
Solving Multi-Mode
Resource-Constrained

Multi-Project Scheduling
Problems by Hybrid Algorithms

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Arben Ahmeti
Registration Number 1228512

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

The dissertation has been reviewed by:

Luca Di Gaspero Frédéric Lardeux

Vienna, 11th February, 2022
Arben Ahmeti

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Arben Ahmeti

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. Februar 2022
Arben Ahmeti

iii





I dedikohet familjes sime, veçanërisht kujtimit për
nënën time të dashur, miqve të mi, veçanërisht
atyre që ranë në fushën e nderit për të jetuar
në përjetësi, Rifat Mëziu, Malush Ahmeti, Zenel
Mëziu, Agim Mëziu...

Dedicated to my family, especially to the loving
memory of my Mum, my friends, especially tho-
se who fell in the field of honor to live in eternity,
Rifat Mëziu, Malush Ahmeti, Zenel Mëziu, Agim
Mëziu...





Acknowledgements

First of all, I would like to thank my advisor Nysret Musliu for his continuous support in
completing this study. The fruitful discussions with him and his guidance and instructions
were motivating and crucial for my success. Working with him in writing papers has
boosted my confidence and made me want to contribute even more to science. I will
always be grateful for his support and kindness.

A very special thank you goes to my entire family who has supported me in every way.
Without their support, none of this would have been possible. Even in the moments
when I thought my world was upside down, I made it through with their support. I hope
and believe that my achievements will be a reward and satisfaction for them. I say to
Dea and Drion that I am now finished with my work. I thank you for your patience, your
love and your existence. You are the shining lights in my eyes.

A big thank you goes to Tony Wauters, assistant professor at KU Leuven, for his support
in running our algorithm in the MISTA 2013 benchmark environment and providing
the right feedback. A big thank you also goes to Martin Josef Geiger, professor at
Helmut Schmidt University, for his support with important materials on the MISTA 2013
competition. I owe a big thank you to my colleagues and friends for their feedback and
support.

The financial support from the Austrian Federal Ministry of Digital and Economic Affairs,
the National Foundation for Research, Technology and Development and the Christian
Doppler Research Society deserve my sincere thanks at this point.

vii





Kurzfassung

Das Projektplanungsproblem befasst sich mit der Planung der Aktivitäten eines Projekts
(oder mehrerer Projekte) unter verschiedenen Arten von Beschränkungen, hauptsächlich
knappe Ressourcen, Zeit und Vorrangbeschränkungen. Die Aufteilung knapper Ressourcen
auf die Projektaktivitäten unter Berücksichtigung aller Nebenbedingungen und der
Optimierung verschiedener Ziele ist ein äußerst schwieriges Problem. Selbst die klassischste
und einfachste Variante, das ressourcenbeschränkte Projektplanungsproblem (RCPSP),
gehört zur Klasse der NP-schweren Probleme. Projektplanungsprobleme treten in vielen
Bereichen der Industrie und in anderen Lebensbereichen auf. Daher waren sie schon
immer ein interessantes und wichtiges Thema für Forschung und Industrie.

Im Laufe der Jahrzehnte haben sich verschiedene Varianten von ressourcenbeschränkten
Projektplanungsproblemen herausgebildet, da unterschiedliche industrielle Anforderungen
modelliert werden müssen. Dementsprechend haben Forscher verschiedene Lösungsstrate-
gien vorgeschlagen, um diese Probleme anzugehen. Im Allgemeinen können wir einige der
wichtigsten Lösungsansätze als heuristisch, meta-heuristisch, hyper-heuristisch, hybride
und exakte Methoden kategorisieren. Obwohl Forscher hervorragende Lösungen für ver-
schiedene Varianten von Projektplanungsproblemen geliefert haben, sind die optimalen
Lösungen für viele Benchmark-Probleme noch unbekannt.

In dieser Arbeit stellen wir neue Lösungsansätze vor, darunter exakte, metaheuristische
und hybride Methoden für eines der komplexesten Projektplanungsprobleme, das res-
sourcenbeschränkte Multiprojektplanungsproblem (MRCMPSP). MRCMPSP stellt reale
Situationen genauer dar. Wir stellen mehrere neue Ideen zur Lösung des MRCMPSP vor,
darunter neue lokale Suchtechniken auf der Grundlage von Min-Conflicts-Algorithmus
und iterierter lokaler Suche, ein Constraint-Programmiermodell und hybride Methoden.
Unsere Lösungsmethoden wurden erfolgreich auf andere Varianten des Projektplanungs-
problems angewandt, wie das ressourcenbeschränkte Multi-Mode-Projektplanungsproblem
(MRCPSP) und das ressourcenbeschränkte Multi-Projektplanungsproblem (RCMPSP).
Darüber hinaus wurde unsere innovative meta-heuristische Methode, die auf Min-Conflicts-
Algorithmus und Tabu-Suche basiert, erfolgreich zur Lösung des Fahrzeugrouting- und
Schedulingproblems mit Lieferung und Installation von Maschinen eingesetzt, das kürzlich
von der EURO Working Group in Vehicle Routing and Logistics Optimization (VeRoLog)
und ORTEC eingeführt wurde.
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Unsere Methoden wurden auf bestehende Benchmark-Instanzen für mehrere Projekt-
planungsprobleme angewandt, darunter MRCMPSP, MRCPSP und RCMPSP. Die Er-
gebnisse zeigen, dass unsere hybriden Methoden, die Meta-Heuristiken und Constraint-
Programmierung verwenden, die Ergebnisse von State-of-the-Art-Methoden für diese Klas-
se von Problemen verbessern und viele neue obere Schranken für Benchmark-Instanzen
liefern.



Abstract

The project scheduling problem deals with scheduling the activities of a project (or
multiple projects) under various types of constraints, mainly scarce resources, time, and
precedence constraints. Allocating scarce resources among project activities, taking into
account all constraints and optimizing various objectives, is an extremely difficult problem.
Even the most classical and simplest variant, the resource-constrained project scheduling
problem (RCPSP), belongs to the class of NP-hard problems. Project scheduling problems
occur in many areas of industry and other real-world situations. Therefore, they have
always been an interesting and important topic for research and industry.

Over the decades, different variants of resource-constrained project scheduling problems
have emerged as different industrial requirements need to be modeled. Accordingly,
researchers have proposed various solution strategies to address these problems. In
general, we can categorize some of the main solution approaches as heuristic, meta-
heuristic, hyper-heuristic, hybrid and exact methods. Although researchers have provided
outstanding solutions for different variants of project scheduling problems, the optimal
solutions for many benchmark problems are still unknown.

In this thesis, we present new solution approaches, including exact, meta-heuristic, and
hybrid methods for one of the most generalized forms of the project scheduling problem,
the resource-constrained multi-project scheduling problem (MRCMPSP). MRCMPSP
is a more accurate representation of the real-world environment. We present several
new ideas for solving the MRCMPSP, including new local search techniques based on
min-conflicts and iterated local search, a constraint programming model, and hybrid
methods. Our solution methods have been successfully applied to other variants of
the project scheduling problem, such as the resource-constrained multi-mode project
scheduling problem (MRCPSP) and the resource-constrained multi-project scheduling
problem (RCMPSP). In addition, our innovative meta-heuristic method based on min-
conflicts and tabu search has been successfully applied to solve the vehicle routing and
scheduling problem with delivery and installation of machinery (DIM) recently introduced
by the EURO Working Group in Vehicle Routing and Logistics Optimization (VeRoLog)
and ORTEC.

Our methods were applied on existing benchmark instances for several project scheduling
problems, including MRCMPSP, MRCPSP, and RCMPSP. Computational results show
that our hybrid methods, which use meta-heuristics and constraint programming, improve
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the results of state-of-the-art methods for this class of problems and provide many new
upper bounds for benchmark instances.
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CHAPTER 1
Introduction

Scheduling problems represent a class of various combinatorial optimization problems
that are of great interest to research and industry. In particular, project scheduling
is a major representative of this type of problems. It is an important part of project
management in many industries and business areas. The project scheduling problem
occurs when resources are scarce while trying to achieve the objectives of the project.
Allocation of insufficient resources to competing project activities determines their start
and completion time. Most research to date has focused on scheduling activities of
the resource-constrained project scheduling problem (RCPSP), usually considering the
optimization of time objectives, i.e., minimizing project duration. In real situations, the
need to optimize different objectives simultaneously arises very often. Meanwhile, more
advanced types of problems related to project scheduling have been introduced.

Nowadays, in project management reality, the real-life environment is very complex. It
includes many projects running concurrently and competing for the same insufficient
resources while trying to achieve the project goals. Activities within projects can be
executed in one or more different modes, each mode having its own characteristics in terms
of allocated resources and time duration. The RCPSP was not sufficient to adequately
describe the various real-world situations. Therefore, additional extensions to the RCPSP
emerged. One of these extensions is the Multi-Mode Resource-Constrained Multiple
Projects Scheduling Problem (MRCMPSP, abbreviated MMRCMPSP by some authors).
It can be considered as a generalization of the RCPSP. MRCMPSP is the main topic of
this thesis. MRCMPSP includes several projects defined by a set of activities performed
in one or more different ways (modes), taking into account precedence constraints and
an insufficient amount of different types of resources. Assigning modes to activities
within a multiple project environment while considering hard and soft constraints makes
the MRCMPSP a challenging problem. Any feasible solution should satisfy all hard
constraints. The goal is to optimize the feasible solution(s) by an objective function
related to the soft constraints. Project scheduling problems are hard to solve, and even the
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1. Introduction

basic variant (RCPSP) belongs to the class of NP-hard optimization problems [BLK83].
In MRCMPSP, even just creating a feasible schedule is an NP-complete problem [KD97b]
if the activities require more than one non-renewable resource.

Despite the valuable research work on solving the MRCMPSP, it remains a very chal-
lenging problem. We could categorize some of the most important solution approaches
for MRCMPSP with different optimization objectives as heuristic (e.g. [BBZ+13]), meta-
heuristic (e.g. [Gei17, HHW21, KM20, KZV+16]), hyper-heuristic (e.g. [AKK+16]), and
few hybrid ([TSCS16, EAM+19, KREK19, LIMMS13]) and exact methods (e.g. [SH17],
[SV93]). However, the MRCMPSP still seems to be a challenging problem. Although
recent algorithms have found very good solutions to existing benchmark problems, opti-
mal solutions for many instances are still unknown. Therefore, the development of new
approaches in this context is important for progress in this area. Investigating new hybrid
approaches that combine meta-heuristics and exact methods is a promising direction for
solving MRCMPSP and other variants of project scheduling problems.

1.1 Aims of this thesis
First, we will investigate the design of an innovative meta-heuristic and new neighborhood
operators for MRCMPSP. In addition, we intend to build an exact model, more specifically
a constraint programming model, for the problem as the work progresses. To date, this
would be the first constraint programming model for the MRCMPSP (to the best of
our knowledge). Our final aim is to design a hybrid solution approach that combines
the meta-heuristics and the exact methods developed to this point. We will consult the
literature to design the architecture of the hybrid model.

In addition, we intend to validate and evaluate our methods for a wide range of project
scheduling problems, and not only for these. Benchmark problem instances and benchmark
execution conditions of state-of-the-art algorithms from the literature would be used for
proper evaluation and comparison of the new methods.

The main aims of this thesis are:

• To develop innovative meta-heuristic methods for MRCMPSP that explore the
neighborhood efficiently and perform well on large problem instances. We aim
to introduce new neighborhood operators and evaluate their performance. The
performance of meta-heuristic methods will be evaluated on a broader range of
problems and application domains.

• Development and evaluation of an exact method based on a constraint programming
model. Various search strategies and configurations will be investigated in this
context.

• Propose new hybrid solution approaches combining meta-heuristic techniques with
constraint programming. In addition, different architectures of hybrid models from
the literature will be experimented with.
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1.2. Main contributions

• Test and evaluate hybrid solution approaches for the MRCMPSP and a broader
range of the most popular variants of project scheduling problems. Compare and
analyze results for benchmark problems with state-of-the-art algorithms.

1.2 Main contributions
In this thesis, we present new solution approaches for MRCMPSP, including exact, meta-
heuristic, and hybrid techniques. Our solution approaches improve upon state-of-the-art
results and solutions for MRCMPSP and some of the most well-known variants of the
project scheduling problem. The main contributions of this thesis are:

1. We propose a new method based on a combination of the min-conflicts heuristic
[MJPL92] and tabu search. We propose three new neighborhood operators and
evaluate their performance. Experimental results show that the new operators are
useful for this problem.

2. We implemented an iterated local search algorithm that applies the proposed
min-conflicts heuristic and the new neighborhood operators. Although iterated
local search has already been applied to this problem in the literature, we use a
new local search technique and three new operators. We tested our approach and
compared the results with state-of-the-art results for the MRCMPSP. Our method
achieves competitive and comparable results to the third-ranked solver. We also
applied our method to the well-known MRCPSP benchmark problems for project
scheduling (MMLIB library 1). Our method provides new upper bounds for eleven
benchmark problems from this library.

3. As part of the VeRoLog Solver Challenge 2019, we implemented a solver for the
vehicle routing and scheduling with delivery and installation of machines problem
that employs multiple neighborhood operators based on the min-conflicts concept,
similar to our approach for the MRCMPSP. Our solver yielded promising results
by ranking second for the first instance, third for six instances, fourth for thirteen
instances, fifth for four instances, and sixth for one instance.

4. We investigate the simulated annealing heuristic for MRCMPSP and integrate it
into an iterated local search framework.

5. We provide a Constraint Programming (CP) model for MRCMPSP and apply a
state-of-the-art CP solver to solve existing problem instances. Although constraint
programming has been used previously for related project scheduling problems, to
the best of our knowledge, this is the first time CP has been applied to MRCMPSP,
which contains several extensions. Our model was tested with 30 benchmark
instances from MISTA 2013 challenge. Long runs of the algorithm resulted in

1http://mmlib.eu/solutions.php
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1. Introduction

new upper bounds for six instances. Executing the algorithm under time limit
constraints (five minutes per instance) led to the best results for three instances
compared to other best solvers.

6. We developed three hybrid algorithms combining the CP model and different
variants of meta-heuristic approaches. Our best hybrid algorithm improved the
results and outperformed one of the previous best state-of-the-art solvers [AKK+16]
for MRCMPSP for most instances. We provide new upper bounds for most
MRCMPSP benchmark instances (eighteen new upper bounds and four equal
upper bounds out of thirty), over one hundred new upper bounds for MMLIB
MRCMPSP benchmark instances, and 81 new upper bounds out of 140 for the
resource-constrained multiple-project scheduling problem (RCMPSP) instances and
identical results in 28 of them.

Some of the results of this thesis have already been published in the following papers:

• Arben Ahmeti and Nysret Musliu. Min-conflicts heuristic for multi-mode resource-
constrained projects scheduling. In Hernán E. Aguirre and Keiki Takadama, editors,
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2018, Kyoto, Japan, July 15-19, 2018, pages 237–244. ACM, 2018 [AM18].

• Arben Ahmeti and Nysret Musliu. Hybridizing constraint programming and meta-
heuristics for multi-mode resource-constrained multiple projects scheduling problem.
Proceedings of the 13th International Conference on the Practice and Theory of
Automated Timetabling-PATAT, volume 1, pages 188-206, 2021 [AM21].

• Valon Kastrati, Arben Ahmeti, and Nysret Musliu. Solving vehicle routing and
scheduling with delivery and installation of machines using ILS. Proceedings of
the 13th International Conference on the Practice and Theory of Automated
Timetabling-PATAT, volume 1, pages 207-223, 2021 [KAM21].

The work presented in Chapter 5 is extended and is under revision in the "Journal of
Scheduling". The work presented in Chapter 8 is currently being prepared for further
publication in the near future.

1.3 Organization of this thesis
This thesis is organized into eight chapters. This chapter (Chapter 1) is followed by:

• Chapter 2 describes the main components and variant characteristics of project
scheduling problems, focusing on the MRCMPSP, MRCPSP, and RCMPSP problem
variants we have worked on. We also present the MRCMPSP problem definition,
project scheduling problem representation, classification and notation schemes, and
benchmark datasets from the literature.
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1.3. Organization of this thesis

• Chapter 3 describes in detail our new meta-heuristic approach based on the min-
conflicts heuristic and in its combination with several new neighborhood operators
within an iterated local search framework. We also present the computational
results of our method on benchmark datasets and their comparison with other state-
of-the-art methods. Several extensions and improvements to the meta-heuristic
method are presented. New neighborhood operators involved in the extensions and
modifications are explained in detail and experimentally evaluated on benchmark
instances. In addition, several variants of meta-heuristic approaches are analyzed
and evaluated.

• Chapter 4 introduces a constraint programming model for solving MRCMPSP. It
is based on an existing model, which has been applied for the related problem
MRCPSP. The fine-tuning of the CP model and its experimental evaluation are
also presented.

• Chapter 5 explains the hybrid solution approaches that combine meta-heuristic
techniques and the exact method described in the earlier chapters. Different
classifications and taxonomies for hybrid approaches from the literature are analyzed
in this chapter. The developed hybrid approaches are tested and experimentally
evaluated on different variants of benchmark project scheduling problems. Moreover,
the performance of our approaches is compared with state-of-the-art methods for
MRCMPSP, MRCPSP, and RCMPSP problems.

• Chapter 6 introduces the implementation and integration of the simulated annealing
heuristic into our meta-heuristic solution. Furthermore, the role and impact
of the improved meta-heuristic within the hybrid approaches are analyzed and
experimentally evaluated on the benchmark instances.

• Chapter 7 describes an implementation of the min-conflicts heuristic within an ILS
framework for solving vehicle routing and scheduling with delivery and installation
of machines.

• Finally, Chapter 8 summarizes the research results, draws conclusions, and discusses
future work.
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CHAPTER 2
Project scheduling problems

Project scheduling problems are about scheduling activities of a project (or multiple
projects) under different types of constraints, mainly resource, time and precedence
constraints, while considering the optimization of different types of objectives. They are
encountered in many areas of industry and in real-world situations. Therefore, project
scheduling problems have been an interesting and important topic for research and
industry.

2.1 Main components of project scheduling problems
In most of the literature, the characteristics and differences between project scheduling
problems are analyzed in terms of their main components: activities, resources, precedence
relationships, and objectives (performance measures) [SSW94].

2.1.1 Activities
Every project is comprised of a certain number of activities (tasks or operations). Ac-
tivities can be preemptive or non-preemptive (the activity cannot be interrupted until
it is finished). In multi-mode versions of the project scheduling problem, activities can
be executed in one or more modes. The execution mode of an activity determines the
time required to complete the activity and the specific resource requirements. In most
representations, the first and last activities are dummy activities, that is, activities with
a duration of zero and no resource requirement.

2.1.2 Resources
The activities of a project may use different resources to complete. Resources are
classified based on types and categories [Bła86]. Classification of resources by types
is based on the functions they perform, i.e., resources of the same type perform the
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2. Project scheduling problems

same functions. Classification into categories can be interpreted from the perspective of
resource constraints and divisibility. [Bła86] distinguishes three categories of resources
from the perspective of resource constraints. Renewable resources have a fixed capacity
per time unit (period), non-renewable resources have a fixed capacity for the entire
project duration and doubly constrained resources have a fixed capacity per time unit
and for the entire project duration. Furthermore, in the project scheduling problem
presented in [WKS+16], renewable resources are further divided into local renewable
resources and global renewable resources. Local renewable resources are available to each
individual project, and global renewable resources are shared among all projects.

Partially renewable resources introduced by [BDKS99] are available within a subset of the
time units. Partially renewable resources are considered a generalization for renewable
and non-renewable resources. Renewable resources are considered as partially renewable
resources with an associated subset of exactly one time unit, whereas non-renewable
resources as partially renewable resources with an associated subset for the entire planning
horizon long.

In terms of resource divisibility, resource categories can be discrete and continuous. A
discrete resource is a resource that can be allocated to activities in discrete quantities.
Continuous resources can be allocated to activities in arbitrary (a priori unknown)
quantities from a given interval.

2.1.3 Precedence relations
In many project scheduling problems, activities may be subject to precedence constraints,
i.e., some activities cannot start until some others are completed. In the literature,
project networks are presented as directed graphs, the Activity-on-Node (AON) or the
Activity-on-Arc (AOA) representation [KW59, MRCF59]. In the AON representation,
the activities are nodes of the graph, and the precedence relation between them is a
directed arc. In the case of AOA, the nodes of the graph are events, and the activities
are arcs of the graph that terminate at or originate from a node. We will provide more
information on this topic in a later section.

In addition to the precedence component itself, in some models of project scheduling
problems, i.e., problems with generalized precedence relations, time windows (minimal
and maximal time lags) between the start and finish of the pair of activities are important
factors to be considered.

2.1.4 Objectives
The objectives in project scheduling problems may be time-based, cost-based, or resource-
based. Moreover, certain complex project scheduling problems may involve the simultane-
ous optimization of multiple objectives [Sł81, WKS+16]. The most common time-based
objective is the minimization of the project makespan, i.e., the time span from the start
to the end of the project. There are other time-based goal variants, e.g., the minimization
of the weighted delays, the minimization of the total number of tardy activities, the
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minimization of the mean weighted flow time of activities [SD98, RHA13], and so forth.
Cost-based objectives are concerned with the situation in project scheduling when positive
cash flow is an essential factor for project implementation. One of the most important
representatives of this category of objectives is maximizing the net present value (NPV)
[BDP81].

Resource-based objectives are concerned with minimizing the amount of change in
resources used from one unit of time to another. Usually, the objective is to minimize the
maximum changes, minimize the sum of all changes, or minimize the sum of all squared
changes [BTR94, NZ00, BSZ06].

2.2 Project scheduling problem variants
Real-life projects coming from industry and project management have different character-
istics, are very complex, and are subject to severe constraints. Therefore, many variants
of project scheduling problems are subject to research and analysis. These variants differ
from each other in terms of the components already mentioned. Figure 2.1 shows the
diagram of these components (see also [HBS18]). In the following subsections, we will
analyze some of the resource-constrained variants as special cases of project scheduling
problems.

2.2.1 The resource constrained project scheduling problem (RCPSP)
RCPSP, as a generalization of the job shop scheduling problem introduced by [Gra66], is
the most classical and most straightforward version of the project scheduling problem.
It deals with scheduling activities of a project that require a certain amount of limited
resources and are subject to precedence constraints. In the case of RCPSP, resources are
renewable, and activities are executed in only one mode.

RCPSP has been studied extensively in the literature. According to [BLK83], RCPSP
belongs to the group of NP-hard optimization problems. Consequently, all more general-
ized variants of the RCPSP are at least as complex as RCPSP.

Example 1 : An example for the RCPSP expressed as a directed AON graph can be seen
in Figure 2.2. Using this example, we assume that:

• R - the renewable resources set and |R| = 1,

• P - a single project instance comprised of eight activities, i.e., P = {1, 2, 3, 4, 5, 6, 7, 8},
where Pj = 1 and Pj = 8 are dummy activities,

• dj - duration of activity Pj , dj ∈ D, and D = {0, 1, 1, 2, 1, 2, 2, 0},

• ljr - units of resource r used by activity j in every period (time unit) it is executing,
ljr ∈ L, and L = {0, 2, 2, 1, 1, 1, 1, 0},
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Figure 2.1: Variants of project scheduling problems
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• T - upper bound of the project’s makespan,

• Crt - availability of resource r in period t, where t ∈ {1, .., T}.

Figure 2.2: An example of the RCPSP problem

A feasible schedule for the RCPSP problem is a |P |-tuple S = {s1, .., s8}, where sj is the
start time of activity j, such that all precedence and resource constraints are respected.
A feasible schedule for our example could be S = {0, 0, 1, 2, 2, 3, 4, 6} and would look like
in Figure 2.3.

Figure 2.3: A feasible schedule for the example

2.2.2 The multi-mode resource-constrained project scheduling
problem (MRCPSP)

MRCPSP extends the RCPSP problem from the perspective of execution modes of
activities, i.e., activities have one or more execution modes. MRCPSP was first introduced
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by [Elm77]. As mentioned earlier, the execution mode of an activity determines its
duration and its specific resource requirements. In addition to just scheduling activities,
as is done in the RCPSP, the MRCPSP must also consider mode assignment. Since the
RCPSP belongs to the class of NP-hard optimization problems [BLK83], the MRCPSP is
also at least an NP-hard problem. Moreover, [KD97b] proved that when activities require
more than one non-renewable resource, creating a feasible schedule is an NP-complete
problem in its own right. When each activity has been assigned one of its modes, the
problem transforms into RCPSP. So far, most of the work on project scheduling problems
has been devoted to solving RCPSP and MRCPSP.

2.2.3 The resource-constrained multi-project scheduling problem
(RCMPSP)

The decentralized RCMPSP was introduced by [CGR07] and later extended by [Hom07].
This variant of the project scheduling problem is suitable for modeling situations where
multiple projects need to be executed simultaneously. In the case of RCMPSP, the
activities of projects are bound by adding two dummy activities to an artificially created
project: "start" and "end". They obey resource and precedence constraints, and a common
objective is a minimum duration for the multi-project schedule.

2.2.4 The multi-mode resource-constrained project scheduling
problem with generalized precedence relations
(MRCPSP-GPR)

As mentioned earlier, due to the need to model complex real-world scheduling cases with
different objectives, there are several variants of project scheduling problems. One of
these variants is the resource-constrained project scheduling problem with minimum
(MRCPSP/min) and maximum (MRCPSP/max) time lags (MRCPSP/max) or otherwise
known as MRCPSP with generalized precedence relations (MRCPSP-GPR). According
to the definition of this problem, time windows (minimal and maximal time lags) between
the start and the finish of the pair of activities can be classified into one of four categories:
start-finish (SF), finish-start (FS), start-start (SS) and finish-finish (FF) (see [HDDR99]
for more details). [BMR88] propose a way to represent all time lag types through one
type.

2.2.5 The multi-mode resource-constrained project scheduling
problem with discounted cash flows (MRCPSPDCF)

MRCPSPDCF is considered when dealing with the project scheduling problem where the
cash flow is an important aspect. Positive cash flow is essential for most projects in the
industry. Therefore, the main objective for this category of problems is the maximization
of the net present value (NPV). The main methods dealing with this type of problem
are categorized into optimization-guided, hybrid, parameter-based, and meta-heuristic
approaches (see [USŞŞ01, KP97] for more details).
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2.2.6 The stochastic resource-constrained project scheduling
(SRCPSP)

SRCPSP is another extended variant of RCPSP inspired by project management. While
in RCPSP the resource requirements and resource availability are known at the time the
activities are scheduled, SRCPSP represents a class of scheduling problems where many
parameters of the problem may be uncertain, e.g., the duration of some activities is not
known or the amount of available resources is not known at the time the project starts.

2.2.7 The mode-identity and resource-constrained project scheduling
problem (MIRCPSP)

MIRCPSP belongs to the group of less treated project scheduling problems. It was
first introduced by [SSD97] as a generalization of the multi-mode variant MRCPSP. In
MRCPSP, all project activities are divided into disjoint subsets, and all activities within
each subset are executed in the same mode.

2.2.8 The resource-constrained project scheduling problem with
multiple crashable modes (RCPSPMCM)

RCPSPMCM has also not been extensively studied. It involves the time-cost tradeoff
problem, which means that the duration of a given execution mode can be reduced at a
given cost. RCPSPMCM was first introduced by [AE98].

2.2.9 The test laboratory scheduling problem (TLSP)
Another extension of RCPSP that comes from industry needs in test laboratories is TLSP,
which was presented in [MM18]. In TLSP, a set of jobs consisting of multiple tasks with
similar characteristics must be scheduled given various time and resource constraints.

2.2.10 The multi-mode resource-constrained multi-project scheduling
problem (MRCMPSP)

A more general form of the project scheduling problem with a reasonable practical
significance was introduced through the MRCMPSP. It extends the RCPSP in several
aspects. MRCMPSP deals with simultaneous scheduling of a set of multiple projects
taking into account the availability of local and global resources under different time
and resource constraints. It has practical importance, especially in the construction
[KREK19] and production sectors [WKS+16]. Research on the MRCMPSP problem
increased with the organization of the MISTA challenge 2013 (see [WKS+16] for more
details). MRCMPSP, introduced in this challenge, extends RCPSP as follows:

• MRCPSP - the activities of a single project can be executed in multiple modes,
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• RCMPSP - multiple projects share global renewable resources while they must be
scheduled simultaneously.

MRCMPSP is a more realistic representation of the real-life environment in which many
projects that must be executed simultaneously compete for shared limited resources.
Every project is comprised of a set of non-preemptive activities that can be executed in
one of several predefined modes. The execution mode of an activity has its specifics in
terms of allocated resources and time duration. Moreover, the activities of each project
are interrelated by precedence constraints. Each project has its release date and an
associated set of different local renewable and non-renewable resources. In addition, there
is a set of global renewable resources that are shared among all the projects. The goal is
to find an optimal schedule of activities with respect to specific objectives that satisfies
various constraints such as time, precedence, and resource constraints. As mentioned
earlier, RCPSP belongs to the class of NP-hard optimization problems [BLK83]; therefore,
MRCMPSP is also at least one NP-hard problem. Additionally, generating a feasible
schedule concerning non-renewable resource constraints, in the case when activities may
require more than one non-renewable resource, has been proved an NP-Complete problem
itself [KD97b].

2.2.11 MRCMPSP - Problem definition
The MRCMPSP, as a more generalized form of the project scheduling problem, is a
more accurate representation of the real-life environment. The MRCMPSP problem is
comprised of a set of n projects: P = {1, 2, .., n} and every project i ∈ P is comprised
of activities Ji that are executed in more than one of the modes taking into account
different shared resources, time and precedence constraints. In addition, every project
has a release date ri, i.e., the earliest time when its activities could start. Every activity
j ∈ {1, 2, .., |Ji|} of every project has to be scheduled, i.e., its starting time sij has to be
defined considering all constraints. The first and last activities of projects are dummy
activities with only one execution mode, a duration equal to zero, and no resource
requirements. There are sets of renewable and non-renewable resources:

Li ∈ {1, ..., |Lρ
i |, |Lρ

i | + 1, ..., |Lρ
i | + |Lv

i |} (2.1)

where Lρ
i ∈ {1, ..., |Lρ

i |} indicates renewable resources and Lv
i ∈ {|Lρ

i | + 1, ..., |Lρ
i | + |Lv

i |}
non-renewable resources.
All non-renewable resources have fixed capacities hil for the whole project duration,
∀ l ∈ Lv

i and i ∈ P . Renewable resources have a fixed capacity cil per time unit,
∀ l ∈ Lρ

i and i ∈ P . There are local renewable resources dedicated to a specific project
only and global renewable resources (Gρ) that are shared among all the projects. The
availability of global renewable resources is limited by cρ

g, g ∈ Gρ. There are no global
non-renewable resources. Every activity has more than one available execution mode.
An activity’s execution mode defines the time duration required to complete the activity
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and its specific resource requirements. Mij ∈ {1, ..., |Mij |} and dijm (duration of activity
j ∈ Ji, i ∈ P in mode m ∈ Mij) define execution modes of activities. Moreover, rρ

ijml,
rv

ijml, and rρ
ijmg determine the requirements for local renewable, non-renewable , and

global renewable resources, respectively, when activity j ∈ Ji, i ∈ P is processed in mode
m ∈ Mij . Feasible projects schedules must always satisfy the following hard constraints:

• For every local non-renewable resource l ∈ Lv
i dedicated for every project i ∈ P , its

total consumption cannot exceed its capacity cil:

j∈Ji m∈Mij

yijmrν
ijml ≤ cil ∀i ∈ P, l ∈ Lν

i , m ∈ Mij , (2.2)

where m∈Mij
yijm = 1, yijm ∈ {0, 1}

• For every local renewable resource l ∈ Lρ
i dedicated for every project i ∈ P , its

total consumption at the time unit t cannot exceed its capacity cil:

j∈Ji m∈Mij

xijtyijmrρ
ijml ≤ cil ∀i ∈ P, l ∈ Lρ

i , m ∈ Mij , t ∈ [0, T ], (2.3)

where xijt ∈ {0, 1}
• For every global renewable resource g ∈ Gρ, its total resource consumption at the

time unit t cannot exceed its capacity cρ
g:

i∈P j∈Ji m∈Mij

xijtyijmrρ
ijmg ≤ cg ∀g ∈ Gρ, t ∈ [0, T ] (2.4)

• Particular activities may require the completion of other activities before they start.
In that case, feasible schedules must fulfill all precedence constraints between such
activities, i.e. if activity j ∈ Ji, which is executed in mode m, must precede activity
j ∈ Ji:

m∈Mij

sij + yijmdijm ≤ sij ifj ≺ j (2.5)

• Release time of every project is respected, i.e., for each activity j ∈ {1, 2, .., |Ji|} of
every project i ∈ P , its start time sij ≥ 0 and sij ≥ ri.

The objective is to find a feasible schedule with minimum total project delays (TPD) and
schedule total makespan (TMS). TPD is the primary objective, and TMS is used as a
tiebreaker. Project delay of a project i is defined as the difference between Critical Path
Duration (CPD), a theoretical lower bound on the earliest finish time of the project, and
the actual project duration (makespan):

PDi = MSi − CPDi (2.6)
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MSi - makespan of project i is calculated as difference:

MSi = fi − ri (2.7)

fi - finish time of project i,
ri - the release date of project i,

Total project delay is calculated as:

TPD =
n

i=1
PDi (2.8)

n - number of projects.

Total makespan is the duration of the complete multi-project schedule:

TMS = max
i∈P

(fi) − min
i∈P

(ri) (2.9)

Both soft constraints are combined into a single objective function as following:

F = α ∗ TPD + TMS (2.10)

where value α = 100, 000 (similar objective function was used in the MISTA 2013
challenge).

2.3 Representation of project scheduling problems
Two main representations of project networks have been considered in the literature,
AON and AOA [KW59, MRCF59], corresponding to an activity-based or event-based
representation, respectively.
In the AON representation, a graph node represents a project activity with all its
attributes, and a directed arc between two nodes represents a precedence relation between
two activities represented by those nodes. This type of representation is more commonly
used in the case of project scheduling problems with makespan objectives. The first and
last activities of the project are modeled as dummy activities to indicate the start and
completion of the project and to maintain the precedence relationship. An example of
the AON directed graph for the RCPSP problem with makespan objective can be seen in
Figure 2.2.

The AOA representation is typically used in situations where activities are associated
with cash flows, e.g. the maximization of the net present value. In the case of this
representation, a graph node represents an event, and an arc represents an activity.
Dummy events denote the start and completion of the project, and dummy activities
maintain the precedence relationship. This representation requires some preliminary
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clarifications for proper interpretation when the objective includes cash flow. If some
activities end at or start at a particular node, it may not be clear which activities are
the cash flow accompanied with, or whether the cash flow at an event is the balance
of payments and expenditures. An example for an AOA directed graph can be seen in
Figure 2.4 [Rus70].

Example 1 : Given this example, let us assume that:

• Pj , P2, P3, P4 and P5 are activities (arcs) with corresponding durations di (i =
1, .., 5),

• e1, e2, e3 and e4 are four events (nodes) with corresponding occurring times tj ∈ T ,
where T = {0, 2, 8, 11}, and accompanied with net cash flows fj ∈ F , where
F = {0, −5000, 3000, 3000}.

Figure 2.4: An example of the AOA representation with cash flow [Rus70]

In more constrained situations of the project scheduling problems with cash flow objectives,
advance payments may be not allowed, or on the contrary, some of them must occur
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much earlier to complete the activities on the schedule. If the AOA model is used for
the problem in these situations, it should be adjusted to properly link expenditures to
activities. A variant of the AOA model introduced by [PSDSD97] supports modeling of
cash inflows (f+) and outflows (f−). Thus, this AOA model resolves the representation
of the above-mentioned constrained problem by adding more dummy activities and
increasing the complexity of the problem. Figure 2.5 shows an example of such a model
[PSDSD97].

Figure 2.5: An example of the AOA representation with cash inflows (f+) and outflows
(f−) [PSDSD97]

The AON representation can also be used for project scheduling problems with the
cash flow objective, but the expenses for each activity should be known in advance, and
payments are conducted for completed activities. In the case of the AOA, expenditures
can be associated with many activities that start or end with one event and represented
as total expenditures for that event. A hybrid model that intertwines the advantages of
AON and AOA was used by [ZP99] for RCPSPCF. Some assumptions are made for this
model: payments and expenditures (cash inflows f+ and outflows f−) for each activity
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are known in advance, payments occur when the activity is completed, and expenditures
occur at the start of the activity. An example of such a model is shown in Figure 2.6.

Figure 2.6: An example of the AON representation with cash inflows (f+) and outflows
(f−) [ZP99]

2.4 Classification and notation scheme
In the last decades, various authors have published various surveys to standardize the
terminology, notations, definitions, classifications, and efforts to solve project scheduling
problems [KP97, HDDR99, BDM+99, HB10, WJMW11, VC18, biT20]. In order to
avoid misinterpretations and to use standard notations for describing project scheduling
problems, [GLLK79] and [BLK83] proposed a so-called α/β/γ classification scheme. This
scheme was extended by [HDDR99] and later also by [BDM+99].

α is used to distinguish project scheduling problems and their resource requirements
(see [BDM+99] for more details).

PS - Project scheduling,

MPS - Multi-mode project scheduling,

PSm, σ, ρ - project scheduling problem with m resources, σ represents units of
each available resource, ρ represents the maximal number of resource units required
by each activity,
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MPSm, σ, ρ; µ, τ , ω - multi-mode project scheduling problem with m resources,
σ represents units of each available resource, ρ represents the maximal number of
resource units required by each activity, µ represents non-renewable resources, τ
units of each available resource, ω represents the maximal number of resource units
required by each activity.

β describes activity characteristics.

pj = 1 - duration for each activity is equal to one,

pj = sto - stochastic duration for each activity,

d - the deadline for the project duration,

prec - activities precedence constraints,

temp - general temporal constraints given by minimum and maximum start-start
time lags between activities.

γ depicts objective function.

Cj - activities’ total completion time,

Cmax - maximal activity completion time,

cF
j βCj - net present value (cF

j is cash flow and β is discount factor),

etc.

According to this classification scheme, RCPSP would be classified as PS|prec|Cmax,
which means that the goal of this problem is to minimize the makespan of the project
considering priority and resource constraints.

2.5 Benchmark data sets
Various solution methods for project scheduling problems from the classes of exact
methods, meta-heuristics, and hyper-heuristics were proposed. It was necessary to
evaluate and compare the performance of these methods using benchmark instance
sets. Several benchmark instance generators have been proposed in the literature based
on different parameters and problem models. [KSD95] introduced a generator named
ProGen to generate multiple instance sets for RCPSP and its more generalized variant,
the multi-mode resource-constrained project scheduling problem. [KS97] significantly
enriched these sets with additional benchmark instances known as the project scheduling
problem library project scheduling problem library (PSPLIB). [Sch98] extended ProGen
for MRCPSP to a version named ProGen/max, which includes minimal and maximal
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time lags, and supports three types of objectives: project duration, resource leveling,
and NPV. Another instance generator named RanGen, which provides a wider range of
parameters than ProGen, was introduced by [DVH03] and further enhanced by [VCD+08]
to version named RanGen2 by adding new topological indicators. Moreover, [VPV14]
extends the instance generator developed by [VCD+08] for projects consisting of instances
with multiple modes using two repair procedures. The extended generator generated
three sets of MRCPSP instances known in the literature as (multi-mode instances library
(MMLIB)). [CV20] proposes a new three-stage approach that converts RCPSP instances
to very hard-to-solve instances in optimality.

The approaches introduced in this thesis were tested with different variants of project
scheduling problems, including MRCMPSP instances introduced in the Mista 2013
Challenge, MMLIB instances introduced by [VPV14], and RCMPSP instances from
multi-project scheduling problem library (MPSPLIB), introduced by [Hom07]. MR-
CMPSP instances were generated through by combining multiple MRCPSP instances
from PSPLIB.

2.6 Literature review
Over the decades, different solution strategies have been proposed to address different
variants of resource-constrained project scheduling problems. In general, we can categorize
the solution approaches for project scheduling problems as exact methods, heuristic,
hybrid, meta-heuristic and hyper-heuristic approaches. Some traditional approaches, like
the critical path method (CPM), and program evaluation and review technique (PERT),
have several limitations in terms of project activity scheduling. They are applied to only
one project at a time and assume that unlimited resources are available.

RCPSP - is one of the most analyzed variants in the literature. A branch and bound
algorithm for the RCPSP was proposed by [BKST98]. They reported good results on
problem instances comprised of 30, 60, and 90 activities generated by [KSD95] and
[KS97]. Their approach solved instances with 60 activities within one hour. Other
competitive exact approaches for solving RCPSP are proposed by [Spr96], [DH97], and
[MMRB98]. [DMaBL15] proposes a hybrid greedy and genetic algorithms for RCPSP
with the objective of minimizing the project makespan. Another hybrid meta-heuristic
solution approach that combines genetic and local search algorithms to solve the RCPSP
is proposed by [DKG13].

Some other early approaches to solving RCPSP include meta-heuristics and heuristic
approaches that employ rule-based priority scheduling. Heuristic approaches are faster
than exact methods and offer close to optimal solutions even for complex situations
and large-size projects. As one of the earliest solution approaches for RCPSP, priority
rule-based scheduling heuristic consists of two components: a schedule generation scheme
and a priority rule. Two schemes are known in the literature: the serial scheduling
scheme and the parallel scheduling scheme (for more details, see [Kol96]). Priority rules
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determine which activity from the decision set (i.e., a subset of activities to be assigned)
is assigned next to a partial schedule (i.e., a schedule comprised of a subset of assigned
activities).

The priority rules are mainly categorized as activity, mode, project, or resource priority
rules. Some of the well-known priority rules investigated in the literature are the earliest
start time, the earliest finish time, the latest start time, the latest finish time, maximum or
minimum slack first, and so forth. Some of the mode priority rules are randomly chosen
mode, minimum duration mode, stochastic construction method for mode selection,
maximum duration mode, minimum resource demand mode, and so forth. There are
also priority rules based on penalties due to project delays: maximum duration penalty,
maximum penalty, maximum total duration, and so forth. Some of the approaches from
this class of heuristics are presented by [BOC93, KD97a, KDH00].

MRCPSP - is also a well-studied variant of the project scheduling problem. One of the
earliest exact approaches to solving MRCPSP is linear programming proposed by [Sł81].
Furthermore, [HD98] implements a new branch and bound algorithm optimized with
ten bounding criteria and compare it with other existing branch and bound approaches.
Another branch and bound algorithm for RCPSP and MRCPSP was proposed by [Spr96].
[DG93] introduces a stochastic scheduling method for MRCPSP.

In addition, various meta-heuristic methods are applied to solve RCPSP and MRCPSP.
The approach proposed by [SSW94] is based on a so-called multi-objective project
scheduling (MPS) model, which includes three kinds of heuristics: parallel priority
rules, simulated annealing and branch-and-bound. [BOC96a] introduced a simulated
annealing algorithm for MRCPSP and RCPSP variants. It is capable to handle different
objectives like the minimization of project makespan, the maximization of net present
value and the minimization of the project cost. Another approach that consists of
two simulated annealing variants is proposed by [JMR+01]. Both variants, simulated
annealing without penalty function and with penalty function, apply three neighborhood
operators: activity shift, activity mode change and the combination of both. The variant
with penalty function considers resource-related infeasible solutions. The simulated
annealing approach proposed by [BL03] applies two neighborhood exploration techniques,
the so-called "activity neighborhood" and "mode neighborhood" explorations, in two
stages. A scatter search procedure with three improvement methods for MRCPSP was
proposed by [PV11]. The improvement procedures are based on the scarcity values
of renewable and non-renewable resources presented in a scarceness matrix. A hybrid
scatter search method for MRCPSP was proposed by [RDK09]. The solution approach
proposed by [CV11] divides the problem into two steps: the mode assignment and the
single-mode project scheduling step. The former step is solved using an SAT solver and
the latter using the decomposition-based genetic algorithm of [DV07]. [Zam19] proposed
a four-layer heuristic, where the first layer provides an initial solution and the rest of
the layers iteratively improve the solution using different strategies. A hybrid solution
approach that combines mixed integer programming with an adaptive large neighborhood
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search is proposed by [GSF17]. [SH17] introduced an exact solution method based on
constraint programming. Other proposed solution approaches for MRCPSP include
genetic algorithm, e.g., [Har98, Har01, VPV10, Ozd99, LTCB09, MT97, AMR03, EF10],
tabu search, e.g., [BBK99, NI02], ant colony optimization, e.g., [CHW08], and so forth.

RCMPSP - some of the pioneering work on the multi-project scheduling problem
started with the RCMPSP problem using a heuristic based on priority rules, e.g.,
[Fen67] presented a parallel scheduling algorithm for multi-project instances comprised
of three and five projects, and the efficiency of three measurement variables is analyzed:
project slippage, resource utilization, and in-process inventory. The minimum slack first
(MINSLK) priority rule provides the best results considering the three measurement
variables mentioned above. [PWW69] introduced zero-one (0-1) linear programming
addressing multi-project and job shop scheduling problems. In this work, the optimization
of three objectives is analyzed: minimization of total throughput time for all projects,
minimization of the time by which all projects are completed (minimization of make-span),
and minimization of total lateness or lateness penalty for all projects. Scheduling should
meet the following constraints when imposed: limited resources, precedence relations
between jobs, job splitting possibilities, project and job due dates, substitution of re-
sources to perform jobs, concurrent and non-concurrent job performance requirements.
A typical example of a heuristic based on priority rules for the RCMPSP problem is
presented by [KD82]. They generated multi-project instances where projects contain
from 34 to 63 activities, and the resource requirements for each activity are from two
to six units. Moreover, they introduce six new priority rules; they also show that the
priority rules maximum total work content and shortest activity from the shortest project
are the best algorithms to schedule multi-projects when the objective is to minimize the
mean project delay. This work was extended to a multi-project approach by [KN85].
They introduced penalties based on project delays and analyzed a multi-project problem
comprised of three projects containing 24 to 33 activities for small problems and 50 to
66 activities for large ones. Their computational experience shows that the maximum
penalty priority rule is the best algorithm when minimizing the sum of the project weight
delays. [Hom07] proposed a restart evolution strategy (RES) for RCPSP embedded in a
multi-agent system for solving MPSPLIB RCMPSP. A scheduling agent executes a RES
procedure to schedule activities and negotiate resource allocations for each project. A
modified (µ, λ) coordination mechanism from evolution strategies used in a multi-agent
system is proposed in [Hom12]. [RPSN21] introduced a solution method for RCMPSP
combining priority rules and a genetic algorithm.

MRCPSP-GPR - [DH99] introduced a local search method using a tabu search
procedure for solving MRCPSP-GPR. Their method executes in two consecutive phases.
First, it assigns execution modes to all activities, and consequently, the problem is solved
as a resource-constrained project problem with fixed execution modes. [SSH08] presented
an exact method for solving MRCPSP-GPR, and [BN96] presented two types of heuristics
for solving RCPSP/max for two objectives: the resource-leveling and minimum project

23



2. Project scheduling problems

duration. [SH16] propose three mathematical models in their exact solution approach for
MRCPSP-GPR.

MRCPSPDCF - in their approach, [IE94] propose a tabu search procedure for schedul-
ing project activities with cash inflows and outflows with the objective of maximizing
NPV. [CZC+10], initially formulated MRCPSPDCF as a graph-based search problem and
then applied the ant colony optimization (ACO) procedure to solve it. A GA algorithm for
RCPSPDC and MRCPSPDC for three payment models is proposed by [LV16]. [EAM+19]
proposed a hybrid method that combines mixed-integer non-linear programming with
a genetic algorithm and multi-objective simulated annealing algorithm for a real-life
conditions problem that considers renewable and non-renewable resources. The main
objectives for the problem are to maximize the NPV and minimize the project completion
time. Another hybrid method aimed at optimizing cash flow in a resource-constrained
multi-project environment is proposed by [HHW21]. This method combines a non-linear
integer programming optimization model with tabu search, simulated annealing and
a combination of the latter two meta-heuristics under project deadline and renewable
resources constraints.

SRCPSP, RCPSPMCM, and MIRPCPSP - belong to a group of less analyzed
project scheduling problems in the literature. [RCL18] introduced a new class of gener-
alized preprocessor (open-loop) policies for the SRCPSP problem. [LW15] proposed a
dynamic (closed-loop) policy that insists on selecting the best set of starting activities at
each decision point.

[AE98] introduce a two-stage heuristic procedure for solving RCPSPMCM. In the first
stage, a feasible solution is generated, and in the second stage, the same schedule
is improved through six improvement rules. Furthermore, an exact solution method
for RCPSPMCM is proposed in [EAC01]. [SSD97] proposes a randomized approach
combining static and dynamic priority rules for solving MIRCPSP.

TLSP - A local search framework consisting of min-conflicts and simulated annealing
was applied as a solution approach for TLSP and its sub-problem TLSP-S. TLSP-S has
a fixed list of jobs. In [MM21], an instance generator for TLSP is presented, and the
approach is validated against two generated instances and three real-world instances
taken from an industrial company’s laboratory. This work is further extended in [MMS21]
by introducing four new neighborhoods, which are combined with the existing ones and
alter the grouping of tasks of a schedule. Constraint programming and hybrid approaches
for these problems are presented in these works [GMM19, DGMM20, GMM21].

MRCMPSP - was not addressed in the literature until the early 1990s. [SV93]
introduced an integer programming model for solving MRCMPSP. Their multi-criteria
model is comprised of the planning and scheduling stages. [Tse08] extended their work in
[MT97] for MRCMPSP. In addition to a genetic algorithm for the MRCMPSP, another
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parallel scheduling algorithm is developed to find a close-to-optimal solution. The latter
one serves as a baseline to validate the performance of the first algorithm, and includes
a combination of an activity and mode priority rule. According to [LMT00], multi-
project scheduling can be addressed from two perspectives: single-project approach and
multi-project approach. In the first case, the activities of the projects are considered
independently, whereas in the second case, the activities of the projects are bound into
an artificially created project by adding two dummy activities. They have developed
a multi-criteria heuristic algorithm that takes into consideration time and non-time
aspects in order to improve resource allocation in multi-project scheduling: mean project
delay or multi-project duration increase, project splitting, in-process inventory, resource
leveling, or idle resources. Their multi-criteria heuristic algorithm for multi-project
scheduling is comprised of two phases. In the first phase, the algorithm generates a
good schedule for multi-project with one of the time criteria used: mean project delay or
multi-project duration increase. In the second phase, the initial schedule from the first
phase is improved with one of the non-time criteria: project splitting, in-process inventory,
resource leveling, or idle resources. Moreover, they validated their computational work
through data processing from a survey organized in the Valencian Region, Spain, with
about 1000 surveys sent to small and medium-sized companies.

The MISTA challenge 2013 has boosted research efforts for MRCMPSP. Several researchers
have been working on it over the past few years. [AKK+16] applied a combination of
hyper-heuristics and Monte-Carlo Tree Search (MCTS). Their two-phase (construct and
improvement phase) approach has as its primary objective the minimization of total
project delay (TPD) and total makespan (TMS) of projects, with TMS serving as a
tiebreaker. According to [AKK+16], reasonable solutions have a proximate order of the
projects. Therefore, the construction phase in this approach has to do with a creation
of an initial solution. In this phase, the initial solutions are attempted with a partial
structure that resembles the good solutions. Since the main objective of this problem,
minimization of the total project delay (TPD), promotes solutions comprised of activities
grouped by projects, and in order to improve the performance of the improvement phase,
a version of the monte-carlo tree search (MCTS) search method is used to classify projects
into so-called "start", "middle", and "end" partitions in terms of total project time. In
the improvement phase, a memetic algorithm is used with a local search procedure
based on hyper-heuristics that control a large set of neighborhood moves. In order to
increase the overall performance, the population size was kept small so that one CPU
core can be used for each local search. [Gei17] proposed an iterated local search and
a variable neighborhood search with four neighborhoods. This approach starts from
an initial feasible solution, generates neighbors through four neighborhood operators,
and tests them for acceptance. Perturbation persists on random change of execution
mode of an activity followed by a mode-repair-procedure. [TSCS16] proposed a hybrid
search method that combines a parallel local search with multiple neighborhoods with
integer programming. [KREK19] compared two solution approaches, single-project and
multi-project, for MRCMPSP with multiple objectives. They use different heuristic
rules and an integer programming model to optimize time, cost and quality in a multi-
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project environment. Their approach is evaluated using PSPLIB’s benchmark instance
library and several real-life case study projects from the construction sector. A two-
stage optimization method was proposed by [KM20] using a genetic algorithm and a
simulated annealing algorithm for MRCMPSP. Automatic design of a hybrid iterated
local search was considered by [LIMMS13]. A stochastic local search procedure with two
neighborhoods was proposed In [BBZ+13]. [BBU15] implemented a genetic algorithm
for a multi-project environment with projects with assigned due dates and a resource
dedication policy. In [KZV+16] a genetic algorithm was implemented for mode assignment
and a priority rule heuristic for job selection in MRCMPSP. Other methods proposed for
this problem include large neighborhood search (LNS), which is used in combination with
mixed integer programming (MIP) method introduced in [AH13]. [APPR13] introduced
a three-phased solver. In the first phase, feasible solutions are generated for each project
and combined into a unique feasible solution for the entire problem. In the second
phase, simulated annealing is employed to improve the solution, and in the third phase
further improvement is performed using tabu search and an extra neighborhood operator
that changes two modes. [BDMX13] implemented a solver based on a combination of
an evolutionary approach and local search. The local search uses three neighborhood
operators and serves as a post-processing procedure for the evolutionary algorithm.
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CHAPTER 3
Combining min-conflicts heuristic

with iterated local search (ILS)
for MRCMPSP

In this chapter, we present our solution approach for MRCMPSP, which includes several
innovative ideas such as a new min-conflicts heuristic and new neighborhood operators.
According to the definition, the min-conflicts heuristic considers a set of variables in
conflict, randomly selects a variable from the set, and assigns a value to that variable
that minimizes the conflict [MJPL92]. In our solution approach, the variables in conflict
are activities that compete for the same resources at a given time t of the schedule
(see illustration in Figure 3.1). A randomly selected activity is assigned the mode or
the position on the schedule (depending on the neighborhood operator) that takes into
account the resource constraints and provides the best objective function value. In order
to prevent getting stuck in a local minimum and avoid cycles, we implemented two types
of tabu lists. One tabu list keeps track of the most recent activities whose modes have
been changed, and the other the tracks of activities whose positions on the schedule have
been changed.

Furthermore, we investigate the iterated local search (ILS) framework for MRCMPSP,
where the embedded local search is comprised of the min-conflicts heuristic and new
neighborhood operators. Several extensions and improvements for this solution approach
are introduced and tested. The ILS framework is described in [LMS03] and consists of
four main components: initial solution, embedded local search, acceptance criterion, and
perturbation (see Algorithm 3.1).
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Figure 3.1: Activities in conflict for resources

Algorithm 3.1: Method ILS
1 s0 = InitialSolution();
2 s1 = s0;
3 do
4 s2 = LocalSearch*(s1);
5 s2 = AcceptanceCriterion(s1, s2);
6 s1 = Perturbation(s2);
7 while termination-condition = true;

3.1 General description of our algorithm
In the following sections, we review the individual components of our solution approach
(MinCONv1) for MRCMPSP. It is comprised of the initial solution generator, the local
search (a combination of min-conflicts heuristic and several neighborhood operators), the
acceptance criterion of a solution, and the perturbation strategy.

3.1.1 Schedule representation

Schedule alternatives are represented as a pair of vectors: −→
S = {−→π ,

−→
M}, where −→π is

the vector of activities and −→
M is its corresponding mode vector. The activities in −→π are

re-arranged as if they were activities of a larger unique project, i.e., if j ∈ {1, 2, .., |Ji|} is
an activity of project i, where i ∈ P and P a set of n projects, P = {1, 2, .., n}, then:

−→π = {1, 2, .., |J1|, |J1| + 1, .., |J1| + |J2| + .. + |Jn|} (3.1)

Similar representations were used by [AKK+16], [TSCS16] and [Gei17]. A schedule
solution alternative is constructed using the serial scheduling scheme (SSS), which
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constructs a schedule by sequentially placing activities into a schedule as early as possible.
This approach was also used by other researchers ([AKK+16], [TSCS16] and [Gei17]).

3.1.2 Initial solution
In the first phase, a schedule is constructed that represents the relaxed form of the
problem, i.e., assigning activities to modes that result in minimal project delay for
each project and disregard resource constraints. The schedule in this phase is feasible
considering precedence constraints of the activities. Construction is a two-stage process:

• 1st stage - the min-conflicts heuristic is used to assign feasible modes to activities
that take into account non-renewable resource constraints. In this case, the set of
variables consists of the activities that are in conflict for non-renewable resources,
and the domain of their values are their modes. A variable is randomly selected
from this set and assigned a mode that minimizes the amount of non-renewable
resources demanded by activities involved in the conflict.

• 2nd stage - the scheduling scheme is constructed respecting the renewable resources
and the precedence constraints. The serial scheduling scheme is applied to build a
feasible schedule by assigning activities into a schedule sequentially, one activity at
a time, as early as possible.

Then, the feasible solution obtained is improved by our "two modes changes" neighborhood
operator to achieve a faster convergence to local optima. The whole procedure is described
in Algorithm 3.2 and Algorithm 3.3.

Neighborhood operators can be broadly grouped into those that change the modes of
activities and those that change the positions of activities within a schedule. As described
by [Gei17], neighborhood operators that change the modes of activities have a greater
impact on the schedule than other operators. The improved schedule is passed to the
local search heuristic for further improvement.

3.1.3 Neighborhoods and Local Search
We propose a local search heuristic based on a combination of the min-conflicts heuristic
and multiple project-wise neighborhood operators. This technique operates in the feasible
search space, i.e., assignments of modes of activities that violate non-renewable resource
constraints are rejected. Several neighborhood operators used here are based on previous
works ([AKK+16], [TSCS16], [Gei17], [AH13], etc).

We introduce three new neighborhood operators: Clone-project (CloneProj), Clone-
project-partially (CloneProjPart) and Clone-sequence (CloneSeq). These neighborhood
operators are evaluated experimentally by running the algorithm with and without them.
More on this later in this chapter.
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Algorithm 3.2: First stage - Initial solution construction
1 Remove unfeasible modes;

Input:
−→
S ∈
{−→

S }, feasible schedule concerning activity precedence constraints;
Modes(j), the set of execution modes of j; djm, the duration of activity j
in execution mode m;

Output: Feasible initial solution regarding non-renewable resources and
precedence constraints;

2 foreach activity j ∈ −→
π do

3 Find execution mode of j that provides minimal duration, djm= min
k∈Modes(j)

djk;

4 end
5 repeat
6 if

−→
S is feasible then

7 return
−→
S

8 end
9 Chose a variable (activity) randomly from the set of conflicting variables;

10 Chose the value for the variable that minimizes conflicts;
11 until

−→
S is feasible regarding non-renewable resources;

Algorithm 3.3: Second stage - Initial solution construction
Input:

−→
S ∈ {−→

S }, a feasible schedule regarding non −
renewable resources and precedence constraints; ri, the release
date of project i; Prec(j) ⊂ −→

π , the set of predecessor activities of j; djm,
the duration of activity j in execution mode m;

Output: Feasible initial solution;
1 foreach activity j ∈ −→

π do
2 Find the earliest start time of j, tj = max{rj , max

k∈P rec(j)
tk + dkm};

3 end
4 Perform some preliminary improvement using MinConTMC() neighborhood

operator;
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New neighborhood operators

Clone project (CloneProj) - is a project-wise operator that "clones" modes of ac-
tivities of a given project within the current schedule with modes of activities from the
best schedule constructed so far. The activities of a randomly selected project within
the current schedule are assigned the same modes of the same activities from the best
schedule.

CloneProjPart and CloneSeq - likewise ClonProj, "clones" modes from a sequence
of activities of a particular project within the active schedule (CloneProjPart) and a
sequence of activities within active schedule (CloneSeq), respectively. In the first case,
the size of the sequence is chosen randomly in a range between 40%-50% of the size of a
given project, and the start is chosen randomly, taking as a reference point the beginning
activity of that project. In the second case, the start of the sequence is chosen randomly
at a random point in the schedule, and the size in the range between 15-20% of the size
of the whole schedule.

Example: Let n = 2 be number of projects, where P1 = {1, 2, 3, 4, 5} and P2 =
{6, 7, 8, 9, 10}, −→

Sbest = {Pbest, Mbest} the best found schedule, where Pbest = {1, 6, 2, 7, 3, 4, 8, 5, 9, 10}
and Mbest = {1, 3, 2, 1, 3, 1, 2, 1, 2, 3}, and −→

S = {P, M} an active schedule, where
P = {1, 6, 2, 3, 7, 4, 8, 5, 9, 10} and M = {1, 1, 3, 2, 1, 3, 1, 1, 3, 2} as in Figure 3.2.

Figure 3.2: Sample of a schedule with two projects, P1 and P2

When CloneProj, with projID = 1 is applied to −→
S , it affects activities 1, 2, 3, 4, 5 of P1

(see Figure 3.3) and consequently M = {1, 1, 2, 3, 1, 1, 1, 1, 3, 2}.

Figure 3.3: Sample after applying CloneProj with projID = 1

When CloneProjPart, with projID = 1, seqSize = 40% and startSeq = 2 is applied
to −→

S , it affects activities 2 and 3 of P1 (see Figure 3.4) and consequently M =
{1, 1, 2, 3, 1, 3, 1, 1, 3, 2}.
When CloneSeq, with seqSize = 20% and startSeq = 4 is applied to −→

S , it affects activity 3
of P1 and activity 7 of P2 (see Figure 3.5) and consequently M = {1, 1, 3, 3, 1, 3, 1, 1, 3, 2}.
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Figure 3.4: Sample after applying CloneProjPart with seqSize = 40% and startSeq = 2

Figure 3.5: Sample after applying CloneSeq with seqSize = 20% and startSeq = 4

Other neighborhood operators

MinConOMC - changes the mode of a randomly selected activity from a set of
variables in conflict for resources. Similar operators have been implemented by [AKK+16],
[TSCS16], [Gei17], [LIMMS13] and [BBZ+13]. We apply the min-conflicts heuristic to
generate the neighborhood by constructing a set of variables according to activities
that conflict at a given time t of the schedule in terms of renewable and non-renewable
resources. In our experiments, we tested two strategies for constructing the set of variables
in conflict: the set of running activities at the same time t (t is chosen randomly) and a
short sequence of activities within the schedule. Although the former option produces
slightly better results, we chose the second option due to the performance issue. The size
of the tabu list is parameterized and depends on the size of the project. The domain
of the values of a conflicting variable is the set of its execution modes. A variable is
randomly selected from the set of conflicting variables, and if it is not on the tabu list, it
is assigned a mode that minimizes the conflict and it enters the tabu list. MinConOMC
is executed until no further improvement is made to the current schedule.

MinConTMC - changes the modes of two activities. A similar operator was imple-
mented by [AKK+16], [TSCS16] and [Gei17]. As in the previous case, we apply the ideas
of min-conflicts heuristic to generate the neighborhood by constructing a set of variables
consisting of activities that compete for the same type of resources at a given time t of
the schedule. In this case, the set of variables includes every pair of activities that are in
conflict, and the domain of their values consists of every dual combination of their modes.
Obviously, the size of the neighborhood is larger. A couple of variables is randomly
selected from the set of conflicting variables and is assigned modes that minimize the
conflict.

MinConFMC - this operator changes the modes of four activities. Like in the case
of MinConOMC and MinConTMC, we apply min-conflicts heuristic ideas to generate
the neighborhood, with the difference that this operator is applied in a very limited
neighborhood and only in cases when MinConOMC and MinConTMC do not achieve
any further improvement. A similar operator was used in [TSCS16].
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MinConSJL - this operator is based on implementations of [AKK+16], [TSCS16],
[Gei17], [LIMMS13] and [BBZ+13] and the ideas of min-conflicts heuristic. The min-
conflicts heuristic is used to generate the neighborhood by constructing a variable set
consisting of all activities found in the sequence from the location of a randomly selected
activity to the location of its last predecessor. The domain of values for every variable
consists of locations in the schedule from the variable’s current position (excluding the
variable’s current position) to its last predecessor. MinConSJL selects the best swap. A
tabu list is used when selecting an activity from the schedule.

MinConSJR - is identical to MinConSJL, except that the variable set is created from
all activities found in the sequence from the location of a randomly selected activity in
the schedule to the position of its first successor.

Invert subsequence (INVS) - A similar operator is implemented by [TSCS16] and
[Gei17]. INVS inverts activities from the location of a randomly chosen activity in the
schedule to its last predecessor in our implementation.

Compress project and move to the end (ComE) - is a project-wise operator
based on the implementation of [AKK+16] that compresses and moves the activities of a
randomly selected project to the end of the schedule.

Compress project and move to the front (ComF) - is a project-wise operator
based on the implementation of [AKK+16] and it compresses the activities of a randomly
selected project and moves them to the beginning of the schedule.

Partial compress (PCom) - is based on the ideas of [AKK+16] and [TSCS16] and
compresses up to 50% of the activities starting from the end of a randomly selected
project.

The overall algorithm (MinCONv1) The overall algorithm is presented in Algo-
rithm 3.4. The sequence of the execution of neighborhood operators is adjusted through
thorough experimentation. Initially, the project-wise neighborhood operators are ap-
plied, executing as long as improvements occur (lines 3 - 10). Then, the neighborhood
operators MinConOMC and MinConTMC or MinConFMC, MinConSJL, MinConSJR,
and INVS are executed. MinConOMC runs until no further improvement is achieved,
and MinConTMC runs for a specific time that depends on the size of the project. In
our experiments, MinConOMC and MinConTMC appeared to run most of the time (see
lines 11 - 20). The neighborhood operators MinConFMC, MinConSJL, MinConSJR, and
INVS, are used only when no improvementcan be achieved with the previous operators
(see lines 21 - 23). The application of the tabu list appeared to have a positive impact on
the quality of the solution. In our approach, two tabu lists are used, one tabu list that
records the last activities whose modes have been changed and the other tabu list that
records the activities whose positions on the schedule have been changed. A solution
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generated by operators is accepted if it is better than the actual best solution, except
for the case of MinConSJL and MinConTMC operators, where a solution of the same or
better quality is accepted. In our experiments, we found that accepting equally good
solutions contributed to generating promising diverse structures of project schedules.
A similar observation was reported by [Gei17] in the case of one of his neighborhood
operators.

3.1.4 Acceptance criterion

We have experimented with two variants. In the first variant, only the better solutions
are accepted. In the second case, the solution is accepted if it is up to 10% worse than
the best solution. In our experiments, better results were obtained with the first variant
(lines 27-31, algorithm 3.4).

3.1.5 Perturbation

Due to the significant impact on the schedule, the perturbation strategy is based on the
modes’ change. We performed a feasible change of modes of randomly selected activities,
while the subsequent configuration of modes remains feasible. The perturbation size,
which is the number of activities (randomly selected) whose modes are changed, was
important to our results. For some instances, e.g., A7, B3, B7, X1, X8, we obtained
better results with perturbation size of 1 (1% of the size of the instance), but for some
other instances, e.g., A10, B10, X7, X10, we got better results with perturbation size of
up to 10% of the size of the instance. Therefore, we applied an adaptive perturbation
strategy where the perturbation size is gradually increased in each iteration (up to 10%
of the size of the actual instance) if the solution is not improved. When the solution is
improved, the perturbation size is reset to 1 (lines 33-38, Algorithm 3.4).

3.1.6 Parameter tuning

As mentioned earlier, we have applied two tabu lists: one tabu list for operators that
manipulate modes and one for operators that manipulate positions of activities in the
schedule. The sizes of these tabu lists depend on the total number of activities in the given
instance. More specifically, the sizes of the tabu lists are parametrized and experimentally
determined as a percentage of the total number of activities. Other parameters include
the size of the variable set for MinConOMC and MinConTMC, the execution time of
MinConTMC, and the perturbation size threshold. The execution time is determined by
multiplying the average number of modes per activity by the time-based parameter with
these values ∈ {1, 2, 3, .., 10}.

We used the SMAC tool [HHL11, LEF+17] to optimize the parameters of our algorithm.
The CPUTIME_LIMIT was set to 172800 seconds (2 days), and the following input was
used:
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Algorithm 3.4: The overall algorithm (MinCONv1)
Input: −→

S i ∈ {−→
S }, initial schedules generated from earlier stages, i number of

threads and i = {1, .., 4}, −→
S local and −→

Sbest = −→
S i;

Output: An optimal local solution;
1 NoImprovement = true; LocalImprovement = true;
2 repeat
3 repeat
4 Apply combinations of CloneProj(), CloneProjPart(), ComE(), ComF()

to each −→
S i;

5 if −→
S local > min

i∈{1,..,4}
−→
S i then

6
−→
S local = min

i∈{1,..,4}
−→
S i; NoImprovement = false;

7 else
8 NoImprovement = true;
9 end

10 until NoImprovement;
11 if LocalImprovement then
12 do
13 Apply MinConOMC() to each −→

S i;
14 if −→

S local > min
i∈{1,..,4}

−→
S i then

15
−→
S local = min

i∈{1,..,4}
−→
S i; LocalImprovement = false;

16 else
17 LocalImprovement = true;
18 end
19 while LocalImprovement;
20 Apply PCom(), MinConTMC() to each −→

S i;
21 else
22 Apply MinConFMC(), MinConSJL(), MinConSJR(), INVS () to each −→

S i

23 end
24 if −→

S local > min
i∈{1,..,4}

−→
S i then

25
−→
S local = min

i∈{1,..,4}
−→
S i;

26 end
27 if −→

S local < −→
Sbest then

28
−→
Sbest=

−→
S local; NoImprovement = false;

29 else
30 NoImprovement = true;
31 end
32 LocalImprovement = NoImprovement;
33 if LocalImprovement = false then
34 LocalImprovement = true; perturbationSize += 1;
35 else
36 perturbationSize = 1;
37 end
38 Reset −→

S local; Perturbate(−→S i, perturbationSize);
39 until timeExpired;
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• Training instances consist of sets A and B of instances from MISTA challenge (20
instances),

• Testing instances consist of set X of instances from MISTA challenge (10 instances),

• List of parameters and their domains:

– ModeOp-Tabu-list-length ∈ {3, .., 40},
– SeqOp-Tabu-list-length ∈ {3, .., 40},
– VarSetSize ∈ {3, .., 20},
– OpExecTime ∈ {1, .., 10}.
– PertSizeThres ∈ {1, .., 10}.

This setup produced parameter configuration as given in Table 3.1:

Table 3.1: SMAC output for parameter values

Parameter name Value
ModeOp-Tabu-list-length 32%
SeqOp-Tabu-list-length 16%

VarSetSize 13
OpExecTime 5
PertSizeThres 10%

In addition to the above experiment, we also experimented with the Cartesian combination
of parameters with a limited domain of values and a limited number of instances.
Regarding the threshold value for the perturbation size, we found during the tests that
after increasing the threshold value for the perturbation quantity above 10%, we could
obtain almost no improvement in the instances involved in the tests. We obtained the
following configuration of the parameters (see Table 3.2) that were further used in our
experiments These parameter values are similar to the values obtained by SMAC, but
provided slightly better results for our benchmark problems.

Table 3.2: Parameters used for tests

Parameter name Value
ModeOp-Tabu-list-length 30%
SeqOp-Tabu-list-length 20%

VarSetSize 11
OpExecTime 6
PertSizeThres 10%
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3.2 Computational results
Our experiments were performed on a computer with a 64-bit Intel Core i5 processor (3.3
GHz) CPU of four cores, 8GB RAM and the Microsoft Windows operating system. The
algorithm was implemented in C# (using Visual Studio 2012), and it runs in parallel with
four threads. The executables and the source code of our algorithm can be downloaded
from this website: http://dbai.tuwien.ac.at/user/aahmeti/. The solution validator can be
found on the MISTA 2013 Challenge website. All the solvers presented in the MISTA 2013
Challenge with which we compared our results were run in parallel in a multithreaded
environment.

3.2.1 Benchmark instances

We tested our meta-heuristic approach on the MRCMPSP benchmark instances presented
in the MISTA 2013 challenge and the well-known MMLIB instances.

MRCMPSP MISTA 2013 challenge instances

The benchmark instances used in the MISTA 2013 challenge are comprised of three sets
A, B and X. Each set of benchmark instances is comprised of ten instances. Table 3.3
lists th characteristics of these instances. A global renewable resource replaces a local
renewable resource when present. A project with two global renewable resources has
no local renewable resources left. In the preprocessing phase, we removed infeasible
modes of activities from the data structure. A mode is considered infeasible if any part
of its renewable resource requirements exceeds its capacity. Similar preprocessing was
performed by [Gei17] and [BBZ+13].

The MMLIB instances

Although our main objective is to develop solution approaches for MRCMPSP, we also
applied our algorithm to solve known MMLIB instances. The MMLIB problem instances
are single project multi-mode resource-constrained instances introduced by [VPV14].
This library is comprised of three different sets of well-known and heavily studied problem
instances: MMLIB50, MMLIB100 and MMLIB+. The objective function for these
problems is the minimization of the project makespan.

The first set contains 540 instances consisting of fifty activities with three execution
modes, two renewable and two non-renewable resources. The second set contains 540
instances comprised of one hundred activities with three execution modes, two renewable
and two non-renewable resources. The third set is the largest and most complex; it
contains 3240 instances comprised of 100 activities with up to nine execution modes,
with up to four renewable and four non-renewable resources. The main characteristics of
these instances are shown in Table 3.4.
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Table 3.3: MRCMPSP (MISTA 2013 challenge) benchmark instances characteristics

Ins. Proj. Activities Modes
Local

renewable
resources

Non-renewable
resources

Global
renewable
resources

A-1 2 20 3 1 2 1
A-2 2 40 3 1 2 1
A-3 2 60 3 1 2 1
A-4 5 50 3 1 2 1
A-5 5 100 3 1 2 1
A-6 5 150 3 1 2 1
A-7 10 100 3 0 2 2
A-8 10 200 3 0 2 2
A-9 10 300 3 1 2 1
A-10 10 300 3 1 2 1
B-1 10 100 3 1 2 1
B-2 10 200 3 0 2 2
B-3 10 300 3 1 2 1
B-4 15 150 3 1 2 1
B-5 15 300 3 1 2 1
B-6 15 450 3 1 2 1
B-7 20 200 3 1 2 1
B-8 20 400 3 0 2 2
B-9 20 600 3 1 2 1
B-10 20 420 3 0 2 2
X-1 10 100 3 0 2 2
X-2 10 200 3 1 2 1
X-3 10 300 3 1 2 1
X-4 15 150 3 0 2 2
X-5 15 300 3 1 2 1
X-6 15 450 3 1 2 1
X-7 20 200 3 1 2 1
X-8 20 400 3 1 2 1
X-9 20 600 3 1 2 1
X-10 20 410 3 1 2 1

The MMLIB instances have been the subject of intensive research by many researchers
for a long time. Some of the best known results for these instances generated by different
solvers, under different experimental settings, have been reported by [VPV14]. Table 3.5
lists these results for the MMLIB50, MMLIB100, and MMLIB+ datasets.
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Table 3.4: MMLIB benchmark instances characteristics [VPV14]

MMLIB instances
MMLIB50 MMLIB100 MMLIB+

Number of instances 540 540 3240
Renewable resources 2 2 2,4
Non-renewable resources 2 2 2,4
Number of modes per activity 3 3 3, 6, 9
Number of activities per project 50 100 50, 100

Table 3.5: Statistics of results generated by different solvers for the MMLIB50, MMLIB100,
and MMLIB+ datasets according to 1000, 5000 and 50000 number of schedules reported
in [VPV14] and [Gei17]

MMLIB instances results
MMLIB50 MMLIB100 MMLIB+

Author Number of schedules Number of schedules Number of schedules
1000 5000 50000 1000 5000 50000 1000 5000 50000

[SSW94] (21.85) (23.52) (25.00) (18.89) (19.81) (21.48) - (4.78) (4.78)
[Boc96b] (67.59) (69.63) (78.52) (66.67) (66.67) (66.67) - (54.48) (65.77)
[BL03] (72.96) (77.78) (82.78) (66.67) (67.04) (67.41) - (67.96) (70.59)
[CV11] (83.33) (83.33) (83.15) (83.33) (83.33) (81.85) - (50.00) (53.90)
[Ozd99] (83.15) (83.33) (83.33) (66.67) (67.59) (67.59) - (68.64) (68.77)

[CHW08] (83.33) (83.33) (83.33) (83.33) (83.33) (83.33) - (66.67) (66.67)
[MT97] (72.22) (83.52) 46.91 (67.04) (69.63) (83.33) - (72.59) (97.22)

[AMR03] 56.06 43.05 40.69 61.80 52.67 46.68 - 177.55 164.87
[WVBC11] (89.07) (94.63) 33.49 (83.15) (83.89) (96.85) - 145.78 132.88
[JDSR08] 49.98 38.86 32.01 (91.85) 49.41 40.23 - (94.29) 137.99
[ZTL06] 49.25 35.94 30.23 57.42 44.05 35.35 - (99.81) (99.85)
[TC09] 65.17 37.92 29.44 72.95 66.04 37.04 - 183.02 142.14
[WF12] 43.17 31.95 28.76 52.94 38.55 30.45 - 144.84 110.43

[RDK09] 38.49 32.16 28.55 45.16 37.00 34.17 - 131.45 131.07
[JMR+01] 49.06 33.81 27.81 53.97 39.05 30.27 - 121.09 103.19

[EF10] 43.84 32.47 26.92 56.21 40.22 30.02 - 130.06 106.35
[Har01] 35.40 30.61 26.81 39.96 33.98 29.04 - 132.01 111.45

[LTCB09] 34.16 28.59 26.69 36.29 31.01 27.89 - 114.07 102.73
[DJSL09] 46.19 32.46 26.27 52.31 36.87 28.92 - 126.69 103.75
[PV10] 34.07 27.12 24.93 37.58 29.55 25.63 - (97.59) (97.59)
[PV11] 28.17 25.45 23.79 29.77 26.51 24.02 - 101.45 92.76
[Gei17] 42.96 33.02 28.35 53.26 44.11 32.91 170.67 149.50 114.22

(Number): percentage of feasible solutions found.
Number: average percentage deviation from the lower bounds.
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3.2.2 Experiments with MRCMPSP benchmark instances - MISTA
2013 challenge instances

We ran our algorithm under similar conditions as the MISTA 2013 challenge. We
performed ten runs per instance, and the time limit for each run was set to 300 seconds.
Table 3.6 shows the results for three sets of instances proposed in this challenge. We
report the best result, the average, and the standard deviation for each instance. The
results are given in TPD/TMS format, where TPD is the primary objective, and TMS
is used as a tiebreaker. Evaluation of the new neighborhood operators was the first
objective. We tested our algorithm with and without these operators for every instance of
benchmark data sets of the MISTA 2013 challenge. Our algorithm achieved better results
with the neighborhood operators CloneProj, CloneProjPart, and CloneSeq for almost
every instance. The improvements in results for each instance can be seen in Figure 3.6.
Our new neighborhood operators play the role of an intensification mechanism for our
solver.

Figure 3.6: Improvement of results achieved with neighborhood operators CloneProj,
CloneProjPart and CloneSeq

The horizontal axis shows the instances involved in the tests, while the vertical axis
shows the level of improvements (differences between TPDs for each instance obtained
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by running the algorithm with and without xClone operators).

Table 3.6: Results of our algorithm (MinCONv1) on MISTA 2013 challenge instances
under time limit restrictions

Ins. Best TPD/TMS Average TPD/TMS St. Dev.
A1 1/23 1/23 0/0
A2 2/41 2/41 0/0
A3 0/50 0/50 0/0
A4 65/45 66/46 0/0
A5 163/108 168/110 4/2
A6 152/96 166/102 8/3
A7 652/208 690/212 22/3
A8 335/163 376/164 19/3
A9 253/137 278/145 12/5
A10 980/331 1037/342 33/7
B1 361/129 377/132 10/2
B2 502/180 545/185 21/5
B3 637/224 672/228 20/3
B4 1415/290 1476/300 35/6
B5 927/268 1005/274 44/5
B6 1146/253 1209/263 36/5
B7 864/249 939/247 69/3
B8 3836/626 4059/635 139/12
B9 5757/926 6174/966 241/20
B10 3654/514 3931/522 95/8
X1 427/150 456/150 15/4
X2 408/174 431/176 11/3
X3 407/206 424/206 17/3
X4 1081/221 1123/221 42/5
X5 2089/428 2201/420 65/6
X6 953/284 1021/283 33/10
X7 968/248 1043/250 41/8
X8 1515/324 1662/338 96/10
X9 4167/776 4495/795 147/13
X10 1934/427 2127/451 124/11

In the next experiment, we compared our algorithm with the best performing approaches
of the MISTA challenge. As in the MISTA challenge, a different computer was used (a
machine with 64-bit Intel Core i7 processor (3.4 GHz) CPU of eight cores, 8 GB RAM);
we set the runtime in our machine based on the benchmark program (the 64-bit version)
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of the 2011 International Timetabling Competition 1. This program was executed in the
MISTA machine for 645 seconds and 690 seconds in our machine. Therefore, we set the
running time of our algorithm to 321 seconds (a time limit of 300 seconds was used in
the MISTA challenge). The results for instance sets B and X used in the second phase of
the competition are shown in Table 3.7. Due to space limitations, only the results for
TPD/TMS and no results for the average and standard deviation are given in this table.

Table 3.7: Comparison of MinCONv1 with the best performing algorithms to date for
MRCMPSP, under time limit restrictions

Ins. [AKK+16] [Gei17] [TSCS16] [AH13] [APPR13] MinCONv1
B1 349/127 353/125 363/132 432/128 371/127 361/129
B2 443/167 490/176 434/160 526/153 790/174 502/180
B3 545/210 598/215 660/207 638/205 693/214 637/224
B4 1292/287 1274/289 1548/295 1469/297 1671/287 1415/290
B5 820/254 866/254 919/254 1075/249 1061/255 927/268
B6 912/227 1044/242 1128/232 1083/217 1286/259 1146/253
B7 792/228 834/234 908/246 905/231 916/228 864/249
B8 3176/533 3585/568 3276/529 3662/528 4959/584 3836/626
B9 4192/746 4674/796 5373/769 5465/746 6996/812 5757/926
B10 3249/456 3518/469 3325/447 4033/427 4550/483 3654/514
X1 398/142 394/142 392/142 478/144 486/150 427/150
X2 349/163 368/165 418/165 423/159 431/162 408/174
X3 324/192 372/195 326/188 391/186 418/182 407/206
X4 955/213 970/215 986/207 1054/198 1133/210 1081/221
X5 1768/374 1938/386 2043/375 2076/367 2236/376 2089/428
X6 719/232 844/253 880/240 872/214 1008/245 953/284
X7 861/237 879/231 944/234 993/229 1029/235 968/248
X8 1233/283 1380/296 1478/289 1656/270 1578/298 1515/324
X9 3268/643 3645/688 4169/662 5130/635 4708/696 4167/776
X10 1600/381 1669/402 1851/385 1974/376 2248/393 1934/427

The best results were obtained by solvers that used a larger number of neighborhood
operators. The best performing solver [AKK+16] used 13 neighborhood operators,
whereas the second-ranked solver introduced by [Gei17] used four operators. Compared
to other approaches, our solver is competitive with the third-ranked solver [TSCS16]
(our solver gives better results for instances B1, B3, B4, B7, X2, X9). Moreover, our
algorithm outperforms the fourth and fifth-ranked solvers ([AH13], [APPR13] in 13 and
20 instances, respectively.

The authors of the first three solvers ([AKK+16], [Gei17], [TSCS16]) also reported results
obtained by using other experimental settings. [AKK+16] presented new results of their
solver obtained with over 2500 runs per instance. Geiger [Gei17] used 20 runs per instance

1https://www.utwente.nl/ctit/hstt/itc2011/benchmarking/
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Figure 3.7: Comparison between MinCONv1 results and some of the best results achieved
so far for the MRCMPSP

and [TSCS16] used 50 runs. We also experimented with a time limit of 1 hour and five
runs per instance. A comparison of the best results can be found in Table 3.8. Although
the results cannot be compared directly due to different experimental settings, we can
see that our solver gives better results for five instances (A8, B3, B6, B8, B10) compared
to [Gei17] and for nine instances (A4, A6, A7, A10, B1, B4, B7, X2, X9) compared
with [TSCS16], and matching results in three instances (A1, A2, A3) compared with
[AKK+16].

Figure 3.7 shows the comparison between our results and the best results obtained to
date (to the best of our knowledge) for the MRCMPSP problem.

3.2.3 Experiments with MRCPSP benchmark instances - MMLIB
instances

In order to evaluate the performance of our meta-heuristic approach, we also tested our
algorithm on single-project MRCPSP benchmark instances introduced by [VPV14], i.e.,
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Table 3.8: Comparison of MinCONv1 results with the best approaches using different
experimental settings.

Ins. [AKK+16]
2500 runs

[Gei17]
20 runs

[TSCS16]
50 runs

MinCONv1
5 runs, 1h Average St. Dev.

A1 1/23 1/23 1/23 1/23 1/23 0/0
A2 2/41 2/41 2/41 2/41 2/41 0/0
A3 0/50 0/50 0/50 0/50 0/50 0/0
A4 65/42 65/42 68/50 65/45 66/42 0/2
A5 150/103 153/104 154/104 157/106 160/107 3/1
A6 133/99 144/94 151/94 149/96 154/99 4/2
A7 590/190 601/206 626/194 614/209 636/209 11/2
A8 272/148 319/162 281/147 318/160 326/162 9/2
A9 197/122 225/128 212/127 225/135 237/136 6/1
A10 836/303 920/313 983/309 936/324 973/330 27/4
B1 345/124 349/130 358/131 353/130 369/132 4/1
B2 431/158 481/171 431/159 502/181 512/183 8/2
B3 526/200 604/214 585/196 585/216 599/219 10/2
B4 1252/275 1283/287 1435/294 1340/297 1356/293 11/4
B5 807/245 866/252 867/254 904/268 919/270 10/4
B6 905/225 1067/246 970/224 1064/249 1090/252 22/4
B7 782/225 827/232 876/234 850/240 862/241 10/3
B8 3048/523 3618/565 3001/520 3550/600 3664/611 128/7
B9 4062/738 4606/783 4753/741 4992/845 5277/868 171/15
B10 3140/436 3541/473 3123/430 3471/493 3536/498 56/3
X1 386/137 - 392/142 433/146 441/148 5/4
X2 345/158 - 416/167 381/170 394/171 8/2
X3 310/187 - 332/177 352/205 365/203 8/3
X4 907/201 - 980/209 1027/217 1035/215 7/2
X5 1727/362 - 1904/369 1927/398 1971/403 41/7
X6 690/226 - 821/237 861/263 886/267 17/3
X7 831/220 - 909/232 913/ 236 931/244 12/6
X8 1201/279 - 1389/281 1417/311 1453/315 32/6
X9 3155/632 - 3945/639 3756/715 3923/733 100/12
X10 1573/373 - 1718/377 1827/420 1862/422 31/4

MMLIB50, MMLIB100, and MMLIB+ instances having the project makespan as the
performance measure. MinCONv1 was able to provide new upper bounds to the literature
for six benchmark instances from the MMLIB+ library (Table 3.9). For many other
instances, we obtained matching results with the previous best solvers. These instances
have been the subject of continuous research work, as mentioned earlier. The results
reported in this chapter cover the period up to the beginning of 2018. The work presented
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so far in this chapter is published in [AM18]. Adapting our approach for solving MMLIB
instances was achieved simply by initializing constant α in 2.10 to zero. The problem
representation is compatible with MRCMPSP instances.

Table 3.9: New upper bounds achieved by meta-heuristic for MRCPSP problem

Project total makespans
Instance MinCONv1 Different Authors

Jall64_4.mm 169 174
Jall64_5.mm 149 153
Jall65_2.mm 130 136
Jall65_4.mm 130 138
Jall154_3.mm 148 158
Jall154_4.mm 134 141

3.3 Extensions to MinCONv1

Our efforts to improve MinCONv1 resulted in two extensions of it. The first extension,
denoted as MinCONv2, is achieved by adding a new neighborhood operator called
SwapAndModeCh. The work presented in the following sections of this chapter is
published in [AM21].

3.3.1 Extension MinCONv2

SwapAndModeCh is a combination of two existing neighborhood operators, SwapActivity
and OneModeChange, that were used in the implementation of MinCONv1. We encounter
the implementation of these operators in the work of [AKK+16], [TSCS16] and [Gei17].
Moreover, in the implementation of local search, we excluded the four-mode-change
(MinConFMC ) neighborhood operator in MinCONv1 in order to speed up the algorithm
convergence within a short period of time.

SwapAndModeCh operator performs a swap between an activity and its successor along
the schedule while the precedence constraint is not violated. After each swap, the activity
is assigned to each of its modes in turn, and if there is an improvement, the solution is
accepted.

Figure 3.8 illustrates the neighborhood generated by this operator assuming acti = 3,
SuccessorOf(acti) = 5 in a given input solution s. Activity 3 swaps with its descendants
in the schedule all the way up to its successor, activity 5, with which it has a precedence
constraint. Implementation of SwapAndModeCh neighborhood operator is depicted in
Algorithm 3.5.
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Figure 3.8: SwapAndModeCh(s) neighborhood operator

Algorithm 3.5: SwapAndModeCh(s) neighborhood operator
Input: s ∈ {−→

S }, a feasible schedule;
Output: A feasible initial solution;

1 repeat
2 Improved = false;
3 acti = random.select.from(Ji);
4 while (not IsSuccessor(s, acti+1)) do
5 s ← Swap(s, acti, acti+1);
6 foreach modes_of_acti+1 do
7 s = OneModeChange(s , acti+1);
8 if (eval(s ) < eval(s)) then
9 s ← s ;

10 Improved = true;
11 end
12 end
13 end
14 until not Improved;

3.3.2 Extension MinCONv3

Additionally, we investigated a further extension of MinCONV2 by modifying the existing
neighborhood operator one-mode-change (MinConOMC). Due to the still stochastic
nature of MinCONv2, we replaced the neighborhood operator MinConOMC, which is
based on the idea of min-conflicts heuristic with a neighborhood operator hill-climbing-
one-mode-change (HCOMC), which is based on the hill-climbing concept (see Algorithm
3.8). While MinConOMC focuses only on the variables (activities) that are in conflict
for the same resources, HCOMC generates all solutions from a certain neighborhood.
The function BroadcastBestLocal() is invoked periodically to find the best actual solution
(−→Sbestlocal) among the threads (see Algorithm 3.7). The implementation of MinCONv3 is
shown in Algorithm 3.6.

Since our approach is executed in parallel with four threads, we divided the activities
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Algorithm 3.6: The algorithm MinCONv3
Input: −→

S i ∈ {−→
S }, initial schedules generated from earlier stages, i number of

threads and i = {1, .., 4}, −→
S local and −→

Sbest = −→
S i;

Output: An optimal local solution;
1 NoImprovement = true; LocalImprovement = true;
2 repeat
3 repeat
4 Apply combinations of CloneProj(), CloneProjPart(), ComE(), ComF()

to each −→
S i;

5 if (BroadcastBestLocal()) then
6 NoImprovement = false;
7 else
8 NoImprovement = true;
9 end

10 until NoImprovement;
11 if LocalImprovement then
12 do
13 Apply HCOMC() to each −→

S i;
14 if (BroadcastBestLocal()) then
15 LocalImprovement = false;
16 else
17 LocalImprovement = true;
18 end
19 while LocalImprovement;
20 Apply PCom(), MinConTMC() to each −→

S i;
21 else
22 Apply SwapAndModeCh(), MinConSJL(), MinConSJR(), INVS () to each−→

S i

23 end
24 BroadcastBestLocal();
25 if −→

S local > min
i∈{1,..,4}

−→
S i then

26
−→
S local = min

i∈{1,..,4}
−→
S i;

27 end
28 if −→

S local < −→
Sbest then

29
−→
Sbest=

−→
S local; NoImprovement = false;

30 else
31 NoImprovement = true;
32 end
33 LocalImprovement = NoImprovement;
34 if LocalImprovement = false then
35 LocalImprovement = true; perturbationSize += 1 ;
36 else
37 perturbationSize = 1 ;
38 end
39 Reset −→

S local; Perturbate(−→S i, perturbationSize);
40 until timeExpired;
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from the schedule into four equal groups and executed four instances of hill-climbing
based neighborhood operators for each group of activities in parallel. This approach
appeared to achieve slightly better results than MinCONv2, better average results, and
lower standard deviation when executed under time limit constraints. The definition of
the BroadcastBestLocal() method is shown in Algorithm 3.7.

Algorithm 3.7: BroadcastBestLocal()
1 sminLocal ← min

i∈{1,..,4}
eval(−→S i);

2 stemp ← ∅;
3 s ← Swap(s, acti, acti+1);
4 if (eval(−→Sbestlocal) > eval(sminLocal)) then
5 sminLocal = min

i∈{1,..,4}
eval(−→S i);

6 stemp ← −→
S

arg min
i∈{1,..,4}

−→
Si

;

7 foreach −→
S i do

8
−→
S i ← stemp;

9 end
10

−→
Sbestlocal ← stemp;

11 return true;
12 else
13 return false;
14 end

Acceptance criteria, perturbation, and parameter configuration for MinCONv3 are the
same as for MinCONv1.

Algorithm 3.8: Hill climbing heuristic, HCOMC()
Input: s ∈ {−→

S }, a feasible schedule;
Output: An improved solution;

1 foreach ∈ Sequence(startSeq, endSeq) do
2 foreach m ∈ ModesOf(a) do
3 s ← ChangeModeOfa(s, a);
4 if eval(s ) > eval(s ) then
5 s = s ;
6 end
7 end
8 end
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3.3.3 Evaluation of the extended meta-heuristics
We have conducted extensive experiments with all three variants of the meta-heuristics
on different types of scheduling problems. We discuss these experiments in more detail in
the following subsections. For clarity, Table 3.10 shows the list of neighborhood operators
employed in each variant of the meta-heuristic.

Table 3.10: List of neighborhood operators used in each meta-heuristic variant

Neighborhood
operator MinConv3 MinConv2 MinConv1

CloneProj
CloneProjPart

CloneSeq
MinConOMC x
MinConTMC

HCOMC x x
MinConFMC x x
MinConSJL
MinConSJR

INVS
ComE
ComF
PCom

SwapAndModeCh x

Experiments with MRCMPSP benchmark instances - MISTA 2013
challenge instances

Under time limit constraints, we performed separate experiments with extended versions
of MinCONv1, MinCONv2 and MinCONv3 (ten runs per instance and each run five
minutes). As can be seen in Table 3.11, the two extended variants, MinCONv2 and
MinCONv3, slightly improved most of the results for MRCMPSP benchmark instances
compared with MinCONv1.
The MinCONv3 variant of meta-heuristic achieved sixteen better or equal results out
of a total thirty, and significantly better average results and lower standard deviation
than the MinCONv1 and MinCONv2 variants. In individual comparisons with the other
approaches, the MinCONv2 variant also achieved better results in fifteen out of thirty
cases, and was equal to MinCONv1 in three cases. According to the analysis performed
in section 3.2.2, the MinCONv1 solver was competitive to the third-ranked solver in the
MISTA competition.
Therefore, we can conclude that the MinCONv3 is at least competitive with the best
third-ranked solver for the MRCMPSP.
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Table 3.11: Comparison of the results (TPD/TMS) of the extended meta-heuristic with
the results of the MinCONv1 solver for MRCMPSP. The algorithms are executed under
time limit constraints

MinConv1 MinConv2 MinConv3

Ins. Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

A1 1/23 1 0 1/23 1 0 1/23 1 0
A2 2/41 2 0 2/41 2 0 2/41 2 0
A3 0/50 0 0 0/50 0 0 0/50 0 0
A4 65/45 66 0 65/42 66 1 65/42 66 0
A5 163/108 168 8 162/107 171 5 159/108 168 5
A6 152/96 166 8 156/94 165 8 152/96 162 6
A7 652/208 690 22 644/203 677 17 642/210 665 15
A8 335/163 376 19 337/166 371 19 348/159 369 17
A9 253/137 278 12 245/139 278 12 265/145 285 11
A10 980/331 1037 33 969/338 1055 41 999/340 1044 37
B1 361/129 377 10 355/129 375 5 360/130 370 5
B2 502/180 545 21 498/177 544 16 518/187 538 14
B3 637/224 672 20 639/230 671 14 634/224 662 23
B4 1415/290 1476 35 1386/302 1466 40 1362/289 1444 38
B5 927/268 1005 44 955/275 1015 33 953/277 1003 30
B6 1146/253 1209 36 1139/261 1211 37 1116/255 1202 41
B7 864/249 939 69 890/251 967 33 924/258 973 26
B8 3836/626 4059 139 3687/628 4065 179 3785/619 4169 190
B9 5757/926 6174 241 5858/948 6397 286 6291/981 6803 340
B10 3654/514 3931 95 3636/456 3881 178 3836/507 3976 121
X1 427/150 456 15 435/148 460 15 419/148 452 13
X2 408/174 431 11 419/175 448 19 398/170 436 22
X3 407/206 424 17 382/202 429 12 411/209 433 12
X4 1081/221 1123 42 1035/221 1103 23 1032/223 1102 29
X5 2089/428 2201 65 2083/393 2238 48 2065/407 2223 84
X6 953/284 1021 33 967/281 1062 85 1016/285 1062 43
X7 968/248 1043 41 951/245 1032 40 946/246 999 23
X8 1515/324 1662 96 1584/329 1700 62 1562/329 1767 108
X9 4167/776 4495 147 4374/790 4791 243 4351/779 4812 237
X10 1934/427 2127 124 1938/437 2137 116 1903/433 2124 110

Experiments with MRCPSP benchmark instances - MMLIB instances

Additionally, we tested the extended meta-heuristic MinCONv3 with MMLIB benchmark
instances, having the project makespan as the performance measure. the tests resulted
in the achievement of new upper bounds for five instances (Table 3.12).
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Table 3.12: New upper bounds achieved by meta-heuristic for MRCPSP

Project total makespans
Instance MinCONv3 Different Authors

Jall127_3.mm 142 143
Jall128_5.mm 94 95
Jall184_1.mm 177 179
Jall263_4.mm 146 147
Jall289_5.mm 196 197

3.4 Discussion and analysis
In this chapter, we introduced a new solution approach for the MRCMPSP based on the
min-conflicts heuristic. This technique efficiently explores the neighborhood by focusing
on variables (activities) in conflict for the same resources. We further used the min-
conflicts heuristic within the framework of iterated local search and combined it with the
tabu search components. In our experiments, we found that the neighborhood operators
that manipulate the modes of activities significantly impact the quality of the active
schedule. Therefore, we mainly focused on neighborhood operators that manipulate the
modes of activities and proposed three new project-wise neighborhood operators for the
MRCMPSP. Experimental results have shown that the new operators are useful for this
problem.

Our method was evaluated using MRCMPSP instances from the MISTA 2013 challenge
and compared with the best approaches. The proposed method outperforms the solver
ranked fourth in this competition for most instances and obtains competitive results to
the third-ranked solver. Furthermore, our solver was able to improve the best existing
literature results for eleven well-known instances of the MRCPSP MMLIB benchmark
instances, i.e. MMLIB50, MMLIB100, and MMLIB+. The solution approach presented
in this chapter will serve as the core for the meta-heuristic component of a hybrid model
that we will introduce in next chapters.

Our efforts to improve our meta-heuristic solver (MinCONv1) led to two consecutive
extensions. First, we fine-tuned MinCONv1 by adding a new neighborhood operator
(SwapAndModeCh), which results from the combination of two existing neighborhood
operators, SwapActivity and OneModeChange. Furthermore, we removed the four-mode-
change (MinConFMC) neighborhood operator. This extension of MinCONv1(named
MinCONv2) achieved better results in fifteen out of thirty instances and was equal to
MinCONv1 in three cases.

Our second extension (named MinCONv3) is based on modifying the existing neigh-
borhood operator one-mode-change (MinConOMC). Due to the stochastic nature of
MinCONv2, we replaced the MinConOMC neighborhood operator based on the idea of
min-conflicts with a neighborhood operator, hill-climbing-one-mode-change (HCOMC),
based on the hill-climbing concept. This approach achieved slightly better results than
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MRCMPSP

MinCONv2, better average results, and lower standard deviation. We will use the last
two extensions in our future steps to develop variants of hybrid solvers in combination
with a CP model for the MRCMPSP.
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CHAPTER 4
A Constraint Programming

Model for MRCMPSP

In this chapter, we introduce an exact method for MRCMPSP based on constraint
programming. Although constraint programming has been used very successfully in the
literature to solve different variants of the project scheduling problem, to the best of
our knowledge, this solution paradigm has not yet been studied for MRCMPSP as a
generalized variant of the project scheduling problem.

4.1 The CP model description
As stated earlier, MRCMPSP is a more general variant of project scheduling problems
and is more in line with real-life industry problems. The multi-objective nature of
MRCMPSP makes it an even more difficult problem to solve. Most of the exact models
for MRCMPSP designed so far are based on integer programming and are presented in
combination with meta-heuristics within a hybrid approach, e.g. the hybrid model of
[TSCS16], which consists of a hybrid search method that combines a parallel local search
with multiple neighborhoods with integer programming, or the combination of mixed
integer programming with the large neighborhood search of [AH13]. In this chapter, we
provide a constraint programming model for this problem that is based on the existing
model ( [LRSV18]), which has been applied to the related problem MRCPSP. However,
since our problem is a more general variant, we propose several extensions to solve
MRCMPSP through constraint programming in this chapter.
The main extensions of our constraint programming model for MRCMPSP include:

• Constraints related to a set of global renewable resources ( Gρ) shared among
all the projects, whose availability is limited by cρ

g, g ∈ Gρ. There are no global
non-renewable resources.
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4. A Constraint Programming Model for MRCMPSP

• Release dates constraints and dummy activities for each project.

• Implementation of an objective function that consists of finding a feasible schedule
that fulfils constraints while minimizing the TPD and the TMS. Project delay is
defined as the difference between CPD and the actual project makespan. TPD
is the primary objective, and TMS, as the duration of the entire multi-project
schedule, is used as a tie-breaker.

• Multi-dimensional data structures to model the execution modes of the multi-
project instances, the local renewable and non-renewable resources and to add
global resources.

We further describe the main components and constraints of the CP model. We have
implemented it using the IBM CP Optimizer. According to the problem definition, each
project i ∈ P = {1, 2, .., n} is comprised of a set of non-preemptive activities or jobs Ji

and has a release date ri, i.e. the earliest time when the activities of the project i can
start.
In our model, activities are modeled as interval variables:

interval Ji ∀i ∈ P (4.1)

An interval variable models a time interval and is the basic building block of a CP model.
It has several characteristics, the most important of which are: start, end, and size. The
value of an interval variable is an integer interval defined by its start and its end (for
more details about CP model components, see [LRSV18]). In (6) it is denoted that all
activities of all projects are declared as interval variables in the CP model.
Projects’ release dates constraints and dummy activities:

startOf(bi) = ri ∀i ∈ P, bi ∈ Pi (4.2)

startOf(bi) ≤ startOf(j) ∀i ∈ P, j ∈ Pi (4.3)
endOf(j) ≤ startOf(ei) ∀i ∈ P, ei, j ∈ Pi (4.4)

In a CP model, the startOf and endOf methods access the start and end time of an
interval variable, respectively. To introduce project release dates and dummy activities
as constraints in our model, we defined our startOf and endOf methods. These methods
initialize the StartMin property of the interval variables with the corresponding project’s
release date (ri) and impose the precedence constraints of the dummy activities. The
StartMin property sets and-or returns the minimal start value of an interval variable.
Each activity j ∈ Ji, of every project i ∈ P , has one or more available execution modes
m ∈ Mij . The execution mode of an activity determines the duration dijm required to
complete the activity and its specific resource requirements. The execution modes and
the processing time in each mode for every activity are also modeled as decision variables
in our model:

interval mij optional ∀i ∈ P, j ∈ Ji, mij ∈ Mij (4.5)
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interval dijm optional ∀i ∈ P, j ∈ Ji, m ∈ Mij (4.6)

An interval variable in a CP model can be defined as optional, meaning it can be present
or absent, i.e. it additionally has an absence value in its domain. An activity can be
executed in only one certain mode at any time unit t, so its execution modes must be
defined as optional.
The constraint that every activity j ∈ Ji, can be executed in only one of its modes at
any time unit t is imposed through the alternative constraint of the CP Optimizer:

alternative(j, [mij ]∈Mij
) ∀i ∈ P, j ∈ Ji (4.7)

The alternative constraint imposes that if the activity j is present, then exactly one of its
modes (mij) is present, with the same start and end.
Resources are expressed as cumul-function expressions:

cumulFunction cil ∀i ∈ P, l ∈ Lρ
i (4.8)

cumulFunction cρ
g ∀g ∈ Gρ (4.9)

Local and global renewable resources are modeled as cumul function expressions. The
cumul function expressions model the time evolution of some quantity that can be
increased or decreased by interval variables. These are the proper structures to model
the evolution of the quantity of renewable resources impacted by present activities at
every time unit of the schedule.

intExpr hil ∀i ∈ P, l ∈ Lν
i (4.10)

Since non-renewable resources are depleted incrementally, they are modeled as simple
integer expressions. Feasible schedules of projects must always satisfy the following hard
constraints:

• For each project i ∈ P and each local non-renewable resource l ∈ Lν
i associated

with it, the total resource consumption does not exceed its capacity hil. Since
non-renewable resources have fixed capacities throughout the life of the project, we
modeled them as scalar expressions in our model:

j∈Ji mij∈Mij

presenceOf(mij)(rν
ijml) ≤ hil ∀i ∈ P, l ∈ Lν

i (4.11)

In the MRCMPSP model, each project has its own list of non-renewable resources.
The CP Optimizer constraint presenceOf indicates that a certain interval variable
is present. It is usually used in combination with other constraints. In (4.11),
the presence of the execution mode mij of the activity j implies the demand for
non-renewable resources rν

ijml and the sum of all demands of all activities of project
i cannot exceed the total capacity hil.
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• For each project i ∈ P and each local renewable resource l ∈ Lρ
i associated with

it, the total resource consumption does not exceed its capacity cil. As the name
implies, local renewable resources are dedicated to a specific project and have a fixed
capacity per time unit, meaning that their capacity constraints have a temporal
dimension. Therefore, they are modeled as cumulative functions:

j∈Ji mij∈Mij

pulse(mij , rρ
ijml) ≤ cil ∀i ∈ P, l ∈ Lρ

i (4.12)

In the MRCMPSP model, each project has its own list of renewable resources.
The pulse is an elementary cumul function expression in the CP Optimizer. It
impacts (increases in this case) the value of a cumul function expression by the
value rρ

ijml between the start and the end of the interval variable mij and is equal
to zero everywhere else. The value of a cumul function expression cannot exceed
the capacity cil.

• For any time unit t and any global renewable resource g ∈ Gρ, the total resource
consumption at t does not exceed its capacity cg. Global renewable resources are
modeled as a cumulative function, similar to local renewable resources. There is
only one global resource list that applies to all projects:

i∈P j∈Ji mij∈Mij

pulse(mij , rρ
ijmg) ≤ cg ∀g ∈ Gρ (4.13)

There is no global list of non-renewable resources. The pulse increases the value of
a cumul function expression by value rρ

ijmg between the start and the end of the
interval variable mij and is equal to zero everywhere else. The value of a cumul
function expression cannot exceed the capacity cg.

• Feasible schedules must satisfy all precedence constraints between activities:

endBeforeStart(a, j) ∀i ∈ P, a, j ∈ Pi (4.14)

The CP Optimizer method endBeforeStart imposes a constraint that indicates that
whenever interval variables a and j are present, j cannot start before a has ended.
According to the definition, the main objective function of MRCMPSP is to minimize
the TPD of the projects and the TMS of the projects as tie-breakers. It is defined as:

f = min(max(endOf(j)) +
i∈P

(α ∗ max(endOf(Pi)))), ∀j ∈ Pi (4.15)

α – is a constant.

From the above formula, it can be seen that the TPD for each project is calculated using
the combination of the methods endOf and max. The first method calculates the end
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time of each interval variable (activity) that comprises Pi, and the second method finds
the latest one. The TMS is calculated by locating the interval variable with the latest
end time ∀j ∈ Pi. Finally, the entire expression is passed to the minimize objective for
minimization. The constant α that determines the weight for the TPD is assigned the
value of 100000, similar to the MISTA 2013 challenge conditions.

4.2 Evaluation of the CP Model
We performed experiments with our CP model on the same benchmark instances as
MinCONv3. According to [LRSV18], the search in a CP model can be controlled by
configuring several parameters, e.g. search type, random seed, time limit, etc. The results
of the CP model for MRCMPSP instances shown in Table 4.1 are performed with the
following parameter configuration:

• Search Type = Restart

• Random Seed = 1292619981

• Time Limit = 300 s

In restart search mode, the algorithm restarts and performs the depth-first search after a
parameterized number of failed attempts. Another type of search we have experimented
with is automatic search, which employs a large neighborhood search and failure directed
search ([LRSV18]). The former tries to converge quickly to a good quality solution, and
the latter tries to prove that no better solution than the existing one exists when the
search space is too small or LNS cannot improve the solution further. The CP model
uses a random seed parameter for tie-breaking situations only. In Table 4.1, it can be
seen that the CP model provided improvements for three instances and three matching
results under time constraints (compared to [AKK+16]).

Table 4.2 shows the comparison between our CP Model and the MinCONv3 for MR-
CMPSP. The same results are shown graphically in Figure 4.1. The algorithms are
executed under time limit constraints. As can be seen, the CP model achieves better
results than the MinCONv3 method for seventeen out of thirty instances. The work
presented in this chapter is published in [AM21].

4.3 Discussion and analysis
Building and testing an exact model was another step towards our goal of developing a
hybrid approach. We chose a CP model designed through IBM CP Optimizer for two
reasons. First, CP Models have proven to be successful in solving different scheduling
problems of industrial and research interest, and second, to our knowledge, this is the
first CP Model developed for the MRCMPSP.
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Table 4.1: Comparison of results (TPD/TMS) between our CP Model and the best
solvers results for MRCMPSP. The algorithms are executed under time limit constraints

Ins. [AKK+16] [Gei17] [TSCS16] [AH13] CP
model

A1 1/23 - - - 1/23
A2 2/41 - - - 2/41
A3 0/50 - - - 0/50
A4 65/42 - - - 65/45
A5 153/105 - - - 173/110
A6 147/96 - - - 162/104
A7 596/196 - - - 655/197
A8 302/155 - - - 279/148
A9 223/119 - - - 212/124
A10 969/314 - - - 1017/317
B1 349/127 353/125 363/132 432/128 375/130
B2 443/167 490/176 434/160 526/153 438/167
B3 545/210 598/215 660/207 638/205 586/206
B4 1292/287 1274/289 1548/295 1469/297 1493/286
B5 820/254 866/254 919/254 1075/249 922/267
B6 912/227 1044/242 1128/232 1083/217 936/227
B7 792/228 834/234 908/246 905/231 1003/252
B8 3176/533 3585/568 3276/529 3662/528 3113/544
B9 4192/746 4674/796 5373/769 5465/746 5253/833
B10 3249/456 3518/469 3325/447 4033/427 3295/455
X1 398/142 394/142 392/142 478/144 443/144
X2 349/163 368/165 418/165 423/159 405/167
X3 324/192 372/195 326/188 391/186 346/194
X4 955/213 970/215 986/207 1054/198 996/208
X5 1768/374 1938/386 2043/375 2076/367 1940/376
X6 719/232 844/253 880/240 872/214 799/243
X7 861/237 879/231 944/234 993/229 902/233
X8 1233/283 1380/296 1478/289 1656/270 1366/288
X9 3268/643 3645/688 4169/662 5130/635 4320/760
X10 1600/381 1669/402 1851/385 1974/376 1739/396

The search in a CP model can be determined through the configuration of several pa-
rameters. Therefore, part of the preliminary work was invested in configuring the CP
solver properly. Initial experiments appeared to be promising; the CP model achieved
promising results for small and medium-size benchmark instances. Compared with the
state-of-the-art algorithms for MRCMPSP, our CP model obtained three new upper
bounds for well-known benchmark problem instances. It also achieved better results than
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Table 4.2: Comparison of results (TPD/TMS) between our CP Model and the MinCONv3
for MRCMPSP. The algorithms are executed under time limit constraints

Ins. CP Model MinCONv3
A1 1/23 1/23
A2 2/41 2/41
A3 0/50 0/50
A4 65/45 65/42
A5 173/110 159/108
A6 162/104 152/96
A7 655/197 642/210
A8 279/148 348/159
A9 212/124 265/145
A10 1017/317 999/340
B1 375/130 360/130
B2 438/167 518/187
B3 586/206 634/224
B4 1493/286 1362/289
B5 922/267 953/277
B6 936/227 1116/255
B7 1003/252 924/258
B8 3113/544 3785/619
B9 5253/833 6291/981
B10 3295/455 3836/507
X1 443/144 419/148
X2 405/167 398/170
X3 346/194 411/209
X4 996/208 1032/223
X5 1940/376 2065/407
X6 799/243 1016/285
X7 902/233 946/246
X8 1366/288 1562/329
X9 4320/760 4351/779
X10 1739/396 1903/433

the MinCONv3 meta-heuristic solver for seventeen out of thirty instances. MinCONv3
provided better or equal results for thirteen out of thirty MRCMPSP benchmark instances
under time limit constraints. In the next chapters, we will introduce the experimental
results of combining this CP model with a meta-heuristic method in a hybrid approach.
The starting point for this hybrid model design architecture is based on several models
analyzed in the literature. As we will show later, this hybrid approach has achieved new
upper bounds for many instances of different categories of project scheduling problems
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Figure 4.1: Comparison of results (TPD/TMS) between our CP Model and the MinCONv3
for MRCMPSP. The algorithms are executed under time limit constraints

and outperformed all state-of-the-art solvers for most instances under relaxed time con-
straints. Another important aspect of our efforts was testing our hybrid model and its
constituent components, i.e., the meta-heuristic and the CP model, on other variants of
the project scheduling problems.
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CHAPTER 5
Hybrid method

In this chapter, we introduce our hybrid method that combines meta-heuristic algorithms
and the exact model for MRCMPSP described in the previous chapters. Our main goal
regarding hybrid approaches for MRCMPSP is to combine two complementary search
strategies.

5.1 Hybrid method description
Various classifications and taxonomies for hybrid approaches can be found in the literature
( [Tal09]), such as combining meta-heuristics with constraint programming, combining
meta-heuristics with exact methods from mathematical programming, combining meta-
heuristics with other meta-heuristics or machine learning techniques. We chose to combine
an exact approach, a CP model, with a meta-heuristic approach based on the local search
described in the previous section. The pseudo-code of our hybrid algorithms is presented
in Algorithm 5.1.

According to [Tal09], our hybrid model could be classified as a high-level relay hybrid
(HRH) approach. A solution is improved sequentially by executing a constraint pro-
gramming model and a meta-heuristic. First, an initial solution is generated as input
for the CP model, the required inputs are added to the CP model (lines 1 - 3), and the
execution time and other parameters are specified (lines 4 - 5). Sequentially, the CP
model and the meta-heuristic improve the initial solution (lines 7 - 15). The improved
solution (s) generated by the CP model (line 7) is used as the initial solution for the
meta-heuristic MinCONvx(s, T ime) (line 8). The meta-heuristic continues in the same
way; it tries to further improve the solution s for a configurable time. It returns a solution
(s ) that is evaluated if it is the best solution found so far (lines 9 - 11). If it is not, a
perturbation of the best solution returned by the meta-heuristic (s ) is performed (lines
12 - 14). The perturbation strategy is based on a mode change of an activity and the
inversion of a short sequence of activities randomly selected from the schedule. It always
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Algorithm 5.1: The hybrid model for MRCMPSP combining a CP model and
an extended meta-heuristic

Input: s ← GenerateInitialSolution();
sbest ← s;
Output: An optimized feasible solution;

1 AddTo_CP_Model(Projects, Activities, Modes, Resources);
2 AddTo_CP_Model(AllConstraintsTypes);
/* See equations (4.2), (4.3), (4.4), (4.7), (4.11),

(4.12), (4.13) and (4.14) */
3 AddTo_CP_Model(ObjectiveFunction);
/* See equation (4.15) */

4 T ime ← 15 sec;
5 CP.SetParameters(T ime ∗ 3, SearchType, RandomSeed);
6 while (not Termination_Condition) do
7 s ← Execute_CP_Model(s);
8 s ← MinCONvx(s, T ime);
9 if (eval(s ) < eval(sbest)) then

10 sbest ← s ;
11 s ← s ;
12 else
13 acti ← random.select.from(Ji);
14 s ← RandomOneModeChange(sbest, acti);
15 s ← RandomInvertSubSequence(s);
16 end
17 end

produces feasible solutions. The perturbed solution serves as a starting point for the CP
model. We experimented with the assigned execution time for each algorithm in a ratio
of two to one and three to one in favour of the CP model within an execution sequence.
Slightly better results were obtained with a ratio of three to one. We conducted separate
experiments with two hybrid models containing each meta-heuristic variant: the hybrid
model (HBv1) consisting of the MinCONv2 meta-heuristic and the CP model, and the
hybrid model (HBv2) consisting of the MinCONv3 meta-heuristic and the CP model. A
flowchart illustrates Algorithm 5.1 as shown in Figure 5.1.

5.2 Evaluation of the hybrid method

The hybrid method was evaluated through experimental tests with the MISTA 2013
Challenge MRCMPSP and MMLIB MRCPSP instances. We present detailed results in
the following sections.
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Figure 5.1: The hybrid model

5.2.1 Experiments with MRCMPSP benchmark instances - MISTA
2013 challenge instances

In experiments with a time limit, i.e. ten runs per instance and five minutes per run, our
hybrid solver obtained a new upper bound for the MRCMPSP instance B2, better results
for nine and equal results for four benchmark instances (see Table 5.1) compared with the
results of the best solvers ([AKK+16]), [Gei17], and [TSCS16]. The solver of [AKK+16]
performed better. It performed better for fifteen instances, and [Gei17] and [TSCS16]
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each performed better by one instance. Average results and standard deviations are also

Table 5.1: Comparison of the HBv1 results (TPD/TMS) with the best solvers’ results,
under time limit constraints for MRCMPSP

Ins. [AKK+16] [Gei17] [TSCS16] HBv1
A1 1/23 - - 1/23
A2 2/41 - - 2/41
A3 0/50 - - 0/50
A4 65/42 - - 65/42
A5 153/105 - - 152/104
A6 147/96 - - 144/92
A7 596/196 - - 615/205
A8 302/155 - - 276/150
A9 223/119 - - 200/121
A10 969/314 - - 921/313
B1 349/127 353/125 363/132 364/126
B2 443/167 490/176 434/160 419/162
B3 545/210 598/215 660/207 566/212
B4 1292/287 1274/289 1548/295 1368/291
B5 820/254 866/254 919/254 887/262
B6 912/227 1044/242 1128/232 925/233
B7 792/228 834/234 908/246 859/239
B8 3176/533 3585/568 3276/529 3145/561
B9 4192/746 4674/796 5373/769 5262/884
B10 3249/456 3518/469 3325/447 3415/473
X1 398/142 394/142 392/142 408/142
X2 349/163 368/165 418/165 375/167
X3 324/192 372/195 326/188 318/187
X4 955/213 970/215 986/207 939/210
X5 1768/374 1938/386 2043/375 1878/386
X6 719/232 844/253 880/240 768/240
X7 861/237 879/231 944/234 890/235
X8 1233/283 1380/296 1478/289 1310/287
X9 3268/643 3645/688 4169/662 3840/718
X10 1600/381 1669/402 1851/385 1727/403

given (see Table 5.2).

Differences between results of our HBv1 solver and [AKK+16] under short time limit
are presented graphically in Figure 5.2. It can be noticed that for very large instances,
e.g. B9 and X9, the hyper-heuristic approach performs better compared with our hybrid
method. This is due to the nature of the CP model that is a constituent part of the
hybrid method; it performs very well for small and medium instances, but less well for
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Table 5.2: Comparison of the results (TPD/TMS) of our hybrid approaches with the
results of the best solver ([AKK+16]) for MRCMPSP

[AKK+16] HBv1 HBv2

Ins.
Best

(TPD
/TMS)

Avg
(TPD)

Std
(TPD)

Best
(TPD

/TMS)

Avg
(TPD)

Std
(TPD)

Best
(TPD

/TMS)

Avg
(TPD)

Std
(TPD)

A1 1/23 - - 1/23 1 0 1/23 1 0
A2 2/41 - - 2/41 2 0 2/41 2 0
A3 0/50 - - 0/50 0 0 0/50 0 0
A4 65/42 - - 65/42 65 0 65/42 66 0
A5 153/105 - - 152/104 165 8 152/104 162 7
A6 147/96 - - 144/92 160 5 141/92 158 9
A7 596/196 - - 615/205 639 2 621/201 641 14
A8 302/155 - - 276/150 291 11 282/150 305 22
A9 223/119 - - 200/121 215 11 199/125 211 10
A10 969/314 - - 921/313 982 41 947/328 989 29
B1 349/127 352 - 364/126 379 11 361/128 375 9
B2 443/167 454 - 419/162 461 21 430/160 444 9
B3 545/210 554 - 566/212 601 19 555/208 599 23
B4 1292/287 1305 - 1368/291 1464 65 1368/291 1431 42
B5 820/254 833 - 887/262 923 18 862/259 933 47
B6 912/227 953 - 925/233 992 38 945/229 993 40
B7 792/228 801 - 859/239 921 49 863/241 926 32
B8 3176/533 3314 - 3145/561 3511 179 3312/556 3605 186
B9 4192/746 4264 - 5262/884 5740 320 5071/840 5470 244
B10 3249/456 3338 - 3415/473 3583 137 3324/463 3548 112
X1 398/142 405 - 408/142 432 21 405/141 432 15
X2 349/163 357 - 375/167 402 20 392/166 404 13
X3 324/192 330 - 318/187 346 19 336/188 357 17
X4 955/213 971 - 939/210 1033 53 1001/217 1051 48
X5 1768/374 1785 - 1878/386 1956 43 1933/383 2024 81
X6 719/232 738 - 768/240 840 72 782/242 844 53
X7 861/237 868 - 890/235 925 24 898/232 926 18
X8 1233/283 1257 - 1310/287 1452 92 1325/292 1379 45
X9 3268/643 3303 - 3840/718 4134 163 3835/708 4107 243
X10 1600/381 1614 - 1727/403 1777 36 1709/385 1755 33
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Figure 5.2: Comparison of our results (TPD/TMS) with the results of the best solver of
the MISTA competition ([AKK+16]) for MRCMPSP. The algorithms are executed under
time limit constraints

very large instances.
The hybrid approach appears to be far more successful than executing the algorithms
that comprise it separately. In the case of very large instances and time limit constraints,
e.g. MISTA 2013 Challenge conditions, meta-heuristic approaches appear to be somewhat
better. Under time relaxed conditions, our hybrid approach outperforms all solvers for
most instances.

Our hybrid approach (HBv1) outperformed the best solver implemented by [AKK+16]
for the MRCMPSP for most instances, when algorithms were run under relaxed time
limits. It generated new upper bounds for the majority in instances of this group (see
Table 5.3). The solver presented in [AKK+16] ran 2500 times for each instance and five
minutes for each run. We executed our solver for twenty-four hours only once for each
instance. Our algorithm converged much earlier for the majority of the instances within
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5.2. Evaluation of the hybrid method

Figure 5.3: Comparison of our results (TPD/TMS) with the best solver’s results
([AKK+16]) for MRCMPSP. The algorithms are executed under time relaxed condi-
tions

a few minutes. The comparison of the results of our hybrid method with those of the
solver implemented by [AKK+16], obtained under time relaxed constraints is also shown
in Figure 5.3, where the differences between the results for each benchmark instance of
both solvers are visually presented.

The comparison of HBv1 with HBv2 resulted that HBv1 achieved better results for the
largest number of instances but worse average results and higher standard deviation (see
Table 5.2). It is also noted that HBv1 dominates its constituent components, the CP
model and MinConv2, giving better results for twenty-three out of thirty instances and
equal results for three instances (see Table 5.4). The CP model provides better results
for three instances, and MinConv2 has one better result. The MinConv2 gives better
or equal results for twelve instances compared with the CP model. The HBv2 model
dominates the CP model and MinConv3 by giving better results for twenty out of thirty
instances and matching results for three instances. The CP model gives better results for
three instances, and MinConv3 has one better result. MinConv3 gives better or equal

67



5. Hybrid method

Table 5.3: Comparison of the results (TPD/TMS) of our hybrid approach with the
previous best solution results for MRCMPSP under relaxed time limit

Ins. [AKK+16] [Gei17] [TSCS16] HBv1
A1 1/23 1/23 1/23 1/23
A2 2/41 2/41 2/41 2/41
A3 0/50 0/50 0/50 0/50
A4 65/42 65/42 68/50 65/42
A5 150/103 153/104 154/104 151/104
A6 133/99 144/94 151/94 132/90
A7 590/190 601/206 626/194 595/189
A8 272/148 319/162 281/147 257/147
A9 197/122 225/128 212/127 186/122
A10 836/303 920/313 983/309 854/307
B1 345/124 349/130 358/131 348/127
B2 431/158 481/171 431/159 404/160
B3 526/200 604/214 585/196 515/204
B4 1252/275 1283/287 1435/294 1296/283
B5 807/245 866/252 867/254 813/250
B6 905/225 1067/246 970/224 888/219
B7 782/225 827/232 876/234 800/233
B8 3048/523 3618/565 3001/520 2871/525
B9 4062/738 4606/783 4753/741 4093/736
B10 3140/436 3541/473 3123/430 3057/437
X1 386/137 - 392/142 385/139
X2 345/158 - 416/167 342/163
X3 310/187 - 332/177 287/183
X4 907/201 - 980/209 896/204
X5 1727/362 - 1904/369 1757/370
X6 690/226 - 821/237 700/232
X7 831/220 - 909/232 854/224
X8 1201/279 - 1389/281 1188/279
X9 3155/632 - 3945/639 3269/641
X10 1573/373 - 1718/377 1572/374
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5.2. Evaluation of the hybrid method

Table 5.4: Comparison of results (TPD/TMS) between the hybrid model, the CP Model,
and the meta-heuristics for MRCMPSP. Algorithms are run under time limit

Ins. HBv1
(TPD/TMS)

HBv2
(TPD/TMS)

CP Model
(TPD/TMS)

MinConv2
(TPD/TMS)

MinConv3
(TPD/TMS)

A1 1/23 1/23 1/23 1/23 1/23
A2 2/41 2/41 2/41 2/41 2/41
A3 0/50 0/50 0/50 0/50 0/50
A4 65/42 65/42 65/45 65/42 65/42
A5 152/104 152/104 173/110 162/107 159/108
A6 144/92 141/92 162/104 156/94 152/96
A7 615/205 621/201 655/197 644/203 642/210
A8 276/150 282/150 279/148 337/166 348/159
A9 200/121 199/125 212/124 245/139 265/145
A10 921/313 947/328 1017/317 969/338 999/340
B1 364/126 361/128 375/130 355/129 360/130
B2 419/162 430/160 438/167 498/177 518/187
B3 566/212 555/208 586/206 639/230 634/224
B4 1368/291 1368/291 1493/286 1386/302 1362/289
B5 887/262 862/259 922/267 955/275 953/277
B6 925/233 945/229 936/227 1139/261 1116/255
B7 859/239 863/241 1003/252 890/251 924/258
B8 3145/561 3312/556 3113/544 3687/628 3785/619
B9 5262/884 5071/840 5253/833 5858/948 6291/981
B10 3415/473 3324/463 3295/455 3636/456 3836/507
X1 408/142 405/141 443/144 435/148 419/148
X2 375/167 392/166 405/167 419/175 398/170
X3 318/187 336/188 346/194 382/202 411/209
X4 939/210 1001/217 996/208 1035/221 1032/223
X5 1878/386 1933/383 1940/376 2083/393 2065/407
X6 768/240 782/242 799/243 967/281 1016/285
X7 890/235 898/232 902/233 951/245 946/246
X8 1310/287 1325/292 1366/288 1584/329 1562/329
X9 3840/718 3835/708 4320/760 4374/790 4351/779
X10 1727/403 1709/385 1739/396 1938/437 1903/433

results for thirteen instances compared with the CP model. From the overall comparison,
HBv1 gives better results for fourteen instances, HBv2 gives better results for seven
instances, the CP model gives better results for two instances, MinConv2 and MinConv3
give better results for one instance each. HBv1 and HBv2 give identical results for five
instances. These results are shown graphically in Figure 5.4.
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5. Hybrid method

Figure 5.4: Comparison of results (TPD/TMS) between the hybrid model, the CP Model,
and the meta-heuristics for MRCMPSP. Algorithms are run under time limit
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5.2. Evaluation of the hybrid method

5.2.2 Experiments with MRCPSP benchmark instances - MMLIB
instances

We also evaluated the HBv1 solver on MMLIB benchmark instances (mmlib50, mmlib100
and mmlibPlus), and the experiments resulted in new upper bounds for fifty instances
and equal results for many more compared with the results of state-of-the-art solvers
(see Table 5.5). We executed the algorithm for thirty minutes for each instance. The
results reported in this chapter were achieved during the tests conducted in December
2019. The work presented in this chapter is published in [AM21].

Table 5.5: New upper bounds for MRCPSP achieved by the hybrid method where the
makespan (MS) is the objective (December 2019)

MMLIB Instances
mmlib50 mmlib100 mmlibPlus

Ins. Makespan Ins. Makespan Ins. Makespan
J507_1.mm 43 J1008_5.mm 49 Jall146_1.mm 64
J507_5.mm 40 J10045_3.mm 53 Jall185_3.mm 107
J5043_5.mm 63 J10074_4.mm 75 Jall193_3.mm 75
J5045_4.mm 35 J10076_3.mm 58 Jall254_3.mm 81
J5046_5.mm 38 J10079_1.mm 128 Jall256_3.mm 113
J5047_5.mm 38 J10080_5.mm 83 Jall302_1.mm 47
J5048_2.mm 39 J10081_1.mm 85 Jall344_4.mm 83
J5080_5.mm 69 J10081_2.mm 74 Jall346_2.mm 78

- - J10081_3.mm 70 Jall347_3.mm 57
- - J10082_3.mm 78 Jall363_1.mm 57
- - J10082_4.mm 94 Jall371_1.mm 84
- - J10083_2.mm 79 Jall372_3.mm 72
- - J10083_3.mm 71 Jall374_4.mm 66
- - J10084_3.mm 78 Jall394_2.mm 102
- - J10084_5.mm 73 Jall399_1.mm 237
- - J10092_2.mm 80 Jall401_2.mm 193
- - J10092_5.mm 71 Jall410_5.mm 62
- - J10094_1.mm 54 Jall458_3.mm 79
- - - - Jall509_1.mm 138
- - - - Jall512_1.mm 132
- - - - Jall537_3.mm 133
- - - - Jall537_4.mm 104
- - - - Jall556_2.mm 99
- - - - Jall566_5.mm 124
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5. Hybrid method

5.3 Discussion and analysis
In this chapter, we investigated two hybrid approaches for MRCMPSP: the hybrid model
comprised of the CP model and the MinCONv2 variant of the meta-heuristic called HBv1,
and the combination with the MinCONv3 variant of the meta-heuristic called HBv2. We
performed separate experiments with both solvers on existing MRCMPSP benchmark
instances and compared the results with the state-of-the-art solver for this problem.

Extensive testings were performed in various experimental settings. The hybrid solver
HBv1 produced new upper bounds for nine and equal results for four out of thirty
benchmark instances compared with the best solver for MRCMPSP [AKK+16]. The
hybrid solver HBv1 also achieved fourteen better results and six matching results compared
with HBv2. Under time constraints, MinCONv3, a constituent part of HBv2, achieved
slightly better results than MniCONv2, which constitutes HBv1. Consequently, it seems
that the meta-heuristic solver with a more stochastic nature forms a more efficient
combination with an exact solver. Nevertheless, the HBv2 achieved better average results
and lower standard deviation for more instances. Additionally, we tested our approach
with MMLIB benchmark instances, and experiments resulted in new upper bounds for
fifty instances.

Our main objective was to evaluate a hybrid approach that combines two complementary
search strategies. This study introduces a successful combination of an exact model
(CP model) with a meta-heuristic approach and a particular perturbation mechanism.
Considering that both hybrid models obtained better results than the algorithms that
compose them, we believe that it is of high interest to investigate different hybrid
approaches that combine different search strategies to create a robust and efficient
method. In particular, the role of meta-heuristics in our hybrid method should be further
studied. In our case, we noticed that the hyper-heuristic approach still performed better
than our hybrid approach for very large instances, e.g., B9 and X9, under short time
constraints. Since the exact model relies on the large neighborhood search and performs
very well on small and medium instances, it is up to the meta-heuristic component to
perform an efficient search within very short time constraints in order to provide excellent
results even on very large instances.

Furthermore, in the above experiments, we found that improving the complementary
search nature of algorithms forming a potential hybrid method would be of great interest.
In this context, if we analyze the results and behaviour of the HBv1 again, it turns out
that it achieves better results than HBv2, even though constituting components of HBv2
have achieved better results compared with their counterparts in HBv1. Recall that the
main difference between HBv1 and HBv2 is their meta-heuristic component, MinCONv2
and MinCONv3. The former representing a more stochastic version than the latter.
Therefore, at this stage, we also considered implementing a simulated annealing based
approach as a new meta-heuristic. On the one hand, this approach helps to avoid getting
stuck in a local optimum and, on the other hand, it increases the stochastic nature of
the algorithm. The next chapter will give a complete insight into this implementation.
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CHAPTER 6
Integration of the Simulated

Annealing in the Hybrid
Approach for MRCMPSP

This chapter introduces the implementation of the simulated annealing heuristic for
MRCMPSP and its integration into our hybrid approach HBv1 described in the previous
chapter. Simulated annealing is added to MinCONv2 meta-heuristic as a new neigh-
borhood operator. It is invoked only when the search gets stuck in a local optimum.
This extended meta-heuristic is referred to as MinCONv4. Additionally, this chapter
investigates a new hybrid model resulting from the combination of the CP model described
in Chapter 4 and MinCONv4. The new hybrid model is referred to as HBv3. Initially,
MinCONv4 is evaluated on MISTA 2013 challenge benchmark instances, and then HBv3
is evaluated on MISTA 2013 challenge, MMLIB, and RCMPSP instances and compared
with the state-of-the-art solvers.

6.1 Simulated annealing for MRCMPSP
We have implemented SA in three variants, depending on the types of neighborhoods
they generate:

• The first variant is based on changing the execution mode of an activity.

• The second variant shifts the position of a randomly selected activity in the schedule
in the direction of its first predecessor.

• The third variant shifts the position of a randomly selected activity in the schedule
in the direction of its first successor.
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MRCMPSP

The implementation of the first variant is shown in Algorithm 6.1. As can be seen, first
the parameters for the maximum temperature (Tmax) and the temperature drop step
(tstep) are initialized (see lines 2-3). Then, an activity is randomly selected from a set of
activities (see line 5), and then all its execution modes are changed in turn (see lines 6-7).
Only better solutions or solutions that satisfy the Metropolis criterion are accepted (see
lines 8-11). The temperature is gradually decreased until a certain threshold is reached
(see lines 13-14), otherwise it is heated again. The whole procedure is executed until
a certain time threshold is reached. The other two variants are implemented similarly,
except that instead of the procedure that changes the execution mode of an activity (see
line 5), the actual procedures are called that change the positions of randomly selected
activities in the schedule.

Algorithm 6.1: Simulated annealing algorithm, SA1(s, startSeq, endSeq)
Input: s ∈ {−→

S }, a feasible schedule;
Output: An improved solution;

1 repeat
2 T ← Tmax;
3 t ← tstep;
4 repeat
5 a ← Random(startSeq, endSeq);
6 foreach mode_of_a do
7 s ← OneModeChange(s, a);
8 prob ← Random.Double[0, 1);
9 if (eval(s ) < eval(s)) or (prob < e

−|eval(s )−eval(s)|
T ) then

10 s ← s ;
11 end
12 end
13 T ← T ∗ t;
14 until T < 1;
15 T ← Tmax;
16 until TimeElapsed;

The simulated annealing algorithm has been added to MinCONv2 meta-heuristic as a
new neighborhood operator. The resulting meta-heuristic, referred to as MinCONv4, is
shown in Algorithm 6.2. Simulated annealing is invoked only when the search gets stuck
in a local optimum, i.e. when the parameter SA-activationFreq, which represents the
number of the search iterations without improvements, reaches its threshold (see lines
11-13). Since our algorithm operates in a multi-threaded environment, two threads are
used to execute the first simulated annealing variant, while only one thread is used to
execute each of the other variants.
Other neighborhood operators used in the Algorithm 6.2 are the same as those described in
Chapter 3: one-mode change (MinConOMC), two-mode change (MinConTMC), shifting
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6.1. Simulated annealing for MRCMPSP

Algorithm 6.2: The algorithm MinCONv4
Input: −→

S i ∈ {−→
S }, initial schedules generated from earlier stages;

Output: An optimal local solution;
1 NoImprovement = true; LocalImprovement = true;
2 repeat
3 repeat
4 Apply combinations of CloneProj(), CloneProjPart(), ComE(), ComF();
5 if (BroadcastBestLocal()) then
6 NoImprovement = false;
7 else
8 NoImprovement = true;
9 end

10 until NoImprovement;
11 if SAactivationFreq > threshold then
12 SAx(−→S i, sSeqi, eSeqi);
13 end
14 if LocalImprovement then
15 do
16 Apply MinConOMC();
17 if (BroadcastBestLocal()) then
18 LocalImprovement = false;
19 else
20 LocalImprovement = true;
21 end
22 while LocalImprovement;
23 Apply PCom(), MinConTMC();
24 else
25 Apply SwapAndModeCh(), MinConSJL(), MinConSJR(), INVS ();
26 end
27 BroadcastBestLocal();
28 if −→

S local > min
i∈{1,..,4}

−→
S i then

29
−→
S local = min

i∈{1,..,4}
−→
S i;

30 end
31 if −→

S local < −→
Sbest then

32
−→
Sbest=

−→
S local; NoImprovement = false;

33 else
34 NoImprovement = true;
35 end
36 LocalImprovement = NoImprovement;
37 if LocalImprovement = false then
38 LocalImprovement = true; perturbationSize += 1 ; SAactivationFreq += 1;
39 else
40 perturbationSize = 1 ; SAactivationFreq = 1;
41 end
42 Reset −→

S local; Perturbate(−→S i, perturbationSize);
43 until timeExpired;
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an activity to its last predecessor (MinConSJL), shifting an activity to its first successor
(MinConSJR), inverting a subsequence of activities (INVS), swapping an activity and a
one-mode change (SwapAndModeCh), compressing a project and moving it to the end
(ComE), compressing a project and moving it to the beginning (ComF), cloning a project
(CloneProj), partially cloning a project (CloneProjPart), and cloning a sequence from a
project (CloneSeq). A flowchart for Algorithm 6.2 is shown in Figure 6.1.

Figure 6.1: The new hybrid solver
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6.2. Computational results

6.1.1 Acceptance criteria and perturbation

We accept only better solutions and apply an adaptive perturbation strategy depending
on the instance size. The perturbation consists in changing the modes of up to 10 % of
the randomly selected activities of the current schedule. When simulated annealing is
executed, it is possible to accept slightly worse solutions to escape the local minimum.

6.1.2 Parameter tuning

The parameters used in the algorithm 6.2 are shown in the table 6.1, where: ModeT-
BLength represents a dimension of the tabu list for neighborhood operators manipulating
modes of activities. It is determined as a percentage of the total number of activities in
a given instance. SeqTBLength represents a dimension of the tabu list for neighborhood
operators that manipulate positions of activities in the schedule and it is determined as
a percentage of the total number of activities in a given instance, VarSetSize represents
the size of variable set for the MinConTMC operator, PertSizeThreshold is the threshold
for the size of the perturbation, Tmax is the maximum temperature in the simulated an-
nealing algorithm, tstep is the temperature decrease step, and TimeElapsed is the time in
which the Simulated Annealing is executed. The parameter SA-activationFreq represents
the number of the search iterations without improvements before the execution of the
simulated annealing. Similarly, seqPerturbationFreq represents the frequency of running
the entire hybrid solver without any improvements before performing perturbation based
on the change in the randomly selected activity position. The values of the parameters
were fine-tuned using the SMAC tool [LEF+17, HHL11].

Table 6.1: Parameters used for tests

Parameter Value Domain of values
ModeOp-Tabu-List-Length 30% {10%, 15%, 20%, 25%, 30%, 35%, 40%}
SeqOp-Tabu-List-Length 20% {10%, 15%, 20%, 25%, 30%, 35%, 40%}
VarSetSize 11 {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
PertSizeThreshold 10% {3%, 5%, 7%, 10%, 13%, 15%, 20%}
Tmax 300 {100, 300, 500, 800, 1000, 3000}
tstep 0.9 {0.8, 0.85, 0.9, 0.95}
TimeElapsed 2 {1, 2, 3, 5, 10}
SA-activationFreq 6 {3, 6, 8, 10, 12, 15}
seqPerturbationFreq 11 {3, 5, 7, 9, 11, 13, 15}

6.2 Computational results
We tested and validated our approach with benchmark instances of three types of schedul-
ing problems: MRCMPSP benchmark instances used in the MISTA 2013 challenge,
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well-known MMLIB MRCPSP instances, and MPSPLIB RCMPSP 1 instances.

6.2.1 Experiments with MRCMPSP benchmark instances - MISTA
2013 challenge instances

The MinCONv4 slightly improves the results for MRCMPSP instances compared with
MinCONv2 (see Table 6.2). Moreover, the new hybrid solver (HBv3), which is composed
of the CP model and the new meta-heuristic component (MinCONv4), provides new
upper bounds for fourteen MRCMPSP instances out of thirty. It outperforms the best
solvers for MRCMPSP for most instances under relaxed time limits (see Table 6.3).
The same results (TPD only) are shown in a friendlier way in Figure 6.2. Our HBv3
solver outperforms the hyper-heuristic solver implemented by [AKK+16] by giving better
results for sixteen and matching results for four instances, and the hybrid solver HBv1
by giving better results for fifteen and matching results for five out of thirty instances.
The [AKK+16] results shown in this table were obtained after 2500 executions of the
algorithm for each instance, with each execution taking 5 minutes. We ran our solver
for a much shorter time, two hours, with only one run for each instance. Our algorithm
converged much earlier, within a few minutes, for most instances. The comparison of
the results of our HBv3 solver with those of the [AKK+16] solver is shown in Figure 6.3.

In terms of very short execution time (five minutes per run), the algorithm of [AKK+16]
still converges faster than our hybrid solver for most instances. Our algorithm gave better
results for eight instances and matching results for four out of thirty instances (see Table
6.4).

These results are also shown graphically in Figure 6.4.

6.2.2 Experiments with MRCPSP benchmark instances - MMLIB
instances

In addition, we tested our new hybrid solver with known MMLIB instances, obtaining 49
new upper bounds (see table 6.5) and matching results for 2429 instances compared to
the previous best solvers. The results reported in this chapter were obtained during tests
conducted in June 2021.

6.2.3 Experiments with RCMPSP benchmark instances - MPSPLIB
instances

The MPSPLIB RCMPSP problem instances are multi-project single-mode resource-
constrained instances. This library is comprised of instances consisting of 2 to 20 projects,
20 instances with projects consisting of 30 activities, 60 instances with projects consisting
of 90 activities, and 60 instances with projects consisting of 120 activities. The objective
functions for these problems are:

1http://www.mpsplib.com/ranking.php
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6.2. Computational results

Table 6.2: Comparison of MinCONv4 results (TPD/TMS) with MinCONv3 results for
MRCMPSP under time limit constraints

MinCONv3 MinCONv4

Ins. Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

A1 1/23 1 0 1/23 1 0
A2 2/41 2 0 2/41 2 0
A3 0/50 0 0 0/50 0 0
A4 65/42 66 0 65/42 66 0
A5 159/108 168 5 159/104 168 4
A6 152/96 162 6 154/100 167 7
A7 642/210 665 15 646/217 667 15
A8 348/159 369 17 339/166 373 18
A9 265/145 285 11 252/136 280 17
A10 999/340 1044 37 977/332 1051 37
B1 360/130 370 5 359/128 371 9
B2 518/187 538 14 529/185 559 20
B3 634/224 662 23 649/227 667 25
B4 1362/289 1444 38 1405/298 1461 37
B5 953/277 1003 30 976/277 1029 35
B6 1116/255 1202 41 1176/259 1263 47
B7 924/258 973 26 917/241 951 20
B8 3785/619 4169 190 3746/609 4101 264
B9 6291/981 6803 340 5730/947 6263 311
B10 3836/507 3976 121 3788/520 3940 115
X1 419/148 452 13 430/152 464 17
X2 398/170 436 22 422/178 439 13
X3 411/209 433 12 408/206 429 9
X4 1032/223 1102 29 1029/218 1095 43
X5 2065/407 2223 84 2012/407 2191 96
X6 1016/285 1062 43 924/273 1089 72
X7 946/246 999 23 952/245 1018 36
X8 1562/329 1767 108 1536/328 1691 67
X9 4351/779 4812 237 4430/783 4797 364
X10 1903/433 2124 110 2001/435 2158 104

• Minimization of Average Project Delay (APD)

• Minimization of Total Makespan (TMS)

• Minimization of Standard Deviation of the Project Delay (DPD)
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Table 6.3: Comparison of the new hybrid solver’s results (TPD/TMS) with results of the
best solvers for MRCMPSP under relaxed time limit

Ins. [AKK+16] [Gei17] [TSCS16] HBv1 HBv3
A1 1/23 1/23 1/23 1/23 1/23
A2 2/41 2/41 2/41 2/41 2/41
A3 0/50 0/50 0/50 0/50 0/50
A4 65/42 65/42 68/50 65/42 65/42
A5 150/103 153/104 154/104 151/104 152/104
A6 133/99 144/94 151/94 132/90 133/90
A7 590/190 601/206 626/194 595/189 595/203
A8 272/148 319/162 281/147 257/147 251/146
A9 197/122 225/128 212/127 186/122 184/121
A10 836/303 920/313 983/309 854/307 889/314
B1 345/124 349/130 358/131 348/127 348/127
B2 431/158 481/171 431/159 404/160 399/159
B3 526/200 604/214 585/196 515/204 509/203
B4 1252/275 1283/287 1435/294 1296/283 1247/280
B5 807/245 866/252 867/254 813/250 804/251
B6 905/225 1067/246 970/224 888/219 830/221
B7 782/225 827/232 876/234 800/233 808/238
B8 3048/523 3618/565 3001/520 2871/525 2724/513
B9 4062/738 4606/783 4753/741 4093/736 4111/736
B10 3140/436 3541/473 3123/430 3057/437 2901/426
X1 386/137 - 392/142 385/139 388/141
X2 345/158 - 416/167 342/163 341/163
X3 310/187 - 332/177 287/183 292/186
X4 907/201 - 980/209 896/204 895/206
X5 1727/362 - 1904/369 1757/370 1722/365
X6 690/226 - 821/237 700/232 670/224
X7 831/220 - 909/232 854/224 858/228
X8 1201/279 - 1389/281 1188/279 1180/277
X9 3155/632 - 3945/639 3269/641 3211/643
X10 1573/373 - 1718/377 1572/374 1593/378

Our new hybrid solver outperformed all solvers for most instances of this problem. It
obtained 81 new upper bounds out of 140 for RCMPSP instances and identical results
in 28 of them compared to the previous best solvers (see Table 6.6). The target for
these problems was to minimize three objective functions: the minimization of APD, the
minimization of TMS, and the minimization of the DPD. The listing in Table 6.6 was
designed with APD as the primary objective, but for the instances for which we have
given new upper bounds, our algorithm has the best results for both TMS and DPD for
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Table 6.4: Comparison of the HBv3 results (TPD/TMS) with [AKK+16] solver results,
under time limit constraints for MRCMPSP

Asta HBv3

Ins. Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

Best
(TPD/TMS)

Avg
(TPD)

Std
(TPD)

A1 1/23 - - 1/23 1 0
A2 2/41 - - 2/41 2 0
A3 0/50 - - 0/50 0 0
A4 65/42 - - 65/42 65 0
A5 153/105 - - 154/103 163 6
A6 147/96 - - 145/94 159 5
A7 596/196 - - 612/198 633 16
A8 302/155 - - 276/153 294 10
A9 223/119 - - 195/121 209 8
A10 969/314 - - 918/315 968 29
B1 349/127 352 - 364/129 375 7
B2 443/167 454 - 436/163 459 13
B3 545/210 554 - 587/210 600 10
B4 1292/287 1305 - 1356/285 1442 49
B5 820/254 833 - 861/259 902 30
B6 912/227 953 - 951/230 1021 55
B7 792/228 801 - 868/236 922 40
B8 3176/533 3314 - 3175/531 3547 202
B9 4192/746 4264 - 5057/816 5248 159
B10 3249/456 3338 - 3287/457 3565 119
X1 398/142 405 - 412/144 430 13
X2 349/163 357 - 386/167 410 14
X3 324/192 330 - 323/189 352 27
X4 955/213 971 - 939/206 1047 36
X5 1768/374 1785 - 1909/371 1999 51
X6 719/232 738 - 756/238 806 36
X7 861/237 868 - 908/228 937 21
X8 1233/283 1257 - 1351/287 1409 41
X9 3268/643 3303 - 3765/694 4076 213
X10 1600/381 1614 - 1702/394 1768 53

the majority of the instances.
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Table 6.5: New upper bounds for MRCPSP achieved by the hybrid method where the
makespan (MS) is the objective (June 2021)

MMLIB Instances
mmlib50 mmlib100 mmlibPlus

Ins. Makespan Ins. Makespan Ins. Makespan
J507_5.mm 40 J1009_5.mm 34 Jall37_4.mm 52
J508_1.mm 36 J10046_4.mm 63 Jall38_1.mm 48
J508_5.mm 41 J10056_1.mm 42 Jall59_5.mm 59

- - J10056_4.mm 45 Jall66_3.mm 118
- - J10073_1.mm 80 Jall94_5.mm 96
- - J10074_2.mm 82 Jall145_1.mm 94
- - J10074_3.mm 69 Jall154_3.mm 147
- - J10080_2.mm 92 Jall159_1.mm 57
- - J10081_5.mm 83 Jall184_3.mm 155
- - J10082_3.mm 78 Jall185_3.mm 107
- - J10082_1.mm 79 Jall185_5.mm 116
- - J10084_2.mm 81 Jall190_2.mm 95
- - J10092_3.mm 65 Jall192_3.mm 62
- - - - Jall203_5.mm 70
- - - - Jall204_2.mm 65
- - - - Jall208_1.mm 237
- - - - Jall208_3.mm 259
- - - - Jall212_5.mm 111
- - - - Jall229_1.mm 99
- - - - Jall237_5.mm 82
- - - - Jall263_4.mm 145
- - - - Jall265_2.mm 180
- - - - Jall290_2.mm 129
- - - - Jall298_1.mm 98

Jall320_1.mm 110
Jall372_3.mm 72
Jall399_2.mm 212
Jall399_5.mm 213
Jall400_3.mm 213
Jall457_3.mm 121
Jall564_4.mm 86
Jall566_3.mm 133
Jall619_2.mm 166

82



6.3. Discussion and analysis

6.3 Discussion and analysis
In this chapter, we presented the implementation of the simulated annealing heuristic
for the MRCMPSP in three variants, depending on the types of neighborhoods they
generate. Moreover, we integrated it with an existing hybrid solver consisting of a
CP model and a meta-heuristic. Our approach has been evaluated on several types of
project scheduling benchmark instances with different objectives: MISTA 2013 Challenge
MRCMPSP, MMLIB MRCPSP, and MPSPLIB RCMPSP instances. As mentioned
earlier, the objective for the MRCMPSP was to minimize TPD and TMS, having TPD
as the main objective. The objective for MMLIB MRCPSP was to minimize the project
makespan, and the target for MPSPLIB RCMPSP was to minimize three objective
functions: the minimization of APD, the minimization of the minimization of TMS,
and the minimization of the DPD. Our algorithm achieved new upper bounds for many
benchmark instances and outperformed state-of-the-art solvers for most instances of these
problems. It achieved new upper bounds for fourteen out of thirty MRCMPSP instances
and outperformed the best hyper-heuristic solver implemented by [AKK+16] as well as
the hybrid solver HBv1 for most instances. For known MMLIB instances, our approach
achieved 49 new upper bounds and matching results for 2429 instances compared to the
previous best solvers. In the case of MPSPLIB RCMPSP, our new hybrid solver obtained
81 new upper bounds out of 140 RCMPSP instances and identical results in 28 of them
compared to the previous best solvers.

Our approach proved to be very promising for several variants of the project scheduling
problem. There is still room for improvement, especially in the direction of the meta-
heuristic component of our approach. For example, in our experiment, we found that in
the case of very large instances, the hyper-heuristic approach of [AKK+16] still converges
faster than our hybrid solver.

Table 6.6: New upper bounds for MPSPLIB RCMPSP instances obtained by HBv3 (June
2021)

Id Instance No.
jobs

No.
proj.

Gl.
Res. APD TMS DPD

1 mp_j30_a10_nr1 30 10 2 78.8 191 52.721
2 mp_j30_a10_nr2 30 10 1 7.6 108 10.384
3 mp_j30_a10_nr4 30 10 3 15.4 156 25.838
4 mp_j30_a10_nr5 30 10 1 49.1 190 44.817
5 mp_j30_a20_nr1 30 20 2 184.75 426 118.893
6 mp_j30_a20_nr2 30 20 1 69.3 282 55.876
7 mp_j30_a20_nr3 30 20 2 92.5 317 66.731
8 mp_j30_a20_nr4 30 20 3 26.3 192 43.059
9 mp_j30_a5_nr2 30 5 1 11.6 78 7.603
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10 mp_j30_a5_nr3 30 5 2 25.6 109 11.104
11 mp_j30_a5_nr5 30 5 1 14 97 12.981
12 mp_j90_a10_nr3 90 10 2 38.5 225 32.477
13 mp_j90_a10_nr5 90 10 1 48.7 248 51.582
14 mp_j90_a2_nr2 90 2 1 19 117 24.042
15 mp_j90_a20_nr2 90 20 1 2.5 163 4.674
16 mp_j90_a20_nr4 90 20 3 24.8 186 28.929
17 mp_j90_a20_nr5 90 20 1 37.55 243 46.957
18 mp_j90_a5_nr5 90 5 1 11.6 151 17.038
19 mp_j120_a10_nr1 120 10 2 35.7 138 25.893
20 mp_j120_a10_nr2 120 10 1 60.9 254 53.716
21 mp_j120_a10_nr3 120 10 2 2.7 152 4.373
22 mp_j120_a10_nr5 120 10 1 170.5 502 126.615
23 mp_j120_a2_nr1 120 2 2 32.5 171 40.305
24 mp_j120_a2_nr4 120 2 3 39.5 147 10.607
25 mp_j120_a20_nr1 120 20 2 2.05 76 0.224
26 mp_j120_a5_nr3 120 5 2 61.2 216 39.720
27 mp_j120_a5_nr5 120 5 1 70.8 267 73.761
28 mp_j90_a10_nr5_AC10 90 10 4 49.6 180 43.638
29 mp_j90_a10_nr5_AC2 90 10 4 267.7 761 232.398
30 mp_j90_a10_nr5_AC3 90 10 4 49.8 269 60.494
31 mp_j90_a10_nr5_AC5 90 10 4 124.4 366 88.434
32 mp_j90_a10_nr5_AC7 90 10 4 124.6 404 123.384
33 mp_j90_a10_nr5_AC8 90 10 4 66.4 273 75.482
34 mp_j90_a10_nr5_AC9 90 10 4 78.9 235 57.717
35 mp_j90_a20_nr5_AC1 90 20 4 130.35 468 111.280
36 mp_j90_a20_nr5_AC10 90 20 4 206.4 489 138.073
37 mp_j90_a20_nr5_AC3 90 20 4 8 160 16.371
38 mp_j90_a20_nr5_AC4 90 20 4 115.6 355 82.353
39 mp_j90_a20_nr5_AC5 90 20 4 5.75 129 7.840
40 mp_j90_a20_nr5_AC6 90 20 4 55.75 256 56.550
41 mp_j90_a20_nr5_AC7 90 20 4 68.25 278 75.201
42 mp_j90_a20_nr5_AC8 90 20 4 19.1 160 30.017
43 mp_j90_a20_nr5_AC9 90 20 4 169.45 422 114.368
44 mp_j90_a2_nr5_AC1 90 2 4 61.5 191 64.347
45 mp_j90_a2_nr5_AC10 90 2 4 20 106 26.870
46 mp_j90_a2_nr5_AC2 90 2 4 172.5 330 118.087
47 mp_j90_a2_nr5_AC3 90 2 4 36 159 50.912
48 mp_j90_a2_nr5_AC4 90 2 4 174 326 103.238
49 mp_j90_a2_nr5_AC6 90 2 4 63.5 187 62.933
50 mp_j90_a2_nr5_AC8 90 2 4 37 156 52.326
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51 mp_j90_a5_nr5_AC10 90 5 4 96.2 256 70.187
52 mp_j90_a5_nr5_AC5 90 5 4 87 259 70.937
53 mp_j120_a10_nr5_AC10 120 10 4 16.3 188 31.006
54 mp_j120_a10_nr5_AC2 120 10 4 100.2 396 108.309
55 mp_j120_a10_nr5_AC3 120 10 4 156.4 489 131.902
56 mp_j120_a10_nr5_AC4 120 10 4 113.4 436 113.811
57 mp_j120_a10_nr5_AC5 120 10 4 86 409 105.171
58 mp_j120_a10_nr5_AC6 120 10 4 99.5 399 116.464
59 mp_j120_a10_nr5_AC7 120 10 4 13 150 22.040
60 mp_j120_a10_nr5_AC8 120 10 4 22.9 174 34.949
61 mp_j120_a10_nr5_AC9 120 10 4 14.1 157 20.551
62 mp_j120_a20_nr5_AC1 120 20 4 95.55 395 103.045
63 mp_j120_a20_nr5_AC10 120 20 4 93.85 374 102.449
64 mp_j120_a20_nr5_AC2 120 20 4 60.5 305 70.464
65 mp_j120_a20_nr5_AC3 120 20 4 351.75 1005 281.823
66 mp_j120_a20_nr5_AC4 120 20 4 54.85 316 68.448
67 mp_j120_a20_nr5_AC5 120 20 4 78.6 379 88.258
68 mp_j120_a20_nr5_AC8 120 20 4 110.4 385 100.531
69 mp_j120_a20_nr5_AC9 120 20 4 63.6 313 76.177
70 mp_j120_a2_nr5_AC1 120 2 4 69 215 96.1665
71 mp_j120_a2_nr5_AC10 120 2 4 3.5 92 4.950
72 mp_j120_a2_nr5_AC3 120 2 4 54.5 170 54.447
73 mp_j120_a2_nr5_AC5 120 2 4 5 95 7.071
74 mp_j120_a2_nr5_AC6 120 2 4 69 212 97.581
75 mp_j120_a2_nr5_AC7 120 2 4 2 103 2.828
76 mp_j120_a2_nr5_AC8 120 2 4 57.5 180 48.790
77 mp_j120_a5_nr5_AC1 120 5 4 207.6 598 223.267
78 mp_j120_a5_nr5_AC2 120 5 4 69.2 293 75.939
79 mp_j120_a5_nr5_AC4 120 5 4 109.2 387 115.361
80 mp_j120_a5_nr5_AC6 120 5 4 213.6 596 221.218
81 mp_j120_a5_nr5_AC7 120 5 4 73.2 291 85.634
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Figure 6.2: Comparison of the new hybrid solver’s results (TPD/TMS) with results of
the best solvers for MRCMPSP
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Figure 6.3: Comparison of the results of our HBv3 solver (TPD/TMS) with the results of
the best solver ([AKK+16]) for MRCMPSP. The algorithms are run under time relaxed
conditions
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Figure 6.4: Comparison of the results of our HBv3 solver (TPD/TMS) with the results
of the [AKK+16] solver for MRCMPSP. The algorithms are run under time relaxed
conditions
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CHAPTER 7
Min-Conflicts heuristic for

Vehicle Routing and Scheduling
with Delivery and Installation of

Machines

After applying the min-conflicts heuristic in solving project scheduling problems, we
continued its experimentation and applied it in solving other categories of problems.
Specifically, this chapter presents the min-conflicts heuristic in an ILS approach to solving
vehicle routing and scheduling with delivery and installation of machine (DIM). It is one
of the latest variants of the vehicle routing problem (VRP) introduced by the EURO
Working Group in Vehicle Routing and Logistics Optimization (VeRoLog 1) and ORTEC
in the VeRoLog Solver Challenge 2019 2 (for more details, see [GvHV19]). This work
was done in collaboration with another PhD student (see [KAM21]), and we present only
our part of the contribution in this chapter.

7.1 VRP with DIM description
DIM is an extension of the capacitated vehicle routing problem (CVRP) that combines
routing and scheduling aspects and optimizes the delivery and consequent installation
of equipment, e.g. vending machines. Vending machines must be delivered within the
time window requested by customers and should be installed by a technician as soon
as possible after delivery. There are different types of vending machines, each with a
different size. All customer requests for machines have to be satisfied. The planning

1http://www.verolog.eu/
2https://verolog2019.ortec.com/
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horizon for the deliveries and installations consists of a given number of consecutive days.
A machine request contains a certain number of machines of one type. If a customer
requests machines of different types, a separate request for each kind is generated. The
number of machines is sufficient to serve all requests of the customer. At the beginning of
the planning horizon, all the machines are located in a central warehouse. An unlimited
number of identical trucks are available to transport the machines from the warehouse to
the locations chosen by the customers. One truck can transport machines of different
types in one delivery without exceeding the truck capacity, which is expressed in the
same unit as the machine size. All machines belonging to one order must be transported
at the same time, i.e. the delivery of one order cannot be split. Each truck picking up
a delivery from the warehouse must finish its route to the warehouse on the same day.
Trucks may return to the warehouse more than once during the day to pick up machines,
but may not exceed their maximum daily distance allowed.

After each machine delivery, the installation of the machine at the customer’s site must
be carried out by a specialized technician as soon as possible. The installation of a
machine may not take place earlier than the next day after its delivery. If the machine is
not installed on the next day of delivery, a penalty set for the machine will be due, which
will increase for each day that the machine is not installed. The installation of a machine
is performed by a specialized technician, meaning that each technician has skills defined
by the type of machines they can install. Each technician may work a maximum of five
consecutive days. If the technician has worked five consecutive days, he has two days off.
If the technician has worked less than five consecutive days, he will receive only one day
off. Each technician’s route must begin and end at their location. The total distance a
technician can travel per day is limited to a certain maximum. The number of requests a
technician can handle per day is also limited to a maximum. Processing a request means
that all machines belonging to that request are installed.

The objective of the DIM problem is to minimize the total cost. The feasible solution
consists of the machines supplied and installed throughout the planning horizon according
to the customer’s requirements. The total cost is composed of several components:

• Unit cost for the distance covered by a truck,

• Cost for using a truck for a day,

• Cost for using a truck at all,

• Cost per unit of the distance traveled by a technician,

• Cost for engaging a technician for a day,

• Cost for using a technician at all, and

• Cost for each day a machine is idle, specific to each type of machine.
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To determine the distances traversed, integer coordinates are given for the warehouse,
customer locations, and technician home locations. Every location is presented as a pair of
coordinates (x, y), and the distance between any two locations, (xi, yi) and (xj , yj), is cal-
culated as the maximum value of the Euclidean distance: d = (xi − xj)2 + (yi − yj)2 .

7.2 Description of our approach
Our approach to solving the DIM problem is based on an ILS implementation where the
local search consists of several neighborhood operators using the min-conflicts heuristic,
destroy-repair, and nearest neighbors heuristics. In this section, the discussion will be
focused on the use of min-conflicts in this ILS approach. In the following subsections, we
will discuss solution representation, local search, and neighborhood structures in more
detail.

7.2.1 Solution representation
A solution in our approach is represented as a list of days, where each day contains a list
of truck routes and a list of technicians routes. In addition, the truck routes for a given
day contain the delivery requests, including trips to and from the warehouse on that day.
The list of technician routes consists of the installation requirements of the machines.
The main methods for solving the DIM problem found in the literature are based on
the hierarchical decomposition of the problem into subproblems. In such an approach,
requests assigned to days and vehicles are grouped into so-called clusters. Each cluster is
treated as a TSP problem, e.g. work of [FJ81], [STT10], and [DFFT06] are some typical
cases. Our implementation introduces an additional step in the decomposition of the
problem by considering delivery and installation scheduling as two related VRP problems.

7.2.2 Local search and neighborhood operators
Our local search heuristic consists of several neighborhood operators that affect machine
deliveries or installations (see Algorithm 7.1). It is embedded within an ILS framework.
The search is performed by neighborhood operators, which are divided into two groups
according to similar characteristics. The first group consists of operators that generate
simpler neighborhoods and are faster, and the second group contains operators that
generate more complex and larger neighborhoods and take longer to execute and have
a more intense effect on the solution. The operators of the first group are executed in
each cycle of the local search and get more and more time as long as they improve the
solution. The second group is executed only after a parameterized number of failures in
improving the solution by the first group.

The first group consists of the following neighborhood operators:

• MoveTrip,
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Algorithm 7.1: Local search for VRP-DIM, LS(s)
Input: s a feasible solution;
Output: An improved solution;

1 failure = 0 ;
2 repeat
3 Execute alternatively: MoveTrip(s) or SwapTrips(s);
4 Specify execution order using roulette wheel for:
5 RemoveInsertDeliveriesStack(s);
6 RemoveInsertInstallationsStack(s);
7 RegionGroupingNN(s);
8 LoopSwap(s);
9 SwapInstallations(s);

10 if s < bests then
11 bests = s;
12 failure = 0 ;
13 else
14 failure +=1 ;
15 if failure > threshold then
16 Intensify search:
17 ReInsertDeliveriesSerial(s);
18 ReInsertInstallationsSerial(s);
19 BestSwapWithNNDays(s);
20 BestSwapWithNNDaysInst(s);
21 if s < bests then
22 bests = s;
23 end
24 Perturbate s:
25 PerturbSwapTrip(s);
26 PerturbReInsertDeliveriesStack(s);
27 end
28 end
29 until timeExpired;

• SwapTrips,

• ReInsertDeliverStack

• ReInsertInstallStack,

• RegionGroupingNN,

• LoopSwap,

• SwapInstallations.
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The execution order of the operators in this group is determined by applying the roulette
wheel rule on the parameterized selection probabilities for each operator.

MoveTrip - applies the idea of min-conflict heuristics to generate the neighborhood
by constructing a set of variables consisting of the trips competing for a better allocation
in one of the available trucks within the allowed time window. This operator attempts to
reduce the number of trucks and/or truck days.

SwapTrips - similarly applies the idea of min-conflict heuristics to generate the neigh-
borhood by constructing a set of variables consisting of pairs of trips competing for
better allocations in the available trucks within the allowed time window. This operator
attempts to reduce the number of trucks and/or truck days.

ReInsertDeliverStack and ReInsertInstallStack - applies the destroy and repair
heuristics to deliveries and installations, respectively. The destroy process removes a
delivery from the schedule along with its installation. The repair consists of inserting the
delivery and the installation into the schedule.

RegionGroupingNN - groups requests into a new trip assigned to a truck according
to nearest neighbors heuristics. This operator can improve the solution by removing the
relatively closest requests that are distributed among different trips and putting them
into a common trip.

LoopSwap - is applied to deliveries of a given day. It performs sequential swaps of
deliveries. This operator is based on the idea of the eject chain proposed by [RR96].

SwapInstallations - operates on installations. It randomly selects an installation and
then swaps it in order with all other feasible installations. The operator is executed as
long as there are improvements.

The second group of the neighborhood operators consists of the following:

• ReInsertDeliverSerial,

• ReInsertInstallationsSerial,

• BestSwapWithNNDays,

• BestSwapWithNNDaysInst.
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ReInsertDeliverSerial and ReInsertInstallationsSerial - perform a series of shifts
of the lists of deliveries and installations respectively. The evaluation of a solution is done
only after the displacement is done for a complete list of deliveries and installations. The
idea is to escape local optima by accepting a potentially worse solution before allocating
the full list of deliveries and installations.

BestSwapWithNNDays and BestSwapWithNNDaysInst - Perform swaps be-
tween each of the two deliveries and their installations from a complete set of requests of
a certain day. These operators are executed as long as they improve the solution.

7.3 Computational results
We participated in the VeRoLog Solver Challenge 2019 and tested our approach with
several sets of examples presented in this competition. The competition was organized in
two stages: all-time-best challenge and restricted resources challenge. In the first stage,
there were no time or technology restrictions on solving the available instances. In the
second stage, there were imposed restrictions expressed through the formula:

t = f ∗ (10 + R) (7.1)

where f is the factor related to the machine the algorithm is run; it is calculated by
running a benchmark program provided on the challenge website. R is the number of
requests, and t is the execution time limit, expressed in seconds, for a given instance.
Thirteen teams participated in the competition and submitted their solutions in the first
stage. Only eight of them managed to qualify for the final round; our solver was one of
them.

7.3.1 Benchmark instances
At the VeRoLog Solver Challenge 2019, three sets of instances were introduced, each
containing 25 instances with different characteristics. The first set of instances, called the
"early set", was introduced for the all-time-best challenge stage. The "early set" includes
instances from the smallest, consisting of 150 requests to the largest, with up to 900
requests. Each team’s results for the "early set" of instances were published and ranked
online during this stage.

The second set of instances, called the "late set", was presented for the restricted resources
challenge stage. All teams had to submit the solution for each instance from this set
and the solver. The challenge organizers ran the solvers nine times per instance on their
machine. For each instance, the best and worst solutions were excluded from the analysis,
and the average results and the standard deviation were calculated for the remaining five.
Using these results, the qualified solvers were tested on the last set, called the "hidden
set". This set was made available for the restricted resources challenge stage and was
used after the finalists of the competition were determined and the solver submission was
completed.
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7.3.2 Performance of our solver
Our solver was qualified for the final phase. In the "early set" of instances, our solver
achieved second place for the first instance, third place for six instances, fourth place
for thirteen instances, fifth place for four instances and sixth place for one instance. For
seven instances, the relative difference between our solver’s results and the best solver
is less than 1%. In the case of the "late set", as mentioned earlier, all teams submitted
their solutions for each instance from that set and their solver. The organizers of the
competition ran the solvers on their machines to determine the final rank of all solvers
for each instance. The final rank for each solver is calculated as the average of all its
ranks. Our solver produced better results than the fourth-ranked solver for seven out of
twenty-five instances.

7.3.3 Discussion and analysis
We introduced an implementation of the min-conflicts, destroy-repair, and nearest
neighbors heuristics embedded in an ILS framework for Vehicle Routing and Scheduling
with Deliveries and Installation of Machines problem. We participated in the VeRoLog
Solver Challenge 2019, where three sets of instances were provided. The competition was
organized in two stages: all-time-best challenge and restricted resources challenge. Our
approach was one of the eight qualified solvers for the final stage. It was tested with
different sets of instances in different stages and gave promising results for many of them.
It outperformed the solver ranked fourth in four out of twenty-five instances in the final
evaluation.
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CHAPTER 8
Conclusion

In this thesis, we studied the MRCMPSP as one of the most general variants of the
project scheduling problem with significant relevance to research and industry. We
introduced several new solution approaches for MRCMPSP, including exact, meta-
heuristic, and hybrid techniques. We have also evaluated our solution methods on several
well-known project scheduling problems such as MRCPSP and RCMPSP. Our solution
approaches improve upon state-of-the-art results and solutions for MRCMPSP, MRCPSP
and RCMPSP, an achieve new upper bounds for many of the benchmark instances.
In Chapter 3, we explained the implementation and evaluation of a new meta-heuristic
solution method for MRCMPSP based on the min-conflicts heuristic. The main idea of
this solution approach is to efficiently explore the neighborhood of the current solution
based on activities competing for the same resources. This technique is further used
within an ILS framework in combination with tabu search lists. In our experiments, we
found that the neighborhood operators that manipulate the execution modes of activities
have a significant impact on the quality of the active schedule. Therefore, we focused
mainly on neighborhood operators that manipulate modes of activities and proposed three
new project-wise neighborhood operators for the MRCMPSP. Our experiments showed
that the new operators are useful for this problem. We improved our meta-heuristic
solver with two successive enhancements and each variant was evaluated on MRCMPSP
instances introduced in the MISTA 2013 Challenge and on well-known MRCPSP MMLIB
benchmark instances (MMLIB50, MMLIB100, and MMLIB+ sets). Compared to the
best performing approaches for MRCMPSP, our method achieved competitive results to
the third-ranked solver and provided eleven new upper bounds for MRCPSP MMLIB
instances.
Chapter 4 analyses the development and testing of a CP model for MRCMPSP. CP
Models have successfully solved various scheduling problems from research and industry.
Our CP model is based on an existing model, which has been applied to the related
problem MRCPSP. To the best of our knowledge, this is the first CP model developed for
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MRCMPSP. Another important aspect of developing the CP model for MRCMPSP the
configuration and fine-tuning of its parameters. Compared to state-of-the-art algorithms
for MRCMPSP, our CP model achieved competitive results for many benchmark instances.
From our experiments, we can conclude that the CP model performs well for MRCMPSP
instances, especially for small and medium sized instances.
In Chapter 5, we presented a hybrid model consisting of the combination of the meta-
heuristic with the CP model presented in the previous chapters. The starting point for
this hybrid model architecture was based on several models analyzed in the literature.
Our hybrid model could be classified as a high-level relay hybrid approach. This hybrid
approach achieved new upper bounds and outperformed all state-of-the-art solvers for
most instances of different categories of project scheduling problems under relaxed time
limits. Our hybrid approach also dominates its constituent components, the meta-heuristic
and the CP model.
We investigated and experimented with two hybrid approaches for MRCMPSP. The
experiments showed us that improving the complementary search of the algorithms
forming a potential hybrid method would be of great interest. In this context, we found
that the hybrid model containing a meta-heuristic of a more stochastic nature performed
better than the other, although its constituent components performed worse than the
components of its counterpart.
Therefore, in Chapter 6, we considered adding a new component to our meta-heuristic.
We considered implementing a simulated annealing based approach as a new meta-
heuristic at this stage. On the one hand, this approach helps to avoid getting stuck in
a local optimum, and on the other hand, it increases the stochastic character of the
algorithm. In this chapter, we presented the implementation of the simulated annealing
heuristic for the MRCMPSP in three variants, depending on the types of neighborhoods
they generate: a variant based on changing the activity mode, a variant that shifts the
position of a randomly selected activity in the schedule to its first predecessor, and a
variant that shifts the position of a randomly selected activity in the schedule to its
first successor. The simulated annealing heuristic was successfully implemented and
integrated into the meta-heuristic component as an independent neighborhood operator.
The new hybrid method composed of the extended meta-heuristic and the CP model
is developed and evaluated on several types of project scheduling benchmark instances
with different objectives: MISTA 2013 Challenge MRCMPSP, MMLIB MRCPSP, and
MPSPLIB RCMPSP instances. This hybrid approach achieved new upper bounds and
outperformed all state-of-the-art solvers for most instances of these problems under
relaxed time limits. It also performed better than the hybrid approaches presented in
Chapter 5.
In Chapter 7, we introduced an implementation of the min-conflicts heuristic combined
with destroy-repair and nearest neighbors heuristics embedded in an ILS framework for
the Vehicle Routing and Scheduling with Deliveries and Installation of Machines problem,
even though this problem was not the main subject of this study. We participated in the
VeRoLog Solver Challenge 2019. Our approach was one of the eight qualified solvers for
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the final stage. It was tested with different instance sets in different stages and delivered
promising results for many of them. It outperformed the solver ranked fourth for most
instances. It can be seen that the min-conflicts heuristic can provide promising results
for scheduling problems when combined with other local search methods.

8.1 Future work
Our main objective was to implement and evaluate different solution techniques for solving
MRCMPSP. Our work culminated with a hybrid approach combining two complementary
search strategies. This study introduces a successful combination of an exact model (CP
model) with several meta-heuristic approaches and a particular perturbation mechanism.
Considering that the hybrid models performed better than the algorithms that composed
them, we believe it is very interesting to investigate different hybrid approaches that
combine different search strategies to create a robust and efficient method for future
work.

In particular, the role of meta-heuristics in a hybrid method should be further investigated.
In our case, our hybrid model performed very well on MRCMPSP instances, as well as
on MRCMPSP and RCMPSP instances, but there might still be room for improving
the convergence time of the model for very large instances under very short time limits.
Since the exact model relies on searching large neighborhoods and performs very well
on small and medium instances, it is up to the meta-heuristic component to perform
an efficient search under very short time limits to achieve excellent results even on very
large instances.

Another valuable research topic could be the investigation of the architecture of the
hybrid model itself. In our implementation, the meta-heuristic and the CP model are
integrated in a hybrid model as black boxes and independently improve an active schedule.
Further interaction between the two could be explored, e.g., using the CP model to target
specific neighborhoods within the meta-heuristic or to repair infeasible and/or partial
solutions.

Another interesting research topic could be the combination of some of the best hyper-
heuristic and meta-heuristic solution approaches to date with the CP model for project
scheduling problems. The investigation of machine learning methods for various purposes,
i.e., selection of heuristics and determination of the quality of candidate solutions, could
be of great interest in this context.
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