than the reduced number of fluctua-
tions corresponding to a twin source. The expected DTB outcome is a maximally
entangled quantum superposition of the left and right localized states of the final
double-well potential (Section 4.3). In order to characterize such a state, the last re-
sult of this thesis work is the realization of a double-slit experiment with only a few
DTB pairs.

• Firstly in Section 5.3.1, we apply number-squeezing methods to characterize
the emission type and distinguish between possible emission scenarios, as al-
ready discussed in Section 4.5.1.

• Secondly in Section 5.3.2, we apply atom-atom second-order correlation tech-
niques and observe two-particle interference effects when the left and right
components of the wavefunction are let overlap and interfere.

Such an experiment is the atomic version of the Ou, Mandel experiment using pho-
tons. The ideal case for such an experiment would be an even lower number of pairs
Npair produced for each experimental realization, ideally Npair � 1 [20].
In Table 5.1 we summarize all the data sets that will be considered in the following
sections.

5.1 Demonstration of the state inversion

We estimate the percentage of atoms transferred to the source state by looking at the
evolution of the wave function of the BEC, after the excitation OCT pulse, in time
of flight. Suppose the state initialization (see Section 4.2.2) has been successful, and

67
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Table 5.1: Data sets used for the results presented in this thesis. Rp denotes the
typical number of realizations with the same settings. m is the photon-per-atom
parameter (when relevant).

Label Date Scan# Rp m Used in Description
CARP21 27/04/21 13 5 / 5.1 carpet
SEPAR19 03/09/19 2 798 29.4 5.2, 5.3.1 separation
INTER19 05/09/19 7 1497 20.7 5.2, 5.3.2 interference
INTER21 05/10/21 81 636 21 5.3.2 interference

evINTER21 19/10/21 20 120 27 6.2 time evolution
modINTER21 19/10/21 18 463 27 6.3 modified G(2) pattern

the BEC population has been successfully transferred to the second excited state of
the final potential. In that case, the outcome is a constant profile. If more than one
eigenstate of the potential is populated, we should observe a beating pattern in the
momentum distribution varying with the holding time in the trap. We look at the
BEC wavefunction as a function of time to gain information on the efficiency of the
state inversion process.
We first simulate the initialization process by assuming a certain initial wavefunction
and an initial trap configuration. The external potential produced by the atom chip
is approximately given by:

V(y, t) = a0(t) + a2(t)y2 + a4(t)y4 + a6(t)y6,

an(t) =
6

∑
j=1

α
(n)
j [R f (t)]j for n = 0, 2, 4, 6, (5.1)

where the time-independent parameters α
(n)
j are listed in Table 4.2 in units of kHz/mn,

and R f (t) is the computed OCT ramp (see Fig. 4.4). We then let the system evolve
under the time-dependent GPE of Eq. (4.7). To compute the source state we diag-
onalize the Hamiltonian of the final potential V(y, t f ). The quality of the transfer
is estimated by measuring the overlap of the wavefunction resulting from the GPE
propagation of the initial state ψ(y, t) with the source-state wavefunction ψgoal(y).
The infidelity parameter is defined as:

in f idelity(t) = 1 −
�

dy
%%%ψ∗

goal(y)ψ(y, t)
%%%2. (5.2)

The result of such simulation is show in Fig. 5.1.
This procedure also allows us to predict the time evolution of the BEC density both
in position and in momentum. In Fig. 5.2 we show the main BEC density time evo-
lution during the OCT ramp and up to 0.5 ms after it, both in position space (upper
panel) and in momentum space (lower panel). The ramp was specifically designed
to transfer the largest number of atoms to the second excited state of the final double-
well confinement (source state). If this goal is achieved, the BEC finds itself in an
eigenstate of the Hamiltonian. Thus its evolution must be constant. While during
the OCT ramp the BEC wavefunction is changing fast and continuously, after the
amplitude ramp has been applied (roughly at 1.42 ms), the evolution of the BEC
wavefunction follows a stable pattern (at the same time the infidelity goes to zero,
see Fig. 5.1).
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Figure 5.1: Simulation of the time evolution of the main BEC wavefunction (blue
curve upper panel) under the influence of the external potential V(y, t) (yellow line,
upper panel), driven by the time-dependent OCT ramp parameter R f (t) (central
panel). The infidelity (lower panel) is a measure of the discrepancy between the
simulated evolution of the initial BEC wavefunction (blue curve, upper panel) and
the target state (orange curve, upper panel). The upper panel photographs the sit-
uation at the last time value here shown (∼ 1.9 ms). The ramp of the rf amplitude
lasts ∼ 1.42 ms.
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Figure 5.2: Simulation of the time evolution of the main BEC wavefunction during,
and up to 0.5 ms after, the OCT ramp. The upper panel shows the evolution in posi-
tion space. The lower panel, the evolution in momentum space (Fourier transform).
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In the experiment, we record the BEC density profile at different times (during and
after the OCT ramp has taken place). We then bring all these transverse profiles to-
gether in chronological order to reconstruct the time-evolution of the BEC wavefunc-
tion and define that as a “carpet”. An experimental carpet is shown in Fig. 5.3 (lower
panel), where it can be compared with the simulation of the BEC time-evolution in
momentum space (upper panel). We need to convert the camera pixels of axis y in
momentum space ky. To do that, we first compute the time-of-flight expansion factor
given by:

Fto f =
h̄

mRb87 · tto f
= 32.1530 µm2, (5.3)

where mRb87 is the mass of 87Rb, and where tto f = 44 ms. We can then derive the
momentum axis as:

ky = (y − y0) · ps/FTOF, (5.4)

where we defined the center pixel y0, and where the pixel size ps = 4 µm [56].
We then fit the experimental carpet with a linear combination Ψguess(y) of different
single-particle eigenstates ψi(y) up to the sixth order (i = 6):

Ψguess(y) = p2ψ2(y) + ∑
i

eiφi
√

piψi(y) (5.5)

where φi (i = 0, 1, 4, 6) are the relative phases and pi (i = 0, 1, 2, 4, 6) are the normal-
ized contributions from the five different states considered. The odd components
from the third and fifth-order were excluded from the fit function based on symme-
try arguments to reduce the number of free parameters. This is consistent with the
transverse symmetry of the experimental data. The main contribution to the exper-
imental profile comes from the second excited state of the double-well potential (∼
97%), corresponding to the source state. This demonstrates the state inversion using
the optimal control engineered sequence.

5.2 Twin-character verification

As already done previously in a single-well [40], we want to apply number-squeezing
techniques to the analysis of the twin-atom pairs generated this time with a different
excitation ramp (the OCT ramp of Section 4.2.2) in a different confinement landscape
(here we deal with a double-well).
We start off by considering two data sets, one related to the separation procedure
(190903scan2) in Fig. 5.4.(a,c), and the second related to the interference procedure
(190905scan7) in Fig. 5.4.(b,d). In the separation data set we considered ≈ 800 runs,
each run with ≈ 2000 total atoms, on average 100 of which are DTB atoms (50 pairs);
while in the interference procedure we considered ≈ 1500 runs, each run with ≈
810 total atoms, on average 24 of which are DTB atoms (∼ 12 pairs). As already
mentioned in Section 4.2.3, these two data are obtained with two different detection
schemes, as it shows from the averaged images in Fig. 5.4.(a,b).
In the separation procedure, we also project the final DTB state into its left and right
well components, while this step is skipped for the interference procedure. More-
over, in the interference procedure, for reasons related to the G(2) analysis, we sep-
arated the three mF states: the same pattern (BEC + DTB emission) is here repeated
three times since we separated the three mF states using a Stern-Gerlach experiment.
The two longitudinal states are visible for each mF component. Nevertheless, both
scenarios deal with twin-atom pairs. Hence we can apply a similar twin-character
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Figure 5.3: Comparison between the simulated time evolution of the BEC density
profile in momentum space (upper panel), and the experimental density profile
(lower panel). We assumed a pixel size of 4 µm and a time of flight of 44 ms.

revealing analysis to both data sets. In Fig. 5.4.(a) the central brightest signal corre-
sponds to the main BEC. We single out the four single-particle states available for
the DTB emission using rectangular boxes (in white) to count how many atoms fell
in each single-particle state.
As already explained in previous works [40, 56], the non-classical correlation in the
emitted twin-atom beams manifests itself as a sub-binomial distribution of the num-
ber imbalance n̂ = N̂1 − N̂2 between atoms detected at ±k0, where the hat sym-
bol indicates a statistical quantity. The variance of n̂ can be expressed as var(n̂) =
ξ2�N̂� = ξ2N, where N is the expectation value of the total number N̂ = N̂1 + N̂2
of emitted twin atoms. The noise reduction factor ξ2 quantifies the suppression of
var(n̂) with respect to a binomial distribution, thus the amount of correlation be-
tween the populations N̂1 and N̂2 (see also Section 4.5). We do not measure atom
numbers directly but fluorescence signals. The relation between the two quantities
is given by:

Ŝ = mN̂, (5.6)

where m is the photon-per-atom parameter introduce in Section 3.4.2. When deal-
ing with the fluorescence signals Ŝ1,2 = mN̂1,2, ŝ ≡ Ŝ1 − Ŝ2 and Ŝ ≡ Ŝ1 + Ŝ2, also
the photon-per-atom parameter m becomes relevant, as the definition of squeezing
becomes:

ξ̃2 =
var(ŝ)
m · �Ŝ� =

σ2ŝ
m · S

. (5.7)

To account for detection noise we introduced in Section 4.5 the noise-corrected squeez-
ing parameter:

ξ2 =
σ2ŝ − σ2

n ŝ
σ2

b ŝ
. (5.8)

In order to confirm the twin character of the emission, we will consider the total
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(a) (b)

(c) (d)

Figure 5.4: Twin character of the DTB emission (a) Separation scheme: averaged ex-
perimental image in decibel (dB) scale (referenced to the brightest pixel). White
boxes define integration regions for counting DTB atoms. (b) Intereference scheme:
averaged experimental image in dB scale. (c) Twin character histogram of the fluo-
rescence signal difference ŝ between the atoms that fell at longitudinal momentum
1 and momentum 2. To do so, we first summed back the signals from the left and
right-well states. The data is plotted in fuchsia. Lines represent normal distribu-
tions with variances σ2

b = mS (black, dashed), σ2
n (red, solid), σ2

b + σ2
n (blue, solid),

ξ2mS + σ2
n with ξ2 = 0.09 (black, solid). (d) Same as in (c) with ξ2 = 0.07. However

here, we first need to sum up the signals from the three mF states.
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signal corresponding to the longitudinal momentum p1 = −h̄k0 and the total signal
relative to the momentum p2 = h̄k0. We need to sum back the left and right compo-
nents in the separation procedure case. This step is unnecessary for the interference
procedure, but we need to sum over the three mF states. We obtain, in both cases,
sub-binomial fluctuations that were estimated to be ξ2 = 0.09 ± 0.04 for the sepa-
ration procedure, and ξ2 = 0.07 ± 0.04 for the interference one. In Fig. 5.4.(c,d) we
show the histograms of the fluorescence signal difference ŝ in units of the binomial
standard deviation σb =

√
S for the separation scan (c) and the interference one (d).

The black curve is a normalized Gaussian using the squeezed variance ξ2σ2
b as its

variance. The blue and dashed black curves use the usual binomial variance instead
and differ by the imaging detection noise (red curve).
The same analysis was performed using a more appropriate shape for the white
boxes surrounding the single-particle states in Fig. 5.4.(a,b). In Fig. 5.5 we have used
ellipses to contour the DTB signal. The values of the number-squeezing parameter
we estimated using ellipses instead of rectangular boxes are ξ2 = 0.09 ± 0.04 for the
separation procedure, and ξ2 = 0.04 ± 0.03 for the interference one.

5.3 Two-particle state identification

We will now provide the experimental evidence that has been collected to prove that
the outcome of the double twin-atom beam procedure outlined in Chapter 4 is the
maximally entangled state in Eq. (4.14):

|ΨDTB� = 1√
2
(|L�− |L�+ + |R�− |R�+), (5.9)

which is the archetypal state also used in the EPR paper of 1935 mentioned in Sec-
tion 2.4. To gain information on the initial state we produce, we perform left and
right well separation measurements (also defined as position measurements in Sec-
tion 4.2.3), where we count how many atoms fell into the left and right well. We
then combine this information with left and right well overlap measurements (also
defined interference measurements or measurements in momentum space in Sec-
tion 4.2.3), where we let the qubit freely expand, and we look at atom-atom correla-
tions.
This approach is explained to some extent in [18], and more recently in the pa-
per [77], where we analyzed two data sets, one (190903scan2) collected using the
separation procedure, the second one (190905scan7) using the interference proce-
dure.
Here, we intend to go through the analysis of those two data sets in more detail. As
already pointed out before, our experiment and, in particular, the available long time
of flight for the transverse direction (see Section 3.4.2) allows for measurement of
atomic density profiles in both position and momentum space. We define separation
procedure the experimental procedure that projects the atomic profiles into left and
right components, allowing us to count how many atoms fell into the left or right
waveguide and then compute the atom number-squeezing among any two signals
coming from the four single-particle modes (left-well and momentum 1, right-well
and momentum 1, left-well and momentum 2, right-well and momentum 2). This
analysis can reveal which particular twin pairs are generated but cannot exclude
the possibility of emitting only mixed states (two-particle states that can be factored
into products of two single-particle states in a certain representation.) Therefore, in
the so-called interference procedure we release the atomic qubits from the confinement
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(a) (b)

(c) (d)

Figure 5.5: Twin character of the DTB emission (a) Separation scheme: experimental
fluorescence image averaged over 798 experimental runs in dB scale (referenced to
the brightest pixel). The central brightest signal corresponds to the main BEC. The
four single-particle states available to the DTB emission are surrounded by elliptical
boxes (in black), that are used to count how many atoms fell in each single-particle
state. (b) Interference scheme: experimental fluorescence image averaged over 1497
experimental runs in dB scale. Each run involves ≈ 800 total atoms, on average
25 of which are DTB atoms (≈ 12 pairs). The same pattern (BEC + DTB emission)
is here repeated three times since we separated the three mF states using a Stern-
Gerlach experiment. The two longitudinal states are visible for each mF component.
(c) Statistics of the signal difference ŝ. Lines have the same meaning of Fig. 5.4.c with
ξ2 = 0.09. (d) Same as in (c) with ξ2 = 0.04.
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potential without any transverse momentum kick. Given the long time of flight (44
ms), they transversally expand, overlap, and interfere. A second-order atom-atom
correlation analysis will then reveal a coherent superposition between a pair being
emitted into the left waveguide and the same pair being emitted into the right one,
hence excluding the presence of only mixed states of such twin pairs. Moreover, the
specific quantum superposition detected in this experiment is consistent with the
predicted zero relative phase between the left and right twin pairs in Eq. (5.9).

5.3.1 Number-squeezing results

The separation procedure projects the DTB emission into the four single-particle states
|L1� , |L2� , |R1� , |R2�1 and aims at counting how many atoms belong to each single-
particle state. The number-squeezing analysis will then give us information on the
two-particle state generated.
After the trap characterization of Section 4.2.1 and the state inversion of Section 4.2.2,
the main BEC is ready to generate double twin atoms pairs. Normally, the long
time-of-flight combined with the tight transverse y confinement does not allow the
in-trap separated atomic components from different waveguides to separate. In or-
der to detect all the four single-particle states, an extra step is then necessary. This
extra stage happens with a quick increase of the potential barrier separating the two
waveguides. The radiofrequency field parameter R f (t) of Eq. (4.11) is increased
from R f (t) = 0.51 (final double-well potential) to R f (t) = 0.81 in 0.025 ms. Such a
rapid increase of the radiofrequency field parameter R f (t) (and consequently of the
potential barrier) results in an extra transverse acceleration that separates the left
and right well components. This procedure projects four distinct zones on the final
picture and counts the atoms in the two wells separately.
Let us consider the data set labeled SEPAR19 in Table 5.1. The analysis procedure
starts with the background and etaloning correction (see Section 4.4.1). The corrected
images have very low mean background level (∼ 0 counts/pxl) and low mean back-
ground variance (∼ 0.016 counts2/pxl).
A typical picture from the separation procedure is displayed in Fig. 5.6. Along the
vertical axis is the longitudinal wave-number kx = px/h̄, and on the horizontal
axis is the transverse wave-number ky = py/h̄. Both axes are expressed in units
of the longitudinal momentum k0 =

"
2mωy/h̄ (see Section 4.1). The signal at the

center in Fig. 5.6.a comes from the main BEC. At the corners of the image one can
see the signal from the four single-particle modes |L1� , |L2� , |R1� , |R2�, centered at
kx = ±k0 and separated into L and R. The four black boxes around them define the
integration area. In Fig. 5.6.(b-e) we plot the atom number in a certain single-particle
state corresponding to the signal from one of the four black boxes in (a) as a function
of the atom number in an another box. When considering signals from only the two
left boxes at different momenta (LL) or from only right boxes at different momenta
(RR), we see a higher correlation (the corresponding distribution is narrower) than
between the signals from left and right boxes mixed (LR and RL). We now want to
estimate this effect in a quantitative way applying the number-squeezing techniques
of Section 4.5. We will then compare the experimental results with the simulation of
the emission of DTB pairs of Section 4.5.1.
The data we analyze consists of many experimental cycles of the same separation
procedure outlined in Section 4.2.3. The outcome is made of hundreds of images

1L and R stand for left and right well, while 1, 2 refers to the longitudinal momenta p1,2 which, as
we already saw in Section 4.1, are such that p1,2 = ±h̄k0.
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Figure 5.6: Separation procedure (a) Experimental fluorescence image averaged over
798 experimental runs from the SEPAR19 data set (see Table 5.1). Each run involves
2000-2200 total atoms, on average 100 of which are DTB atoms (50 pairs). The bright-
est central cloud (red) corresponds to the source state (at rest longitudinally), while
the emitted DTB atoms are found at kx ≈ ±k0. The black boxes define the regions
used for statistical analysis. (b,c,d,e) Atom number Ni1 at momentum 1 versus atom
number Nj2 at momentum 2 with i, j = {L, R}. It is possible to visually notice
the stronger correlation present in the LL and RR signals, as compared to the odd
combination LR and RL. This effect can be estimated quantitatively using number-
squeezing techniques. To derive how many atoms fell in each single-particle state we
integrated the signal in the black boxes in (a) and divided by the photon-per-atom
parameter for this data set m = 29.4.
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Data set ξ2
LL ξ2

LR ξ2
RL ξ2

RR ξ2
L1R1 ξ2

long ξ2
trans ξ2

n

SEPAR19 0.12(2) 0.9(1) 1.0(1) 0.13(2) 1.0(1) 0.101(18) 1.8(2) 0.068(3)

Table 5.2: Number-squeezing Noise-corrected atom number-squeezing for the rele-
vant combinations of the four single-particle modes visualized in Fig. 5.7.

Data set ξ2
LL ξ2

LR ξ2
RL ξ2

RR ξ2
L1R1 ξ2

long ξ2
trans ξ2

n

SEPAR19 0.12(2) 0.9(1) 1.01(11) 0.12(2) 1.0(1) 0.095(18) 1.9(2) 0.068(3)

Table 5.3: Number-squeezing Noise-corrected atom number-squeezing using el-
lipses to contour the DTB zones, as in Fig. 5.5.a, corresponding to the relevant com-
binations of the four single-particle modes visualized in Fig. 5.7.

long (b) ξ2 ≈ 1 for LR, RL, R1L1 (c) ξ2 ≈ 2 for trans. Group (a) refers to corre-
lations between atoms that have opposite longitudinal momenta and belong to the
same waveguide (LL or RR) or any of them (long). This characteristic defines atoms
belonging to the same twin pair (see Section 5.2); hence we find ξ2 � 1. Group
(b) refers to atoms that either do not belong to the same waveguide (LR and RL) or
do not belong to the same twin pair (R1L1). In both cases, the signals are uncorre-
lated, and we find ξ2 ≈ 1. The last group (c) contains the combination trans, which
compares the total signal in the left and in the right waveguide. Given the state in
Eq. (5.9), we expect twin pairs to be detected either in the left or in the right waveg-
uide, without correlation between these two modes. However, each atom is part of a
twin pair, so the atom detection is not left-right uncorrelated. In terms of the statistics
of individual atoms, we find ξ2

trans = 2, as already found when simulating the DTB
emission in Section 4.5.1.
In conclusion, if we now compare our results with the simulated values for the
squeezing parameter in Section 4.5.1 and in particular with Fig. 4.14, we notice that
our findings are in agreement with the values of the squeezing parameter corre-
sponding to a population angle θ ≈ 0. This suggests an emission that happens in
a state involving mostly |LL� and |RR�, a statistical mixture of the two, or a super-
position of those two. In order to discriminate between a statistical mixture and a
coherent superposition of |LL� and |RR�, the number-squeezing technique used so
far is useless. In the next section, we will look at atom-atom correlations and two-
particle interference effects.
We also applied the same number-squeezing techniques for state identification in
a separation procedure using ellipses to contour the DTB zones instead of simple
rectangular boxes, as in Fig. 5.5.a. The results for the number-squeezing parame-
ter of the different two-by-two combinations of modes are reported in Table 5.3 for
completeness.

5.3.2 Atom-atom correlations

In our experiment, each twin pair can be emitted in either the L or R waveguide.
These represent two two-particle quantum paths that interfere with equal amplitude
(balanced double-well) when performing an interference measurement procedure,
i.e., we avoid imprinting an extra transverse acceleration (see Fig. 4.1.c). Unlike
the single-particle case, where an interference pattern is visible already in the mean
density in momentum space (one-particle property), in the two-particle case, we
need to look at two-particle properties to extract information on the final state [18].
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Figure 5.8: Interference procedure (a) Experimental fluorescence image averaged
over 1497 experimental runs from the INTER19 data set (see Table 5.1). The image
is in logarithmic scale (dB referred to the brightest pixel). Each run involves ≈810
total atoms, on average 24 of which are DTB atoms (∼ 10 pairs). The same pattern
(BEC + DTB emission) is here repeated three times since we separated the three mF
states using a Stern-Gerlach experiment. We do not separate left and right states.
The two longitudinal states are visible for each mF component. (b) Same figure as
(a). The white boxes define the regions used for statistical analysis. We chose a box
with sides equal to [dx, dy] = [16 × 150] pxl2.

As already discussed in Section 4.6, if the DTB emission preserves the coherence
of the quasi-BEC, the underlying density matrix relative to that state can reveal
itself in form of a fringe pattern in the atom-atom second-order correlation func-
tion G(2)(p1, p2) in momentum space. In particular, a state as the one predicted in
Eq. (4.14) shows an anti-diagonal fringe pattern (see Fig. 4.15). Maximal contrast
requires identifying the partners in each atom pair. In a low-pair emission regime,
we emit an average of 10 DTB pairs in each experimental run. Averaging over the
many pairs will reduce the contrast in the observed interference.
In this section, we analyze the data named INTER19 in Table 5.1. The analysis pro-
cedure starts with the image background and etaloning correction treatments (see
Section 4.4.1). For each data set obtained with the interference procedure, we use
a Stern-Gerlach separation of the different mF states to obtain cleaner fringes. In
fact, each mF state undergoes a slightly different time-of-flight trajectory that would
result in a transverse relative shift which we would not be able to compensate for
had we not separated the different Zeeman substates. Furthermore, since we do not
raise the barrier at the end of the sequence in an interference measurement, we ex-
pect only the longitudinal ±k0 separation but no L/R separation. A typical picture
from the interference procedure is displayed in Fig. 5.8. Along the vertical axis is the
longitudinal direction in units of the camera pixels, and on the horizontal axis is the
transverse direction (equivalent to the double-well axis). The three repeated pat-
terns in Fig. 5.6 come from the aforementioned Stern-Gerlach separation of the three
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Figure 5.9: Recomposing the three mF density profiles (a) The image shows the DTB
signal from the averaged picture corresponding to the longitudinal momentum 1,
after the three mF states were aligned with the respect to the central one. The shifts
were by 6 pxl for the upper mF state, and by 11 pixels for the lower mF state. (b) DTB
signal from the averaged picture corresponding to momentum 2. (c) Density profile
�n(p1)� corresponding to momentum 1, from the averaged image, normalized to the
total fluorescence counts. (d) Density profile �n(p2)� corresponding to momentum
2, from the averaged image, normalized to the total fluorescence counts.

mF states of the F = 1 state of 87Rb. There is a brighter signal at the center for each
pattern from the main BEC and two clouds at different longitudinal locations, sym-
metrically to the main BEC (at zero momentum longitudinally): the double twin-
atom signal, centered around the expected longitudinal momentum. In Fig. 5.6.b we
show the rectangular boxes chosen to contour the DTB zones (two for each mF state).
In Section 5.2, we integrated the signal in each box for each experimental run and
computed the atom-number squeezing parameter relative to this data set.
We will now derive the density profiles at the two longitudinal modes n(p1) and
n(p2). We integrate the DTB signal along the longitudinal axis and recompose the
profiles by adding up from the three mF states, keeping the signals relative to each
momentum class separated. Each mF state is also slightly misaligned along the y
transverse direction, so we shift them properly before summing them. This proce-
dure is exemplified in Fig. 5.9, where it is applied to the averaged images (a,b) for
visualization purposes. In reality, we apply this technique to the single-shot images,
as prescribed by the definition of Eq. (4.35). In Fig. 5.9.(a,b), we separate the DTB
signal from the rest of the image and aligned the different mF states with respect
to the central one. In Fig. 5.9.(c,d), we plot the density profiles relative to the two
longitudinal momenta. Once the signals from the DTB zones have been organized
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into two separate density profiles n(p1) and n(p2), corresponding to the longitudi-
nal modes, we can evaluate G(2)(p1, p2), using Eq. (4.35). Firstly, we will slightly
modify the notation of the density profiles to clarify that they are functions of the
transverse momentum:

n(p1) = n(ky,−k0), (5.12)
n(p2) = n(k"y,+k0), (5.13)

where we replaced the momentum p with the corresponding wave-number ky =
p/2πh̄. Using this notation, we can rewrite Eq. (4.35) as:

G(2)
exp(ky, k"y) =

�n(ky,−k0)n(k"y,+k0)�
�n(ky,−k0)� · �n(ky,+k0)� . (5.14)

In Fig. 5.10 we show the result of the calculation over 1497 experimental runs. First
of all, the wave-number ky is re-scaled by the half inter-well spacing y0 = 0.75 µm,
hence K = y0ky is a dimensionless quantity. Figg. 5.10.(a,d) show the normalized
averaged density profiles �n(K,±k0)� from the two longitudinal momenta. The nor-
malization condition we imposed reads:

Kmax

∑
Kmin

�n(K)�dK = 1. (5.15)

As already mentioned in Section 4.6, for the two profiles we expect a Gaussian pro-
file with an envelope function given by A2(K) = e−(K−K0)/σ2

K /
√

πσK (in case of
a perfectly balanced double-well). The fit function we used is given by FG(K) =
A0A2(K) + B0, where A0 ∼ 0.5 represents an amplitude factor and B0 ∼ 0.3 [a.u.]
is an offset (maybe due to residual fluorescence counts). The fit functions are dis-
played in red in Figg. 5.10.(a,d). From the fit, we extracted the extension σK ∼ 0.4 of
the Gaussian envelopes.
In Fig. 5.10.b, we show the product of the averaged profiles in (a) and (d). In
Fig. 5.10.c we plot the G(2)(ky, k"y) profile. The pattern is reminiscent of the anti-
diagonal fringe in Fig. 4.15.
To compare theory with experiment, we assume two density matrices ρ1 and ρ2
which in the {L, R} basis representation are given by:

ρ1 =
1
2

���
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

��� , ρ2 =
1
2

���
1 0 0 0.3
0 0 0 0
0 0 0 0

0.3 0 0 1

��� . (5.16)

Knowing the density matrices, we then apply Eq. (4.36) to find the corresponding
theoretical G(2)

th pattern. In Fig. 5.11, we compare the theoretical G(2)
th patterns re-

lated to the ρ1 and ρ2 matrices [(Fig. 5.11.(a,b)], with the experimental G(2)
exp pattern

obtained from the analysis of the current data set (Fig. 5.11.c).
It seems plausible that the state ρ1 (or ρ2) are the ones we produce in our DTB
scheme. The main drawback of our system is the poor contrast of the fringe pat-
tern in Fig. 5.11.c. One possible explanation for the low contrast of the fringe pattern
is the many pairs emitted at the same time, which makes it impossible to identify
each atom’s twin. Moreover, the multi-pair emission regime generates higher-order
emission terms, as we will explain in Section 6.1. Even decreasing the average num-
ber of emitted pairs, we may not be able to detect those single pairs: our EMCCD
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Figure 5.10: Second order correlation function G(2)(ky, k"y) of atomic profiles within
twin pairs as a function of transverse momentum after long time-of-flight. (a) Aver-
aged atomic profile relative to the atoms within the twin pairs with longitudinal mo-
mentum −k0. (b) Product of the averaged atomic profiles from the two different lon-
gitudinal momentum classes ±k0. (c) Second order correlation function G(2)

exp(ky, k"y).
The axes are re-scaled by the half inter-well distance 2y0 = 1.3 µm. (d) Averaged
atomic profile relative to the atoms within the twin pairs with longitudinal momen-
tum +k0.
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𝜌1 = 12 1 00 0 0 10 00 01 0 0 00 1 𝜌2 = 12 1 00 0 0 0.30 00 00.3 0 0 00 1 𝜌𝐷𝑇𝐵 = ?

Figure 5.11: G(2)(ky, k"y): theory vs experiment comparison. (a) Simulated

G(2)
th (ky, k"y) pattern that assumes a density matrix ρ1. In order to evaluate the

G(2)
th (ky, k"y) pattern, we used Eq. (4.36). (b) Simulated G(2)

th (ky, k"y) pattern that as-

sumes a density matrix ρ2. (c) Experimental G(2)
exp(ky, k"y) pattern evaluated from

Eq. (5.14) using the experimental atomic profiles.

light-sheet detector is not capable of reliably discriminating between single-atom
signal and detection noise (mainly CIC or clock-induced charges, multiplied at the
electron-multiplication stage [55]).
In the following, we will see how we can estimate the level of contrast of the experi-
mental fringe pattern.

Attempt to estimate of the contrast of the fringe pattern

The G(2)
exp(ky, k"y) fringe pattern in Fig. 5.11.c would allow, once properly fitted, to

extract information on the initial two-particle state [18]. In particular, when the main
pattern contains anti-diagonal or diagonal fringes, as in our system, full tomography
is possible. The main difficulty of this state reconstruction method, proposed for our
system in the paper [18], is represented by the poor contrast of the fringe pattern of
Fig. 5.11.c, which makes it hard to fit any function to it.
In order to fit the anti-diagonal profile of the G(2)

exp(ky, k"y) pattern, we first fit the
anti-diagonal profile of the �n(ky,−k0)� · �n(ky,+k0)� pattern with a non-linear least

squares method using a Lorentzian envelope function FL(ky) = A0 · exp
�
−(ky − B0)2/C2

0

�
+

D0.

A0 = 0.8085(0.8027, 0.8143)
B0 = 0.003529(0.001748, 0.005309)
C0 = 0.5691(0.5632, 0.575)
D0 = −0.04781(−0.05233,−0.04329) (5.17)

Once we know the envelope function, we can fit the averaged anti-diagonal profile
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of the G(2)
exp(ky, k"y) pattern using the fit function Ff it = Ff it(K̃) given by:

Ff it(K̃) = FL(K̃) · E0

 cos
�

2π · 2(K̃ − K0)

F0

�
+ G0

+ H0, (5.18)

where the envelope is fixed from the previous fit, G0 and H0 are two vertical offsets,
K0 is a horizontal offset, F0 is a fringe spacing amplitude factor, while E0 defines the
contrast of the fringe pattern. The factor 2 within the cosine function comes from
the specific G(2)

exp(ky, k"y) pattern relative to the anti-diagonal pattern in Fig. 4.15. The
coefficients of the fit (with 95% confidence bounds) are:

E0 = 0.0346(0.02964, 0.03956)
F0 = 1.322(1.251, 1.393)
G0 = 0.1189(0.1105, 0.1274)
H0 = 1.017(1.012, 1.022)
K0 = −0.01693(−0.03225,−0.001607).

In particular, the fringe spacing factor being F0 = 1.25 − 1.39 would mean that the
measured fringe spacing is between 25% up to 39% larger than expected for a per-
fect match between the simulated and the experimental final double-well poten-
tials. The estimated inter-well distance is dexp = 2y0/E0 = 1 µm, which would be
0.3 µm smaller than for the simulated double-well potential (wells more coupled in
the experiment compared to simulation). However, the information that one can
extract from the fit can only be trusted proportionally to the level of contrast we
can achieve: the measured contrast of the fringe pattern for this data set is as low
as C0 = 0.035 ± 0.005. One can also define the visibility V of the measured fringe
pattern from the fit function Ff it as given by:

V =
max(Ff it)− min(Ff it)

max(Ff it) + min(Ff it)
% 0.051. (5.19)

The measured contrast and visibility are too low (a few percent only) to judge the
fringe spacing factor too confidently.
As a final plot, in Fig. 5.12 we display the results of the fit of the anti-diagonal fringe
of the G(2)

exp(k, k") pattern, together with the Lorentzian fit of the anti-diagonal cut
along the �n(k̂y,−k0)n(k̂y, k0) pattern.
We perform a parallel analysis on the same data set using ellipses to contour the DTB
signal instead of rectangular boxes. The results are similar and are summarized in
Fig. 5.13.

A more recent data set

We repeated the interference analysis for a more recent data set named INTER21 in
Table 5.1, obtained with the same procedure as for INTER19. The analysis follows
the same steps as before in Section 5.3.2, but we here used an elliptical definition for
the DTB boxes, as it was closer to the real shape of the DTB signal. A similar fringe
pattern was obtained, confirming the previous results. We summarize the results of
this data set in Fig. 5.14.
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Figure 5.12: Summary of the results from the data set labeled INTER19 obtained
using rectangles to contour the DTB signal. (a) Fit of the averaged anti-diagonal cut
of G(2)

exp(ky, k"y). As fit function, we used a damped cosine where the contrast of the
fringe E0, the offsets G0 and H0 and K0, and the correction factor to the fringe spacing
F0 are fit parameters. The contrast of the fringe pattern from the fit is estimated to
be C0 = 0.034 ± 0.005 and its visibility V = 0.051. (b) Fit of the corresponding
anti-diagonal slice of �n(k̂y,−k0)n(k̂y, k0)�. As fit function, we used a Lorentzian
envelope.

Figure 5.13: Summary of the results from the data set labeled INTER19 obtained
using ellipses to contour the DTB signal. (a) Averaged corrected image from 1497
single-shot images with the same settings. The roi zones used for the correlation
analysis are visible as black ellipses. (b) G(2)(ky, k"y) pattern computed as atom-
atom correlation among the integrated transverse profiles withing the ellipses in
(a) after we summed back the three mF states. (c) �n(k̂y,−k0)n(k̂y, k0) pattern.
We highlight as white rectangular boxes the regions used to extract the averaged
G(2)(ky, k"y) profile. (d) Mean anti-diagonal G(2)(ky, k"y) profile (light blue data) and
mean �n(k̂y,−k0)n(k̂y, k0) cut (orange data). (e) Fit of the averaged anti-diagonal cut
of the G(2)(ky, k"y) pattern. As fit function we use a damped cosine, where the con-
trast of the fringe C0, the vertical offsets D0 and F0, and the correction factor to the
fringe spacing E0 are fit parameters. The contrast of the fringe pattern from the fit
is estimated to be C0 = 0.042 ± 0.006 and its visibility V = 0.05. (f) Fit of the cor-
responding anti-diagonal slice of the �n(k̂y,−k0)n(k̂y, k0) pattern. As fit function we
employed a Gaussian envelope.
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Figure 5.14: Summary of the results from the data set labeled INTER21 obtained us-
ing ellipses to contour the DTB signal. (a) Averaged corrected image from 636 single-
shot images with the same settings. The roi zones used for the correlation analysis
are visible as black ellipses. The lower mF state had low enough population, so we
excluded it from the rest of the analysis. (b) G(2)(ky, k"y) pattern computed as atom-
atom correlation among the integrated transverse profiles withing the ellipses in (a).
(c) �n(k̂y,−k0)n(k̂y, k0) pattern. We highlight as white rectangular boxes the regions
used to extract the averaged G(2)(ky, k"y) profile. (d) Mean anti-diagonal G(2)(ky, k"y)
profile (light blue data) and mean �n(k̂y,−k0)n(k̂y, k0) cut (orange data). (e) Fit of
the averaged anti-diagonal cut of the G(2)(ky, k"y) pattern. As fit function we used a
damped cosine, where the contrast of the fringe C0, the vertical offsets D0 and F0,
and the correction factor to the fringe spacing E0 are fit parameters. The contrast of
the fringe pattern from the fit is estimated to be C0 = 0.027 ± 0.011 and its visibility
V = 0.028. (f) Fit of the corresponding anti-diagonal slice of the �n(k̂y,−k0)n(k̂y, k0)
pattern. As fit function we employed a Gaussian envelope.



Chapter 6

Future directions

It is interesting to consider here a few questions arising naturally from the analysis of
the data sets in Chapter 5. First of all, we always assumed that many single pairs are
emitted, but we also showed that we could not record single pairs in our experiment
but rather 10 or 50 on average at a time. For this reason, in Section 6.1 we investigate
the more general solution to the emission process. Then we look at the particular
scenario of emitting two pairs simultaneously.
The second question that might arise has to do with time evolution: how do the
atom-atom correlations evolve with time? In Section 6.2 we show a data set that
gives a hint towards a somehow counterintuitive direction.
The last but important question relates to the G(2) pattern: is there a way, given
our current setup, to modify the current scheme in such a way that we produce a
different DTB state? Would a different DTB state then give rise to a modified G(2)

pattern as expected (see the discussion in Section 4.3.2)? We consider this situation
in 6.3.

6.1 Multi twin-atom pair states

The twin atoms are produced in pairs with opposite momenta �p1 = −�p2 with
%%�p1

%% =%%�p2
%% = h̄k0, where 1, 2 are the two longitudinal modes available due to energy and

momentum conservation, which in the following we will represent with ± sign. We
can write the corresponding two-mode squeezed Hamiltonian as:

H2M ∝ a0a0(a†−a†
+ + h.c.) = N0(a†−a†

+ + h.c.), (6.1)

where a± are the annihilation operators for the two momenta modes 1, 2 mentioned
above. The time-evolution operator is given by (we are omitting the operator sym-
bols):

U(t) = exp(−itH2M/h̄) ∝ ∑
m

cm(a†−a†
+)

m. (6.2)

In addition to the scenario above, two transverse modes L and R are available to
the twin pairs in the double-well configuration, enabling an additional degree of
freedom for the generation of twin-atom pairs. In particular, each pair travels along
either the left L, the right R waveguide, or in a superposition of those. The general-
ized two-mode squeezed Hamiltonian reads:

H2MDW = HL
2M + HR

2M ∝ N0(aL,†
− aL,†

+ + aR,†
− aR,†

+ + h.c.), (6.3)

where aL± are the annihilation operators of the two momenta modes for the left
waveguide and aR± are the annihilation operators for the right one.

87
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The DTB state at any later time
%%ψ(t)� = U(t) |0� is then given by:%%ψ(t)� = exp(−itHL/h̄) exp(−itHR/h̄) |0� =

= (cL
0 |00�L + cL

1 |11�L + cL
2 |22�L + . . .)(cR

0 |00�R + cR
1 |11�R + cR

2 |22�R + . . .) =

= cL
0 cR

0 |00�L |00�R +

+ cL
0 cR

1 |00�L |11�R + cR
0 cL

1 |00�R |11�L +

+ (2cL
1 cR

1 |11�L |11�R) + cL
0 cR

2 |00�L |22�R + cL
2 cR

0 |22�L |00�R + . . . (6.4)

In the previous chapters, we only considered the possibility of emitting “many” sin-
gle pairs of the type cL

0 cR
1 |00�L |11�R + cR

0 cL
1 |00�R |11�L ∼ |LL�+ |RR�. This scenario

found a theoretical justification in Section 4.3 and, most importantly, experimental
proofs in both the number-squeezing analysis of Section 5.3.1 and in atom-atom cor-
relations in Section 5.3.2. However, the average number of pairs we emit (10 pairs on
average in INTER19, INTER21, and up to 50 in SEPAR19) forces us to include other
terms of Eq. (6.4) in the analysis. In particular, as the first more significant correction
and as an outline and motivational push for further development of both theory and
experimental confirmations, we will consider the possibility of emitting two pairs at
a time.
Let us start with the state

%%%ψ2pair

�
describing four atoms altogether:%%%ψ2pair

�
∝ |22�L + |22�R , (6.5)

which describes the superposition of two twin pairs traveling along the left and the
right waveguide at the same time.

6.1.1 Number-squeezing

In the simulation of the emission process in Section 4.5.1 that led to the number-
squeezing results shown in Fig. 4.14, we have only assumed that each emitted pair
is a twin-atom pair. Still, we have nowhere assumed anything on whether each pair
is emitted alone or simultaneously in a bunch of two pairs at a time. Therefore, the
results obtained in Fig. 4.14 are valid also for any state of the type:%%ψDTB

�
∝
%%%NpNp

�
L
+ exp(−iθ)

%%%NpNp

�
R

, (6.6)

where we indicated with Np = 1, 2, 3 . . . the number of simultaneously emitted pairs.
Hence, the number-squeezing results discussed in Section 5.3.1 are compatible with
the state of Eq. (6.5).

6.1.2 Atom-atom correlation

It is noteworthy to look at what we expect for a G(2) pattern in the case of the state
in Eq. (6.5). To do that we start again from the definition of G(2)(η1, η2) given in
Eq. (4.32) for a single pair. We want to generalize it to the situation of two twin-atom
pairs labeled A and B:

G(2)(η1, η2) = �Ψ̂†(η1)Ψ̂†(η2)Ψ̂(η1)Ψ̂(η2)� =
�φ̂†

B(η1)φ̂
†
A(η1)φ̂

†
B(η2)φ̂

†
A(η2)φ̂A(η1)φ̂B(η1)φ̂A(η2)φ̂B(η2)� (6.7)
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Figure 6.1: Superposition of two pairs: effect on G(2)(p1, p2) (a) Simulated
G(2)

th (p1, p2) pattern that assumes coherent superposition of one left pair and one

right pair. (b) Simulated G(2)
th (p1, p2) pattern that assumes coherent superposition of

two left pairs and two right pairs (c) Sum of (a) and (b).

where Ψ̂(η) = φ̂A(η)φ̂B(η) and 1, 2 refer to the atoms within each twin pair. In terms
of the left L and right states R each pair can be written as a superposition:

φ̂A = ∑
i=L,R

ψi âi (6.8)

φ̂B = ∑
j=L,R

ψj âj (6.9)

where âL,R are the annihilation operators for the corresponding transverse mode.
Also we can then rewrite Eq. (6.7) in terms of those L, R modes to get:

G(2)(η1, η2) =

∑
ijkl,mnlp=L,R

ψi(η1)ψj(η2)ψk(η1)ψl(η2)ψ
�
m(η1)ψ

�
n(η2)ψ

�
l (η1)ψ

�
p(η2)ρijkl,mnlp (6.10)

which is a complicated formula that in the most general case would require a 16× 16
matrix to represent the F-functions defined in Eq. (4.39).
Here, we perform the calculations relative to the simple state in Eq. (6.5), where there
is a coherent superposition between two left pairs and two right pairs. In this simple
case there are only four terms contributing to the G(2)(p1, p2) pattern:

φ2L2L = φL(p1)φL(p2)φL(p1)φL(p2)φ
�
L(p1)φ

�
L(p2)φ

�
L(p1)φ

�
L(p2) (6.11)

φ2L2R = φL(p1)φL(p2)φL(p1)φL(p2)φ
�
R(p1)φ

�
R(p2)φ

�
R(p1)φ

�
R(p2) (6.12)

φ2R2L = φR(p1)φR(p2)φR(p1)φR(p2)φ
�
L(p1)φ

�
L(p2)φ

�
L(p1)φ

�
L(p2) (6.13)

φ2R2R = φR(p1)φR(p2)φR(p1)φR(p2)φ
�
R(p1)φ

�
R(p2)φ

�
R(p1)φ

�
R(p2) (6.14)

such that
G(2)(p1, p2) =

1
2
(φ2L2L + φ2L2R + φ2R2L + φ2R2R). (6.15)

In Fig. 6.1.b we plot the results of the calculation and compare it with (a) the coher-
ent superposition of a pair to the left and the same pair to the right and (c) the sum
of the G(2)’s for the two previous situations. This analysis shows that the results
of our atom-atom correlation are compatible with the generation of more than one
single pair at a time, given the coherent superposition among the left and right com-
ponents. We are more inclined to believe that we see the superposition effects of a
multi-twin-atom pair state rather than many single pairs effects only. Only a better
understanding of the phenomena that tend to reduce the fringe contrast would help
us narrow down the actual DTB state we produce.



90 CHAPTER 6. FUTURE DIRECTIONS

Figure 6.2: G(2) pattern evolution. The evINTER21 data set contains 120 images at
each time thold and five time instants from 25 µs up to 1.625 ms after the the DTB
sequence in steps of 0.4 ms.

6.2 Evolution of the DTB state

In the previous data sets we always referred to the shortest in-trap holding time
possible, which for our setup is 25 µs. We here present the analysis of the data
set labeled evINTER21 in Table 5.1 where we let the state evolve and measure at
five different time instants corresponding to increasing in-trap holding time thold.
For each time, we collected only 120 experimental realizations, which is not enough
statistics to be able to see a signal in G(2) for the low-atom regime at thold < 1 ms but
is enough to see a hint of a modification of the G(2) pattern as the in-trap holding time
increases. The fact that the signal in the G(2) function seems to become more evident
as the average number of emitted pairs increases appears at odds with our initial
assumption of the emission of only a few pairs. If the experimental G(2) pattern was
only produced by single pairs events, then it would grow larger as fewer pairs are
emitted. The experimental G(2) pattern might instead emerge from multi twin-atom
states as discussed in Section 6.1 rather than from many single pairs copies as we
initially assumed.

6.3 Example of a modified G(2) pattern

In this section i will present data labeled modINTER21 in Table 5.1 relative to a
slightly modified experimental procedure, that is pictured in Fig. 6.3. For the first
part (a-c), the main BEC undergoes the same procedure as in Fig. 4.1. After the exci-
tation via OCT ramp based rf dressing, instead of switching off the confinement, we
perform a linear ramp of the rf amplitude towards decreasing values. In Fig. 6.3.d
we see the rf amplitude ramping down from R f (t1) = 0.491 to R f (t2) = 0.47, where
we indicated as t1 the instant at the end of the OCT ramp and t2 − t1 is the duration
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(a) (b)
211019scan18

Figure 6.4: Modified interference procedure (a) Experimental fluorescence image av-
eraged over 463 experimental runs obtained with the modified interference proce-
dure sketched in Fig. 6.3. The image is in logarithic scale (dB referred to the brightest
pixel). Each run involves ∼ 895 total atoms, on average 100 of which are DTB atoms
(∼ 50 pairs). The same pattern (BEC + DTB emission) is here repeated three times
since we separated the three mF states using a Stern-Gerlach experiment. We do not
separate left and right states. The two longitudinal states are visible for each mF
component. The black ellipses define the integration region for counting the DTB
pairs. We exclude the lowest mF that has negligible signal. (b) Statistics of the signal
difference ŝ between the momentum states 1 and 2. Lines have the same meaning of
Fig. 5.4.c with ξ2 = 0.15.

of the last linear ramp. Step (d) modifies the double-well confinement. In particular,
as it decreases the value of the rf dressing amplitude, it also decreases the height of
the barrier, thus bringing the left and right wells closer to each other. (add simula-
tion values). Finally, in Fig. 6.3.e we switch off the trap and the same free fall and
detection stages as in Section 4.2.3 follow. We here performed only an interference
type of measurement.
The expected outcome of the measurement is the DTB state of Eq. (4.14)
The analysis of the data starts with background and etaloning correction of each
image, as in Section 4.4.1. We then center ellipses with semi-axes size of 55 × 10 pxl2

on the DTB signal, two for each mF state1. In Fig. 6.4.a we show the averaged image
in a logarithmic scale in dB units referred to the brightest pixel. We superimposed
ellipses (black curves) around the DTB emission that define the integration regions
to count the twin atoms on the same image. From the fluorescence signal difference
between the momentum states ŝ = Ŝ1 − Ŝ2 we can plot a histogram, as shown in
Fig. 6.4.b. The lines have the same meaning as in Fig. 5.4.c. In particular, the noise
corrected squeezing parameter for this data set was ξ2 = 0.15± 0.05, so the emission
statistics are sub-binomial as expected.
We now look at the atom-atom correlation analysis of Section 4.6, similarly to what
already discussed in Section 5.3.2. In Fig. 6.5.b, we show the product of the averaged
profiles �n1� · �n2�, where n1 = n(ky,−k0) and n2 = n(ky,+k0) are also separately
plotted in Fig. 6.5.(a,d). In Fig. 6.5.c we plot the G(2)(ky, k"y) profile. This time the ex-
perimental pattern is not reminiscent of the anti-diagonal fringe in Fig. 4.15, but can

1We excluded the lowest mF as it gave rise to negligible DTB signal.
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Figure 6.5: Second order correlation function G(2)(ky, k"y) of atomic profiles within
twin pairs as a function of transverse momentum after long time-of-flight. (a) Av-
eraged atomic profile relative to the atoms within the twin pairs with longitudinal
momentum −k0. (b) Product of the averaged atomic profiles from the two different
longitudinal momentum classes ±k0. (c) Second order correlation G(2)(ky, k"y). The
axes are re-scaled by the half inter-well distance 2y0 = 1.3 µm. (d) Averaged atomic
profile relative to the atoms within the twin pairs with longitudinal momentum +k0.

be related to an admixture with other states as expected by.. (see Igor’s calculations).

To compare theory with experiment, we assume two density matrices ρ3 and ρ4
which in the {L, R} basis representation are given by:

ρ3 =
1
4

���
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

��� , ρ4 =
1
4

���
1 0 0 1
0 1 0.5 0
0 0.5 1 0
1 0 0 1

��� . (6.16)

Both density matrices include LR and RL populations and some coherence terms,
but in ρ4 the contribution of the coherence terms RLLR and LRRL to the total state
is smaller than in ρ3 (half value). Knowing the density matrices, we then apply
Eq. (4.36) to find the corresponding theoretical G(2)

th pattern. In Fig. 6.6, we com-

pare the theoretical G(2)
th patterns related to the ρ3 and ρ4 matrices [(Fig. 6.6.(a,b)],

with the experimental G(2)
exp pattern obtained from the analysis of the current data set
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Figure 6.6: Second order correlation function G(2)(ky, k"y): theory vs experiment com-

parison. (a) Simulated G(2)
th (ky, k"y) pattern that assumes a density matrix ρ3 (see text),

computed via Eq. (4.36). (b) Simulated G(2)
th (ky, k"y) pattern that assumes a density

matrix ρ4. (c) Experimental G(2)
exp(ky, k"y) pattern evaluated from Eq. (5.14) using the

experimental atomic profiles relative to this data set.

(Fig. 6.6.c). The experimental pattern shown in Fig. 6.6.c is somewhat reminiscent of
the G(2) pattern of Fig. 6.6.a relative to the state ρ3 in Eq. (6.16). However, any more
quantitative statement would require a much higher contrast.

6.4 Conclusions

Our experiments show a path toward a quantitative demonstration of entanglement
for propagating atom beams as proposed in [18]. To achieve this goal, we would
need to increase the contrast of the two-particle interference significantly. We believe
that the loss of visibility is due to the superposition of different G(2) patterns linked
to the multi-pair states produced in the current regime.
A limit worth mentioning is that of very low emission. On average, in this case,
much less than one atom pair is produced at every round, and the contribution from
other multi-pair states is negligible. Unfortunately, the current detection scheme
does not allow exploring this case due to the poor signal-to-noise ratio in the single-
atom detection regime. A newer EMCCD camera should be installed that can detect
single atoms.
As shown in the modified procedure, we can manipulate our state by increasing the
tunneling coupling within the double-well. We also believe it is possible to apply a
phase shift to the propagating DTBs by tilting the double-well potential to introduce
an energy difference between the left and right well states, as in [73]. As an alter-
native procedure, one could implement Bragg deflectors as in [16, 20] to rotate the
state after its generation. Furthermore, we explored only a few procedures to emit
double twin-atom beams. The method implemented in Section 6.3 shows a hint of
possible engineering of an atom Bell state since the original DTB state was rotated
by a simple modification of the double-well confinement, which could lead to more
sophisticated procedures to generate, modify and detect any two-particle state in the
left and right basis in the near future. In particular, optimal control techniques could
open doors to more advanced state manipulation.
As a more general outlook, we see a huge potential in exploring non-linear matter-
wave optics for atoms propagating in waveguides and integrated matter-wave cir-
cuits. The processes behind the twin-atom emission are closely related to the matter-
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wave equivalents of parametric amplification and four-wave mixing. We envision
the development of non-linear matter-wave quantum optics where, possibly, the
creation of entangled atom-laser beams in twin-beam emission above the threshold
would be one directly accessible example.
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AG Truscott. Bell correlations between spatially separated pairs of atoms. Na-
ture communications, 10(1):1–7, 2019.

[18] Marie Bonneau, William J Munro, Kae Nemoto, and Jörg Schmiedmayer. Char-
acterizing twin-particle entanglement in double-well potentials. Physical Review
A, 98(3):033608, 2018.

[19] J.-C. Jaskula, M. Bonneau, G. B. Partridge, V. Krachmalnicoff, P. Deuar, K. V.
Kheruntsyan, A. Aspect, D. Boiron, and C. I. Westbrook. Sub-poissonian
number differences in four-wave mixing of matter waves. Phys. Rev. Lett.,
105:190402, Nov 2010.

[20] Robert J Lewis-Swan and KV Kheruntsyan. Proposal for a motional-state bell
inequality test with ultracold atoms. Physical Review A, 91(5):052114, 2015.

[21] Wolfgang Pauli. On the connection between the completion of electron groups
in an atom with the complex structure of spectra. Zeitschrift für Physik, 31:765,
1925.

[22] Louis De Broglie. Recherches sur la théorie des quanta. PhD thesis, Migration-
université en cours d’affectation, 1924.

[23] Claude Cohen-Tannoudji and David Guéry-Odelin. Advances in atomic
physics: an overview. 2011.

[24] Pierre C Hohenberg. Existence of long-range order in one and two dimensions.
Physical Review, 158(2):383, 1967.

[25] Vanderlei Bagnato and Daniel Kleppner. Bose-einstein condensation in low-
dimensional traps. Physical Review A, 44(11):7439, 1991.

[26] Franco Dalfovo, Stefano Giorgini, Lev P Pitaevskii, and Sandro Stringari. The-
ory of bose-einstein condensation in trapped gases. Reviews of modern physics,
71(3):463, 1999.

[27] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and
Eric A Cornell. Observation of bose-einstein condensation in a dilute atomic
vapor. science, 269(5221):198–201, 1995.

[28] Kendall B Davis, M-O Mewes, Michael R Andrews, Nicolaas J van Druten,
Dallin S Durfee, DM Kurn, and Wolfgang Ketterle. Bose-einstein condensation
in a gas of sodium atoms. Physical review letters, 75(22):3969, 1995.



BIBLIOGRAPHY 101

[29] N Bogoliubov. On the theory of superfluidity. J. Phys, 11(1):23, 1947.

[30] DS Petrov, Dimitri M Gangardt, and Gora V Shlyapnikov. Low-dimensional
trapped gases. In Journal de Physique IV (Proceedings), volume 116, pages 5–44.
EDP sciences, 2004.

[31] Fabrice Gerbier. Quasi-1d bose-einstein condensates in the dimensional
crossover regime. EPL (Europhysics Letters), 66(6):771, 2004.

[32] Maxim Olshanii. Atomic scattering in the presence of an external confinement
and a gas of impenetrable bosons. Physical review letters, 81(5):938, 1998.

[33] Christophe Mora and Yvan Castin. Extension of bogoliubov theory to quasi-
condensates. Physical Review A, 67(5):053615, 2003.

[34] Isabelle Bouchoule, Karen V Kheruntsyan, and GV Shlyapnikov. Interaction-
induced crossover versus finite-size condensation in a weakly interacting
trapped one-dimensional bose gas. Physical Review A, 75(3):031606, 2007.

[35] MD Lee, SA Morgan, and K Burnett. The gross-pitaevskii equation and higher
order theories in one-dimensional bose gases. arXiv preprint cond-mat/0305416,
2003.

[36] EGM Van Kempen, SJJMF Kokkelmans, DJ Heinzen, and BJ Verhaar. In-
terisotope determination of ultracold rubidium interactions from three high-
precision experiments. Physical review letters, 88(9):093201, 2002.

[37] Jun John Sakurai and Eugene D Commins. Modern quantum mechanics, re-
vised edition, 1995.

[38] R Ghosh and Leonard Mandel. Observation of nonclassical effects in the inter-
ference of two photons. Physical Review Letters, 59(17):1903, 1987.

[39] Daniel M Greenberger, Mike A Horne, and Anton Zeilinger. Multiparticle in-
terferometry and the superposition principle. Physics Today, 46:22–22, 1993.

[40] Robert Bücker, Julian Grond, Stephanie Manz, Tarik Berrada, Thomas Betz,
Christian Koller, Ulrich Hohenester, Thorsten Schumm, Aurélien Perrin, and
Jörg Schmiedmayer. Twin-atom beams. Nature Physics, 7(8):608–611, 2011.

[41] Robert Bücker, Aurélien Perrin, Stephanie Manz, Thomas Betz, Ch Koller,
Thomas Plisson, Jörg Rottmann, Thorsten Schumm, and Jörg Schmiedmayer.
Single-particle-sensitive imaging of freely propagating ultracold atoms. New
Journal of Physics, 11(10):103039, 2009.

[42] John S Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika,
1(3):195, 1964.

[43] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of bell’s
inequalities using time-varying analyzers. Physical review letters, 49(25):1804,
1982.

[44] Wolfgang Tittel, Jürgen Brendel, Hugo Zbinden, and Nicolas Gisin. Violation
of bell inequalities by photons more than 10 km apart. Physical Review Letters,
81(17):3563, 1998.



102 BIBLIOGRAPHY

[45] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and
Anton Zeilinger. Violation of bell’s inequality under strict einstein locality con-
ditions. Physical Review Letters, 81(23):5039, 1998.

[46] Daniel Salart, Augustin Baas, Cyril Branciard, Nicolas Gisin, and Hugo
Zbinden. Testing the speed of ‘spooky action at a distance’. Nature,
454(7206):861–864, 2008.

[47] Marissa Giustina, Marijn AM Versteegh, Sören Wengerowsky, Johannes Hand-
steiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler,
Jan-Åke Larsson, Carlos Abellán, et al. Significant-loophole-free test of bell’s
theorem with entangled photons. Physical review letters, 115(25):250401, 2015.

[48] Lynden K Shalm, Evan Meyer-Scott, Bradley G Christensen, Peter Bierhorst,
Michael A Wayne, Martin J Stevens, Thomas Gerrits, Scott Glancy, Deny R
Hamel, Michael S Allman, et al. Strong loophole-free test of local realism. Phys-
ical review letters, 115(25):250402, 2015.

[49] Mohammad Lamehi-Rachti and Wolfgang Mittig. Quantum mechanics and
hidden variables: A test of bell’s inequality by the measurement of the spin cor-
relation in low-energy proton-proton scattering. Physical Review D, 14(10):2543,
1976.

[50] Mary A Rowe, David Kielpinski, Volker Meyer, Charles A Sackett, Wayne M
Itano, Christopher Monroe, and David J Wineland. Experimental violation of a
bell’s inequality with efficient detection. Nature, 409(6822):791–794, 2001.

[51] Bas Hensen, Hannes Bernien, Anaïs E Dréau, Andreas Reiserer, Norbert
Kalb, Machiel S Blok, Just Ruitenberg, Raymond FL Vermeulen, Raymond N
Schouten, Carlos Abellán, et al. Loophole-free bell inequality violation using
electron spins separated by 1.3 kilometres. Nature, 526(7575):682–686, 2015.

[52] Wenjamin Rosenfeld, Daniel Burchardt, Robert Garthoff, Kai Redeker, Norbert
Ortegel, Markus Rau, and Harald Weinfurter. Event-ready bell test using en-
tangled atoms simultaneously closing detection and locality loopholes. Physical
review letters, 119(1):010402, 2017.

[53] Stephanie Manz. Density correlations of expanding one-dimensional bose
gases. 2010.

[54] Thomas Betz. Phase correlations of coupled one-dimensional bose gases. 2011.

[55] Robert Bücker. Fluorescence imaging of ultracold atoms. PhD thesis, Diploma
thesis, Heidelberg, 2008.

[56] Robert Bücker. Twin-atom beam generation in a one-dimensional Bose gas. PhD
thesis, Techische Universität Wien, 2013.

[57] Tarik Berrada. Mach-Zehnder interferometry with interacting Bose-Einstein conden-
sates in a double-well potential. PhD thesis, 2014.

[58] Daniel Adam Steck. Rubidium 87 d line data. 2001.

[59] Igor Lesanovsky, Thorsten Schumm, S Hofferberth, L Mauritz Andersson, Peter
Krüger, and Jörg Schmiedmayer. Adiabatic radio-frequency potentials for the
coherent manipulation of matter waves. Physical Review A, 73(3):033619, 2006.



BIBLIOGRAPHY 103

[60] Thorsten Schumm, S Hofferberth, L Mauritz Andersson, Stefan Wildermuth,
Steffen Groth, I Bar-Joseph, Jörg Schmiedmayer, and Peter Krüger. Matter-wave
interferometry in a double well on an atom chip. Nature physics, 1(1):57–62,
2005.

[61] S Wildermuth, P Krüger, C Becker, M Brajdic, S Haupt, A Kasper, R Folman,
and J Schmiedmayer. Optimized magneto-optical trap for experiments with
ultracold atoms near surfaces. Physical Review A, 69(3):030901, 2004.

[62] Ron Folman, Peter Kruger, Jörg Schmiedmayer, Johannes Denschlag, and
Carsten Henkel. Microscopic atom optics: from wires to an atom chip. arXiv
preprint arXiv:0805.2613, 2008.

[63] S Hofferberth, Igor Lesanovsky, B Fischer, J Verdu, and Jörg Schmiedmayer.
Radiofrequency-dressed-state potentials for neutral atoms. Nature Physics,
2(10):710–716, 2006.

[64] David A Smith, Simon Aigner, Sebastian Hofferberth, Michael Gring, Mau-
ritz Andersson, Stefan Wildermuth, Peter Krüger, Stephan Schneider, Thorsten
Schumm, and Jörg Schmiedmayer. Absorption imaging of ultracold atoms on
atom chips. Optics express, 19(9):8471–8485, 2011.

[65] RJ Lewis-Swan and KV Kheruntsyan. Atomic twin beams and violation of a
motional-state bell inequality from a phase-fluctuating quasicondensate source.
Physical Review A, 101(4):043615, 2020.

[66] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped
random-basis quantum optimization. Phys. Rev. A, 84:022326, Aug 2011.

[67] Daniel F Walls and Gerard J Milburn. Quantum optics. Springer Science & Busi-
ness Media, 2007.

[68] Tommaso Caneva, Tommaso Calarco, and Simone Montangero. Chopped
random-basis quantum optimization. Phys. Rev. A, 84:022326, 2011.

[69] Sandrine van Frank, Antonio Negretti, Tarik Berrada, Robert Bücker, Si-
mone Montangero, J-F Schaff, Thorsten Schumm, Tommaso Calarco, and Jörg
Schmiedmayer. Interferometry with non-classical motional states of a bose–
einstein condensate. Nature communications, 5(1):1–6, 2014.

[70] Sandrine van Frank, Marie Bonneau, Jörg Schmiedmayer, Sebastian Hild,
Christian Gross, Marc Cheneau, Immanuel Bloch, Thomas Pichler, Antonio Ne-
gretti, Thommaso Calarco, et al. Optimal control of complex atomic quantum
systems. Scientific reports, 6:34187, 2016.

[71] Igor Lesanovsky, Thorsten Schumm, S Hofferberth, L Mauritz Andersson, Peter
Krüger, and Jörg Schmiedmayer. Adiabatic radio-frequency potentials for the
coherent manipulation of matter waves. Physical Review A, 73(3):033619, 2006.

[72] GJ Milburn, J Corney, Ewan M Wright, and DF Walls. Quantum dynamics of
an atomic bose-einstein condensate in a double-well potential. Physical Review
A, 55(6):4318, 1997.

[73] Marine Pigneur, Tarik Berrada, Marie Bonneau, Thorsten Schumm, Eugene
Demler, and Jörg Schmiedmayer. Relaxation to a phase-locked equilibrium
state in a one-dimensional bosonic josephson junction. Physical review letters,
120(17):173601, 2018.



104 BIBLIOGRAPHY

[74] Bo Zhao, Zeng-Bing Chen, Jian-Wei Pan, Jörg Schmiedmayer, Alessio Re-
cati, Grigory E Astrakharchik, and Tommaso Calarco. High-fidelity entangle-
ment via molecular dissociation in integrated atom optics. Physical Review A,
75(4):042312, 2007.

[75] Marine Pigneur. Non-equilibrium Dynamics of Tunnel-Coupled Superfluids: Relax-
ation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson
Junction. Springer Nature, 2020.

[76] AG Basden, CA Haniff, and CD Mackay. Photon counting strategies with low-
light-level ccds. Monthly notices of the royal astronomical society, 345(3):985–991,
2003.

[77] F Borselli, M Maiwöger, T Zhang, P Haslinger, V Mukherjee, A Negretti,
S Montangero, T Calarco, I Mazets, M Bonneau, and J. Schmiedmayer. Two-
particle interference with double twin-atom beams. Physical Review Letters,
126(8):083603, 2021.




