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Abstract: We analyze a goal-oriented adaptive algorithm that aims to efficiently compute the quantity of inter-

est G(u⋆) with a linear goal functional G and the solution u⋆ to a general second-order nonsymmetric linear

elliptic partial differential equation. The current state of the analysis of iterative algebraic solvers for non-

symmetric systems lacks the contraction property in the norms that are prescribed by the functional analytic

setting. This seemingly prevents their application in the optimality analysis of goal-oriented adaptivity. As a

remedy, this paper proposes a goal-oriented adaptive iteratively symmetrized finite element method (GOAIS-

FEM). It employs a nested loop with a contractive symmetrization procedure, e.g., the Zarantonello iteration,

and a contractive algebraic solver, e.g., an optimal multigrid solver. The various iterative procedures require

well-designed stopping criteria such that the adaptive algorithm can effectively steer the local mesh refinement

and the computation of the inexact discrete approximations. The main results consist of full linear convergence

of the proposed adaptive algorithm and the proof of optimal convergence rates with respect to both degrees of

freedom and total computational cost (i.e., optimal complexity). Numerical experiments confirm the theoretical

results and investigate the selection of the parameters.

Keywords: goal-oriented adaptive finite element method; linear quantity of interest; iterative solver; nonsym-

metric partial differential equations; optimal convergence rates; optimal complexity

MSC 2010 Classification: 41A25; 65N15; 65N30; 65N50; 65Y20

1 Introduction

Adaptive finite element methods (AFEMs) are a cornerstone in the numerical solution of partial differential

equations (PDEs). The abundant literature emphasizes significant progress and manifests a matured under-

standing of the topic; see, e.g. [1]–[9], for linear elliptic PDEs.

The variational formulation of a nonsymmetric second-order linear elliptic PDE with bilinear form b(⋅, ⋅)
and right-hand side functional F on the Sobolev space  := H1

0
(Ω) seeks a weak solution u⋆ to

b(u⋆, 𝑣) = F(𝑣) ∀ 𝑣 ∈  . (1)

While standard AFEM aims at an efficient approximation of the solution u⋆ ∈  , goal-oriented AFEM (GOAFEM)

strives only to approximate a quantity of interest G(u⋆); see [10]–[13] for early prominent contributions. How-

ever, to accurately approximate G(u⋆) for a continuous linear goal functional G: → ℝ, following the generic
approach G(uH ) ≈ G(u⋆) leads to convergence rates determined by the error of the approximation uH ≈ u⋆ to
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the primal problem (1). Instead, GOAFEMadopts a duality technique by additionally approximating zH ≈ z⋆ ∈ 

solving the dual problem
b(𝑣, z⋆) = G(𝑣) ∀ 𝑣 ∈  . (2)

Following [13], a discrete approximation GH (uH , zH ) ≈ G(u⋆) enables the control of the error for any uH , zH ∈ 

by |G(u⋆)− GH (uH , zH )| ⩽ |b(u⋆ − uH , z
⋆ − zH

)| ⩽ L |||u⋆ − uH||| |||z⋆ − zH|||, (3)

where L > 0 is the continuity constant of b(⋅, ⋅) with respect to the energy norm ||| ⋅ |||; see Section 2 for details.
As seen in (3), this approach allows to add the convergence rates of the primal and dual problem. Moreover,

it is not necessary – and may even lead to unnecessary computational expense – to compute approximations

uH ≈ u⋆ and zH ≈ z⋆ across the entire domain with the same accuracy. Instead, a careful marking of elements

for refinement enables a considerable reduction of the computational costs andmakes GOAFEM highly relevant

in both practical applications and mathematical research.

First rigorous convergence results of GOAFEM are found in [14]–[18], recent contributions in this context

include [19], [20] and for a dual weighted-residual approach see, e.g., [21]–[23]. The works [14], [16], [17], [19],

[20] focus on optimal convergence rates with respect to the degrees of freedom. However, the cumulative nature

of adaptivity calls for optimal convergence rates with respect to the total computational effort, i.e., the overall

computational time. Coined as optimal complexity initially forwavelet-based discretizations [24], [25], this notion

was later adopted for AFEM with contributions including, e.g., [4], [26]–[28]. In the setting of GOAFEM, optimal

complexitywas establishedfirst in [14] for the Poisson problemand sufficiently small adaptivity parameters, and

extended to a general second-order symmetric linear elliptic PDE with uniformly contractive algebraic solver

in [29]. Since uniform contraction with respect to the PDE-related energy norm for nonsymmetric algebraic

solvers such as GMRES is still open, as a remedy, the proof of the Lax–Milgram lemmamotivates the application

of an iterative symmetrization [28]. This results in a sequence of symmetric algebraic systems that allow the

application of optimal algebraic solvers, e.g., [30]–[32]. Figure 1 illustrates the nested structure of the resulting

goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM). The detailed Algorithm 1 is

presented in Section 3 below. Table 1 displays the notation of the associated indices and quasi-error quantities,

which are equivalent to the total error.

The first challenge in the analysis of the GOAISFEM algorithm consists of the nonlinear product structure

attained by the combined quasi-error product as displayed in Table 1. The resulting nonlinear remainder term

significantly complicates the proof compared to treating only the primal problem as in [28] and requires the

application of a novel proof strategy from [33] that only utilizes summability of the remainder, denoted as tail-

summability throughout. The second challenge arises from the combination of the primal and dual marking

leading to a merged marked set. Thereby, either only the primal or only the dual estimator is guaranteed to

satisfy the estimator reduction property. Since the estimator belongs to the quasi-error, this also leads to a failure

of contraction for one of the two involved quasi-errors. While [29] solves this issue in the symmetric case, the

additional symmetrization loop results in a more involved situation at hand. Adapting the novel approach of

Figure 1: Schematic overview of the GOAISFEM algorithm

with nested symmetrization and inexact solver.



P. Bringmann et al.: Optimal complexity of GOAFEM — 3

Table 1: Iteration counters and quasi-errors for the GOAISFEM algorithm. We note that for the combination of the index sets, the

quasi-errors are extended to the full index set by the last available quasi-error. We refer to Section 3 for details on the iteration counters

and index sets and to the beginning of Section 5 for a detailed description of the quasi-errors and their extension to the full index set.

Iteration Mesh refinement Symmetrization Algebraic solver Index set Quasi-error

Running Final Running Final Running Final

Primal 𝓁 𝓁 m m n n u in (24a) Hm,n

𝓁 in (44a)

Dual 𝓁 𝓁 𝜇 𝜇 𝜈 𝜈 z in (24b) Z
𝜇,𝜈

𝓁 in (44b)

Combined 𝓁 𝓁 k k = max{m, 𝜇} j j = max{n, 𝜈}  = u ∪z H
k, j

𝓁 Z
k, j

𝓁 in (45)

the tail-summability criterion from [33] enables the proof of full linear convergence and optimal complexity for

the nonlinear quasi-error product in this paper. The analysis employs the generalized quasi-orthogonality from

[34] to remedy the lack of a Pythagorean identity for nonsymmetric problems.

Our main result asserts full linear convergence of the quasi-error product H
k, j

𝓁 Z
k, j

𝓁 with respect to the total

step counter |⋅, ⋅, ⋅| (measuring the total solver steps in the index set). Therein, we allow for an arbitrary sym-

metrization stopping parameter 𝜆sym and only require a small algebraic solver parameter 𝜆alg such that the

product 𝜆sym𝜆alg is sufficiently small. More precisely, Theorem 1 states that there exist constants Clin > 0 and

0 < qlin < 1 such that, for all (𝓁, k, j), (𝓁′, k′, j ′) ∈  with |𝓁′, k′, j′| ⩽ |𝓁, k, j|,
H
k, j

𝓁 Z
k, j

𝓁 ⩽ Clin q
|𝓁,k, j|−|𝓁′,k′,j ′|
lin

H
k′,j ′

𝓁′ Z
k′,j ′

𝓁′ .

Note that, unlike [28], where full linear convergence is guaranteed only for sufficiently large 𝓁 ⩾ 𝓁0, the current
result is stronger in the sense that the result holds for 𝓁0 = 0 owing to a generalized quasi-orthogonality from

[34]. An immediate consequence of full linear convergence and the geometric series in Corollary 1 states that the

rateswith respect to the degrees of freedomcoincidewith the rateswith respect to the cumulative computational

work (i.e., computational time), i.e., for all r > 0, there holds

sup
(𝓁,k, j)∈

(
#𝓁

)r
H
k, j

𝓁 Z
k, j

𝓁 ⩽ sup
(𝓁,k, j)∈

⎛⎜⎜⎜⎝
∑

(𝓁′,k′, j′)∈|𝓁′,k′, j′|⩽|𝓁,k, j|
#𝓁′

⎞⎟⎟⎟⎠

r

H
k, j

𝓁 Z
k, j

𝓁 ⩽ Ccost sup
(𝓁,k, j)∈

(
#𝓁

)r
H
k, j

𝓁 Z
k, j

𝓁

along the sequence of meshes 𝓁 generated by the GOAISFEM algorithm. The second main result of Theorem 2

proves that, for sufficiently small adaptivity parameters and any achievable rates s, t > 0 of the primal resp. dual

problem (stated in terms of nonlinear approximation classes), the algorithm guarantees optimal complexity, i.e.,

sup
(𝓁,k, j)∈

⎛⎜⎜⎜⎝
∑

(𝓁′,k′, j′)∈|𝓁′,k′, j′|⩽|𝓁,k, j|
#𝓁′

⎞⎟⎟⎟⎠

s+t

H
k, j

𝓁 Z
k, j

𝓁 ⩽ Copt max
{‖u⋆‖𝔸s

‖z⋆‖𝔸t
, H0,0

0
Z0,0
0

}
.

This means the convergence of the algorithm attains the optimal rate s+ t with respect to the overall computa-

tional work, where ‖u⋆‖𝔸s
< ∞means that u⋆ can be approximated at rate s (along a sequence of unavailable

optimal meshes) and likewise for z⋆.

The remaining parts of the paper are organized as follows. The preliminary Section 2 introduces the model

problem, the assumptions on the solvers, and the axioms of adaptivity from [9], including the general quasi-

orthogonality from [34]. Following the algorithm in Section 3 and its contraction properties in Sections 4 and 5

presents full linear convergence as the first main result of this paper. This allows to prove optimal complexity

in Section 6 as the second main result, which is underlined by the numerical experiments in Section 7 including

a thorough investigation of the adaptivity parameters. The paper concludes with a summary in Section 8.
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2 Setting

In this section, we introduce the problem and explain the key components needed to design the adaptive

algorithm in Section 3.

2.1 Continuous model problem

LetΩ ⊂ ℝd with d ⩾ 1 be a polygonal Lipschitz domain. Given right-hand sides f ∈ L2(Ω) and f ∈ [L2(Ω)]d, we
consider a general second-order linear elliptic PDE

−div(A∇u⋆)+ b ⋅∇u⋆ + c u⋆ = f − div(f ) in Ω subject to u⋆ = 0 on 𝜕Ω, (4)

with a pointwise symmetric and positive definite diffusion matrix A ∈
[
L∞(Ω)

]d×d
sym

, a convection coefficient

b ∈
[
L∞(Ω)

]d
, and a reaction coefficient c ∈ L∞(Ω). For well-definedness of the a posteriori error estimator

in Section 2.6 below, we additionally require that A|T ∈ [W 1,∞(T)
]d×d
sym

and f |T ∈ [H1(T)
]d
for all T ∈ 0, where

0 is an initial triangulation that subdividesΩ into compact simplices. Let ⟨⋅, ⋅⟩ denote the L2(Ω)-scalar product.
With the principal part a(u, 𝑣):= ⟨A∇u,∇𝑣⟩, the variational formulation of (4) seeks a solution u⋆ ∈  := H1

0
(Ω)

to the so-called primal problem

b(u⋆, 𝑣):= a(u⋆, 𝑣)+ ⟨b ⋅∇u⋆ + c u⋆, 𝑣⟩ = ⟨ f , 𝑣⟩+ ⟨f ,∇𝑣⟩ =: F(𝑣) ∀ 𝑣 ∈  . (5)

We suppose that the bilinear form b(⋅, ⋅) from (5) is continuous and elliptic with respect to the norm ‖ ⋅ ‖ on  ,

i.e., there exist constants L′, 𝛼′ > 0 such that

b(u, 𝑣) ⩽ L′ ‖u‖‖𝑣‖ , b(𝑣, 𝑣) ⩾ 𝛼′ ‖𝑣‖2


∀ u, 𝑣 ∈  . (6)

Then, the Lax–Milgram lemma proves existence and uniqueness of the solution u⋆ to (5). An elementary com-

pactness argument shows that (6) implies ellipticity of the principal part a(⋅, ⋅) and thus a(⋅, ⋅) is a scalar product
on with induced energynorm a( ⋅, ⋅ )1∕2 =: ||| ⋅ ||| ≃ ‖ ⋅ ‖ , cf. [35, Remark 3]. Therefore, b(⋅, ⋅) is also continuous
and elliptic with respect to ||| ⋅ |||, i.e., there exist constants L, 𝛼 > 0 such that

b(u, 𝑣) ⩽ L |||u||| |||𝑣|||, b(𝑣, 𝑣) ⩾ 𝛼 |||𝑣|||2 ∀ u, 𝑣 ∈  . (7)

In the present paper, we suppose that the quantity of interest G is linear and reads for given data g ∈ L2(Ω) and
g ∈

[
L2(Ω)

]d
,

G(𝑣):=
∫
Ω

(
g 𝑣+ g ⋅∇𝑣

)
dx.

In order to guarantee well-definedness of the error estimator in Section 2.6 below, we suppose g|T ∈ [H1(T)
]d

for all initial simplices T ∈ 0. In view of the continuity and coercivity of b(⋅, ⋅), the Lax–Milgram lemma yields

existence and uniqueness of the solution z⋆ ∈  of the so-called dual problem: Find z⋆ ∈  such that

b(𝑣, z⋆) = G(𝑣) ∀ 𝑣 ∈  . (8)

2.2 Finite element discretization and discrete goal

For a polynomial degree p ∈ ℕ and a conforming simplicial triangulation H of Ω, the discrete ansatz space
reads

H := {𝑣H ∈  :∀ T ∈ H , 𝑣H|T is a polynomial of total degree ⩽ p}. (9)

SinceH ⊂  is conforming, the Lax–Milgram lemma ensures the existence and uniqueness of primal and dual

discrete solutions u⋆
H
, z⋆

H
∈ H satisfying

b
(
u⋆
H
, 𝑣H

)
= F(𝑣H ), b

(
𝑣H , z

⋆
H

)
= G(𝑣H ) ∀ 𝑣H ∈ H . (10)
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It is well-known that conforming FEMs are quasi-optimal, i.e., there hold Céa-type estimates with constant

CCéa = L∕𝛼 |||u⋆ − u⋆
H
||| ⩽ CCéa min

𝑣H∈H

|||u⋆ − 𝑣H|||, |||z⋆ − z⋆
H
||| ⩽ CCéa min

𝑣H∈H

|||z⋆ − 𝑣H|||. (11)

For arbitrary approximations uH , zH ,∈ H the linearity of the quantity of interest G as well as the primal and

the dual problem (1) and (2) show that

G(u⋆)− G(uH ) = G
(
u⋆ − uH

) (2)= b
(
u⋆ − uH , z

⋆
)

(1)= b
(
u⋆ − uH , z

⋆ − zH
)
+
[
F(zH )− b(uH , zH )

]
.

The definition of the discrete goal quantity by GH (uH , zH ):= G(uH )+
[
F(zH )− b(uH , zH )

]
allows to control the

goal error by continuity of b(⋅, ⋅)

|G(u⋆)− GH (uH , zH )| ⩽ |b(u⋆ − uH , z
⋆ − zH

)| ⩽ L |||u⋆ − uH||||||z⋆ − zH|||. (12)

We emphasize that (12) holds for any uH , zH and, in particular, for those stemming from an iterative solution

step. Moreover, if uH = u⋆
H
, then G(uH , zH ) = G

(
u⋆
H

)
as expected.

2.3 Zarantonello iteration

The discrete formulations (10) lead to positive definite, but nonsymmetric linear systems of equations. To reduce

the formulation to symmetric and positive definite (SPD) problems, we follow previous own work [28] for the

primal problem and employ the Zarantonello iteration [36]. Typically, the latter is used in the up-to-date proof

of the Lax–Milgram lemma and also defines a linearization scheme for the treatment of a certain class of non-

linear elliptic PDEs (see, e.g., [33], [37]–[39]). In its core, it is a fixed-point method, thus also applicable in the

nonsymmetric setting at hand. For a damping parameter 𝛿 > 0 and given uH , zH ∈ H , the Zarantonello iter-

ations Φu
H
,Φz

H
: (0,∞) × H → H compute the unique solutions Φu

H
(𝛿; uH ), Φz

H
(𝛿; zH ) ∈ H to the symmetric

variational formulations

a(Φu
H
(𝛿; uH ), 𝑣H ) = a(uH , 𝑣H )+ 𝛿

[
F(𝑣H )− b(uH , 𝑣H )

]
∀ 𝑣H ∈ H , (13a)

a(𝑣H ,Φz
H
(𝛿; zH )) = a(𝑣H , zH )+ 𝛿

[
G(𝑣H )− b(𝑣H , zH )

]
∀ 𝑣H ∈ H . (13b)

The Riesz–Fischer theorem (and also the Lax–Milgram lemma) guarantees existence and uniqueness of

Φu
H
(𝛿; uH ), Φz

H
(𝛿; zH ) ∈ H , i.e., the Zarantonello operators Φu

H
(𝛿; ⋅) and Φz

H
(𝛿; ⋅) are well-defined. In partic-

ular, the exact discrete solutions u⋆
H
= Φu

H

(
𝛿; u⋆

H

)
and z⋆

H
= Φz

H

(
𝛿; z⋆

H

)
are the unique fixed points for all

𝛿 > 0. Moreover, for a sufficiently small damping parameter 𝛿, i.e., 0 < 𝛿 < 𝛿
⋆:= 2𝛼∕L2, the Banach fixed-

point theorem [40, Section 25.4] guarantees thatΦu
H
(𝛿; ⋅) andΦz

H
(𝛿; ⋅) are contractive with constant 0 < q⋆

sym
:=[

1− 𝛿 (2𝛼 − 𝛿L2)
]1∕2

< 1, i.e., for all functions 𝑣H ,𝑤H ∈ H , it holds that

max
{|||Φu

H
(𝛿; 𝑣H )−Φu

H
(𝛿;𝑤H )|||, |||Φz

H
(𝛿; 𝑣H )−Φz

H
(𝛿;𝑤H )|||} ⩽ q⋆

sym
|||𝑣H −𝑤H|||. (14)

The optimal value 𝛿opt = 𝛼∕L2 yields the minimal contraction value q⋆
sym

= 1− 𝛼2∕L2.

2.4 Algebraic solver

A canonical candidate for solving (10) directly is a generalized minimal residual method [41], [42] with optimal

preconditioner for the symmetric part. While this guarantees uniform contraction of the algebraic residuals

in a discrete vector norm, the link between the algebraic residuals and the functional setting is still open [28].

Instead, after a symmetrization with the Zarantonello iteration, it remains to solve the SPD systems (13). Since

large SPD problems are still computationally expensive and the exact solution cannot be computed in linear

computational complexity, we employ an iterative algebraic solver whose iteration is expressed by the operator
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ΨH :
′ × H → H . More precisely, given a bounded linear functional𝜓 ∈  ′ and an approximation𝑤H ∈ H

of the exact solution𝑤⋆
H
∈ H to a

(
𝑤⋆

H
, 𝑣H

)
= 𝜓 (𝑣H ) for all 𝑣H ∈ H , the algebraic solver returns an improved

approximationΨH (𝜓 ;𝑤H ) ∈ H in the sense that there exists 0 < qalg < 1 independent of 𝜓 and H such that

|||𝑤⋆
H
−ΨH (𝜓 ;𝑤H )||| ⩽ qalg |||𝑤⋆

H
−𝑤H||| ∀ 𝑤H ∈ H . (15)

To simplify notation, we shall identify𝜓 with its Riesz representative𝑤⋆
H
∈ H and writeΨH

(
𝑤⋆

H
; ⋅
)
instead of

ΨH (𝜓 ; ⋅), even though𝑤⋆
H
is unknown in practice and will only be approximated by an optimal algebraic solver,

e.g., [30]–[32]. In the following, we use the hp-robust multigrid method from [32] with localized lowest-order

smoothing on intermediate levels and patchwise higher-order smoothing on the finest mesh as an innermost

algebraic solver loop.

2.5 Mesh refinement

The mesh refinement employs newest-vertex bisection (NVB). We refer to [43] for NVB with admissible initial

triangulation 0 and d ⩾ 2, to [44], [45] for NVB with general 0 for d ∈ {1, 2}, and to the recent work [46] for
NVBwith general 0 in any dimension d ⩾ 2. For each triangulation H andmarked elementsH ⊆ H , let h:=
refine(H ,H ) be the coarsest conforming refinement of H such that at least all T ∈ H have been refined,

i.e.,H ⊆ H∖h. We write h ∈ 𝕋 (H ) if h can be obtained from H by finitely many steps of NVB, and h ∈
𝕋N (H ) if h ∈ 𝕋 (H ) with #h − #H ⩽ N with the number of additional elements N ∈ ℕ0. To simplify notation,

we write 𝕋 := 𝕋 (0) and 𝕋N := 𝕋N (0). We note that the nestedness of meshes h ∈ 𝕋 (H ) implies nestedness of
the corresponding finite element spaces H ⊆ h ⊂  from (9).

2.6 A posteriori error estimation

For a triangle T ∈ H ∈ 𝕋 and 𝑣H ∈ H , let n denote the outer unit normal vector and [ [⋅] ] the jump along

inner edges of H . We define the refinement indicators 𝜂H (T; 𝑣H )⩾ 0 and 𝜁H (T; 𝑣H )⩾ 0 for the primal and dual

problem from (10), respectively, by

𝜂H (T; 𝑣H )2:=|T|2∕d ‖− div(A∇𝑣H − f )+ b ⋅∇𝑣H + c 𝑣H − f ‖2
L2(T)

+ |T|1∕d ‖[[(A∇𝑣H − f
)
⋅ n]]‖2

L2(𝜕T∩Ω),

𝜁H (T; 𝑣H )2:=|T|2∕d ‖− div(A∇𝑣H − g)− b ⋅∇𝑣H +
(
c − div(b)

)
𝑣H − g‖2

L2(T)

+ |T|1∕d ‖[[(A∇𝑣H − g
)
⋅ n]]‖2

L2(𝜕T∩Ω).

(16a)

For any subsetH ⊆ H , we abbreviate

𝜂H (H ; 𝑣H )2:=
∑
T∈H

𝜂H (T; 𝑣H )2, 𝜁H (H ; 𝑣H )2:=
∑
T∈H

𝜁H (T; 𝑣H )2 (16b)

as well as 𝜂H (𝑣H ):= 𝜂H (H ; 𝑣H ) and 𝜁H (𝑣H ):= 𝜁H (H ; 𝑣H ) for all 𝑣H ∈ H .

For details on residual-based error estimators, we refer to [47], [48]. Throughout the paper, the index of the

estimators refer to the underlyingmesh, e.g., 𝜂h and 𝜁h on the refinement h ∈ 𝕋 (H ) or 𝜂𝓁 and 𝜁𝓁 on a sequence

of meshes 𝓁 with 𝓁 ∈ ℕ0. It is well-known that 𝜂H , 𝜁H satisfy the following axioms of adaptivity.

Lemma 1 (see [9, Section 6.1]). The error estimators 𝜂H , 𝜁H from (16) satisfy the following properties with con-

stants Cstab, Crel, Cdrel, Cmon > 0 and 0 < qred < 1 for any triangulation H ∈ 𝕋 and any conforming refinement
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h ∈ 𝕋 (H )with the corresponding Galerkin solutions u⋆H , z
⋆
H
∈ H, u

⋆
h
, z⋆

h
∈ h to (10), any subsetH ⊆ H ∩ h,

and arbitrary 𝑣H ∈ H, 𝑣h ∈ h:

(A1) stability: |𝜂h(H ; 𝑣h)− 𝜂H (H ; 𝑣H )|+ |𝜁h(H ; 𝑣h)− 𝜁H (H ; 𝑣H )| ⩽ Cstab |||𝑣h − 𝑣H|||;
(A2) reduction: 𝜂h(h∖H ; 𝑣H ) ⩽ qred 𝜂H (H∖h; 𝑣H ) and 𝜁h(h∖H ; 𝑣H ) ⩽ qred𝜁H (H∖h; 𝑣H );
(A3) reliability: |||u⋆ − u⋆

H
||| ⩽ Crel 𝜂H

(
u⋆
H

)
and |||z⋆ − z⋆

H
||| ⩽ Crel 𝜁H

(
z⋆
H

)
;

(A3+) discrete reliability: |||u⋆
h
− u⋆

H
||| ⩽ Cdrel 𝜂H

(
H∖h, u⋆H

)
and |||z⋆

h
− z⋆

H
||| ⩽ Cdrel 𝜁H

(
H∖h, z⋆H

)
;

(QM) quasi-monotonicity: 𝜂h
(
u⋆
h

)
⩽ Cmon 𝜂H

(
u⋆
H

)
and 𝜁h

(
z⋆
h

)
⩽ Cmon 𝜁H

(
z⋆
H

)
.

The constant Crel depends only on the uniform 𝛾 -shape regularity of all H ∈ 𝕋 and on the space dimension d, while

Cstab and Cdrel additionally depend on the polynomial degree p. For NVB, reduction (A2) holds with qred:= 2−1∕(2d).

Moreover, the constant in quasi-monotonicity (QM) satisfies Cmon ⩽ min{1+ Cstab(1+ CCéa)Crel, 1+ CstabCdrel}.

Reliability (A3) and stability (A1) verify

|||u⋆ − uH||| ⩽ max{Crel, 1+ Cstab Crel}
[
𝜂H (uH )+ |||u⋆H − uH|||],

|||z⋆ − zH||| ⩽ max{Crel, 1+ Cstab Crel}
[
𝜁H (zH )+ |||z⋆H − zH|||].

In combination with the estimate (12), we finally conclude for Cgoal:= Lmax{Crel, 1+ Cstab Crel}2 the reliable
goal-error estimate

|G(u⋆)− GH (uH , zH )| ⩽ Cgoal
[
𝜂H (uH )+ |||u⋆H − uH|||] [𝜁H (zH )+ |||z⋆H − zH|||], (17)

which provides the core estimate of the proposed adaptive algorithm in Section 3 below.

The ellipticity of b(⋅, ⋅) from (7) ensures inf-sup stability of the elliptic problem at hand. Recall from [34] that

inf-sup stability implies the generalized quasi-orthogonality, which will be an important tool in the subsequent

analysis.

Proposition 1 (validity of quasi-orthogonality [34, Eq. (8)]). For any sequence 𝓁 ⊆ 𝓁+1 ⊂  of nested discrete

subspaces with 𝓁 ⩾ 0, there holds

(A4) quasi-orthogonality: There exist constants Corth > 0 and 0 < 𝛿 < 1 such that the corresponding Galerkin

solutions u⋆𝓁 , z
⋆
𝓁 ∈ 𝓁 to (10) satisfy, for all 𝓁,M ∈ ℕ0,

𝓁+M∑
𝓁’=𝓁

|||u⋆
𝓁’+1 − u⋆

𝓁’
|||2 ⩽ Corth (M + 1)1−𝛿 |||u⋆ − u⋆𝓁 |||2, (18a)

𝓁+M∑
𝓁’=𝓁

|||z⋆
𝓁’+1 − z⋆

𝓁’
|||2 ⩽ Corth (M + 1)1−𝛿 |||z⋆ − z⋆𝓁 |||2. (18b)

The constants Corth and 𝛿 depend only on the dimension d, the elliptic bilinear form b(⋅, ⋅), and the chosen norm
||| ⋅ |||, but are independent of the spaces 𝓁 .

3 Adaptive algorithm

In this section, we introduce our goal-oriented adaptive iteratively symmetrized algorithm. It utilizes spe-

cific stopping indices denoted by an underline, e.g., 𝓁 ,m[𝓁], n[𝓁, k] ∈ ℕ0. For an overview, see Table 1 above.

However, we may omit the dependence whenever it is apparent from the context, such as in the abbreviation

n:= n[𝓁,m] for u
m,n

𝓁 .
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Algorithm 1 (GOAISFEM).

Input: Initialmesh 0, polynomial degree p ∈ ℕ, marking parameters 0<𝜃⩽ 1,Cmark ⩾ 1, solver parameters

𝜆sym > 0, 𝜆alg > 0, Zarantonello damping parameter 𝛿 > 0, and initial guesses u0,0
0

= u
0,n

0
, z0,0

0
= z

0,𝜈

0
∈ 0.

Adaptive loop: For all 𝓁 = 0, 1, 2, . . . , repeat the following steps (I)–(IV):

(I) SOLVE & ESTIMATE (PRIMAL). For allm = 1, 2, 3, . . . , repeat (a)–(c):

(a) Set um,0𝓁 := u
m−1,n
𝓁 and define for theoretical reasons um,⋆𝓁 :=Φu

𝓁

(
𝛿; um−1,n𝓁

)
.

(b) For all n = 1, 2, 3, . . . , repeat the following steps (i)–(ii):

(i) Compute um,n𝓁 :=Ψ𝓁

(
um,⋆𝓁 ; um,n−1𝓁

)
and corresponding refinement indicators 𝜂𝓁

(
T; um,n𝓁

)
for

all T ∈ 𝓁 .

(ii) Terminate n-loop and define n[𝓁,m] := n if

|||um,n𝓁 − um,n−1𝓁 ||| ⩽ 𝜆alg

[
𝜆sym 𝜂𝓁

(
um,n𝓁

)
+ |||um,n𝓁 − um,0𝓁 |||]. (19)

(c) Terminatem-loop and definem[𝓁] :=m if

|||um,n𝓁 − um,0𝓁 ||| ⩽ 𝜆sym 𝜂𝓁

(
u
m,n

𝓁

)
. (20)

(II) SOLVE & ESTIMATE (DUAL). For all 𝜇 = 1, 2, 3, . . . , repeat (a)–(c):

(a) Set z
𝜇,0

𝓁 := z
𝜇−1,𝜈
𝓁 and define for theoretical reasons z

𝜇,⋆

𝓁 :=Φz
𝓁

(
𝛿; z𝜇−1,𝜈𝓁

)
.

(b) For all 𝜈 = 1, 2, 3, . . . , repeat the following steps (i)–(ii):

(i) Compute z
𝜇,𝜈

𝓁 :=Ψ𝓁

(
z
𝜇,⋆

𝓁 ; z𝜇,𝜈−1𝓁

)
and corresponding refinement indicators 𝜁𝓁

(
T; z𝜇,𝜈𝓁

)
for

all T ∈ 𝓁 .

(ii) Terminate 𝜈-loop and define 𝜈 [𝓁, 𝜇] := 𝜈 if

|||z𝜇,𝜈𝓁 − z
𝜇,𝜈−1
𝓁 ||| ⩽ 𝜆alg

[
𝜆sym 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
+ |||z𝜇,𝜈𝓁 − z

𝜇,0

𝓁 |||]. (21)

(c) Terminate 𝜇-loop and define 𝜇[𝓁] :=𝜇 if

|||z𝜇,𝜈𝓁 − z
𝜇,0

𝓁 ||| ⩽ 𝜆sym 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
. (22)

(III) MARK. Determine sets

u
𝓁 ∈ 𝕄u

𝓁

[
𝜃, u

m,n

𝓁

]
:=
{
𝓁 ⊆ 𝓁 : 𝜃 𝜂𝓁

(
u
m,n

𝓁

)2
⩽ 𝜂𝓁

(
𝓁, u

m,n

𝓁

)2}
,

z
𝓁 ∈ 𝕄z

𝓁

[
𝜃, z

𝜇,𝜈

𝓁

]
:=
{
𝓁 ⊆ 𝓁 : 𝜃 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)2
⩽ 𝜁𝓁

(
𝓁, z

𝜇,𝜈

𝓁

)2}

satisfying the following Dörfler criterion [1] with quasi-minimal cardinality

#u
𝓁 ⩽ Cmark min

 ⋆
𝓁 ∈𝕄u

𝓁

[
𝜃,u

m ,n

𝓁

]# ⋆
𝓁 , #z

𝓁 ⩽ Cmark min
 ⋆

𝓁 ∈𝕄z
𝓁

[
𝜃,z

𝜇 ,𝜈

𝓁

]# ⋆
𝓁 . (23)

As in [17], define the set of marked elements𝓁 :=u
𝓁 ∪z

𝓁,where
u
𝓁 ⊆u

𝓁 and
z
𝓁 ⊆z

𝓁 satisfy

#u
𝓁 = #z

𝓁 = min
{
#u

𝓁, #
z
𝓁

}
.

(IV) REFINE. Generate the newmesh 𝓁+1 := refine(𝓁, 𝓁) by NVB and define u
0,0

𝓁+1 := u
0,n

𝓁+1 := u0,⋆𝓁+1 := u
m,n

𝓁

and z0,0𝓁+1:= z
0,𝜈

𝓁+1:= z0,⋆𝓁+1:= z
𝜇,𝜈

𝓁 (nested iteration).

Output: Sequences of successively refined triangulations 𝓁 , successive discrete approximations u
m,n

𝓁 , z
𝜇,𝜈

𝓁 , and

corresponding error estimators 𝜂𝓁
(
um,n𝓁

)
, 𝜁
(
z
𝜇,𝜈

𝓁

)
.
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Remark 1. (i) Although the primal loop (I) and dual loop (II) in Algorithm 1 are displayed sequentially, they are

independent of each other. Therefore, a practical implementation will realize these iterations simultaneously

since the system matrix is the same (thanks to the symmetrization step).

(ii) In order to investigate the asymptotic behavior, it is reasonable to analyze Algorithm 1 in the present

formulation with infinitely many steps. We note that a practical implementation will terminate with 𝓁 :=𝓁
provided that the estimator product is smaller than a user-specified tolerance.

For the analysis of Algorithm 1, we define the index set  :=u ∪z with

u :=
{
(𝓁,m, n) ∈ ℕ3

0
: um,n𝓁 is used in Algorithm 1

}
, (24a)

z :=
{
(𝓁, 𝜇, 𝜈) ∈ ℕ3

0
: z

𝜇,𝜈

𝓁 is used in Algorithm 1
}
. (24b)

Furthermore, we require the following final indices and notice that these are consistent with those defined in

Algorithm 1:

𝓁 := sup{𝓁 ∈ ℕ0: (𝓁, 0, 0) ∈ u or (𝓁, 0, 0) ∈ z} ∈ ℕ0 ∪ {∞}, (25a)

m[𝓁] := sup{m ∈ ℕ: (𝓁,m, 0) ∈ u}, 𝜇[𝓁] := sup{𝜇 ∈ ℕ: (𝓁, 𝜇, 0) ∈ z}, (25b)

n[𝓁,m] := sup{n ∈ ℕ: (𝓁,m, n) ∈ u}, 𝜈 [𝓁, 𝜇] := sup{𝜈 ∈ ℕ: (𝓁, 𝜇, 𝜈) ∈ z}. (25c)

In addition, we set k[𝓁] := max{m[𝓁], 𝜇[𝓁]} as well as j[𝓁, k] := max{n[𝓁, k], 𝜈 [𝓁, k]}.
Finally, we introduce the total step counter |⋅, ⋅, ⋅| defined for all (𝓁, k, j) ∈  by

|𝓁, k, j| = 𝓁−1∑
𝓁′=0

k [𝓁′]∑
k′=0

j[𝓁′,k′]∑
j′=0

1+
k−1∑
k′=0

j[𝓁,k′]∑
j′=0

1+
j−1∑
j′=0

1.

This definition indeed provides a lexicographic ordering on , if the solver steps Algorithm 1(I) for um,n𝓁 and

Algorithm 1(II) for z
𝜇,𝜈

𝓁 are done in parallel. We note that one solver step of an optimal geometric multigrid

method on graded meshes can be performed in (#𝓁) operations; see, e.g., [30], [32]. For given um,n𝓁 , z
𝜇,𝜈

𝓁 ∈ 𝓁 ,

the simultaneous computation of the refinement indicators 𝜂𝓁
(
T, um,n𝓁

)
and 𝜁𝓁

(
T, z

𝜇,𝜈

𝓁

)
requires (#𝓁) opera-

tions, hence the steps Algorithm 1(I)–(II) require (#𝓁) operations as well. Furthermore, Dörfler marking can
be performed in (#𝓁) operations; see, e.g., [4], [49]. Therefore, the total work to compute um,n𝓁 and z

𝜇,𝜈

𝓁 is (up

to a constant) given by

cost(𝓁, k, j) :=
∑

(𝓁′,m′,n′)∈u

|𝓁′,m′,n′|⩽|𝓁,k, j|
#𝓁′ +

∑
(𝓁′,𝜇′,𝜈′)∈z

|𝓁′,𝜇′,𝜈′|⩽|𝓁,k, j|
#𝓁′ ≃

∑
(𝓁′,k′,j ′)∈|𝓁′,k′,j ′|⩽|𝓁,k, j|

#𝓁′ . (26)

Since # = ∞, we have either 𝓁 = ∞, or k[𝓁] = ∞, or j[𝓁 , k] = ∞. A further observation about

Algorithm 1 is that the nested algebraic solver loop within the Zarantonello loop is guaranteed to terminate,

and the latter case j[𝓁 , k] = ∞ is therefore excluded.

Lemma 2 (finite termination of algebraic solver [28, Lemma 3.2]). Independently of the algorithmic parameters

𝛿, 𝜃, 𝜆sym, and 𝜆alg, the innermost n- and 𝜈-loops of Algorithm 1 always terminate. In particular, j[𝓁, k] < ∞ for

all (𝓁, k, 0) ∈ .

4 A posteriori error analysis

Algorithm 1 does not provide the exact algebraic solutions um,⋆𝓁 and z
𝜇,⋆

𝓁 to (13) but instead uses an inexact

algebraic solver. However, the following result from [28] applies to the primal and the dual problem alike and

shows that these inexact Zarantonello iterations remain contractions except for the final iterate on each mesh

(see also [50] for an extended version).
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Lemma 3 (contraction of inexact Zarantonello iteration [28, Lemma 5.1]). Choose any damping parameter 0 <

𝛿 < 𝛿
⋆ = 2𝛼∕L2 to ensure the contraction (14) of the Zarantonello iteration and

0 < 𝜆⋆
alg

<
(1− q⋆

sym
)(1− qalg)

4qalg
such that 0 < qsym :=

q⋆
sym

+ 2
qalg

1−qalg
𝜆⋆
alg

1− 2
qalg

1−qalg
𝜆⋆
alg

< 1. (27)

Then, for arbitrary 𝜆sym > 0 and any 0 < 𝜆alg ⩽ 𝜆⋆
alg
, we have for all (𝓁,m, n) ∈ u with 1 ⩽ m < m[𝓁] and all

(𝓁, 𝜇, 𝜈 ) ∈ z with 1 ⩽ 𝜇 < 𝜇[𝓁] that

|||u⋆𝓁 − u
m,n

𝓁 ||| ⩽ qsym |||u⋆𝓁 − u
m−1,n
𝓁 |||, |||z⋆𝓁 − z

𝜇,𝜈

𝓁 ||| ⩽ qsym |||z⋆𝓁 − z
𝜇−1,𝜈
𝓁 |||. (28)

Moreover, for m = m[𝓁] resp. 𝜇 = 𝜇[𝓁], it holds that

|||u⋆𝓁 − u
m,n

𝓁 ||| ⩽ q⋆
sym

|||u⋆𝓁 − u
m−1,n
𝓁 |||+ 2 qalg

1− qalg
𝜆alg 𝜆sym 𝜂𝓁

(
u
m,n

𝓁

)
,

|||z⋆𝓁 − z
𝜇,𝜈

𝓁 ||| ⩽ q⋆
sym

|||z⋆𝓁 − z
𝜇−1,𝜈
𝓁 |||+ 2 qalg

1− qalg
𝜆alg 𝜆sym 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
.

(29)

The subsequent lemma gathers a posteriori error estimates following directly from the corresponding con-

traction of the symmetrization, algebraic solver, and the inexact Zarantonello iteration. Further details of the

elementary proof are omitted.

Lemma 4 (stability and a posteriori error control). For all (𝓁,m, 0) ∈ u with m ⩾ 1, contraction (14) shows

1− q⋆
sym

q⋆sym
|||u⋆𝓁 − um,⋆𝓁 ||| ⩽ |||um,⋆𝓁 − u

m−1,n
𝓁 ||| ⩽ (1+ q⋆

sym
) |||u⋆𝓁 − u

m−1,n
𝓁 |||. (30)

Analogously, for all (𝓁,m, n) ∈ u with n ⩾ 1, the contraction (15) ensures

1− qalg

qalg
|||um,⋆𝓁 − um,n𝓁 ||| ⩽ |||um,n𝓁 − um,n−1𝓁 ||| ⩽ (1+ qalg) |||um,⋆𝓁 − um,n−1𝓁 |||. (31)

For all (𝓁,m, n) ∈ u with 1 ⩽ m < m[𝓁], the contraction (28) leads to

1− qsym

qsym
|||u⋆𝓁 − u

m,n

𝓁 ||| ⩽ |||um,n𝓁 − u
m−1,n
𝓁 ||| ⩽ (1+ qsym) |||u⋆𝓁 − u

m−1,n
𝓁 |||. (32)

The analogous estimates are also valid for the dual variable.

Finally, the following lemma shows that in the case of finitelymanymesh-refinement steps, the Zarantonello

iteration does not terminate and one of the two exact continuous solutions is already the discrete solution to (10).

Lemma 5 (case of finite mesh-refinement steps). Suppose that the inexact Zarantonello iteration satisfies con-

traction (28) and that 𝜂 and 𝜁 satisfy (A1)–(A3). If 𝓁 < ∞, then k[𝓁] = ∞ and 𝜂𝓁

(
u⋆𝓁

)
= 0 (so that u⋆ = u⋆𝓁 ) or

𝜁𝓁

(
z⋆𝓁

)
= 0 (so that z⋆ = z⋆𝓁 ).

Proof. By Lemma 2, we have j[𝓁, k] < ∞. If 𝓁 < ∞, then k[𝓁] = ∞ and, hence,

𝜂𝓁

(
u
m,n

𝓁

)(20)
<𝜆−1

sym
|||um,n𝓁 − u

m−1,n
𝓁 ||| ∀ m ∈ ℕ (33)

or

𝜁𝓁

(
z
𝜇,𝜈

𝓁

)(22)
<𝜆−1

sym
|||z𝜇,𝜈𝓁 − z

𝜇−1,𝜈
𝓁 ||| ∀ 𝜇 ∈ ℕ. (34)
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If (33) holds, then the inexact Zarantonello iterates u
m,n

𝓁 are convergent with limit u⋆𝓁 and we obtain by stability

(A1) that
𝜂𝓁

(
u⋆𝓁

)(A1)
⩽ 𝜂𝓁

(
u
m,n

𝓁

)
+ Cstab |||u⋆𝓁 − u

m,n

𝓁 |||(33)≲ |||um,n𝓁 − u
m−1,n
𝓁 ||| m→∞

←←←←←←←←←←←←←←←←←←←←←←←←←→0.

This proves that 𝜂𝓁

(
u⋆𝓁

)
= 0, and we infer from reliability (A3) that u⋆𝓁 = u⋆. The same arguments apply to z⋆𝓁

in the case of (34). □

Due to the contraction of the inexact Zarantonello iteration (28), we have the following a posteriori error

estimates for the final iterates.

Lemma 6 (stability of final iterates). Suppose that the inexact Zarantonello iteration satisfies (28). Then, for all

(𝓁 + 1,m, n) ∈ u and (𝓁 + 1, 𝜇, 𝜈 ) ∈ z, there holds

|||u⋆𝓁+1 − u
m−1,n
𝓁+1 ||| ⩽ |||u⋆𝓁+1 − u

m,n

𝓁 |||, |||z⋆𝓁+1 − z
𝜇−1,𝜈
𝓁+1 ||| ⩽ |||z⋆𝓁+1 − z

𝜇,𝜈

𝓁 |||, (35)

|||um,n

𝓁+1 − u
m,n

𝓁 ||| ⩽ 4 |||u⋆𝓁+1 − u
m,n

𝓁 |||, |||z𝜇,𝜈𝓁+1 − z
𝜇,𝜈

𝓁 ||| ⩽ 4 |||z⋆𝓁+1 − z
𝜇,𝜈

𝓁 |||, (36)

|||um,n

𝓁 − u
m−1,n
𝓁 ||| ⩽ 4 |||u⋆𝓁 − u

m−1,n
𝓁 |||, |||z𝜇,𝜈𝓁 − z

𝜇−1,𝜈
𝓁 ||| ⩽ 4 |||z⋆𝓁 − z

𝜇−1,𝜈
𝓁 |||. (37)

Proof. For (𝓁 + 1,m, n) ∈ u, nested iteration u
0,n

𝓁+1 = u
m,n

𝓁 together with the contraction of the inexact Zaran-

tonello iteration (28) andm[𝓁 + 1] ⩾ 1 prove (35) by

|||u⋆𝓁+1 − u
m−1,n
𝓁+1 |||(28)⩽ q

m[𝓁+1]−1
sym |||u⋆𝓁+1 − u

0,n

𝓁+1||| ⩽ |||u⋆𝓁+1 − u
m,n

𝓁 |||.
Let (𝓁,m, n) ∈ u. Contraction of the algebraic solver (15), the fact n[𝓁,m] ⩾ 1, and nested iteration u

m,0

𝓁 =
u
m−1,n
𝓁 show that

|||um,⋆

𝓁 − u
m,n

𝓁 |||(15)⩽ q
n[𝓁,m]

alg
|||um,⋆

𝓁 − u
m,0

𝓁 ||| ⩽ qalg |||um,⋆

𝓁 − u
m−1,n
𝓁 |||. (38)

This and with the contraction of the exact Zarantonello iteration (14) result in

|||u⋆𝓁 − u
m,n

𝓁 ||| ⩽ |||u⋆𝓁 − u
m,⋆

𝓁 |||+ |||um,⋆

𝓁 − u
m,n

𝓁 |||
(38)

⩽ (1+ qalg) |||u⋆𝓁 − u
m,⋆

𝓁 |||+ qalg |||u⋆𝓁 − u
m−1,n
𝓁 |||

(14)

⩽
[
(1+ qalg)q

⋆
sym

+ qalg

] |||u⋆𝓁 − u
m−1,n
𝓁 ||| ⩽ 3 |||u⋆𝓁 − u

m−1,n
𝓁 |||.

(39)

Consequently, the combination of (39) and (35) validates (36) via

|||um,n

𝓁+1 − u
m,n

𝓁 ||| ⩽ |||u⋆𝓁+1 − u
m,n

𝓁+1|||+ |||u⋆𝓁+1 − u
m,n

𝓁 |||
(39)

⩽ 3 |||u⋆𝓁+1 − u
m−1,n
𝓁+1 |||+ |||u⋆𝓁+1 − u

m,n

𝓁 |||(35)⩽ 4 |||u⋆𝓁+1 − u
m,n

𝓁 |||.
The estimate (39) also implies (37), because

|||um,n

𝓁 − u
m−1,n
𝓁 ||| ⩽ |||u⋆𝓁 − u

m,n

𝓁 |||+ |||u⋆𝓁 − u
m−1,n
𝓁 |||(39)⩽ 4 |||u⋆𝓁 − u

m−1,n
𝓁 |||.

The same arguments prove the estimates for the dual variable and conclude the proof. □

The subsequent lemma states the estimator reduction for only one of the two error estimators. This poses

a significant challenge in the proof of full linear convergence due to the required contraction of the nonlinear

quasi-error product in Lemma 8 below.
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Lemma 7 (estimator reduction and stability). Define the constant 0 < q(𝜃):=
[
1− (1− q2

red
) 𝜃
]1∕2

< 1 and sup-

pose that the estimators 𝜂 and 𝜁 satisfy (A1)–(A2). If the primal error estimator satisfies the Dörfler criterion, i.e.,

u
𝓁 =u

𝓁 ⊆ 𝓁 in Algorithm 1(III), then

𝜂𝓁+1

(
u
m,n

𝓁+1

)
⩽ q(𝜃) 𝜂𝓁

(
u
m,n

𝓁

)
+ 4 Cstab |||u⋆𝓁+1 − u

m,n

𝓁 ||| ∀ (𝓁 + 1,m, n) ∈ u,

𝜁𝓁+1

(
z
𝜇,𝜈

𝓁+1

)
⩽ 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
+ 4 Cstab |||z⋆𝓁+1 − z

𝜇,𝜈

𝓁 ||| ∀ (𝓁 + 1, 𝜇, 𝜈 ) ∈ z.

(40)

If the dual error estimator satisfies the Dörfler criterion, i.e.,z
𝓁 =z

𝓁 ⊆ 𝓁 in Algorithm 1(III), then

𝜂𝓁+1

(
u
m,n

𝓁+1

)
⩽ 𝜂𝓁

(
u
m,n

𝓁

)
+ 4 Cstab |||u⋆𝓁+1 − u

m,n

𝓁 ||| ∀ (𝓁 + 1,m, n) ∈ u,

𝜁𝓁+1

(
z
𝜇,𝜈

𝓁+1

)
⩽ q(𝜃) 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
+ 4 Cstab |||z⋆𝓁+1 − z

𝜇,𝜈

𝓁 ||| ∀ (𝓁 + 1, 𝜇, 𝜈 ) ∈ z.

(41)

Proof. For (𝓁 + 1, 0, 0) ∈ u, stability (A1) and reduction (A2) yield that

𝜂𝓁+1

(
u
m,n

𝓁

)2
= 𝜂𝓁+1

(
𝓁+1 ∩ 𝓁; u

m,n

𝓁

)2
+ 𝜂𝓁+1

(
𝓁+1∖𝓁; u

m,n

𝓁

)2

⩽ 𝜂𝓁

(
𝓁+1 ∩ 𝓁; u

m,n

𝓁

)2
+ q2

red
𝜂𝓁

(
𝓁∖𝓁+1; u

m,n

𝓁

)2

= 𝜂𝓁

(
u
m,n

𝓁

)2
− (1− q2

red
) 𝜂𝓁

(
𝓁∖𝓁+1; u

m,n

𝓁

)2
.

(42)

The Dörfler marking in Algorithm 1(III) for the primal error estimator 𝜂 and𝓁 ⊆ 𝓁∖𝓁+1 prove the contrac-
tion in (40)

𝜂𝓁+1

(
u
m,n

𝓁

)2
⩽ 𝜂𝓁

(
u
m,n

𝓁

)2
− (1− q2

red
) 𝜂𝓁

(
𝓁; u

m,n

𝓁

)2
⩽ q(𝜃)2 𝜂𝓁

(
u
m,n

𝓁

)2
. (43)

For (𝓁 + 1,m, n) ∈ u, this and (36) lead to

𝜂𝓁+1

(
u
m,n

𝓁+1

)(A1)
⩽ 𝜂𝓁+1

(
u
m,n

𝓁

)
+ Cstab |||um,n

𝓁+1 − u
m,n

𝓁 |||
(43)

⩽ q(𝜃) 𝜂𝓁

(
u
m,n

𝓁

)
+ Cstab |||um,n

𝓁+1 − u
m,n

𝓁 |||
(36)

⩽ q(𝜃) 𝜂𝓁

(
u
m,n

𝓁

)
+ 4 Cstab |||u⋆𝓁+1 − u

m,n

𝓁 |||.
For (𝓁 + 1, 𝜇, 𝜈 ) ∈ z, we argue analogously to (42) in order to obtain that 𝜁𝓁+1

(
z
𝜇,𝜈

𝓁

)
⩽ 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
. Togetherwith

(36), it follows that

𝜁𝓁+1

(
z
𝜇,𝜈

𝓁+1

)(A1)
⩽ 𝜁𝓁+1

(
z
𝜇,𝜈

𝓁

)
+ Cstab |||z𝜇,𝜈𝓁+1 − z

𝜇,𝜈

𝓁 |||(36)⩽ 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
+ 4 Cstab |||z⋆𝓁+1 − z

𝜇,𝜈

𝓁 |||.
The proof holds verbatim in the case of Dörfler marking for the dual error estimator, albeit with reversed roles.

This concludes the proof. □

5 Full linear convergence

This section presents full linear convergence of Algorithm 1 as the first main result of this work. Recall the goal-

error estimate from (17) motivating the product structure of the respective primal and dual error components.

Thus, we define the quasi-errors

Hm,n

𝓁 := |||u⋆𝓁 − um,n𝓁 |||+ |||um,⋆𝓁 − um,n𝓁 |||+ 𝜂𝓁
(
um,n𝓁

)
∀ (𝓁,m, n) ∈ u, (44a)
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Z
𝜇,𝜈

𝓁 := |||z⋆𝓁 − z
𝜇,𝜈

𝓁 |||+ |||z𝜇,⋆𝓁 − z
𝜇,𝜈

𝓁 |||+ 𝜁𝓁
(
z
𝜇,𝜈

𝓁

)
∀ (𝓁, 𝜇, 𝜈) ∈ z. (44b)

The quasi-errors naturally extend to the full index set (𝓁, k, j) ∈  by

H
k, j

𝓁 :=
⎧⎪⎨⎪⎩
H
k,n

𝓁 if (𝓁, k, 0) ∈ u but (𝓁, k, j) ∉ u,

H
m,n

𝓁 if (𝓁, k, 0) ∉ u,

Z
k, j

𝓁 :=
⎧⎪⎨⎪⎩
Z
k,𝜈

𝓁 if (𝓁, k, 0) ∈ z but (𝓁, k, j) ∉ z,

Z
𝜇,𝜈

𝓁 if (𝓁, k, 0) ∉ z.

(45)

The following theorem asserts full linear convergence of the quasi-error product.

Theorem 1 (full linear convergence). Suppose that the estimators 𝜂 and 𝜁 satisfy (A1)–(A3) and (QM) and sup-

pose (A4). Recall 𝜆⋆
alg

and qsym from Lemma 3. With the constant q(𝜃) from Lemma 7 and q:= max{q(𝜃)1∕2, (1+
q⋆
sym

)∕2} < 1, let

0 < 𝜆⋆:=
(1− qalg) (q− q⋆

sym
) (1− q)

10 qalg Cstab
. (46)

Then, for arbitrary marking parameter 0 < 𝜃 ⩽ 1 and any solver parameters 𝜆sym > 0 and 0 < 𝜆alg ⩽ 𝜆⋆
alg

with 𝜆sym𝜆alg ⩽ 𝜆
⋆, Algorithm 1 guarantees full linear convergence: There exist constants Clin ⩾ 1 and

0 < qlin < 1 such that the quasi-error product satisfies, for all (𝓁, k, j), (𝓁′, k′, j ′) ∈  with |𝓁′, k′, j′| ⩽ |𝓁, k, j|
H
k, j

𝓁 Z
k, j

𝓁 ⩽ Clin q
|𝓁,k, j|−|𝓁′,k′,j ′|
lin

H
k′,j ′

𝓁′ Z
k′,j ′

𝓁′ . (47)

The constants Clin and qlin depend only on Cstab, Crel, Cmon, Corth, CCéa, 𝜃, qred, qsym, q
⋆
sym

, qalg, 𝜆sym, and 𝜆alg.

Three lemmas are required to prove Theorem 1. The characterization of R-linear convergence from [33,

Lemma 5 and 10] is the primary tool for the proof of Theorem 1; see (70) below. The proof of Theorem 1 departs

with the contraction of the quasi-error for the final iterates of the inexact Zarantonello loop up to a remainder

on the mesh level 𝓁. To this end, we define the simplified weighted quasi-error

H𝓁 :=
[|||u⋆𝓁 − u

m,n

𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)]
, Z𝓁 :=

[|||z⋆𝓁 − z
𝜇,𝜈

𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]
∀ (𝓁, k , j) ∈ , (48)

where 𝛾 > 0 is a free parameter chosen in (51) below. This quasi-error quantity satisfies contraction up to a

tail-summable remainder due to estimator reduction (40), (41).

Lemma 8 (contraction in mesh level up to tail-summable remainder). Under the assumptions of Theorem 1,

there exists 0 < q < 1 such that the quasi-error product H𝓁 Z𝓁 from (48) satisfies contraction up to a remainder

R𝓁 ⩾ 0,

H𝓁+1 Z𝓁+1 ⩽ q H𝓁 Z𝓁 + q R𝓁 ∀ (𝓁 + 1, k , j) ∈ . (49)

The remainder R𝓁 satisfies

R𝓁+M ≲ H𝓁 Z𝓁 and

𝓁+M∑
𝓁′=𝓁

R2
𝓁′ ≲ (M + 1)1−𝛿 H2

𝓁 Z
2
𝓁 ∀ 𝓁,M ∈ ℕ0 with 𝓁 +M < 𝓁 . (50)

Proof. The proof consists of four steps.

Step 1 (choice of constants). Recall the constants 0 < q(𝜃) < 1 from Lemma 7 and 𝜆⋆ > 0 and 0 < q < 1

defined in the statement of Theorem 1 and define the constants

C(𝛾, 𝜆) := 1+
2 qalg

1− qalg

𝜆

𝛾
> 1, 0 <qctr :=max

{
q⋆
sym

+ 4Cstab C(𝛾, 𝜆) 𝛾, q(𝜃)C(𝛾, 𝜆)
}
.
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Elementary calculations show that the choice of

𝛾 :=
q (q− q⋆

sym
)

4 Cstab
< 1 (51)

ensures q⋆
sym

C(𝛾, 𝜆)+ 4 Cstab 𝛾 C(𝛾, 𝜆)
2 < 1 as well as, for all 0 < 𝜆 < 𝜆

⋆,

C(𝛾, 𝜆) = 1+
2 qalg

1− qalg

𝜆

𝛾
< 1+ 1− q

q
= 1

q
⩽ 1

q(𝜃)1∕2
. (52)

Consequently, we have q(𝜃)C(𝛾, 𝜆)2 < 1 and thus 0 < q′
ctr
:= C(𝛾, 𝜆) qctr < 1 and qctr < 1.

Step 2 (contraction of H𝓵 and Z𝓵). Abbreviate 𝜆:= 𝜆alg𝜆sym. Recall that marking in Algorithm 1(III)

ensures that the estimate (40) or (41) hold. If (40) is satisfied, the quasi-contraction of the inexact Zarantonello

iteration (29) for the final iterate, the stability estimate (35), and the estimator reduction (40) lead, for all

(𝓁 + 1, k , j) ∈ u, to

H𝓁+1
(29)

⩽ q⋆
sym

|||u⋆𝓁+1 − u
m−1,n
𝓁+1 |||+ C(𝛾, 𝜆) 𝛾 𝜂𝓁+1

(
u
m,n

𝓁+1

)
(35)

⩽ q⋆
sym

|||u⋆𝓁+1 − u
m,n

𝓁 |||+ C(𝛾, 𝜆) 𝛾 𝜂𝓁+1

(
u
m,n

𝓁+1

)
(40)

⩽
(
q⋆
sym

+ 4 Cstab C(𝛾, 𝜆) 𝛾
) |||u⋆𝓁+1 − u

m,n

𝓁 |||+ q(𝜃) C(𝛾, 𝜆) 𝛾 𝜂𝓁

(
u
m,n

𝓁

)

⩽ qctr

[|||u⋆𝓁+1 − u
m,n

𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)]
.

(53)

The same arguments yield, for all (𝓁 + 1, 𝜇, 𝜈 ) ∈ z,

Z𝓁+1
(29)

⩽ q⋆
sym

|||z⋆𝓁+1 − z
𝜇−1,𝜈
𝓁+1 |||+ C(𝛾, 𝜆) 𝛾 𝜁𝓁+1

(
z
𝜇,𝜈

𝓁+1

)
(35)

⩽ q⋆
sym
|||z⋆𝓁+1 − z

𝜇,𝜈

𝓁 |||+ C(𝛾, 𝜆)𝛾 𝜁𝓁+1

(
z
𝜇,𝜈

𝓁+1

)
(40)

⩽ C(𝛾, 𝜆)
[
qctr |||z⋆𝓁+1 − z

𝜇,𝜈

𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]
.

(54)

For 0 < qctr < q′
ctr

= C(𝛾, 𝜆) qctr < 1, the product of (53) and (54) reads

H𝓁+1 Z𝓁+1 ⩽ C(𝛾, 𝜆) qctr

[|||u⋆𝓁+1 − u
m,n

𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)][|||z⋆𝓁+1 − z
𝜇,𝜈

𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]

= q′
ctr

[|||u⋆𝓁+1 − u
m,n

𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)][|||z⋆𝓁+1 − z
𝜇,𝜈

𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]
.

(55)

If (41) is satisfied, we obtain the same estimate with reversed roles in the derivation.

Step 3 (quasi-monotonicity of H𝓵 and Z𝓵). The Céa estimate (11), nestedness of the discrete spaces, reli-

ability (A3), quasi-monotonicity (QM), stability (A1), and the definition (48) prove, for all 𝓁 ⩽ 𝓁′ ⩽ 𝓁′′ ⩽ 𝓁 with

(𝓁,m, n) ∈ u and (𝓁, 𝜇, 𝜈 ) ∈ z, that

|||u⋆
𝓁’’
− u⋆

𝓁’
|||(11)≲ |||u⋆ − u⋆

𝓁’
|||(A3)≲ 𝜂𝓁’

(
u⋆
𝓁’

)(QM)
≲ 𝜂𝓁

(
u⋆𝓁
)(A1)
≲ 𝜂𝓁

(
u
m,n

𝓁

)
+ |||u⋆𝓁 − u

m,n

𝓁 |||(48)≃H𝓁, (56a)

|||z⋆
𝓁’ ’
− z⋆

𝓁’
|||(11)≲ |||z⋆ − z⋆

𝓁’
|||(A3)≲ 𝜁𝓁’

(
z⋆
𝓁’

)(QM)
≲ 𝜁𝓁

(
z⋆𝓁
)(A1)
≲ 𝜁𝓁

(
z
mu,𝜈

𝓁

)
+ |||z⋆𝓁 − z

𝜇,𝜈

𝓁 |||(48)≃ Z𝓁, (56b)

where the hidden constants depend only on 𝛾−1, CCéa, Cstab, Crel, and Cmon.
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Similarly to (53), the inexact Zarantonello contraction (29), stability (A1), and the stability estimate (36) yield

for 𝓁 < 𝓁′ < 𝓁 and 𝜆 = 𝜆sym𝜆alg,

|||u⋆
𝓁’
− u

m,n

𝓁’
||| (29)

⩽ q⋆
sym

|||u⋆
𝓁’
− u

m−1,n
𝓁’

|||+ 2
qalg

1− qalg
𝜆 𝜂𝓁’

(
u
m,n

𝓁’

)
(28)

⩽ q⋆
sym

q
m[𝓁’ ]−1
sym |||u⋆

𝓁’
− u

m,n

𝓁’−1|||+ 2
qalg

1− qalg
𝜆 𝜂𝓁’

(
u
m,n

𝓁’

)
(A1), (42)

⩽ q⋆
sym

|||u⋆
𝓁’
− u

m,n

𝓁’−1|||+ 2
qalg

1− qalg
𝜆 𝜂𝓁’−1

(
u
m,n

𝓁’−1

)
+ 2Cstab

qalg

1− qalg
𝜆 |||um,n

𝓁’
− u

m,n

𝓁’−1|||
(36)

⩽
(
q⋆
sym

+ 8Cstab
qalg

1− qalg
𝜆

)
|||u⋆

𝓁’
− u

m,n

𝓁’−1|||+ 2
qalg

1− qalg
𝜆 𝜂𝓁’−1

(
u
m,n

𝓁’−1

)
(A1)

⩽
(
q⋆
sym

+ 10Cstab
qalg

1− qalg
𝜆

)
|||u⋆

𝓁’−1 − u
m,n

𝓁’−1|||
+
(
q⋆
sym

+ 8Cstab
qalg

1− qalg
𝜆

)
|||u⋆

𝓁’
− u⋆

𝓁’−1|||+ 2
qalg

1− qalg
𝜆 𝜂𝓁’−1

(
u⋆
𝓁’−1

)
(56a)

⩽
(
q⋆
sym

+ 10Cstab
qalg

1− qalg
𝜆

)
|||u⋆

𝓁’−1 − u
m,n

𝓁’−1|||
+
(
q⋆
sym

+ 2
qalg

1− qalg
𝜆 Cmon

[
4 Cstab (1+ CCéa) Crel + 1

])
𝜂𝓁
(
u⋆𝓁
)
.

(57)

The choice of 𝜆 ⩽ 𝜆
⋆ with 𝜆⋆ from (46) ensures

0 < q:= q⋆
sym

+ 10 Cstab
qalg

1− qalg
𝜆 < 1. (58)

With C:= q⋆
sym

+ 2
qalg

1−qalg
𝜆 Cmon

[
4 Cstab (1+ CCéa) Crel + 1

]
, a successive application of (57) and the geometric

series shows

|||u⋆𝓁+M − u
m,n

𝓁+M||| (57)⩽ q |||u⋆𝓁+M−1 − u
m,n

𝓁+M−1|||+ C 𝜂𝓁
(
u⋆𝓁
)

(57)

⩽ qM |||u⋆𝓁 − u
m,n

𝓁 |||+
(
C

M−1∑
j=0

q j

)
𝜂𝓁
(
u⋆𝓁
)

≲ |||u⋆𝓁 − u
m,n

𝓁 |||+ 𝜂𝓁
(
u⋆𝓁
)(56a)
≲ H𝓁 ∀𝓁,M ∈ ℕ0 with 𝓁 +M < 𝓁 .

(59)

Hence, we have quasi-monotonicity of the quasi-error

H𝓁+M ≃ |||u⋆𝓁+M − u
m,n

𝓁+M|||+ 𝜂𝓁+M

(
u
m,n

𝓁+M

)(A1)
≃ |||u⋆𝓁+M − u

m,n

𝓁+M|||+ 𝜂𝓁+M
(
u⋆𝓁+M

)
(56a)

≲ |||u⋆𝓁+M − u
m,n

𝓁+M|||+ H𝓁

59

≲H𝓁 ∀𝓁,M ∈ ℕ0 with 𝓁 +M < 𝓁 .
(60a)

The same argument proves

Z𝓁+M ≲ Z𝓁 ∀𝓁,M ∈ ℕ0 with 𝓁 +M < 𝓁 . (60b)

Step 4 (contraction of H𝓵Z𝓵 up to tail-summable remainder). Define

R𝓁 := |||u⋆𝓁+1 − u⋆𝓁 |||
[|||z⋆𝓁 − z

𝜇,𝜈

𝓁 |||+ |||z⋆𝓁+1 − z⋆𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]

+ |||z⋆𝓁+1 − z⋆𝓁 |||
[|||u⋆𝓁 − u

m,n

𝓁 |||+ |||u⋆𝓁+1 − u⋆𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)]
.
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The contraction (55) proves the quasi-contraction (49) via

H𝓁+1 Z𝓁+1
(55)

⩽ q′
ctr

[|||u⋆𝓁+1 − u
m,n

𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)][|||z⋆𝓁+1 − z
𝜇,𝜈

𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]

⩽ q′
ctr

[|||u⋆𝓁 − u
m,n

𝓁 |||+ |||u⋆𝓁+1 − u⋆𝓁 |||+ 𝛾 𝜂𝓁

(
u
m,n

𝓁

)]

×
[|||z⋆𝓁 − z

𝜇,𝜈

𝓁 |||+ |||z⋆𝓁+1 − z⋆𝓁 |||+ 𝛾 𝜁𝓁

(
z
𝜇,𝜈

𝓁

)]

⩽ q′
ctr

H𝓁 Z𝓁 + q′
ctr

R𝓁 .

The remainder term R𝓁 can be estimated via (56) and the Young inequality by

R2𝓁

(56)

≲
(|||u⋆𝓁+1 − u⋆𝓁 ||| Z𝓁 + |||z⋆𝓁+1 − z⋆𝓁 ||| H𝓁

)2
≲ |||u⋆𝓁+1 − u⋆𝓁 |||2 Z2𝓁 + |||z⋆𝓁+1 − z⋆𝓁 |||2 H2

𝓁 . (61)

Thus, the quasi-monotonicity (60) verifies

R𝓁+M ≲ H𝓁+M Z𝓁+M
(60)

≲H𝓁 Z𝓁 ∀𝓁,M ∈ ℕ with 𝓁 +M < 𝓁 .

Quasi-orthogonality (A4), reliability (A3), and the estimates (56) imply, for all 𝓁,M ∈ ℕ0 with 𝓁 +M < 𝓁 ,

𝓁+M∑
𝓁′=𝓁

|||u⋆
𝓁′+1 − u⋆

𝓁′ |||2(A4)≲ (M + 1)1−𝛿 |||u⋆ − u⋆𝓁 |||2
(A3)

≲ (M + 1)1−𝛿 𝜂𝓁
(
u⋆𝓁
)2(56a)

≲ (M + 1)1−𝛿 H2
𝓁,

𝓁+M∑
𝓁′=𝓁

|||z⋆
𝓁′+1 − z⋆

𝓁′ |||2(A4)≲ (M + 1)1−𝛿 |||z⋆ − z⋆𝓁 |||2
(A3)

≲ (M + 1)1−𝛿 𝜁𝓁
(
z⋆𝓁
)2(56b)

≲ (M + 1)1−𝛿 Z2𝓁 .

(62)

Using (61), the quasi-monotonicity (60), and (62), we conclude the proof of (50), for all𝓁,M ∈ ℕ0 with𝓁 +M < 𝓁 ,

𝓁+M∑
𝓁′=𝓁

R2
𝓁′

(61)

≲

𝓁+M∑
𝓁′=𝓁

|||u⋆
𝓁′+1 − u⋆

𝓁′ |||2 Z2𝓁′ +
𝓁+M∑
𝓁′=𝓁

|||z⋆
𝓁′+1 − z⋆

𝓁′ |||2 H2
𝓁′

(60)

≲ Z2𝓁

𝓁+M∑
𝓁′=𝓁

|||u⋆
𝓁′+1 − u⋆

𝓁′ |||2 + H2
𝓁

𝓁+M∑
𝓁′=𝓁

|||z⋆
𝓁′+1 − z⋆

𝓁′ |||2(62)≲ (M + 1)1−𝛿 H2
𝓁 Z

2
𝓁 .

□

The tail-summability in 𝓁 provides the basis for the proof of tail-summability on the mesh level 𝓁 together with

the Zarantonello symmetrization index k for the final iterates of the algebraic solver. The main ingredients in

the proof of tail-summability in (𝓁, k) are Lemma 8 and the following quasi-contraction in the symmetrization
index k.

Lemma 9 (quasi-contraction of inexact Zarantonello symmetrization). There holds

H
k’, j

𝓁 Z
k’, j

𝓁 ≲ qk
’−k
sym

H
k, j

𝓁 Z
k, j

𝓁 ∀(𝓁, k’, j) ∈  with 0 ⩽ k ⩽ k’ ⩽ k[𝓁], (63)

H
0, j

𝓁 Z
0, j

𝓁 ≲ H𝓁−1 Z𝓁−1 ∀(𝓁, 0, 0) ∈  with 𝓁 ⩾ 1. (64)

Proof. First, we note that the a posteriori error control (31) and the stopping criteria of the algebraic solver (19)

and of the symmetrization (20) lead, for (𝓁,m, n) ∈ u, to

|||um,⋆

𝓁 − u
m,n

𝓁 |||(31)≲ |||um,n

𝓁 − u
m,n−1
𝓁 |||(19)≲𝜂𝓁

(
u
m,n

𝓁

)
+ |||um,n

𝓁 − u
m,0

𝓁 |||(20)≲𝜂𝓁

(
u
m,n

𝓁

)
≲ H𝓁 .
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Since the two notions of quasi-errors H𝓁 and H
k , j

𝓁 only differ by the middle term |||um,⋆

𝓁 − u
m,n

𝓁 ||| and the fixed
constant factor 0 < 𝛾 < 1, this and the analogous estimate for the dual variable show

H𝓁 ⩽ H
k , j

𝓁 ≲ H𝓁, Z𝓁 ⩽ Z
k , j

𝓁 ≲ Z𝓁 ∀ (𝓁, k , j) ∈ . (65)

For 0 ⩽ k < k′ < m[𝓁] < k[𝓁] (i.e., the primal iteration stops earlier than the dual iteration), the validity of

the stopping criterion (19) for the algebraic solver and the failure of criterion (20) for the inexact Zarantonello

symmetrization prove that

H
k′,n

𝓁

(31)

≲ |||u⋆𝓁 − u
k′,n

𝓁 |||+ |||uk′,n𝓁 − u
k′,n−1
𝓁 |||+ 𝜂𝓁

(
u
k′,n

𝓁

)
(19)

≲ |||u⋆𝓁 − u
k′−1,n
𝓁 |||+ |||uk′,n𝓁 − u

k′−1,n
𝓁 |||+ 𝜂𝓁

(
u
k′,n

𝓁

)
(20)

≲ |||u⋆𝓁 − u
k′,n

𝓁 |||+ |||uk′,n𝓁 − u
k′−1,n
𝓁 |||

(32)

⩽ |||u⋆𝓁 − u
k′−1,n
𝓁 |||(28)≲ qk

′−k
sym

|||u⋆𝓁 − u
k,n

𝓁 ||| ≲ qk
′−k
sym

H
k,n

𝓁 .

(66)

Moreover, for 0 ⩽ k < k′ = m[𝓁], stability (A1) and the estimate (37) verify

H
m,n

𝓁

(65)
≃ |||u⋆𝓁 − u

m,n

𝓁 |||+ 𝜂𝓁

(
u
m,n

𝓁

)(A1)
≲ |||u⋆𝓁 − u

m,n

𝓁 |||+ |||um,n

𝓁 − u
m−1,n
𝓁 |||+ 𝜂𝓁

(
u
m−1,n
𝓁

)

≲ H
m−1,n
𝓁 + |||um,n

𝓁 − u
m−1,n
𝓁 |||(37)≲ H

m−1,n
𝓁

(66)

≲ q
m[𝓁]−1−k
sym H

k,n

𝓁 ≃ q
m[𝓁]−k
sym H

k,n

𝓁 .

For 0 ⩽ k ⩽ m[𝓁] < k′ ⩽ k[𝓁], it followsH
k′,n

𝓁 = H
m,n

𝓁 ≲ q
m[𝓁]−k
sym H

k,n

𝓁 . Finally, form[𝓁] ⩽ k < k′ ⩽ k[𝓁], we have

H
k′,n

𝓁 = H
m[𝓁],n
𝓁 = H

k,n

𝓁 . Notice that the same argumentation holds for the dual quasi-error Z
k,𝜈

𝓁 in the remaining

cases with 𝜇[𝓁] < k[𝓁] (i.e., the dual iteration stops earlier than the primal iteration).
Since k[𝓁] = m[𝓁] or k[𝓁] = 𝜇[𝓁] by definition, we obtain, for all (𝓁, k′, j) ∈  with 0 ⩽ k ⩽ k′ ⩽ k[𝓁],

H
k′, j

𝓁 ≲ qk
′−k
sym

H
k, j

𝓁 if k[𝓁] = m[𝓁] or Z
k′, j

𝓁 ≲ qk
′−k
sym

Z
k, j

𝓁 if k[𝓁] = 𝜇[𝓁].

Furthermore, there holds H
k′, j

𝓁 ≲ H
k, j

𝓁 and Z
k′, j

𝓁 ≲ Z
k, j

𝓁 in any case. This yields (63) via

H
k′, j

𝓁 Z
k′, j

𝓁 ≲ qk
′−k
sym

H
k, j

𝓁 Z
k, j

𝓁 ∀(𝓁, k′, j) ∈  with 0 ⩽ k ⩽ k′ ⩽ k[𝓁],

where the hidden constant depends only on Cstab, 𝜆sym, and qsym.

Nested iteration u
m,n

𝓁−1 = u
0,n

𝓁 and z
𝜇,𝜈

𝓁−1 = z
0,𝜈

𝓁 and the estimates (56) yield, for all (𝓁, 0, 0) ∈  with 𝓁 > 0,

H
0, j

𝓁

(65)
≃ |||u⋆𝓁 − u

m,n

𝓁−1|||+ 𝜂𝓁

(
u
m,n

𝓁−1

)
⩽ |||u⋆𝓁 − u⋆𝓁−1|||+ H

k , j

𝓁−1

(56)

≲H𝓁−1 + H
k , j

𝓁−1
(65)
≃H𝓁−1,

Z
0, j

𝓁

(65)
≃ |||z⋆𝓁 − z

𝜇,𝜈

𝓁−1|||+ 𝜁𝓁

(
z
𝜇,𝜈

𝓁−1

)
⩽ |||z⋆𝓁 − z⋆𝓁−1|||+ Z

k , j

𝓁−1

(56)

≲ Z𝓁−1 + Z
k , j

𝓁−1
(65)
≃ Z𝓁−1.

A multiplication of the two previous estimates proves (64). □

Finally, the quasi-contraction in (𝓁, k) from Lemma 9 together with a quasi-contraction in the algebraic

solver index j leads to tail-summability in (𝓁, k, j).

Lemma 10 (quasi-contraction and stability by algebraic solver). There holds

H
k, j′

𝓁 Z
k, j′

𝓁 ≲ q
j′− j

alg
H
k, j

𝓁 Z
k, j

𝓁 ∀(𝓁, k, j′) ∈  with 0 ⩽ j ⩽ j′ ⩽ j[𝓁, k] (67)



18 — P. Bringmann et al.: Optimal complexity of GOAFEM

and, with the abbreviation (m− 1)+:= max{m− 1, 0},

Hm,0

𝓁 ⩽ 3 H
(m−1)+,n
𝓁 and Z

𝜇,0

𝓁 ⩽ 3 Z
(𝜇−1)+,𝜈
𝓁 ∀(𝓁,m, 0) ∈ u, (𝓁, 𝜇, 0) ∈ z. (68)

Proof. We recall that u0,0𝓁 = u
0,n

𝓁 = u0,⋆𝓁 by definition and, hence, H0,0

𝓁 = H
0,n

𝓁 = H
0, j

𝓁 . Nested iteration um,0𝓁 =
u
m−1,n
𝓁 implies that

|||um,⋆𝓁 − um,0𝓁 |||(30)⩽ (q⋆
sym

+ 1) |||u⋆𝓁 − u
m−1,n
𝓁 ||| ⩽ 2 H

m−1, j
𝓁 ∀ (𝓁,m, 0) ∈ u.

Therewith, we derive (68).

The combination of a posteriori error control (30) for the exact Zarantonello iteration, for the algebraic

solver (31), and the failure of the stopping criterion (19) in Algorithm 1(I.b.ii) for the algebraic solver proves, for

0 ⩽ j < j ′ < n[𝓁,m] < j[𝓁,m],

H
m, j’

𝓁 ⩽ |||u⋆𝓁 − um,⋆𝓁 |||+ 2 |||um,⋆𝓁 − u
m, j’

𝓁 |||+ 𝜂𝓁

(
u
m, j’

𝓁

)
(30)

⩽
q⋆
sym

1− q⋆sym
|||um, j’𝓁 − u

m−1, j
𝓁 |||+

(
2+

q⋆
sym

1− q⋆sym

)
|||um,⋆𝓁 − u

m, j’

𝓁 |||+ 𝜂𝓁

(
u
m, j’

𝓁

)

(31)

≲ |||um, j’𝓁 − u
m−1, j
𝓁 |||+ |||um, j’𝓁 − u

m, j’−1
𝓁 |||+ 𝜂𝓁

(
u
m, j’

𝓁

)(19)
≲ |||um, j’𝓁 − u

m, j’−1
𝓁 |||

(31)

≲ |||um,⋆𝓁 − u
m, j’−1
𝓁 |||(15)⩽ q

( j’−1)− j

alg
|||um,⋆𝓁 − u

m, j

𝓁 ||| ≲ q
j’− j

alg
H
m, j

𝓁 .

(69)

For 0 ⩽ j < n[𝓁,m] ⩽ j ′ ⩽ j[𝓁,m], stability (A1) and contraction of the algebraic solver (15) verify that

H
m,j ′

𝓁 = H
m,n

𝓁

(15)

⩽ |||u⋆𝓁 − u
m,n−1
𝓁 |||+ |||um,n𝓁 − u

m,n−1
𝓁 |||+ qalg |||um,⋆𝓁 − u

m,n−1
𝓁 |||+ 𝜂𝓁

(
u
m,n

𝓁

)
(A1)

⩽ H
m,n−1
𝓁 + (2+ Cstab) |||um,n𝓁 − u

m,n−1
𝓁 |||

(31)

≲ H
m,n−1
𝓁 + |||um,⋆𝓁 − u

m,n−1
𝓁 ||| ≲ H

m,n−1
𝓁

(69)

≲ q
n[𝓁]− j

alg
H
m, j

𝓁 .

For n[𝓁,m] ⩽ j < j ′ ⩽ j[𝓁,m], it holds that Hm, j

𝓁 = H
m,n

𝓁 = H
m,j ′

𝓁 . Since j[𝓁, k] = n[𝓁, k] or j[𝓁, k] = 𝜈 [𝓁, k], we

have, for all (𝓁, k, j ′) ∈  with 0 ⩽ j ⩽ j ′ ⩽ j[𝓁, k],

H
k, j

𝓁 ≲ q
j−j ′
alg

H
k,j ′

𝓁 if j[𝓁, k] = n[𝓁, k] or Z
k, j

𝓁 ≲ q
j−j ′
alg

Z
k,j ′

𝓁 if j[𝓁, k] = 𝜈 [𝓁, k].

Furthermore, we have H
k, j

𝓁 ≲ H
k,j ′

𝓁 and Z
k, j

𝓁 ≲ Z
k,j ′

𝓁 in any case. Hence, we obtain

H
k, j

𝓁 Z
k, j

𝓁 ≲ q
j− j′

alg
H
k, j′

𝓁 Z
k, j′

𝓁 ∀(𝓁, k, j) ∈  with 0 ⩽ j′ ⩽ j ⩽ j[𝓁, k],

where the hidden constant depends only on q⋆
sym

, 𝜆sym, qalg, 𝜆alg, and Cstab. □

Ultimately, synthesizing the preceding lemmas yields tail-summability of the quasi-error product and thus

leads to the following proof of Theorem 1.

Proof of Theorem 1. The proof consists of four steps.

Step 1 (tail-summability in mesh level 𝓵). We apply the tail-summability criterion from [33, Lemma 5]

to the sequences a𝓁 := H𝓁 Z𝓁 and b𝓁 := q′
ctr

R𝓁 . Therein, it is shown that R-linear convergence is equivalent to

tail-summability and that, for tail-summability, it is sufficient to guarantee
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a𝓁+1 ⩽ qa𝓁 + b𝓁, b𝓁+M ⩽ C1 a𝓁,

𝓁+M∑
𝓁′=𝓁

b2𝓁 ⩽ C2 (M + 1)1−𝛿 a2𝓁 ∀ 𝓁,M ∈ ℕ0. (70)

Indeed, contraction up to a remainder from (49), the estimate of the remainder from (50), and the quasi-

monotonicity of H𝓁 and Z𝓁 from (60) validate the assumptions of the tail-summability criterion (70) and lead

to tail-summability
𝓁−1∑

𝓁′=𝓁+1
H𝓁′ Z𝓁′ ≲ H𝓁 Z𝓁 ∀ (𝓁, k , j) ∈ . (71)

Step 2 (tail-summability in (𝓵, k)). For (𝓁, k, j) ∈ , the estimates (63), (64) and the geometric series prove

tail-summability

∑
(𝓁′,k′, j)∈

|𝓁′,k′, j|>|𝓁,k, j|
H
k′, j

𝓁 Z
k′, j

𝓁 =
k [𝓁]∑

k′=k+1
H
k′, j

𝓁 Z
k′, j

𝓁 +
𝓁∑

𝓁′=𝓁+1

k [𝓁′]∑
k′=0

H
k′, j

𝓁′ Z
k′, j

𝓁′

(63)

≲H
k, j

𝓁 Z
k, j

𝓁 +
𝓁∑

𝓁′=𝓁+1
H
0, j

𝓁′ Z
0, j

𝓁′

(64)

≲H
k, j

𝓁 Z
k, j

𝓁 +
𝓁−1∑
𝓁′=𝓁

H𝓁′ Z𝓁′

(71)

≲H
k, j

𝓁 Z
k, j

𝓁 + H𝓁 Z𝓁

(65)

≲H
k, j

𝓁 Z
k, j

𝓁 .

(72)

Step 3 (tail-summability in (𝓵, k, j)). Finally, for all (𝓁, k, j) ∈ , we observe that

∑
(𝓁′,k′, j′)∈|𝓁′,k′, j′|>|𝓁,k, j|

H
k′, j′

𝓁′ Z
k′, j′

𝓁′ =
j [𝓁,k]∑
j′= j+1

H
k, j′

𝓁 Z
k, j′

𝓁 +
k [𝓁]∑

k′=k+1

j [𝓁,k′]∑
j′=0

H
k′, j′

𝓁 Z
k′, j′

𝓁 +
𝓁∑

𝓁′=𝓁+1

k [𝓁′]∑
k′=0

j [𝓁′,k′]∑
j′=0

H
k′, j′

𝓁′ Z
k′, j′

𝓁′

(67)

≲H
k, j

𝓁 Z
k, j

𝓁 +
k [𝓁]∑

k′=k+1
Hk′,0
𝓁 Zk

′,0
𝓁 +

𝓁∑
𝓁′=𝓁+1

k [𝓁′]∑
k′=0

Hk′,0
𝓁′ Zk

′,0
𝓁′

(68)

≲H
k, j

𝓁 Z
k, j

𝓁 +
∑

(𝓁′,k′, j)∈
|𝓁′,k′, j|>|𝓁,k, j|

H
k′, j

𝓁′ Z
k′, j

𝓁′

(72)

≲H
k, j

𝓁 Z
k, j

𝓁 + H
k, j

𝓁 Z
k, j

𝓁

(67)

≲H
k, j

𝓁 Z
k, j

𝓁 .

Step 4. Since the index set is linearly orderedwith respect to the total step counter |⋅, ⋅, ⋅|, tail-summability
in Step 3 and the equivalence of tail-summability and R-linear convergence from [33, Lemma 10] conclude the

proof of (47) in Theorem 1. □

6 Optimal complexity of Algorithm 1

Full linear convergence (47) has a simple but crucial consequence. Using a geometric series argument, one can

prove that the cumulative computational cost up to a given level is bounded by the cost of the said level; see

[33, Corollary 14], where only the primal quasi-error H
k, j

𝓁 has to be replaced by the quasi-error product H
k, j

𝓁 Z
k, j

𝓁 .

As a consequence, the convergence rates with respect to the number of degrees of freedom (defined asM(r) in

(73) below) and the rates with respect to the overall computational cost (cf. (26) and the discussion following the

statement of Algorithm 1) coincide.

Corollary 1 (rates = complexity [33, Corollary 14]). Suppose the assumptions of Theorem 1. For all r > 0, the out-

put (𝓁)𝓁∈ℕ0
of Algorithm 1 satisfies
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M(r):= sup
(𝓁,k, j)∈

(
#𝓁

)r
H
k, j

𝓁 Z
k, j

𝓁 ⩽ sup
(𝓁,k, j)∈

⎛⎜⎜⎜⎝
∑

(𝓁′,k′, j′)∈|𝓁′,k′, j′|⩽|𝓁,k, j|
#𝓁′

⎞⎟⎟⎟⎠

r

H
k, j

𝓁 Z
k, j

𝓁 ⩽Ccost(r)M(r) (73)

with the constant Ccost(r):= Clin∕(1− q
1∕r
lin
)r > 0.

While Theorem 1 only concerns R-linear convergence, a sufficiently small choice of the adaptivity parame-

ters 𝜃, 𝜆sym, and 𝜆alg even guarantees the optimal convergence rate r = s+ twith respect to computational cost,

i.e., the overall computational time. Here, we suppose that the primal solution u⋆ to (5) can be approximated

at rate s and the dual solution z⋆ to (8) can be approximated at rate t. To formalize this idea, we introduce the

notion of approximation classes [3]–[5], [9]. For s, t > 0, define

‖u⋆‖𝔸s
:= sup

N∈ℕ0

(
(N + 1)

s min
opt∈𝕋N

𝜂opt

(
u⋆
opt

))
, ‖z⋆‖𝔸t

:= sup
N∈ℕ0

(
(N + 1)

t min
opt∈𝕋N

𝜁opt

(
z⋆
opt

))
,

where 𝜂opt(⋅) and 𝜁 opt(⋅) denote the estimator values for the exact discrete solutions u
⋆
opt

and z⋆
opt

on the unavail-

able optimal triangulations opt ∈ 𝕋N ( ). We stress that ‖u⋆‖𝔸s
and ‖z⋆‖𝔸t

can equivalently be defined by

energy error plus data oscillations [8], [9].

Theorem 2 (optimal complexity). Suppose that the estimators 𝜂 and 𝜁 satisfy (A1)–(A3+) and (QM) and suppose

quasi-orthogonality (A4). Recall 𝜆⋆
alg

from Lemma 3 and 𝜆⋆ from (46) in Theorem 1. Define the constants

𝜆⋆
sym

:= min
{
1, C−1

stab
C−1
alg

}
⩽ 1 with Calg:=

1

1− q⋆sym

(
2 qalg

1− qalg
𝜆⋆
alg

+ q⋆
sym

)
,

𝜃⋆:= (1+ C2
stab

C2
rel
)−1 < 1.

(74)

Suppose that 𝜃, 𝜆sym, and 𝜆alg are sufficiently small in the sense of

0 < 𝜆alg ⩽ 𝜆⋆
alg
, 0 < 𝜆sym < 𝜆⋆

sym
, 𝜆alg 𝜆sym < 𝜆⋆,

0 < 𝜃mark:=
(𝜃1∕2 + 𝜆sym∕𝜆⋆sym)2

(1− 𝜆sym∕𝜆⋆sym)2
< 𝜃⋆ < 1.

(75)

Then, Algorithm 1 guarantees, for all s, t > 0, that

sup
(𝓁,k, j)∈

⎛⎜⎜⎜⎝
∑

(𝓁′,k′, j′)∈|𝓁′,k′, j′|⩽|𝓁,k, j|
#𝓁′

⎞⎟⎟⎟⎠

s+t

H
k, j

𝓁 Z
k, j

𝓁 ⩽ Copt max
{‖u⋆‖𝔸s

‖z⋆‖𝔸t
, H0,0

0
Z0,0
0

}
. (76)

The constant Copt depends only on Cstab, Crel, Cdrel, Cmark, Cmesh, Clin, qlin, #0, and s+ t. In particular, there holds

optimal complexity of Algorithm 1.

The proof of Theorem 2 employs the following result from [50] providing estimator equivalence between

the (unavailable) estimators for the exact discrete solutions u⋆𝓁 , z
⋆
𝓁 and the estimators at the computed approx-

imations u
m,n

𝓁 , z
𝜇,𝜈

𝓁 .

Lemma 11 (estimator equivalence [50, Lemma 15]). Recall the constants 𝜆⋆
sym

, Calg > 0 from (74) and 𝜆⋆
alg

> 0

from Lemma 3. Then, for all 0 < 𝜃 ⩽ 1, 0 < 𝜆alg ⩽ 𝜆⋆
alg
, 0 < 𝜆sym < 𝜆⋆

sym
, it holds that
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(
1− 𝜆sym∕𝜆⋆sym

)
𝜂𝓁

(
u
m,n

𝓁

)
⩽ 𝜂𝓁

(
u⋆𝓁
)
⩽
(
1+ 𝜆sym∕𝜆⋆sym

)
𝜂𝓁

(
u
m,n

𝓁

)
∀ (𝓁,m, n) ∈ u,

(
1− 𝜆sym∕𝜆⋆sym

)
𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
⩽ 𝜁𝓁

(
z⋆𝓁
)
⩽
(
1+ 𝜆sym∕𝜆⋆sym

)
𝜁𝓁

(
z
𝜇,𝜈

𝓁

)
∀ (𝓁, 𝜇, 𝜈 ) ∈ z.

(77)

Proof of Theorem 2. By Corollary 1, it suffices to prove that, for any s, t > 0,

sup
(𝓁,k, j)∈

(
#𝓁

)s+t
H
k, j

𝓁 Z
k, j

𝓁 ≲ max
{‖u⋆‖𝔸s

‖z⋆‖𝔸t
,H0,0

0
Z0,0
0

}
. (78)

Since the inequality becomes trivial if either ‖u⋆‖𝔸s
= ∞ or ‖z⋆‖𝔸t

= ∞, we may assume ‖u⋆‖𝔸s
‖z⋆‖𝔸t

< ∞. The proof consists of three steps.

Step 1.With 0 < 𝜃mark:= (𝜃1∕2 + 𝜆sym∕𝜆⋆sym)2 (1− 𝜆sym∕𝜆⋆sym)−2 < 𝜃⋆, the validity of (A3+) for both estima-

tors and [16, Lemma 14] guarantee the existence of sets𝓁′ ⊆ 𝓁′ with 0 ⩽ 𝓁′ < 𝓁 such that

#𝓁′ ≲
(‖u⋆‖𝔸s

‖z⋆‖𝔸t

)1∕(s+t) [
𝜂𝓁′
(
u⋆
𝓁′

)
𝜁𝓁′
(
z⋆
𝓁′

)]−1∕(s+t)
, (79a)

𝜃mark 𝜂𝓁′
(
u⋆
𝓁′

)
⩽ 𝜂𝓁′

(
𝓁′ , u⋆

𝓁′

)
or 𝜃mark 𝜁𝓁′

(
z⋆
𝓁′

)
⩽ 𝜁𝓁′

(
𝓁′ , z⋆

𝓁′

)
. (79b)

For 0 ⩽ 𝓁′ < 𝓁 , the estimator equivalence (77) in Lemma 11 leads to

(
1− 𝜆sym∕𝜆⋆sym

)
𝜂𝓁′

(
u
m,n

𝓁′

)
⩽ 𝜂𝓁′

(
u⋆
𝓁′

)
,

(
1− 𝜆sym∕𝜆⋆sym

)
𝜁𝓁′

(
z
𝜇,𝜈

𝓁′

)
⩽ 𝜁𝓁′

(
z⋆
𝓁′

)
and consequently with (79a) to

#𝓁′ ≲
(‖u⋆‖𝔸s

‖z⋆‖𝔸t

)1∕(s+t) [
𝜂𝓁′

(
u
m,n

𝓁′

)
𝜁𝓁′

(
z
𝜇,𝜈

𝓁′

)]−1∕(s+t)
. (80)

Note that the stopping criteria (20) and (22) lead to

H𝓁′ ≃ |||u⋆
𝓁′ − u

m,n

𝓁′ |||+ 𝜂𝓁′

(
u
m,n

𝓁′

)(20)
≲𝜂𝓁′

(
u
m,n

𝓁′

)
, Z𝓁′ ≃ |||z⋆

𝓁′ − z
𝜇,𝜈

𝓁′ |||+ 𝜁𝓁′

(
z
𝜇,𝜈

𝓁′

)(22)
≲𝜁𝓁′

(
z
𝜇,𝜈

𝓁′

)

and with (64) to

H
0, j

𝓁′+1 Z
0, j

𝓁′+1

(64)

≲H𝓁′ Z𝓁′ ≲ 𝜂𝓁′

(
u
m,n

𝓁′

)
𝜁𝓁′

(
z
mu,𝜈

𝓁′

)
. (81)

Hence, the combination of (80) and (81) reads

#𝓁′ ≲
(‖u⋆‖𝔸s

‖z⋆‖𝔸t

)1∕(s+t) [
H
0, j

𝓁′+1 Z
0, j

𝓁′+1

]−1∕(s+t)
. (82)

Step 2. Recall from [29, Theorem 8] that the set𝓁′ satisfies the Dörfler criterion from Algorithm 1 with the

same parameter 𝜃. The quasi-minimality of𝓁′ implies

#𝓁′ ⩽ Cmark #𝓁′ ∀ 0 ⩽ 𝓁′ < 𝓁 (83)

with the constant Cmark ⩾ 1 from Algorithm 1.

Step 3. Let (𝓁, k, j) ∈ . Full linear convergence (47) from Theorem 1 yields that

∑
(𝓁’,k’, j’ )∈|𝓁’,k’, j’|⩽|𝓁,k, j|

(
H
k’, j’

𝓁’
Z
k’, j’

𝓁’

)−1∕(s+t)(47)
≲
(
H
k, j

𝓁 Z
k, j

𝓁

)−1∕(s+t) ∑
(𝓁’,k’, j’ )∈|𝓁’,k’, j’|⩽|𝓁,k, j|

(q
1∕s
lin
)|𝓁,k, j|−|𝓁’,k’, j’| ≲

(
H
k, j

𝓁 Z
k, j

𝓁

)−1∕(s+t)
.

(84)

NVB refinement satisfies the mesh-closure estimate [9, Eq. (2.9)] reading,

#𝓁 − #0 ⩽ Cmesh

𝓁−1∑
𝓁’=0

#𝓁’ ∀ 𝓁 ⩾ 1, (85)
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where Cmesh > 1 depends only on 0. Thus, for (𝓁, k, j) ∈ , we have by the mesh-closure estimate (85), quasi-

optimality of Dörfler marking (83), and the result (84) that

#𝓁 − #0
(85)

≲

𝓁−1∑
𝓁′=0

#𝓁′

(83)

≲

𝓁−1∑
𝓁′=0

#𝓁′

(82)

≲
(‖u⋆‖𝔸s

‖z⋆‖𝔸t

)1∕(s+t) 𝓁−1∑
𝓁′=0

(
H
0, j

𝓁′+1 Z
0, j

𝓁′+1

)−1∕(s+t)

⩽
(‖u⋆‖𝔸s

‖z⋆‖𝔸t

)1∕(s+t) ∑
(𝓁′,k′,j ′)∈|𝓁′,k′,j ′|⩽|𝓁,k, j|

(
H
k′,j ′

𝓁′ Z
k′,j ′

𝓁′

)−1∕(s+t)

(84)

≲
(‖u⋆‖𝔸s

‖z⋆‖𝔸t

)1∕(s+t)(
H
k, j

𝓁 Z
k, j

𝓁

)−1∕(s+t)
.

Rearranging the terms and noting that 1 ⩽ #𝓁 − #0 implies #𝓁 − #0 + 1 ⩽ 2 (#𝓁 − #0), we obtain, for 𝓁 >

0, that

(#𝓁 − #0 + 1)s+t Hk, j

𝓁 Z
k, j

𝓁 ≲ ‖u⋆‖𝔸s
‖z⋆‖𝔸t

. (86a)

Moreover, full linear convergence (47) proves that

(#0 − #0 + 1)s+t Hk, j

0
Z
k, j

0
= H

k, j

0
Z
k, j

0
≲ H0,0

0
Z0,0
0
. (86b)

We recall from [35, Lemma 22] that, for all 𝓁 ∈ 𝕋 , it holds

#𝓁 − #0 + 1 ⩽ #𝓁 ⩽ #0 (#𝓁 − #0 + 1). (87)

This shows, for all (𝓁, k, j) ∈ ,

(#𝓁)s+t H
k, j

𝓁 Z
k, j

𝓁

(87)

≲ (#𝓁 − #0 + 1)s+t Hk, j

𝓁 Z
k, j

𝓁

(86)

≲ max
{‖u⋆‖𝔸s

‖z⋆‖𝔸t
,H0,0

0
Z0,0
0

}

and concludes the proof of (78). □

7 Numerical examples

In this section,we present numerical experiments using the open source software packageMooAFEM [51].1 In the

following, Steps (I) and (II) of Algorithm 1 employ the optimal hp-robust local multigrid method from [32] as an

algebraic solver. If not explicitly stated otherwise, we choose the parameters 𝜃 = 0.5, 𝛿 = 0.5, 𝜆sym = 𝜆alg = 0.7

in Algorithm 1 throughout the numerical experiments.

7.1 Singularity in the goal functional

The first model problem is a nonsymmetric variant of the benchmark problem from [29, Section 4.1] with a

singularity only in the goal functional. On the unit squareΩ = (0, 1)2 ⊂ ℝ2, we consider

−Δu⋆ + x ⋅∇u⋆ + u⋆ = f in Ω subject to u⋆ = 0 on 𝜕Ω, (88)

where the right-hand side is chosen such that the exact solution u⋆ reads

u⋆(x) = x1 x2 (1− x1) (1− x2).

1 All experiments presented in this paper are reproducible with the openly available software package under https://www.tuwien

.at/mg/asc/praetorius/software/mooafem.

https://www.tuwien.at/mg/asc/praetorius/software/mooafem
https://www.tuwien.at/mg/asc/praetorius/software/mooafem
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Consider g = 0 and g = 𝜒K (1, 0)
⊤ in the quantity of interest

G(u⋆):=
∫
K

𝜕x1u
⋆dx = 11

960
with K:= conv{(1∕2, 1), (1, 1∕2), (1, 1)}.

Figure 2 (left) displays a mesh generated by Algorithm 1 and the support K of g. The error estimator captures

and resolves the two point singularities induced by G.

7.2 Geometric singularity and strong convection

The second benchmark problem investigates Ω = (−1, 1)2∖conv{(0, 0), (−1, 0), (−1,−1)} ⊂ ℝ2 with the Dirich-

let boundary ΓD = conv{(−1, 0), (0, 0)} ∪ conv{(0, 0), (−1,−1)} and Neumann boundary ΓN = 𝜕Ω ∖ΓD; see

Figure 2 (right) for a visualization of the geometry. We consider

−Δu⋆ + (5, 5)⊤ ⋅∇u⋆ = 1 in Ω subject to u⋆ = 0 on ΓD and ∇u⋆ ⋅ n = 0 on ΓN . (89)

Consider g = 0 and g = 𝜒S (1, 1)
⊤ in the quantity of interest

G(u⋆) =
∫
S

𝜕x1u
⋆ + 𝜕x2u

⋆dx with S:= (−1∕2, 1∕2)2 ∩Ω.

Figure 2: Left: Mesh 15 for the problem (88) generated by

Algorithm 1with #15 = 2315. Right: Mesh 18 for the problem

(89) with #18 = 2130, where the Dirichlet boundary part ΓD

is marked by red solid lines and the Neumann boundary part

ΓN by green dashed lines.

Figure 3: Convergence history plot of estimator product 𝜂𝓁
(
u
m ,n

𝓁

)
𝜁𝓁 (z

𝜇,𝜈 ) indicated by bullets and goal error from (17) indicated by

diamonds with respect to the cumulative computational work (left) and with respect to the cumulative computational time (right) for the

benchmark problem (88).
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The exact solution u⋆ is not known analytically in this case so that we do not have access to the exact

goal error |G(u⋆)− G𝓁

(
u
m,n

𝓁 , z
𝜇,𝜈

𝓁

)|. Figure 2 (right) shows a mesh generated by Algorithm 1 as well as the

configuration, i.e., the support S of g in blue, the Dirichlet boundary in red solid lines, and the Neumann

boundary in green dashed lines.

7.2.1 Optimality of Algorithm 1

Figure 3 displays the estimator product 𝜂𝓁

(
u
m,n

𝓁

)
𝜁𝓁(z

𝜇,𝜈
) and the goal error |G(u⋆)− G𝓁

(
u
m,n

𝓁 , z
𝜇,𝜈

𝓁

)| from
(17) for the problem (88), due to higher-order approximations, we only show results prior to machine preci-

sion. For all investigated polynomial degrees p, the goal error and the estimator product are indeed equivalent.

Algorithm 1 achieves the optimal rate −p with respect to the cumulative computational work and with respect
to the cumulative computational time in Figure 3 for problem (88) and Figure 4 for problem (89). Figure 5

shows that the proposed algorithm indeed achieves linear complexity and is substantially faster than the MATLAB

Figure 4: Convergence history plot of estimator product 𝜂𝓁
(
u
m ,n

𝓁

)
𝜁𝓁 (z

𝜇,𝜈 ) with respect to the cumulative computational cost (left) and

the cumulative computational time (right) for the benchmark problem (89).

Figure 5: Comparison of cumulative time of the local multi-

grid solverwith theMATLAB built-in direct solver mldividewith
respect to the cumulative computational cost for the bench-

mark problem (89).
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built-in direct solver as the slightly larger slope of the latter indicates super-linear complexity. Table 2 displays

the weighted costs

𝜂𝓁

(
u
m,n

𝓁

)
𝜁𝓁

(
z
𝜇,𝜈

𝓁

)( ∑
(𝓁′,k′, j′)∈|𝓁′,k′, j′|⩽|𝓁,k , j|

time(𝓁′, k′, j′)
) p

(90)

of Algorithm 1 for polynomial degree p = 2 with time(𝓁′, k′, j ′) in seconds and highlights the corresponding

optimal choices of the parameters. This justifies the selection of 𝜃 = 0.5 together with larger symmetrization

parameter 𝜆sym = 0.7, and algebraic solver parameter 𝜆alg = 0.7. The table for the second benchmark problem

from (89) leads to similar results and is therefore omitted. While the choice of the damping parameter 0 < 𝛿 <

2𝛼∕L2 in (13) is crucial in the case of large convection to guarantee the contraction property (14), the adaptivity
parameters appear more robust with respect to other coefficients in (4).

Table 2: Optimal selection of parameters with respect to the cumulative computational costs (overall computation time in seconds) for

the experiment (88) with fixed polynomial degree p = 2 and 𝛿 = 0.5. For comparison, the table displays the value of the weighted costs

from (90) (in 10−7) with overall stopping criterion 𝜂𝓁

(
u
m ,n

𝓁

)
𝜁𝓁

(
u
𝜇,𝜈

𝓁

)
< 5 ⋅ 10−10 for various choices of 𝜆sym, 𝜆alg, and 𝜃. For each

𝜃-block, we mark the row-wise optimal values in blue, the column-wise optimal values in yellow, and in green if both optimal values

coincide.

×10−7 𝜽 = 0.1 𝜽 = 0.3 𝜽 = 0.5

𝝀alg/𝝀sym 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.1 38.7 33.4 29.6 22.1 24.4 10.2 5.12 4.90 4.83 4.74 6.18 4.48 4.66 4.89 5.25

0.3 36.2 24.7 24.5 21.8 23.1 7.28 4.98 3.53 3.27 3.26 4.18 4.54 4.79 5.01 5.13

0.5 24.3 24.7 24.7 23.4 23.6 5.84 3.64 3.39 3.27 3.37 3.41 2.71 2.52 2.49 2.68

0.7 24.1 24.8 23.8 22.2 24.0 4.95 3.59 3.30 3.25 3.42 2.74 2.35 2.41 2.24 2.46

0.9 23.5 24.6 22.3 24.4 23.8 4.90 3.58 3.29 3.26 3.41 2.81 2.30 2.43 2.27 2.41

𝜃 = 0.7 𝜃 = 0.8 𝜃 = 0.9

0.1 5.82 5.18 5.43 5.40 5.93 8.53 6.10 7.31 6.67 7.77 11.6 8.86 9.12 9.87 9.97

0.3 4.65 4.86 5.35 5.98 6.67 6.27 5.92 7.20 7.46 7.57 8.62 8.40 9.27 10.6 11.5

0.5 3.69 2.89 2.88 2.95 3.13 5.09 3.61 3.66 3.63 3.66 7.27 5.32 4.84 4.93 5.12

0.7 2.99 2.56 2.64 2.62 2.89 3.75 3.12 3.23 3.03 3.11 4.58 3.95 4.04 4.43 4.79

0.9 2.89 2.49 2.65 2.66 2.89 3.79 3.11 3.19 3.13 3.27 4.67 4.06 4.16 4.35 4.61

Figure 6: Number of total solver steps |𝓁,m, n|− |𝓁, 0, 0| resp. |𝓁, 𝜇, 𝜈 |− |𝓁, 0, 0| on each mesh level for the benchmark problems
(88) (left) and (89) (right).
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Finally, in Figure 6, we display the number of total solver steps |𝓁,m, n|− |𝓁, 0, 0| resp. |𝓁, 𝜇, 𝜈 |− |𝓁, 0, 0|
on eachmesh level for both benchmark problems (88) and (89). The plots show that the two iterations often stop

after the same number of steps.

8 Summary

In this work, we developed a cost-optimal goal-oriented adaptive finite element method for the efficient com-

putation of the quantity of interest G(u⋆) with solution u⋆ to the general second-order linear elliptic partial

differential equation (4). Since the current analysis of iterative algebraic solvers for nonsymmetric systems with

optimal preconditioner only leads to contraction of the residual in a vector norm, we proposed a nested itera-

tive solver for the primal and dual problem in parallel. The strategy consists of the Zarantonello iteration (13) as

an outer solver loop and an optimal multigrid solver for the arising SPD system as an innermost solver loop. In

recent ownwork [33], we have shown that the link between convergence rateswith respect to the degrees of free-

domand the total computational cost is full linear convergence of the quasi-errorH
k, j

𝓁 Z
k, j

𝓁 . To this end, Theorem 1

shows that the proposed adaptive algorithm contracts (up to a multiplicative constant) the quasi-error product

H
k, j

𝓁 Z
k, j

𝓁 in every step, independently of the algorithmic decision to employmesh refinement, symmetrization, or

the algebraic solver. A particular problem in the analysis is that the nested iterative solver procedure only guar-

antees contraction as long as 1 ⩽ k < k[𝓁], whereas contraction for the final iterate is only guaranteed up to an
estimator term (cf. (29)). Another difficulty arises from the nonsymmetric setting with a quasi-Pythagorean esti-

mate (18) replacing the usual Pythagorean estimate. Therefore, the proof of Theorem 1 employs the equivalence

of R-linear convergence and tail-summability of the quasi-error product H
k, j

𝓁 Z
k, j

𝓁 and leads to mild restriction

on the product 𝜆sym𝜆alg of the involved solver stopping parameters. The key ingredients to cost-optimality are

an adaptive mesh-refinement algorithm with optimal convergence rate with respect to the number of degrees

of freedom (under the assumption of exact solution) and an algebraic solver for the linear system of equations

that is contractive with respect to the underlying Sobolev norm. In this regard, the analysis in this paper may

guide the generalization to conforming discretizations of vector-valued elliptic problems. Finally, the numerical

experiments in Section 7 suggest that the proposed strategy allows for large stopping parameter in practice and

that a larger choice is beneficial in terms of total runtime. Admittedly, the development of an optimal solver for

the nonsymmetric problem (10) would allow to prove full linear convergence with an arbitrary selection of the

stopping parameter.
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