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Abstract: We analyze a goal-oriented adaptive algorithm that aims to efficiently compute the quantity of inter-
est G(u*) with a linear goal functional G and the solution u* to a general second-order nonsymmetric linear
elliptic partial differential equation. The current state of the analysis of iterative algebraic solvers for non-
symmetric systems lacks the contraction property in the norms that are prescribed by the functional analytic
setting. This seemingly prevents their application in the optimality analysis of goal-oriented adaptivity. As a
remedy, this paper proposes a goal-oriented adaptive iteratively symmetrized finite element method (GOAIS-
FEM). It employs a nested loop with a contractive symmetrization procedure, e.g., the Zarantonello iteration,
and a contractive algebraic solver, e.g., an optimal multigrid solver. The various iterative procedures require
well-designed stopping criteria such that the adaptive algorithm can effectively steer the local mesh refinement
and the computation of the inexact discrete approximations. The main results consist of full linear convergence
of the proposed adaptive algorithm and the proof of optimal convergence rates with respect to both degrees of
freedom and total computational cost (i.e., optimal complexity). Numerical experiments confirm the theoretical
results and investigate the selection of the parameters.

Keywords: goal-oriented adaptive finite element method; linear quantity of interest; iterative solver; nonsym-
metric partial differential equations; optimal convergence rates; optimal complexity
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1 Introduction

Adaptive finite element methods (AFEMs) are a cornerstone in the numerical solution of partial differential
equations (PDEs). The abundant literature emphasizes significant progress and manifests a matured under-
standing of the topic; see, e.g. [1]-[9], for linear elliptic PDEs.

The variational formulation of a nonsymmetric second-order linear elliptic PDE with bilinear form b(, -)
and right-hand side functional F on the Sobolev space X: = H(l) (€2) seeks a weak solution u* to

bw*,v)=F(v) VveAX. )]

While standard AFEM aims at an efficient approximation of the solution u* € X, goal-oriented AFEM (GOAFEM)
strives only to approximate a quantity of interest G(u*); see [10]-[13] for early prominent contributions. How-
ever, to accurately approximate G(u*) for a continuous linear goal functional G: X — R, following the generic
approach G(uy) ~ G(u*) leads to convergence rates determined by the error of the approximation u; ~ u* to
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the primal problem (1). Instead, GOAFEM adopts a duality technique by additionally approximating z, ~ z* € X
lving the dual probl
solving the dual problem b2 = GW) Vv e X. @

Following [13], a discrete approximation G, (uy, zy) ~ G(u*) enables the control of the error for any uy,z; € X

by
|GW*) = Gyuy, zy)| < |b(u* —uy, 2" — zy)| < L llu* —ugll 2% = zgll, ©)

where L > 0 is the continuity constant of b(-, -) with respect to the energy norm || - ||; see Section 2 for details.
As seen in (3), this approach allows to add the convergence rates of the primal and dual problem. Moreover,
it is not necessary — and may even lead to unnecessary computational expense — to compute approximations
Uy ~ u* and zy ~ z* across the entire domain with the same accuracy. Instead, a careful marking of elements
for refinement enables a considerable reduction of the computational costs and makes GOAFEM highly relevant
in both practical applications and mathematical research.

First rigorous convergence results of GOAFEM are found in [14]-[18], recent contributions in this context
include [19], [20] and for a dual weighted-residual approach see, e.g., [21]-[23]. The works [14], [16], [17], [19],
[20] focus on optimal convergence rates with respect to the degrees of freedom. However, the cumulative nature
of adaptivity calls for optimal convergence rates with respect to the total computational effort, i.e., the overall
computational time. Coined as optimal complexity initially for wavelet-based discretizations [24], [25], this notion
was later adopted for AFEM with contributions including, e.g., [4], [26]-[28]. In the setting of GOAFEM, optimal
complexity was established first in [14] for the Poisson problem and sufficiently small adaptivity parameters, and
extended to a general second-order symmetric linear elliptic PDE with uniformly contractive algebraic solver
in [29]. Since uniform contraction with respect to the PDE-related energy norm for nonsymmetric algebraic
solvers such as GMRES is still open, as a remedy, the proof of the Lax—Milgram lemma motivates the application
of an iterative symmetrization [28]. This results in a sequence of symmetric algebraic systems that allow the
application of optimal algebraic solvers, e.g., [30]-[32]. Figure 1 illustrates the nested structure of the resulting
goal-oriented adaptive iteratively symmetrized finite element method (GOAISFEM). The detailed Algorithm 11is
presented in Section 3 below. Table 1 displays the notation of the associated indices and quasi-error quantities,
which are equivalent to the total error.

The first challenge in the analysis of the GOAISFEM algorithm consists of the nonlinear product structure
attained by the combined quasi-error product as displayed in Table 1. The resulting nonlinear remainder term
significantly complicates the proof compared to treating only the primal problem as in [28] and requires the
application of a novel proof strategy from [33] that only utilizes summability of the remainder, denoted as tail-
summability throughout. The second challenge arises from the combination of the primal and dual marking
leading to a merged marked set. Thereby, either only the primal or only the dual estimator is guaranteed to
satisfy the estimator reduction property. Since the estimator belongs to the quasi-error, this also leads to a failure
of contraction for one of the two involved quasi-errors. While [29] solves this issue in the symmetric case, the
additional symmetrization loop results in a more involved situation at hand. Adapting the novel approach of

GOAL-ORIENTED ADAPTIVITY (£)

SOLVE & ESTIMATE

primal problem (in parallel) dual problem

[ symmetrize (m) ] [ symmetrize (u) ]

[ solve (n) ] [ solve (v) ]

computable approximation u;"" computable approximation ;"""
and estimator n(uy"") and estimator G (z}"")

—

MARK ’

apply Dérfler marking variant from [17]

[ : N\BH;{F‘”NF‘ ] Figure 1: Schematic overview of the GOAISFEM algorithm
employ NVB [43
with nested symmetrization and inexact solver.
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Table 1: Iteration counters and quasi-errors for the GOAISFEM algorithm. We note that for the combination of the index sets, the
quasi-errors are extended to the full index set by the last available quasi-error. We refer to Section 3 for details on the iteration counters
and index sets and to the beginning of Section 5 for a detailed description of the quasi-errors and their extension to the full index set Q.

Iteration Mesh refinement Symmetrization Algebraic solver Index set Quasi-error
Running Final Running Final Running Final

Primal ¢ 4 m m n QY in (24a) H’Lf’" in (44a)

Dual 4 Z U U v Q7 in (24b) 22" in (44b)

Combined 4 Z k k =max{m, u} i j=max{n,v} Q=0Q'UQ’ H';,’j Z’;‘/ in (45)

the tail-summability criterion from [33] enables the proof of full linear convergence and optimal complexity for
the nonlinear quasi-error product in this paper. The analysis employs the generalized quasi-orthogonality from
[34] to remedy the lack of a Pythagorean identity for nonsymmetric problems.

Our main result asserts full linear convergence of the quasi-error product H’;’j Z';’j with respect to the total
step counter |-, -, -| (measuring the total solver steps in the index set). Therein, we allow for an arbitrary sym-

metrization stopping parameter A, and only require a small algebraic solver parameter 4, such that the
product Agy, 4, is sufficiently small. More precisely, Theorem 1 states that there exist constants Cy, > 0 and
0 < gy, < 1such that, for all (£, k, j), (#’,k’,j") € Qwith |, K ,j'| < |2,k ],
k.j 7k.j £k J1=16 K ' gk " ok '
H," 2,7 < Gin 4y H,” 2,7
Note that, unlike [28], where full linear convergence is guaranteed only for sufficiently large # > #,, the current
result is stronger in the sense that the result holds for #, = 0 owing to a generalized quasi-orthogonality from
[34]. An immediate consequence of full linear convergence and the geometric series in Corollary 1 states that the

rates with respect to the degrees of freedom coincide with the rates with respect to the cumulative computational
work (i.e., computational time), i.e., for all r > 0, there holds

r

T ok N
sup (#7,) H;” 2,7 < sup Z #T, | H'Z < Coqe sup (#7,) H, 27
.k, j)EQ .k, j)eQ (f’,k’,f’)EQ .k, j)eQ
1£" K11k,

along the sequence of meshes 7, generated by the GOAISFEM algorithm. The second main result of Theorem 2
proves that, for sufficiently small adaptivity parameters and any achievable rates s, t > 0 of the primal resp. dual
problem (stated in terms of nonlinear approximation classes), the algorithm guarantees optimal complexity, i.e.,

S+t

k,j 7k,j * * 0,0 ~0,0
swp [ Y #7 | HY 2 < oy max{ s, 2, B0 00,
@rDEQL (¢ jheQ
|2 K J 11 K, I

This means the convergence of the algorithm attains the optimal rate s + ¢ with respect to the overall computa-
tional work, where ||u*|| a, < 00 means that u* can be approximated at rate s (along a sequence of unavailable
optimal meshes) and likewise for z*.

The remaining parts of the paper are organized as follows. The preliminary Section 2 introduces the model
problem, the assumptions on the solvers, and the axioms of adaptivity from [9], including the general quasi-
orthogonality from [34]. Following the algorithm in Section 3 and its contraction properties in Sections 4 and 5
presents full linear convergence as the first main result of this paper. This allows to prove optimal complexity
in Section 6 as the second main result, which is underlined by the numerical experiments in Section 7 including
a thorough investigation of the adaptivity parameters. The paper concludes with a summary in Section 8.
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2 Setting

In this section, we introduce the problem and explain the key components needed to design the adaptive
algorithm in Section 3.

2.1 Continuous model problem

Let Q C R? with d > 1 be a polygonal Lipschitz domain. Given right-hand sides f € LX) and f € [L2(Q)]%, we
consider a general second-order linear elliptic PDE

—div(AVu*)+b-Vu* +cu* = f—div(f) inQ subjectto u*=0  onoQ, 4)

. o . . o e . dxd . .
with a pointwise symmetric and positive definite diffusion matrix A € [LW(Q)] S;m, a convection coefficient

be [L°°(Q)]d, and a reaction coefficient ¢ € L*(€2). For well-definedness of the a posteriori error estimator
in Section 2.6 below, we additionally require that A|; € [W'*(T)] Z;rg and f|; € [H(D)] Yforall T € 7T,, where
7, is an initial triangulation that subdivides Q into compact simplices. Let (-, -) denote the L*(Q)-scalar product.
With the principal part a(u, v): = (AVu, Vv), the variational formulation of (4) seeks a solution u* € X: = H(l) Q)

to the so-called primal problem
bw*, v):= aw*,v) + (b - Vu* + cu*,v) = (f,v) +{f,Vv) =F(v) VveEAX. (5)

We suppose that the bilinear form b(., -) from (5) is continuous and elliptic with respect to the norm || - || , on X,
i.e., there exist constants L', &’ > 0 such that

b(u,v) <L |jullx10] 5 bw,v) = ad ||v|> YuveEX. (6)
X

Then, the Lax—Milgram lemma proves existence and uniqueness of the solution u* to (5). An elementary com-
pactness argument shows that (6) implies ellipticity of the principal part a(-, -) and thus a(., -) is a scalar product

on X with induced energynorm a( -, - )2 =:|| - || = || - | x> L. [35, Remark 3]. Therefore, b(-, -) is also continuous
and elliptic with respect to ||| - |||, i.e., there exist constants L, « > 0 such that
b(u,v) < L [lull loll, bw,v) > a lv* YuveX. (7)

In the prese}}t paper, we suppose that the quantity of interest G is linear and reads for given data g € L*(Q) and
g € [IAQ)]',
G):= /(g v+g- Vo)dx.
Q

In order to guarantee well-definedness of the error estimator in Section 2.6 below, we suppose g|; € [Hl(T)]d
for all initial simplices T € 7;. In view of the continuity and coercivity of b(, -), the Lax—Milgram lemma yields
existence and uniqueness of the solution z* € X of the so-called dual problem: Find z* € X such that

b(v,z*)=G(v) VveRX. ®

2.2 Finite element discretization and discrete goal

For a polynomial degree p € N and a conforming simplicial triangulation 7 of €2, the discrete ansatz space
reads
Xyi={vyg € X:V T € Ty, vylr is a polynomial of total degree < p}. 9

Since Xy C X is conforming, the Lax—Milgram lemma ensures the existence and uniqueness of primal and dual
discrete solutions uy, z € Xy satisfying

b(u}, vy) = F(uy), b(vy,z}) = Gluy) Y vy € Xy. (10)
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It is well-known that conforming FEMs are quasi-optimal, i.e., there hold Céa-type estimates with constant
Cesa =L/
* * : * * * : *
la* =l < Coeu iR * =0l ¥ = 250 < Cea 100D 12" = 0 G

For arbitrary approximations uy, z;;, € Xy the linearity of the quantity of interest G as well as the primal and
the dual problem (1) and (2) show that
G™) — Gluy) = G(u* — 1) = b(u* — uy, 2¥)
o)
= b(u* — uy, z* — zy) + [F(zy) — bluy, zy)|.
The definition of the discrete goal quantity by G, (uy, zy): = Gluy) + [F(zH) — b(uH,zH)] allows to control the
goal error by continuity of b(-, -)

IGW*) = Gylug, zp)| < ID(W* = gy, 2% = z) | < L lIW* = ugllliz* = zg - (12)

We emphasize that (12) holds for any uy, z;; and, in particular, for those stemming from an iterative solution
step. Moreover, if uy = uy;, then G(uy, z;) = G(u;) as expected.

2.3 Zarantonello iteration

The discrete formulations (10) lead to positive definite, but nonsymmetric linear systems of equations. To reduce
the formulation to symmetric and positive definite (SPD) problems, we follow previous own work [28] for the
primal problem and employ the Zarantonello iteration [36]. Typically, the latter is used in the up-to-date proof
of the Lax—Milgram lemma and also defines a linearization scheme for the treatment of a certain class of non-
linear elliptic PDEs (see, e.g., [33], [37]-[39]). In its core, it is a fixed-point method, thus also applicable in the
nonsymmetric setting at hand. For a damping parameter 6 > 0 and given uy, z; € X}, the Zarantonello iter-
ations @}, ®7: (0, 00) X Xy — Xy compute the unique solutions @} (6; uy), ©F,(6; z;) € Xy to the symmetric
variational formulations

a(@(5; up), vy) = aluy, vy) + 6 [Flog) — bluy, vy)] VY vy € &y, (13a)

Ay, D453 2) = Avyg, 25) + 6 [Gwp) — by, z)] ¥ vy € Xy (13b)

The Riesz-Fischer theorem (and also the Lax—Milgram lemma) guarantees existence and uniqueness of
@, (6; uy), P} (8;2) € Xy, ie., the Zarantonello operators @ (5;-) and @7, (5; ) are well-defined. In partic-
ular, the exact discrete solutions u} = CI)I“{((S;u;I) and z} = @;(5;21’;) are the unique fixed points for all
8 > 0. Moreover, for a sufficiently small damping parameter &, i.e, 0 < § < §*:= 2a/L*, the Banach fixed-
point theorem [40, Section 25.4] guarantees that @2(5; ) and (IDZ((S; -) are contractive with constant 0 < qs*ym: =

[1-6 @a - 619)]"* < 1,ie, for all functions vy, wy € Xy, it holds that

maX{”MDZ(& vy) — CDZ(& wplls |||<I>§{(5§ Uy) — CDZ(& WH)|||} < q:;m llog — wgll. (14)

The optimal value §,,, = a/L” yields the minimal contraction value Ty =1— a? /12,

2.4 Algebraic solver

A canonical candidate for solving (10) directly is a generalized minimal residual method [41], [42] with optimal
preconditioner for the symmetric part. While this guarantees uniform contraction of the algebraic residuals
in a discrete vector norm, the link between the algebraic residuals and the functional setting is still open [28].
Instead, after a symmetrization with the Zarantonello iteration, it remains to solve the SPD systems (13). Since
large SPD problems are still computationally expensive and the exact solution cannot be computed in linear
computational complexity, we employ an iterative algebraic solver whose iteration is expressed by the operator
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Yt X' X Xy — Xy. More precisely, given a bounded linear functional y € &’ and an approximation wy € Xy
of the exact solution w}; € Xy to a(w;l, vy) = w(vy) for all vy € Xy, the algebraic solver returns an improved
approximation Wy (y; wy) € &y in the sense that there exists 0 < g,,, < 1independent of y and X}, such that

sy = ¥ty will < Qg )y — wyll ¥ wy € Xy. 15)

To simplify notation, we shall identify y with its Riesz representative w}; € X and write ‘PH(wI’_}; ) instead of
Wy(y; ), even though w} is unknown in practice and will only be approximated by an optimal algebraic solver,
e.g., [30]-[32]. In the following, we use the hp-robust multigrid method from [32] with localized lowest-order
smoothing on intermediate levels and patchwise higher-order smoothing on the finest mesh as an innermost
algebraic solver loop.

2.5 Mesh refinement

The mesh refinement employs newest-vertex bisection (NVB). We refer to [43] for NVB with admissible initial
triangulation 7; and d > 2, to [44], [45] for NVB with general 7; for d € {1,2}, and to the recent work [46] for
NVB with general 7; in any dimension d > 2. For each triangulation 7;; and marked elements My C Ty, let 7;,: =
refine(Ty, M) be the coarsest conforming refinement of 73 such that at least all T € M, have been refined,
ie, My C T4 \T,. We write 7, € T(7) if 7, can be obtained from 7 by finitely many steps of NVB, and 7, €
Ty(T) it T, € T(Ty) with #7, — #7; < N with the number of additional elements N € N,. To simplify notation,
we write T: = T(7) and Ty: = Ty(7;). We note that the nestedness of meshes 7;, € T(7) implies nestedness of
the corresponding finite element spaces X C &), C X from (9).

2.6 Aposteriori error estimation

For a triangle T € T; € T and vy € Xy, let n denote the outer unit normal vector and [ [-]] the jump along
inner edges of 7;;. We define the refinement indicators #,(T; vy) > 0 and ¢ ;(T; vy) > 0 for the primal and dual
problem from (10), respectively, by

N (T v =|T) || = div(AVoy — )+ b - Vo + ¢ vy — fI1?

LA(T)
+|TIV? ||[(AVoy — f) - "]]”iz(aTnQ)’
(16a)
Cu(T; v =|TIY? || - div(AVvy — 8) = b - Vo + (¢ — divb)) vy — gli%,
+|T1Y* |[(AVoy - g) L [[FA.
For any subset Uy, C 75, we abbreviate
o= Y maTog?s G vghi= Y Gl o) (16b)

TEVy TEVy

as well as 7, (vy): = ny(Ty; vy) and Sy (vy): = (g (Ty; vy) for all vy € &y

For details on residual-based error estimators, we refer to [47], [48]. Throughout the paper, the index of the
estimators refer to the underlying mesh, e.g., #, and {;, on the refinement 7;, € T(7) or n, and {, on a sequence
of meshes 7, with # € N,. It is well-known that #y, { satisfy the following axioms of adaptivity.

Lemma1 (see [9, Section 6.1]). The error estimators ny, §y from (16) satisfy the following properties with con-
stants Cgiaps Crets Carels Cmon > 0 and 0 < q,.q < 1 for any triangulation T; € T and any conforming refinement
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Ty € T(Ty) with the corresponding Galerkin solutions uy,, z, € Xy, uy,zy € &), to (10), any subset Uy C Ty N Ty,
and arbitrary vy € Xy, vy, € X!

(AD) stability: |n,(Uy; v) — ng(Uy; ve)| + 183U v) — Eu(Uhgs )| < Cygap oy — vgll;

(A2) reduction: n,(Ty\Ty; Ug) < Grea 1Ty \Th; ) and §(Ty\ T ) < Greal (T \ T3 Up);

(A3) reliability: ||[u* — uj |l < Cyq 1y (u)y) and ||z* — zj |l < Cr C(2})s

(A3") discrete reliability: ||u} — uf || < Cavel g (T \Tho ;) and l|zy = z5 | < Caver S (T \ T 235);

(QM) quasi-monotonicity: 1y, (1r) < Cpon M (Us;) and &, (2¥) < Con Cu(2)-

The constant C ., depends only on the uniform y-shape regularity of all T; € T and on the space dimension d, while
Cyap and Cyye additionally depend on the polynomial degree p. For NVB, reduction (A2) holds with q,.4: = 27/@9.
Moreover; the constant in quasi-monotonicity (QM) satisfies Cpop < Min{1 + Cyp, (14 Cega)Crals 1 + Cotap Carel -

Reliability (A3) and stability (A1) verify

™ — ugll < max{Crap, 1+ Coap Crar} [ + lluf; — ugll],

llz* =zl < max{Cre. 1+ Coan Crar} [Cuzn) + lzj; — zyll]-

In combination with the estimate (12), we finally conclude for Cyy: = L max{Cp, 1 + Cyyp, C.q }? the reliable
goal-error estimate

1GW™) = Gy gy, 2| < Cyoar [ ) + Mgy — ull] [Suzp) + Nz — 2] a7n

which provides the core estimate of the proposed adaptive algorithm in Section 3 below.

The ellipticity of b(-, -) from (7) ensures inf-sup stability of the elliptic problem at hand. Recall from [34] that
inf-sup stability implies the generalized quasi-orthogonality, which will be an important tool in the subsequent
analysis.

Proposition 1 (validity of quasi-orthogonality [34, Eq. (8)]). For any sequence X, C X,,; C X of nested discrete
subspaces with ¢ > 0, there holds

(A4) quasi-orthogonality: There exist constants C,, > 0 and 0 < 6 < 1 such that the corresponding Galerkin
solutions u;,z; € X, to (10) satisfy, for all#,M € N,,

‘+M
D ek, =X < Copn (M + D' Jlu* — w12, (18a)
'=¢t
+M
3 llzE,, = 281 < Copn M+ D17 2% = 23|I (18b)
'=¢

The constants C,.y, and 6 depend only on the dimension d, the elliptic bilinear form b(., -), and the chosen norm
Il - I, but are independent of the spaces X,.

3 Adaptive algorithm

In this section, we introduce our goal-oriented adaptive iteratively symmetrized algorithm. It utilizes spe-
cific stopping indices denoted by an underline, e.g., £, m[£], n[¢, k] € N,. For an overview, see Table 1 above.
However, we may omit the dependence whenever it is apparent from the context, such as in the abbreviation
n:=nl[¢, m] for u:l’ﬂ.
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Algorithm 1 (GOAISFEM).
Input: Initial mesh 7;, polynomial degree p € N, marking parameters 0 < 8 <1, C, = 1, solver parameters

Aggm > 0, Ay > 0, Zarantonello damping parameter & > 0, and initial guesses u)* ug 20 = zg’! € X,.
Adaptive loop: For all # =0, 1, 2, ..., repeat the following steps ()-(IV):
() SOLVE & ESTIMATE (PRIMAL). Forallm=1,23,. repeat (a) (©:
(@) Set um 0. — um 2 and define for theoretlcal reasons u =Y <5; Zl M).
(b) For all n=1, 2 3, ..., repeat the following steps (i)— (11)
() Computeu,":=%¥, (u’;’*; u?’"‘l) and corresponding refinement indicators #, (T; u;™") for
alT €7,.
(ii) Terminate n-loop and define n[#, m] :=nif
" = 0 < g [ g e () + I = 2200 19)
(c) Terminate m-loop and define m[¢]:=m if
I = 2 < Ay (1) (20)

(I) SOLVE & ESTIMATE (DUAL). Forall u=1,2,3,..., repeat (a)-(c):
@ Setz) .= =z ¥ and define for theoretlcal reasons z/"* := @’ ( 5; z’;_l’z).
(b) For all V= 1 2,3, ..., repeat the following steps (i)— (11)

() Compute z*:="¥, (z’;’*; z?’v_1> and corresponding refinement indicators ¢, (T;z%") for

alT €7,.
(i) Terminate v-loop and define v[Z, u] :=vif

, w1 s , ,0
26 = 270 < g [ A € (227) + 12" = 2200 - @)

(c) Terminate u-loop and define uleli=p if

4% = 20 < A € (20, 22)

(III) MARK. Determine sets

IS

M“eM"[e

|:
|:

satisfying the following Dérfler criterion [1] with quasi-minimal cardinality

2
Ungf:e’?f<u?ﬂ) S’?f(Uf, % ) }

voerog(#) <o (v |

I<

m
4
E

M e 2|07

M < Cpae MIn H#UF, ML < Cpae Min #UX. (23)
vrens [0 vrem oz

Asin [17], define the set of marked elements M, := Mf’/ U M;, where M; - H; and Mﬁ - A_/l; satisfy
HMY = #MZ = min{ HMEHME L,

0, B
() REFINE. Gen;:rate the new mesh 741 :=refine(M,,7,) by NVB and define u)? :=u," :=ul’ :=u"
Yo 0k M
and 2% p +1 =z, =z, = z * (nested iteration).

Output: Sequences of successively refined triangulations 7, successive discrete approximations u’f"’", Z;’V, and

corresponding error estimators , (1)), { (2").
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Remark 1. (i) Although the primal loop (I) and dual loop (II) in Algorithm 1 are displayed sequentially, they are
independent of each other. Therefore, a practical implementation will realize these iterations simultaneously
since the system matrix is the same (thanks to the symmetrization step).

(ii) In order to investigate the asymptotic behavior, it is reasonable to analyze Algorithm 1 in the present
formulation with infinitely many steps. We note that a practical implementation will terminate with ¢ :=7¢
provided that the estimator product is smaller than a user-specified tolerance.

For the analysis of Algorithm 1, we define the index set Q := Q" U Q* with
:={(¢,m,n) € N}:uJ"" is used in Algorithm 1}, (24a)

Q*:={(¢, u,v) € N3: 2" is used in Algorithm 1}. (24b)

Furthermore, we require the following final indices and notice that these are consistent with those defined in
Algorithm 1:

¢ :=sup{Z € Ny:(£,0,0) € Q" or (£,0,0) € 9’} €Ny U {0}, (25a)
m[£]:= sup{m € N: (£, m,0) € Q"}, E[zf]:: sup{u € N: (¢, u4,0) € 9%}, (25b)
n[Z,m]:=sup{n € N:(¢,m,n) € Q"}, vlZ, ul:=sup{veN:(?, u,v) € O*}. (25c¢)
In addition, we set k[£]:= max{m[¢], u[#]} as well as j[£, k] := max{n[¢, k], v[£, k]}.
Finally, we introduce the total step counter |-, -, -| defined for all (¢, k, j) € Q by
£=1 —k[£"1—jl£' K1 k=1 —jl£,k']
2.k jl =) Z Z 1+ Z 1+21
£'=0 K'= K'=0 j'=0

This definition indeed provides a lexicographic ordering on Q, if the solver steps Algorithm 1(I) for u’;"” and
Algorithm 1(II) for z”’v are done in parallel. We note that one solver step of an optimal geometric multigrid
method on graded meshes can be performed in O(#7,) operations; see, e.g., [30], [32]. For given u’" M z" e,
the simultaneous computation of the refinement indicators 1, (T,u}"") and ¢, (T, z%") requires (‘)(#Tf) opera-
tions, hence the steps Algorithm 1(I)-(II) require O#7,) operations as well. Furthermore, Dorfler marking can
be performed in O#7,) operations; see, e.g., [4], [49]. Therefore, the total work to compute u’;’" and z?’v is (up
to a constant) given by

costlZ,k,j):i= Y #Ty 4+ Y #Hyx D #T, (26)
(' .m' ,n)eQ" (&' . V)eQ* (' k' jHeo
£".m’ ' <12.k. | 171" V' I<IZ .k A SUNAS]

Since #Q = oo, we have either £ = co, or k[£] = o0, or j[£,k] = co. A further observation about
Algorithm 1 is that the nested algebraic solver loop within the Zarantonello loop is guaranteed to terminate,
and the latter case j[£, k] = oo is therefore excluded.

Lemma 2 (finite termination of algebraic solver [28, Lemma 3.2]). Independently of the algorithmic parameters
0, 0, Asym, and A, the innermost n- and v-loops of Algorithm 1 always terminate. In particular; j[£, k] < oo for
all (¢, k,0) € Q.

4 A posteriori error analysis

Algorithm 1 does not provide the exact algebraic solutions u';’* and zg’* to (13) but instead uses an inexact
algebraic solver. However, the following result from [28] applies to the primal and the dual problem alike and
shows that these inexact Zarantonello iterations remain contractions except for the final iterate on each mesh
(see also [50] for an extended version).
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Lemma 3 (contraction of inexact Zarantonello iteration [28, Lemma 5.1]). Choose any damping parameter 0 <
8 < 8* = 2a/L* to ensure the contraction (14) of the Zarantonello iteration and

Gaig *
- q* )1 —qy) a A3
0< Ay, < Gsym 998 cuch that 0 < Gsym = w <l 27)
g 44 -2 5 2%
alg

Then, for arbitrary Agmy, > 0 and any 0 < Ay, < /l* we have for all (¢,m,n) € Q" with1 < m < m[¢] and all
&, u,v) € Q*withl< u < ﬁ[f] that

-1, -1,
M =2 < g Ml =2, Wz) = 2250 < Qg M2 — 257, 28)
Moreover, for m = m[£] resp. u = ul¢], it holds that
* MRy o ok x _ o mln q£lg A A m.n
(179 u, Il < Qoym luy — I+ 1= Qg alg Asym Me\ U, 7 )5
(29)
/8% u=1lv 24, /8%
Izt =220 < @ 2 =72 W+ — e g Jm & (7).

The subsequent lemma gathers a posteriori error estimates following directly from the corresponding con-
traction of the symmetrization, algebraic solver, and the inexact Zarantonello iteration. Further details of the
elementary proof are omitted.

Lemma 4 (stability and a posteriori error control). For all (£, m,0) € Q" with m > 1, contraction (14) shows

-q; -1, -1,
el A N A Wy < A+ ) Mk —u . (30)
sym
Analogously, for all (¢, m,n) € Q" with n > 1, the contraction (15) ensures
—_ q _ _
—f‘g M = < " = < A+ ) Ml — ). (3D
alg
Forall(#,m,n) € Q" with1 < m < m[¢], the contraction (28) leads to
—q , , 1,
I gk — D = TS A Q) e — ) (32)
sym

The analogous estimates are also valid for the dual variable.

Finally, the following lemma shows that in the case of finitely many mesh-refinement steps, the Zarantonello
iteration does not terminate and one of the two exact continuous solutions is already the discrete solution to (10).

Lemma 5 (case of finite mesh-refinement steps). Suppose that the inexact Zarantonello iteration satisfies con-
traction (28) and that n and { satisfy (A1)—-(A3). If ¢ < oo, then k[£] = oo and nf( > = 0 (so that u* = u7) or

& (z;) = 0 (so that z* = z7).
Proof. By Lemma 2, we have j[£, k] < 00.If £ < o0, then k[£] = oo and, hence,

11£< ) g I =T Y me N 33)

or

& () <agh Wt 27 Ve, (34)

sym
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If (33) holds, then the inexact Zarantonello iterates u?’ﬂ are convergent with limit u* and we obtain by stability
(A1) that (AD B @3) in Moo
me () < (™) + Cuay Mt = WS Mty — ) 0.

This proves that , (u;ﬁ) = 0, and we infer from reliability (A3) that u} = u*. The same arguments apply to z
in the case of (34). ]

O

Due to the contraction of the inexact Zarantonello iteration (28), we have the following a posteriori error
estimates for the final iterates.

Lemma 6 (stability of final iterates). Suppose that the inexact Zarantonello iteration satisfies (28). Then, for all
(Z+1,m,n) e Q and (¢ +1, u,v) € Q7 there holds

m,n v M,V
lu>,, — m U< M’y —w =l lzy,, — m ||I Nz}, =z, (35

m,n 14 H,V
IIIu;J;1 ”III 4y, —w |||Z,J,;+1 Z* "Il <4 Nz, =2z, Il (36)

m,n m 1,n My v —Lx
lu, = — M <4 lluy — M, Nz~ —z; ||| 4llzy —z; . (37
. . 0,

Proof. For (¢ +1,m,n) € Q% nested iteration u ffl = u% 2 together with the contraction of the inexact Zaran-

tonello iteration (28) and m[# + 1] > 1 prove (35) by

m[f+1] 1

I, — 2 < g

m,n
(17 [ T P

1T f+1 ll < ¢+

Let (£, m,n) € Q". Contraction of the algebraic solver (15), the fact n[#, m] > 1, and nested iteration u%’o =

m—1,n

u, - show that

m,x n[/ m] m,x m,0 m,x m-1,n
I — crlg ey ™ = U2l < Qg My ™ =z ™). (38)

This and with the contraction of the exact Zarantonello iteration (14) result in

m,n m,x m, % m,n
Moy — w7 <y — w7+ ™ = w
:ﬁ) 1 * m,x * m-1n
<A+ qug) M = w2+ qag Nl — w2 (39)
a4 m -1n m -1n
<A+ Qugdym + ag | Nluy — Il < 3 lluy Il
Consequently, the combination of (39) and (35) validates (36) via
m,n m,n
M — ™ I < ey, — o+ ey, — )
n m.n m.n
3 My, — m A+ ey, — i< < My, —w, "l
The estimate (39) also implies (37), because
m,n m—1,n m,n m —1,n m -1n
M= — w7l < ey —w I+l — *|||<4|IIu -
The same arguments prove the estimates for the dual variable and conclude the proof. O

The subsequent lemma states the estimator reduction for only one of the two error estimators. This poses
a significant challenge in the proof of full linear convergence due to the required contraction of the nonlinear
quasi-error product in Lemma 8 below.
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Lemma 7 (estimator reduction and stability). Define the constant 0 < q(0): = [1 -(1- qre 2 9] Y2 <1 and sup-
pose that the estimators n and { satisfy (A1)-(A2). If the primal error estimator satisfies the Dorfler criterion, i.e.,
M; = M; C M, in Algorithm 1(11I), then

nf+l(u§f1) < q6) nf< ) +4 Cygp IS, — U2 YV +1,m,n) € QY
i (40)
g,m( M) gf(r ) +4 Cyap llZ5, — 2271 V(& +1pu.y) € QL
If the dual error estimator satisfies the Dérfler criterion, i.e., M% = M2 C M., in Algorithm 1(IID), then
¢ ¢ 4 g
Hen(8) < (%) +4 o Mz~ VEHLMD E QY
o (41)
g,,H( m) Q0 (r ) 4 Cyp 28 — 227 YO+ p,v) € QL
Proof. For (¢ +1,0,0) € QY stabhility (A1) and reduction (A2) yield that
mn\? _ L omn\? Lomn\?
nf+1(uf ) = nf+1<Tt’+1 NTyu, ) + ”lf+1<Tf+1\Tfa u, )
2 2
<TG )+ g e (TAT el @)

2 2
= ”If(ug’ﬁ) -- q?ed) ”f(TK\Tfﬂ; u?’ﬂ> .
The Dérfler marking in Algorithm 1(III) for the primal error estimator # and M, C 7,\7,,, prove the contrac-
tion in (40) , ,
Nes1 (u?’ﬂ) <y < ) ~A=q)n <Mf; ”%’7> <q0?n, <u* 7) . (43)
For (¢ +1,m,n) € QY this and (36) lead to

(A1)
m.n m.n m.n m.n
77f+1<u;+1) < ”K+1<u,f ) +C stab "lutq_l u,f "l

43)
<qO) n, (W™ ) + oy M5 =21

(36) < m.n

<q(O) ne (W3") +4 Cyap ek

m.n
” —u, "l

7+1

For (£ + 1, u, v) € Q% we argue analogously to (42) in order to obtain that{,, (zf’x> <¢é, ( § ) Together with
(36), it follows that

@1 36)
py Hy Hy Hy " Ay
Cf+1< ,5)+1> < §f+1< ) + Cstan |||Zf+1 z; <&, (Zf > +4 Coan 2, — 2, Il

The proof holds verbatim in the case of Dérfler marking for the dual error estimator, albeit with reversed roles.
This concludes the proof. O

5 Full linear convergence

This section presents full linear convergence of Algorithm 1 as the first main result of this work. Recall the goal-
error estimate from (17) motivating the product structure of the respective primal and dual error components.
Thus, we define the quasi-errors

H™: = fluf — ™[] + ™ = u™ )+ 1, (™) Y (omen) € QY (44a)
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8= llzy —Z5V N+ |||z;’* -2+ ¢ (22) Y (¢, u,v) € Q. (44b)
The quasi-errors naturally extend to the full index set (¢, k, j) € Q by

-

e JHE if (¢,k,0) € Q" but (¢, k. ) & Q“,
Ji_
T e if (¢, k,0) & 0",
( 45)
kv . :
Zl;’jj = Zf if (, k, 0) e Qz but (f’ k’ ]) ¢ Qz’
" if (¢,k,0) & Q".

The following theorem asserts full linear convergence of the quasi-error product.

Theorem 1 (full linear convergence). Suppose that the estimators n and { satisfy (A1)—(A3) and (QM) and sup-
pose (A4). Recall /li:‘lg and gy, from Lemma 3. With the constant q(0) from Lemma 7 and q: = max{q(0)"/%, 1+
q:ym)/z} <1, let

_ 0=qqy (q- q;;m) a-9
B 10 g5 Cotan '
Then, for arbitrary marking parameter 0 < 6 <1 and any solver parameters Ag;, >0 and 0 < A;, < 4

0< A™:

(46)

*

alg
With Agm Aag < A%, Algorithm 1 guarantees full linear convergence: There exist constants Cy, > 1 and
0 < gy, < 1 such that the quasi-error product satisfies, for all (¢, k, j),(¢',k',j") € Q with |£', k', | < |¢,k, ]|

kj ok.j £k jl=1E" K | gk " ok
HY 78 < ¢y g 15yl @7
The constants Clin and qlin depend Only on Cstah’ Crel’ Cmon) Corth’ CCéa) 9’ qred’ qsym’ q;;m’ qalg’ Asym’ and Aalg'

Three lemmas are required to prove Theorem 1. The characterization of R-linear convergence from [33,
Lemma 5 and 10] is the primary tool for the proof of Theorem 1; see (70) below. The proof of Theorem 1 departs
with the contraction of the quasi-error for the final iterates of the inexact Zarantonello loop up to a remainder
on the mesh level #. To this end, we define the simplified weighted quasi-error

Hei= [l =& +yn (B8] 2= [z =250 +7 ¢ (£7)] Vekpeo, s

where y > 0 is a free parameter chosen in (51) below. This quasi-error quantity satisfies contraction up to a
tail-summable remainder due to estimator reduction (40), (41).

Lemma 8 (contraction in mesh level up to tail-summable remainder). Under the assumptions of Theorem 1,
there exists 0 < q < 1 such that the quasi-error product H, Z, from (48) satisfies contraction up to a remainder
R/ > 0)

Hop1Zpn <qH, Z, +qR, V(Z+1LEk )EQ. (49)
The remainder R, satisfies
+M
RoyySH,Z, and ) R, SM+DTH,ZL V£,MEN, withe +M < £. (50)
£'=¢

Proof. The proof consists of four steps.

Step 1 (choice of constants). Recall the constants 0 < q() < 1 from Lemma 7 and A* >0and0<q <1
defined in the statement of Theorem 1 and define the constants
2 (Ialg A

A1, 0<qy ;=max{q;;m +4C,, Cly, D) 7, qOCQ, ,1)}.
—Qag ¥

Cly,):=1+ 1
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Elementary calculations show that the choice of

_q(q—ad,)
= M 1 (51
4 Cstab
ensures q:ym Cly,)+4Cyy, v Cly, A <laswellas, forall 0 < 4 < A%,
qalg ﬂ 1- 6 1 1
Cy,A)=1+ —t=zg —. (52)
—Qug ¥ qa q qOv

Consequently, we have q(0)C(y, )* < 1and thus 0 < ¢/,.:= C(y, 4) g, < 1and g, <1

Step 2 (contraction of H, and Z,). Abbreviate A:= A, A, Recall that marking in Algorithm 1(II)
ensures that the estimate (40) or (41) hold. If (40) is satisfied, the quasi-contraction of the inexact Zarantonello
iteration (29) for the final iterate, the stability estimate (35), and the estimator reduction (40) lead, for all
(Z+1,k,j) e’ to

(29)
Hpan < Qo 07 = 20 4+ €O 2) 7 s (121

(35 m,n mn
<@ W7 =12+ COr, 2) 7 s (55

(53)
(2)(612;@ +4 Cstab C(y, /U }’) IIIuf+1 u77"| + q(@) C(}/’ /1) 4 ’1{( ?")
<o [y =2+ 7 (120
The same arguments yield, for all (£ + 1, M, V) € Q7
1 < G N2 = 2y W+ €O 2) 7 Ca(222)
Sz~ 2N+ Dy (222 (54)
LD [ M2ty — 225 W47 £ (7))
For 0 < gy, < ql,, = C(y, A) qoy < 1, the product of (53) and (54) reads
Hpin Zpan < OO A Qe [y =20+ 7 e (20| [ = 2250+ £ (2] -

= @ [y = Wy ()] (W22 = 220+ 6 (2.

If (41) is satisfied, we obtain the same estimate with reversed roles in the derivation.

Step 3 (quasi-monotonicity of H, and Z,). The Céa estimate (11), nestedness of the discrete spaces, reli-
ability (A3), quasi-monotonicity (QM), stability (A1), and the definition (48) prove, for all # < ¢’ < #”" < £ with
(¢,m,n) € Q" and (¢, u, v) € Q% that

QM) (A1)

, 48)

s —w st — s s (w2) S ) S (u2%) 4 r =20 S, (562)
(1) a3 QW) @ wy (@8)

lz5, = 2 s hz* =22 S ¢ (7)) S Co(2) S (2 + 2k = 25 0=z, (56b)

where the hidden constants depend only on y %, Cegsy Cotaps Crels a0d C

rel> mon*
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Similarly to (53), the inexact Zarantonello contraction (29), stability (A1), and the stability estimate (36) yield
for < ¢’ < ¢ and A = A A

sym “‘alg»
= = * qalg m n
Mt — III qsym e — T +2 A, ( " >
Qalg
(28) [£1-1 Qa
< qsym q:;,m IIIu; |||_|_21 alg /lﬂf( §ﬂ>
qalg
A1, @) q -
< G M =+ 2= Ay (W27 4+ 2 A =
1- Qayg 1-—
P Qa Ga
< (qSym+8Cstab i ﬂ) |||u —u —"|+2 alg in ny 1( mﬂ)
qalg qal
(57)
< +10C,,, - Jai x _mn
B qsym stab 1-— q ”luf'—l uf,_l I”
qa q Gag
S
(56a) q 1 ’
alg
qa
+<qsym +2 1 agl A Chon [4 Coap 1+ Cega) Coo + 1]) ﬂg(u;).
alg
The choice of A < A* with A* from (46) ensures
0 Qalg
<= qsym +10 Cstab 1= @ A<l (58)
alg

With C:=

= Qo +2; qa‘g A Crnon [4 Ctap (1 + Cesa) Crer + 1], @ successive application of (57) and the geometric

series shows

= L0 *
My — zf’+M|" q [y uf+M M+ € ()

(57)

M-1
<q" lluf —u ")+ (c > qf) ne () (59)
j=0

(56a)
Sl =l +n,(u}) SH, VZ,MEN, with +M < Z.

Hence, we have quasi-monotonicity of the quasi-error

~ * m.n m.n n
Hf+M - |||uf+M - uf+M|" + nf+M<uf+M) - |"uf+M f+M"| + r]f+M( f+M)

(56a) 59 . (60a)
< |||ll;+M u;+*M||| +H,SH, V¢, MeN, with/+M</?.
The same argument proves
Loy SZ, VO, MeEN, withe+M<Z. (60b)

Step 4 (contraction of H,Z, up to tail-summable remainder). Define

v Hy
Rei= Mty =il [z =220+ Nz — 22+ v & (27)]

m,n
1zt = 22 gt =+ Mty =+ ().
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The contraction (55) proves the quasi-contraction (49) via

s e <l W =20 7 m (22| B2y =250 (227
<l [Mf =W Wty =+ (1)
x [zt =220+ izt =z +r & (277
<Gy He 2, + q Ry

The remainder term R, can be estimated via (56) and the Young inequality by

(56)

RS (M) —uil Z, + lizg, — 22l Hf) S,y —wrl* Z3 + Nz}, — 22 1P He. (61)

Thus, the quasi-monotonicity (60) verifies

(60)
Rysyy SHysy Zpoy SH, Z, VE,MEN withZ + M < £.

Quasi-orthogonality (A4), reliability (A3), and the estimates (56) imply, for all #, M € Ny withZ + M < ¢,

M (A4) (A3) ,(562)
2 W =S O+ 0 B~ S O+ 07 (1 P S M+ H
f!
(62)
‘+M (A4 ,(56b)

)
Dozl —Z5 IR S M+ |z — 2 |||2<(M+1)”¢f( 5 S M+ 2
'=¢

Using (61), the quasi-monotonicity (60), and (62), we conclude the proof of (50), forall#,M € NywithZ + M < ¢,

M () CAM +M
2 72 2 112
ZRK,N 3o, —usiPzs + Yz, —Z5 P H
'=¢ =t
(60) +M +M

(62)
2 * 2 2 * 2 1-6 112 72
S Y e, —u P+ Y 2k, — 25 P S (M + 1) H Z2.
'=¢ '=¢
O

The tail-summability in # provides the basis for the proof of tail-summability on the mesh level # together with
the Zarantonello symmetrization index k for the final iterates of the algebraic solver. The main ingredients in
the proof of tail-summability in (¢, k) are Lemma 8 and the following quasi-contraction in the symmetrization
index k.

Lemma 9 (quasi-contraction of inexact Zarantonello symmetrization). There holds

g

K Jd ey J -y . :
B 2! S ¢k H 2 vk j) e @ witho < k<k <kif, (63)
0j 0, .
H,"2," SH, 12, V(£,0,00€Q with ¢ >1. (64)

Proof. First, we note that the a posteriori error control (31) and the stopping criteria of the algebraic solver (19)
and of the symmetrization (20) lead, for (£, m, n) € Q% to

m,x m,n mn omn- m,n m,n m,n
n may @ mn @ mn n mo @ mny
"| uf - ubﬁ ”l ~ "luf f "l ’1/ £ + |||ubﬁ - u "l ~ r]f 14 ~ 7
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k.j . .
Since the two notions of quasi-errors H, and H;l only differ by the middle term |||u?’* - uf’ﬂ [l and the fixed
constant factor 0 < y < 1, this and the analogous estimate for the dual variable show

k.j

k,j .
H,<H’$H, 2,<2,°57, Y(kj)eQ. (65)

For 0 < k < k' < m[¢] < k[¢] (i.e., the primal iteration stops earlier than the dual iteration), the validity of
the stopping criterion (19) for the algebraic solver and the failure of criterion (20) for the inexact Zarantonello
symmetrization prove that

(31
k'.,n kK'.,n k'.n k' ,n—1 k'.n
Hy Sl =+ g = a7+ ()

19)

k -1,n k -1,n k',n
Sl = a7 ™ = o ()
(66)
(20)
n K'=1n
Sy - u I+ e s
32) k
<Mk =) <qsymk It = IS gk o™
Moreover, for 0 < k < k' = m[#], stability (A1) and the estimate (37) verify
m,n (65) m,n m,n m-—1,n m-—1,n
R I +nf( D) Sl — B I 7 (12712
37 (66)
m-1n =i m— ln m[£]-1-k L k.n m[£]-k . k.n
S H + |" / - |" S H sym H{ = %m Hf :
For0 < k < ml¢] < k' < kI#], it follows H’; T=H" S q?yﬁfl‘k H,". Finally, for m[#] < k < k' < k[£], we have
/
HI; == Hmm = H;’E. Notice that the same argumentation holds for the dual quasi-error ZI;’! in the remaining

cases w1th H [£] < k[7] (i.e., the dual iteration stops earlier than the primal iteration).
Since k[¢] = m[#] or k[¢] = u[#] by definition, we obtain, for all (#, k', j) € Q with 0 < k < kK’ < k[#],
Kb o e—kfol s K o Wk okl .
H =3 qSy H ifkl/1=ml[7] or Z,°5q Z ifk[£] = pul?].

sym

K,j k.j K,j
Furthermore, there holds H, ! SH t,l andZ, - S Z Lin any case. This yields (63) via

H L7 <1l wer ith 0 < k < K < k[£]
14 14 ~ qsym B 91 E Q w1 =X =X A ’

where the hidden constant depends only on Cy,p,, Ay, ad gy,

Nested iteration u%ﬁ = ug’ﬂ and zf’_zl = zg’! and the estimates (56) yield, for all (#, 0,0) € Q with # > 0,

(56)
0.j (6 m.n k.j k.j (85)
Hy 2 — 2+ () < ek =+ 1 S+

70 k.j 9 k.j (65)
2Nz =2 (7)) <2k =2 N+ 2 S 7L + 2 27,

A multiplication of the two previous estimates proves (64). O

Finally, the quasi-contraction in (¢, k) from Lemma 9 together with a quasi-contraction in the algebraic
solver index j leads to tail-summability in (7, k, j).

Lemma 10 (quasi-contraction and stability by algebraic solver). There holds

k,j k,j 7= 11k.j 7k.j . . . . .
H) Z, Sqalg H' 7)) Y.k j)€eQ Wlth0<]<]’<1[f,k] (67)



18 === P.Bringmann et al.: Optimal complexity of GOAFEM DE GRUYTER

and, with the abbreviation (m —1),: = max{m — 1,0},

(u=D,.v

H™ <3H " and 7/° <37 V(£,m,0) € Q4. (¢, 4, 0) € Q% (68)
0.n 0% -, 0,0 _ 00 _ 0 . . mo _
Proof We recall that u =u,-=u, by definition and, hence, H , =H-=H,_. Nested iteration u =
m —
u, * implies that
-1, m—1,j
I — ' (qsym +1) fluf —u] I <2H, 7 V(£,m0) € Q"

Therewith, we derive (68).

The combination of a posteriori error control (30) for the exact Zarantonello iteration, for the algebraic
solver (31), and the failure of the stopping criterion (19) in Algorithm 1(Lb.ii) for the algebraic solver proves, for
0<j<j' <nlt,ml < jl£,ml,

m,j * L * m,j’ m,j’
P <l =0+ 2 g =+ ()

z
6o q* m-1j q* . .
<O -y |||+<2+ -5 )mu — N+ ()

1- sym 1 sym (69)
3D

.
S —u

1j m,j m] -1 (< m.j m,j—1
o M+l = Il +n,(u M, —uw,”

31 . .
ok m,j—1 J-n- ok m, m,
Sl —ul |||<q;lg P> =0 S oy 1.

ForO<j<nlg,ml<j RS j[Z, m], stability (A1) and contraction of the algebraic solver (15) verify that

m

. (15)
mj’ _ n * m,n—1 mn m,n—1 mx m,n—1 m,n
Hf] - Hf < |||uf - uf |" + "qu - uf "I + qalg |" uf - uf I” + ’7f<u,; >

@D -1 -1
S HP T+ @+ Cyp) ™ =

(2) mnn—1 mx < mn— 1<9 n[Z]1—j m]
S HM T 4 s B S g T HY

For n[¢,m] < j <j' < jl£,m], it holds that H;"’j = H"™ = H™'. Since j¢,K] = nl¢, Kl or jI£, k] = vI£, Kl w

have, for all (7, k,j’) € Qwith 0 < j <’ < jIZ, K],

HY s qf) 1Y itjle,k=nlek or 7 $ql) 2 it jie K = vie k.

Furthermore, we have H’;’j < H’;’j / and Z’;’j < Z’;’j l in any case. Hence, we obtain
HY 7 < qf THY 2 ek e Qwith0 < <)< jlz, K,
where the hidden constant depends only on q:ym, Asym> Qarg> Aalg> AN Cyap,- O

Ultimately, synthesizing the preceding lemmas yields tail-summability of the quasi-error product and thus
leads to the following proof of Theorem 1.

Proof of Theorem 1. The proof consists of four steps.

Step 1 (tail-summability in mesh level ). We apply the tail-summability criterion from [33, Lemma 5]
to the sequences a,:= H, Z, and b,: = q/,. R,. Therein, it is shown that R-linear convergence is equivalent to
tail-summability and that, for tail-summability, it is sufficient to guarantee
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£+M
Qg1 <qa,+by, Doy <Ca,, Y BESCGM+DTd VEMEN, (70)

Indeed, contraction up to a remainder from (49), the estimate of the remainder from (50), and the quasi-
monotonicity of H, and Z, from (60) validate the assumptions of the tail-summability criterion (70) and lead

to tail-summability
-1

Y HaZ,5H,Z, Y.k )EQ (71)
£'=¢+1 -
Step 2 (tail-summability in (¢, k)). For (7, k, j) € Q, the estimates (63), (64) and the geometric series prove
tail-summability

kel £ ki
Koj Kod Koj KoJ Kj KoJ
H,"Z,"= H,"Z,”+ Z Z H,"Z,
(GRS Sle) K =k+1 '=t+1 k'=|
BRSNS
©) -1 (72)
kj k.j 01 kj k.j
<SH,” 7, + Z H <H z, +2Hf,z,)/
=+l F=¢
0D kj (65)

SH,”Z,” +Hfo<H g

Step 3 (tail-summability in (2, k, j)). Finally, for all (¢, k, j) € Q, we observe that

Jlek kle) JI2K] ¢ ke Jle' K
K .j k,j k.j K.j K.j 4
HY, ZHZ+ZZHZ+ZZZH
('K ,jheQ j=j+1 K'=k+1 j'=0 =£+1 kK'=
127K J1>12 k.|
k2] ¢ klf)
<H 78+ 2 HO 280 + Z Z B0 250
=k+1 =£+1 kK'=
(68) K,j k’ i(72) i kj©7
SHYZY Y w(fz)7 <H’”Z’”+H ’z <H"’z’”
'K .jeg
1€ K j1>1¢.k,j
Step 4. Since the index set Q islinearly ordered with respect to the total step counter |-, -, -|, tail-summability
in Step 3 and the equivalence of tail-summability and R-linear convergence from [33, Lemma 10] conclude the
proof of (47) in Theorem 1. O

6 Optimal complexity of Algorithm 1

Full linear convergence (47) has a simple but crucial consequence. Using a geometric series argument, one can
prove that the cumulative computational cost up to a given level is bounded by the cost of the said level; see
[33, Corollary 14], where only the primal quasi-error H,’ *J has to be replaced by the quasi-error product Hk i Zk j
As a consequence, the convergence rates with respect to the number of degrees of freedom (defined as M (r) in
(73) below) and the rates with respect to the overall computational cost (cf. (26) and the discussion following the
statement of Algorithm 1) coincide.

Corollary 1 (rates = complexity [33, Corollary 14]). Suppose the assumptions of Theorem 1. For allr > 0, the out-
put (T;)sen, of Algorithm 1 satisfies
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r

M@):= sup (#7,)'HY 7 < sup > #7 | HYZY <Chp(M@) (73)
7.k, )EQ .k, )eQ ' K.j)eQ

12"k 11 k)|
with the constant C,og (r): = Cyy, /(1 — q}{l "y > 0.

While Theorem 1 only concerns R-linear convergence, a sufficiently small choice of the adaptivity parame-
ters 0, Ay, and 4., even guarantees the optimal convergence rate r = s + ¢ with respect to computational cost,
i.e., the overall computational time. Here, we suppose that the primal solution u* to (5) can be approximated
at rate s and the dual solution z* to (8) can be approximated at rate t. To formalize this idea, we introduce the
notion of approximation classes [3]-[5], [9]. For s, t > 0, define

* . — t : *
1= sup <(N+1) min 7, p)> Iz ||A,—1§161§0<(N+1) Tor:}gﬁiom(zopt)),

where 77,,,(-) and ¢, (+) denote the estimator values for the exact discrete solutions uOpt and zOpt on the unavail-
able optimal triangulations 7, € Ty(7). We stress that ||u*||/\$ and “Z*“At can equivalently be defined by

energy error plus data oscillations [8], [9].

Theorem 2 (optimal complexity). Suppose that the estimators n and ¢ satisfy (A1)-(A3*) and (QM) and suppose
quasi-orthogonality (A4). Recall A:lg from Lemma 3 and A* from (46) in Theorem 1. Define the constants

. -1 1 2 Qag *
PAES mm{l Coly Cab } <1 with Cogi= — o s, et Gm): o
=0+ Cztab C?el) - <L
Suppose that 0, Agy,, and A, are sufficiently small in the sense of
0 < Agg < /1:1g, 0 < Agym < Asym, Aalg Asym < A%,
OV + Agm/ A%, ) (75)
0 < O = Sym/* T <0* <1
Asym/ Ay
Then, Algorithm 1 guarantees, for all s, t > 0, that
s+t
sup Y #Ta| B 7 < Cop max{ It 124, HYO 700} (76)
.k, peQ @' K .j)eQ
S ININS]

The constant C,,; depends only on Cy,p, Crel, Carely Crmark Cmesh Ciine Giins #70, and s + t. In particular; there holds
optimal complexity of Algorithm 1.

The proof of Theorem 2 employs the following result from [50] providing estimator equivalence between
the (unavallable) estimators for the exact discrete solutions u* *,z; and the estimators at the computed approx-

imations u; *, Z; ’.
Lemma 11 (estimator equivalence [50, Lemma 15]). Recall the constants Asym, Calg > 0 from (74) and ’1:15; >0
from Lemma 3. Then, for all0 < 6 <1,0 < Ay, < /lalg, 0 < Agym < Ay, it holds that

sym’
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<1 — /lsym/ﬂ:ym) nf(u%’ﬂ> <n(ur) < (1 + ﬂsym//ls*m> W(u%’ﬂ) V (¢,m,n) € Q¥

(77
KV L4
(1 - zsym/z;ym) gf(z; ) <4 () < (1 + zsym/,lsym) (z; ) V(¢ 1.v) € Q.
Proof of Theorem 2. By Corollary 1, it suffices to prove that, for any s,t > 0,
sup (#7,)"™" HY 27 < max{ a2 1, B 20 . (78)

(Z,k,))EQ

Since the inequality becomes trivial if either [[u*|l5 = oo or [|z*|l4, = co, we may assume [[u*[l5_ [1z*[l4,
< 0. The proof consists of three steps.
Step 1. With 0 < Gpap = (0% + A /A% )P (1= Ay / A%,)7% < 0%, the validity of (A3*) for both estima-

sym sym
tors and [16, Lemma 14] guarantee the existence of sets R ,» C 7,» with 0 < ¢’ < ¢ such that

#Rfr < (”u*”As ”Z*”At)l/(s+t) [ Ny //) é,f’( f/)] 1/(S+t), (79a)

Gmark Hyr (u;,) < Hpr (Rfl, u;,) or Hmark Cf/ (Z;,) < gfr (Rfl, Z;, ) (79b)

For 0 < #/ < ¢, the estimator equivalence (77) in Lemma 11 leads to

(1 - Asym//ls’;m> Her (u%r’ﬁ> Sy (u;r)’ <1 - Asym/i:ym> gf’ (Zg/’!) < Cf’ (Z;/)
and consequently with (79a) to

—1/(s+1)

#R o S (I, 120" [ (7)€ (27)] (80)

Note that the stopping criteria (20) and (22) lead to

(20)

Uy 1y
Ho o = o0 4 (02 S (30), 20 M = 2500 £ (27 S0 (27

and with (64) to
; (64)

HL 2. SH, 7,3 nf,( ) o (zm“!). (81)

Hence, the combination of (80) and (81) reads

#R S (U™ lla, 112%11a, (82)

Yt [0 00 17Y/60
) [ 7'+ f’+1] ’

Step 2. Recall from [29, Theorem 8] that the set R ., satisfies the Dorfler criterion from Algorithm 1 with the
same parameter 6. The quasi-minimality of M, implies

#My < Cpa #R, VO < (83)

with the constant C,;, > 1 from Algorithm 1.
Step 3. Let (¢, k, j) € Q. Full linear convergence (47) from Theorem 1 yields that

C e e\ —1/(s+0)@D) o\ —1/(s+D) -\ —1/(s+t)
K.j oK.j k,j ok.j 1/s\[£.k.jl—1£ K .f | ( k,J)
X (W) s ) 2 ) s(m'z (8)
' K.j)eo ' K.j)eQ
S INIA S S INIA S|
NVB refinement satisfies the mesh-closure estimate [9, Eq. (2.9)] reading,
-1
HT, = #T) < Cesn ), #M, V£ 21, (85)

¢'=0
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where C ., > 1 depends only on 7;. Thus, for (¢, k, j) € Q, we have by the mesh-closure estimate (85), quasi-
optimality of Dérfler marking (83), and the result (84) that

@) 71 @371 (82) £-1 » o —1/(s+D
1/(s+8) 0,j 0,j
BT, —#T, S 3 #Ma S 3 #R S (I, 1270,)7 Y (1,4, 2,7,

'+ T+
£'=0 £'=0 £'=0

1/(s+0) K ok —1/(s+t)
< (I lla, 12%11,) > (Hf,’ zf/)

'K jheQ
BRSNS

%) S 14D
1/(s+0) k,j -k,
S (el N2*0,) 7 (1 207)

Rearranging the terms and noting that 1 < #7, — #7; implies #7, — #7, + 1 < 2 #7, — #7,), we obtain, for £ >
0, that o
HT, — #T, + D H 25 S [, 112% - (86a)

Moreover, full linear convergence (47) proves that
#T, — #7, + D HY 70 = By 787 S W) Z29°. (86b)
We recall from [35, Lemma 22] that, for all 7, € T, it holds
HT, —#Ty + 1< #T, < H#HTy #T, — #7 + 1). 87

This shows, for all (¢, k, j) € Q,

. (87 . .(86)
k k. k k
G Y 28T S @7, — 7+ D7 HE 2 S max{ ¥, 121, 2° |

and concludes the proof of (78). O

7 Numerical examples

In this section, we present numerical experiments using the open source software package MooAFEM [51].! In the
following, Steps (I) and (II) of Algorithm 1 employ the optimal hp-robust local multigrid method from [32] as an
algebraic solver. If not explicitly stated otherwise, we choose the parameters 6 = 0.5, 6 = 0.5, Ay, = Ay = 0.7
in Algorithm 1 throughout the numerical experiments.

7.1 Singularity in the goal functional

The first model problem is a nonsymmetric variant of the benchmark problem from [29, Section 4.1] with a
singularity only in the goal functional. On the unit square Q = (0, 1)*> C R?, we consider

—Au*+x-Vu*+u*=f inQ subjectto u*=0 on 0%, (88)
where the right-hand side is chosen such that the exact solution u* reads

ur(x) =x; % 1—x) A—Xx,).

1 All experiments presented in this paper are reproducible with the openly available software package under https://www.tuwien
.at/mg/asc/praetorius/software/mooafem.


https://www.tuwien.at/mg/asc/praetorius/software/mooafem
https://www.tuwien.at/mg/asc/praetorius/software/mooafem
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Consider g = 0 and g = y (1,0)" in the quantity of interest

11

960 with K: = conv{(1/2,1),1,1/2),1,D}.

Gu*):= /0X1u*dx=
K

Figure 2 (left) displays a mesh generated by Algorithm 1 and the support K of g. The error estimator captures
and resolves the two point singularities induced by G.

7.2 Geometric singularity and strong convection

The second benchmark problem investigates Q = (=1, 1)?\conv{(0, 0), (=1, 0), (=1, —1)} C R? with the Dirich-
let boundary I', = conv{(—1,0),(0,0)} U conv{(0,0),(—1,—1)} and Neumann boundary I'y = 0Q \I'p; see
Figure 2 (right) for a visualization of the geometry. We consider

—Au* +(5,5"-Vu*=1 inQ subjectto u* =0 onI, and Vu*-n=0 onT}. (89)

Consider g = 0 and g = x5 (1,17 in the quantity of interest

Gw*) = /()Xlu* +0, u*dx with §:=(-1/2,1/2°n Q.
S

T T T T T
1l 4 1rg P ]
N
X
20N
XN
D)
]
X
0.5 |- 4 ofF g |
Figure 2: Left: Mesh T, for the problem (88) generated by
T Algorithm 1 with #7;5 = 2315. Right: Mesh T34 for the problem
ol | ;g%sggggggg (89) with #7,5 = 2130, where the Dirichlet boundary part I,
! ! ! -1 | L] is marked by red solid lines and the Neumann boundary part
0 0.5 1 -1 0 I'), by green dashed lines.

100 T 100 T T T — T
1073 = 10-3 | i
1076 - 2 1076 - 2

3 8
£ 107 £ 1070 .
() ()
10712 N 10712 | _
estimator product goal error NN
_ AN
P \&\O\\?" —0— —— p=1
10-15 | —.— = p= ~ 10-15 |- |
5 N —— —— p=2
p= —— p=3
10_13 R ETT B AR R B R TTT AR RTTT BN R TTI BTSRRI BT | 1 18 lrul Lol Ll R Ll
102 1w0%  10* 100 108 10" 108 107t 100 10t 102 103

le’,k’,j’KIl,k,jI dim X cumulative time [s]

Figure 3: Convergence history plot of estimator product 7, (ug'ﬂ) ¢ (z%%) indicated by bullets and goal error from (17) indicated by
diamonds with respect to the cumulative computational work (left) and with respect to the cumulative computational time (right) for the
benchmark problem (88).
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The exact solution u* is not known analytically in this case so that we do not have access to the exact
* mn K.V

goal error |Gu™) —G,(u, ", z,

configuration, i.e., the support S of g in blue, the Dirichlet boundary in red solid lines, and the Neumann

boundary in green dashed lines.

)l. Figure 2 (right) shows a mesh generated by Algorithm 1 as well as the

7.2.1 Optimality of Algorithm 1

Figure 3 displays the estimator product nf<u%’ﬂ> ¢, (z2%) and the goal error |G(u*) — Gf(u?’ﬂ,zg’!)l from
(17) for the problem (88), due to higher-order approximations, we only show results prior to machine preci-
sion. For all investigated polynomial degrees p, the goal error and the estimator product are indeed equivalent.
Algorithm 1 achieves the optimal rate —p with respect to the cumulative computational work and with respect
to the cumulative computational time in Figure 3 for problem (88) and Figure 4 for problem (89). Figure 5
shows that the proposed algorithm indeed achieves linear complexity and is substantially faster than the mar.as

0L o o e e A 10! T T T T =
1072 | 10-2 | i
1077 1 1077 - ]
. =
2 2
5} 3
1075k . 108 | i
estimator product
10~ 1 —o— p=1 ~ 10~ estimator product -1
—e— p=2 —0— p=1
—— p=3 &= p=2 R
1014 |- I 10~ | —— p=3 R
Ll Ll Ll Ll Ll Ll TR 1l Lol Lol Lol Lol
103 104 10° 106 107 108 109 1071 100 10t 102 103
Z\E' W<k dim X, cumulative time [s]

Figure 4: Convergence history plot of estimator product 7, (uf’ﬂ) £ (22%) with respect to the cumulative computational cost (left) and
the cumulative computational time (right) for the benchmark problem (89).

103

T T
Ll

102

T T T
Ll

10t

T T
Ll

cumulative time [s]

100

T T T
Ll

a direct multigrid
10—t = —— p=1
—— —— p=3

T
Ll

Figure 5: Comparison of cumulative time of the local multi-
grid solver with the MATLAB built-in direct solver mldivide with
respect to the cumulative computational cost for the bench-
mark problem (89).
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built-in direct solver as the slightly larger slope of the latter indicates super-linear complexity. Table 2 displays

the weighted costs
W)5()( B e

@' K.j)EQ
I SISNS]

of Algorithm 1 for polynomial degree p = 2 with time(#’,k’,j’) in seconds and highlights the corresponding
optimal choices of the parameters. This justifies the selection of § = 0.5 together with larger symmetrization
parameter Ay, = 0.7, and algebraic solver parameter A,,, = 0.7. The table for the second benchmark problem
from (89) leads to similar results and is therefore omitted. While the choice of the damping parameter 0 < 6 <
2a/L* in (13) is crucial in the case of large convection to guarantee the contraction property (14), the adaptivity
parameters appear more robust with respect to other coefficients in (4).

Table 2: Optimal selection of parameters with respect to the cumulative computational costs (overall computation time in seconds) for
the experiment (88) with fixed polynomial degree p = 2 and 6 = 0.5. For comparison, the table displays the value of the weighted costs
from (90) (in 10~7) with overall stopping criterion 7, ﬁ'ﬂ) ¢, ug’! <5107 for various choices of Ay, 4,4, and 6. For each
6-block, we mark the row-wise optimal values in blue, the column-wise optimal values in yellow, and in green if both optimal values
coincide.

x10~7 0 =01 60=03 0 =05
Aaig! Asym 0.1 0.3 0.5 0.7 09 01 0.3 0.5 0.7 0.9 01 0.3 0.5 0.7 0.9
0.1 387 334 296 221 244 102 512 490 483 474 618 448 466 489 525
0.3 36.2 24.7 24.5 21.8 23.1 7.28 4,98 3.53 3.27 3.26 418 4.54 4.79 5.01 513
0.5 243 24.7 24.7 23.4 23.6 5.84 3.64 3.39 3.27 3.37 3.41 2.7 2.52 2.49 2.68
0.7 24.1 24.8 23.8 22.2 24.0 4.95 3.59 3.30 3.25 3.42 274 2.35 2.41 2.24 2.46
0.9 23.5 24.6 22.3 24.4 23.8 4.90 3.58 3.29 3.26 3.41 2.81 2.30 243 2.27 2.4
6=07 6=0.38 6=09
0.1 582 518 543 540 593 853 6.10 7.31 6.67 777 1.6 8.86 912 987 997
0.3 4.65 4.86 5.35 5.98 6.67 6.27 5.92 7.20 7.46 7.57 8.62 8.40 9.27 10.6 11.5
0.5 3.69 2.89 2.88 2.95 3.13 5.09 3.61 3.66 3.63 3.66 7.27 5.32 4.84 4.93 5.12
0.7 2.99 2.56 2.64 2.62 2.89 3.75 3.12 3.23 3.03 3.1 4.58 3.95 4.04 4.43 4.79
0.9 2.89 2.49 2.65 2.66 2.89 3.79 3.1 3.19 3.13 3.27 467 4.06 4.16 4.35 4.61
20 LR < - T+ ® Q0 .
primal
() p=1
2 36’ O @R @000 000 O - ® p=3
,% g dual
g g 5 ® 0@ ® ¢ p=l
3 s ¢ =3
E L‘f 4+ ¢ ® @300 00 -
2 2
g g
! Z 3 (5] 000 }
= =
2 2
had = 20 0 @40 000 -1
1 000 000R000D OO0 ODDOOO 1 o 000 006000 -
ol L1l L1l L1l L1l L1l L1l vl L1l L aaunl L1l Ll L1l L1l
102 103 10* 10° 106 107 108 102 103 10* 10° 10° 107 108
Djer g1t g M A 2ok 1<l g) i Xe

Figure 6: Number of total solver steps |£,m,n| — |£,0,0]| resp. |Z,E,g| —1#,0,0] on each mesh level for the benchmark problems
(88) (left) and (89) (right).
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Finally, in Figure 6, we display the number of total solver steps |£,m,n| — |£,0,0]| resp. |Z, u,v| — |£,0, 0|
on each mesh level for both benchmark problems (88) and (89). The plots show that the two iterations often stop
after the same number of steps.

8 Summary

In this work, we developed a cost-optimal goal-oriented adaptive finite element method for the efficient com-
putation of the quantity of interest G(u*) with solution u* to the general second-order linear elliptic partial
differential equation (4). Since the current analysis of iterative algebraic solvers for nonsymmetric systems with
optimal preconditioner only leads to contraction of the residual in a vector norm, we proposed a nested itera-
tive solver for the primal and dual problem in parallel. The strategy consists of the Zarantonello iteration (13) as
an outer solver loop and an optimal multigrid solver for the arising SPD system as an innermost solver loop. In
recent own work [33], we have shown that the link between convergence rates with respect to the degrees of free-
dom and the total computational cost is full linear convergence of the quasi-error H';’j Z;‘j .Tothisend, Theorem 1
shows that the proposed adaptive algorithm contracts (up to a multiplicative constant) the quasi-error product
Hl;’j Z’;’j in every step, independently of the algorithmic decision to employ mesh refinement, symmetrization, or
the algebraic solver. A particular problem in the analysis is that the nested iterative solver procedure only guar-
antees contraction as long as 1 < k < k[#], whereas contraction for the final iterate is only guaranteed up to an
estimator term (cf. (29)). Another difficulty arises from the nonsymmetric setting with a quasi-Pythagorean esti-
mate (18) replacing the usual Pythagorean estimate. Therefore, the proof of Theorem 1 employs the equivalence
of R-linear convergence and tail-summability of the quasi-error product Hiﬁ’j Zl;’j and leads to mild restriction
on the product Ay, 4, of the involved solver stopping parameters. The key ingredients to cost-optimality are
an adaptive mesh-refinement algorithm with optimal convergence rate with respect to the number of degrees
of freedom (under the assumption of exact solution) and an algebraic solver for the linear system of equations
that is contractive with respect to the underlying Sobolev norm. In this regard, the analysis in this paper may
guide the generalization to conforming discretizations of vector-valued elliptic problems. Finally, the numerical
experiments in Section 7 suggest that the proposed strategy allows for large stopping parameter in practice and
that a larger choice is beneficial in terms of total runtime. Admittedly, the development of an optimal solver for
the nonsymmetric problem (10) would allow to prove full linear convergence with an arbitrary selection of the
stopping parameter.
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