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Abstract

General dilaton gravity in 2 dimensions is a useful tool for investigating questions of
quantum gravity. It is not only a toy-model for lower dimensional gravity, but can
also be derived from compactifications of higher dimensions. We focus on a more
general, not power-counting renormalizable action, where we find a 3 parameter
family as generalization of the 2 parameter ab-family, that comprises spherically
reduced gravity from any dimension. We also compute the ground state conditions for
Minkowki, Rindler and (A)dS space-times, for the 2 classes of models we investigate.
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1 Introduction

“ I would rather have questions that can’t be answered
than answers that can’t be questioned. ”

– Richard Feynman

Describing quantum field theory and general relativity with one model is a fun-
damental problem, even known beyond the area of expertise of physics nowadays.
Though there are some famous candidates as solutions like string theory [1], the only
self consistent theory that can describe all fundamental forces via vibrating strings in
10 dimensions (superstring theory), there are still many questions which are longing
for an answer.
Leaving this theory aside, a complete description for gravity interactions with matter
at small scales would be of great importance for calculating and investigating the be-
ginning of the universe [2] and black holes [3], just to state a few examples. For the
latter, Hawking radiation [4] gives us a semi-classical description, yet it also raises the
question of information loss [5], where a pure quantum state is swallowed and a mixed
state is evaporated from the black hole, thus violating unitarity in quantum theory.
The singularities contained in black holes and big bang space-times show the incom-
pleteness of general relativity. In the beginning of the universe as well as the center
of a black hole, all matter seems to concentrate at one point, and the curvature of the
space-time blows up to infinity. The weak cosmic censorship hypothesis [6] by Roger
Penrose states that every curvature singularity is hidden behind a horizon. One may
ask now whether a singularity is a technical leftover of the theory or if its notion should
be investigated in closer detail. It is usually expected that quantum gravity resolves
the singularities arising in general relativity.
As the theories of quantum mechanics and general relativity are both well established
by themselves, it seems reasonable to try to apply the laws of quantum mechanics to
general relativity in the search of a more conclusive quantum gravity model. In 4 space-
time dimensions this gets extremely difficult to do, so a first step in this direction would
be to look into simpler models of lower dimensions, e.g. 2 dimensional gravity as a toy
model to get better understanding of the theory, or equivalently as a reduction from
a 4d space-time with spherical or toroidal symmetry for example, yielding again a 2d
gravity model. The literature in lower dimensional gravity is already well established
[7, 8]. An interesting result from these developments is that the 2d Einstein-Hilbert
action is given by the Gauss-Bonnet term, which is locally trivial. Therefore further
structure is then introduced by the dilaton field, which naturally arises in compactifica-
tions from higher dimensions [9]. It can also be interpreted as replacing the inverse of
the Newton’s constant by a scalar field [10], i.e. the dilaton field. The most prominent
2d dilaton model is given by Jackiw and Teitelboim (JT) [11, 12], which was already
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thoroughly investigated in the 1980’s. In the early 1990’s, Callan, Giddings, Harvey
and Strominger (CGHS) [13] published a paper about a dilaton black hole model, orig-
inally inspired by a string theoretical approach. It was also around that time when it
was shown that 2d dilaton gravity could be treated as non-linear gauge-theory, i.e. the
Poisson σ-model (PSM) [14, 15].
The paper of CGHS also inspired the research for generalized dilaton theories (GDTs).
In earlier works it was proposed that all GDTs could be extracted from the dilaton
bulk action [16, 17]

I[gµν , X] = − κ

4π

�
d2x

√−g
�
XR− U(X)(∂X)2 + V (X)

�
, (1)

where κ is the gravitational coupling constant, g the determinant of the metric gµν , R
the Ricci scalar, U(X) and V (X) arbitrary functions of the dilaton field X. In the first
term in the brackets, one could introduce an arbitrary function, but by field redefini-
tions it is always possible to bring it in the form (1), which we will use throughout the
thesis.
Recent work [18] showed that the most general consistent deformation of the JT model
to other 2d dilaton gravity models is given by a generally not power-counting renor-
malizable action

I[gµν , X] = − κ

4π

�
d2x

√−g(XR− 2V(X,−(∂X)2)) , (2)

instead of the bulk action (1). When we deform a model, we keep the number of field-
and gauge-degrees of freedom the same, but modify symmetries, which yields a larger
class of models. This is also referred to as “consistent deformation”, see [19] for details.
The equations of motion that can be deduced from (2) lead to 2 classes of solutions,
constant and linear dilaton vacua. Since the constant dilaton vacua are trivial, we shall
consider only linear dilaton vacua. By combining the equations of motion (e.o.m.’s)
in the right way, one obtains a differential equation including the dilaton field and the
function V . Depending on the form of V , the differential equation has several solutions.
We will have a look at 2 classes of differential equations resulting from a specific form of
V , Bernoulli and exact differential equations. In each case we will calculate the Killing
norm and determine specific models that lead to a Minkowski, Rindler or (A)dS ground
state. In the case of an exact differential equation, we find a 3 parameter (abc) family
of models, that seems to be a generalization of the ab-family, see appendix A in [18], as
their results in the special case of (ab) coincide with the ones from the ab-family from
previous literature when we compute their ground states.
This thesis is mainly based on the paper [18] and structured as follows. In section 2 we
will start with a brief summary on general 2d dilaton gravity and derive it from a PSM,
this includes deriving the e.o.m.’s and solve them for linear dilaton vacua, yielding the
line element for the dilaton theory. From the line element we deduce the Killing norm,
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which is needed to compute the ground state conditions on the explicit models for the
space-times as mentioned. In subsection 2.3 we also compute the curvature 2-form in
the first order formalism, which gives us the conditions on the Killing norm for each
space-time we wish to investigate.
In section 3 we will investigate the case of a function V leading to a Bernoulli differential
equation 3.1, where we determine the conditions for Minkowski, Rindler and (A)dS
ground states and look into a specific example 3.1.1. In subsection 3.2 we will do the
same procedure for the case of an exact diffential equation. We compute conditions
on V for the ground states and apply them on a specific 3 parameter family, which we
shall refer to as abc-family 3.2.2. We find that the 3 parameter family is pertubatively
connected to the 2 parameter family and compare the results in 3.2.3. In section 4 we
conclude and give an outlook.
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2 Summary of the PSM and General 2d Dilaton

Gravity

In this section we recap and summarize the most important aspects of the PSM and 2d
dilaton gravity for our purposes. We will show that the general action (2) is equivalent
to a specific type of PSM and derive it’s Poisson tensor. From the general action we are
going to deduce the e.o.m.’s, with which we can test models with arbitrary functions
V in Minkowski, Rindler and (A)dS space-times. We will derive the conditions for the
ground state in each space-time via the first order formalism, where we calculate the
curvature 2-form and subsequentially the Ricci scalar.

2.1 Poisson σ-Model

The bulk action for the PSM depending on gauge field 1-forms AI and target space
coordinates XI is given in [18] by

IPSM[AI , X
I ] =

κ

2π

�
(XIdAI +

1

2
P IJ(XK)AI ∧ AJ) , (3)

where κ is a coupling constant and can be interpreted as proportionally inverse to the 2d
Newtons constant. We can define the Poisson tensor via the Schouten-Nijenhuis bracket
{XI , XJ} = P IJ , where one can interpret the scalars XI as target space coordinates
of a Poisson-manifold. The Poisson tensor P IJ is antisymmetric, P IJ = −P JI , and
satisfies the Jacobi identity

P IL∂LP
JK + P JL∂LP

KI + PKL∂LP
IJ = 0 . (4)

The transformation of the gauge 1-forms AI and target space coordinates XI that
preserve the action (3) are non-linear in general and given by

δλX
I = λJP

JI δλAI = dλI + ∂IP
JKAJλK . (5)

The e.o.m.’s in this case can be obtained by varying the action (3) with respect to the
fields AI and XI ,

δIPSM

δAI

=
κ

2π

�
(−dXI − 1

2
P IJAJ +

1

2
P JIAJ) = 0

δIPSM

δXI
=

κ

2π

�
(dAI +

1

2
(∂IP

JK)AJ ∧ AK) = 0
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which yields

dXI + P IJAJ = 0

dAI +
1

2
(∂IP

JK)AJ ∧ AK = 0 . (6)

In dilaton gravity the gauge field 1-forms are given by AI = (ω, ea), with spin-
connection ω and zweibein ea, whereas the target space coordinates are composed
of a dilaton field X and Lagrange-multipliers for the torsion constraints Xa, i.e. XI =
(X,Xa). Let us for convenience change the index notation to light-cone gauge Xa =
{X+, X−}, with Minkowski metric

ηab =

�
0 1
1 0

�
(7)

and Levi-Civita symbol

�±± = ±1 . (8)

The action (2) written in first order formalism is given by

Igen[ea, ω,X,Xa] =
κ

2π

� �
Xdω +Xa(dea + �a

bω ∧ eb) +
1

2
�abea ∧ ebV(X,XaXa)

�
.

(9)
When we insert the fields AI and XI in the action (3) with a Poisson tensor given by
P aX = �abX

b, P ab = �abV(X,XaXa), i.e.

P IJ =

 0 −X+ X−

X+ 0 V(X,XaXa)
−X− −V(X,XaXa) 0

 , (10)

we get

IPSM[ea, ω,X,Xa] =
κ

2π

�
(Xdω +Xadea + P aXea ∧ ω +

1

2
P abea ∧ eb) =

=
κ

2π

� �
Xdω +Xa(dea + �a

bω ∧ eb) +
1

2
�abea ∧ ebV(X,XaXa)

�
, (11)

which coincides with (9).

Note that the function V(X,XaXa) only depends on the dilaton field X and the
Lorentz invariant product of the Lagrange-multipliers XaXa, due to the Jacobi identity
(4).
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2.2 General 2d Dilaton Gravity

The e.o.m.’s for the general 2d dilaton action (9) are

dX +Xa�baeb = 0

dXa −Xb�
baω + �abebV = 0

dω +
1

2
�abea ∧ eb∂XV = 0

dea + �baω ∧ eb +
1

2
�cbec ∧ eb∂XaV = 0 .

(12)

The solutions to the e.o.m.’s lead to 2 distinct cases, constant and linear dilaton vacua.
We will only consider the second case.

To solve the e.o.m.’s, we will write them in light-cone gauge XaXa = ηabX
aXb =

2X+X−,
dX +X−e+ −X+e− = 0

(d± ω)X± ± e±V = 0

dω + �
∂V
∂X

= 0

(d± ω)e± + �
∂V
∂X∓ = 0 ,

(13)

where we introduced the volume form � = 1
2
�abea ∧ eb = e− ∧ e+. Next, we will add the

second line upper sign multiplied by X− and the lower sign multiplied by X+, so we
get

d(X+X−)− V(X, 2X+X−) dX = 0 . (14)

This relation implies Casimir conservation dC = 0, which can be integrated formally to
get the Casimir function C(X,X+X−). In [8] it was shown that the Casimir is related
to a conserved mass. This is because the Poisson-tensor along with the generic solutions
(26) has rank 2 and therefore a 1-dimensional kernel, which implies the existence of a
Casimir function that is constant on-shell and thus leads to a conserved mass. In case
of a ground state we have vanishing mass, so the condition for the Casimir function is
C(X,X+X−) = 0. The equation (14) will become important in the following sections,
but first we want to find a solution to the e.o.m.’s. As a first step, let us assume that
X+ �= 0 and introduce the 1-form Z = e+

X+ . From the second line in (13) we then get

ω = −dX+

X+
− Z V . (15)

The first line in (13) gives us

e− =
dX

X+
+X−Z , (16)
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so the volume element becomes

� = e− ∧ e+ =
dX

X+
∧ e+ +X−Z ∧ e+ = −Z ∧ dX . (17)

Next, let us divide the fourth line upper sign in (13) by X+, which yields

de+

X+
+

e+

(X+)2
∧ dX+ = (Z ∧ dX)

1

X+

∂V
∂X− . (18)

With

dZ = d

�
e+

X+

�
=

de+

X+
+

e+

(X+)2
∧ dX+ , (19)

equation (18) becomes

dZ = (Z ∧ dX)
1

X+

∂V
∂X− = (Z ∧ dX)

∂V
∂(X+X−)

, (20)

where we used
∂

∂X− = X+ ∂

∂(X+X−)
. (21)

Let us make the Ansatz Z = dveQ(X) and act with the de-Rahm differential on it

dZ = −eQ(X) dQ

dX
dv ∧ dX . (22)

Comparing this with (20), we see that

−eQ(X) dQ

dX
dv ∧ dX = eQ(X) ∂V

∂(X+X−)
dv ∧ dX ,

and therefore
dQ

dX
= − ∂V

∂(X+X−)
. (23)

Following from (14), this can be integrated as

Q(X,C) = −
� X ∂V(X, 2X+X−)

∂(X+X−)
dX � . (24)

From the cartan formulation with gµν = ηabe
a
µe

b
ν , the line element is then given by

ds2 = 2e+e− = 2eQdvdX + 2eQX+X−dv2 . (25)

Let us introduce here a radial coordinate dr = eQdX, which can be integrated to
give the dilaton field as a function of the radius X(r). When we substitute the new
coordinate in the line element, we get

ds2 = 2e2QX+X−dv2 + 2dvdr . (26)
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2.3 First Order Curvature Formalism

Let us investigete a metric of the form

ds2 = K(r)dv2 + 2dvdr . (27)

The Killing vector is determined by the Killing equation

Lξ(gµν) = ∇νξµ +∇µξν = 0 , (28)

with covariant derivative ∇µ. As the metric gµν in (27) does not depend on the coordi-
nate v, one can directly find the Killing vector ξ = ∂v, with Killing norm K(r) = gvv.
Using the first order formalism, it is easy to compute the curvature scalar for a metric
in the form (27). To do so, we make an ansatz for the zweibein

e+ = dv e− =
1

2
K(r)dv + dr , (29)

which indeed reproduces the line element (27) with ds2 = 2e+e−. To obtain the
curvature 2-form

Ra
b = dωa

b + ωa
c ∧ ωc

b , (30)

we have to establish the spin-connection ωa
b first. In 2d gravity, the spin-connection

simplifies to ωa
b = �ab ω, with the Levi-Civita symbol (8). We can now deduce the

spin-connection from the condition of vanishing torsion

de± + �±±ω ∧ e± = 0 , (31)

which yields the functions

ω ∧ dv = 0 (32)

for the upper sign and

1

2
∂rK(r)dr ∧ dv − ω ∧

�
1

2
K(r)dv + dr

�
= 0 (33)

for the lower sign in (31). If we insert the first equation into the second one we get

ω ∧ dr = −1

2
∂rK(r)dv ∧ dr , (34)

and the spin-connection reads as

ω = −1

2
∂rK(r)dv . (35)
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The curvature 2-form (30) simplifies in 2d as well to

R±± = �±±dω = ∓1

2
∂2
rK(r)dr ∧ dv , (36)

and the Ricci scalar can be obtained by contracting the curvature 2-form as

R = R±±vre
±rev± +R±±rve

±ver± = ∂2
rK(r) . (37)

For Minkowski space, where we have a vanishing Ricci scalar, R = 0, and a constant
metric, the Killing norm is constant, K(r) = const.

In Rindler space we have a vanishing Ricci scalar as well, but differently to Minkowski
space, the Killing norm is proportional to the radial coordinate K(r) ∝ r.

For local (A)dS the Ricci scalar is (negative) constant, R = (−)const, so the Killing
norm has to be proportional to r2, i.e. K(r) ∝ r2.

Let us also mention the case of global AdS with K(r) ∝ −(r2+1) and AdS-Rindler
where K(r) ∝ −r2+Ar+B. We will only consider the first 3 cases when we investigate
the ground state for the dilaton models, so when we write (A)dS, we refer to the local
(A)dS space-time.
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3 Dilaton Models with Nonlinear Potential

We now study linear dilaton vacua with general action (9) for different classes of func-
tions V . To do so, we first have a look at the form of the e.o.m. (14) and see that it
takes on the form of a first order nonlinear ordinary differential equation

dY

dX
= V(X, 2Y ) , (38)

where Y = X+X−. Although there is no general solution to this kind of differential
equation, there have been some solutions found for special cases of V . In the following,
we have a closer look at 2 of these cases and conclude for which models of V one gets
Minkowski, Rindler or (A)dS ground states.

3.1 Bernoulli Differential Equation

Assuming (38) is of the specific form

dY = V1(X)Y dX + V2(X)Y ndX , (39)

with arbitrary functions V1(X) and V2(X), the problem is reduced to solving a Bernoulli
differential equation. To see this explicitly, as a first step we make the coordinate
transformation

z = Y 1−n , Y = z
1

1−n ,

dz = (1− n)Y −ndY , dY =
1

1− n
z

n
1−ndz . (40)

Since n = 1 is trivial, we assume n �= 1. Inserting (40) in (39) yields

dY =
1

(1− n)Y −n
dz = V1(X)Y dX + V2(X)Y ndX , (41)

dz = (1− n)[V2(X)dX + V1(X)zdX] . (42)

This is now similar to the UV -family, a family of linear dilaton models where the
function V takes on the form V = V (X) − Y U(X), see the appendix in [18]. The
functions U and V are then identified as U(X) = −(1 − n)V1(X) and V (X) = (1 −
n)V2(X). According to [18], we introduce

Q(X) :=

� X

U(X �)dX � = (n− 1)

� X

V1(X
�)dX � (43)
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and

w(X) :=

� X

eQ(X�)V (X �)dX � = (1− n)

� X

eQ(X�)V2(X
�)dX � . (44)

Acting with the de-Rahm differential on the function w gives us

dw = (1− n)eQ(X)V2(X)dX = eQ(X)[dz − (1− n)V1(X)zdX] =

= eQ(X)dz + eQ(X)zdQ = d(eQz) . (45)

We can now integrate the expression d(eQz) = dw,

eQz = w − C → z = e−Q(w − C) , (46)

with the integration constant given by the Casimir C. As the next step we compute
the Killing norm. The Killing norm of the metric (25) is given by

K = 2e2QX+X− = 2e2QY = 2e2Qz
1

1−n = 2eQ(2− 1
1−n

)(w − C)
1

1−n . (47)

The Casimir function vanishes for the ground state, so the ground state Killing norm
becomes

K|C=0 = 2eQ(2− 1
1−n

)w
1

1−n . (48)

For a Minkowski ground state, the Killing norm has to be constant, K|C=0 = const,
which yields the condition

weQ(1−n) = const . (49)

Analogously for a Rindler ground state we have

weQ(1−n) ∝ r (50)

and for an (A)dS ground state

weQ(1−n) ∝ r2 , (51)

where the radial coordinate is given by

r =

� X

eQ(X�)dX � . (52)
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3.1.1 Example for a 3 Parameter Family

We consider as an example for the Bernoulli case the functions

V1(X) =
a

X
, V2(X) = Xb , (53)

where a, b and n are arbitrary parameters for now, and will be fixed for each ground
state later. The function Q from (43) then becomes

Q(X) = (n− 1)

� X a

X � dX
� = (n− 1) a ln(X) , (54)

and therefore
eQ = Xa(n−1) . (55)

Similarly, the function w given by (44) is computed as

w(X) = (1− n)

� X

eQ(X�)X �b dX � =
1− n

a(n− 1) + b+ 1
Xa(n−1)+b+1 . (56)

The Minkowski ground state condition (49) now implies

w eQ(1−n) =
1− n

a(n− 1) + b+ 1
Xa(n−1)+b+1Xa(n−1)(1−n) = const , (57)

and leaves us with the result

b = (1− n)(2− n)a− 1 . (58)

The radial coordinate (52) is given by

r =

� X

X �a(n−1)dX � =
1

a(n− 1) + 1
Xa(n−1)+1 , (59)

so our condition (50) for a Rindler ground state is

Xa(n−1)+b+1−a(n−1)2 ∝ Xa(n−1)+1 , (60)

which gives us
b = (n− 1)2a . (61)

For an (A)dS ground state, the relation (51) reads as follows,

Xa(n−1)+b+1−a(n−1)2 ∝ X2a(n−1)+2 , (62)

yielding
b = n(n− 1)a+ 1 . (63)
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3.2 Exact Differential Equation

The second class of differential equations we would like to involve in our investigations
are exact differential equations of the form

p(X, Y ) dX + q(X, Y ) dY = 0 . (64)

If the integrability condition
∂p

∂Y
=

∂q

∂X
(65)

holds, there exists a potential F (X, Y ), so that ∂F
∂X

= p and ∂F
∂Y

= q. Note that the
potential is also the Casimir function F = C.

As in the previous section, we would like to compute the Killing norm as a first
step. To do so let us start with the integrating factor

Q(X,C) = −
� X ∂V(X �, 2Y )

∂Y
dX � . (66)

From (64), one can see that the function V is given by V = −p
q
, so we get

Q(X,C) =

� X ∂

∂Y

�
p

q

�
dX � =

� X �
1

q

∂p

∂Y
− p

q

1

q

∂q

∂Y

�
dX � .

The first term in the integral on the right can be rewritten with the relation (65), which
yields

Q(X,C) =

� X �
1

q

∂q

∂X � −
p

q

1

q

∂q

∂Y

�
dX � =

� X ∂

∂X � ln(q) dX
� +

� X

V ∂

∂Y
ln(q) dX � .

To simplify this a little further, let us change the integration variable in the second
integral to dX = V−1dY , and we obtain

Q(X,C) =

� X ∂

∂X � ln(q) dX
� +

� Y ∂

∂Y � ln(q) dY
� . (67)

We can use the fundamental theorem of calculus for both integrals on the right hand
side. Doing so we get a constant of integration depending on Y for the first and one
depending on X for the second integral. To avoid this we rewrite the second integrand
as follows

1

q

∂q

∂Y
dY =

1

q
dq − 1

q

∂q

∂X
dX , (68)

where we used

dq(X, Y ) =
∂q

∂Y
dY +

∂q

∂X
dX . (69)
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Inserting this in (67) yields

Q(X,C) =

�
1

q
dq = ln q + c , (70)

where c is a constant that does not depend on Y or X. For the computation of the
Killing norm and the ground state, the constant c is irrelevant, so we set c = 0, i.e.
e2Q = q2. The Killing norm now has a rather simple form

K = 2e2QX+X− = 2q2Y . (71)

The Killing horizon is located at zeros of the Killing norm K = 0. If we exclude the
option q → 0, which would imply Q → −∞, there is an unique Killing horizon for
every zero of Y in the range of definition of X. Further motivation for this choice will
be given in the next section with the definition of the radial coordinate.

3.2.1 Quadratic Potential

The literature about potentials linear in Y , which yield power counting renormalizable
models, is already well established. Therefore we are including terms of quadratic order
of Y in the potential, leading new but also not power-counting renormalizable models.
The potential is given by

F (X, Y ) = V0(X) + V1(X)Y + V2(X)Y 2 , (72)

where the Vi(X) are as before arbitrary functions in X. For the ground state we have
F (X, Y ) = 0, which can be used to solve for Y as

Y± =
−V1 ±

�
V 2
1 − 4V2V0

2V2

. (73)

The function q(X, Y ) then becomes

q(X, Y±) = V1 + 2V2Y± = ±
�

V 2
1 − 4V2V0 , (74)

and so the Killing norm is given by

K±|C=0 = (V 2
1 − 4V2V0)

−V1 ±
�

V 2
1 − 4V2V0

V2

. (75)

In case of a Minkowski ground state this expression should be constant, which yields
the conditions on the functions Vi(X) for this model

(V 2
1 − 4V2V0)

−V1 ±
�

V 2
1 − 4V2V0

V2

= const . (76)
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The same procedure applies for a Rindler ground state as

(V 2
1 − 4V2V0)

−V1 ±
�
V 2
1 − 4V2V0

V2

∝ r , (77)

and an (A)dS ground state with

(V 2
1 − 4V2V0)

−V1 ±
�

V 2
1 − 4V2V0

V2

∝ r2 , (78)

where the radial coordinate is given by

r =

� X

q(X �, Y )dX � . (79)

We can see from (79) that a positive radial coordinate implies positivity of the func-
tion q, and the assumption in the previous subsection where we exclude the case q → 0
seems to be a reasonable choice.

The 2 branches obtained from the quadratic solution of Y ± can be understood as
follows. As we will see in the upcoming subsection of pertubative continuation, the
lower sign Y − leads to the same result for the Killing norm as in the linear case. This
lower sign solution for quadratic potentials can be seen as the direct generalization
of the linear theory, i.e. the ab-family. The 2 branches can lead to different dilaton
models. While the lower sign has a straightforward interpretation, the upper sign is
more peculiar and does not have a well defined limit for V2(X) → 0.

3.2.2 abc-Family

A 3 parameter family of 2d dilaton models with a potential obeying (64) can be given
by

V0(X) = A Xa , V1(X) = B Xb , V2(X) = D Xc , (80)

which we shall refer to as the abc-family according to the parameters, and with con-
stants A,B and D. When we insert the functions (80) in (75), the Killing norm reads
as

K±|C=0 = (B2X2b − 4AD Xa+c)

�
−B

D
Xb−c ±

�
B2

D2
X2b−2c − 4

A

D
Xa−c

�
. (81)
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Minkowski ground state:

Let us begin our ground state investigations for the abc-family in Minkowski space,
where K±|C=0 = const. To do so, let us rewrite the expression (81) as

K±|C=0 = (B2 − 4AD Xa+c−2b)X3b−c

�
−B

D
±
�

B2

D2
− 4

A

D
Xa+c−2b

�
= const , (82)

where we pulled out a factor of X2b from the first parentheses in (81), and a factor
Xb−c from the second parentheses. We can now argue that the left hand side of (82)
can only be constant in the dilaton field X for arbitrary values of the coefficients A, B
and D, if each term in the product is constant, i.e.

X3b−c = const ,

B2 − 4AD Xa+c−2b = const ,

−B

D
±

�
B2

D2
− 4

A

D
Xa+c−2b = const . (83)

From these relations we can deduce 2 independent algebraic equations for the param-
eters a, b and c,

a+ c− 2b = 0 ,

3b− c = 0 . (84)

Solving the system yields the relations of the parameters for a Minkowski ground state,

a = −b , c = 3b , and b arbitrary. (85)

Additional to the case of generic A, B and D, one gets isolated solutions for A = 0
or B = 0. Note that the case D = 0 leads to potentials linear in Y , and is therefore
not in our interest to study here.

In the special case of A = 0 and B �= 0, the Killing norm for the Minkowski ground
state (82) becomes

K±|C=0 = B2X3b−c

�
−B

D
± B

D

�
= const . (86)

One can see that the 2 branches of the solution lead to 2 different models. For the
lower sign we get the ground state condition

c = 3b , (87)

17



with no additional restrictions. For the upper sign, the Killing norm is always zero,
K+|C=0 ≡ 0, with no restrictions on the parameters. The condition for a Minkowski
ground state is therefore always met forA = 0 and the upper sign branch of the solution.

For B = 0 and A �= 0, (82) reads as follows

K±|C=0 = ∓4AD Xa+b

�
−4

A

D
Xa+c−2b = const , (88)

which is solved for
c = −3a . (89)

Rindler ground state:

Next, we determine the parameters a, b and c for Rindler space with arbitrary
coefficients A, B and D. First, we have to calculate the radial coordinate (79) for the
abc-family,

r =

� X

(BX �b + 2Y DX �c)dX � =
B

b+ 1
Xb+1 +

2D

c+ 1
Xc+1Y . (90)

The condition for a Rindler ground state (77) then becomes

K±|C=0 = (B2X2b − 4AD Xa+c)

�
−B

D
Xb−c ±

�
B2

D2
X2b−2c − 4

A

D
Xa−c

�
∝

B

b+ 1
Xb+1 +

2D

c+ 1
Xb+1

�
−B

D
±
�

B2

D2
− 4

A

D
Xa−2b+c

�
. (91)

We can now again rewrite the right hand side in the first line by pulling out a factor of
X3b−c analogous to (82). Afterwards we divide the whole equation by Xb+1 and bring
the second term in the second line on the other side, which then reads as�

−B

D
±

�
B2

D2
− 4

A

D
Xa−2b+c

��
− 2D

c+ 1
+X2b−c−1(B2 − 4AD Xa−2b+c)

�
∝ B

b+ 1
.

(92)
The right hand side of (92) is just a constant, so we can argue again that both terms
on the right have to be constant for arbitrary A, B and D, to satisfy the condition.
This can only be the case when

Xa−2b+c = const , X2b−c−1 = const (93)
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and therefore
a− 2b+ c = 0 , (94)

2b− c− 1 = 0 . (95)

The solution yields the relations on the parameters for a Rindler ground state and is
given by

a = 1 , c = 2b− 1 and b arbitrary. (96)

When we set the coefficient A = 0, we again get different models for the 2 branches
of K±|C=0. The relation (92) in this case reads as�

−B

D
± B

D

��
− 2D

c+ 1
+B2X2b−c−1

�
∝ B

b+ 1
. (97)

The lower sign K−|C=0 leads to a Rindler ground state with the condition on the
parameters given by

c = 2b− 1 . (98)

The upper sign K+|C=0 only obeys the relation (97) for the trivial case of B = 0.
Therefore, if A = 0 and B �= 0, the branch of K+|C=0 does not yield a ground state in
Rindler space.

Analogous for B = 0, relation (92) becomes

4AD Xa−1 = − 2D

c+ 1
, (99)

with the solution
a = 1 . (100)
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(A)dS ground state:

Our final ground state for the abc-family will be in (A)dS space. The condition (78)
for the abc-family (80) with generic A, B and D becomes after some simplification

K±|C=0 = (B2 − 4AD Xa−2b+c)X3b−c

�
−B

D
±

�
B2

D2
− 4

A

D
Xa−2b+c

�
∝

r2 = X2b+2

��
B

b+ 1

�2

+
4BD

(b+ 1)(c+ 1)

�
−B

D
±
�

B2

D2
− 4

A

D
Xa−2b+c

�
+

+

�
2D

c+ 1

�2
�
−B

D
±
�

B2

D2
− 4

A

D
Xa−2b+c

�2
 . (101)

Dividing each side by X2b+2 yields

(B2 − 4AD Xa−2b+c)Xb−c−2

�
−B

D
±
�

B2

D2
− 4

A

D
Xa−2b+c

�
∝

��
B

b+ 1

�2

+
4BD

(b+ 1)(c+ 1)

�
−B

D
±

�
B2

D2
− 4

A

D
Xa−2b+c

�
+

+

�
2D

c+ 1

�2
�
−B

D
±
�

B2

D2
− 4

A

D
Xa−2b+c

�2
 . (102)

For arbitrary constants A, B and D the equation holds true if

Xa+c−2b = const and Xb−c−2 = const . (103)

The algebraic equations for the parameters a, b and c are thus given by

a+ c− 2b = 0 ,

b− c− 2 = 0 , (104)

with the result for the (A)dS ground state relations

a = b+ 2 , c = b− 2 and b arbitrary. (105)
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In the case of A = 0, we again have 2 solutions depending on the branch of K±|C=0.
Relation (102) becomes for K−|C=0

Xb−c−2 = const , (106)

yielding
c = b− 2 . (107)

The upper sign on the other hand leads to K+|C=0 ≡ 0, independent of the parameters.
This implies that only the trivial case A = B = 0 for the positive branch has an (A)dS
ground state.

For B = 0, relation (102) reads

X3b−cX(a+b)/2−b ∝ const , (108)

which can be solved for the parameters as follows

c = a+ 4b . (109)

The solutions for the ground state conditions only depended on the branches of
K±|C=0 for the special case A = 0, for all 3 space-times we investigated. While we had
a physical interpretation for the lower sign K−|C=0, the upper sign K+|C=0 seems to
lead to trivial solutions for the dilaton models.

Pertubative continuation:

We would like to check that the abc-family devolves into the special case of the
ab-family for D → 0. The function q(X, Y±) given by the first term in (81) simplifies
for D → 0 to

q(X, Y±) = ±
�

B2X2b − 4AD Xa+c → qlin = ±B Xb . (110)

The redefined product of the Lagrangian multipliers Y± is given by the second term in
(81)

Y± = − B

2D
Xb−c ∓

�
B2

4D2
X2b−2c − A

D
Xa−c . (111)

For small values of D this expression seems to diverge, so we rewrite it as a first step
to

Y± = − B

2D
Xb−c ∓ 1

D

�
B2

4
X2b−2c − AD Xa−c . (112)
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Now one can Taylor-expand the square root at the point D = 0,�
B2

4
X2b−2c − AD Xa−c ∼ B

2
Xb−c − A Xa−c

√
B2 X2b−2c

D +O(D2) . (113)

We drop the terms containing higher powers of D and insert it into (112),

Y± ∼ − B

2D
Xb−c ∓ B

2D
Xb−c ± A

B
Xa−b . (114)

Choosing the lower sign in Y±, we receive the solution of a potential F (X, Y ) linear in
Y ,

Y− ∼ Ylin = −A

B
Xa−b . (115)

The branch with the upper sign in (114) diverges for the limit D → 0 and therefore
has no correspondence to the linear solution, as we have mentioned in subsection 3.2.1.
The Killing norm K = 2q2Y with the results (110) and (115) reads then as follows,

Klin|C=0 = −2AB Xa+b . (116)

When we compare this result with (120) in the next section, we see that one does
indeed recover the ab-family for small values of D.

3.2.3 ab-Family

In the case of D = 0 in (80), we recover the ab-family, similar to [18]

F (X, Y ) = AXa +BXb Y . (117)

With (71), the conditions for the ground states are easily recovered. The function
q(X, Y ) is given by

q = V1(X) = BXb , (118)

and with F (X, Y ) = 0 we get

Y = −V0(X)

V1(X)
= −A

B
Xa−b . (119)

The Killing norm now reads as follows,

K|C=0 = 2q2Y = −2AB Xa+b . (120)

In the case of a Minkowski ground state K|C=0 = const, we get a = −b.
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For a Rindler ground state we have K|C=0 ∝ r with

r =
B

b+ 1
Xb+1 . (121)

This yields the relation
Xa+b ∝ Xb+1 (122)

and the result a = 1 with b arbitrary.

The (A)dS ground state condition states K|C=0 ∝ r2. Inserting the Killing norm
(120) and the radial coordinate (121) leaves us with

Xa+b ∝ X2b+2 . (123)

So for the ab-family defined as special case (117), the relation for the exponents is
a = b+ 2 in case of an (A)dS ground state.

3.2.4 Comparing Results for the ab-Family

Let us check if the results above coincide with the ones for the a�b�-family from previous
literature, where we write a�b� for the model from [18] instead of ab, to avoid confusion.
According to [18], the function V is given by

Va�b�(X, Y ) = V (X)− U(X) Y , (124)

with

V (X) ∝ Xa�+b� and U(X) = − a�

X
. (125)

Now, one defines

Q̃ :=

� X

U(X �)dX � = −
� X a�

X �dX
� = lnX−a� (126)

and

w̃ :=

� X

eQ̃(X�)V (X �)dX � =
� X

X �b�dX � =
1

b� + 1
Xb�+1 , (127)

where we denoted Q̃ and w̃ instead of Q and w to avoid confusion with the previous
section. Acting with the de-Rahm differential on w̃ yields

dw̃ = eQ̃V dX = eQ̃(Y UdX + dY ) = (Y deQ̃ + eQ̃dY ) = d(Y eQ̃) , (128)

which can be integrated to

Y = e−Q̃(w̃ − C̃) , (129)
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with Casimir function C̃. For the ground state, C̃ = 0, we then get

Y = e−Q̃w̃ . (130)

The Killing norm is the same as before, so the final result for the Minkowski ground
state is

K|C̃=0 = 2e2Q̃Y =
2

b� + 1
X−a�+b�+1 = const → a� = 1 + b� . (131)

Similarly we get for a Rindler ground state

K|C̃=0 ∝ r =

� X

eQ̃(X�)dX � =
1

1− a�
X1−a� (132)

and therefore
X−a�+b�+1 ∝ X1−a� → b� = 0 . (133)

The (A)dS ground state condition leads to

X−a�+b�+1 ∝ X2−2a� → a� = 1− b� . (134)

Let us now compare our results for the ab-family as special case D = 0 from the
abc-family with the results for the a�b�-family from [18]. To do so, let us first compare
the functions

Vab = −
∂F
∂X
∂F
∂Y

= −Aa

B
Xa−b−1 − b

X
Y , (135)

from the case of an exact differential equation determining the function V , and

Va�b� = c̃Xa�+b� +
a�

X
Y , (136)

from the a�b�-family in [18], with c̃ being an arbitrary constant. Demanding Vab = Va�b� ,
we see that a� = −b and so b� = a − 1. The Minkowski, Rindler and (A)dS ground
state conditions (131), (133) and (134) can then be rewritten as follows

Minkowski : a� = 1 + b� =̂ − b = 1 + a− 1 → a = −b , (137)

Rindler : b� = 0 =̂ a− 1 = 0 → a = 1 , (138)

(A)dS : a� = 1− b� =̂ − b = 1− a+ 1 → a = b+ 2 . (139)

When we compare these results with the ones in section 3.2.3, we see that they coincide
perfectly, which is an affirmation that our generalization of the ab-family for linear
dilaton vacua is correct.
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4 Conclusion and Outlook

We found that for a general dilaton action (2) the e.o.m. for the dilaton field depend-
ing on the Lagrange multipliers results in a first-order non-linear ordinary differential
equation with function V determining the specific kind of equation. Though there is
no general solution for this problem, we could investigate 2 specific solution-methods
for general 2d dilaton models and parameter families thereof.
In the case of a Bernoulli differential equation, we computed the general conditions for
Minkowki, Rindler and (A)dS ground states via the Killing norm and made further
investigations for a 3 parameter family, where we found a model for each space-time.
For the exact differential equation-form of the e.o.m. (38), we computed the func-
tion Q(X,C) in (70) and found that it only depends on the logarithm of the function
q(X, Y ) from (64). This yielded us the simple result for the Killing norm (71), which
only depends on the function q(X, Y )2 and Y . Because of the degeneracy of the Killing
horizon at q = 0, we could conclude that the only non-extremal Killing horizon for this,
still very general class of models, is only located at values of Y = 0.
By fixing the potential F (X, Y ) from the exact differential equation in quadratic order
of Y , we found a 3 parameter family of 2d dilaton models, that seems to be a gen-
eralization of the 2 parameter ab-family from [18], as the results of the ground states
in the case D = 0 for each Minkowski, Rindler and (A)dS coincide with the ones for
the ab-family from previous literature, which was also confirmed by the pertubative
continuation.
Another interesting result of the generalized 3 parameter abc-family is, that beside the
similarity of the conditions on the parameters a and b for the abc- and ab-family, the
parameter c is also depending on one of the other parameters, and thus does not yield
another degree of freedom.
As an outlook, one could investigate further solution-methods for the differential equa-
tion (38) like seperable equations with V(X, Y ) = V1(X) · V2(Y ), homogeneous equa-
tions with V(X, Y ) = V(λX, λY ) where λ is a constant parameter leaving the function
V unchanged, or perhaps even new solutions methods for the differential equation by
exploiting the first order formulation to some degree.
Also, we have just considered potentials for the exact differential equations that are
of quadratic order in Y . Looking into higher orders of Y would be interesting as it
could lead to further generalizations of families of dilaton models. Given the rather
simple form of the general Killing norm (71), a ground state examination of models
with potentials F (X, Y ) with third or even fourth order in Y can be done analytically,
as cubic and quartic polynomials have a general analytical solution.
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