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Abstract. We present a shift theorem for solutions of the Poisson equation in a finite
planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary
conditions. The range in which the shift theorem holds depends on the angle of the cone.
For the right endpoint of the range, the shift theorem is described in terms of Besov spaces
rather than Sobolev spaces.
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1. Introduction

The classical shift theorem for second order elliptic boundary value problems ex-

presses the observation that regularity of the solution u is two Sobolev orders better

than the right-hand side f . For example, for the Laplacian with Dirichlet boundary

conditions and smooth domains, this shift theorem takes the form

(1.1) f ∈ H−1+s implies u ∈ H1+s

for any s > 0 [19], [22], Chapter 2. In 2D polygonal domains or even Lipschitz

domains, the shift theorem (1.1) is still valid, however, for a restricted range of

values s ∈ [0, s0), where s0 = 1/2 for Lipschitz domains [36] and s0 > 1/2 for
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polygonal Ω depends on the interior angles of Ω [22]. While the shift theorem does

not hold in the limiting case s = s0 in the scale of Sobolev spaces, we show that it

holds in suitable Besov spaces.

We prove the shift theorem in the limiting case s = s0 using the well-known expan-

sion of the solution in terms of singularity functions. For the purpose of exposition,

consider a cone C with apex at the origin and angle ω > π. Then, near the origin,

a solution u ∈ H1(C) of the Dirichlet problem can be written as

(1.2) u = S(f)s+χ+ u0,

where s+ is a known singularity function (see (2.14), where s+ = sD1 ), χ is a smooth

cut-off function with χ ≡ 1 near the origin, u0 ∈ H2 for f ∈ L2, and f 7→ S(f) is

a linear functional. We prove the shift theorem in Besov spaces for the limiting case

using three ingredients:

(i) we assert that s+ ∈ Bα
2,∞ for a Besov space B

α
2,∞;

(ii) we show that f 7→ S(f) is a linear functional on a Besov space of the type Bα′

2,1;

(iii) we use the Mellin calculus to get a shift theorem for the mapping f 7→ u0.

Shift theorems involving Besov spaces for the endpoints of the Sobolev scale

have been shown to be appropriate in [36], Theorem 2. For Lipschitz domains

and Dirichlet conditions, it is shown that the solution u of the Poisson problem

−∇· (a∇u) = f (with sufficiently regular positive definite a) satisfies ‖u‖
B

1+1/2
2,∞ (Ω)

.

‖f‖
B

−1+1/2
2,1 (Ω)

. (A similar result holds for Neumann boundary conditions.) The

proof relies on difference quotient techniques that are adapted to Dirichlet or

Neumann conditions; an extension to mixed boundary conditions has to im-

pose convexity conditions on the geometry [18], [17]. The endpoint result of

the shift theorem of [36], Theorem 2, implies by interpolation the regularity re-

sult for the Poisson problem of [25], Theorems 1.1, 1.3, which was obtained by

a completely different method, namely, tools from harmonic analysis, although

interpolation spaces are employed en route; these tools from harmonic analy-

sis allow one to show shift theorems up to 1/2 in scales of Sobolev spaces for

the Dirichlet or Neumann Laplace problem (i.e., homogeneous right-hand side

but inhomogeneous boundary conditions) on Lipschitz domains including the end-

point 1/2 [23], [24].

Moving from general Lipschitz domains to polygonal (in 2D) or polyhedral

(in 3D) gives the solution more structure. A powerful way to describe the solu-

tion structure consists in expansions of the form (1.2) and the Mellin calculus to

derive these expansions. Expansions in corner domains started with the seminal

work on 2D corner domains in [26]; a comprehensive discussion of the 2D case

was achieved in [22], [21]. The much more complex higher-dimensional cases and
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higher order equations and even certain nonlinear equations were addressed in [29],

in [15], and in [11], [12], [22], [15], [34], [27], [28], [33], [30]. Formulas for the

linear functionals f 7→ S(f) alluded to above go back to the work by Maz’ya and

Plamenevskij [28].

Describing solutions in terms of expansions of the form (1.2) leads to a further

possible regularity theory for solutions of elliptic boundary value problems in corner

domains, namely, the use of weighted spaces, which has applications to finite element

approximation theory on graded meshes [3]. While corner weighted spaces of finite

regularity are a natural habitat of solutions and data in the framework of the Mellin

calculus, weighted analytic regularity for problems in corner domains was developed

by Babuška and Guo in [1], [2] for polygonal domains and by Costabel, Dauge, and

Nicaise in [10] for polyhedra.

Elliptic shift theorems in Besov spaces have been derived in [14], [13] with a view to

characterize optimal convergence rates for adaptive numerical methods. Our present

focus on the limiting case s = s0 is close to the works [5], [7], [6]. Indeed, [6] obtains

the same shift theorem as we do but effectively restricts the attention to convex

domains with one corner with interior angles between π/2 and π; [7] restricts to non-

convex domains and right-hand sides f in a Besov space that is the interpolation

space between H−1 and a subspace of L2 of co-dimension 1.

In the present work, by analyzing the singularity function s+ and the associated

linear functional f 7→ S(f) in (1.2), we are able to lift these restrictions of [7], [6] and

show in Theorem 1.1 a local shift theorem near a corner without restrictions on the

interior angle in the framework of standard Besov spaces. Additionally, we explicitly

consider Dirichlet, Neumann, and mixed boundary conditions.

Our proof of the limiting case of the shift theorem relies on expansions in singular-

ity functions and rather explicit formulas for the stress intensity functions. Exten-

sions to 3D might be possible for geometries with point singularities; the presence of

edge singularities would require new tools.

Our main result, Theorem 1.1, is formulated in terms of L2-based Besov spaces.

Besov spaces based on Lp-spaces can alternatively be considered. In Section 5 we

briefly indicate that endpoint results in such Lp-based Besov spaces can be obtained

by the same approach.

1.1. Notation.

1.1.1. Interpolation spaces. For Banach spaces (X0, ‖·‖X0), (X1, ‖·‖X1) with

continuous embedding X1 ⊂ X0 and θ ∈ (0, 1), q ∈ [1,∞], we define with the so-

called “real method”/“K-method” the interpolation spaces Xθ,q := (X0, X1)θ,q :=
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{u ∈ X0 | ‖u‖(X0,X1)θ,q < ∞}, where the norm ‖u‖Xθ,q
:= ‖u‖(X0,X1)θ,q is given by

(1.3) ‖u‖Xθ,q
:= ‖u‖(X0,X1)θ,q :=





(∫ ∞

t=0

(t−θK(t, u))q
dt

t

)1/q

, q ∈ [1,∞),

sup
t>0

t−θK(t, u), q = ∞

with the K-functional

K(t, u) = inf
v∈X1

‖u− v‖X0 + t‖v‖X1 .

We refer to [31], [37], [39] for discussions of interpolation spaces. We have the con-

tinuous embedding Xθ,q ⊂ Xθ′,q′ if θ > θ′ (q, q′ arbitrary) or θ = θ′ and q 6 q′. We

highlight that in the present case ofX1 ⊂ X0, the integral
∫∞

0
in (1.3) can actually be

replaced with the finite integral
∫ 1

0 , [16], Chapter 6, Section 7. An important prop-

erty of interpolation spaces is the Reiteration Theorem [37], Theorem 26.3, which

states that for 0 6 θ1 < θ2 6 1 and arbitrary θ ∈ (0, 1), q1, q2, q ∈ [1,∞], one has

(with norm equivalence) (Xθ1,q1 , Xθ2,q2)θ,q = Xθ1(1−θ)+θ2θ,q.

1.1.2. Sobolev and Besov spaces. For domains D ⊂ R
d, d ∈ {1, 2}, we

employ the usual Sobolev spaces Hs(D) and H̃s(D) for s ∈ R as described in,

e.g., [31] or [38]. To be specific and following [31], with the space S⋆ of tem-

pered distributions and the Fourier transformation F , the spaces Hs(Rd) are given

by Hs(Rd) = {u ∈ S⋆ | ‖u‖2Hs(Rd) :=
∫
ξ∈Rd(1 + |ξ|2)s|Fu|2 dξ < ∞}. We set

Hs(D) := {u ∈ D⋆(D) | u = U |D for some U ∈ Hs(Rd)} with the norm ‖u‖Hs(D) :=

inf{‖U‖Hs(Rd) | U |D = u}, where D⋆(D) denotes the space of distributions on D.

We set H̃s(D) := {u ∈ Hs(Rd) | suppu ⊂ D} with the norm ‖u‖H̃s(D) = ‖u‖Hs(Rd).

(The space H̃s(D) is denoted Hs
D
in [31], page 76, but coincides with the space

H̃s(D) defined in [31], page 77 by [31], Theorem 3.29.) An important relation of

these spaces is the duality relation [31], Theorem 3.30

H̃−s(D) = (Hs(D))⋆, H−s(D) = (H̃s(D))⋆, s ∈ R.

Furthermore, one has H0(D) = H̃0(D) = L2(D) and, by [22], Corollary 1.4.4.5, for

s ∈ (0, 1/2) and by duality for s ∈ (−1/2, 0),

(1.4) Hs(D) = H̃s(D), |s| < 1/2.

The two scales Hs(D), H̃s(D), s ∈ R, of Sobolev spaces are scales of interpolation

spaces: by [31], Theorems B.8, B.9 we have for s1, s2 ∈ R, θ ∈ (0, 1),

(1.5)

(Hs1(D), Hs2 (D))θ,2 = H(1−θ)s1+θs2(D), (H̃s1(D), H̃s2(D))θ,2 = H̃(1−θ)s1+θs2(D).
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The scales of Besov spaces Bs
2,q(D) and B̃s

2,q(D) are defined by interpolating between

Sobolev spaces: given s ∈ R, select s1 < s < s2 and set with θ := (s− s1)/(s2 − s1)

(1.6) Bs
2,q(D) := (Hs1(D), Hs2(D))θ,q, B̃s

2,q(D) := (H̃s1(D), H̃s2(D))θ,q.

The Reiteration Theorem [37], Theorem 26.3, asserts that the precise choice of s1, s2
is immaterial. The formula (1.4) also implies

(1.7) Bs
2,q(D) = B̃s

2,q(D), |s| < 1

2
, q ∈ [1,∞].

1.2. Setting and main results. We study the regularity of solutions of ellip-

tic problems in a cone. For an angle ω ∈ (0, 2π) we therefore introduce in polar

coordinates1 (r, ϕ) the cone C and the truncated cones CR by

C := {(r cosϕ, r sinϕ) | r > 0, ϕ ∈ G}, G := (0, ω),(1.8)

CR := C ∩BR(0),(1.9)

where Br(0) ⊂ R
2 denotes the (open) ball of radius r > 0 centered at 0. The two

lateral sides of C are Γ0 = {(r, 0) | r > 0} and Γω = {(r cosω, r sinω) | r > 0}.
The three boundary parts of CR are Γ0,R = Γ0 ∩ BR(0), Γω,R = Γω ∩ BR(0), and

Γ̃R := {(R cosϕ,R sinϕ) | ϕ ∈ (0, ω)}. We consider H1(CR)-functions u that satisfy

−∆u = f in CR,(1.10a)

u = 0 on ΓD,(1.10b)

∂nu = 0 on ΓN .(1.10c)

Concerning the boundary conditions, we consider three cases:

⊲ Dirichlet case: ΓD = Γ0,R ∪ Γω,R and ΓN = ∅;
⊲ Neumann case: ΓN = Γ0,R ∪ Γω,R and ΓD = ∅;
⊲ mixed case: ΓD = Γ0,R and ΓN = Γω,R.

The equation (1.10) is understood in a weak sense. That is, we define the space

H1
D(CR) := {v ∈ H1(CR) | v|Γ̃R∪ΓD

= 0} and its dual H−1
D (CR) := (H1

D(CR))⋆. The
minimal regularity assumption for (1.10) is f ∈ H−1

D (CR). Then, u ∈ H1(CR) solves
(1.10) if u|ΓD = 0 (in the sense of traces) and the equations (1.10a), (1.10c) are

satisfied in a weak sense, i.e.,

∫

CR

∇u · ∇v = 〈f, v〉H−1
D (CR)×H1

D(CR) ∀ v ∈ H1
D(CR).

1 Throughout, we freely identify points x = (x, y) ∈ R
2 either in Cartesian or polar

coordinates (r,ϕ).
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For the solutions u of (1.10), we have the following result:

Theorem 1.1 (shift theorem, Besov spaces). Let ω ∈ (0, 2π). Fix 0 < R′ < R.

Let f ∈ H−1
D (CR), and let χR ∈ C∞

0 (BR(0)) with χR ≡ 1 on BR′(0). Then for

a solution u ∈ H1(CR) of (1.10) the following statements hold with implied constants
depending only on ω, R, R′, and χR:

(i) Dirichlet case: For χRf ∈ B
π/ω−1
2,1 (CR) one has u ∈ B

π/ω+1
2,∞ (CR′) with the

estimate

(1.11) ‖u‖
B

π/ω+1
2,∞ (CR′ )

. ‖χRf‖Bπ/ω−1
2,1 (CR)

+ ‖u‖H1(CR).

(ii) Neumann case: For χRf ∈ B
π/ω−1
2,1 (CR) one has u ∈ B

π/ω+1
2,∞ (CR′) with the

estimate

(1.12) ‖u‖
B

π/ω+1
2,∞ (CR′ )

. ‖χRf‖Bπ/ω−1
2,1 (CR)

+ ‖u‖H1(CR).

(iii) Mixed case: If χRf ∈ B̃
π/(2ω)−1
2,1 (CR) (if ω > π/2) or χRf ∈ B

π/(2ω)−1
2,1 (CR) (if

ω < π/2) one has u ∈ B
1+π/(2ω)
2,∞ (CR′) with the estimate

(1.13) ‖u‖
B

1+π/(2ω)
2,∞ (CR′ )

.

{ ‖χRf‖B−1+π/(2ω)
2,1 (CR)

+ ‖u‖H1(CR) if ω < π/2,

‖χRf‖B̃−1+π/(2ω)
2,1 (CR)

+ ‖u‖H1(CR) if ω > π/2.

P r o o f. Item (i) is shown in Section 2, item (ii) is discussed in Section 3, and

item (iii) in Section 4. �

R em a r k 1.2. The cases ω = π for Dirichlet and Neumann boundary conditions

can be sharpened. This case corresponds to a smooth geometry so that by standard

elliptic regularity theory [19], [20] the solution is as smooth as the right-hand side f

permits near the origin, i.e., one has estimates of the form

‖u‖H1+s(CR′) . ‖χRf‖H−1+s(CR) + ‖u‖H1(CR)

for all s > 0. The implied constant additionally depends on s. Likewise for mixed

boundary conditions in the case ω = π/2 and the present setting of homogeneous

boundary conditions, the shift theorem holds in a larger range as can be seen from

the proof of Theorem 1.1 (iii).

Theorem 1.1 discusses a limiting case of the shift theorem. With similar techniques

as those used in the proof of Theorem 1.1, one can show a shift theorem in a range

of regularity indices:
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Corollary 1.3. Assume the hypotheses and notation of Theorem 1.1.

(i) Dirichlet case: A solution u ∈ H1(CR) of (1.10) satisfies for 0 < s < π/ω and

q ∈ [1,∞]

(1.14) ‖u‖Bs+1
2,q (CR′ ) . ‖χRf‖Bs−1

2,q (CR) + ‖u‖H1(CR).

(ii) Neumann case: A solution u ∈ H1(CR) of (1.10) satisfies for 0 < s < π/ω and

q ∈ [1,∞]

(1.15) ‖u‖Bs+1
2,q (CR′) .

{
‖χRf‖B̃s−1

2,q (CR) + ‖u‖H1(CR) if s < 1,

‖χRf‖Bs−1
2,q (CR) + ‖u‖H1(CR) if s > 1.

(iii) Mixed case: A solution u ∈ H1(CR) of (1.10) satisfies for 0 < s < π/(2ω) and

q ∈ [1,∞]

(1.16) ‖u‖Bs+1
2,q (CR′)

.

{
‖χRf‖B̃s−1

2,q (CR) + ‖u‖H1(CR) if s < 1,

‖χRf‖Bs−1
2,q (CR) + ‖u‖H1(CR) if s > 1.

P r o o f. The result follows by inspection of the proof of Theorem 1.1. For

example, for the case of Dirichlet conditions, the proof rests on two ingredients: (a)

the shift theorem for the operator T̃ of (2.36) and (b) the estimate of the function f̃

in (2.34). The operator T̃ of (2.36) is directly amenable to interpolation arguments

as it maps H−1 → H1 and, by (2.37), B
π/ω−1
2,1 → B

π/ω+1
2,∞ . Inspection of the proof

of (2.34) leads to having to control ‖∇χR · ∇u‖B−1+s
2,q

and ‖∆χRu‖B−1+s
2,q
. These

terms can be estimated with Lemma A.2.

For the Neumann case (and similarly for the mixed case), the analysis is also

reduced to understanding the mapping properties of the corresponding operator T̃ .

If ω > π (i.e., π/ω − 1 ∈ (−1/2, 0)) one observes that B̃
π/ω−1
2,1 = B

π/ω−1
2,1 so that one

has by (3.14) the mapping properties T̃ : H̃−1 → H1 and T̃ : B̃
π/ω−1
2,1 → B

π/ω+1
2,∞ .

An interpolation argument like in the Dirichlet case concludes the argument. If

ω < π, one splits the argument into two interpolation steps. First, one observes from

Corollary 3.3 for k = 0 and ε ∈ (0, 1/2) sufficiently small that T̃ : Hε → H2+ε.

Hence, T̃ : H̃−1 → H1 and T̃ : H̃ε = Hε → H2+ε, which provides the desired result

for s ∈ (0, 1 + ε) by interpolation. For s ∈ (1, π/ω), one interpolates using the

mapping properties T̃ : Hε → H2+ε and T̃ : B
−1+π/ω
2,1 → B

1+π/ω
2,∞ provided by (3.14).

�
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2. Dirichlet boundary conditions

We start with introducing corner-weighted functions that are useful in connection

with Mellin transform techniques:

Definition 2.1 (Weighted spaces). For s ∈ N0 and γ ∈ R, we put

Ks
γ(C) :=

{
u ∈ L2

loc(C) | ‖u‖2Ks
γ(C)

:=
∑

|α|6s

‖r|α|−s+γDαu‖2L2(C) < ∞, |α| 6 s

}
.

The spaces Ks
γ(CR) are defined in the same way, just by replacing C by CR.

Fractional order Sobolev spaces of functions that are constrained to vanish to a cer-

tain order at the origin are shown in the following Lemma 2.2 to be subspaces of suit-

able weighted Sobolev spaces of theKs
γ-type; similar estimates with a focus on integer

order Sobolev spaces are well-known in the literature, see, e.g., [27], Chapter 7.1.

Lemma 2.2. Let f ∈ Hk+ε(C) with supp f ⊂ B1(0) for some k ∈ N0 and ε ∈ (0, 1)

and assume ∂i
x∂

j
yf(0) = 0 for i+j 6 k−1. Then f ∈ Kk

−ε(C) with the norm estimate

‖f‖Kk
−ε(C)

. ‖f‖Hk+ε(C1).

P r o o f. See Appendix A. Note that Hk+ε ⊂ Ck by Sobolev embedding. �

2.1. A recap of regularity based on the Mellin calculus.

2.1.1. Preliminaries. The following properties of the Mellin transformation are

at the heart of the analysis of [26], [15], [27], [28], [33], [30] and are collected in [9],

Section 3; we also refer to [35], Chapter 3 for detailed proofs. For a sufficiently

regular function u on the cone C, we define its Mellin transformM[u] by

(2.1) M[u](ζ, ϕ) :=
1√
2π

∫ ∞

r=0

r−iζ ũ(r, ϕ)
dr

r
,

where ũ(r, ϕ) = u(r cosϕ, r sinϕ), i.e., the representation of u in polar coordinates.

We emphasize, however, that henceforth we will write u for the function both in

Cartesian and polar coordinates. The Mellin transformation is connected to the

Fourier transformation in that one has with the change of variables r = et

M[u](ζ, ϕ) =
1√
2π

∫ ∞

t=−∞

e−iζtu(et, ϕ) dt.
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This connection with the Fourier transformation is at the heart of the following norm

equivalence: if u(·, ϕ) ∈ L2(0,∞), then M[u](·, ϕ) is in L2(R − i) with equivalent

norms, and the inverse Mellin transform correspondingly takes the form

u =
1√
2π

∫

Im ζ=−i

riζM[u](ζ, ϕ) dζ.

More generally, one has for k ∈ N0 and γ ∈ R the norm equivalence

‖u‖2Kk
γ (C)

∼
∫

ξ∈R

‖M[u](ξ − iη)‖2Hk(G;|ξ|) dξ,

‖v‖2Hk(G;|ξ|) :=
∑

j6k

(1 + |ξ|2)k−j‖∂j
ϕv‖2L2(G), η := k − γ − 1,

where we view the Mellin transformation, which acts only on the variable r (with the

dual variable ζ) as a mapping from Kk
γ (C) into a space of Hk(G)-valued functions.

A final important property of the Mellin transformation is that if u ∈ Kk
γ (C) satisfies

additionally suppu ⊂ B1(0), then, by a variant of the Paley-Wiener Theorem,M[u]

is actually holomorphic on {z ∈ C | Im z > −η}. This property allows one to use the
Cauchy integral theorem/residue theorem, whose use leads to expansions in terms of

corner singularity functions.

2.1.2. The isomorphism in weighted spaces and expansion in corner

singularity functions. Let k ∈ N0 and ε ∈ (0, 1). Consider f ∈ Hk+ε(C) with
supp f ⊆ B1(0) and ∂i

x∂
j
yf(0) = 0 for i + j 6 k − 1. For convenience, we assume

k + 1 + ε < 2π/ω. Note that by Lemma 2.2 the function f ∈ Kk
−ε(C). Assume that

u1 ∈ H1(C) with suppu1 ⊆ B1(0) solves the problem

(2.2) −∆u1 = f ∈ Hk+ε(C), u1 = 0 on Γ0 and Γω.

Further we pose the auxiliary problem

(2.3) −∆u0 = f ∈ Kk
−ε(C), u0 = 0 on Γ0 and Γω.

This latter problem admits a unique solution u0 ∈ Kk+2
−ε (C) by the Mellin calculus

going back to [26] with the norm estimate ‖u0‖Kk+2
−ε (C) . ‖f‖Kk

−ε(C)
(see, e.g., [27],

Section 6.1.8, [15], or [35] for more details). By elliptic regularity based on a dyadic

decomposition of the cone C (see Lemma A.3), one actually has u0 ∈ Hk+2+ε(CR)
with the estimate ‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C) for each fixed R > 1. Following the
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classical path, we now analyze the relation of the solutions u0 and u1. The Mellin

transformation yields

L(ζ)M[u1] = M[g] on {ζ ∈ C : Im ζ > 0},(2.4)

L(ζ)M[u0] = M[g] on {ζ ∈ C : Im ζ = −1− k − ε}(2.5)

with the operator L(ζ) := (−∂2
ϕ + ζ2) andM[g] being the Mellin transform of the

function g = r2f . Note that M[g] is holomorphic on {ζ ∈ C : Im ζ > −1 − k − ε}
with values in Hk(G) and that M[u1] is holomorphic on {ζ ∈ C : Im ζ > 0} with
values in H2(G). Since the operator (L(ζ))−1 is meromorphic on C with poles at

the discrete set

(2.6) ±iσD with σD := {λD
n | n ∈ N}, λD

n := n
π

ω
,

we observe that M[u1] can be extended meromorphically to {ζ ∈ C : Im ζ > −1 −
k − ε} by

U(ζ) := M[u1](ζ) := (L(ζ))−1M[g](ζ).

Let us mention that U(ζ) andM[u0](ζ) coincide on {ζ ∈ C | Im ζ = −1− k− ε}, as
well as U(ζ) and Mu1(ζ) on {Im ζ = 0}. Inverse transformations and the Residue
Theorem then lead to

(2.7) u0 − u1 =
∑

ζ0∈−iσD :
Im ζ0∈(−1−k−ε,0)

2πi√
2π

Res
ζ=ζ0

(riζ(L(ζ))−1M[g](ζ)).

Since we assumed k + 1 + ε < 2π/ω, the sum in (2.7) has at most one term. Deter-

mining the residue yields

u1 =





u0, if k + 1 + ε <
π

ω
,

u0 −
1

π

(∫

C

r−λD
1 sin(λ1ϕ)f(x) dx

)
rλ

D
1 sin(λD

1 ϕ), if 1 + k + ε >
π

ω

with u0 ∈ Hk+2+ε(CR) for any chosen R > 0. These observations are collected in

the following result, cf. [27], Section 6.1.8.

Proposition 2.3. Let R > 0. Let k ∈ N0 and ε ∈ (0, 1) satisfy k + 1+ ε < λD
2 =

2π/ω and k + 1 + ε 6= λD
1 = π/ω. Let f ∈ Hk+ε(C) with supp f ⊆ B1(0). Further

assume ∂i
x∂

j
yf(0) = 0 for i + j 6 k − 1. Then u1 ∈ H1(C) with suppu1 ⊆ B1(0)

solving

(2.8) −∆u1 = f ∈ Hk+ε(C), u1 = 0 for ϕ ∈ {0, ω},
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has the form

(2.9) u1 =





u0, if
π

ω
= λD

1 > k + ε+ 1,

u0 −
1

π

(∫

C

r−λD
1 sin(λD

1 ϕ)f(x) dx

)
rλ

D
1 sin(λD

1 ϕ),

if
π

ω
= λD

1 < k + ε+ 1 < λD
2

for a u0 ∈ Hk+2+ε(CR) with the estimate

‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C1).

The next lemma allows us to remove from Proposition 2.3 the condition that f

vanish to order k − 1 at zero.

Lemma 2.4. Let i, j, k ∈ N0 with i + j = k. Set ΣD
k+2 := {n ∈ {2, . . . , k + 2} |

nω/π ∈ N} and SD
k+2 := span{rn(ln r sin(nϕ) + ϕ cos(nϕ)) | n ∈ ΣD

k+2}. Then there
is a polynomial p̃i,j of degree k + 2 and a harmonic function p′i,j ∈ SD

k+2 such that

pDi,j := p̃i,j + p′i,j satisfies

−∆pDi,j = xiyj on C, pDi,j |Γ = 0.(2.10)

In the special case ω = π, the contribution p′i,j may be taken to be zero.

P r o o f. Step 1: There is a polynomial p̂k+2 of degree k+2 such that −∆p̂k+2 =

xiyj . This is shown by induction on j: one observes for any i ∈ N0 that ∆xi+2y0 =

(i+ 2)(i+ 1)xiy0 so the case j = 0 is shown; the formula

∆(xi+2yj+1) = (i + 2)(i+ 1)xiyj+1 + (j + 1)jxi+2yj−1

provides the induction step from j to j + 1.

Step 2: If ω = π, then the boundary condition on the line {y = 0} can be enforced
by subtracting a suitable harmonic polynomial Re

k+2∑
n=0

anz
n with z = x + iy and

coefficients an ∈ R.

Step 3: If ω 6= π, then the boundary condition at ϕ = 0 is again enforced by

subtracting a suitable harmonic polynomial of the form Re
k+2∑
n=0

anz
n. To correct the

boundary condition at ϕ = ω, we note (see, e.g., [32], Lemma 6.1.1) that Im zn =

rn sin(nϕ) and Im(zn ln z) = rn(ln r sin(nϕ) + ϕ cos(nϕ)). Both functions vanish on

ϕ = 0 and are harmonic. Next, we can match a function of the form rn on the

line ϕ = ω by either Im zn if nω/π /∈ N or by Im zn ln z if nω/π ∈ N. The function

Im (z ln z) is not required in the set SD
k+2 since the case 1 · ω/π ∈ N can only arise

for ω = π. �
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Corollary 2.5. Let R > 0. Let k ∈ N0 and ε ∈ (0, 1) satisfy k + 1 + ε < λD
2 =

2π/ω and k + 1 + ε 6= λD
1 = π/ω. Let f ∈ Hk+ε(C) with supp f ⊆ B1(0). Let

χ ∈ C∞
0 (B1(0)) with χ ≡ 1 near the origin. Then every function u1 ∈ H1(C) with

suppu1 ⊆ B1(0) solving

(2.11) −∆u1 = f ∈ Hk+ε(C), u1 = 0 for ϕ ∈ {0, ω},

has the form u1 = u0 + χPk−1 + δ with u0 ∈ Hk+2+ε(CR),

δ =





0, if k + ε+ 1 < λD
1 =

π

ω
,

SD
1 (f)sD1 , if k + ε+ 1 > λD

1 =
π

ω
,

(2.12)

SD(f) := − 1

π

(∫

C

r−λD
1 sin(λD

1 ϕ)(f(x) + ∆(χ(x)Pk−1(x))) dx

)
,(2.13)

sD1 := rλ
D
1 sin(λD

1 ϕ),(2.14)

Pk−1(x) :=
∑

i+j6k−1

1

i!j!
pDi,j(x)(∂

i
x∂

j
yf)(0),(2.15)

and pDi,j are the fixed functions from Lemma 2.4. Furthermore,

‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C),(2.16)

‖Pk−1‖Hk+2+ε(CR) . ‖f‖Bk
2,1(C)

if ΣD
k+1 = ∅,(2.17)

‖Pk−1‖Bn⋆+1
2,∞ (CR)

. ‖f‖Bk
2,1(C)

if ΣD
k+1 6= ∅,(2.18)

n⋆ := min
{
n ∈ {2, . . . , k + 1} | nω

π

∈ N

}
,

‖∆(χPk−1)‖Hk+ε(CR) . ‖f‖Bk
2,1(C)

. ‖f‖Hk+ε(C).(2.19)

The implied constants depend only on k, ε, the angle ω, and the choice of the cut-off

function χ.

P r o o f. We only consider k > 1, since the claim for k = 0 is a restatement of

Proposition 2.3 and P−1 = 0.

Step 1: Lemma 2.4 provides functions pDi,j such that the function

Pk−1 =
∑

i+j6k−1

1

i!j!
pDi,j(∂

i
x∂

j
yf)(0)

solves the problem

(2.20) −∆Pk−1 =
∑

i+j6k−1

1

i!j!
xiyj(∂i

x∂
j
yf)(0), Pk−1 = 0 for ϕ ∈ {0, ω}.

We have for k > 1 the embedding Bk
2,1 ⊂ Ck−1, which is asserted in [38], The-

orem 2.8.1 (c) and could, alternatively, be obtained by combining the classical
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Gagliardo inequality (in 2D) ‖∇ju‖L∞ . ‖u‖θHk+1‖u‖1−θ
L2 with θ = (j + 1)/(k + 1)

for 0 6 j 6 k−1 with the result [37], Theorem 25.3. In view of (2.15), this embedding

leads to the estimates (2.17), (2.18): In the first case, ΣD
k+1 = ∅, the functions pDi,j

are polynomials (and hence smooth). In the second case, ΣD
k+1 6= ∅, the functions pDi,j

are sums of polynomials, which are smooth, and functions p′i,j ∈ SD
k+1, which are in

Bn⋆+1
2,∞ (C1) by Lemma 2.6 (iv) ahead.
Step 2: We now define ũ1 := u1−χPk−1, which also has support in B1(0). Since u1

solves (2.11), the function ũ1 ∈ H1(C) solves the problem

(2.21) −∆ũ1 = f̃ := f +∆(χPk−1) ∈ Hk+ε(C), ũ1 = 0 for ϕ ∈ {0, ω}.

By construction of Pk−1, the right-hand side f̃ satisfies

(2.22) ∂i
x∂

j
y f̃(0) = 0 for i+ j 6 k − 1.

Thus Proposition 2.3 can be applied to the problem (2.21), and we obtain

ũ1 =





u0, if k + 1 + ε < λD
1 =

π

ω
,

u0 −
1

π

(∫

C

r−λD
1 sin(λD

1 ϕ)f̃(x) dx

)
rλ

D
1 sin(λD

1 ϕ), if k + 1 + ε > λD
1 =

π

ω

with ‖u0‖Hk+2+ε(CR) . ‖f̃‖Hk+ε(C). To complete the proof, we distinguish the cases

ΣD
k+1 = ∅ and ΣD

k+1 6= ∅. If ΣD
k+1 = ∅, then Pk−1 is a polynomial of degree k + 1

and together with (2.17) we get ‖f̃‖Hk+ε(CR) . ‖f‖Hk+ε(CR). If Σ
D
k+1 6= ∅, then Pk−1

is the sum of a polynomial of degree k + 1, for which we can argue as in the case

ΣD
k+1 = ∅, and a harmonic contribution P ′

k+1 ∈ SD
k+1. The function P ′

k+1 is smooth

away from the origin and by harmonicity we have ∆(χP ′
k+1) = 0 near the origin so

that in total we arrive again at the estimate (2.19) and thus ‖f̃‖Hk+ε(C) . ‖f‖Hk+ε(C).

�

2.2. Regularity of the singularity function and the stress intensity func-

tional. The following Lemma 2.6 clarifies in which Besov spaces the singularity

functions arising in corner domains lie. The proof of Lemma 2.6 (iii), (iv) relies on

arguments given in [3] or [4], Theorem 2.1.

Lemma 2.6. The following statements hold.

(i) For α > 1, α /∈ N, set k := ⌊α⌋− 1 and let Pk−1, χ be as in Corollary 2.5. Then

the mapping

f 7→ S(f) :=

∫

C1

r−α sin(αϕ)(f +∆(χPk−1)) dx

is bounded and linear on Bα−1
2,1 (C1).
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(ii) Let 0 < α 6 1. Then the mapping

f 7→ S(f) :=

∫

C1

r−α sin(αϕ)f dx

is bounded and linear on B̃α−1
2,1 (C1). For α > 1/2, it is also bounded and linear

on Bα−1
2,1 (C1) = B̃α−1

2,1 (C1).
(iii) For β > −1, the function s+(r, ϕ) = rβ sin(βϕ) is in the space B1+β

2,∞ (C1).
(iv) Let Φ ∈ C∞(R2) with |Φ(x, y)| 6 Crn as r → 0. The functions v(x, y) =

Φ(x, y) ln r and w(x, y) = ϕΦ(x, y) are in the space Bn+1
2,∞ (C1).

(v) The statements (i), (ii), (iii) remain true if the function sin is replaced with cos.

P r o o f. (i) Choose 0 < ε ≪ 1 such that k + 1 − α+ ε < 0. By the Reiteration

Theorem [37], Theorem 26.3,

Bα−1
2,1 (C1) = (Hk+ε(C1), Bk+1

2,1 (C1))(α−k−1−ε)/(1−ε),1.

Now assume f ∈ C∞(C1), f 6= 0, the general statement will then follow by density

arguments. For

δ := min
{
‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

,
1

2
diam{x ∈ C : χ(x) = 1}

}
,

denote by χδ a smooth cut-off function that equals zero for r < δ and one for r > 2δ.

We have

(2.23) S(f) =

∫

C1

r−α sin(αϕ)χδ(f +∆(χPk−1)) dx

+

∫

C1

r−α sin(αϕ)(1 − χδ)(f +∆(χPk−1)) dx

=: S1 + S2.

The first integral, S1, is estimated by

S1 =

∣∣∣∣
∫

C1

r−α+k+ε sin(αϕ)χδ
f +∆(χPk−1)

rk+ε
dx

∣∣∣∣

.
∥∥∥f +∆(χPk−1)

rk+ε

∥∥∥
L2(C1)

∣∣∣∣
∫ 1

δ

r−2α+2k+2ε+1χ2
δ dr

∣∣∣∣
1/2

.
∥∥∥f +∆(χPk−1)

rk+ε

∥∥∥
L2(C1)

δk+1−α+ε.
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The remaining L2-norm can be handled with Lemma 2.2: We have, since ∂i
x∂

j
y(f +

∆(χPk−1))(0) = 0 for i+ j 6 k − 1, cf. (2.22),

∥∥∥f +∆(χPk−1)

rk+ε

∥∥∥
2

L2(C1)
6 ‖f +∆(χPk−1)‖2Kk

−ε(C1)

. ‖f +∆(χPk−1)‖2Hk+ε(C1)

(2.19)

. ‖f‖2Hk+ε(C1)
.

Since the expression δ involves a minimum, we analyze two cases. If

‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

6
1

2
diam{x ∈ C | χ(x) = 1},

we get directly

δk+1−α+ε = (‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

)k+1−α+ε,

since the exponent k + 1− α+ ε < 0; if, on the other hand,

‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

>
1

2
diam{x ∈ C | χ(x) = 1},

then the continuous embedding Bk+1
2,1 (C1) ⊂ Hk+ε(C1) implies

‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

. 1,

and we arrive at

δk+1−α+ε =
(1
2
diam{x ∈ C | χ(x) = 1}

)k+1−α+ε

. (‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

)k+1−α+ε.

For the second integral of (2.23), S2, we obtain

S2 =

∣∣∣∣
∫

C1

r−α+k sin(αϕ)(1 − χδ)
f +∆(χPk−1)

rk
dx

∣∣∣∣

.
∥∥∥f +∆(χPk−1)

rk

∥∥∥
L∞(C2δ)

∫ 2δ

0

r−α+k+1 dr.

Since

∆(χPk−1) = ∆Pk−1 = −
∑

i+j6k−1

1

i!j!
xiyj(∂i

x∂
j
yf)(0)
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in the region where χ ≡ 1, it follows with the embedding B1
2,1(C1) ⊆ C(C1), cf. [38],

Theorem 4.6.1, that

S2 .

∥∥∥∥
f −∑

i+j6k−1
1

i!j!x
iyj(∂i

x∂
j
yf)(0)

rk

∥∥∥∥
L∞(C1)

δk+2−α

. ‖Dkf‖L∞(C1)δ
k+2−α . ‖f‖Bk+1

2,1 (C1)
(‖f‖1/(1−ε)

Hk+ε(C1)
‖f‖−1/(1−ε)

Bk+1
2,1 (C1)

)k+2−α.

In total, we have arrived at

(2.24) |S(f)| . ‖f‖(k+2−α)/(1−ε)

Hk+ε(C1)
‖f‖(α−k−1−ε)/(1−ε)

Bk+1
2,1 (C1)

.

By [37], Lemma 25.2 the estimate (2.24) implies

S ∈ ((Hk+ε(C1), Bk+1
2,1 (C1))(α−k−1−ε)/(1−ε),1)

⋆ = (Bα−1
2,1 (C1))⋆.

(ii) By (iii) we have for α ∈ (0, 1] that s−(r, ϕ) := r−α sin(αϕ) ∈ B−α+1
2,∞ (C1).

From the characterization of dual spaces of interpolation spaces, [37], Lemma 41.3,

[38], Theorem 1.11.2, we have for any ε ∈ (0, 1/2) in view of −α + 1 ∈ [0, 1) with

θ = (−α+ 1 + ε)/(1 + ε)

B−α+1
2,∞ = (H−ε, H1)θ,∞ = (((H1)⋆, (H−ε)⋆)1−θ,1)

⋆ = ((H̃−1, H̃ε)1−θ,1)
⋆ = (B̃α−1

2,1 )⋆.

For α > 1/2, we note that α− 1 ∈ (−1/2, 0) so that by (1.7) we have B̃α−1
2,1 = Bα−1

2,1 .

(iii) Step 1 (β ∈ N0): For β ∈ N0, the function (x, y) 7→ rβ sin(βϕ) is a polynomial

and thus smooth.

Step 2 (β > −1, β 6∈ N0): We write the Besov space as the interpolation space

B1+β
2,∞ (C1) = (L2(C1), H⌊β⌋+2(C1))(1+β)/(⌊β⌋+2),∞.

Next we select a smooth cut-off function χt with χt ≡ 0 on Bt1/(⌊β⌋+2)/2(0) and χt ≡ 1

on B1(0) \Bt1/(⌊β⌋+2)(0), and whose derivatives satisfy ‖∇kχt‖L∞(C1) . t−k/(⌊β⌋+2).

We then get

(2.25)

‖(1− χt)s
+‖2L2(C1)

.

∫ 1

0

(1− χt)
2r2βr dr .

∫ t1/(⌊β⌋+2)

0

r2β+1 dr . t2(β+1)/(⌊β⌋+2).
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For the derivatives we obtain

(2.26)

‖∇⌊β⌋+2(χts
+)‖2L2(C1)

.

∫ 1

0

⌊β⌋+2∑

s=0

|∇sχt(r)|2|∇⌊β⌋+2−srβ |2r dr

.

∫ 1

t1/(⌊β⌋+2)/2

r2(β−⌊β⌋−2)+1 dr +

⌊β⌋+2∑

s=1

t−2s/(⌊β⌋+2)(t1/(⌊β⌋+2))2(β+s−⌊β⌋−2)+2

. t(2β−2⌊β⌋−2)/(⌊β⌋+2) +

⌊β⌋+2∑

s=1

t−2s/(⌊β⌋+2)(t1/(⌊β⌋+2))2(β+s−⌊β⌋−2)+2

. t2(β+1)/(⌊β⌋+2)−2.

The L2-norm satisfies

(2.27) ‖χts
+‖2L2(C1)

.

∫ 1

t1/(⌊β⌋+2)/2

r2β+1 dr . t2(β+1)/(⌊β⌋+2)−2,

since the integral is bounded and 2(β + 1)/(⌊β⌋+ 2) − 2 < 0. Then (2.25), (2.26),

and (2.27) imply K(t, s+) . t(1+β)/(⌊β⌋+2) and thus s+ ∈ B1+β
2,∞ (C1).

Step 3 (β = −1): Fix ε ∈ (0, 1/2). We assert s+∈B0
2,1(C1)=(H−ε(C1), Hε(C1))1/2,1

using the “Babuška trick” [22], Theorem 1.4.5.3. Let χt be the cut-off function of

Step 2 (with β = −1) and split s+ = r−1 sin(ϕ) as s+ = (1 − χt)s
+ + χts

+. We

estimate with the Cauchy-Schwarz inequality and Lemma 2.2 to get

‖(1− χt)s
+‖H−ε(C1)

= sup
v∈H̃ε(C1)|‖v‖H̃ε=1

∫

C1

(1 − χt)r
εs+r−εv dx

C.S.

. tε sup
‖v‖

H̃ε=1

‖r−εv‖L2(C1)

Lemma 2.2

. tε.

For the term ‖χts
+‖Hε(C1), we employ the “Babuška trick”, i.e., we use the Sobolev

embedding W 1,p ⊂ Hε for 1/p = 1− ε/2, [22], Theorem 1.4.5.2, [38], Theorem 2.8.1,

to conveniently estimate the norm ‖·‖Hε . A calculation shows for t < 1

‖χts
+‖Hε(C1) . ‖χts

+‖W 1,p(C1) . t−ε.

In conclusion, the K-functional of s+ for the pair (H−ε(C1), Hε(C1)) satisfies
K(τ, s+) . tε + τt−ε. Selecting t = τ1/(2ε) shows K(τ, s+) . τ1/2 so that

s+ ∈ (H−ε(C1), Hε(C1))1/2,∞ = B0
2,∞(C1) = B̃0

2,∞(C1).
(iv) First we consider v = Φ(x, y) ln r with Φ = O(rn) as r → 0. We define for

every 0 < t < 1 the function

vt := Φ(x, y)

∫ 1

r

−χt(τ)τ
−1 dτ,
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where χt is a smooth cut-off function with the properties χt(τ) = 1 for τ > t and

χt(τ) = 0 for τ < t/2 and |∇jχ| . t−j . Note that vt ∈ C∞(C1) and vt = v for r > t.

We obtain

‖v − vt‖2L2(C) =

∫ ω

ϕ=0

∫ t

0

Φ2

∣∣∣∣
∫ 1

r

1

τ
(χt(τ) − 1) dτ

∣∣∣∣
2

r dr .

∫ t

0

r2n+1

∣∣∣∣
∫ t

r

1

τ
dτ

∣∣∣∣
2

dr

.

∫ t

0

r2nt
r

t
ln2

t

r
dr = t2n+2

∫ 1

0

r2n+1 ln2 r dr . t2n+2.

By the smoothness of Φ, we have |∇jΦ| = O(rn−j) for j ∈ {0, . . . , n} and |∇jΦ| =
O(1) for j > n. The product rule then implies (using that r ∼ t on supp∇χt ⊂
Bt(0) \Bt/2(0))

|∇n+2vt| .
n∑

µ=0

|∇µΦ|
∣∣∣∇n+1−µχt

r

∣∣∣+ |r−1χt|+
∣∣∣∣
∫ 1

r

χtτ
−1 dτ

∣∣∣∣

.

n∑

µ=0

rn−µr−(n+2−µ)χBt(0)\Bt/2(0))
+ r−1χr>t/2 + |ln r|

. r−2χBt(0)\Bt/2(0)
+ r−1χr>t/2 + |ln r|.

Consequently,

‖∇n+2vt‖2L2(C) =

∫ ω

ϕ=0

∫ 1

r=0

|∇n+2vt|2r dr dϕ . t−2.

Since the above calculations hold for every t ∈ (0, 1), we choose t = τ1/(n+2) and get

for the K-functional

K(τ, v)2 . ‖v − vt‖2L2(C1)
+ τ2‖vt‖2Hn+2(C1)

. τ2(n+1)/(n+2),

which shows v ∈ (L2(C1), Hn+2(C1))(n+1)/(n+2),∞ = Bn+1
2,∞ (C1).

The proof that the function w = Φ(x, y)ϕ is in Bn+1
2,∞ (C1) follows similar lines using

the function vt := Φ(x, y)ϕχt. �

The core of proof of shift Theorem 1.1 is the following abstract result:

Lemma 2.7. Let (X1, ‖·‖X1) ⊂ (X0, ‖·‖X0) and (Y1, ‖·‖Y1) ⊂ (Y0, ‖·‖Y0) be Ba-

nach spaces with continuous embeddings. Let qj , pj ∈ [1,∞], θj ∈ (0, 1), j =

1, . . . , J , with 0 < θ1 < θ2 < . . . < θJ < 1. Let T̃ : X0 → Y0, S1 : X1 → Y1, Sθj :

Xθ,pj → Yθ,qj , j ∈ {1, . . . , J}, be bounded linear. Assume T̃ f = S1(f) +
J∑

j=1

Sθj (f)

for all f ∈ X1. Then, T̃ : (X0, X1)θ1,p1 → (Y0, Y1)θ1,∞ is bounded linear.
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P r o o f. For t > 0, decompose f ∈ Xθ1,p1 as f = f0 + f1 with f0 ∈ X0, f1 ∈ X1,

and

(2.28) ‖f0‖X0 + t‖f1‖X1 6 2K(t, f) . tθ1‖f‖Xθ1,∞
. tθ1‖f‖Xθ1,p1

.

By [8], Lemma and the interpolation inequality, we have additionally

‖f1‖Xθ1,p1

[8], Lemma

6 3‖f‖Xθ1,p1
,(2.29)

‖f1‖Xθj,pj
. ‖f1‖(1−θj)/(1−θ1)

Xθ1,p1
‖f1‖(θj−θ1)/(1−θ1)

X1
(2.30)

(2.28)

. t−(θj−θ1)‖f1‖Xθ1
,p1 , j = 2, . . . , J.

We write T̃ f = T̃ f0+ T̃ f1 = T̃ f0+S1(f1)+
J∑

j=1

Sθj(f1). For t > 0 and j ∈ {1, . . . , J}

decompose Sθj (f1) = sj,0(f1) + sj,1(f1) with sj,0(f1) ∈ Y0, sj,1(f1) ∈ Y1 and

‖s1,0(f1)‖Y0 + t‖s1,1(f1)‖Y1

6 2K(t, Sθ1(f1)) . tθ1‖Sθ1(f1)‖Yθ1,q1
. tθ1‖f1‖Xθ1,p1

(2.29)

. tθ1‖f‖Xθ1,p1
,

‖sj,0(f1)‖Y0 + t‖sj,1(f1)‖Y1

6 2K(t, Sθj(f1)) . tθj‖Sθj(f1)‖Yθj,qj
. tθj‖f1‖Xθj,pj

(2.30)

. tθ1‖f‖Xθ1,p1
.

This implies the decomposition

T̃ f =

(
T̃ f0 +

J∑

j=1

sj,0(f1)

)
+ (S1(f1) +

J∑

j=1

sj,1(f1)) =: y0 + y1

with

‖y0‖Y0 + t‖y1‖Y1 . ‖f0‖X0 + tθ1‖f‖Xθ1,p1
+ t(‖f1‖X1 + tθ1−1‖f‖Xθ1,p1

)

(2.28)

. tθ1‖f‖Xθ1,p1
.

Hence, T̃ f ∈ Xθ1,∞ with ‖T̃ f‖Xθ1,∞
. ‖f‖Xθ1,p1

. �

We are now in position to prove shift Theorem 1.1 for Dirichlet boundary condi-

tions.
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P r o o f of Theorem 1.1 (i) (Dirichlet conditions). We denote by χr, r > 0,

a smooth cutoff function with suppχr ⊂ Br(0) and χr ≡ 1 near 0. We assume

for simplicity R < 1. By Remark 1.2 a stronger shift theorem holds for ω = π so

that we will assume ω 6= π.

Step 0 (local regularity): Since the two lines {ϕ = 0} and {ϕ = ω} are smooth,
local elliptic regularity gives for any 0 < R1 < R2 < R3 < R that for any s ∈ N0

(see, e.g., [19], Section 6; this is even true for any s > 0, see Lemma A.2 for details)

(2.31) ‖u‖Hs+2(CR2\CR1)
. ‖f‖Hs(CR3)

+ ‖u‖H1(CR3)
.

Step 1 (localized equation): Since R′ < R and we are interested in the regularity

of u in CR′ , we fix a smooth cut-off function χR̃ ∈ C∞
0 (BR̃(0)) with χR̃ ≡ 1 on CR′ ,

where R2 < R′ < R̃ < R3 < R < 1 are such that χR ≡ 1 on CR3 . We set ũ := χR̃u,

and we note that ũ satisfies

−∆ũ = −χR̃∆u− 2∇χR̃ · ∇u−∆χR̃u(2.32)

= χR̃f − 2∇χR̃ · ∇u−∆χR̃u =: f̃ in CR,
ũ = 0 on ΓD ∪ Γ̃R = ∂CR.(2.33)

Claim:

(2.34) ‖f̃‖
B

π/ω−1
2,1 (CR)

. ‖χRf‖Bπ/ω−1
2,1 (CR)

+ ‖u‖H1(CR).

To see this, we consider the cases ω < π and ω > π separately.

Case 1: ω 6 π. Let s := ⌊λD
1 ⌋ = ⌊π/ω⌋ > 1 and note the continuous embedding

Hs+1 ⊂ B
π/ω
2,1 so that together with the support properties of ∇χR̃

(2.35) ‖f̃‖
B

π/ω−1
2,1 (CR)

Hs+1⊂B
π/ω
2,1

. ‖χR̃f‖Bπ/ω−1
2,1 (CR)

+ ‖u‖Hs+1(C
R̃
\CR′)

(2.31)

. ‖χR̃f‖Bπ/ω−1
2,1 (CR)

+ ‖f‖Hs−1(CR3\CR2 )
+ ‖u‖H1(CR)

. ‖χRf‖Bπ/ω−1
2,1 (CR)

+ ‖u‖H1(CR),

where, in the last step, we used χR̃χR = χR̃ and the continuity of the mul-

tiplication with smooth functions in Sobolev (and hence, by interpolation, in

Besov spaces) so that ‖χR̃f‖Bπ/ω−1
2,1 (CR)

= ‖χR̃χRf‖Bπ/ω−1
2,1 (CR)

. ‖χRf‖Bπ/ω−1
2,1 (CR)

and ‖f‖Hs−1(CR3\CR2)
6 ‖f‖Hs−1(CR3)

6 ‖χRf‖Hs−1(CR) 6 ‖χRf‖Bπ/ω−1
2,1 (CR)

as

s− 1 ∈ N0.
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Case 2: ω > π. Again, set s := ⌊λD
1 ⌋ = ⌊π/ω⌋ = 0 and note the continuous

embedding L2 ⊂ B
π/ω−1
2,1 . One may then argue as in the first line of (2.35), which

gives the result.

Step 2: In order to analyze the regularity of ũ on CR′ , we select R < R and χR ∈
C∞

0 (BR(0)) with χR ≡ 1 on suppχR ⊂ BR(0) and introduce the operators T , T̃ by

(2.36) T :

{
H−1(CR) → H1

0 (CR),
f 7→ v,

T̃ :

{
H−1(CR) → H1

0 (CR),
f 7→ χR′TχRf,

where v = Tf solves

−∆v = f in CR, v = 0 on ΓD ∪ Γ̃R = ∂CR.

Then, since supp f̃ ⊂ BR̃(0), we have χRf̃ = f̃ and therefore ũ = T̃ f̃ . The proof of

Theorem 1.1 (i) is complete once we ascertain

(2.37) ‖T̃ f̃‖
B

π/ω+1
2,∞ (CR′)

. ‖f̃‖
B

π/ω−1
2,1 (CR)

,

which we will do in ensuing Steps 3–5.

Step 3: We show (2.37) for the case λD
1 = π/ω /∈ N and ω < π using Lemma 2.7

and Corollary 2.5. Since ω < π and λD
1 6∈ N, we can find (k, ε) ∈ N0 × (0, 1)

such that λD
1 < k + ε + 1 < λD

2 together with ⌊k + ε + 1⌋ = ⌊λD
1 ⌋ > 1. Set

θ1 := π/(ω(k + ε+ 1)) ∈ (0, 1) as well as

(2.38) X0 := H−1(CR), X1 = Hk+ε(CR), Y0 := H1
0 (CR), Y1 = H2+k+ε(CR).

We have B
π/ω−1
2,1 (CR) = (X0, X1)θ1,1 and B

π/ω+1
2,∞ (CR) = (Y0, Y1)θ1,∞. By the Lax-

Milgram theorem, we have that T̃ : X0 → Y0 is bounded, linear. With u0, S
D
1 , s

D
1 ,

χPk−1 given by Corollary 2.5, we set S1(f) = u0(f) + χPk−1, Sθ1(f) = SD(f)sD1 .

We note that

ΣD
k+1 =

{
n ∈

{
2, . . . ,

⌊
π

ω

⌋} ∣∣∣nω
π

∈ N

}
= ∅

in view of ⌊
π

ω

⌋ω
π

< 1.

Corollary 2.5 shows that S1 : X1 → Y1 is bounded, linear; Lemma 2.6 (i) asserts

that SD
1 ∈ ((X0, X1)θ1,1)

⋆ and sD1 ∈ (X0, X1)θ,∞. The desired assertion (2.37) now

follows from Lemma 2.7.

Step 4: We show (2.37) for the case λD
1 = π/ω ∈ N and ω < π using Lemma 2.7

and Corollary 2.5. As in Step 3, choose (k, ε) ∈ N0 × (0, 1) with λD
1 = π/ω <

k + ε + 1 < λD
1 + 1 < λD

2 such that ⌊k + ε + 1⌋ = λD
1 and take with this choice

of k, ε the spaces X0, X1, Y0, Y1 as in (2.2) and set θ1 = π/(ω(k + ε+ 1)) so
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that B
π/ω−1
2,1 (CR) = (X0, X1)θ1,1 and B

π/ω+1
2,1 (CR) = (Y0, Y1)θ1,∞. In Corollary 2.5,

our choice of k corresponds to ΣD
k+1 = {π/ω} and n⋆ = π/ω = λD

1 . Again, T̃ :

X0 → Y0 is bounded by Lax-Milgram. With the functions u0, S
D, sD1 , Pk−1 from

Corollary 2.5, Corollary 2.5 gives the decomposition T̃ f = (u0(f) + SD(f)sD1 ) +

χPk−1 =: S1(f)+Sθ1(f). Since s
D
1 is a polynomial (and thus smooth), Corollary 2.5

asserts the boundedness of S1 : X1 → Y1 and Sθ1 : Xθ1,1 → Yθ1,∞. Lemma 2.7 then

implies (2.37).

Step 5: We show (2.37) for the case ω > π. The procedure is similar to that of

preceding Steps 3, 4. Since ω ∈ (π, 2π), we have λD
1 = π/ω < 1 < 2π/ω = λD

2 so

that we may select k = 0 and ε ∈ (0, 1) such that λD
1 < 1 < k + ε+ 1 < λD

2 . Then

ΣD
k+1 = ∅, Pk−1 ≡ 0 in Corollary 2.5, and we may argue as in Step 3 with the choice

X0, X1, Y0, Y1 from (2.2) and θ1 = π/(ω(k + ε+ 1)); note that 1/2 < π/ω < 1, so

that Lemma 2.6 (ii) implies SD
1 ∈ (B

π/ω−1
2,1 (CR))⋆ = ((X0, X1)θ1,1)

⋆. �

3. Neumann boundary conditions

The case of Neumann boundary conditions is handled in a way similar to the

Dirichlet case of Section 2.1.2. We put

(3.1) σN := {λN
n | n = 0, 1, . . .} with λN

n := n
π

ω
.

Analogous to Proposition 2.3, we have:

Proposition 3.1. Let R > 0. Let k ∈ N0 and ε ∈ (0, 1) satisfy k + 1 + ε <

λN
2 = 2π/ω, k + 1 + ε 6= λN

1 = π/ω, and let f ∈ Hk+ε(C) with supp f ⊆ B1(0).

Further assume ∂i
x∂

j
yf(0) = 0 for i + j 6 k − 1. Then every function u1 ∈ H1(C)

with suppu1 ⊆ B1(0), solving

(3.2) −∆u1 = f ∈ Hk+ε(C), ∂nu1 = 0 for ϕ ∈ {0, ω}

has the form

(3.3) u1 =





u0, if
π

ω
= λN

1 > k + ε+ 1,

u0 −
1

π

(∫

C

r−λN
1 cos(λN

1 ϕ)f(x) dx

)
rλ

N
1 cos(λN

1 ϕ),

if
π

ω
= λN

1 < k + ε+ 1 < λN
2

for a u0 ∈ Hk+2+ε(CR) with the estimate

‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C1).
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P r o o f. The procedure is as in the Dirichlet case of Section 2.1.2: The Mellin

transformation yields the equations (2.4), (2.5) for M[u1] and M[u0] together

with the Neumann boundary conditions ∂ϕM[u1] = ∂ϕM[u0] = 0 on {ϕ = 0} and
{ϕ = ω}. The operator L(ζ) is meromorphic on C with poles at ±iσN . As in the

Dirichlet case, u0 ∈ Kk+2
−ε (C) so that u0 ∈ Hk+2+ε(CR). Since 0 ∈ ±iσN , the inverse

Mellin transformation cannot be performed on the line {Im ζ = 0}. In contrast
to the Dirichlet case, where u1 ∈ K1

0 (Γ) due to the vanishing of u1 on {ϕ = 0}
and {ϕ = ω} we only have u1 ∈ K1

δ (C), δ > 0 arbitrary, in the case of Neumann

boundary conditions. This implies that the inverse Mellin transformation has to be

done on a line {Im ζ = δ} for chosen δ > 0. The Cauchy integral formula relating u0

and u1 now uses the lines {Im ζ = δ} and {Im ζ = −(k + 1 + ε)} and leads to

u0 − u1 =
∑

ζ0∈−iσN

Im ζ0∈(−1−k−ε,δ)

2πi√
2π

Res
ζ=ζ0

(riζ(L(ζ))−1Mg(ζ)).

For the evaluation of residues, we note that the double pole of L−1 at ζ0 = 0 leads

to two contributions to the sum; if k + 1+ ε > π/ω, then a third contribution arises

in the sum. The residues can be evaluated explicitly:

at ζ0 = 0:

(
i

ω

1√
2π

∫

C

f dx

)
ln r +

(
i

ω

1√
2π

∫

C

ln rf dx

)
1 =: s0 + s1,

at ζ0 = −iλN
1 : −

(
1

π

∫

C

r−λN
1 cos(λN

1 ϕ)f dx

)
rλ

N
1 cos(λN

1 ϕ).

By assumption u1 ∈ H1(C) so that the contribution s0 has to vanish. The con-

tribution s1 is a constant function and hence smooth. Additionally, the function

(x, y) 7→ ln r is in B1
2,∞(C1) by Lemma 2.6 so that f 7→

∫
C ln rf is a bounded linear

functional on (B1
2,∞(C1))⋆ ⊃ Hk+ε(C1) and thus the sum u0 + s1 is in Hk+2+ε(C1)

with the stated estimate. �

The Neumann analog of Lemma 2.4 is:

Lemma 3.2. Let i, j, k ∈ N0 with i + j = k. Set ΣN
k+2 := {n ∈ {2, . . . , k + 2} |

nω/π ∈ N} and SN
k+2 := span{rn(ln r cos(nϕ) − ϕ sin(nϕ)) | n ∈ ΣN

k+2}. Then there
is a polynomial p̃i,j of degree k + 2 and a harmonic function p′i,j ∈ SN

k+2 such that

pNi,j := p̃i,j + p′i,j satisfies

(3.4) −∆pNi,j = xiyj on C, ∂np
N
i,j |Γ = 0.

In the special case ω = π, the contribution p′i,j may be taken to be zero.

675



P r o o f. The proof is very similar to that of Lemma 2.4. The correction on

{ϕ = 0} is now done with polynomials of the form Im
k+2∑
n=0

anz
n, an ∈ R. For the

correction on {ϕ = ω} one uses the functions Re zn = rn cos(nϕ) if nω/π 6∈ N0 and

the function Re(zn ln z) = rn(ln r cos(nϕ)− ϕ sin(nϕ)) if nω/π ∈ N0. �

Corollary 3.3. Let R > 0. Let k ∈ N0 and ε ∈ (0, 1) satisfy k + 1 + ε <

2π/ω = λN
2 , k + 1 + ε 6= π/ω = λN

1 , and f ∈ Hk+ε(C) with supp f ⊆ B1(0). Let

χ ∈ C∞
0 (B1(0)) with χ ≡ 1 near the origin. Then every function u1 ∈ H1(C) with

suppu1 ⊆ B1(0), solving

(3.5) −∆u1 = f ∈ Hk+ε(C), ∂nu1 = 0 for ϕ ∈ {0, ω}

has the form u1 = u0 + χPk−1 + δ with u0 ∈ Hk+2+ε(CR),

δ =





0, if
π

ω
= λN

1 > k + ε+ 1,

SN (f)sN1 , if
π

ω
= λN

1 < k + ε+ 1 < λN
2 ,

(3.6)

SN (f) := − 1

π

(∫

C

r−λN
1 cos(λN

1 ϕ)(f(x) + ∆(χ(x)Pk−1(x))) dx

)
,(3.7)

sN1 := rλ
N
1 cos(λN

1 ϕ),(3.8)

Pk−1(x) :=
∑

i+j6k−1

1

i!j!
pNi,j(x)(∂

i
x∂

j
yf)(0),(3.9)

and pNi,j are the fixed functions from Lemma 3.2. Furthermore, the following esti-

mates hold:

‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C),(3.10)

‖Pk−1‖Hk+2+ε(CR) . ‖f‖Bk
2,1(C)

if ΣN
k+1 = ∅,(3.11)

‖Pk−1‖Bn⋆+1
2,∞ (CR)

. ‖f‖Bk
2,1(C)

if ΣN
k+1 6= ∅,(3.12)

n⋆ := min
{
n ∈ {2, . . . , k + 1} | nω

π

∈ N

}
,

‖∆(χPk−1)‖Hk+ε(CR) . ‖f‖Bk
2,1(C)

. ‖f‖Hk+ε(C).(3.13)

The implied constants depend only k, ε, the angle ω, and the choice of the cut-off

function χ.

P r o o f. Follows in the same way as that of Corollary 2.5. �
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P r o o f of Theorem 1.1 (ii). The proof follows the strategy developed for the case

of Dirichlet boundary conditions; the main difference lies in the fact that the basic

stability estimate is now T̃ : H̃−1(CR) → H1(CR) instead of T̃ : H−1(CR) → H1(CR)
for the Dirichlet case.

The regularity assertions of Step 0 still hold. The mapping T has to be replaced

with T : H̃−1(CR) → H1
D(CR), where Tf solves

−∆Tf = f in CR, ∂n(Tf) = 0 on ΓN , T f = 0 on Γ̃R,

and ΓN = {ϕ = 0} ∪ {ϕ = ω}. We set T̃ := (χR′TχR) as in Step 2 of the Dirichlet

case. The modified right-hand side f̃ is defined as in (2.32), and it suffices to ascertain

(3.14) ‖T̃ f̃‖
B

π/ω+1
2,∞ (CR′)

. ‖f̃‖
B

π/ω−1
2,1 (CR)

.

As in the proof of Theorem 1.1 (i) for the Dirichlet case, we distinguish between the

cases ω < π and ω > π, the case ω = π having already been discussed in Remark 1.2.

Step 1 (preliminaries): Let ω < π. Then, λN
1 > 1. Select k = 0, ε ∈ (0, 1) such

that 1 < s′ := k+ε+1 < λN
1 . Corollary 3.3 asserts that T̃ : Hs′−1(CR) → Hs′+1(CR)

is a bounded operator.

Step 2: Let ω < π and π/ω 6∈ N. Select (k, ε) ∈ N0×(0, 1) with λN
1 < k+ε+1 < λN

2

such that ⌊k + ε+ 1⌋ = ⌊λN
1 ⌋ > 1. Take with s′ from Step 1

(3.15) X0 := Hs′−1(CR), X1 = Hk+ε(CR), Y0 := Hs′+1(CR), Y1 = H2+k+ε(CR).

Note that with θ1 := (π/ω − 1 − (s′ − 1))/(k + ε − (s′ − 1)) ∈ (0, 1), we have

B
π/ω−1
2,1 (CR) = (X0, X1)θ1,1 and B

π/ω+1
2,∞ (CR) = (Y0, Y1)θ1,∞. Then, T̃ satisfies the

assumptions of Lemma 2.7: the mapping properties X0 → Y0 are given by the above

Step 1, and the mapping properties of the decomposition of T̃ f = (u0(f)+χPk−1)+

SN
1 (f)sN1 =: S1(f) + Sθ1(f) for arguments f ∈ X1 is provided by Corollary 3.3 in

conjunction with Lemma 2.6 (i).

Step 3: Let ω < π and π/ω ∈ N. Choose k, ε, X0, X1, Y0, Y1 as in Step 2 above.

As in the Dirichlet case, choose the decomposition T̃ f = (u0(f) + SN
1 (f)sN1 ) +

χPk−1 =: S1(f)+Sθ1(f); Corollary 3.3 provides that S1, Sθ1 satisfy the assumptions

of Lemma 2.7.

Step 4: Let ω > π. Since ω ∈ (π, 2π), we have λN
1 = π/ω < 1 < 2π/ω = λN

2 and

may therefore select k = 0 and ε ∈ (0, 1/2) such that λN
1 < 1 < k + ε+ 1 < λN

2 . Set

X0 := H̃−1(CR), X1 = Hk+ε(CR) = H̃k+ε(CR),(3.16)

Y0 := H1(CR), Y1 = H2+k+ε(CR),
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and θ1 = (π/ω − 1 + 1)/(k + ε+ 1) ∈ (0, 1) so that (X0, X1)θ1,1 = B̃
π/ω−1
2,1 (CR) and

(Y0, Y1)θ1,1 = B
π/ω+1
2,1 (CR). As in the Dirichlet case, we note ΣN

k+1 = ∅ and that
Corollary 3.3 provides the assumptions of Lemma 2.7 so that T̃ : B̃

π/ω−1
2,1 (CR) →

B
π/ω+1
2,∞ (CR). Since ω ∈ (π, 2π), we have π/ω− 1 ∈ (−1/2, 0) and thus B̃

π/ω−1
2,1 (CR) =

B
π/ω−1
2,1 (CR), cf. (1.7). �

4. Mixed boundary conditions

The case of mixed boundary conditions is similar to the Neumann case. We recall

that ΓD = {ϕ = 0} and ΓN = {ϕ = ω}. Set

(4.1) σM := {λM
n | n ∈ N} with λM

n :=
(
n− 1

2

)
π

ω
.

The operator (L(ζ))−1 arising in the case of mixed boundary conditions is meromor-

phic on C with poles at ±iσM . With similar arguments as in Proposition 2.3 one

obtains:

Proposition 4.1. Let R > 0. For k ∈ N0 and ε ∈ (0, 1), let k + 1 + ε < λM
3 ,

k + 1 + ε 6∈ {λM
1 , λM

2 } = {π/(2ω), 3π/(2ω)}, and f ∈ Hk+ε(C) with supp f ⊆ B1(0).

Further assume ∂i
x∂

j
yf(0) = 0 for i + j 6 k − 1. Then u1 ∈ H1(C) with suppu1 ⊆

B1(0), solving

(4.2) −∆u1 = f ∈ Hk+ε(C), u1 = 0 on {ϕ = 0}, ∂nu1 = 0 on {ϕ = ω},

has the form

(4.3) u1 =





u0 if k + ε+ 1 <
π

2ω
= λM

1 ,

u0 + SM
1 (f)sM1 , if λM

1 =
π

2ω
< k + ε+ 1 <

3π

2ω
= λM

2 ,

u0 + SM
1 (f)sM1 + SM

2 (f)sM2 , if
3π

2ω
= λM

2 < k + ε+ 1 < λM
3 ,

where

SM
1 (f) = −1

π

(∫

C

r−π/(2ω) sin(
π

2ω
ϕ)f(x) dx

)
, sM1 = rπ/(2ω) sin(

π

2ω
ϕ),(4.4a)

SM
2 (f) = −1

π

(∫

C

r−3π/(2ω) sin(
3π

2ω
ϕ)f(x) dx

)
, sM2 = r3π/(2ω) sin

( 3π

2ω
ϕ
)

(4.4b)

together with the estimate

‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C1).
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Lemma 4.2. Let i, j, k ∈ N0 with i + j = k. Set ΣM
k+2 := {n ∈ {1, . . . , k + 2} |

nω/π + 1/2 ∈ N} and SM
k+2 := span{rn(ln r sin(nϕ) + ϕ cos(nϕ)) | n ∈ ΣM

k+2}. Then
there is a polynomial p̃i,j of degree k + 2 and a harmonic function p′i,j ∈ SM

k+2 such

that pMi,j := p̃i,j + p′i,j satisfies

(4.5) −∆pMi,j = xiyj on C, pMi,j = 0 on {ϕ = 0}, ∂np
M
i,j = 0 on {ϕ = ω}.

P r o o f. One proceeds as in the proof of Lemma 2.4, the only difference being

the correction on the line {ϕ = ω}. For that, one uses, for n > 1, the functions Im zn

if nω/π + 1/2 6∈ N and Im(zn ln z) if nω/π + 1/2 ∈ N. �

Corollary 4.3. Let R > 0. Let k ∈ N0 and ε ∈ (0, 1) satisfy k + 1 + ε < λM
3 =

5π/(2ω) and k + 1 + ε 6∈ {λM
1 , λM

2 } = {π/(2ω), 3π/(2ω)}. Let f ∈ Hk+ε(C) with
supp f ⊆ B1(0). Let χ ∈ C∞

0 (B1(0)) with χ ≡ 1 near the origin. Then every

function u1 ∈ H1(C) with suppu1 ⊆ B1(0), solving

(4.6) −∆u1 = f ∈ Hk+ε(C), u1 = 0 on {ϕ = 0}, ∂nu1 = 0 on {ϕ = ω},

has the form u1 = u0 + χPk−1 + δ with u0 ∈ Hk+2+ε(CR),

δ =





0, if k + ε+ 1 < λM
1 =

π

2ω
,

SM
1 (f +∆(χPk−1))s

M
1 , if λM

1 < k + ε+ 1 < λM
2 ,

SM
1 (f +∆(χPk−1))s

M
1 + SM

2 (f +∆(χPk−1))s
M
2 ,

if λM
2 < k + ε+ 1 < λM

3 ,

(4.7)

Pk−1(x) :=
∑

i+j6k−1

1

i!j!
pMi,j(x)(∂

i
x∂

j
yf)(0),(4.8)

where SM
1 , S

M
2 , s

M
1 , s

M
2 are given in (4.4), and pMi,j are the fixed functions from

Lemma 4.2. Furthermore,

‖u0‖Hk+2+ε(CR) . ‖f‖Hk+ε(C1),(4.9)

‖Pk−1‖Hk+2+ε(CR) . ‖f‖Bk
2,1(C1) if ΣM

k+1 = ∅,(4.10)

‖Pk−1‖Bn⋆+1
2,∞ (CR)

. ‖f‖Bk
2,1(C1) if ΣM

k+1 6= ∅,(4.11)

n⋆ := min
{
n ∈ {1, . . . , k + 1} | nω

π

+
1

2
∈ N

}
,

‖∆(χPk−1)‖Hk+ε(CR) . ‖f‖Bk
2,1(C1) . ‖f‖Hk+ε(C).(4.12)

The implied constants depend only k, ε, the angle ω, and the choice of the cut-off

function χ.

P r o o f. Follows as in the Dirichlet case. �
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As in the Neumann case, the proof of Theorem 1.1 (iii) comes down to showing

the mapping property T̃ : B
π/(2ω)−1
2,1 (CR) → B

π/(2ω)+1
2,∞ (CR) for π/(2ω) − 1 > −1/2

and T̃ : B̃
π/(2ω)−1
2,1 (CR) → B

π/(2ω)+1
2,∞ (CR) for π/(2ω)− 1 6 −1/2, where T̃ = χR′TχR

with Tf being the solution of

−∆Tf = 0 in CR, T f = 0 on Γ0,R ∪ Γ̃R, ∂nTf = 0 on Γω,R.

P r o o f of Theorem 1.1 (iii). Case 1: ω < π/2. Since ω < π/2, we may select

(k, ε) ∈ N0 × (0, 1) so that 1 < λM
1 < k + 1 + ε < λM

2 and ⌊k + ε+ 1⌋ = ⌊λM
1 ⌋. This

is the setting, where exactly one singularity function appears in the representation

of the solution in Corollary 4.3 and the arguments of the Neumann case (Steps 2, 3

of the proof of Theorem 1.1 (ii)) apply.

Case 2: ω = π/2. Select k = 0, ε ∈ (0, 1/2) such that 1 = λM
1 < k+ε+1 < λM

2 = 3.

In Corollary 4.3, this corresponds to the case of one “singularity” function SM
1 (f)sM1 ,

which is in fact a polynomial and thus smooth, and Pk−1 = 0. Lemma 2.6 (ii)

provides SM
1 ∈ (B̃0

2,1(CR))⋆. Set X0 = H̃−1(CR), X1 = H̃ε(CR), Y0 = H1(CR),
Y1 = H2+ε(CR), θ = 1/(1 + ε). From Lemma 2.7 and the solution representation of

Corollary 4.3 we infer T̃ : B̃
π/(2ω)−1
2,1 → B

π/(2ω)+1
2,∞ .

Case 3: ω ∈ (π/2, 3π/2). In this case, one can select k = 0 and ε ∈ (0, 1) such

that λM
1 < 1 < k + ε + 1 < λM

2 so that in the application of Corollary 4.3 a single

singularity function arises. This is handled as in the Neumann case with ω > π there.

Case 4: ω ∈ (3π/2, 2π). We have λM
1 < λM

2 < 1 < 5
4 < λM

3 . Select k = 0 and

ε ∈ (0, 1/2) such that λM
2 < 1 < k+ ε+1 < λM

3 . Set X0 = H̃−1(CR), X1 = H̃ε(CR),
Y0 = H1(CR), Y1 = H2+k+ε(CR), θj = λM

j /(1 + k + ε), j ∈ {1, 2}, so that Xθj,1 =

B̃
λM
j −1

2,1 (CR) and Yθj ,∞ = B
λM
j +1

2,∞ (CR). Note Pk−1 ≡ 0 in Corollary 4.3. Corollary 4.3

yields for f ∈ X1 the decomposition T̃ f = u0(f)+SM
1 (f)sM1 +SM

2 (f)sM2 =: S1(f)+

Sθ1(f) + Sθ2(f) with Sθj : Xθj,1 → Yθj ,∞ (cf. Lemma 2.6). The desired result now

follows from Lemma 2.7.

Case 5: ω = 3π/2. In contrast to the preceding case ω > 3π/2, we have λM
1 <

λM
2 = 1 < 5/4 < λM

3 . We take (k, ε) = (0, ε) as in the preceding case. The function

sM2 is a polynomial and hence smooth. Corollary 4.3 yields for f ∈ X1 the decompo-

sition T̃ f = (u0(f) + SM
2 (f)sM2 ) + SM

1 (f)sM1 =: S1(f) + Sθ1(f). Lemma 2.6 shows

that the operators S1 and Sθ1 have the mapping properties required by Lemma 2.7.

This concludes the proof. �
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5. An extension to Lp-based Besov spaces

The Besov spaces Bs
2,q considered so far are based on L2-spaces. Several results

obtained in the framework of these Besov spaces can be generalized to Lp-based

Besov spaces. We illustrate this in the present section for the simplest case, that of

the Dirichlet boundary condition and the assumption of W 2,p-regularity.

For k ∈ N0, p ∈ (1,∞), and bounded domains Ω, we introduce the spacesW k,p(Ω)

in the usual way by requiring that derivatives up to order k be in Lp(Ω), [22]. For

s > 0 with s 6∈ N0 one puts W s,p(Ω) := (W ⌊s⌋,p(Ω),W ⌈s⌉,p)s−⌊s⌋,p. The norm

‖·‖W s,p(Ω) is in fact equivalent to the Aronstein-Slobodeckij norm [37], Chapter 36.

A second important fact is that the Reiteration Theorem [37], Chapter 26 allows

one to show that for k, m ∈ N0 and k < s < m with s 6∈ N0 one has W
s,p(Ω) =

(W k,p(Ω),Wm,p(Ω))(s−k)/(m−k),p [37], Chapter 34. Analogous to the case of Sobolev

spaces, one defines for s > 0, s 6∈ N0, Besov spaces B
s
p,q(Ω) by interpolation

Bs
p,q(Ω) = (W ⌊s⌋,p(Ω),W ⌈s⌉,p(Ω))s−⌊s⌋,q

and notes that the Reiteration theorem would allow us to represent these spaces by

interpolating between the spaces W s1,p(Ω), W s2,p(Ω) with 0 6 s1 < s < s2, [37],

Chapter 24, [38], Section 4.3.2. As is customary in connection with Lp spaces, we

denote by p′ = p/(p− 1) the conjugate exponent.

Analogous to the spaces Ks
γ(C), it is convenient to define Ks,p

γ (C) by the norm

(5.1) ‖u‖p
Ks,p

γ (C)
:=

∑

|α|6s

‖r|α|−s+γDαu‖pLp(C).

We consider solutions u ∈ W 1,p(C) of

(5.2) −∆u = f in C, u = 0 on ϕ ∈ {0, ω}.

5.1. Regularity of the singularity functions and stress intensity func-

tionals. Let k ∈ N0. If k > 2/p, then by [38], Theorem 4.6.1 we have the embed-

ding W k,p(CR) ⊂ C⌊k−2/p⌋(CR) so that one may define as in (2.15) the polynomial
P⌊k−2/p⌋. We have:

Lemma 5.1. For k ∈ N0, p ∈ (1, 2) ∪ (2,∞), f ∈ W k,p(C1) let P⌊k−2/p⌋ be given

by (2.15), χ ∈ C∞
0 (B1(0)) with χ ≡ 1 near the origin. Then, f −∆(χP⌊k−2/p⌋) ∈

Kk,p
0 (C1).
P r o o f. The proof follows structurally that of Lemma A.1. Note that k− 2/p is

not an integer, which allows one to avoid the introduction of ε > 0 like in the proof

of Lemma A.1. �
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In the following Lemma 5.2, which allows us to ascertain the regularity of the

singularity functions and the stress intensity functional, the functions P⌊α−2⌋ of (2.15)

arise. These functions vanish for α−2 < 0 and are well-defined for f ∈ B
⌊α−2⌋+2/p
p,1 ⊂

C⌊α−2⌋ in view of [38], Theorem 4.6.1.

Lemma 5.2. Let p ∈ (1, 2) ∪ (2,∞).

(i) For β + 2/p > 0 the function s+(r, ϕ) = rβ sin(βϕ) is in the space B
β+2/p
p,∞ (C1).

(ii) Let Φ ∈ C∞(R2) with |Φ(x, y)| 6 Crn as r → 0 for some n ∈ N0. Then

the functions v(x, y) = Φ(x, y) ln r and w(x, y) = ϕΦ(x, y) are in the space

B
n+2/p
p,∞ (C1).

(iii) Let α− 2/p′ > 0 with α− 2 6∈ N0. Let P⌊α−2⌋ be given by (2.15). Then

f 7→ S(f) :=

∫

C1

r−α sin(αϕ)(f +∆(χP⌊α−2⌋))

is bounded linear on B
α−2/p′

p,1 (C1).

P r o o f. (i) is shown similarly to the proof of Lemma 2.6 (iii) by estimating the

K-functional through the splitting rβ = rβχt + rβ(1−χt) for a suitable t-dependent

cut-off function χt.

(ii) is shown by appropriately modifying the proof of Lemma 2.6 (iv).

(iii) The proof follows that of Lemma 2.6 (i) in that B
α−2/p′

p,1 is suitably written as

an interpolation space. We distinguish the cases 0 < α < 2 and α > 2.

The case α < 2: Then P⌊α−2⌋ ≡ 0. We write for ε > 0 so small that α+ ε < 2

B
α−2/p′

p,1 (C1) = (Lp(C1), Bα−2/p′+ε
p,1 (C1))θ,1, θ =

α− 2/p′

α− 2/p′ + ε
.

As in the proof Lemma 2.6 (i), one splits for δ > 0 the expression S(f) = S1 + S2 as

in (2.23). For S1, the Hölder inequality yields

|S1| 6 ‖f‖Lp(C1)‖χδr
−α‖Lp′(C1)

. δ−α+2/p′‖f‖Lp(C1).

Select q > 1 by the condition 2/q = 2/p− (α− 2/p′+ ε) = 2−α− ε ∈ (0, 2). By [38],

Theorem 4.6.1 (c) we then have B
α−2/p′+ε
p,1 (C1) ⊂ B

α−2/p′+ε
p,q (C1) ⊂ Lq(C1) so that

|S2|6‖f‖Lq(C1)‖(1−χδ)r
−α‖Lq′ (C1)

.δ−α+2/q′‖f‖
B

α−2/p′+ε
2,1 (C1)

. δε‖f‖
B

α−2/p′+ε
2,1 (C1)

.

As in the proof Lemma 2.6 (i), we select

(5.3)

δ = min
{1

2
diam{x ∈ C | χ(x) = 1}, (‖f‖Lp(C1)‖f‖−1

B
α−2/p′+ε
2,1 (C1)

)1/(α−2/p′+ε)
}
.
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For brevity, we only consider the case when the minimum in (5.3) is given by the

second term. Then

S1 + S2 . ‖f‖1−θ
Lp(C1)

‖f‖θ
B

α−2/p′+ε
p,1 (C1)

.

An appeal to [37], Lemma 25.2 concludes the proof.

The case α > 2: Select ε > 0 such that α−2−⌊α−2⌋+ε < 1. Since ⌊α−2⌋+2/p <

α− 2/p′, we write

B
α−2/p′

p,1 (C1) = (B
⌊α−2⌋+2/p
p,1 (C1), Bα−2/p′+ε

p,1 (C1))θ,1, θ =
α− 2− ⌊α− 2⌋

α− 2 + ε− ⌊α− 2⌋ .

As in the proof of Lemma 2.6 (i), one splits for δ > 0 the expression S(f) = S1 + S2

as in (2.23). For S1, we note that B
⌊α−2⌋+2/p
p,1 (C1) ⊂ C⌊α−2⌋(C1) by [38], Theo-

rem 4.6.1 (f). Hence,

|S1| 6 ‖r−⌊α−2⌋(f + χ∆P⌊α−2⌋)‖L∞(C1)‖χδr
−α+⌊α−2⌋‖L1(C1)

. δ−(α−2)+⌊α−2⌋‖f‖
B

⌊α−2⌋+2/p
2,1 (C1)

.

For S2, we have by [38], Theorem 4.6.1 (f), that B
α−2/p′+ε
p,1 (C1) = B

α−2+2/p+ε
p,1 (C1) ⊂

Cα−2+ε(C1) so that in view of the fact that −∆P⌊α−2⌋ is the Taylor expansion of f

at the origin of order ⌊α− 2⌋ and 0 < α− 2− ⌊α− 2⌋+ ε < 1, we get

|S2| 6 ‖r−(α−2+ε)(f + χ∆P⌊α−2⌋)‖L∞(C1)‖(1− χδ)r
−α+(α−2)+ε‖L1(C1)

. δε‖f‖
B

α−2/p′+ε
p,1 (C1)

.

We select δ as in (5.3) with the exponent replaced with 1/(α−2+ε−⌊α−2⌋). Then,
as in the proof of Lemma 2.6 (i), one arrives at

S1 + S2 . ‖f‖1−θ

B
⌊α−2⌋+2/p
p,1 (C1)

‖f‖θ
B

α−2/p′+ε
p,1 (C1)

.

An appeal to [37], Lemma 25.2 concludes the proof. �

5.2. Expansion in the corner singularity functions. The Lp-theory for el-

liptic problems in domains with conical points that was developed by Maz’ya and

Plamenevskij leads to the following Proposition 5.3.

Proposition 5.3. Let R > 0. Let p ∈ (1, 2) ∪ (2,∞), k ∈ N0, and assume

k+2−2/p = k+2/p′ 6∈ ±σD. Let f ∈ W k,p(C) satisfy ∂i
x∂

j
yf(0) = 0 for i+j < k−2/p.

Then, a solution u1 ∈ W 1,p(C) with suppu1 ⊂ B1(0) solving

(5.4) −∆u1 = f, u1 = 0 for ϕ ∈ {0, ω}
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has the form

u1 = u0 −
1

π

∑

j : λD
j <k+2−2/p

∫

C

r−λD
j sin(λD

j ϕ)f(x) dx rλ
D
j sin(λD

j ϕ)

with

(5.5) ‖u0‖Kk+2,p
0 (CR) . ‖f‖Kk,p

0 (C)

L. 5.1

. ‖f‖Wk,p(C).

P r o o f. The procedure is similar to that in the L2-based setting in Section 2.1.

Note that supp f ⊂ B1(0). By density, one may assume f ∈ W k,p(C) ∩ C∞(C) so
that the formulas of the L2-based setting are applicable. Since supp f ⊂ B1(0),

the Mellin transform M[g] = M[r2f ] is holomorphic in the strip {ζ ∈ C | Im >

−k−2+2/p}. As in Section 2.1, the function u0 is defined by an appropriate inverse

Mellin transformation on the line Im = −k− 2+2/p, and the residue theorem yields

(5.6) u0 − u1 =
∑

ζ0∈−iσD : Im ζ0∈(−k−2+2/p,0)

Res
ζ=ζ0

(riζ(L(ζ))−1M[g](ζ)).

Evaluating the residue yields the claimed representation. The estimate for u0 is

taken from [33], Proposition 2.3, but goes back at least to [29], Theorem 4.1. �

As in Section 2.1, the condition that f vanishes to sufficient order can be removed

by adding additional polynomials or logarithmic singularities:

Corollary 5.4. Let R > 0. Let p ∈ (1, 2) ∪ (2,∞), k ∈ N0, and assume k + 2 −
2/p = k + 2/p′ 6∈ ±σD. Let f ∈ W k,p(C). Then, a solution u1 ∈ W 1,p(C) with
suppu1 ⊂ B1(0) solving (5.4) can be represented as u1 = u0 + χP⌊k−2/p⌋ + S with

S = −1

π

∑

j : λD
j <k+2−2/p

∫

C

r−λD
j sin(λD

j ϕ)f +∆(χP⌊k−2/p⌋) dx rλ
D
j sin(λD

j ϕ),

P⌊k−2/p⌋ =
∑

i+j<k−2/p

1

i!j!
pDi,j(x)∂

i
x∂

j
yf(0),

where the functions pDi,j are from Lemma 2.4 and

‖u0‖Wk+2,p(CR) . ‖f‖Wk,p(C1).

The function P⌊k−2/p⌋ ≡ 0 if k− 2/p < 0 and satisfies, for k− 2/p > 0, the estimates

‖P⌊k−2/p⌋‖Wk+2,p(CR) . ‖f‖
B

⌊k−2/p⌋+2/p
p,1 (C1)

if ΣD
⌊k−2/p⌋+2 = ∅,

‖P⌊k−2/p⌋‖Bn∗+2/p
p,∞ (CR)

. ‖f‖
B

⌊k−2/p⌋+2/p
p,1 (C1)

,

n∗ := min
{
n ∈ ΣD

⌊k−2/p⌋+2 | nω
π

∈ N

}
if ΣD

⌊k−2/p⌋+2 6= ∅.

P r o o f. Follows as in Corollary 2.5. �
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5.3. A shift theorem. The representation formula of Corollary 5.4 allows one

to infer a shift theorem in Besov spaces as in the L2-case:

Theorem 5.5. Let R > 0. Let p ∈ (1, 2)∪ (2,∞) and χ ∈ C∞
0 (B1(0)) with χ ≡ 1

near 0. Let k := min{n ∈ N | λD
1 + 2/p < n+ 2}. Assume that one of the following

two conditions holds:

(i) 2 < λD
1 + 2/p < k + 2 < λD

2 + 2/p.

(ii) k < 2/p and 2 < λD
1 + 2/p < k + 2.

Assume furthermore that k+2/p′ 6∈ ±σD. Then for f ∈ B
λD
1 +2/p−2

2,1 (C1) a solution u
of (5.2) satisfies

‖u‖
B

λD
1

+2/p

2,∞ (CR)
. ‖χf‖

B
λD
1

+2/p−2

2,1 (C1)
+ ‖u‖W 1,p(C1).

P r o o f. In the following, we assume ω 6= π since in the case ω = π one has a full

shift theorem analogous to the case discussed in Remark 1.2, see [20], Section 9.

The two conditions (i), (ii) are such that the procedure already used in the L2

setting is applicable. Inspection of the proof of Theorem 1.1 (i) shows that it relies

on the following ingredients (A)–(D):

(A) Local regularity assertions as in Steps 0–1 of that proof that underlie the

estimate (2.34). The local regularity in Lp-spaces is available, e.g., [20], Section 9.

(B) Solution operators T and T̃ for the Dirichlet problem as in (2.36). In contrast

to (2.38), where X0 = H−1(CR), Y0 = H1
0 (CR), we view T : Lp → W 2,p ∩W 1,p

0 and

select

(5.7) X0 = Lp(CR), X1 = W k,p(CR), Y0 = W 2,p(CR), Y1 = W k+2,p(CR),

where we recall that k is taken as the smallest integer with k + 2 > λD
1 + 2/p. One

then has B
λD
1 −2/p′

p,1 = (X0, X1)θ,1 and B
λD
1 +2/p

p,∞ = (Y0, Y1)θ,∞ for θ = (λD
1 − 2/p′)/k.

The mapping property T̃ : X0 → Y0 follows from the assumption 2 < λD
1 + 2/p

since this implies that the sum S in the solution representation in Corollary 5.4 is

empty for k = 0 and that the function P⌊k−2/p⌋ vanishes for k = 0 so that u1 = u0.

(C) The representation formula for the solution for data from X1. This is provided

by Corollary 5.4.

(D) The interpolation argument of Lemma 2.7. In the L2-setting, it was applied

in two situations:

(a) The sum S contains exactly one singularity function.

(b) The sum S contains several singularity functions but Pk−1 ≡ 0; this was the

case in Theorem 1.1 (iii) for ω ∈ (3π/2, 2π).
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These two cases correspond to the conditions (i) and (ii), respectively. In the re-

mainder of the proof, we discuss in more detail the application of the interpolation

argument of Lemma 2.7.

Proof under condition (i) and λD
1 6∈ N: The definition of k reads

(5.8) k + 1− 2/p 6 λD
1 < k + 2− 2/p,

which gives

(5.9) ⌊k + 2− 2/p⌋ > ⌊λD
1 ⌋ > ⌊k + 1− 2/p⌋ = ⌊k + 2− 2/p⌋ − 1.

We claim that ΣD
⌊k−2/p⌋+2 = ∅. To see this, note that (5.9) implies ⌊k − 2/p⌋+ 2 =

⌊k + 2− 2/p⌋ 6 ⌊λD
1 ⌋+ 1 so that for any n ∈ N with n 6 ⌊k − 2/p⌋+ 2 we have

n

λD
1

6
1 + ⌊λD

1 ⌋
λD
1

6 1 +
1

λD
1

< 3.

For n ∈ ΣD
⌊k−2/p⌋+2, one has n/λ

D
1 ∈ N, leading to the possible cases n = λD

1 and

n = 2λD
1 . The first case is excluded by λD

1 6∈ N. The second case is also excluded

since otherwise 2λD
1 = n 6 ⌊k − 2/p⌋ + 2 6 1 + ⌊λD

1 ⌋ 6 1 + λD
1 , which implies

λD
1 6 1, and then 2λD

1 = n ∈ N leads to λD
1 ∈ {1/2, 1}, which is not possible due to

ω ∈ (0, 2π) and ω 6= π. Since ΣD
⌊k−2/p⌋+2 = ∅, the interpolation argument based on

Lemma 2.7 can be done as in the proof of Theorem 1.1 (i) for the case λD
1 6∈ N there.

Proof under condition (i) and λD
1 ∈ N. The value k satisfying (5.8) is given by

k =

{
λD
1 if p ∈ (1, 2)

λD
1 − 1 if p ∈ (2,∞)

leading to ⌊k − 2/p⌋+ 2 =

{
λD
1 if p ∈ (1, 2),

λD
1 if p ∈ (2,∞).

Hence, ΣD
⌊k−2/p⌋+2 = {λD

1 } and n⋆ = λD
1 in the estimate for P⌊k−2/p⌋ in Corollary 5.4.

That is, Corollary 5.4 ascertains ‖P⌊k−2/p⌋‖
B

λD
1

+2/p

p,∞

. ‖f‖
B

λD
1

+2/p−2

p,1

as used in the

proof of Theorem 1.1 (i) for the case λD
1 ∈ N there.

Proof under condition (ii). Multiple singularity functions in the representa-

tion of Corollary 5.4 are allowed. However, the condition k < 2/p ensures that

P⌊k−2/p⌋ = 0 so that as in the proof of Theorem 1.1 (iii) for ω ∈ (3π/2, 2π) one can

use Lemma 2.7 since the linear functionals f 7→
∫
C r

−λD
j sin(λD

j ϕ)f dx are bounded,

linear on B
λD
j −2/p′

2,1 for j ∈ N with λD
j + 2/p < k + 2. �

R em a r k 5.6. Theorem 5.5 is based on the assumption that the solution opera-

tor for the Dirichlet problem maps Lp → W 2,p, which is expressed by the condition

2 < λD
1 +2/p. This restriction is due to our working with positive order Besov spaces

Bs
p,q, s > 0. To remove this restriction, one would have to use negative order Besov

spaces similarly to the way it is done in the L2-setting.
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Appendix A. Weighted spaces and elliptic regularity

in weighted spaces

We introduce for 0 < ̺ < σ the annuli

(A.1) A(̺, σ) := {x ∈ C : ̺ < |x| < σ}.

Lemma A.1. Let f ∈ Hk+ε(C) with supp f ⊂ B1(0) for some k ∈ N0 and

ε ∈ (0, 1), and assume ∂i
x∂

j
yf(0) = 0 for i + j 6 k − 1. Then f ∈ Kk

−ε(C) with the
norm estimate ‖f‖Kk

−ε(C)
. ‖f‖Hk+ε(C1).

P r o o f of Lemma A.1/Lemma 2.2. We show the result for the cases ε ∈ (0, 1/2)

and ε ∈ (1/2, 1) separately. The limiting case ε = 1/2 is then obtained by an

interpolation argument (cf. [37], Chapter 23 for the interpolation of L2-based spaces

with weights). We also flag that we may assume ω 6= π as in the case ω = π the

cone C can be split into 2 cones with apertures 6= π and each cone is considered

separately.

Step 1. Claim: For ω 6= π there holds

(A.2)

‖f‖Hk+ε(A(1,2)) 6 C|∇kf |Hε(A(1,2)) +





2∑

l=1

k−1∑

j=0

‖∇jf‖L2(Γ1
l )
, k > 1,

2∑

l=1

‖f‖L2(Γ1
l )
, k > 0, and ε > 1/2,

where Γ1
l , l ∈ {1, 2}, are the two straight parts of ∂A(1, 2). This estimate is a variant

of a classical Poincaré inequality. By the Deny-Lions lemma and the connectedness of

A(1, 2), the full norm ‖f‖Hk+ε and the seminorm |∇ff |Hε are equivalent up the poly-

nomials of degree k. To see that, for k > 1, the map f 7→ ‖f‖∗ :=
2∑

l=1

k−1∑
j=0

‖∇jf‖L2(Γ1
l )

is a norm on Pk, the space of polynomials of degree k, we have to show that π ∈ Pk

and ‖π‖∗ = 0 implies π = 0. Assuming, as we may, that Γ1
1 ⊂ R × {0} and writing

π(x, y) =
∑

i+j6k

aijx
iyj , we see that aij = 0 for all i and j = 0, . . . , k − 1 so that

π(x, y) = a0ky
k. Since the line Γ1

2 is not colinear with Γ1
1 due to ω 6= π, we finally

conclude π = 0. The case k = 0 is easy.

Step 2. k > 1 and ε 6= 1/2: For d > 0 consider A(d, 2d), denote Γd
l , l ∈ {1, 2}, the

two straight parts of ∂A(d, 2d), and write f̂ for the function f scaled to the reference

element A(1, 2). Scaling to A(1, 2), using the norm equivalence (A.2), and scaling

687



back yields
∫

A(d,2d)

r−2k−2ε|f |2 . d−2k−2ε+2‖f̂‖2L2(A(1,2)) . d−2k−2ε+2‖f̂‖2Hk+ε(A(1,2))(A.3)

. d−2k−2ε+2

(
|Dkf̂ |2Hε(A(1,2)) +

k−1∑

j=0

2∑

l=1

‖∇j f̂‖2L2(Γ1
l )

)

. |Dkf |2Hε(A(d,2d)) +
k−1∑

j=0

2∑

l=1

‖r−(k+ε−(1/2+j))∇jf‖2L2(Γd
l )
,

where we used d ∼ r on A(d, 2d). Covering C by annuli of the form A(d, 2d), we

obtain
∫

C

r−2k−2ε|f |2 . |Dkf |2Hε(C1)
+

k−1∑

j=0

2∑

l=1

‖r−(k+ε−(1/2+j))∇jf‖2
L2(Γ

C1
l )

,

where ΓC1

l , l = 1, 2, denote the straight-lined parts of ∂C1. As f ∈ Hk+ε(C1),
the trace theorem gives ∇jf |

Γ
C1
l

∈ Hk−j+ε−1/2(ΓC1

l ) for j ∈ {0, . . . , k − 1}. Since
∂i
x∂

j′

y f(0) = 0 for i + j′ 6 k − 1, we even have χ(∇jf)|
Γ
C1
l

∈ H
k−j+ε−1/2
0 (ΓC1

l ),

cf. [31], Theorem 3.40, for smooth cut-off functions χ with χ ≡ 1 near the origin.

(The cut-off function is merely introduced for notational convenience to localize near

the origin.) It follows by [22], Theorem 1.4.4.4

(A.4)
k−1∑

j=0

‖r−(k+ε−(1/2+j))∇jf‖2
L2(Γ

C1
l )

. ‖f‖2
Hk+ε−1/2(Γ

C1
l )

. ‖f‖2Hk+ε(C1)
.

The higher derivatives of f appearing in the norm ‖·‖Kk
−ε(C)

are treated by a similar

argument.

Step 3. k = 0 and ε 6= 1/2: The result in the case k = 0 and ε ∈ (0, 1/2) is found

in [22], Theorem 1.4.4.3. For ε ∈ (1/2, 1), we proceed as in Step 2, replacing the

sum
k−1∑
j=0

with the sum
2∑

l=1

‖f‖L2(Γ1
l )
. The key estimate [22], Theorem 1.4.4.4 is again

applicable, which yields the result. �

Lemma A.2. Let ̺1 < ̺2 < ̺3 < ̺4 and Â2 := A(̺1, ̺4), Â2 := A(̺2, ̺3).

Let k ∈ N0, ε ∈ (0, 1), f ∈ Hk+ε(Â2) and u ∈ H1(Â2) satisfy −∆u = f on Â2

with additionally either homogeneous Dirichlet conditions, homogeneous Neumann

conditions, or homogeneous mixed boundary conditions on the two straight parts of

∂Â2. Then, there is C > 0, depending only on ω and ̺i, i = 1, . . . , 4, such that

|∇k+2u|Hε(Â1)
6 C(‖f‖Hk+ε(Â2)

+ ‖u‖H1(Â2)
). More generally, for any q ∈ [1,∞]

and s > 1/2, one has ‖u‖Bs+2
2,q (Â1)

6 C(‖f‖B−1+s
2,q (Â2)

+ ‖u‖H1(Â2)
). For Dirichlet

boundary conditions, this estimate actually holds for s > 0.
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P r o o f. We restrict to s > 1/2 in the second part of the lemma in order to

achieve a unified notation since the spaces B−1+s
2,q and B̃−1+s

2,q differ for s 6 1/2.

This is a rather standard elliptic regularity theorem. We sketch the proof to

illuminate the point that also regularity assertions in Besov spaces are possible.

We restrict to Dirichlet boundary conditions at one straight edge Γ1 of Â2 and

merely consider a local situation of the three half-balls H̺ := B̺(x0) ∩ Â2, H̺′ :=

B̺′(x0) ∩ Â2, H̺′′ := B̺′′(x0) ∩ Â2 with x0 ∈ Γ1 and 0 < ̺′′ < ̺′ < ̺. Consider

χ̺ ∈ C∞
0 (B̺(x0)), χ̺′ ∈ C∞

0 (B̺′(x0)) with χ̺ ≡ 1 on H̺′ and χ̺′ ≡ 1 on H̺′′ . Let

T be the solution operator for the Poisson problem on H̺ with Dirichlet boundary

conditions on ∂H̺. Then, by elliptic regularity, the map f 7→ χ̺′Tχ̺ is bounded

Hs(H̺) → Hs+2(H̺′) for any s ∈ N0∪{−1}. By interpolation, the map f 7→ χ̺′Tχ̺

is bounded Bs
2,q(H̺) → Bs+2

2,q (B̺′ ) for any s > −1, q ∈ [1,∞]. The difference

u0 := u−χ̺′Tχ̺f satisfies homogeneous Dirichlet conditions on Γ1 and is harmonic

on H̺′ . Hence, u0 is smooth (up to Γ1) on H̺′ and the interior regularity provides

‖u0‖Hs′+2(H̺′′ )
. ‖u0‖H1(H̺′ )

for any s′ > 0. Finally, ‖u0‖H1(H̺′ )
6 ‖u‖H1(H̺′ )

+

‖χ̺′Tχ̺f‖H1(H̺′ )
. ‖u‖H1(H̺′ )

+ ‖χf‖H−1(Â2)
. ‖u‖H1(H̺) + ‖f‖Hs

2,q(Â2)
, where χ

is yet another smooth cut-off function with χ ≡ 1 on B̺(x0) and supported by

a sufficiently small neighborhood of B̺(x0).

The local estimates can be combined into a global one by a smooth partition of

unity to result in the desired estimates for the sets Â1 and Â2. �

The following lemma demonstrates a type of scaling arguments employed in con-

nection with weighted spaces.

Lemma A.3. Let k ∈ N0, γ ∈ R, and ε ∈ (0, 1). Further let f ∈ L2
loc(C) and

u ∈ H1
loc(C) satisfy −∆u = f with either homogeneous Dirichlet boundary condi-

tions, homogeneous Neumann boundary conditions, or homogeneous mixed boundary

conditions. Then:

(i) For f ∈ Kk
γ (C), u ∈ K0

γ−k−2(C) and β ∈ (N0)
2, |β| ∈ [0, k + 2], it holds

(A.5) ‖r−|β|+γDk+2−|β|u‖L2(C) .
∑

|α|6k

‖r|α|−k+γDαf‖L2(C) + ‖r−k−2+γu‖L2(C).

(ii) Let f ∈ Hk+ε(C1) with supp f ⊂ B1(0). Further assume that there exists R > 1

such that u ∈ Kk+2
−ε (CR). Then

|Dk+2u|Hε(C1) . |Dkf |Hε(C1) +
∑

|α|6k

‖r|α|−k−εDαf‖L2(C1)

+
∑

|α|6k+2

‖r|α|−k−2−εDαu‖L2(CR).
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P r o o f. Introduce the annuli Â1 := A(1/2, 2) and Â2 := A(1/4, 4), cf. (A.1).

For ̺ > 0 scaling yields for Ai,̺ := ̺Âi, i = 1, 2, û(ξ) := u(̺ξ) and f̂(ξ) := f(̺ξ)

that −∆û = ̺2f̂ on Â2.

We start the proof of (i) by noting the elliptic regularity estimate

(A.6) ‖û‖Hk+2(Â1)
. ̺2‖f̂‖Hk(Â2)

+ ‖û‖L2(Â2)
.

We multiply (A.6) by ̺γ−k−2 and obtain after scaling

∑

|α|6k+2

̺2|α|+2γ−2k−4‖Dαu‖2L2(A1,̺)

.
∑

|α|6k

̺2|α|+2γ−2k‖Dαf‖2L2(A2,̺)
+ ̺2γ−2k−4‖u‖2L2(A2,̺)

.

The definition of the annuli implies 2−i̺ < r < 2i̺, i = 1, 2, on Ai,̺. Thus we get

further

∑

|α|6k+2

‖r|α|+γ−k−2Dαu‖2L2(A1,̺)
.

∑

|α|6k

‖r|α|+γ−kDαf‖2L2(A2,̺)
+‖rγ−k−2u‖2L2(A2,̺)

.

We now cover C by annuli A1,2−j , j ∈ Z. Since they have only a finite overlap, we

obtain

‖r−|β|+γDk+2−|β|u‖2L2(C) .
∑

|α|6k

‖r|α|+γ−kDαf‖2L2(C) + ‖rγ−k−2u‖2L2(C)

for |β| ∈ [0, k + 2], whereupon the result follows.

The proof of (ii) follows in a similar way. We prove it assuming R > 2. We have

(A.7) |Dk+2û|
Hε(Â1)

. ̺2‖f̂‖
Hk+ε(Â2)

+ ‖û‖
Hk+2(Â2)

,

which follows from Lemma A.2 after scaling with ̺. Then the usual scaling arguments

yield

|Dk+2u|2Hε(A1,̺)

. ̺2−2(k+2+ε)|Dk+2û|2
Hε(Â1)

. ̺2−2(k+2+ε)

(
̺4

∑

|α|6k

‖Dαf̂‖2
L2(Â2)

+ ̺4|Dkf̂ |2
Hε(Â2)

+
∑

|α|6k+2

‖Dαû‖2
L2(Â2)

)
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. ̺2−2(k+2+ε)

(
̺4

∑

|α|6k

̺−2+2|α|‖Dαf‖2L2(A2,̺)
+ ̺4̺−2+2(k+ε)|Dkf |2Hε(A2,̺)

+
∑

|α|6k+2

̺−2+2|α|‖Dαu‖2L2(A2,̺)

)

.
∑

|α|6k

̺−2k−2ε+2|α|‖Dαf‖2L2(A2,̺)
+ |Dkf |2Hε(A2,̺)

+
∑

|α|6k+2

̺−2k−2ε−4+2|α|‖Dαu‖2L2(A2,̺)
.

As in (i) we obtain by covering arguments

|Dk+2u|2Hε(C1)
.

∑

|α|6k

‖r−k−ε+|α|Dαf‖2L2(C1)
+ |Dkf |2Hε(C1)

+
∑

|α|6k+2

‖r−k−ε−2+|α|Dαu‖2L2(CR).

�
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