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Kurzfassung

Die Quantenchromodynamik beschreibt das Verhalten von Quarks, den Bestandteilen der
Nukleonen, und deren Wechselwirkung mit Gluonen, den Trägern der starken Kernkraft.
Sie beschreibt, wie die Nukleonen gebildet und Atomkerne zusammengehalten werden. Die
Quantenchromodynamik ist kaum störungstheoretisch lösbar: nur numerische Näherungen
sind zugänglich.

Die Tatsache, dass keine freien Quarks beobachtet werden können wird als Quark-
Einschluss oder Farb-Einschluss bezeichnet.

Eine mögliche Erklärung hierfür bietet das Zentrumsvortexmodell, indem es annimmt, dass
Zentrumsvortices, geschlossene farb-magnetische Flusslinien, das Vakuum durchdringen.

Um dieses Modell zu testen, müssen Zentrums-Vortices in Gittersimulationen identifiziert
werden. Dies geschieht in einer bestimmten Eichung durch Projektion auf die Zen-
trumsfreiheitsgrade. Die Vortexdetektion kann durch Uneindeutigkeiten bei der Eichung,
sogenannte Gribov-Probleme, gestört werden und wird ebenso in glatten Konfigurationen
problematisch.

Durch Verwendung von nicht-trivialen Zentrumsregionen, dh Gebieten, deren Rand
zu einem nicht-trivialen Zentrumselement ausgewertet wird, können die Methoden der
Vortexdetektion verbessert werden: Wir präsentieren die Gestützte Maximale Zentrum-
seichung.
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Abstract

Quantum Chromodynamics governs the behaviour of Quarks, the constituents of the
nucleons and their interaction with Gluons, the carrier of the strong force. It describes
how the nucleons are formed and where the nuclear force that holds together nuclei arises.
Quantum Chromodynamics is highly non-perturbative: only numerical approximations
are accessible.

The fact that no free quarks can be observed is called quark confinement or color
confinement.

The center vortex model gives a possible explanation for this by stating that center
vortices, closed color magnetic flux lines, percolate the vacuum.

To test this model, center vortices need to be detected within lattice simulations. This
is done in a specific gauge by projection on the center degrees of freedom. The vortex
detection can be troubled by gauge ambiguities, so called Gribov problems and it can
become problematic in smooth configurations.

By usage of non-trivial center regions, that is, regions whose boundary evaluates to a
non-trivial center element, the vortex detection procedures can be improved: We present
the Guided Maximal Center Gauge.
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CHAPTER 1
Introduction

The nucleons and other non-elementary particles are considered composite particles of
color-neutral charge that are built from colored elementary particles so that their total
color-charges add up to neutral color, white, see Fig. 1.1. The two simplest composite

= or

Figure 1.1: In Quantum Chromodynamics it is assumed that all composite particles are built
by color elementary particles so that their total color charge sums up to white: We speak of
color singlets. This can be achieved by adding three (anti-)colors or by combining a color and its
anti-color.
particles are either built by three colored particles (referred to as Baryons) or by a colored
particle and an anti-colored anti-particle (referred to as Mesons). The elementary colored
particles are called Quarks. Quantum Chromodynamics is the theory that describes the
interaction of these quarks via gluons, the carrier of the strong nuclear force.
In comparison to the electric charge giving rise to electromagnetism, the color charge
is more complex: It gives rise to 8 different color-electric and color-magnetic fields that
interact with each other. In electrodynamics free electric charges can be experimentally
observed, whereas the color charge is not directly accessible to our observation: We
only see white particles. This fact is called color-confinement or quark-confinement. An
explanation for this confinement is given by the assumption of a linearly (or stronger)
growing quark anti-quark potential: pulling a quark anit-quark pair apart, the potential
energy rises until another quark anti-quark pair can emerge from the vacuum. Hence, no
single quark can be observed. This is referred to as string breaking and schematically
depicted in Fig. 1.2.
The center vortex model is a model of the confining forces that cause the collimation of
the color-flux into flux tubes. It can explain confinement and chiral symmetry breaking
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1. Introduction

Figure 1.2: In the upper part the string-breaking is shown from left to right for a quark anti-
quark pair that gets pulled apart. The color electric flux lines between color charges are shown
as blue lines. They are collimated into a flux tube by color-magnetic monopoles moving along
the world lines that are shown in green. The lower part shows the situation for electrodynamics
where no confinement occurs and the particles can be pulled apart arbitrarily far.

that is related to the mass of the nucleons as will be shown later. The model assumes
that confinement is caused by excitations of the center degrees of freedom, that is, by
center vortices: closed color magnetic flux lines that evolve in the vacuum and collimate
the color electric flux into flux tubes.

To allow for better tests of the center vortex model it is necessary to detect center vortices
in lattice simulations. This vortex detection can be troubled not only by Gribov copies
[1, 2] but by high smoothness of the lattice. We will present a method of vortex detection
that can overcome some of the troubles by usage of center regions: the Guided Maximal
Center Gauge (GMCG).

First we will relate Quarks to ladder-operators that are constructed from the algebra
of SU(2) and introduce gauge invariance which will lead us to Gluons. This clears
the way for the Lagrangian of Quantum Chromodynamics and allows to make a rough
introduction of the concepts of regularization, renormalization and the running coupling.
Then we will discuss in short how Chiral symmetry is related to the particle mass and to
center vortices.

In the next step we will let find the Lagrangian onto the lattice and prepare the way
for quantisation via the path integral. We will discuss discretization effects and finite
size effects and introduce the concept of center vortices more formally. Then we will
show how the path integral can be solved on the lattice and how different observables
are evaluated within this formalism.

This will be followed by a discussion of vortex detection with introducing the concept
of center regions and continued with P-vortices until our method how to detect thick
vortices is presented. Analyzing some properties of vortices we can then identify for
which choice of parameters our procedures work best and where there is still potential
for further improvements.

We will end with a short discussion of possibilities for such further improvements and
potential for future research.
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CHAPTER 2
Quantum Chromodynamics

We will now first introduce the Lagrangian of QCD step by step based on SU(3) invariance.
On this way we also take a look at the group theoretical aspects that define the properties
of the fundamental particles in quantum chromomdynamics: the quarks. Gluons will be
introduced to ensure the invariance of the Lagrangian and the interaction of all those
particles will be discussed before we show how the lattice formalisation allows numerical
solutions. For the further parts of this work only the gluonic part of a simplified model
of QCD will be of interest. Despite that, we first carry along the fermionic parts and the
whole SU(3) before simplifying to our final model of gluonic SU(2) QCD.

We start from the Lagrangian of relativistic massive particles,  f ( i ‚—@— −mf ) f , with
 f =  †

f ‚0 and the index f ∈ {up;down; strange} distinguishing the different quark
flavors. The Gamma matrices ‚— generate a Clifford algebra, that is, they are defined by
their anti-commutation relation

{‚—; ‚ } = ‚—‚ + ‚ ‚—
!
= 2”— 14; (2.1)

with Minkowskian metric ”— = diag(1;−1;−1;−1),

‚— = ”— ‚ : (2.2)

In Dirac representation the Gamma matrices are given by

‚0 =

„
12 02
02 −12

«
and ‚k∈{1; 2; 3} =

„
02 ffk
−ffk 02

«
; (2.3)

with Pauli matrices ffk in turn given by

ff1 =

„
0 1
1 0

«
; ff2 =

„
0 − i
i 0

«
; ff3 =

„
1 0
0 −1

«
: (2.4)
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2. Quantum Chromodynamics

The spinors  f can be represented by four dimensional vectors and give rise to the
conserved Dirac current

jf =  f ‚
— f ; (2.5)

the current of the different flavored quarks.

Quantum Chromodynamics is reached by enforcing a local SU(3) invariance: Transforming
the spinors  f c with Ω(x—) = e i g¸i (x

—)ti ∈ SU(3), with ¸i (x—)ti ∈ su(3) working on the
additional color index c , should let the Lagrangian invariant. It yields

 f c →  f c = Ωcc (x
—) f c and  f c →  f c =  f cΩ

c†
c (x—); (2.6)

with ¸i the transformation parameters and Tr(ti ) = 0. The generators ti can be explicitly
given by the Gell-Mann matrices with a factor 1

2 as

t1 =
1

2

0@0 1 0
1 0 0
0 0 0

1A ; t2 =
1

2

0@ 0 − i 0
i 0 0
0 0 0

1A ; t3 =
1

2

0@1 0 0
0 −1 0
0 0 0

1A ;
t4 =

1

2

0@0 0 1
0 0 0
1 0 0

1A ; t5 =
1

2

0@ 0 0 − i
0 0 0
i 0 0

1A ;

t6 =
1

2

0@0 0 0
0 0 1
0 1 0

1A t7 =
1

2

0@0 0 0
0 0 − i
0 i 0

1A ; t8 =
1

2
√
3

0@1 0 0
0 1 0
0 0 −2

1A :
(2.7)

They act on the color index c ∈ {red; green;blue} with

red =̂

0@1
0
0

1A ; green =̂

0@0
1
0

1A ; blue =̂

0@0
0
1

1A : (2.8)

This new index corresponds to the relevant charge of strong interaction: the color charge.
We will now explore some of the symmetries within the aforementioned matrices to identify
properties of the particles that we are dealing with before we finish the construction of
the Lagrangian. We assume that the strong interaction binds together the nucleons, but
does not distinguish between neutron and proton. Looking for the constituents of the
nucleons, this arising SU(2) symmetry has to be respected and we will uncover it now.

That two of the matrices can be simultaneously diagonalized gives rise to two quantum
numbers:

• The eigenvalues of t3 define the Isospin T3,

• the eigenvalues of 2√
3
t8 define the Hypercharge Y ,
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with the remaining six matrices we can construct ladder-operators that act on these two
quantum numbers:

• T± := t1 ± i t2 causes T3 → T3 ± 1,

• V± := t4 ± i t5 causes T3 → T3 ± 1
2 and Y → Y ± 1,

• U± := t6 ± i t7 causes T3 → T3 ∓ 1
2 and Y → Y ± 1.

We denote with T3 and Y the corresponding matrices as well as the eigenvalues of
respective eigenstates. It should be clear from the context whether the matrix or the
eigenvalue is meant. The influence of these ladder operators on Isospin and Hypercharge
can also be seen from their commutation relations

[T3; T±] = ±T±; [T3; V±] = ±1

2
V±; [T3; U±] = ∓1

2
U±

[Y; T±] = 0; [Y; V±] = ±V±; [Y; U±] = ±U±:
(2.9)

These relations are depicted in Fig. 2.1 where each arrow shows how the respective
ladder-operator changes the two quantum numbers. By restricting these ladder operators

T+T−

V+

V−

U+

U−

T3

Y

|

_

Figure 2.1: The effect of the ladder operators on Isospin T3 and Hypercharge Y is shown.

one can uncover two further su(2) algebras: The su(2) Isospin algebra that is generated
by

V1 = t1; V2 = t2; V3 =
1

2

0@1 0 0
0 0 0
0 0 −1

1A =
1

2
T3 +

3

4
Y: (2.10)

And the U-spin SU(2) generated by

U1 = t6; U2 = t7; U3 =
1

2

0@0 0 0
0 1 0
0 0 −1

1A = −1

2
T3 +

3

4
Y: (2.11)
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2. Quantum Chromodynamics

T3 = 0

U3 = 0 V3 = 0

Figure 2.2: The threefold symmetry of SU(3) that arises from the SU(2) subgroups.

These su(2) sub-algebras give rise to a three fold symmetry as depicted in Fig. 2.2.
This symmetry is related to the particles we are interested in. They arise as the lowest
non-vanishing eigenvectors of T3 and Y and span the triplet 3 that is depicted in the left
side of Fig. 2.3. The anti-particles span an anti-triplet 3 that is depicted on the right

Quarks

T3

Y

|

_

d u

s

3

Anti quarks

T3

Y

|

_

u d

s

3

Figure 2.3: Isospin T3 and Hypercharge Y of the constituents of the triplet 3 and anti-triplet 3.

side. It can be reached from the generators of the antiparticles t i = −t∗i . The respective
eigenvalues T3 and Y are related to the electric charge Q via the Gell-Mann–Nishijima
formula

Q = T3 +
1

2
Y (2.12)

and we obtain the properties of quarks as given in the following table 2.1 which is
complemented by some experimental data. The mass differences cause that the SU(2)
symmetries are not exact. This is the reason why we took into account only the three
lightest quarks: For them, the SU(2) symmetries are less disturbed. The quarks are
considered as spin 1

2 particles and are the constituents of a vast number of particles, such
as Mesons (built by a quark anti-quark pair) or Baryons (built by three quarks). The
Nucleons are considered being built by

• the three quarks udd for a Proton with mass mp = 938:272081(6) MeV,

• the three quarks uud for a neutron with mass mn = 939:565413(6) MeV,

6



Quarks u d s u d s

Isospin T3 +1
2 −1

2 0 −1
2 +1

2 0

Hypercharge Y +1
3 +1

3 −2
3 −1

3 −1
3 +2

3

Electric charge Q [e] +2
3 −1

3 −1
3 −2

3 +1
3 +1

3

Mass m [MeV] 2:16+0:49
−0:26 4:67+0:48

−0:17 93+11
−5 = mu = md = ms

Table 2.1: Some properties of quarks and anti-quarks. The values of the masses are taken from
[3] with the 2021 update.

with masses again taken from [3] (2021 update). Observe that the three respective quarks
constitute only little to the nucleon mass: Most of it is generated dynamically by the
interactions of quarks and gluons. The latter will be introduced in the following.

Now we come back to the Lagrangian and enforce that local SU(3) transformations Ω(x—)
generated by the Gell-Mann matrices in color space should leave the Lagrangian

L( ; ; A—a ) → L ( ; ; A —
a ) = L( ; ; A —

a ); (2.13)

with new gluonic field A—a , invariant. These new fields result from minimal substitution
@— → D— = @— + i gA—a ta, which leads us to the QCD Lagrangian

LQCD =

 f c( i ‚—D—−mq) f cz }| {
Lquarks| {z }

 f c( i ‚—@—−mf ) f c

+ Linteraction| {z }
−g  f c‚—A

—
a ta qf

+

− 1
4
Fa— F

—
az }| {

Lgluons ; (2.14)

to which external sources J = jf + j—gluonsA— can be added. Gluons do not have mass but
can be considered to carry two charges: a color and a different anti-color. That is, they
are related to octet states of 3⊗ 3. Let us picture the influence of gluons on quarks in a
simplified, schematic way: Assuming that a red quark absorbs an anti-red and blue gluon,
color and anti-color neutralize and a blue quark is obtained: Gluons change the color
of quarks. If there would be a color neutral gluon, then also color neutral states would
feel the full strong interaction, which is not observed. The 8 gluons describe rotations in
color space. Their dynamics is governed by Lgluons, which is built by the gluonic field
strength tensor

F— = D—Aata −D A—a ta = @—Aata − @ A—a ta + i gA—aAb[ta; tb]; (2.15)

written component wise as

F—a = @—Aa − @ A—a − gfabcA
—
bAc ; (2.16)

with fabc being the structure constants of SU(3) defined via the commutator

[ta; tb] = i fabctc (2.17)
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2. Quantum Chromodynamics

and g the coupling constant.

The Lagrangian of Eq. (2.14) is evaluated via a path integral

Z(J) :=
0−∞|0+∞ J

0−∞|0+∞ J=0

=

R
e− i (LQCD+J) DA D D R
e− i (LQCD) DA D D 

; (2.18)

the vacuum-to-vacuum transition amplitude under influence of the external sources J.
This formalism will be discussed in more detail in section 2.3. We have neglected Lghost
and Lgauge that are usually inserted to cope with gauge fixings.

The non-vanishing commutator in Eq. (2.17) allows the various gluonic interactions and
the complexity of QCD with a non-trivial vacuum and confinement, which we explain by
center vortices.

The Lquarks describes the propagation of non-interacting quarks and Linteraction allows
scattering process of quarks and gluons. The invariance of the Lagrangian enforces the
gluonic field to transform as

A—a ta → ΩA—a taΩ
† + i (@—Ω)Ω†: (2.19)

Specific gauges can make calculations of different observables easy or complicated. Keep
in mind, that only such observables are considered physical, that are gauge invariant.

That the color charge introduced by the SU(3) invariance is not observed is dubbed color
confinement. Only such hadrons can be observed, that are built from a color neutral set of
particles: three colors (Baryons), three anti-colors (anti Baryons), a color anti-color pair
(Mesons) or more complicated combinations of them. The meson structure is depicted in
Fig. 2.4. By combining three quarks, that is 3⊗ 3⊗ 3, nucleons and many more particles
can be built. Nucleons can exchange mesons, which makes them prone to a residual part
of the strong force. Hence, mesons can be considered as the force carrier of this nuclear
force that ensures the stability of nuclear cores. Due to the finite half life of mesons,
this nuclear force has a finite range: the mesons disintegrate before having an effect on
nucleons at farther distance. The masses and half life of the lightest Mesons, the pions,
are given in Table 2.2. The pion mass will be later related to the string tension, the
linear rise of the quark anti-quark potential that causes confinement. Mesons as well as
Baryons consist of confined quarks that are strongly bound by gluons, the carrier of the
strong force. They prevent that any color-neutral combination of particles can be split
apart into single colored particles. This confining property of the strong interaction can
be understood within the center vortex model that will be presented step by step later.
The relation to the dynamics of the gluonic fields will be discussed now.

The Lagrangian can be split into two parts LQCD = LGauss + L¬Gauss, with

LGauss =  ( i ‚—@— −m) | {z } − 1

4
(@—A − @ A—)(@—A − @ A—)| {z } − 1

2–
(@—A

—
a )

2| {z }
Lgauge

; (2.20)

8



Mesons

T3

Y

|

_

su sd

ss
du

dd

ds

uu
ud

us

3⊗ 3 = 8⊕ 1

T3

Y

|

_

Iı = 0−

ı−

K0 K+

ı+

K
0

K
−

” ”

ı0

T3

Y

|

_

Iı = 1−

−

K0∗ K+∗

+

K
0∗

K
−∗

!0 Φ0

0

Figure 2.4: Quark anti-quark pairs as depicted in the upper part give rise to the octet and
singulet states shown below. The multiplets are highlighted by color, mixed states are drawn in
black color. The spins of the two particles can be parallel or anti-parallel, resulting in a total
spin Iı of 0− for scalar mesons and 1− for vector mesons.

collecting all terms that result in a Gaussian integral in the path integral formalism
when Fourier transformed. Here we have inserted a term Lgauge fixing the gauge. The
respective terms define the free propagation of quarks and gluons. All terms that do not
give rise to a Gaussian integral are collected in

L¬Gauss = −g ‚—ta A—a| {z } − gfabc(@ Aa—)A
—
bAc| {z } − g2

4
fabcAa—Ab fcdeA

—
c Ad| {z } (2.21)

9



2. Quantum Chromodynamics

Scalar Mesons ı± ı0

Isospin T3 ±1 0

Hypercharge Y 0 0

Electrict charge Q [e] ±1 0

Mass m [MeV] 139:57039(1) 134:9768(5)

1
2 -live time fi [s] 2:6033(5) ∗ 10−8 8:43(13) ∗ 10−17

Table 2.2: Mass and half life of the pions are taken from [3] with the 2021 update, Isospin,
Hypercharge and Charge are derived group theoretical.

and have to be evaluated numerical. Faddeev–Popov ghosts are neglected here. They are
usually required to prevent wrong weighted gauge orbits. We can neglect them since we
will later aim for a solely gluonic SU(2) model in which they do not take part. Feynman
diagrams for the interaction terms are shown in Eq.(2.21). Each vertex, •, corresponds to
a coordinate x— at which one of the field variables,  (x—),  (x—) or A—a (x—), is evaluated.
A straight line, , corresponds to the propagation of a quark in direction of the
arrow or an anti-quark against direction of the arrow and a wiggled line, , to
the propagation of gluons. Feynman diagrams that are build from these objects are
interpreted by fixing a direction of time. In dependence of this choice of time direction,
different interpretations arise. The 3-Gluonvertex and the 4-Gluonvertex are caused by
the non-vanishing commutator of the gluon fields. Let us discuss the diagrams in short.

• The first term can be interpreted either as

– the absorption or emission of a gluon by a quark,
– the annihilation of a quark anti-quark pair with the creation of a gluon or
– the disintegration of a gluon into a quark anti-quark pair,

• the second term correspondingly as

– the absorption or emission of a gluon by a gluon,
– the fusion of two gluons or
– the disintegration of a gluon into two gluons,

• the last term describes

– gluon gluon scattering processes,
– the emission or absorption of a gluon pair by a gluon.

At each vertex where two or more lines meet, (relativistic) momentum conservation has
to be respected. The total Lagrangian gives rise to an infinite sum of arbitrary nestings of

10



the shown diagrams via the series expansion of the exponential function used to calculate
the path integral. After a Fourier transformation, the integration in the path integral of
Eq. (2.18) runs over the momenta p— instead of x— and the following algebraic expressions
for the vertices can be derived with arrows indicating the sign of the momentum p:

p3 —

p2p1

a

=̂

Z
dp1dp2dp3(2ı)

4‹4(p1 − p2 − p3)

(− i g) (p1)ta (p2)A—a (p3);
(2.22)

which can be achieved trivially from the first term. The expression resulting from the
second term is given by

p3 —

p1»

p2

b

ca

=̂

Z
dp1dp2dp3(2ı)

4‹4(p1 + p2 + p3)

(−g)fabc”»—p1 A»a (p1)A—b (p3)Ac (p2):
(2.23)

The contraction of the Minkowski indices is explicitly shown in this and the next equation.

p3

—

p1

»

“

p2

p4

d

a

c

b

=̂

Z
dp1dp2dp3(2ı)

4‹4(p1 + p2 + p3 + p4)

(− i g2
4

)A»a (p1)A
“
b(p2)Ac (p3)A

—
d (p4)fabc fcde”»—”“ :

(2.24)

The arrows of the gluonic lines are allowed to change direction at vertices. Each
propagation contributes

p
—

=̂

Z
dp

− i
(2ı)4

1

p»p» + i ›(”
— − (1− –)

p—p

p»p»
)| {z }

D
—
aa (p)

;
(2.25)
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2. Quantum Chromodynamics

p

=̂

Z
dp

i
(2ı)4

p—‚
— +m

p p −m2 + i ›| {z }
S(p)

;
(2.26)

with i › inserted to bypass the poles within the integral. Single vertices with only one
line entering, so called legs, contribute a factor

R
dpe− i px .

As long as a nesting of such diagrams does not contain loops, the corresponding integral
of the resulting diagram converges, but within loops the momenta can become arbitrarily
large and cause diverging integrals. Coping with this is called regularization and there
are many different approaches to do so: the lattice is one of them. We will restrain
from an in detail explanation besides the lattice and just introduce some intuitive
concepts that help to understand the running coupling and the asymptotic freedom of
quantum chromodynamics. This is required to understand the scaling behaviour of lattice
simulations, that is, to determine the lattice spacing.

The central idea is to approximate the series expansion of the exponential by tak-
ing only specific diagrams into account and to reformulate the theory in terms of
loop-approximations. One possibility is to reformulate the theory in terms of dressed
propagators and vertices. In one-loop approximation the dressed quark propagator

:= + (2.27)

averages all quark propagations that do not contain nested loops. The gluonic vertices
give rise to dressed gluon propagators,

:= + + : (2.28)

If one manages to rewrite or approximate these diagrams as a geometric series with Σ 
and ΣA being finite quark and gluon self energy respective,

= + Σ + Σ Σ + ::: = ∗ 1

1− Σ 
; (2.29)

= + ΣA + ΣAΣA + ::: = ∗ 1

1− ΣA
; (2.30)

a dressed theory can be generated from the original formulation with modified propagators.
In this dressed theory we restrict ourselves to loop free diagrams.

12



Now let us take a look at renormalization

A→
p
ZA ∗ A;  →p

Z ∗  ; m → Zm ∗m; (2.31)

with the multiplicative factors ZA, Z and Zm. We will neclect from now on also the
gauge fixing term Lgauge and the corresponding factor – because on the lattice the gauge
fixing is handled differently. One finds that the Lagrangian can only be invariant under
renormalization,

L(A; ;m; g) → L (
p
ZA ∗ A;pZ ∗  ;Zm ∗m; g ) = L(

p
ZA ∗ A;pZ ∗  ;Zm ∗m; g )

(2.32)
if also the coupling "constant" g is changed: g → g . Let us write the collection of
valid renormalization parameters as M = {ZA; Z ; Zm; Zg} and define the dressed vertex
functions via

V A =̂ ≈ + + ; (2.33)

VAAA =̂ ≈ + + + (2.34)

VAAAA =̂ ≈ + + + +

:

(2.35)

Then the invariance can be written as

dVi
dM

!
= 0 with i ∈ { A ;AAA;AAAA}; (2.36)

13



2. Quantum Chromodynamics

which expresses that the different renormalized interactions should give rise to the same
physical behaviour of the system. This allows to determine g(M) and m(M), the
renormalization dependent couplings. The vertex functions are homogeneous in the
momenta, that is

Vi (“ ∗ p1; “ ∗ p2; :::; “ ∗ pn; “ ∗ g; “ ∗mi ; “ ∗M) = “di ∗ Vi (p1; p2; :::; pn; g ;mi ;M); (2.37)

with di being a vertex-specific constant. This allows to relate M to a momentum scaling
“. Remember that diagrams with closed loops diverged due to the momenta becoming
arbitrarily large and that the lattice introduces a cutoff to the momenta. We can write
Eq. (2.36) now with an explicit derivative of the momentum scaling instead of the explicit
derivative on M as

0
!
=

0BB@−“ @
@“

+ M dg

dM| {z }
:=g(M)∗˛(M)

@

@g
+ ( Mdmi

dM| {z }
:=mi (M)∗‚f (M)

−1)
@

@mi

1CCA Vi (“p; “pn; g ; “M); (2.38)

a variant of the Callan-Symanzik equation. The ‚f -function is not to be mistaken with
the Dirac matrices and the ˛-function should not be mistaken with the inverse coupling
to be introduced later. With the substitution “ = et we obtain

dg(t)

dt
= g(t) ∗ ˛(g(t); m(t));

dmi (t)

dt
= m(t) ∗ ‚i (g(t); m(t)):

(2.39)

For a SU(N) with nf massles quarks one obtains

˛(g) = −˛0g3 − ˛1g
5 +O(g5); with

˛0 =
1

(4ı)2

„
11

3
N − 2

3
nf

«
SU(2)
=
nf =0

11

24ı2
;

˛1 =
1

(4ı)4

„
34

3
N2 − 10

3
Nnf − N2 − 1

N
nf

«
SU(2)
=
nf =0

17

96ı4
;

(2.40)

see [4]. This leads to the asymptotic freedom of quantum chromodynamics,

t → ∞ “=et
=⇒ “ → ∞ k∝“

=⇒
(2.37)

k → ∞ =⇒
(2.39)

g → 0: (2.41)

For large momenta p, the coupling g vanishes and we end up with free quarks. We will
later relate the momentum scaling “ to the lattice spacing.

Before we continue our way onto the lattice by discretizing the Lagrangian given in
Eq. (2.14), a Wick rotation

x0 → i x0; @0 → − i @0; A0 → − i A0

F00 → −F00; F0i → − i F0i
(2.42)
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is performed to end up with an euclidean lattice instead of a minkowskian. With this we
work in imaginary time but do no longer need to distinguish upper and lower indices.
The gamma matrices we use for the euclidean formulation read

‚0 =

0@02 12

12 02

1A and ‚k∈{1; 2; 3} =

0@ 02 − i ffk
i ffk 02

1A ; (2.43)

with Pauli matrices ffk . This leads us to our final Lagrangians

Leuclidean
quarks =  f c(‚—@— +mf ) f c (2.44)

and
Leuclidean

interaction = i g  f c ‚— A—; c tc  f c (2.45)

and

Leuclidean
gluons =

1

4
F— ;a F— a: (2.46)

These Lagrangians need now to be formulated in a discrete version, preserving the gauge
invariance. This will allow to continue with the lattice formalism. Before it will be done,
we take a look at chiral symmetry or - to be more correct - chiral symmetry breaking,
which is not only related to the nucleon mass, but also to center vortices.

We take a closer look at the Lagrangian of a relativistic particle

 ‚—@
— +  m =  † ‚0‚—|{z}

block-diagonal

@— +  † ‚0m|{z}
block-off-diagonal

 : (2.47)

Explicitly written, we have in Weyl representation

‚0‚0 =

0BBBBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCA ; ‚0‚1 =

0BBBBB@
0 i 0 0

i 0 0 0

0 0 0 − i
0 0 − i 0

1CCCCCA ;

‚0‚2 =

0BBBBB@
0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

1CCCCCA ; ‚0‚3 =

0BBBBB@
i 0 0 0

0 − i 0 0

0 0 − i 0

0 0 0 i

1CCCCCA :
(2.48)
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2. Quantum Chromodynamics

Only the mass term results in off-diagonal elements and causes a mixing of the two blocks
shown in green and red color.

‚0m =

0BBBBB@
0 0 m 0

0 0 0 m

m 0 0 0

0 m 0 0

1CCCCCA : (2.49)

We can construct another matrix

‚5 = ‚0‚1‚2‚3 =

0@−12 02

02 +12

1A =

0@−12 02

02 02

1A
| {z }

−PL

+

0@02 02

02 +12

1A
| {z }

PR

(2.50)

and use it to decompose the spinor into two components

 = PL |{z}
 L

+PR |{z}
 R

: (2.51)

Without the mass term,  L and  R would be isolated from one another and the Lagrangian
would enjoy chiral invariance: transformations that do only rotate within the two
chiralities but not between them, would have no influence. This invariance is explicitly
broken by the mass term m  , but can also be spontaneously broken by the gluons
that dynamically contribute to a non-vanishing chiral condensate  L R : in sufficiently
smooth gluonic fields [5] this condensate can be related via the Banks-Casher relation [6]
to the spectral density of the euclidean massles Dirac operator and via the Atiyah–Singer
index theorem [7] to topological charge. This charge in turn can be related to writhing-
points, intersections and the color structure of center vortices. A good review of the most
important aspects is given in [8].

With this first motivation of center vortices, we will now find our way onto the lattice.

2.1 Approaching the lattice
The lattice is spanned by a four dimensional vector space with lattice sites ~n ∈ N4 on
which the spinors  (~n) and  (~n) are encoded. Neighbouring sites are separated by a
vector ~a— in respective direction —. The lattice spacing a is given by the length of this
vector. Neighbouring lattice sites are joined by a link U—(~n) ∈ SU(3) that connects the
site ~n to the neighbouring site ~n+ ~a—. The backwards direction is given by U†

—(~n). These
links encode the gluonic field. In Fig. 2.5 a schematic view of a three dimensional lattice
is shown, the fourth dimension that correspond to time could not be displayed without
loss of clarity. A lattice on which all relevant variables (links and sites) are initialized
with a value is referred to as a configuration. The lattice comes with periodic boundary
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2.1. Approaching the lattice

~a1

~a2

~a3

 (2~a3)

U2(3~a1)

U†
2(3~a1 + ~a3)

U3(3~a1 + 2~a3)

Figure 2.5: A lattice of size 42 × 2 is shown. The periodic boundary conditions are visualised
as dotted lines. The gluonic field is related to the links with some examples shown in blue. The
fermionic spinor sits at the lattice sites, an example is shown in purple.

conditions and its extents should be even numbers of lattice sites. The gluonic link is
related to the continuum via

U (~x) = P e i
R ~x+~a—
~x tiAi (x

—)dx— ≈ e i a tiAi (x
—); (2.52)

with P denoting path ordering, lattice spacing a and ~x being the lattice site that
corresponds to the respective x—.

Especially in non-abelian gauge fields, only such objects can be compared to one another,
that are related to the same spacetime coordinate via parallel transport. The value of
given Observable Ô(~x) measured at position ~x can be transported to a position ~x + ~a—
using the gluonic link: U—(~x)Ô(~x). Doing a parallel transport in negative direction, the
correct link has to be chosen: U†

—(~x − ~a—)Ô(~x). The links obey the following equations

U−—(~x) = U†
—(~x − ~a—) and U—(~x)U−—(~x) = 1: (2.53)

We will now take a very rough look at the discretization of the fermionic parts of the
Lagrangian as given in Equations (2.44) and (2.45). This should only pave the way for a
discretization of the gluonic parts that are given in Eq. (2.46). In the following the flavor
and color indices are suppressed: Instead of tiA—i we write A—.

The parallel transport allows to discretize the euclidean Lagrangian for quarks of Eq. (2.44)
whilst keeping the gauge invariance and one obtains the naive fermionic action

Squarks = a4
X
~x;—

 (~x)‚—

 
U—(~x) (~x + ~e—)− U†

—(~x − ~a—) (~x − ~e—)

2a
+m (~x)

!
: (2.54)
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2. Quantum Chromodynamics

The two evaluations of  at different lattice sites originate from the discretization of the
derivative. We use the gluonic links to relate both to the lattice site between the sites of
the two spinors. A possible discretization of the Lagrangian of Eq. 2.45 is given by

Sinteraction = i a4
X
~x;—

 ̄(~x)‚—
1

2
(A—(~x) (~x) + A—(~x − ~a—) (~x − ~a—)); (2.55)

with
U— ≈ 1+ i aA— and U†

— ≈ 1− i aA— (2.56)

following from Eq. (2.52).

Before we can discuss a discretization of the gluonic Lagrangian, we need to take a look
at gauge independent operators. They will be used to construct the gluonic action so
that in the continuums limit a→ 0 it becomes identical with the gluonic action of the
continuum as given in Eq. (2.46).

The transformation properties of the links are given by

U—(~x) → Ω(~x)U—(~x)Ω
†(~x + ~a—) (2.57)

and the spinors transform as

 (~x) → Ω(~x) (~x) and  (~x) →  (~x)Ω†(~x): (2.58)

The Matrices Ω(~x) can be set to accomplish specific gauges. In temporal gauge on
non-periodic lattices for example, all temporal links can be set to unity U0(~x) = 1, which
corresponds to A0(x

—) = 0. On a periodic lattice this gauge can be achieved only up to a
single time slice. This gauge will be used in Section 2.4 to allow a better understanding
of the Wilson loop that is presented in the following.

Based on the transformation properties two different gauge independent operators can
be constructed:

• Particle and anti-particle that are joined via a connected path of links:

 (~x1)

1z }| {
Ω†(~x1)Ω(~x1)U—(~x1)Ω†(~x1 + ~a—):::

:::Ω(~x2)U (~x2 + ~a ) Ω†(~x2 + ~a )Ω(~x2 + ~a )| {z }
1

 (~x2 + ~a );
(2.59)

• The trace of closed paths of connected links, a Wilson loop:

Tr(

1z }| {
Ω†(~x)Ω(~x)U—(~x)

1z }| {
Ω†(~x + ~a—)Ω(~x + ~a—)U (~x + ~a—)

1z }| {
Ω†(~x + ~a— + ~a ):::

:::Ω(~x + ~a— + ~a )| {z }
1

U− (~x + ~a— + ~a ) Ω†(~x + ~a—)Ω(~x + ~a—)| {z }
1

U−—(~x + ~a—)):
(2.60)
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2.1. Approaching the lattice

In the continuum such Wilson loop WC corresponds to a closed curve integral along the
path C

WC = Tr
“
Pe i

H
A—dx—

”
: (2.61)

If a loop is closed by the lattice periodicity, we speak of a Polyakov loop, see Fig. 2.6
where some examples are shown. The smallest possible Wilson loops built by four links

 

 

Figure 2.6: A lattice of size 42 × 2 is shown with some examples for gauge invariant operators:
On the upper side, a Polyakov loop P— is shown. On the left side a anti-particle is joined with a
particle via links. On the lower right side the smallest possible Wilson loop, a plaquette U— , is
shown.

are called plaquettes. A plaquette in the — -plane at lattice site ~n is written with two
indices as U— (~n). These are used to formulate a simple gluonic action, the Wilson action
[9],

Sgluons = ˛
X
~x;—<

„
1− 1

N
ReTr(U— (~x))

«
(2.62)

for an SU(N) with inverse coupling ˛ = 2N
g2

and the trace with respect to the color space.
This action is solely real, which allows to solve it via the path integral formalism by
relating the action to a probability density. It reproduces the continuum version of the
action up to O(a2) and the value of the lattice spacing a can be adjusted by setting the
value for ˛. A faster approach to the continuum can be achieved, for example, with the
tree level improved Symanzik gauge action [10, 11] by taking not only plaquettes but also
rectangular loops built by 6 links, ˜̃ , into account. For SU(2) it is given by

STreeLevelSymanzik = ˛

0@5

3

X
~x;—<

(1− 1

2
Tr(U— (~x)))− 1

12

X
˜̃

(1− 1

2
Tr ˜̃ )

1A : (2.63)

We do not require these improvement in this work and stay with the Wilson action.
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2. Quantum Chromodynamics

For center vortices only the gluonic part is of relevance. In this work, Wilson action with
further simplification is used: The SU(3) describes rotations in a 3 dimensional color
space. We simplify to SU(2), which is also confining and allows for extensive calculations
with better statistics. In contrast to SU(3), the vortex structure is less complicated in
SU(2). There is only one non-trivial center element in SU(2), wheres there are two of
them in SU(3). The generators ti of SU(2) simplify to the Pauli matrices ~ff and with
ff0 = 1 the links can be written as

U(~x) =
3X
i=0

ci (~x)ffi = 1 cos¸(~x) + i ~n(~x)~ff sin¸(~x) (2.64)

with c indicating an element of S3, ¸ governing the strength and ~n ∈ S2 the color vector
of the gluonic link.

The link can be interpreted as a path on the surface of a four dimensional unit sphere:
it starts at the north pole at the trivial center element +1 and ends somewhere on
the sphere. The non-trivial center element −1 is related to the south pole. This path
corresponds to a rotation in C2. Such a path is shown schematically in Fig. 2.7. A Wilson

U

−1

+1

Figure 2.7: The SU(2) link can be interpreted as a path starting at the north pole, +1, of a four
dimensional unit sphere. The projection on the vertical axes corresponds to the trace operator.

loop is a sequence of links and corresponds to a path starting at +1 on this color sphere.
The gluonic SU(2) Wilson action favours plaquettes with values near the north pole.

The distance of the paths end point from the vertical axes is related to the flux through
the area that is enclosed by the corresponding loop in Minkowski space. The projection
of the path on the vertical axes correlates to the action density.

If c0 = cos¸ in Eq. (2.64) is fixed, the remaining degrees of freedom span a two dimensional
surface of a sphere with radius sin¸. This vanishes for c0 = ±1.

The Wilson action prefers plaquettes evaluating in the vicinity of +1, it prefers nearly
closed paths on the color sphere. We will later see that a plaquette or a bigger Wilson
loop pierced by a center vortex, corresponds to a path from +1 to −1 on this four
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2.1. Approaching the lattice

dimensional color sphere. Each such path can be related to a meridian with given color
~n on the sphere. The variation of this color vector along the two dimensional vortex
surface defines the color structure of the vortex. This color structure in turn can be
related to the chiral properties of the vortex via the Banks-Casher relation [6] and the
Atiyah–Singer index theorem [7].

The implementation of the SU(2) Wilson action is shown in Algorithm 2.1 in Pseudocode.
In the next section this algorithm is applied to those 6 plaquettes that have one link in

Algorithm 2.1: SU(2) Wilson action
Data: The SU(2) links of the configuration U—(~x): at lattice site ~x , pointing in

direction —. Inverse coupling ˛.
Result: The Wilson action Sgluons for a given configuration

1 Sgluons = 0;
2 for all lattices sites ~x and all direction — and with 0 ≤ — < do
3 Sgluons += ˛ ∗ (1− 1

2Tr( U—(~x)U (~x + ~a—)U
†
—(~x + ~a )U†(~x) ));

4 end

common to determine the change in action that results from the modified link. In line 3
the plaquette gets calculated by multiplying the four links of the respective plaquette.
The relation of links to lattice sites may be confusing for backward links. For clarification
the plaquette is schematically shown in Fig. 2.8.

~x

~x + ~a—

~x + ~a

U—(~x)

U (~x + ~a—)

U†(~x)

U†
—(~x + ~a )

Figure 2.8: A plaquette is constructed from four glunoic links, so that the smallest possible
Wilson loop is built. Observe how the links are related to the lattice sites.

Let us now see how this action reproduces the gluonic action in the continuum. The
starting point is the Baker–Campbell–Hausdorff formula for the multiplication of two
exponentials of non-commutative matrices A and B

eAeB = eA+B+
1
2
[A;B]+:::; (2.65)

where orders higher than 2 of the matrices have been absorbed into the three points.
Using Eq.(2.52) we write the plaquette as

U— (~x) = Tr( e i aA—(~x)| {z }
U—(~x)

e i aA (~x+~a—)| {z }
U (~x+~a—)

e− i aA—(~x+~a )| {z }
U
†
—(~x+~a )

e− i aA (~x)| {z }
U
†(~x)

) (2.66)
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2. Quantum Chromodynamics

and can use the Baker–Campbell–Hausdorff formula up to second order of the matrices

Tr (U— (~x)) ≈ Tr( exp(

i aA—(~x) + i aA (~x + ~a—)− a2

2
[A—(~x); A (~x + ~a—)]

− i aA—(~x + ~a )− i aA (~x) +
a2

2
[A—(~x + ~a ); A (~x)]

+
a2

2
[A (~x + ~a—); A—(~x + ~a )] +

a2

2
[A—(~x); A (~x)]

+
a2

2
[A—(~x); A—(~x + ~a )] +

a2

2
[A (~x + ~a—); A (~x)] +O(a3)

) ) = Tr
“
e i a2F— (~x)+O(a3)

”
≈ Tr (1)− a4

2
Tr (F— F— ) +O(a2);

(2.67)

where in the second last step we performed a Taylor expansion on the shifted field
variables A—(~x + ~a ) ≈ A—(~x) + a ∗ @ A—(~x), compare Ref. [4]. This relates the Wilson
loop to the action density. In the last step we have expanded the exponential and
respected that the lowest vanishing contribution to the trace comes from the second order
of the field strength tensor.

The lattice formulation naturally introduces a momentum cutoff of the order a−1 which
regularizes the theory: the lattice constant introduces a lower limit for wavelengths which
leads to an upper limit for the momentum. The proportionality of the momentum cutoff
to a−1 allows to make the momentum scaling “ of Eq. (2.37) also proportional to a−1,

“ = Λ−1 1

a
; (2.68)

with Λ being the scale parameter of quantum chromodynamics. We will later use this to
determine the physical value of the lattice spacing a for a given inverse coupling ˛.

Also finite size effects have to be taken into account. They are visualized in Fig. 2.9. The

←→ ←→

Figure 2.9: If the lattice becomes smaller and smaller, finite size effects set in and distort
measurements. This can lead to wrong continuum limits.

lattice has to be big enough for whatever one wants to simulate. This can be accomplished
either by ensuring that the lattice spacing is large enough (that is, ˛ small enough) or by
keeping the number of lattice sites in each direction large enough. To prevent conflicts
with the boundary conditions, the lattice should be kept about twice as large as the
object of interest. Finite size effects betray themselves by giving an observable of interest
a dependence on the physical lattice extent. To ensure that finite size effects are not
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2.1. Approaching the lattice

distorting the measurements, at least two different lattice sizes should be probed: if the
values measured for different lattice sizes deviate from one another, the data might be
flawed. This is shown in Fig. 2.10 for a measurement of the color-homogeneity that will be
introduced later in section 2.4: With the lattice becoming too small, color-homogeneous

Figure 2.10: Taken from [12], finite size effects concerning measurements of the color homogeneity
are shown: they betray themselves by the sudden decrease of hS2 with decreasing lattice spacing
that ocurs at different physical lattice extents.
regions do no longer find place and a sudden decrease of the color homogeneity can be
observed. For different lattice sizes this decrease occurs at different values of the lattice
spacing a (or ˛) which is a direct indication for finite size effects.

Despite this negative distortion of measurements due to finite size effects, they can be
used to estimate the size of yet unknown structures as we will do in section 4.2 with
color homogeneous regions: reducing the lattice size until the onset of finite size effects,
the respective lattice extent in physical units gives an estimate or an upper limit for the
physical extent of the structure of interest: shrink the lattice until the lion roars to see
how fat he is.

Discretization effects are visualized in Fig. 2.11. They occur at low values of ˛, that
is, high values of a. To observe specific structures, the lattice resolution has to be high

Figure 2.11: The left side corresponds to a large lattice spacing a, towards the right side the
lattice resolution is increased. Discretization effects correspond to finite sized pixels due to which
a loss of structure occurs.
enough, that is, a has to be small enough. Usually one is interested in the continuum

23



2. Quantum Chromodynamics

limit a → 0. This requires increasing ˛ and numerical extrapolation to infinity. Due
to finite size effects, ˛ can not be chosen arbitrarily large: the computational resources
limit the calculable lattice size. Hence, there is a scaling window of lattice parameters
where a correct continuums limit is obtained by extrapolation. Outside this window the
extrapolation is flawed by finite size effects and discretization effects.

Simply spoken, each measurement on the lattice is related to collecting statistics on
discrete objects: Length is measured by counting links, area is measured by counting
plaquettes and so on. These relations of lattice and physical values,

lphysical = a llattice for lengths and mphysical =
mlattice
a

for masses, (2.69)

allow to relate a given ˛ to a corresponding value of a by comparison with physical
observables lphysical(a; g(a)) as will be done in section 2.4. With a → 0 the observable
llattice(a; g(a)) has to diverge to allow for a finite value of the observable lphysical(a; g(a))
in physical units. Based on Eqs.(2.38) and (2.36) we can express this as

a
d

da
lphysical(a; g(a)) =

d

d(ln a)
lphysical =

@

@(ln a)
lphysical +

@g

@(ln a)| {z }
−˛(g)

@

@g
lphysical

!
= 0: (2.70)

Together with Eq. (2.39) the lattice spacing a can be related to the coupling constant g
and one obtains for SU(N)

a(˛) =
1

Λ
(
˛

2˛0N
)

˛1
2˛20 e

− ˛
4˛0N (1 +O(

2N

˛
))

∗≈ 1

Λ
e
− ˛

4˛0N ;

* asymptotic scaling behaviour (˛1 ≈ 0 for g → 0)
(2.71)

with yet unknown constant Λ that has to be determined by comparison with experimental
data and ˛i from Eq. (2.40). For a more detailed derivation see [4]. How Λ can be
determined will be discussed in section 2.4.

With this our way onto the lattice is nearly finished and we can now introduce the center
vortex before quantization via the path integral is discussed in section 2.3.

2.2 From center symmetry to center vortices
We will now introduce and further motivate the concept of center vortices starting from
the center invariance of the Lagrangian, followed by a short discussion of the relations
between center vortices and Wilson loops as well as Polyakov loops.

The center Z(G) of a group G is defined as the set of all its elements commuting with all
other group elements

Z(G) = {z ∈ G | ∀g ∈ G : zg = gz}: (2.72)
For SU(N) it can be represented by the N roots of unity

Z(SU(N)) = {e i #1N | # =
2kı

N
; k = 0; 1; :::; N − 1}: (2.73)
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2.2. From center symmetry to center vortices

Restricting ourself to SU(2), we deal with Z2 = ±12.

Lattice Quantum Chromodynamics comes with a global center symmetry: If we multiply
all links within the lattice that point in the same direction with the same center element
z , the evaluation of plaquettes U— and arbitrary Wilson loops is unchanged,

U → U = U z ⇒ U— → U— = U— U|{z}
U z

U†
— U

†|{z}
z†U†

= U—U U†
—U

† zz†|{z}
1

= U— ; (2.74)

with the four-dimensional position vectors omitted. Such transformation is called a center
transformation. The respective invariance is caused by the fact that every loop consists
of an even number of transformed links: half of them in forward direction and the other
half in backwards direction. An even number of non-trivial center elements multiplies to
unity. In contrast to that, a Polyakov loop P— is sensitive to a center transformation: it
is closed only via the periodicity of the lattice, hence does not consist of pairs of forward
and backward links

U → U = U z ⇒ P → P = U U U = P z: (2.75)

This is depicted in Fig. 2.12. Thus, Polyakov loops present an order parameter for

Figure 2.12: Multiplying all links that point in same direction (shown in orange) with a center
element does not influence a Wilson loop (shown with blue links in the lower right corner), but a
Polyakov loop (shown with blue links on the left side). All trivial links are drawn dashed.
center symmetry and we will later relate them to confinement and vortex percolation:
Percolating vortices cause confinement and the transition into deconfinement can be seen
as a de-percolation transition of center vortices, that is, a percolating vortex disintegrates
into small, non-connected vortex clusters.

A center transformation restricted to a specific volume of the lattice creates such a center
vortex: the transformed volume is referred to as the Dirac volume and the vortex arises
as its surface. This is schematically depicted in Figure 2.13.
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2. Quantum Chromodynamics

Figure 2.13: A three dimensional slice through a lattice after projection. The links painted
in orange evaluate to non-trivial center elements, all other links evaluate to the trivial center
element. The plaquettes shown in blue are pierced by the flux building up the vortex (shown as
transparent torus). They evaluate to non-trivial center elements. Due to the lattice periodicity
the closed flux builds a closed surface in the full four dimensional lattice.

As long as the center vortex surface is closed via the lattice periodicity in all directions,
it can be considered as a vortex that percolates through the infinite vacuum.

Starting from a trivial lattice, only the links in vertical direction within the Dirac volume
are multiplied with a non-trivial center element. Only such loops evaluate to the non-
trivial center that are built by an arbitrary number of trivial links and an odd number
of non-trivial links. These are exactly those loops, that touch the Dirac volume once.
The smallest possible loops on the lattice, the plaquettes built by exactly four links, have
only one possibility to become non-trivial in the aforementioned scenario: if one of their
links is part of the Dirac volume. Non-trivial plaquettes are considered pierced by the
vortex, hence, the vortex can be seen as given by the surface of the Dirac volume, the
vortex surface.

In a non-trivial lattice where the links can evaluate to arbitrary group elements, the
situation is more complicated: non-trivial center elements can be distributed over many
links, which gives rise to a finite thickness of the vortex surface - the flux lines that build
the vortex acquire thickness and become flux tubes.

Detecting center vortices is based on reconstructing the Dirac volume. This is related to
looking for Wilson loops pierced by a vortex. This is done by projecting the SU(2) links
to the center degrees of freedom U—(~n) → Z—(~n) = ±1 in a specific gauge. The details
will be discussed in chapter 3.

The center vortex model states, that from the center degrees of freedom alone it is
possible to reproduce physical observables, especially the string tension, as long as center
vortices have been successfully detected. We will now present how exactly observables
are evaluated on the lattice using the path integral before the respective observable will
be discussed in more detail.
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2.3. Implementing the gluonic path integral

2.3 Implementing the gluonic path integral
Quantization of the Lagrangian of the gluonic dynamics given in Eq. 2.46 is done via the
path integral. Within this formalism, the expectation value of a given Operator Ô arises
as the weighted average over all possible field configurations

Ô =

R
O[ffi] e−Sgluons(ffi)DffiR
e−Sgluons(ffi)Dffi

; (2.76)

with ffi = {U—(~n) | — ∈ {0; 1; 2; 3} ∧ ~n a lattice site} denoting the whole lattice and
O[ffi] being an evaluation of the Operator Ô for given ffi. The higher the action of the
configuration, the lower it is weighted within the path integral. The integration measure
is given by

Dffi = Π—~nDU—(~n); so that
Z
Dffi = 1: (2.77)

The integral runs over all links of the given lattice. It is not analytical solvable and a
numerical approach has to be taken: We use a Monte Carlo procedure with a Metropolis
algorithm to generate random ensembles.

The general idea is to create an ensemble of lattice configurations by randomly setting
the values of all links according to a probability distribution as given by

p(ffi) =
e−Sgluons(ffi)R
e−Sgluons(ffi )Dffi

: (2.78)

Then one averages the measurement of interest over this ensemble. The configurations
of this ensemble can be generated within a Markov chain: Given a valid configuration
ffi, one can generate new valid configurations ffi one after another so that the resulting
ensemble of configurations fulfills the probability distribution of Eq. 2.78. Such procedure
comes with two requirements:

Each possible configuration has to be accessible from each other configuration,

p(ffi→ ffi ) > 0 ∀ffi with
Z
p(ffi→ ffi )dffi = 1: (2.79)

This property, called strong ergodicity, ensures that the whole phase space can be reached
given enough time. Together with a detailed balance,

p(ffi→ ffi )

p(ffi → ffi)
=
e−Sgluons(ffi )

e−Sgluons(ffi)
; (2.80)

a Boltzmann distribution can be produced via an acceptance probability for a transition
ffi→ ffi given by

p(ffi→ ffi ) =

(
1 if Sgluons(ffi ) < Sgluons(ffi);
eSgluons(ffi)−Sgluons(ffi ) otherwise.

(2.81)
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2. Quantum Chromodynamics

This can be implemented using a random number generator rnd(0; 1) that is restricted to
the interval from 0 to 1: only configurations ffi are accepted with p(ffi→ ffi ) ≥ rnd(0; 1).
Whenever a configuration is rejected, a new configuration ffi is tried.

The procedure can be speed up by performing it stepwise on single links instead of
performing it on the whole lattice at once. In doing so, the lattice geometry has to be
respected by only performing a transition U—(~n) → U—(~n) on such links not belonging to
the same plaquette. On a four dimensional lattice each link is part of 6 plaquettes as is
depicted in Fig. 2.14. If of all shown links only the blue one is modified, the influence on

Figure 2.14: The link shown in blue is part of six plaquettes. The plaquettes drawn with
dashed lines are located one timestep in positive direction and one timestep in negative direction
respective.

the total gluonic action is restricted to the modification of the six plaquettes: No further
contributions have to be calculated. Instead of working on the whole lattice at once and
always recalculating the total action, one can modify one link after another without the
need to recalculate the total action in every step.

When performing the transition from ffi to ffi stepwise, each single link has to have the
possibility of getting modified at least once before the new configuration ffi is reached.
Otherwise the produced ensemble will consist of strongly correlated configurations spoiling
the path integral. The number of modification trials per link is dubbed hits. If the
step-wise procedure was performed on all links, we speak of a sweep.

The single modification is done by multiplying the link with a random element of SU(2)
spread around unity. Such element can be built from a random three dimensional unit
vector according to Eq. 2.64 with a ¸ defining the spread around unity. The naive
approach of generating three random numbers between -1 and 1 followed by building
a normalized vector results in non-evenly distributed unit vectors. The Box-Muller
method allows to generate normal distributed vectors [13]. This method takes two
even-distributed random numbers r1 = rnd(0; 1) and r2 = rnd(0; 1) and produces two
normal-distributed random numbers

c̃1 =
p
−2 log(r1) cos(2ır2) and c̃2 =

p
−2 log(r1) sin(2ır2): (2.82)

By producing two such random pairs, three of the four normal distributed numbers can
be composed into a three dimensional vector. This vector can be normalized to 1 and
the random SU(2) element can be built.
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2.3. Implementing the gluonic path integral

Markov chains require several hundred sweeps to reach equilibrium. To allow for a fast
and controlled approach towards equilibrium, the spread can be adjusted for a acceptance
rate of 50% to 60%. In the pseudocode description of the respective algorithm 2.2, the
optimization of the spread is done dynamically in lines 19 to 25 by adjusting the spread
in dependence of the number of accepted transitions. A lower spread causes an increased
acceptance rate and a higher spread a reduced acceptance rate. In the simulation software
used in this work this dynamic optimization is not implemented.

The Monte Carlo approach for solving the path integral requires an ensemble of uncorre-
lated configurations. Correlated configurations distort the measurements, underestimating
the errors. With smaller spread the correlation increases because the modifications from
one configuration to the next become small.

For some measurements, especially those that are related to topological charge, sufficiently
smooth configurations are required. Of importance is that these smooth configurations
have to result in correct continuums limits: They have to correctly reproduce physical
observables. One possibility to accomplish smooth configurations is by applying pisa
cooling [14]. This procedure minimizes the action caused by a single link U by modifying
the link to U under the constraint

‹2 ≥ 1

2
Tr
“
(U† − U †) (U − U )

”
= 2− Tr

“
U†U

”
(2.83)

whilst holding all other links fixed. The constraint corresponds to an upper limit of
the action of a loop build by the original and the modified link. This is schematically
depicted in Fig. 2.15. The modified link is constrained to the vicinity of the original link,
that is, only small deviations are allowed.

U U

Figure 2.15: Pisa cooling reduces the action by iteratively modifying the single links under the
constraint, that the action of a closed loop built by the original link (drawn as solid blue line)
and the modified link (drawn as dotted blue line) is limited.

The parameter ‹ is referred to as cooling strength. The procedure is executed iteratively
on all links. The number of cooling steps gives the number of full sweeps over all links.
The cooling strength as well as the number of cooling steps can not be arbitrarily large
without distorting the continuums limit.

A possible alternative is given in the usage of fat links [15] instead of the usual links
when calculating observables of interest. A fat link U—(~x) from ~x to ~x + ~a— is calculated
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2. Quantum Chromodynamics

Algorithm 2.2: Markov Chain of configurations according to the path integral
Data:

• The SU(2) links of the configuration, U—(~x): at lattice site ~x , pointing in direction
—. Either all initialized to 1, to a random SU(2) element or taken from a previous
step of the Markov chain.

• the number of hits to be performed
• the number of sweeps to be performed

Result: A new configuration according to the path integral
1 double spread = 1;
2 for i=1 to sweeps do
3 for all ~x and — do
4 int accepted = 0;
5 for h=1 to hits do
6 double „ = ı

2 ∗ spread ∗ rnd(), ~n = random 3-d unit vector;
7 matrix Ω = cos(„) ∗ 1 + i ∗ sin(„) ∗P3

i=1 ni ∗ ffi ;
8 U—(~x) = ΩU—(~x);
9 S = Action of the 8 plaquettes that share the link U—(~x);

10 S = Action of the 8 plaquettes that share the link U—(~x);
11 p = 1;
12 if S ≥ S then
13 p = eS−S ;
14 end
15 if rnd() < p then
16 U—(~x) = U—(~x); accepted++ ; // accept modified link

17 end
18 end
19 if accepted < 0.5*hits and spread*0.9 > 0 then
20 spread*=0.9;
21 end
22 if accepted > 0.6*hits and spread*1.1 < 1 then
23 spread*=1.1;
24 end
25 accepted = 0;
26 end
27 end

// Optionally smoothen the configuration before doing the
measurements

// Perform measurements

from different paths that also join ~x and ~x + ~a—, so called staples,

U—(~x) = (1− ¸)U—(~x) +
¸

6

6X
i=1

staplei ; (2.84)

30



2.4. Observables on the lattice

with ¸ governing the fattening of the link. This is schematically depicted in Fig. 2.16.
This simple method does not result in SU(N) elements and more elaborate procedures

≈

Figure 2.16: A fat link is obtained by averaging the 6 staples and the link itself. It has to be
stressed that this does not result in an SU(N) element.

have been developed that preserve the group properties - for example stout or analytical
smearing [16, 17]. Even more elaborate are the gradient flow procedures [18]:

The Wilson flow V—(t; ~x) is defined via

V—(t; ~x)

˛̨̨̨
t=0

= U—(~x); @tV—(t; ~x) = −2N

˛

`
@~x;—Sgluons(V (t; ~y))

´
V—(t; ~x); (2.85)

with Sgluons(V—(t; ~x)) being the action of the six plaquettes that share the flow V—(t; ~x)
and the derivative of a function f (U) defined as

@~x;—f ( U (~y) ) = i ti
d

ds
f ( e i s ti ‹— ‹~x~yU (~y) )

˛̨̨̨
s=0

; (2.86)

with generators ti , that is ffi for SU(2). The action is monotonically decreasing with t
and the procedure can be considered as built by an infinite number of infinitesimal stout
smearing steps. With increasing t the configuration gets smoother and smoother. With
negative t the opposite can be accomplished. With this, enough words on smoothing are
given and we will continue with a discussion of several observables.

The path integral formalism allows to evaluate various observables on the lattice. In the
next section we will use such observables to set the lattice scale, that is, determine the
lattice spacing a. We will also discuss relations to confinement.

2.4 Observables on the lattice
By taking a closer look at Wilson and Polyakov loops we will relate them to the quark
anti-quark potential and the free energy of a single quark. Both are directly related to
confinement: In confined phase there are no single quarks, hence there is no free energy of
a single quark to be measured. Confinement corresponds to a linearly or stronger growing
potential. By comparing evaluations of operators in full SU(2) lattice configurations with
evaluations taking only the center degrees of freedom into account, it can be tested how
well the center vortex model reproduces the observables.
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2. Quantum Chromodynamics

First we want to understand the importance of Wilson loops. We will follow the arguments
presented in Ref. [4] and start with the euclidean correlator given by a vacuum to vacuum
transition 0| Ô2(t)Ô1(0) |0 with arbitrary Operators Ôi (t). In the Heisenberg picture it
can be written as

0| e+tĤÔ2e
−tĤÔ1 |0 =

X
n

0| e+tĤ| {z }
0|

Ô2 |n n| e−tĤÔ1 |0 ; (2.87)

were we have inserted a unity 1 =
P

n |n n| and indicated that the vacuum state on the
left is unmodified by time propagation. Introducing a basis spanned by the Hamiltonian
Ĥ |n = En |n we can evaluate this to

0| e+tĤÔ2e
−tĤÔ1 |0 = 0|

 X
n

e−t aEnUC |n n|U†
C

!
|0 ; (2.88)

with Ô1 = U†
C creating an excited state |n from the vacuum |0 and Ô2 = UC destroying

the excitation some time t later.

The energy En corresponds to the n-th excitation of whatever system is created with UtC.
Within the evaluation of the corresponding path integral the excitations are exponentially
suppressed with growing t due to the term e−tEn and one can measure the lowest
excitation with sufficient large loop sizes.

Now consider a Wilson loop of size r × t in temporal gauge. The parts of the loop in
time direction can be set to unity and only two components in space direction remain

W (r; t) |temporal gauge = UC(t) U
†
C(0) ; (2.89)

see Fig. 2.17. Comparing to  (~x)UC (~x + r ∗ ~ax) it can be easily seen that they transform
identical under gauge transformations. Hence we can assume that the quark propagator
for quarks of infinite mass reduces to this U†

C but leave this to the literature [4].

The energy E0 is proportional to the potential energy of an infinitely heavy quark
antiquark pair V (r ∗ a) separated by a distance that is given by the spacious extent of
the Wilson loop

W (r; t) ∝ e−ta∗V (ra)(1 +O(e−ta∗(V (ra)−E1))): (2.90)
To suppress the systematic error due to higher excitations, large values of t should be
used.

Usually one is interested in the string tension ff, the slope of the linear rising potential
when assuming a potential of form

V (ar) = V0 +
C

ar
+ ffar; (2.91)

with constant term V0 and constant C governing the dominance of the Coulomb part. It
can be extracted from different sized Wilson loops via Creutz-ratios

ffl(r; t) = − ln
W (r + 1; t + 1) W (r; t)

W (r; t + 1) W (r + 1; t)
≈ ffa: (2.92)
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Figure 2.17: A r × t Wilson loop can be interpreted as the creation of a particle antiparticle
pair at time 0 and their annihilation at time t. This is more easily seen in temporal gauge with
all links in time direction within the loop fixed to unity.

Knowledge of the potential allows to set the scale, that is, to determine the lattice spacing
a in physical units: By identifying that value of ar for which

dV

dar
(ar)2 = 1:65 ⇒ ar = r0 0:5 fm ⇒ a

0:5

r
fm; (2.93)

the scale can be set with r being a dimensionless count of lattice spacings and r0 the
Sommer parameter [19]. The string tension itself is another physical observable that can
be used to attain the physical value of the lattice spacing. By setting it to its physical
value of (440 MeV)2 one obtains

ffphysical = fflattice=a
2 = (440 MeV)2 =

4402

1972
fm−2 ⇒ a =

√
fflattice ∗ 197

440
fm: (2.94)

The value of (440MeV)2 is related to the pion mass via Regge trajectories [20] and can
further be related to the string breaking distance.

A sanity check of vortex specific measurements is given by a comparison of the string
tension in the full SU(2) configuration with the string tension in the Z2 part of the
configuration. The latter is calculated after center vorties are detected by multiplying
only the signs of Tr(U—(~x)) of the links that build the respective Wilson loop instead
of the full SU(2) matrix. The string tension is an order parameter for confinement: a
vanishing string tension indicates deconfinement.

Let us now interpret the Wilson loop as a measure of flux and write it according to
Eq. (2.64) as

Wi = Tr (cos(¸i ) 12 + i sin(¸i ) ~ff~ni ) ; (2.95)
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with index i collecting reference point, size and plane of the loop. The flux relates to the
imaginary part of the loop, hence increases with the trace approaching zero. The vector ~ff
denotes the Pauli matrices and the unit vector ~n will be referred to as color vector. The
trace is given by 2 ∗ cos¸i . The color vectors average to zero within the path integral:
The color vector is not gauge invariant, hence no physical observable. But by relating two
different Wilson loops Wi and Wj to the same point of reference via a parallel transport
it can be used to define the color homogeneity hS2 ,

hS2 :=
1

2
∗ | ~ni + ~nj | : (2.96)

This observable vanishes if the two color vectors are anti-parallel and it is 1 for parallel
color vectors. It has to be stressed that it is only defined properly for Wi = ±2 and
Wj = ±2, that is, non of of the two Wilson loops evaluates to a center element. In
Fig. 2.18 three different geometric positions of the respective plaquettes are depicted and
allow to define different measurements.

Figure 2.18: By determining the S2-homogeneity for different geometric setups of plaquettes,
different properties related to color structure can be measured. On the left side, the homogeneity
of flux through two planar loops is measured. We refer to such measurement as planar homogeneity.
In the middle, the homogeneity along a flux line that pierces both loops is measured. Such
measurement will be referred to as longitudinal homogeneity. On the right side, the longitudinal
homogeneity is measured for a strongly curved flux line.

• Comparing two neighbouring plaquettes which are in the same plane allows to
measure the homogeneity of a thick flux tube that pierces through both plaquettes:
the planar homogeneity.

• comparing two parallel plaquettes which are on top of each other, one can check how
homogeneous the color stays along a straight flux line: the longitudinal homogeneity.

• by comparing two orthogonal plaquettes that share a link, one can measure the
longitudinal homogeneity of a curved flux line.

The definition can be easily generalized to an arbitrary number of plaquettes or bigger
loops. By taking not only the color vectors ~ni but the full 4-dimensional vector (cj)i
from Eq. (2.64) into account, a S3-homogeneity can be defined. Before discussing the
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Polyakov loop we will now argue why the S2-homogeneity should be preferred over the
S3-homogeneity with respect to vortices and cooling.

The S2-homogeneity is more stable under the influence of cooling than the S3-homogeneity.
This can be seen in the histograms shown in Fig. 2.19 where four planar plaquettes are
used to calculate the homogeneity. The histogram of the S3-homogeneity becomes more

Figure 2.19: Histograms of the S2-homogeneity (left) and the S3-homogeneity (right) are
compared with respect to cooling. The data was taken from 400 Wilson configurations per number
of cooling steps in an lattice of size 184.

and more narrow when cooling is applied, wheres the S2-homogeneity keeps a broad
histogram. By comparing the homogeneity of loops that are pierced by a vortex with the
average homogeneity of all loops it can be seen that the S2-homogeneity stays sensitive to
vortex piercings when cooling is applied wheres the S3-homogeneity loses its sensitivity
to vortex piercings, see Fig. 2.20. With this, the merits of the S2-homogeneity over the

Figure 2.20: When cooling is applied, the S3-homogeneity looses its sensitivity for vortex
piercings whereas the sensitivity of the S2-homogeneity is kept. The data is taken from 25
Wilson configurations per number of cooling steps in an lattice of size 124 with a four plaquette
homogeneity.

S3-homogeneity are clarified and we can continue with the discussion of the Polyakov
loop.

Polyakov loops can be related to Wilson loops: Increasing one length of the Wilson loop
until it spans the lattice, two Polykov loops do emerge, see Fig. 2.21. Such Wilson loop
can be interpreted as two Polyakov loops that are parallel transported to the same point
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Figure 2.21: A Polyakov loop corresponds to an infinitely separated quark anti-quark pair, that
is, two free quarks. This relation can be intuitively understood by considering two Polyakov loops
that result from a Wilson loop that is expanded over the lattice.

of reference. Due to the lattice periodicity we end up with two pairs of infinitely separated
quarks and anti-quarks that exist for a specific time interval. We will now follow the way
from pairs of Polyakov loops to a single Polyakov loop. If the two Operators Px(t2) and
P †
x (t1) are sufficiently far apart, they are not correlated and we can write

P—(t2)P
†
—(t1)

∗≈ P—(t2) P †
—(t1) = P—

2 ;

∗if |t2 − t1| 0
(2.97)

with the single Polykov loop P— being gauge invariant. It is related to the free energy of a
free quark. In the confined phase it vanishes: There are no free quarks. In the deconfined
phase it evaluates to non-vanishing values. Hence, the Polyakov loop can be seen as an
order parameter for deconfinement. A phase transition can only be observed at finite
temperature, that is, in asymmetric lattices. Throughout this work we use symmetric
lattices and stay in confined phase.

The observables can be evaluated in full SU(2) configurations as well as in center projected
Z2 configurations that are related to vortices. This allows to check for deviations of the
center vortex model from SU(2) QCD. We will now look at the procedures for vortex
detection.
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CHAPTER 3
Detecting center vortices

For the detection of center vortices, three strongly inter-related objects are of relevance:
thick vortices, P-vortices and non-trivial center regions. In this chapter we discuss these
objects and present how our method of vortex detection makes use of them. A successful
vortex detection is schematically depicted in Fig. 3.1. The relevant algorithms will be

→ →

Figure 3.1: Two dimensional slices through a four dimensional lattice are depicted. The vortex
detection starts as a best fit procedure of P-Vortices to thick vortices, indicated by the first
arrow. Then, starting from the detected P-plaquettes, non-trivial center regions are identified to
reconstruct the thick vortex. These non-trivial center regions are in general not rectangular.
described in detail and presented in pseudo-code so that they can be easily rebuilt in
any programming language. As computational power is a rare resource when performing
lattice simulations, we also mention the worst case runtime of the most intensive parts of
the algorithms. Simulations at different lattice parameters need to be run for approaching
the continuum limit. The numeric nature of lattice simulations and the vortex physics
restrict the functionality of the algorithms to a specific range of parameters.

It is assumed that thin vortices, percolating the vacuum, correspond to thick vortices on
the lattice. These gauge invariant objects are usually detected by gauge dependent P-
vortices, which are in turn identified by P-plaquettes. The central goal of vortex detection
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3. Detecting center vortices

is to locate the thick vortices within lattice simulations. As long as identified P-vortices
locate thick vortices we speak of a given vortex finding property. The algorithms to be
presented manage to preserve this property where older procedures fail. A loss of the
vortex finding property can have several causes: a failure of the gauge fixing, too harsh
cooling or smoothing procedures or Gribov problems, to list some of them. Once, the
P-vortices are correctly identified with given vortex finding property, thick vortices can
be reconstructed using non-trivial center regions and a study of the vortices percolating
the vacuum becomes possible.

The constituents of the whole procedure and how they can be put together to overcome
some troubles occurring during vortex detection are presented in the following. Center
regions can be used to overcome ambiguities of the gauge fixing procedure required
to identify P-vortices and they are used to reconstruct thick vortices from identified
P-plaquettes.

The following sections summarize and complement content published in Refs. [21, 22, 23,
24] and document the whole vortex detection procedure in one place.

3.1 Center regions
We first motivate the concept of center regions from a theoretical point of view before we
relate them to center vortices and present the algorithms to identify non-trivial center
regions. These algorithms will be again of relevance when reconstructing thick vortices.
The non-trivial center regions allow already to overcome ambiguities of the gauge fixing
procedure: They can be used to counteract the Gribov problem in the gauge fixing
procedure.

We start with a non-Abelian generalization of the Abelian stokes theorem

P exp

„
i
I
@S
A— dx

—

«
= P exp

„
i
2

Z
S
F— dx—dx

«

F— = U−1 F— U U = P exp

„
i
Z
l
A” dy

”

« (3.1)

with P denoting path ordering, P "surface ordering" and l being a path from the base O
of @S to ~x , see [25]. The left hand side of Eq. (3.1) can be identified as the evaluation of a
Wilson loop around the region S. The right hand side can be expressed using plaquettes
U— (~x) via

U— (~x) = exp
`

i a2F— +O(a3)
´
; (3.2)

with lattice spacing a and leads to a product of all the plaquettes building the region S, see
[4]. With these ingredients the non-Abelian stokes theorem can be written schematically
on the lattice as depicted in figure 3.2. It can be used to factorize a Wilson loop into
plaquettes referenced to the same lattice site. This factorization is built out of non-
commuting elements with the path ordering and the surface ordering. If we find within
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= × × ×

Figure 3.2: The non-Abelian stokes theorem on the lattice can be used to factorize arbitrary
Wilson loops into factors of plaquettes referenced to the same lattice site. The path connecting
each plaquette with this lattice site corresponds to the path ordering P used in Eq.3.1.

this factorization neighbouring factors evaluating to a center element, we can pull them
in front of the other non-commuting factors: in SU(2) they comprise nothing more than
a sign, hence commute with all other factors. By dividing the region S into subregions
whose boundaries evaluate to center elements, we can further factorize the Wilson loop
into center-regions: we collect all center factors to the left and keep all remaining factors
at the right, see Fig. 3.3.
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Regions, whose boundaries evaluate
to center elements can be used to fac-
torize a Wilson loop into two parts:

• an area factor collecting the
fully enclosed non-trivial re-
gions, leading to a linear ris-
ing potential,

• a perimeter factor from non-
center contributions due to
partially enclosed center re-
gions.

Figure 3.3: Center regions explain the Coulombic behaviour and the linear increase of the quark
anti-quark potential as they lead to an area law and a perimeter law for Wilson loops.

We now consider each 2-dimensional slice through the lattice and assume that they are
covered by non-overlapping center regions. With constant density of non-trivial center
regions, the center factor directly relates to the area of the Wilson loop: the bigger the
loop, the more negative signs will be acquired due to the enclosed non-trivial center
regions. The average trace of a Wilson loop approaches zero with increasing loop area.
This behavior corresponds to a linearly rising static quark anti-quark potential causing
confinement.

The second factor is related to center regions that are not fully enclosed but intersected
by the Wilson loop. As this intersection requires the center region to be sufficiently near
to the perimeter of the Wilson loop a perimeter law arises resulting in an Coloumbic
potential.

The expected quark anti-quark potential is obtained: Coloumbic for small separations
and linearly rising for sufficiently large separations. Thus, center regions are directly
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3. Detecting center vortices

related to confinement. As they are solely identified by the trace of Wilson loops they
are gauge invariant objects: They do not suffer from the Gribov problem.

We will later see that trivial center regions can be considered as regions that are pierced
an even number of times by a P-vortex. In turn, non-trivial center regions can be
considered as regions that are pierced an odd number of times by a P-vortex. Being
pierced by a P-vortex is equivalent to enclosing a P-plaquette. This will be used to guide
the detection of P-vortices via P-plaquettes. It allows to overcome ambiguities of the
gauge fixing procedure, counteracting a loss of the vortex finding property during the
identification of P-plaquettes.

Non-trivial center regions that are pierced exactly once can be considered to enclose
a thick vortex. This allows reconstructing thick vortices from identified P-plaquettes:
Non-trivial center regions are to the thick vortices, what P-plaquettes are to the P-vortices.
With this, the importance of center regions is motivated and we will now present the
algorithm for detecting non-trivial center regions. We also give a rough estimate for the
asymptotic worst case runtime of the procedures.

The central idea is to start with smaller regions defined by the perimeter of single
plaquettes, so called seeds. These seeds are enlarged by combining plaquettes to form
bigger and bigger loops so that growing regions evaluate nearer and nearer to a non-trivial
center element. This enlargement procedure is repeated until no further enlargement
brings the evaluation nearer to an non-trivial center element. Then the procedure is
repeated with a new seed that neither belongs to an already identified non-trivial center
region nor was taken as seed previously.

Whenever a growing region comes into conflict with an already identified one, some
collision handling has to be performed: We let the "better" region survive at the cost
of deleting the other region. Those plaquettes of the deleted region that have not been
taken as seed can be used again as seed for growing a new region. The seed of the
deleted regions is excluded as seed for new growing procedures to guarantee halting of
the procedure.

The overall procedure stops when each plaquette of the lattice either belongs to an
identified non-trivial center region or was taken once as a seed. Thus, the runtime of the
algorithm depends not only on the lattice size but also on the specific field configuration
encoded in the lattice: if many collisions result in deletions, many calculations get thrown
away.

In Fig. 3.4 the central aspects of the procedure are depicted. Considering the runtime,
in worst case every plaquette has to be taken once as seed with the majority of regions
getting deleted due to collisions. From this we can expect, that the number of executions
of the enlargement procedure is proportional to Npla, the number of plaquettes of the
lattice. During each of these executions, the best enlargement is identified by evaluating
all possible enlargements. Each link belonging to the perimeter of the growing region
can be pushed outwards to enlarge the region around a neighbouring plaquette. The
number of possible enlargements starting from a single plaquette is again proportional
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3.1. Center regions

1) 2) 3)

Steps 1-3: Starting with a plaquette that neither belongs to a previously identified center
region, nor was taken as seed for growing a region, it is tested, which enlargement by a
neighboring plaquette brings the new region nearest to a non-trivial center element.

4) 5) 6)

Steps 4-6: If no enlargement leads to further improvements, a new enlargement procedure is
started with another plaquette. During its enlargement the new region could grow into an
existing one. The following steps describe the collision handling:

7a) 7b)

Step 7a: The evaluation of the growing re-
gion is nearer to a non-trivial center ele-
ment than the evaluation of the old region:
Delete the old region, only keeping the mark
on its seed plaquette and allow growing.

Step 7b: The growing region deviates more
from a non-trivial center element than the
existing one: try other enlargements.

Figure 3.4: The algorithm for the detection of non-trivial center regions repeats the depicted
procedures until every plaquette either belongs to an identified region or has been taken once as
seed for growing a region. The arrow marks the direction of enlargement, plaquettes belonging to
a identified region are colored, plaquettes already used as seed are shown shaded.

to the total number of plaquettes, resulting in an overall worst case runtime of O(N2
pla)

(O(L8latt) with lattice extent Llatt) times the runtime of a single enlargement trial.

The whole concept is based on double linked-lists: Each link within the list defining
the perimeter of the region stores additional pointers to its proceeding and successive
link. Once the full perimeter of the seed plaquette is evaluated the enlargement trial
can be performed with a constant number of matrix multiplications. In Fig. 3.5 the
necessary matrix multiplications on the double-connected list are schematically depicted.
Our current implementation does only store the evaluation of the path ordered perimeter
throughout a single enlargement step and recalculates it for the next enlargement.
The procedure could be improved with respect to the runtime by storing the relevant
evaluations throughout the whole enlargement procedure.

A pseudo-code description of the overall procedure is presented in algorithm 3.1. Keeping
the intermediary results is not explicitly given in the description, but takes place in the
loop from line 10 on when calculating the new evaluation in line 12. Throughout the
enlargement procedure the evaluation of each region is stored so that the calls of "Tr()"
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3. Detecting center vortices

1) 2) 3)

1 → 2: Starting with a region defined
by a double-connected list of the links
building its perimeter, an evaluation
missing one link is stored as working
object.

2 → 3: By multiplication of the work-
ing object with the three links that en-
close the neighbouring plaquette, the
evaluation of an enlarged region is cal-
culated.

4) 5) 6)

4 → 5: A new working object results
from the multiplication of the old work-
ing object with the missing link from
right and the adjoint last link from left.
side.

5 → 6: With the missing link moved
forward, the evaluation of a different
enlargement is calculated as was done
from step 2 to step 3.

6 →n: After all possible enlargements have been eval-
uated, the enlargement in best direction, pushing the
enlarged regions evaluation nearest to a non-trivial centre
element, is performed. The link to be pushed outwards
is removed from the double-connected list and the three
links around the neighbouring plaquette are inserted.

n)

Figure 3.5: The depicted procedure is repeated until no further enlargement gets closer to a
non trivial center element.

do not require a full evaluation of the respective region. Thus, the collision handling does
not require a full re-evaluation of the respective regions.
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3.1. Center regions

Algorithm 3.1: Detection of non-trivial center regions
Data: Spl = stack of all plaquettes sorted by rising trace.
Result: List of non-trivial center regions CR, each given as a double-connected

list of links.
1 while Spl.size() > 0 do
2 markPlaquette(Spl.Last());
3 CR.push_back(convertToDoubleConnectedList(Spl.last()));
4 Spl.remove_last();
5 repeat
6 link bestLink = none;
7 double bestEvaluation = Tr(CR.last());
8 integer collidedWith = none;
9 for each link as l within CR.last() do

10 plaquette neighbour = plaquette, l will be pushed over;
11 double newEvaluation = Tr(CR.last() with l pushed outwards);
12 integer collisionID = ID of region neighbour-plaquette belongs to or

none;
13 if newEvaluation < bestEvaluation then
14 if collisionID == none or Tr(CR[collisionID]) > newEvaluation

then
15 bestEvaluation = newEvaluation;
16 bestLink = l;
17 collidedWith = none;
18 end
19 if Tr(CR[collisionID]) > newEvaluation then
20 collidedWith = colisionID;
21 end
22 end
23 end
24 if bestLink = none then
25 CR.last().EnlargeByPushingLinkOutwards(bestLink);
26 Spl.remove(plaquette that got added to the region CR.last());
27 if collidedWith = none then
28 for each plaquette as p within CR[collidedWith] do
29 if isMarked(p) == False then
30 Spl.push_back(p);
31 end
32 end
33 CR.delete(colidedWith);
34 end
35 end
36 until bestLink == none;
37 end
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3. Detecting center vortices

In practice the non-trivial center is never reached. Hence we select a set of regions with
most negative trace to guide the gauge fixing procedure.

We assume that the good non-trivial center regions evaluate somewhere near to the
non-trivial center, while bad non-trivial center regions can evaluate arbitrary near to
the trivial center. Our method of collision handling causes better non-trivial center
regions to replace some worse regions. Hence we chose an upper limit for the trace up to
which the identified regions should be taken into account. This upper limit is determined
dynamically for a given list of center regions:

We sort the regions by rising trace and look for an inflection point, see Fig. 3.6. For a

Figure 3.6: Many of the detected non-trivial center regions do not evaluate sufficiently near to
a non-trivial center element. Selecting non-trivial center regions for the guidance of the gauge
fixing procedure starts with sorting the regions by rising trace factor. a) Then, a tangent (orange
line) through the point at index 0 and tracefactor equal to 1:1 times the tracefactor of the first
regions within the list is identified. b) Up to the index at which the tangent touches the blue line,
an inflection point is identified. c) All regions with index below the inflection point are selected
for guidance.

smooth configuration we expect a single inflection point. On the lattice it can be hidden
in noise. The numerical determination needs careful investigation. The procedure is
documented in algorithm 3.2.
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3.1. Center regions

Algorithm 3.2: Selection of non-trivial center regions
Data:

• CR, list of center regions.
• srt, indices of center regions sorted by rising tracefactor.

Result: maximal ID maxID of srt up to which regions are taken for guidance at
the gauge fixing procedure

1 double minK=10;
2 integer riseID=1, maxID=1;
// find tangent with minimal slope

3 for id=1 to CR.size() do
4 if Tr(CR[srt[id]]) > 0 then break;
5 double k = Tr(CR[srt[id]])−Tr(CR[srt[0]])∗1:1

id−0:9 ;
6 if k < minK then
7 minK = k;
8 riseID = id;
9 end

10 end
// find the one relevant inflection point

11 maxID = riseID ; // no regions above riseID will be taken
12 integer strt=1, stp=riseID, signchanges=0; // search-interval
13 integer h=1; // step-width for second difference quotient
14 double dd = Tr(CR[srt(strt+2*h)])-2* Tr(CR[srt(h+strt)])+Tr(CR[srt(strt)]);
15 for id=strt + h to stp - h do
16 double dd’ = Tr(CR[srt(id+2*h)])-2* Tr(CR[srt(h+id)])+Tr(CR[srt(id)]);
17 if dd*dd’ ≤ 0 then
18 dd=dd’;
19 signchanges++;
20 riseID=id;
21 if signchanges > 1 then
22 h++;
23 signchanges=0;
24 goto line 14;
25 end
26 end
27 dd=dd’;
28 end
29 maxID = riseID;
30 if stp-strt > 3 then
31 strt = maxID+1-h;
32 stp = maxID+1;
33 h=1;
34 goto line 14;
35 end
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3. Detecting center vortices

The first step consist in identifying the index at which a strong rise of the trace within the
list of center regions sorted by rising trace occurs. We can reduce the interval in which
we search for the inflection point by fitting an appropriate tangent to the distribution,
see Fig.3.6 and lines 1 to 10 in algorithm 3.2. The index at which the tangent touches the
curve of the listed regions defines an upper limit to a search interval. In this search interval
we identify the inflection point by looking for a sign change of the second difference
quotient. To cope with the fluctuations of the data, the step-width used to calculate
the difference quotient is step-wise increased until only a single inflection point is found.
Then, from lines 30 to 35, the search interval is reduced and the procedure repeated until
the inflection point is located within a sufficiently small interval.

The non-trivial center regions with traces below this limit guide the gauge fixing procedure
used to locate the P-plaquettes that identify the P-vortex. The algorithms and their
physical backgrounds are presented in the following.

3.2 P-Vortices
P-vortices are thin, closed surfaces in 4-dimensional spacetime. They are built by closed
flux lines evolving in time. Given, the vortex finding property holds, they locate thick
vortices. P-vortices themselves are identified by looking for P-plaquettes, plaquettes that
evaluate to the non-trivial center after projection to the center degrees of freedom in
a maximal center gauge. In the vortex picture it is assumed that these P-plaquettes
are pierced by the flux line that builds the P-vortex. Fig. 3.7 schematically depicts the
relation between the closed surface of the P-vortex, the flux line building the P-vortex
and the P-plaquettes that are pierced by the flux line.

The flux building the P-vortex is conserved. This corresponds to a geometric relation:
given a P-plaquette, in all four of its neighbouring unit cubes another plaquette has
to be pierced. A plaquette is considered pierced if it is built by an odd number of
non-trivial links. For each non-trivial link one of the following holds: either it belongs to
a P-plaquette or it belongs to a plaquette containing an even number of non-trivial links.
The volume enclosed by the vortex, the Dirac volume, is occupied by non-trivial links.
The detection of P-vortices is based on identifying the Dirac volume, which is done in
Maximal Center Gauge (MCG) and directly allows to identify the plaquettes pierced by
the P-vortex, the P-plaquettes.

The concept of "being pierced" can be extented from plaquettes to bigger Wilson loops:
each piercing contributes a non-trivial factor to the evaluation of a Wilson loop, see
Fig. 3.8, but this non-trivial factor does not need to be localized on a single link. It
can extent over an arbitrary number of links. Such spread out center flux corresponds
to a thick vortex. We want to stress again: P-plaquettes are to the P-vortex, what
the non-trivial center regions are to the thick vortex and each trivial center region has
to contain an even number of P-plaquettes and each non-trivial center region contains
an odd number of P-paquettes. This knowledge is used to guide the detection of P-
plaquettes by enforcing that the non-triviality of regions is preserved during the gauge
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Figure 3.7: The geometric relation between piercings, the flux line and the vortex surface is
depicted schematically. Left: A flux line (depicted as orange line) can be traced by following
non-trivial plaquettes after transformation to maximal center gauge and projection to the center
degrees of freedom. Each non-trivial plaquette belongs to four elementary cubes, where the flux
enters and has to leave through another plaquette. The depicted grey rectangles correspond to
the same plaquette. For each cube, the three involved coordinates are indicated. Right: Due to
the evolution in time, the flux line forms a closed two-dimensional surface in four-dimensional
spacetime. This is only a schematic diagram because it is difficult to depict the four dimensional
geometry of the vortex.

fixing procedure and center projection. This guidance ensures that also in the case of a
center element spread over many links, an odd number of P-plaquettes are enclosed. The
overall procedure of this Guided Maximal Center Gauge (GMCG) will be presented in
the following.

3.2.1 The Guided Maximal Center Gauge
The Guided Maximal Center Gauge (GMCG) is based on a Direct Maximal Center Gauge
[26], but uses simulated annealing to find gauge matrices Ω(x) so that

U—(~x) = Ω(~x)U—(~x)Ω
†(~x + ~a—) maximizes RMCG =

X
~x

X
—

| Tr(U—(~x)) |2 : (3.3)

It brings each link as near to a center element as possible.

The simulated annealing procedure is modified using center projection, projecting the
single links to the closest center element. Preserving the non-triviality of center regions
ensures that no flux building the vortex is lost:
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3. Detecting center vortices

Figure 3.8: A flux line of a vortex can be traced by following non-trivial plaquettes (depicted
in orange with a "-1") after transformation to maximal center gauge and projection to the
center degrees of freedom: each P-plaquette is considered pierced by the vortex. Every piercing
contributes a non-trivial factor to an enclosing Wilson loop W(R,T).

• We prevent gauge transformations that would result in a non-trivial center region
projecting to the trivial center.

• We enforce transformations resulting in non-trivial regions projecting to the non-
trivial center.

A Pseudo-code description of the overall procedure is give in Algorithm 3.3.
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3.2. P-Vortices

Algorithm 3.3: Guided Maximal Center Gauge
Data:

• U—(x), gluonic SU(2)-link at site x pointing in direction —
• NS, number of sweeps to be performed,
• CR, non-trivial center regions as double-connected lists of their links.

Result: U—(x) in maximal center gauge preserving non-trivial center regions
1 double spread = 1, TSA = 2, ΔT = TSA

NS+0:5 ;
2 for sweeps = 1 to NS do
3 integer Accepted = 0;
4 for hits=1 to 10 do
5 for all LatticeSites x , never selecting neighbours one after the other do
6 double „ = ı

2 ∗ spread ∗ rnd(), ~n = random unit vector;
7 matrix Ω = cos(„) ∗ 1 + i ∗ sin(„) ∗P3

i=1 ni ∗ ffi ;
8 double RMCG =

P
—

`| Tr[U—(x)] |2 + | Tr[U—(x − e—)] |2
´

;
9 c− = count of CR evaluating to −1 calculated on center projected U—;

10 c+ = count of CR evaluating to +1 calculated on center projected U—;
11 for — = 1 to 4 do
12 U—(x) = Ω U—(x); U—(x − e—) = U—(x − e—) Ω

†;
13 end
14 double RMCG =

P
—

`| Tr[U—(x)] |2 + | Tr[U—(x − e—)] |2
´
;

15 c− = count of CR evaluating to −1 calculated on center projected U—;
16 c+ = count of CR evaluating to +1 calculated on center projected U—;
17 double TSA = TSA ∗ (1+ c+

1+c−+c+
); // Temperature increase

proportional to wrong regions

18 if rnd() < exp
“
RMCG−RMCG

TSA

”
or c− > c− then

19 if c− ≥ c− then
20 for — = 1 to 4 do
21 U—(x) = U—(x); U—(x − e—) = U—(x − e—);
22 end
23 end
24 Accepted+=1;
25 end
26 end
27 end
28 if Accepted

|LatticeSites| < 5 and Accepted ∗ 0:9 > 0 then
29 spread∗ = 0:9;
30 end
31 if TSA ≤ 2 ∗ΔT and ΔT ∗ 0:1 > 0 then
32 ΔT∗ = 0:1;
33 end
34 TSA− = ΔT ;
35 end 49
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The central idea is to perform the gauge transformation in small steps using random gauge
matrices Ω spreading around unity that are accepted (line 21) or rejected. Independence
of the single gauge transformations is achieved by never taking neighbouring sites one
after another in line 5: Ω(~x + ~a—) = 1 for all ~a— during the transformation of the lattice
site ~x . The gauge matrix is generated in lines 6 and 7 with specific spread from unity using
the function rnd() which produces random numbers between zero and one. The random
unit vector is created using the Box Muller method. For each lattice site the gauge
functional with (RMCG in line 8) and without (RMCG in line 15) gauge transformation is
calculated taking into account all 8 links that are connected to the respective lattice site
~x . Also the number of non-trivial center regions that evaluate to +1 (c+ and c+) and −1

(c− and c−) respective when evaluated on center projected links is calculated with (lines
9 and 19) and without (lines 15 and 16) the gauge transformation. The single region is
evaluated by multiplying the projected links that are part of its perimeter. Then the
number of positive and negative regions is counted. Taking into account only regions
whose perimeter trespasses the transformed lattice site, unnecessary evaluations can be
prevented.

The gauge transformation gets accepted in lines 18 and 19

• if the number of negative projecting non-trivial center regions is increased: c− > c−,

• if the gauge functional is increased and no center region got lost: RMCG > RMCG
and c− ≥ c−

• with specific probability (governed by TSA) if the gauge functional decreases but
no center region is lost

and is rejected otherwise. An accepted gauge transformation causes the links to get
overwritten in line 20 to 22.

If a transformation gets rejected due to lost non-trivial center regions, it is still counted
by the variable "Accepted". This ensures that the spread is not reduced without need in
lines 28 to 30. If less than 50% of the generated gauge matrices during 10 consecutive
trials are rejected due to the gauge functional, the spread is decreased: the gauge matrices
are generated less distant from unity in the following runs. After each run TSA is reduced,
resulting in a lower acceptance probability for a decrease of the gauge functional: A
climb towards a local maximum of the gauge functional is guaranteed. To ensure enough
flexibility for the preservation of non-trivial center regions, TSA is multiplied with a factor
proportional to the number of wrong projecting non-trivial center regions.

After the gauge fixing procedure the P-plaquettes are identified in the center projected
configuration

Z—(~x) := sign(U—(~x)): (3.4)

The P-vortex is built by all plaquettes that are dual to a P-plaquette, that is, the
plaquettes that are spanned by the two normal vectors of P-plaquettes.
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Within the resulting P-vortex many short range fluctuations that do strongly depend
on the gauge can be embedded. They cause unphysical distortions of the vortex surface.
For the reconstruction of the thick vortex these distortions can become problematic since
they might result in a mistakenly high count of plaquettes related to the thick vortex: as
collision handling can not come to use when reconstructing the thick vortex, short range
fluctuations can result in a possible double counting of plaquettes. Smoothing the vortex
surface is possible without influencing long-range effects and suppresses double counting.

3.2.2 Smoothing the P-vortex surface

The local geometry of the P-vortex is gauge dependent: There are many local maxima of
the gauge functional that correspond to slightly different vortex surfaces. The P-vortex
fluctuates around the core of the thick vortex. These short range fluctuations are not
considered physical and may trouble the measurement of physical observables. To get rid
of them and allow for clearer observation of the long range effects, the vortex surface can
be smoothed. This is based on cutting out parts of the vortex surface and closing arising
holes as shown in Fig.3.9. It is done by multiplying specific links of the center projected

removing warts

smoothing 1

removing bottlenecks

smoothing 2

removing stumbling blocks

smoothing 3

Figure 3.9: The effect of the smoothing procedures on the vortex surface is depicted, taken
from [27, Fig.5.8.].

configuration Z—(x) with -1 so that the Dirac volume gets more compact without getting
disconnected from the lattice boundary. Thus, the number of P-plaquettes decreases and
short range fluctuations are removed from the vortex surface. The different smoothing
steps are described in detail in Refs. [28, 27]. In addition to the depicted smoothing
procedures there is smoothing 0 which removes unit cubes and is part of every other
smoothing.

Procedures that modify the topology of the vortex surface should be considered with
care as they might influence the vortex physics. For example, smoothing 2 disconnects
parts from the vortex surface by removing bottlenecks.

To understand the effect of such procedure let us quantify the average smoothness of the
vortex surface by looking at P-plaquette pairs:

• P-plaquette pair corresponding to straight flux line:
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3. Detecting center vortices

• P-plaquette pair corresponding to curved flux line:

In Fig. 3.10 the proportion of P-plaquette pairs corresponding to a curved flux line is
shown for the different smoothing procedures and numbers of cooling steps. As can be

Legend:

Figure 3.10: The average curvature of the vortex surface can be estimated by the proportion
of P-plaquette pairs that correspond to a curved flux line. The data is taken from 10 Wilson
configurations on lattices of size 164 and compares the different smoothing procedures at different
number of cooling steps. The deviation of smoothing 0 and smoothing 2 from linear behaviour at
small lattice spacings for 0 cooling steps may be caused by finite size effects and discretization
effects.

expected, the smoothing procedures reduce the average curvature of the vortex surface.
The difficult question that arises is, how much smoothing can be done without loosing
relevant physics. Of all listed procedures smoothing 0 has the least possible impact on
the vortex surface as it removes only unit cubes that are not connected to the vortex
surface whilst smoothing 2 even impacts the topology of the vortex surface.

The increase of the average curvature for smoothing 0 with decreasing lattice spacing
when no cooling is applied, may be understood as discretization effect, but could also be
caused by finite size effects: With increasing lattice resolution, that is, decreasing pixel
size, more and more structure can be observed and with smaller physical lattice volume
the vortex surface may get distorted. That smoothing 2 shows opposite behaviour should
urge caution: We will see a correlation of curvature to color inhomogeneity. Hence, the
strongly reduced average curvature of the vortex surface due to smoothing 2 may come
with an impact on the color structure.
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3.3 Thick vortices
Thick vortices are gauge independent excitations considered relevant for confinement and
chiral symmetry breaking. With given vortex finding property this vortices are located by
the P-vortices and can be reconstructed using P-plaquettes as seeds for the enlargement
procedure of non-trivial center regions. When reconstructing thick vortices, collisions
of the growing non-trivial center regions are ignored to allow overlaps. This is, because
thick vortex piercings might be separated by distances below a single lattice spacing.
If collisions were prevented, parts of the reconstructed thick vortices may be cut away,
resulting in underestimated tracefactors related to piercings of the thick vortex through
a given Wilson loop. Pseudo-code of the relevant procedure is shown in algorithm 3.4.

Algorithm 3.4: Reconstruction of thick vortices from P-plaquettes.
Result: List of non-trivial center regions CR, corresponding to thick vortex

piercings
1 Spl = stack of P-plaquettes;
2 CR.clear();
3 while Spl.size() > 0 do
4 CR.push_back(convertToDoubleConnectedList(Spl.last()));
5 Spl.remove_last();
6 repeat
7 link bestLink = none;
8 double bestEvaluation = Tr(CR.last());
9 for each link as l within CR.last() do

10 double newEvaluation = Tr(CR.last() with l pushed outwards);
11 if newEvaluation < bestEvaluation then
12 bestEvaluation = newEvaluation;
13 bestLink = l;
14 end
15 end
16 if bestLink = none then
17 CR.last().EnlargeByPushingLinkOutwards(bestLink);
18 Spl.remove(plaquette that got added to the region CR.last());
19 end
20 until bestLink == none;
21 end

Once this algorithm halted, a list of non-trivial center regions is generated. Each of
this center regions can be assumed to be pierced by a thick vortex. If the P-plaquettes
taken as seeds correspond to an unsmoothed vortex surface, many overlapping center
regions might be generated. This can result in a double counting of plaquettes during
the measurement of vortex specific observables. By analyzing the overlaps of the center
regions enclosing the thick flux tubes, double counting can also be prevented, but this is
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not yet done in our current implementations.

3.4 Achieved improvements and restrictions
To see what improvement is achieved by usage of center regions as guidance in the gauge
fixing procedure, we will now compare simulated annealing without guidance to simulated
annealing with guidance with respect to measurements of the string tension via Creutz
ratios. This allows to estimate the range of lattice parameters in which a successfully
vortex detection is possible. As for studies of the chiral properties of center vortices
smooth lattice configurations are required, we will also take a first look at the influence
of Pisa cooling.

When no center regions are taken as guidance for the gauge fixing procedure, it can
be observed, that strong simulated annealing results in an underestimation of the
string tension: with rising number of simulated annealing steps the Creutz ratios give
lower and lower values for the string tension, whereas with usage of non-trivial center
regions as guidance, this loss of the string tension is prevented. In Fig. 3.11 it can be
seen that this comes at the cost of increased error bars. The step count is given in
multiples of 250. Harsh simulated annealing without taking into account non-trivial

Figure 3.11: With rising number of simulated annealing steps a simulated annealing procedure
that does not uses non-trivial center regions leads to an underestimation of the string tension
(ffl(R)old), while the guided version (ffl(R)improved) stays on literature value after reaching it at
2500 steps. The step count is given in multiples of 250. The data was calculated in a lattice of
size 144 for ˛ = 2:3 from 300 SU(2) configurations. The literature value is based on [29].

center regions underestimates the string tension after 750 steps. This loss of the string
tension is prevented by taking into account non-trivial center regions and higher numbers
of simulated annealing steps become reachable. How fast the gauge fixing procedure
converges may depend on the lattice size. On lattices of size 144 at least 2500 simulated
annealing steps are recommended.
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The literature string tension is well reproduced already with Creutz ratios of small loop
sizes but the error bars increase faster with rising loop size when using guidance by center
regions than without such guidance, see Fig. 3.12. With increased value of ˛ larger loop

Figure 3.12: We compare the original simulated annealing that is not guided by non-trivial
center regions with the guided version after 5000 simulated annealing steps for 300 SU(2) Wilson
configurations on lattices of size 124 (left), 144 (middle) and 124 (right) for different values of ˛.
The literature value is based on [29].

sizes become reachable for the Creutz ratios. The good compatibility to the literature
string tension is kept over a wide range of ˛-values, see Fig. 3.13. In the lattice of size 104

the string tension is reproduced well up to ˛-values of 2.7, but finite size effects setting
in at ˛ about 2.35 in the smaller lattice of size 84 urge caution.

When Pisa cooling is used, a reduction of the observed string tension occurs as can be
seen in Fig. 3.14. From the two given lattice sizes it can be seen, that finite size effects
lead to a sudden decrease of the observed string tension. Until this sudden decrease the
measurements slowly approach the asymptotic prediction with increasing ˛. Linearly
extrapolating this approach to higher values of ˛ allows to estimate at which ˛ the string
tension might be restored: With 5 cooling steps a restoration should not be expected
with ˛ below approximately 2.45 and for 10 cooling steps not before a ˛ of about 2.8.
Reaching these values of ˛ requires larger lattices to prevent finite size effects. A detailed
study of finite size and discretization effects will be presented in chapter 4.

These effects hint at a failing vortex detection for small lattice sizes or large values of ˛.
This failing vortex detection can be related to a troubled guidance of the gauge fixing
procedure: the simulated annealing maximizing the gauge functional does no longer
manage to keep the non-triviality of non-trivial center regions throughout gauge fixing
and center projection: There are non-trivial center regions that are not related to a
P-plaquette in the center projected configuration, thick vortices got lost.

By taking a look at the ensemble used to calculate the string tension, one can determine
the proportion of configurations in which more non-trivial center regions have been
identified than P-plaquettes where found. For a successful gauge fixing this proportion
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3. Detecting center vortices

Figure 3.13: The string tension ff is estimated via the average of the Creutz ratios ffl(1)
and ffl(2) calculated in center-projected configurations. The literature values are taken from
[29, 30, 31, 32, 33] and the asymptotic behaviour is based on a fit of the asymptotic renormalization
group equation for ˛ > 2:576.

Figure 3.14: The string tension ff is estimated via the average of the Creutz ratios ffl(1)
and ffl(2) calculated in center-projected configurations. The literature values are taken from
[29, 30, 31, 32, 33] and the asymptotic behaviour is based on a fit of the asymptotic renormalization
group equation for ˛ > 2:576. A clear indication of finite size effects is given by the deviation of
the measurements on different sized lattices.
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should be vanishing. It is depicted in Fig. 3.15 for different lattice sizes and numbers of
cooling steps. That a reduced lattice size shifts the curves to lower values of ˛ is a clear

Figure 3.15: The proportion of configurations is depicted where less non-trivial plaquettes
have been identified than non-trivial regions exist. The datapoints are joined to guide the eye.
Due to the logarithmic scaling of the axes, only non-vanishing values are depicted: all lines start
with 0% at lower values of ˛. The interruption of the green line corresponding to the lattice of
size 104 at 10 cooling steps at ˛ = 2:55 results from a vanishing percentage at the respective
˛-value. Observe that the curves rise at different values of ˛ for different number of cooling steps
and different lattice sizes.

indication for finite size effects. Also a dependence on the number of cooling steps can
be seen.

Vortex specific properties allow a better understanding of the cause for the finite size and
discretization effects and enable a better quantification of the restrictions on the lattice
parameters for a successful vortex detection. This will be presented chapter 4.
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CHAPTER 4
Algorithmic restrictions from

vortex properties

Once the non-trivial center regions that enclose the thick vortices are identified, vortex
specific analysis becomes possible. Based on thickness, size and color structure of
the vortices, restrictions to the detection algorithms can be derived. This allows to
understand the troubles of the original gauge fixing procedure. We will now take a
look at the thickness of the vortex surface and relate it via the flux tube diameter to
discretization and finite size effects. This will be followed by an analysis of the vortex
color structure which will strengthen some of the results that are based on the vortex
thickness.

The following sections summarize and complement content already published in [34, 12, 35]

4.1 Thickness and size
Assuming circular cross sections of the vortex flux tubes, their diameter defines the
thickness of the vortex. Such a non-vanishing diameter can cause finite size effects: At
least two vortex piercings need to find place in each two dimensional slice through the
lattice to allow a closed flux. Hence, twice the diameter of a thick flux tube gives a lower
limit for the required lattice extent.

Once the P-plaquettes are identified and the thick vortex is reconstructed, non-trivial
center regions enclosing the thick vortex piercings can be used to measure the piercing area.
Multiplying the plaquette number of the non-trivial center region with the physical size
of a plaquette, a2, gives an approximation of the piercing area. This approximation gets
better with decreased lattice spacing a. During refinement of the lattice a specific scaling
behaviour can be expected from geometric arguments: linear for finite objects, non-linear
for singular objects. A simplified scheme is given in Fig. 4.1, where measurements of
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4. Algorithmic restrictions from vortex properties

linear area scaling for finite objects: Alattice(a) = Acontinuum + kA ∗ a

=⇒ =⇒ =⇒ =⇒ ... =⇒

quadratic area scaling for singular objects: Alattice(a) = cA ∗ a2

=⇒ =⇒ =⇒ =⇒ ... =⇒

Figure 4.1: Due to the finite pixel size a linear dependence on the lattice constant a is expected,
as depicted in the upper part. Objects with cross sections proportional to plaquette areas lead to
contributions of the order a2, as is depicted in the lower part.

circular areas based on counting plaquettes are shown for varying lattice spacings.

In Fig. 4.2 measurements of the average flux tube cross sections are shown as a plaquette
number in dependence of ˛ for different lattice sizes and cooling steps. Observe that until
10 cooling steps the dependence of the plaquette count on ˛ can be well approximated
linearly. Thresholds at which finite size effects can be expected are shown as dashed

Figure 4.2: Average cross-sections of flux tubes, measured by counting plaquettes, increase
when cooling is applied. They reach a threshold at which finite size effects are expected to become
problematic, shown as a dashed line for the two lattice sizes. This threshold is based on the
assumption of circular cross sections. Measurements performed on lattices of different size have
good compatibility.

lines for the two different lattice sizes. They are determined by assuming a circular cross
section of the flux tube and demanding that two piercings need to fit into a 2-dimensional
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4.1. Thickness and size

lattice slice:
threshold =

L2 ∗ ı
16

; (4.1)

with lattice extent L. The lattice extent should be chosen so that the cross section of the
flux tube is below the threshold.

Taking a look not at the average flux tube cross sections but the maximal cross section
per configuration of the ensemble used for the calculations, more strict limits arise.
Measurements of these maximal cross sections are shown in Fig. 4.3. Observe the

Figure 4.3: Maximal cross-sections of the flux tubes hint at finite size effects. Within our
˛-interval, only the lattice of size 104 stays below the threshold when cooling is applied. With
cooling, the different lattice sizes become more and more incompatible.

increased plaquette count and the surpassed thresholds especially with larger number of
cooling steps. With 10 cooling steps the 84-lattice deviates from the 104-lattice at ˛ ≈ 2:4.
This deviation is caused by the diameter of the cross section becoming comparable to
the lattice extent.

It can be clearly seen that the flux tubes expand with cooling. As the flux tube is
identified by a non-trivial center region enclosing the flux tube piercing, this expansion
can be related to the center element spreading over more and more links of a Wilson
loop enclosing the flux tube. As long as the center element is located on a sufficiently
low number of links, center projection can identify corresponding P-plaquettes. If the
center element is distributed over too many links and the gauge transformation does not
manage to compress it, then no P-plaquette that corresponds to the piercing of the thick
vortex can be identified: The vortex finding property can get lost due to the expansion of
the flux tubes. The guidance of the gauge fixing procedure by non-trivial center regions
can counteract this loss up to a specific degree. We will now go from lattice units to
physical units and derive formulas for limits on the lattice parameters in dependence of
the cooling steps. This also limits the number of cooling steps that can be performed
before a loss of the vortex finding property occurs.
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Fitting the average flux tube cross-sections for configurations without cooling for 2:1 ≤
˛ ≤ 2:3 by a polynom up to quadratic order with respect to the lattice spacing a gives

Aaverage
vort (0) ≈ 3:367(38) a2 + 0:200(9) fm a (4.2)

and a fit to the maximal cross-sections without cooling for 2:1 ≤ ˛ ≤ 2:3 results in higher
fit parameters

Amax
vort(0) ≈ 11:3(2) a2 + 0:224(37) fm a; (4.3)

where the parameter zero corresponds to the number of cooling steps. In both cases the
quadratic term of the polynom dominates and a constant term was negligible. Keep in
mind the scaling behaviour depicted in Fig. 4.1. The dependence of the cross section on
the number of cooling steps can be roughly modelled as

Aivort(Ncool) = Aivort(0) e
Ncool (g icool+g

i
discret a); (4.4)

with i ∈ {average;max} and Ncool the number of cooling steps: An exponential growth of
the flux tube with cooling is assumed and discretization effects bring about a dependence
on the lattice spacing a.

An unlimited growth of the flux tube would push the flux tubes further and further
apart with cooling. This in turn would result in a vanishing vortex density that will
be modelled later. One can expect that the exponential growth hits a limit that is not
covered by this simple model. We will see hints at this limited growth in the values of
the fit parameters and also later when the color structure of the vortex is discussed.

We first apply this model to the average flux tube sizes. The data is presented in physical
units together with a fit of Eq. (4.4) in Fig. 4.4. The fit parameters are shown in Table
4.1. Observe that the discretization effects governed by g idiscrete in Eq. (4.4) counteract
the growth of the flux tube. This can be intuitively understood by looking again at

fit parameter Estimate t-Statistic p-Value
gaverage

cool 0.14(1) 13.6393 6:3× 10−11

gaverage
discret −0.17(5) fm−1 −3.62376 1:9× 10−3

Table 4.1: The parameters of the model described by Equation (4.4) and depicted in Figure 4.4
for average cross-sections are shown.

Fig. 4.1: On the leftmost side of the figure we see a large pixel size. A small expansion
of the circle does not increase the measured area. In contrast, on the right side of the
figure, a growth of the piercing directly results in more pixels covered by the area.

Looking now at the maximal sized flux tubes we observe that the growth slows down, see
Fig. 4.5 and the corresponding fit parameters presented in Table 4.2: The absolute values
of the parameters decrease when looking at bigger piercing areas. Hence, the model may
overestimate the growth of the flux tube caused by cooling. Equations (4.1) and (4.4)
in combination with the fit parameters in table 4.1 or table 4.2 result in the first limit
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4.1. Thickness and size

Figure 4.4: The measured data of the average flux tube cross-section for various numbers of
cooling steps and several ˛ are shown by black and orange points. The dashed lines depict the
fits according to Eq. (4.4), where only the black datapoints were used. The corresponding fit
parameters are given in Table 4.1. Deviations of the data from the fits can be related to finite
size effects.

fit parameter Estimate t-Statistic p-Value
gmax

cool 0.0999(10) 9.1369 3:5× 10−8

gmax
discret −0.13(5) fm−1 −2.61939 1:7× 10−2

Table 4.2: The parameters of the model described by Equation (4.4) and depicted in Figure 4.5
for maximal cross-sections are shown.

of the lattice parameters: a lower limit on the lattice extent or an upper limit on ˛ if
the lattice size is fixed. Also the number of cooling steps is limited by these equations.
In addition to these restrictions we will now take a look at discretization effects that
result from neighbouring flux tubes coming too close to one another. From this, opposite
limits, an upper limit for ˛ or a lower limit for the lattice extent, can be derived. Thus,
a window of valid lattice parameters and cooling numbers is given. To determine this
window we investigate the vortex density %vort.

%vort is usually calculated by dividing the number of P-plaquettes by the total plaquette
number. It is related to the string tension via

ff ≈ − ln(1− 2 ∗ %vort) (4.5)

as long as all short range fluctuations have been smoothed out of the vortex surface.
Given enough statistics, it can be determined by counting the number of piercings Nvort
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4. Algorithmic restrictions from vortex properties

Figure 4.5: The measured data of the maximal flux tube cross-section for various numbers
of cooling steps and several ˛ are shown by black and orange points. The dashed lines depict
the fits according to Eq. (4.4), where only the black datapoints were used. The corresponding
fit parameters are given in Table 4.2. The deviations of the measured data from the fits can be
explained by finite size effects.

within a sufficiently large Wilson loop of Area Aloop built by Nloop plaquettes

%vort =
Nvort
Nloop

=
Nvort

Aloop ∗ a−2
=

Nvort
(Afree + Nvort ∗ Amax) ∗ a−2

: (4.6)

In the last identity, we have split the area of the loop into two non-overlapping parts:
each piercing is enclosed by a circular area of maximal possible size given by Amax and
Afree covers the remaining part of the loop, see Fig. 4.6. We want to stress that Amax is
not the area of the piercing, but related to the average distance between the centers of
piercings. It can be seen as the "private space" each piercing is allowed to cover. When
cooling is applied, we have to take into account that the flux tubes grow and Amax might
be influenced: if the flux tubes push one another apart, they aquire more "private space".
The same holds true if some piercings get deleted. Thus, we model the influence of
cooling on the vortex density by allowing Amax to grow:

%vort(Ncool) =
Nvort

(Afree + Nvort ∗ (Amax(0) + ‹Amax(Ncool))) ∗ a−2
: (4.7)

Using Aloop = Afree +Nvort ∗Amax(0) and a model of the form given in Equation (4.4) for
Amax(Ncool) we attain ‹Amax = Amax(0)(eNcool (gcool+gdiscrete a) − 1). It follows

%vort(Ncool) =
%vort(0)

1 + %vort(0) Amax(0)a−2 (eNcool (gcool+gdiscrete a) − 1)
: (4.8)
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4.1. Thickness and size

Figure 4.6: Splitting the area of a Wilson loop into disks around piercings with area Amax and
remaining loop area Afree allows to estimate the separation of neighbouring piercings.

It can be assumed that cooling reduces short range fluctuations of the vortex surface,
resembling a vortex smoothing that reduces the vortex density. Hence, a reduction of
the vortex density is not necessarily unwanted since only the long range effects are of
relevance and it can be advantageous to get rid of the short range fluctuations.

We fit gcool, gdiscrete and Amax(0) to the measurements of %vort. Due to the smoothing
effect of cooling these parameters may be less disturbed by short range fluctuations and
allow another quantification of the long range flux tube growth. The measured data and
the fit are shown in Figure 4.7. Observe the even lower value of gcool. It hints again at
a limited growth of the flux tubes. The value of Amax(0) is larger than the flux tube

fit parameter Estimate t-Statistic p-Value
gcool 0.035(1) 26.5368 2:8× 10−15

gdiscret 0.066(2) fm−1 27.6254 fm−1 1:5× 10−15

Amax(0) 1.41(5) fm2 25.8937 fm2 4:2× 10−15

Table 4.3: The parameters of the model described by Equation (4.8) showing the loss of the
vortex density during cooling.

cross-sections depicted in Figure 4.4. Assuming circular geometry, we can calculate the
minimal possible distance between vortex centers

dcenter(Ncool) = 2

r
Amax(Ncool)

ı
: (4.9)

To determine how many cooling steps are possible, we need to know how much the
vortices can grow by cooling without getting into conflict with one another. We estimate
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Figure 4.7: The vortex density is depicted for different values of ˛ and different numbers of
cooling steps. For the model prediction, shown as dashed lines, only the black datapoints were
used. That the datapoints fall below the model prediction at specific numbers of cooling steps for
different values of ˛ can be explained by finite size effects. The corresponding parameters of the
model are given in Table 4.3.

the minimal available separation by

sflux(Ncool) = 2

r
Amax(0)

ı| {z }
dcenter(0)

− 2

r
Avort(Ncool)

ı| {z }
dflux(Ncool)

: (4.10)

We use dcenter(0), the average distance between piercings when no loss of the vortex
density occurred, and subtract the average diameter of the flux tubes dflux(Ncool) with
cooling applied. If sflux(Ncool) becomes smaller than one lattice spacing, our methods
of center vortex detection are likely to fail: we can no longer find two non-overlapping
non-trivial center regions enclosing the thick vortex flux tubes. This allows to derive a
limit for the lattice spacing and a limit for L based on Eq. (4.1)

a < sflux and L > Max(2dflux;Max(dflux)): (4.11)

The requirement for the lattice extent L is based on the fact that two vortex piercings
have to fit in every lattice cross-section. Assuming a vanishing minimal flux tube size,
the limit is given either by two times the average diameter dflux or one times the maximal
diameter Max(dflux) - whatever is bigger.
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Figure 4.8: Based on the growth of the flux tubes and the reduction in the vortex density in
dependence of the number of cooling steps, an upper limit for the lattice spacing (left) and a
lower limit for the lattice extent (right) can be derived. The stronger limit depicted in orange is
based on cautious calculations potentially overestimating the flux tubes cross-section, the red
limit in contrast may come from underestimated cross-sections.

The limits are shown in Figure 4.8 for the two different values of gcool resulting from
average and maximal flux tube sizes from Tables 4.1 and 4.2.

Taking the stronger limits with gcool = 0:14, we determine the corresponding limits of ˛
for given lattice size and number of cooling steps. In Table 4.4 some numerical values
are shown.

These limits restrict ˛ to quite low values and very small windows. As long as the lattice
parameters are kept within this window, specific finite size effects and discretization
effects can be excluded, but this alone does not guarantee that the asymptotic string
tension is well reproduced. We observe that within this window the measured string
tension approaches the asymptotic value with increased ˛ until the onset of the finite
size effects. In Fig. 3.14 this was shown for 5 and 10 cooling steps. From the two given
lattice sizes it can be seen that finite size effects lead to a sudden decrease of the observed
string tension, but until this sudden decrease the measurements slowly approach the
asymptotic prediction. A full recovery of the string tension should not be expected at
˛-values below 2.45 for 5 cooling steps and not before 2.8 for 10 cooling steps. Reaching
these ˛-values without suffering from finite size effects requires larger lattices.
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Table 4.4: For different numbers of cooling steps and different lattice extents, the table gives
a lower and an upper limit for ˛ based on the more cautious estimates of the cross-section of
vortex piercings. “None” indicates that the limits exclude one another.

Ncool \ L 8 10 14 20 30 40 50

0
2:12

2:32

2:12

2:39

2:12

2:48

2:12

2:58

2:12

2:73

2:12

2:84

2:12

2:92

1
2:14

2:31

2:14

2:38

2:14

2:48

2:14

2:58

2:14

2:73

2:14

2:83

2:14

2:91

2
2:16

2:31

2:16

2:38

2:16

2:47

2:16

2:58

2:16

2:72

2:16

2:83

2:16

2:91

3
2:19

2:3

2:19

2:37

2:19

2:47

2:19

2:57

2:19

2:71

2:19

2:82

2:19

2:9

5
2:23

2:29

2:23

2:36

2:23

2:46

2:23

2:56

2:23

2:7

2:23

2:81

2:23

2:89

10 None
2:34

2:34

2:34

2:44

2:34

2:54

2:34

2:67

2:34

2:78

2:34

2:86

15 None None None
2:44

2:52

2:44

2:65

2:44

2:76

2:44

2:84

20 None None None None
2:54

2:63

2:54

2:73

2:54

2:82

25 None None None None None
2:66

2:71

2:66

2:79
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4.2. Color structure

4.2 Color structure
As the color structure of the vortex may be related to its topological charge, we require
that it is preserved during the vortex detection procedure. We use the S2-homogeneity
based on two plaquettes as defined in Eq. (2.18) to probe this color structure. In
dependence of the orientation of these plaquettes and whether or not they are pierced or
part of an non-trivial center region we distinguish the following scenarios:

• Planar homogeneities

– Flux tube interior:
Measures, if color structure is
present in the cross sections of a vor-
tex flux tube.

– Flux tube edge:
Measures, how sharply a vortex flux
tube is separated from the surround-
ing vacuum with respect to color.

• Longitudinal homogeneities

– Straight flux line:
Measures, if color structure is present
along a vortex flux line, that is, on the
vortex surface.

– Curved flux line:

In combination with the previous mea-
surement, this allows to quantify the
correlation of curvature to color homo-
geneity.

The two plaquettes that are used to calculate the S2-homogeneity are colored in green and
purple as in Fig. 2.96 and the vortex flux line or the flux tube cross section are shown in
orange. For the longitudinal homogeneities only the flux lines identified via P-plaquettes
are considered, for the planar homogeneities non-trivial center regions corresponding to
the cross sections of thick flux tubes are taken into account. In addition to these four
scenarios we also performed measurements restricted to non-pierced plaquettes, that is,
off the vortex, and also without any restrictions, that is, for the full vacuum.

We find deviations of the respective color-homogeneities from those of the full vacuum
as can be seen in Fig. 4.9: The color within the cross-section of a flux tube is more
homogeneous than the surrounding vacuum from which it is separated. This separation
is indicated by the reduced color homogeneity of the flux tubes edge compared to the
vacuum. Along the flux line the color fluctuates stronger than in the surrounding vacuum
if the flux line has non-vanishing curvature, that is, color inhomogeneity correlates to
curvature of the vortex surface. Observe that the homogeneity of the straight flux lines
deviates more from the vacuum than those of the curved flux lines.
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Figure 4.9: The data is taken from 350 Wilson configurations on lattices of size 84 with
smoothing 0 applied. The black line depicts the vacuum values for the respective measurements.
On the left side it can be seen, that the interior of a flux tubes cross sections is more homogeneous
than the surrounding vacuum and that the color fluctuates when entering the cross section. On
the right side it can be seen that the color fluctuates more strongly along a curved flux line than
along a straight flux line. In both graphs, the reduction in homogeneity at low lattice spacings is
related to finite size effects.

This correlation urges caution when using smoothing procedures: Vortex smoothing as
well as cooling can have an influence on the curvature of the vortex surface and this
may influence potential color structure. The vortex structure as well as writhing- and
intersection-points of vortices are related to topological charge, see References [36, 37].
To study the topological properties of center vortices in smooth configurations one needs
to ensure that no relevant color structure is lost. Looking at the influence of cooling and
smoothing procedures, we see that the correlation of curvature to color inhomogeneity
not only survives cooling, but even increases with rising number of cooling steps.

In Fig. 4.10 the difference in color-homogeneity for straight and curved flux lines is
shown for different number of cooling steps and different vortex smoothings. Observe
that cooling increases not only the overall homogeneity but also the differences between
straight and curved flux lines. This correlation of curvature and inhomogeneity is less
dominant for smoothing 2.

To determine which potential restriction for the vortex detection arise from the color
structure, we will look for finite size effects within the total color-homogeneity along the
flux line. This approach was already published in [12].

Finite size effects result in a decrease of this color homogeneity, see Fig. 4.11. This
decrease indicates that structures causing homogeneity are lost due to the finite sized
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Legend:

Figure 4.10: The differences in homogeneity between straight and curved flux lines are measured
from 10 Wilson configurations on lattices of size 164. Observe that for smoothing 2 the difference
between straight and curved flux lines is reduced compared to the other procedures. Cooling
increases the overall differences.

Figure 4.11: Taken from [12], the S2-Homogeneity on the vortex surface is shown for an
84-lattice for different lattice spacings. The data points, used for the fit of the upper (nearly
horizontal) red line are marked in red. The green line at small values of the lattice spacing a is fit
to the green data points. The allocation of the data points to the lines is based on minimizing
the sum of horizontal and vertical squared deviations. For both lines a mean prediction band
is calculated and the respective intersections define the lattice spacing below which finite size
effects dominate. Multiplying this lattice spacing with the lattice size gives the physical size of
the homogeneous regions.

lattice. We refer to these structures as color homogeneous regions and use the finite size
effects to determine their size. The onset of finite size effects is identified by fitting two
lines to the curve and looking for their intersection. The mean prediction bands of these
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fits are used to quantify the error. Multiplying the lattice spacing in physical units at
which the finite size effects set in with the lattice extent gives a rough estimate of the
size of the homogeneous regions in physical units. For physical objects the size has to be
independent of the lattice size. This allows to collect more statistics by repeating the
measurements in different sized lattices.

The homogeneities along the vortex surface for the different smoothing procedures
without applied cooling are shown in Fig. 4.12. Observe the similarity of smoothing 1

Figure 4.12: Averaged over 100 configurations, the S2-homogeneity along the vortex surface is
compared for different lattice sizes and smoothing procedures. With increasing lattice size the
curves shift to smaller lattice spacing indicating finite size effects.

and smoothing 3: both saturate faster towards a constant value than smoothing 0 does.
In contrast to that, smoothing 2 does not approach a constant but decreases linearly
with increasing lattice spacing. The estimations for the size of homogeneous regions are
shown in Fig. 4.13. The bigger the lattice gets, the smaller the lattice spacing needs to
be to allow identification of the onset of finite size effects. The high values of ˛ that
are required to reach such low values of the lattice spacing may be problematic: the
correct scaling behaviour can not be guaranteed and the determination of the physical
value comes with a large error. Hence the measurements on the 124-lattice might be
flawed. We also do not consider the data from smoothing 2 trustworthy. Despite that,
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Figure 4.13: The estimation of the size of color-homogeneous regions on the vortex surface is
done by fitting two lines to the data, see Fig. 4.11. The asymmetric errors are calculated via the
mean prediction bands of the respective fits.

the high values for the size of the homogeneous regions resulting from smoothing 2 and
the 124-lattice may hint at an underestimation of the size of homogeneous regions. Thus,
we advice to keep the physical lattice extent above approximately 2:3 fm.

We will now look at the influence of cooling to see if even larger lattices are required
when cooling is applied. The estimate of the size of homogeneous regions is repeated for
different numbers of cooling steps. We only perform the determination with the lattices
of size 84 and the 104. As the deviation from the vacuum might be relevant for the color
structure, we also show the vacuum values.

The measurements after 1 cooling step are shown in Fig. 4.14. Observe that smoothing 2,
in contrast to all other smoothings, results in the homogeneity along the vortex surface
to be higher than those of the vacuum. The corresponding sizes of the homogeneous
regions are shown in Fig. 4.15. With a single cooling step no significant increase of the
sizes is seen, but this will change with increased number of cooling steps.

After 2 cooling steps only smoothing 0 results in a homogeneity along the vortex surface
below those of the vacuum, see Fig. 4.16. At small lattice spacings the homogeneities
after smoothing 2 fluctuate more strongly than they do for the other smoothings. The
error bars of the size determination increase, see Fig. 4.17. The strong fluctuations at
small lattice spacings trouble the line fit procedures that are used to determine the onset
of the finite size effects. Despite that, an overall increase of the size of homogeneous
regions can be observed.

After 3 cooling steps no smoothing procedure results in a color homogeneity of the
vortex surface clearly below those of the vacuum. With increasing lattice spacing the
homogeneities along the surface seem to approach those of the vacuum. No further
significant growth of the regions sizes can be seen due to the large error bars, see Fig. 4.15.

After 5 cooling steps each smoothing procedure results in homogeneites along the vortex
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4. Algorithmic restrictions from vortex properties

Figure 4.14: Averaged over 100 configurations, the S2-homogeneity along the vortex surface is
compared for different lattice sizes and smoothing procedures after 1 cooling step. Observe that
cooling increases the overall homogeneity on the vortex surface.

Figure 4.15: After 1 cooling step the extent of homogeneous regions is not significantly bigger
than without cooling.

surface clearly above those of the vacuum, see Fig. 4.20. The error bars of the sizes
become even larger and no significant further increase can be observed as can be seen in
Fig. 4.21.

The last number of cooling steps to be tested is 10. The respective homogeneities are
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4.2. Color structure

Figure 4.16: Averaged over 100 configurations, the S2-homogeneity along the vortex surface is
compared for different lattice sizes and smoothing procedures after 2 cooling steps. Observe that
for smoothing 1 and smoothing 3 the homogeneity along the vortex is no longer distinguishable
from the vacuum.

Figure 4.17: After 2 cooling steps only a small increase of the size can be observed.

depicted in Figure 4.22. The size estimates for homogeneous regions can be seen in
Fig. 4.23.

To combine the different measurements of lattice sizes and smoothing procedures we
interpreted each data point with its error as a set of three datapoints without error and
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4. Algorithmic restrictions from vortex properties

Figure 4.18: Averaged over 100 configurations, the S2-homogeneity along the vortex surface is
compared for different lattice sizes and smoothing procedures after 3 cooling steps. Observe that
the cooling cause the vortex surface to become more homogeneous than the surrounding vacuum
for all smoothing procedures except smoothing 0.

Figure 4.19: After 3 cooling steps the increase of the size seems to slow down.

determine their average and standard deviation for the respective numbers of cooling
steps. All data except those from smoothing 2 and the 124 lattice are combined to
determine the dependence of the size of color homogeneous regions on the number of
cooling steps. The results are depicted in Fig. 4.24. Observe that the growth of the
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4.2. Color structure

Figure 4.20: Averaged over 100 configurations, the S2-homogeneity along the vortex surface is
compared for different lattice sizes and smoothing procedures after 5 cooling steps. Observe that
every smoothing procedure results in the vortex being more homogeneous than the surrounding
vacuum and the finite size effects persist.

Figure 4.21: After 5 cooling steps, no clear further increase of the size of the color-homogeneous
regions can be observed.

homogeneous regions saturates: The regions do not grow arbitrarily large with cooling.
This is compatible to the growth of the flux tubes that was discussed in Section 4.1.
Thus, we do not need to take a growth of the color homogeneous regions due to cooling
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4. Algorithmic restrictions from vortex properties

Figure 4.22: Averaged over 100 configurations, the S2-homogeneity along the vortex surface is
compared for different lattice sizes and smoothing procedures after 10 cooling steps.

Figure 4.23: After 10 cooling steps one observes that the growth of color homogeneous regions
has saturated.

into account and can enforce that the physical lattice extent stays above ≈ 2:3 fm to
preserve color homogeneous regions. We obtain the following upper bounds for ˛ in
dependence of the lattice size: Including these stronger bounds in the scaling windows as
given in Table 4.4, we attain the stronger limits presented in the following.
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4.3. Combined restrictions

Figure 4.24: The dependence of the size of homogeneous regions on the number of cooling
steps is estimated by combining the data from the lattice sizes 84, 104, respective smoothing 0,
smoothing 1 and smoothing 3.

Lattice size 104 124 144 204 304 404 504

˛ lower bound / 2:18 / 2:25 / 2:3 / 2:41 / 2:52 / 2:61 / 2:7

Table 4.5: Upper bounds of ˛ for different lattice sizes to ensure that the lattice is big enough
for the color homogeneous regions.

4.3 Combined restrictions
We now take into account the finite size of color-homogeneous regions and the growth of
the flux tube due to cooling. The scaling windows given in Table 4.4 get more narrow: A
lattice size below 104 is no longer trustworthy, the number of possible cooling steps is
reduced and the upper limits of ˛ are lowered, see Table 4.6. Within these ˛-intervals
we expect, that the correct scaling behaviour is approached with increasing ˛. Below
these limits the separation between neighbouring flux tubes may be smaller than one
lattice spacing. This can cause the vortex detection to fail due to a loss of non-trivial
center regions. Above the upper limits of ˛, the closedness of the flux tubes that build
the vortex surface or the extent of color homogeneous regions can come in conflict with
the lattice size. The latter may lead to a loss of color structure.
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4. Algorithmic restrictions from vortex properties

Table 4.6: For different numbers of cooling steps and different lattice extents, the table gives
a lower and an upper limit for ˛ based on the more cautious estimates of the cross-section of
vortex piercings. “None” indicates that the limits exclude one another. Outside this window a
successful vortex detection can not be expected.

Ncool \ L 10 14 20 30 40 50

0
2:12

2:39

2:12

2:48

2:12

2:58

2:12

2:73

2:12

2:84

2:12

2:92

1
2:14

2:18

2:14

2:3

2:14

2:41

2:14

2:52

2:14

2:61

2:14

2:7

2
2:16

2:18

2:16

2:3

2:16

2:41

2:16

2:52

2:16

2:61

2:16

2:7

3 None
2:19

2:3

2:19

2:41

2:19

2:52

2:19

2:61

2:19

2:7

5 None
2:23

2:3

2:23

2:41

2:23

2:52

2:23

2:61

2:23

2:7

10 None None
2:34

2:41

2:34

2:52

2:34

2:61

2:34

2:7

15 None None None
2:44

2:52

2:44

2:61

2:44

2:7

20 None None None None
2:54

2:61

2:54

2:7

25 None None None None None
2:66

2:7
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CHAPTER 5
Future outlook and perspectives

With the obtained data further possibilities to improve the vortex detection became
apparent. Our current implementation is troubled if two thick vortex flux tubes get closer
than one lattice spacing. In such a scenario the algorithm may fail to distinguish them
and results in the flux tubes being not enclosed by non-trivial center regions. This in turn
can cause a loss of P-vortices. It may be counteracted by allowing overlaps of non-trivial
center regions during the procedure presented in section 3.1. Uncontrolled overlaps may
lead to double counting of regions because they can cause redundant regions to arise
from the detection procedures. This can be prevented by limiting the overlaps extent to
a single lattice spacing.
In section 4.2 we found that smoothing procedures may cause a loss of color structure,
especially, if they modify the topology of the vortex. The identification of thick vortices,
that is, the identification of non-trivial center regions that enclose P-plaquettes, could
lead to improved smoothing procedures: We expect that the flux line building the P-
vortex does not follow exactly the core of the thick flux tube but fluctuates around it.
These fluctuations are gauge dependent and relate to a rough vortex surface that can
be further smoothed without influencing the topology of the vortex. In the vicinity of
perpendicular non-trivial center regions we expect the center flux line to bend along the
curved thick vortex flux tube. Smoothing can be accomplished by shifting P-plaquettes
within the surrounding non-trivial center region. Finally a minimal vortex surface should
be achieved. It should preserve the topology of the vortex whilst resulting in a smooth
surface. This could also reduce the gauge dependence of P-vortices preventing gauge
ambiguities.
The restrictions on the lattice parameters that were presented in sections 4.1 and 4.2 and
combined in section 4.3 may be stronger than required. By testing the scaling behaviour
of the string tension one may find that the scaling window is larger than expected. It
would be also interesting to test whether the scaling behaviour is reproduced for given
number of cooling steps in sufficiently large lattices. With 5 cooling steps the lattice
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5. Future outlook and perspectives

size required for a full restoration of the string tension should be reachable with present
computational power.

When generalizing to SU(3), two different non-trivial center elements need to be taken
care of instead of one. This gives rise to splitting and fusing of vortex surfaces. The
generalization can be done in two different ways: Either each of the two non-trivial
center elements of SU(3) is treated separately, that is, one looks for two different types
of non-trivial center regions and considers these two types independent of one another.
In this approach, overlaps of non-trivial center regions of different type would be ignored
and the gauge fixing procedure needs to fit the flux lines accordingly. No modification of
the algorithms for detecting non-trivial center regions would be needed and they could
be executed in parallel for the two non-trivial center elements. Another approach could
be based on the modification of the growing procedure for non-trivial center regions:
instead of letting the region grow so that a specific center-element is approached, one
could let the region approach the nearest non-trivial center element in each enlargement
step. Each lattice slice would be subdivided into non-overlapping center regions and the
Guided Maximal Center gauge could be used without the need of modifications.

Let us now discuss future research possibilities regarding the vortex structure that arise
from our notion of the S2-homogeneity. In section 4.2 we looked at finite size effects of
the color homogeneity along the vortex surface, but did not distinguish between straight
or curved flux. Repeating the measurements for straight and curved surfaces separately
would allow to gain more insight on the correlation of curvature and color-structure. This
could pave the way for further improvements of the smoothing procedures: it could allow
to distinguish irrelevant fluctuations of the vortex surface from fluctuations relevant for
the color structure. One could also look for finite size effects in the planar sector, that is,
the cross-section of the flux tubes. Such finite size effects would hint at a finite thickness
of the vortex surface in the continuums limit.

Let us end now with a recapitulation of the vortex picture as arising from this work:

The vortex surface is built from closed center flux lines evolving in time. On the lattice
this flux lines get a finite diameter and a vortex surface of finite thickness is built by flux
tubes evolving in time. The flux tubes cross section is homogeneous with respect to the
color when compared to the surrounding vacuum, remember the left side of Fig. 4.9. The
color along the flux tube is less homogeneous than the surrounding vacuum if the flux tube
is curved but more homogeneous if it is straight: Curvature correlates to inhomogeneity.
When cooling is applied, the flux tube diameter increases, but this growth seems to
have an upper limit as was shown in section 4.1. Also a limited enlargement of color
homogeneous regions was found in section 4.2.

The usage of center regions proofed successful at the detection of thick center vortices.
In combination with the notion of S2-homogeneity it allowed for new analyses of the
center vortex structure and opens up possibilities for future research.
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