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Abstract
The purpose of this paper is to study convex bodies 𝐶

for which there exists no convex body 𝐶′ ⊊ 𝐶 of the
same lattice width. Such bodies will be called ‘lattice
reduced’, and they occur naturally in the study of the flat-
ness constant in integer programming, as well as other
problems related to lattice width. We show that any sim-
plex that realizes the flatness constant must be lattice
reduced and prove structural properties of general lattice
reduced convex bodies: they are polytopes with at most
2𝑑+1 − 2 vertices and their lattice width is attained by at
leastΩ(log 𝑑) independent directions. Strongly related to
lattice reduced bodies are the ‘lattice complete bodies’,
which are convex bodies𝐶 for which there exists no𝐶′ ⊋

𝐶 such that𝐶′ has the same lattice diameter as𝐶. Similar
structural results are obtained for lattice complete bod-
ies. Moreover, various construction methods for lattice
reduced and complete convex bodies are presented.
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1 INTRODUCTION

A convex body 𝐶 ⊂ ℝ𝑑 is a convex compact set with non-empty interior. A lattice Λ ⊂ ℝ𝑑 is a dis-
crete subgroup of ℝ𝑑, which we will assume to be full-dimensional. The dual lattice of Λ is then
defined as Λ⋆ = {𝑦 ∈ ℝ𝑑 ∶ 𝑥 ⋅ 𝑦 ∈ ℤ, ∀𝑥 ∈ Λ}. The lattice width of a convex body 𝐶 with respect
to the lattice Λ is defined as

widthΛ(𝐶) = min
𝑦∈Λ⋆⧵{0}

max
𝑎,𝑏∈𝐶

𝑦 ⋅ (𝑎 − 𝑏). (1.1)

Approximately we can think of the lattice width as theminimumnumber of parallel lattice hyper-
planes which intersect the convex body. We call convex bodies which do not contain lattice points
in their interior hollow. The lattice width turns out to be the right parameter to formalize the
intuition that hollow convex bodies cannot be too ‘large’. Indeed, Kinchin’s celebrated flatness
theorem [30] states that in fixed dimension the lattice width of hollow convex bodies is bounded:
there exists a number 𝑐𝑑 > 0 depending only on the ambient dimension 𝑑 such that for any hol-
low convex body 𝐶 ⊂ ℝ𝑑 one haswidthΛ(𝐶) ⩽ 𝑐𝑑. The smallest number 𝑐𝑑 for which this holds is
known as the flatness constant and is denoted by Flt(𝑑) in the following.
The flatness theorem had a great impact on the theory of integer programming, since it was

a key ingredient in Lenstra’s polynomial time algorithm to solve integer programs for a fixed
number of variables [41]. The estimates of the efficiency of these algorithms depend on the best
known upper bound for the flatness constant Flt(𝑑). Thus, after Lenstra’s discovery there have
been many improvements on the upper bound for the flatness constant. In the seminal paper
[29], Kannan and Lovász show the polynomial bound Flt(𝑑) ⩽ 𝑐𝑑2, where 𝑐 is an absolute con-
stant. The next breakthrough was achieved by Banaszczyk [4], who showed that the lattice width
of a hollow centrally symmetric convex body is at most 𝑐𝑑 log 𝑑. Using this result, the bound
of Kannan and Lovász was improved successively by Banasczcyk et al. [5], Rudelson [49] and,
very recently, by Reis and Rothvoss who showed Flt(𝑑) ⩽ 𝑐𝑑 log(𝑑)3 [48]. This bound is nearly
optimal, since the following trivial lower bound is linear in 𝑑: Consider the standard simplex
Δ𝑑 ∶= conv(0, 𝑒1, … , 𝑒𝑑), where 𝑒1, … , 𝑒𝑑 are the standard basis vectors. Its dilation 𝑑 ⋅ Δ𝑑 by factor
𝑑 is a hollow body of lattice width 𝑑, which implies Flt(𝑑) ⩾ 𝑑.
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The simplex 𝑑 ⋅ Δ𝑑 is however not the hollow convex body with largest width. In fact, deter-
mining the exact flatness constant is a challenge for each fixed dimension 𝑑 > 1. The only known
value is in dimension 2: Hurkens proved that Flt(2) = 1 + 2√

3
[26] by finding the (unique!) real-

izer for the flatness constant via an exhaustive search. A realizer for the flatness constant Flt(𝑑)

is a hollow convex 𝑑-body of maximum possible width, that is, equal to the flatness constant. All
dimensions higher than 2 remain open, and partial progress can be summarized as follows. In
dimension 3, Codenotti and Santos [15] constructed a hollow tetrahedron which they conjecture
to be a realizer for Flt(3), and Averkov, Codenotti, Macchia and Santos showed in [3] that this
tetrahedron is (at least) a strict local maximizer. In dimensions 4 and 5, local maximizers were
found by Mayrhofer, Schade and Weltge [46] by following up on an approach established in [3].
They also construct a family of hollow convex bodies 𝐶𝑑 ⊂ ℝ𝑑 with widthℤ𝑑(𝐶𝑑) ⩾ 2𝑑 − 𝑜(1).
To determine the exact values of Flt(𝑑), a logical first step is to narrow down the search space

of potential realizers. One can exploit that the lattice width is a non-decreasing functional under
containment and, similarly, that the property of being hollow is preserved under taking sub-
sets. Therefore, Lovász [42] observed that one can restrict the search for realizers of the flatness
constant to inclusion-maximal hollow bodies, hollow convex bodies 𝐶 such that any 𝐾 ⊋ 𝐶 is
not hollow.
We propose a novel approach by observing that to study realizers of the flatness constant, one

can alternatively restrict to lattice reduced convex bodies:

Definition 1.1. A convex body 𝐶 ⊂ ℝ𝑑 is called lattice reduced with respect to Λ if there is no
𝐶′ ⊊ 𝐶 such that widthΛ(𝐶′) = widthΛ(𝐶).

Since the interior lattice point enumerator 𝐶 ↦ | int(𝐶) ∩ Λ| is not strictly monotonous, it is
not immediate that the flatness constant is achieved by lattice reduced convex bodies. To prove
that this does hold, we first have to show that any convex body contains a lattice reduced convex
body of the same lattice width (cf. Theorem 3.20). Even so, it is possible that the flatness constant
is also realized by non-reduced convex bodies. For simplices, we exclude this possibility:

Theorem 1.2. Let Λ ⊂ ℝ𝑑 be a 𝑑-dimensional lattice and let 𝑆 be a local maximum of widthΛ on
the class of hollow 𝑑-simplices. Then, 𝑆 is lattice reduced with respect to Λ.

Here, the term ‘local’ refers to the Hausdorff-distance between compact subsets of ℝ𝑑. Let
Flt𝑠(𝑑) denote the maximum lattice width of a hollow simplex in ℝ𝑑. According to Theorem 1.2,
there are no two realizers 𝑆 and𝑇 ofFlt𝑠(𝑑) such that 𝑆 ⊊ 𝑇. Thus, a realizer𝑇 ofFlt𝑠(𝑑) is not only
reduced, but also inclusion-maximal hollow. Lovász observed [42] that being inclusion-maximal
hollow implies that there exists a lattice point 𝑥𝐹 within each facet 𝐹 of 𝑇 (see also [2]). We prove a
similar criterion for reducedness (cf. Proposition 3.1): there is a width-realizing direction 𝑦𝑣 ∈ ℤ𝑑

for each vertex 𝑣 such that 𝑣 is the unique vertex maximizing the width in this direction. Inves-
tigating the interplay of the vectors 𝑥𝐹 and 𝑦𝑣 might yield more restrictive structural results as
can be obtained by considering reducedness or inclusion-maximal hollowness on their own and
could lead to a classification of the potential realizers of Flt𝑠(𝑑). This turns the quest for realizers
of Flt𝑠(𝑑) into an optimization problem. In the plane, this program can be carried out successfully
without much effort, as we discuss in Remark 4.8.
If Theorem 1.2 can be extended to all convex bodies, then this approach can also be used to

tackle Flt(𝑑) itself. However, the question whether any realizer of Flt(𝑑) is necessarily reduced is
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still open. Studying convex bodies that are simultaneously reduced and inclusion-maximal hollow
might also be helpful toward3 answering this question.
In this paper we have the goal of studying lattice reduced convex bodies, with one eye toward

the flatness constant and the other toward comparing these to the analogous Euclidean notion.
Indeed, the definition of lattice reduced owes name and inspiration to the analogue notion of
reducedness with respect to Euclidean width. The Euclidean width widthℝ(𝐶) of a convex body
𝐶 is defined as the minimum Euclidean distance between two parallel supporting hyperplanes of
𝐶, that is,

widthℝ(𝐶) = min
𝑢∈𝕊𝑑−1

max
𝑎,𝑏∈𝐶

𝑢 ⋅ (𝑎 − 𝑏),

where 𝕊𝑑−1 denotes the Euclidean unit sphere centered at the origin in ℝ𝑑. Just as in the lattice
setup, 𝐶 is then called Euclidean reduced if there is no convex body 𝐶′ ⊊ 𝐶 with widthℝ(𝐶′) =

widthℝ(𝐶).
In the Euclidean world, reducedness is often studied alongside the notion of completeness. The

Euclidean diameter diamℝ(𝐶) of a convex body 𝐶 is defined as the length of a longest line seg-
ment contained in 𝐶, and 𝐶 is called Euclidean complete if there is no convex body 𝐶′ ⊋ 𝐶 with
diamℝ(𝐶′) = diamℝ(𝐶). It is well known that 𝐶 is complete if and only if 𝐶 is a so-called body of
constant width. This implies that a Euclidean complete convex body is in particular Euclidean
reduced. We refer to the survey [38] for a modern overview on reduced convex bodies in the
Euclidean setting and to the book [13] for extensive background on complete convex bodies.
The strong connection between the notions of reducedness and completeness in the Euclidean

setting motivates us to define the analogue notion of a lattice complete convex body and to study
the properties of lattice reduced and lattice complete convex bodies in parallel. To define lattice
completeness, we need a discrete analogue of diameter. We first need to measure the length of
segments with respect to the lattice Λ: We call a segment 𝐼 = [𝑎, 𝑏] ⊂ ℝ𝑑 a rational segment with
respect to Λ, if 𝑏 − 𝑎 ∈ span{𝑥} for some 𝑥 ∈ Λ. If 𝐼 is a rational segment, then there exists a
unique vector 𝑣𝐼 ∈ Λ, which generates Λ ∩ span{𝑏 − 𝑎} and is a positive multiple of 𝑏 − 𝑎. We
call 𝑣𝐼 the primitive direction of 𝐼 in Λ. The lattice length of a rational segment 𝐼 is now defined as

Vol1(𝐼) =
|𝑏 − 𝑎||𝑣𝐼| .

Here, |𝑣| denotes the standard Euclidean norm of a vector 𝑣 ∈ ℝ𝑑. So in other words, Vol1(𝐼) is
the Euclidean length of the segment 𝐼 normalized by the length of its primitive direction. The
lattice diameter of a convex body 𝐶 with respect to Λ can now be defined as

diamΛ(𝐶) = max{Vol1(𝐼)∶ 𝐼 ⊂ 𝐶 rational segment}.

The lattice diameter diamΛ(𝐶) was used in [14] to study generalizations of the flatness constant
in the plane and in [28] to classify 4-simplices without interior lattice points. It also occurs in [29],
where it is expressed in terms of the first minimum of 𝐶 − 𝐶 (see also Section 2). With the notion
of lattice diameter at hand, the definition lattice complete bodies is analogous to the Euclidean
case.

Definition 1.3. A convex body 𝐶 ⊂ ℝ𝑑 is called lattice complete with respect to Λ, if there is no
𝐶′ ⊋ 𝐶 with diamΛ(𝐶′) = diamΛ(𝐶).

In the plane, reduced lattice polygons have been studied independently by Cools and Lemmens
in [17], and a slightly different notion of completeness was investigated by Bárány and Füredi
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F IGURE 1 Three examples of reduced or complete quadrilaterals in the plane (cf. Example 3.10).

[6]. We also note that reducedness and completeness have been studied in various other non-
Euclidean settings, such as spherical geometry and hyperbolic geometry (see, for example, [7, 9,
35, 36, 40]), or Minkowski spaces [10, 37, 45].
In Figure 1, lattice reduced and complete polygons are illustrated. Note that the square

in Figure 1a shows that, in contrast to the Euclidean setting, completeness does not imply
reducedness. For further and higher dimensional examples, we refer to Section 3.4.
A main focus of the paper concerns the structure of both lattice reduced and lattice complete

convex bodies.

Theorem 1.4. Let Λ ⊂ ℝ𝑑 be a 𝑑-dimensional lattice and let 𝐶 ⊂ ℝ𝑑 be a convex body.

(1) If 𝐶 is lattice reduced with respect to Λ, then 𝐶 is a polytope with at most 2𝑑+1 − 2 vertices.
(2) If 𝐶 is lattice complete with respect to Λ, then 𝐶 is a polytope with at most 2𝑑+1 − 2 facets.

In both statements, the bound 2𝑑+1 − 2 cannot be improved.

Indeed, the bound 2𝑑+1 − 2 is attained by the Voronoi cell of the lattice 𝐴⋆
𝑑
and its polar

body, respectively.
This result contrasts the Euclidean situation: A Euclidean complete convex body is always

strictly convex and thus never a polytope [31, Proposition 2.1]. Euclidean reduced polygons exist
for 𝑑 = 2, for instance in the form of regular 𝑘-gons, where 𝑘 is odd. For 𝑑 > 2, constructing
a Euclidean reduced polytope is a non-trivial problem. It was solved affirmatively by González
Merino et al. in [19] for 𝑑 = 3, but it is open for 𝑑 > 3.
Moreover, we give a sharp lower bound on the dimension of the directions that realize the lattice

width (diameter) of a lattice reduced (complete) convex body.

Theorem 1.5. Let Λ ⊂ ℝ𝑑 be a 𝑑-dimensional lattice and let 𝐶 ⊂ ℝ𝑑 be a convex body.

(1) If 𝐶 is lattice reduced with respect to Λ, then the vectors 𝑦 ∈ Λ⋆ that realize the minimum
widthΛ(𝐶) span a linear space of dimension at least 𝑐 ⋅ log(𝑑), where 𝑐 > 0 is a universal
constant.
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6 of 39 CODENOTTI and FREYER

(2) If 𝐶 is lattice complete with respect to Λ, then the vectors 𝑣 ∈ Λ for which there exists a rational
segment parallel to 𝑣 achieving diamΛ(𝐶) span a linear space of dimension at least 𝑐 ⋅ log(𝑑),
where 𝑐 > 0 is a universal constant.

In both statements, the order of magnitude log(𝑑) is best-possible.

Theorems 1.4 and 1.5 suggest that there might be a duality between lattice reduced and lattice
complete convex bodies. In Theorem 3.8 we show that indeed an origin-symmetric convex body 𝐶

is lattice reduced with respect to some lattice Λ if and only if its polar body 𝐶⋆ is lattice complete
with respect to Λ⋆. However, there is most likely no such correspondence in the non-symmetric
case (cf. Remarks 3.13, 4.4 and 4.13).
A curious consequence of the complete classification of lattice reduced and complete triangles

in the plane up to unimodular equivalence (cf. Section 4.2) is the following theorem.

Theorem 1.6. Let 𝑇 ⊂ ℝ2 be a triangle and let Λ ⊂ ℝ2 be a two-dimensional lattice. If 𝑇 is lattice
complete with respect to Λ, then 𝑇 is lattice reduced with respect to Λ. The converse does not hold.

This result echoes the fact that the class of Euclidean complete bodies is properly contained
in the class of Euclidean reduced bodies. It further supports the idea that there is no duality
between arbitrary lattice reduced and lattice complete convex bodies. We can show however that
Theorem 1.6 neither extends to higher dimensional simplices (cf. Remark 4.13), nor to general
two-dimensional convex bodies (cf. Example 3.10).
The paper is organized as follows. In Section 2, we introduce the necessary tools from convex

geometry and the geometry of numbers that are needed for our investigations. In Section 3, we
study lattice reduced and complete convex bodies in general. This will lead to the proofs of Theo-
rems 1.4 and 1.5, as well as to several examples of reduced and complete convex bodies. Moreover,
we discuss the special role of origin-symmetric convex bodies and study the behavior of reduced
and complete convex bodies with respect to standard operations. We finally show that any convex
body𝐶 ⊂ ℝ𝑑 contains (is contained in) a lattice reduced (complete) body of the same lattice width
(diameter). This fact follows rather easily in the Euclidean setting with the help of Zorn’s lemma,
but in the discrete setting, more care is needed. In Section 4, we turn our eye on reduced and com-
plete simplices, proving Theorems 1.6 and 1.2. We then construct a family of complete tetrahedra
in Section 4 that serves as an interesting source of (counter)examples. To conclude, in Section 5,
we consider lattice analogs of various theorems and conjectures on reduced and complete bodies
in the Euclidean theory. The appendix contains a proof for the existence of hollow convex bodies
with maximal lattice width.
For the sake of brevity, in the remainder of the paper, the terms ‘width’, ‘diameter’, ‘reduced’

and ‘complete’ are to be understood as ‘lattice width’, etc., except in Section 5 where we always
specify lattice or Euclidean to avoid confusion.

2 PRELIMINARIES

For a vector 𝑥 ∈ ℝ𝑑 ⧵ {0} we denote by 𝑥⟂ the hyperplane orthogonal to 𝑥 passing through the
origin and by |𝑥| its Euclidean length. For two vectors 𝑥, 𝑦 ∈ ℝ𝑑, we let 𝑥 ⋅ 𝑦 be the standard inner
product. The Minkowski sum of two non-empty sets 𝐴, 𝐵 ⊆ ℝ𝑑 is denoted by 𝐴 + 𝐵 = {𝑎 + 𝑏 ∶
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𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and for a number 𝜆 ∈ ℝ, wewrite 𝜆𝐴 = {𝜆𝑎 ∶ 𝑎 ∈ 𝐴} and−𝐴 = (−1)𝐴. The convex
hull of a set 𝐴 ⊂ ℝ𝑑 is denoted by conv 𝐴. If 𝐴 = {𝑥, 𝑦}, we write [𝑥, 𝑦] = conv 𝐴 for the segment
joining 𝑥 and 𝑦. The affine hull of𝐴 is denoted by af f 𝐴. The interior, the closure and the boundary
of 𝐴 with respect to the standard topology in ℝ𝑑 are denoted by int 𝐴, cl 𝐴 and bd𝐴, respectively,
and we write, for instance, relint 𝐴 for the interior of 𝐴 with respect to the trace topology on
af f 𝐴. Moreover, for 𝑛 ∈ ℕ, we write [𝑛] = {1, … , 𝑛}. For 𝑖 ∈ [𝑑], let 𝑒𝑖 denote the 𝑖th standard
basis vector of ℤ𝑑 and we let 𝐶𝑑 = [−1, 1]𝑑 be the standard origin-symmetric cube. Finally, we
write 𝟙 = 𝑒1 + ⋯ + 𝑒𝑑 for the all-1-vector.

2.1 Convex geometry

Here we recall the basic terms and facts from convex geometry that are necessary for the under-
standing of the following sections. For a thorough read, we refer to the books [21, 50], as well as
[52] for polytope theory.
A convex body 𝐶 ⊂ ℝ𝑑 means a convex compact set with non-empty interior. A face 𝐹 ⊆ 𝐶 is

a convex subset of 𝐶 such that for any 𝑥, 𝑦 ∈ 𝐶 with [𝑥, 𝑦] ∩ 𝐹 ≠ ∅, we have 𝑥, 𝑦 ∈ 𝐹. A face is
called proper, if neither 𝐹, nor 𝐶 ⧵ 𝐹 are empty. An extreme point is a zero-dimensional face, the
set of extreme points of 𝐶 is denoted by ext(𝐶).
A hyperplane 𝐻 ⊂ ℝ𝑑 is said to support a convex body 𝐶, if 𝐶 ∩ 𝐻 ≠ ∅ and 𝐶 is contained in

one of the two closed half-spaces determined by 𝐻. If 𝐻 is a supporting hyperplane of 𝐶, the set
𝐹 = 𝐶 ∩ 𝐻 is called an exposed face of 𝐶. Any exposed face is indeed a face, but the converse is
not true. A zero-dimensional exposed face is called exposed point and the set of exposed points is
denoted by expo(𝐶). We have cl(expo(𝐶)) = ext 𝐶.
For a vector 𝑣 ∈ ℝ𝑑, the support function of 𝐶 is defined as ℎ(𝐶; 𝑣) = max𝑣∈𝐶 𝑥 ⋅ 𝑣. In fact, if

𝑣 ≠ 0, the hyperplane {𝑥 ∈ ℝ𝑑 ∶ 𝑥 ⋅ 𝑣 = ℎ(𝐶; 𝑣)} is a supporting hyperplane of 𝐶.
For a convex set 𝐾 ⊆ ℝ𝑑, its polar set is defined as

𝐾⋆ = {𝑦 ∈ ℝ𝑑 ∶ 𝑥 ⋅ 𝑦 ⩽ 1, ∀𝑥 ∈ 𝐾}.

There is a variety of nice properties for this polarity operation [50, Section 1.6.1]. Here we want
to highlight that 𝐾⋆ is bounded if and only if 0 ∈ int 𝐾. In particular, for a convex body 𝐶 which
contains the origin as an interior point, 𝐶⋆ is a convex body with 0 ∈ int 𝐶⋆.
We measure the distance between two convex bodies with respect to the Hausdorff distance,

that is, we have

𝑑(𝐶, 𝐶′) = min{𝑟 ⩾ 0∶ 𝐶 ⊆ 𝐶′ + 𝑟𝐵 and 𝐶′ ⊆ 𝐶 + 𝑟𝐵},

for any 𝐶, 𝐶′ ⊂ ℝ𝑑, where 𝐵 ⊂ ℝ𝑑 denotes the Euclidean unit ball. Indeed, 𝑑(⋅, ⋅) turns the set of
convex bodies in ℝ𝑑 into a metric space.
A polytope 𝑃 ⊂ ℝ𝑑 is the convex hull of a finite set𝐴 ⊂ ℝ𝑑, or, equivalently, a bounded intersec-

tion of closed half-spaces. The extreme points of a polytope are commonly called vertices and its
(dim(𝑃) − 1)-dimensional faces are called facets. For a face 𝐹 ⊆ 𝑃, the normal cone of 𝐹 is defined
as

ncone(𝐹; 𝑃) = {𝑦 ∈ ℝ𝑑 ∶ ∀𝑥 ∈ 𝐹, 𝑥′ ∈ 𝑃, 𝑥 ⋅ 𝑦 ⩾ 𝑥′ ⋅ 𝑦}.
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8 of 39 CODENOTTI and FREYER

The normal fan N(𝑃) of 𝑃 is the collection of all normal cones of 𝑃. N(𝑃) is a complete fan, that
is, the union of all normal cones of 𝑃 is ℝ𝑑, any face of a normal cone is again a normal cone and
any two normal cones intersect in a normal cone.
If 0 ∈ int 𝑃, then 𝑃⋆ is again a polytope and there is a 1-1 correspondence between 𝑘-faces of 𝑃

and (𝑑 − 1 − 𝑘)-faces of 𝑃⋆; For a 𝑘-face 𝐹 ⊆ 𝑃, the set

𝐹⋄ = {𝑦 ∈ 𝑃⋆∶ 𝑥 ⋅ 𝑦 = 1, ∀𝑥 ∈ 𝐹}

is a (𝑑 − 𝑘 − 1)-face of 𝑃⋆, the so-called polar face of 𝐹. Here, the empty face is regarded as a (−1)-
face. Another fan associated to a polytope 𝑃 with 0 ∈ int 𝑃 is the face fan. For a face 𝐹 ⊆ 𝑃 one
considers the positive hull

cone(𝐹) = {𝜆𝑥∶ 𝑥 ∈ 𝐹, 𝜆 ⩾ 0}.

The collection of these cones is the face fan F(𝑃). The face fan is connected to the normal fan via
polarity; we have ncone(𝐹; 𝑃) = cone(𝐹⋄) and so N(𝑃) = F(𝑃⋆).

2.2 Geometry of numbers

In this subsection we summarize tools we need from the geometry of numbers that help describe
the interplay of convex bodies and lattices inℝ𝑑. Further background on the geometry of numbers
can be found in the books [12, 22].
A lattice Λ ⊂ ℝ𝑑 is by definition a discrete subgroup of ℝ𝑑. Equivalently, we may express Λ as

the integer span of linearly independent vectors 𝑏1, … , 𝑏𝑘 ∈ ℝ𝑑, that is,

Λ = spanℤ{𝑏1, … , 𝑏𝑘} =

{
𝑘∑

𝑖=1

𝑧𝑖𝑏𝑖 ∶ 𝑧1, … , 𝑧𝑘 ∈ ℤ

}
.

The vectors 𝑏1, … , 𝑏𝑘 are then called a basis of Λ. Two bases 𝐵 = (𝑏1, … , 𝑏𝑘) and 𝐵′ = (𝑏′
1
, … , 𝑏′

𝑘
)

of Λ differ only by a unimodular transformation, that is, 𝐵′ = 𝐵𝑈, for a matrix 𝑈 ∈ ℤ𝑘,𝑘

with | det𝑈| = 1. The group of unimodular transformations on ℝ𝑑 is denoted by GL𝑑(ℤ). The
determinant of a lattice Λ can now be defined as detΛ =

√
det(𝐵𝑇𝐵), where 𝐵 is a basis of Λ.

Subgroups of Λ are called sublattices. The dual lattice of Λ is defined as

Λ⋆ = {𝑦 ∈ spanΛ∶ 𝑥 ⋅ 𝑦 ∈ ℤ, ∀𝑥 ∈ Λ}.

A vector in 𝑥 ∈ Λ is called primitive, if 𝑥 ≠ 0 and the segment [0, 𝑥] contains no lattice points
of Λ in its relative interior. More generally, a sublattice Λ′ ⊆ Λ is called primitive, if Λ′ =

spanℝ(Λ′) ∩ Λ. The primitive vectors 𝑦 ∈ Λ⋆ are in 2-1 correspondence to the primitive (dimΛ −

1)-dimensional sublattices of Λ via the map 𝑦 ↦ Λ ∩ 𝑦⟂. The vectors 𝑦 and −𝑦 both lead to the
same sublattice.
Three standard examples of lattices that will be of interest in the paper are the integer lattice

ℤ𝑑 and the root lattice 𝐴𝑑 = {𝑥 ∈ ℤ𝑑+1 ∶ 𝑥 ⋅ 𝟙 = 0}, as well as its dual 𝐴⋆
𝑑
. We refer to the book

[16] for a detailed treatment of special lattices.
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LATTICE REDUCED AND COMPLETE CONVEX BODIES 9 of 39

When working with width and diameter, it will be convenient to write width(𝐶; 𝑣) =

ℎ(𝐶 − 𝐶; 𝑣) for the width of 𝐶 in direction 𝑣 ∈ ℝ𝑑 ⧵ {0}. This way, we have widthΛ(𝐶) =

min𝑦 width(𝐶; 𝑦), where 𝑦 ranges over Λ⋆ ⧵ {0}. Similarly, we write for 𝑣 ∈ ℝ𝑑 ⧵ {0}

diam(𝐶; 𝑣) = max
{vol1(𝐼)|𝑣| ∶ 𝐼 ⊂ 𝐶 segment parallel to 𝑣

}
and find diamΛ(𝐶) = max𝑣 diam(𝐶; 𝑣), where 𝑣 ranges over Λ ⧵ {0}.
An important parameter in the geometry of numbers is the first successive minimum of an

origin-symmetric convex body 𝐶 ⊂ ℝ𝑑 with respect to a lattice. It is given by

𝜆1(𝐶; Λ) = min
{
𝜆 ⩾ 0∶ (𝜆𝐶) ∩ (Λ ⧵ {0}) ≠ ∅

}
= max

{
𝜆 ⩾ 0∶ int(𝜆𝐶) ∩ Λ = {0}

}
.

It is well known that the width and diameter of a convex body 𝐶 can be expressed in terms of the
first minimum as stated in the following lemma (see, for example, [28, Section 2.1; 29, Section 1]).
Its proof is a good exercise for anyone that wants to familiarize themselves with the definitions.

Lemma 2.1. Let 𝐶 ⊂ ℝ𝑑 be a convex body and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice. Then we have

(1) widthΛ(𝐶) = 𝜆1((𝐶 − 𝐶)⋆; Λ⋆) and
(2) diamΛ(𝐶) = 𝜆1(𝐶 − 𝐶;Λ)−1.

Moreover, the directions where the width (resp., diameter) of the convex body is achieved correspond
to the non-trivial lattice points in 𝜆1((𝐶 − 𝐶)⋆; Λ⋆)(𝐶 − 𝐶)⋆ (resp., 𝜆1(𝐶 − 𝐶;Λ)(𝐶 − 𝐶)).

We call these directionswhere thewidth (diameter) is achieved, that is, lattice points in 𝜆1((𝐶 −

𝐶)⋆; Λ⋆)(𝐶 − 𝐶)⋆ (resp., 𝜆1(𝐶 − 𝐶;Λ)(𝐶 − 𝐶)) simply width (diameter) directions. Since the first
successiveminimum is continuous, it follows immediately that the width and diameter directions
of a convex body are stable with respect to small perturbations of 𝐶. More precisely, the following
lemma holds.

Lemma 2.2. Let 𝐶 ⊂ ℝ𝑑 be a convex body. Then there exists 𝜀 > 0 such that for any convex body
𝐶′ ⊂ ℝ𝑑 with𝑑(𝐶, 𝐶′) < 𝜀 thewidth (diameter) directions of𝐶′ are contained in thewidth (diameter)
directions of 𝐶.

We finish the section by turning to the main focus of the paper, the new definitions of reduced
and complete convex bodies, and collecting some first useful properties of these.

Lemma 2.3. Let 𝐶 ⊂ ℝ𝑑 be a convex body and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice.

(1) If 𝐶 is reduced (complete) with respect to Λ, then 𝜆𝐶 + 𝑡 is reduced (complete) with respect to Λ,
for any 𝜆 ∈ ℝ ⧵ {0} and 𝑡 ∈ ℝ𝑑 .

(2) If 𝐶 is reduced (complete) with respect to Λ, then 𝐴𝐶 is reduced (complete) with respect to 𝐴Λ,
for any 𝐴 ∈ GL𝑑(ℝ).

(3) If 𝐶 is reduced (complete) with respect to ℤ𝑑, then 𝑈𝐶 is reduced (complete) with respect to ℤ𝑑,
for any𝑈 ∈ GL𝑑(ℤ).

All statements follow directly from the properties of the successive minima. The lemma
shows that there is no restriction in considering only the integer lattice Λ = ℤ𝑑. However, when
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10 of 39 CODENOTTI and FREYER

constructing a reduced or complete convex body it is oftentimes more convenient to modify the
lattice rather than the convex body, which is why we formulate our results for arbitrary lattices.

3 RESULTS AND CONSTRUCTIONS FOR GENERAL CONVEX
BODIES

3.1 Reduced bodies

First we show that a convex body is reduced if and only if every exposed point is selected by a
width direction. An analog of this statement is also known in the Euclidean case [38, Theorem 1].

Proposition 3.1. Let 𝐶 ⊂ ℝ𝑑 be a convex body and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice. The following are
equivalent:

(1) 𝐶 is reduced with respect to Λ.
(2) For every exposed point 𝑝 ∈ 𝐶, there exists a width direction 𝑦 ∈ Λ⋆ such that 𝑦 ⋅ 𝑝 > 𝑦 ⋅ 𝑥, for

all 𝑥 ∈ 𝐶 ⧵ {𝑝}.

Proof. If 𝐶 is not reduced, there exists a convex body 𝐶′ ⊊ 𝐶 such that widthΛ(𝐶′) = widthΛ(𝐶).
Since 𝐶′ is closed and strictly contained in 𝐶, there exists a point 𝑝 ∈ expo(𝐶) which is not in
𝐶′. Thus if condition (2) would hold, then there would exist a width direction 𝑦 ∈ Λ⋆ such that
width(𝐶′; 𝑦) < width(𝐶; 𝑦) = widthΛ(𝐶), a contradiction since 𝐶′ and 𝐶 have the same width.
For the converse, let 𝑝 ∈ expo(𝐶) be an exposed point and let𝐻 = {𝑥 ∶ 𝑐 ⋅ 𝑥 = 𝑏}, 𝑐 ∈ ℝ𝑑 ⧵ {0},

be the hyperplane selecting 𝑝, that is,𝐻 ∩ 𝐶 = {𝑝} and 𝐶 ⊂ 𝐻− = {𝑥 ∶ 𝑐 ⋅ 𝑥 ⩽ 𝑏}. We define 𝐶𝜀 =

𝐶 ∩ 𝐻−
𝜀 , where 𝐻−

𝜀 = {𝑥 ∶ 𝑐 ⋅ 𝑥 ⩽ 𝑏 − 𝜀} and 𝜀 > 0. Moreover, let {𝑦1, … , 𝑦𝑘} = widthΛ(𝐶)(𝐶 −

𝐶)⋆ ∩ Λ⋆ ⧵ {0} be the width directions of 𝐶, which are finite (cf. Lemma 2.1).
Suppose now that condition (2) does not hold for 𝑝, that is, for each of the width directions

𝑦𝑖 , there exists some 𝑞𝑖 ∈ 𝐶 ⧵ {𝑝} such that 𝑦𝑖 ⋅ 𝑞𝑖 ⩾ 𝑦𝑖 ⋅ 𝑝. We want to show that for 𝜀 > 0 small
enough we havewidthΛ(𝐶𝜀) = widthΛ(𝐶). First observe that, if 𝜀 is chosen sufficiently small,𝐻−

𝜀

will still contain 𝑞1, … , 𝑞𝑘, which implies 𝑞𝑖 ∈ 𝐶𝜀 and thus width(𝐶𝜀; 𝑦𝑖) = width(𝐶; 𝑦𝑖).
Now we recall from Lemma 2.2 that for 𝜀 > 0 small enough, the width directions of 𝐶𝜀 are

among the width directions {𝑦1, … , 𝑦𝑘} of 𝐶. In conclusion, for 𝜀 > 0 small enough it holds that
widthΛ(𝐶𝜀) = widthΛ(𝐶), and thus 𝐶 is not lattice reduced. □

The next theorem entails the first statements of Theorems 1.4 and 1.5.

Theorem 3.2. Let 𝐶 ⊂ ℝ𝑑 be a convex body, reduced with respect to a 𝑑-lattice Λ. Let 𝑘 = dim{𝑦 ∈

Λ⋆∶ 𝑦 is a width direction of 𝐶}. Then, 𝐶 is a polytope with at most 2𝑘+1 − 2 vertices.

Before we come to the proof, we need the following lemma.

Lemma 3.3. Let𝐶 ⊂ ℝ𝑑 be a convex body with int 𝐶 ∩ Λ = {0}. Let𝐴 ⊆ bd(𝐶) ∩ Λ such that no two
points in 𝐴 lie in a common facet of 𝐶. Then, |𝐴| ⩽ 2𝑘+1 − 2, where 𝑘 is the dimension of span𝐴.

Proof. First, we assume that 𝑘 = 𝑑. Suppose there are points 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ≠ 𝑏 and 𝑎 ≡
𝑏 mod 2Λ. Then (𝑎 + 𝑏)∕2 is a lattice point in int 𝐶, because otherwise, 𝑎 and 𝑏 had to be
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LATTICE REDUCED AND COMPLETE CONVEX BODIES 11 of 39

contained in a common face of𝐶. Consequently,−𝑎 = 𝑏. Thus, there cannot bemore than 2 points
of 𝐴 within one coset of Λ∕2Λ. Further, there is no point 𝑎 ∈ 𝐴 ∩ 2Λ, since then, 𝑎∕2 would be a
non-zero point in int 𝐶. As there are 2𝑑 cosets, the statement follows.
If 𝑘 < 𝑑, we consider the convex body𝐶′ = 𝐶 ∩ 𝐿, where𝐿 = span𝐴, and the latticeΛ′ = Λ ∩ 𝐿.

Then,𝐶′ andΛ′ are 𝑘-dimensional in 𝐿. So the statement follows by applying the full-dimensional
case in 𝐿. □

Proof of Theorem 3.2. Since there are only finitely many width directions of 𝐶, it follows from
Proposition 3.1 that 𝐶 has only finitely many exposed points and is, thus, a polytope.
Let 𝑣1, … , 𝑣𝑛 ∈ 𝐶 be the vertices of 𝐶 and let 𝑦𝑖 ∈ Λ⋆ be the width direction which only selects

𝑣𝑖 , as guaranteed by Proposition 3.1, 1 ⩽ 𝑖 ⩽ 𝑛. Then, 𝑦𝑖 is contained in the interior of the normal
cone ncone(𝑣𝑖; 𝐶) ∈ N(𝐶). Since the normal fan of 𝐶 − 𝐶 is the common refinement of N(𝐶) and
N(−𝐶) [52, Proposition 7.12], no two distinct vectors 𝑦𝑖 and 𝑦𝑗 fall in the same normal cone of
𝐶 − 𝐶. By duality, this implies that no two of the vectors 𝑦𝑖 and 𝑦𝑗 are contained in a common face
cone in F((𝐶 − 𝐶)⋆). In particular, it follows that there is no dilation of (𝐶 − 𝐶)⋆ such that 𝑦𝑖 and
𝑦𝑗 lie in a common facet of this dilation.
Now consider the polytope 𝑃 = 𝜆1((𝐶 − 𝐶)⋆; Λ⋆)(𝐶 − 𝐶)⋆. From the definition of the succes-

sive minima we have that 𝑃 contains the origin as its unique interior lattice point. Since the 𝑦𝑖

are width directions of 𝐶, they are contained in bd(𝑃). Since no two of the vectors 𝑦𝑖 and 𝑦𝑗 are
contained in a common facet of 𝑃, we can apply Lemma 3.3 to 𝑃 and 𝐴 = {𝑦1, … , 𝑦𝑛} to obtain
𝑛 ⩽ 2𝑘+1 − 2 as desired. □

3.2 Complete bodies

Here we prove a similar statement to Theorem 3.2 for complete convex bodies.

Theorem 3.4. Let 𝐶 ⊂ ℝ𝑑 be a convex body, complete with respect to a 𝑑-latticeΛ. Let 𝑘 = dim{𝑦 ∈

Λ⋆∶ 𝑦 is a diameter direction of 𝐶}. Then, 𝐶 is a polytope with at most 2𝑘+1 − 2 facets.

Although Theorem 3.4 is exactly the dual statement to Theorem 3.2 in the origin-symmetric
case, we are not aware of an argument that allows to derive one of the theorems from the other.
Again, we need some preliminary results in order to prove Theorem 3.4.

Lemma 3.5. Let 𝐶 be a convex body and consider [𝑎, 𝑏], [𝑐, 𝑑] ⊂ 𝐶 such that 𝑏 − 𝑎 and 𝑑 − 𝑐 are
in a common face of 𝐶 − 𝐶. Then there exist opposite exposed faces 𝐹1, 𝐹2 ⊂ 𝐶 of 𝐶 with 𝑎, 𝑏 ∈ 𝐹1

and 𝑐, 𝑑 ∈ 𝐹2. Here, 𝐹1 and 𝐹2 are called opposite, if there exist parallel supporting hyperplanes
𝐻1,𝐻2 ⊂ ℝ𝑑 such that 𝐹𝑖 = 𝐶 ∩ 𝐻𝑖 , 𝑖 ∈ {1, 2}.

Proof. Since any face of 𝐶 − 𝐶 is contained in an exposed face, there exists a vector 𝑣 ∈ ℝ𝑛 ⧵ {0}

such that

𝑣 ⋅ (𝑏 − 𝑎) = 𝑣 ⋅ (𝑑 − 𝑐) = ℎ(𝐶 − 𝐶; 𝑣) = ℎ(𝐶; 𝑣) + ℎ(−𝐶; 𝑣).

It follows that

𝑣 ⋅ 𝑏 = 𝑣 ⋅ 𝑑 = ℎ(𝐶; 𝑣) and 𝑣 ⋅ (−𝑐) = 𝑣 ⋅ (−𝑎) = ℎ(−𝐶; 𝑣),

which proves the lemma. □
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12 of 39 CODENOTTI and FREYER

From this it follows immediately that for a fixed direction 𝑣, the segments of maximal length
in a convex body that are parallel to 𝑣 pass between two fixed opposite faces.

Lemma 3.6. Let 𝑣 ∈ ℝ𝑑 ⧵ {0} and let 𝑆, 𝑆′ ⊂ 𝐶 be two segments parallel to 𝑣 of maximal length in
𝐶. Then there exists a pair of opposite exposed faces 𝐹,𝐺 such that 𝑆 and 𝑆′ have an endpoint in 𝐹

and 𝐺 each.

We call diameter segments those segments contained in the convex body which have maximum
lattice length. The following proposition gives a helpful characterization of complete polytopes.

Proposition 3.7. A 𝑑-polytope 𝑃 ⊂ ℝ𝑑 is complete with respect to a 𝑑-lattice Λ ⊂ ℝ𝑑 if and only if
for each facet 𝐹 ⊂ 𝑃, there is a diameter segment 𝐼𝐹 ⊂ 𝑃 with an endpoint in relint 𝐹.

Proof. If there were a facet not satisfying the condition above, then stacking that facet by adding a
point beyond that facet but beneath all other facets would give a polytope with the same diameter,
since this operation will not change diameter directions and does not lengthen existing diameter
segments (the only maximal segments that can be extended in the stacking have an endpoint in
relint 𝐹).
If 𝑃 were not complete but satisfies the condition of the proposition, let 𝑄 be a polytope strictly

containing it of the same diameter. If 𝑞 is a point of 𝑄 ⧵ 𝑃, then it must lie beyond some facet
of 𝑃, say 𝐹. Then the segment 𝐼𝐹 of the condition of the proposition can be extended to a longer
segment in 𝑄, contradicting the diameter condition on 𝑄. □

Now we are well equipped for the proof of Theorem 3.4.

Proof of Theorem 3.4. Without loss of generality, suppose diamΛ(𝐶) = 1 (cf. Lemma 2.3). In view
of Lemma 2.1, the diameter of 𝐶 is attained in finitely many directions. By Lemma 3.6, for each
such diameter direction 𝑣, there exist two opposite exposed faces that contain the endpoints of
all diameter segments parallel to 𝑣. So we have finitely many exposed faces 𝐹1, … , 𝐹𝑠 ⊂ 𝐶 that
contain the endpoints of all diameter segments. Let 𝑢1, … , 𝑢𝑠 be the outer unit normal vectors of
𝐶 that realize the facets 𝐹𝑖 , that is, 𝐹𝑖 = {𝑥 ∈ 𝐶∶ 𝑥 ⋅ 𝑢𝑖 = ℎ(𝐶; 𝑢𝑖)}.
Suppose that 𝐶 is strictly contained in the intersection of the half-spaces {𝑥 ∈ ℝ𝑑 ∶ 𝑢𝑖 ⋅ 𝑥 ⩽

ℎ(𝐶; 𝑢𝑖)}. Then there is a point 𝑥 ∈ bd(𝐶)with 𝑢𝑖 ⋅ 𝑥 < ℎ(𝐶; 𝑢𝑖), for all 1 ⩽ 𝑖 ⩽ 𝑠. Let 𝜀 > 0 be such
that 𝜀 < ℎ(𝐶; 𝑢𝑖) − 𝑢𝑖 ⋅ 𝑥, for all 1 ⩽ 𝑖 ⩽ 𝑠, and define 𝑥𝜀 = 𝑥 + 𝜀𝑣 ∉ 𝐶, for some outer unit normal
vector 𝑣 of 𝐶 at 𝑥. We claim that 𝐶′ = conv(𝐶 ∪ {𝑥𝜀}) has the same diameter as 𝐶.
If 𝜀 is small enough, we can assume that the lattice diameter of 𝐶′ is attained by one of the

diameter directions of 𝐶 (cf. Lemma 2.2). Denote this direction by 𝑦 and let 𝐹1 and 𝐹2, say, be the
faces of 𝐶 that contain the endpoints of diameter segments in this direction. By the choice of 𝜀,
we have

𝑥𝜀 ⋅ 𝑢𝑖 = 𝑥 ⋅ 𝑢𝑖 + 𝜀𝑣 ⋅ 𝑢𝑖 ⩽ 𝑥 ⋅ 𝑢𝑖 + 𝜀 < ℎ(𝑢𝑖; 𝐶),

for all 𝑖. Thus, the hyperplanes𝐻𝑖 = {𝑥 ∈ ℝ𝑑 ∶ 𝑢𝑖 ⋅ 𝑥 = ℎ(𝑢𝑖; 𝐶)} are also supporting hyperplanes
of𝐶′. Therefore, a segment in𝐶′ parallel to 𝑦 cannot be longer than a segment passing between𝐹1

and 𝐹2. So we obtain diamΛ(𝐶′) = diamΛ(𝐶), contradicting the completeness of 𝐶. It follows that
𝐶 is indeed the intersection of the half-spaces {𝑥 ∈ ℝ𝑑 ∶ 𝑢𝑖 ⋅ 𝑥 ⩽ ℎ(𝑢𝑖; 𝐶)} and as such a polytope.
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LATTICE REDUCED AND COMPLETE CONVEX BODIES 13 of 39

In order to see that 𝐶 has at most 2𝑘+1 − 2 facets, we recall from Proposition 3.7, that for each
facet 𝐹 ⊂ 𝐶, there exists a diameter segment [𝑥𝐹, 𝑦𝐹] ⊂ 𝐶 such that 𝑥𝐹 ∈ relint 𝐹. For each facet
𝐹 ⊂ 𝐶, let 𝑣𝐹 = 𝑥𝐹 − 𝑦𝐹 . Since diamΛ(𝐶) = 1, these are boundary lattice points of𝐶 − 𝐶. Suppose
𝑣𝐹 and 𝑣𝐺 are in a common facet of𝐶 − 𝐶. By Lemma 3.5, we have that 𝑥𝐹 and 𝑥𝐺 are in a common
facet of 𝐶. By construction, we must have 𝐹 = 𝐺. Thus, no two distinct vectors 𝑣𝐹 share a facet.
Since, due to diamΛ(𝐶) = 1, we have int(𝐶 − 𝐶) ∩ Λ = {0}, the inequality follows from applying
Lemma 3.3 to the vectors 𝑣𝐹 and 𝐶 − 𝐶. □

3.3 The origin-symmetric case

For origin-symmetric convex bodies, there is a duality between reducedness and completeness.

Theorem 3.8. Let 𝐶 ⊂ ℝ𝑑 be an origin-symmetric 𝑑-polytope and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice.

(1) The width directions of 𝐶 with respect to Λ are the diameter directions of 𝐶⋆ with respect to Λ⋆.
(2) 𝐶 is reduced with respect to Λ, if and only if 𝐶⋆ is complete with respect to Λ⋆.

Proof. For (1), we recall from Lemma 2.1 that the width directions of 𝐶 with respect to Λ⋆ are
given by

𝑊 = 𝜆1((𝐶 − 𝐶)⋆; Λ⋆)(𝐶 − 𝐶)⋆ ∩ Λ⋆ ⧵ {0}.

Since −𝐶 = 𝐶, we have

𝜆1((𝐶 − 𝐶)⋆; Λ⋆)(𝐶 − 𝐶)⋆ = 𝜆1

(
1

2
𝐶⋆;Λ⋆

)
1

2
𝐶⋆

= 𝜆1(2𝐶
⋆;Λ⋆)2𝐶⋆ = 𝜆1(𝐶

⋆ − 𝐶⋆;Λ⋆)(𝐶⋆ − 𝐶⋆),

where we used that the successive minima are (−1)-homogeneous in the first argument and that
𝐶⋆ is origin-symmetric as well. It follows that

𝑊 = 𝜆1(𝐶
⋆ − 𝐶⋆;Λ⋆)(𝐶⋆ − 𝐶⋆) ∩ Λ⋆ ⧵ {0},

which proves the claim.
For (2), we may assume that 𝐶 is a polytope. Moreover, we can assume that diamΛ⋆(𝐶⋆) = 2

(cf. Lemma 2.3). In this case the width directions of 𝐶 and the diameter directions of 𝐶⋆ are given
by𝑊 = 𝐶⋆ ∩ Λ⋆ ⧵ {0}.
First, let𝐶⋆ be completewith respect toΛ⋆. Consider a vertex 𝑣 ∈ 𝐶 of𝐶 and its polar facet 𝑣⋄ ⊂

𝐶⋆. Since𝐶⋆ is complete, there exists a diameter direction 𝑦 ∈ 𝑊 and a segment 𝐼 = [𝑎, 𝑎 + 2𝑦] ⊂

𝐶⋆ such that 𝑎 + 2𝑦 ∈ relint 𝑣⋄ (cf. Proposition 3.7). Since 𝐶 is origin-symmetric, the segment
−𝐼 ⊂ 𝐶 is also diameter realizing and by Lemma 3.5 we have −𝑎 ∈ 𝑣⋄. It follows that 𝑦 = 1

2
(𝑎 +

2𝑦 − 𝑎) ∈ relint 𝑣⋄.
This shows that 𝑦 ∈ int(cone 𝑣⋄) = int(ncone(𝑣; 𝐶)), which means that 𝑦 ⋅ 𝑣 > 𝑦 ⋅ 𝑥 for all 𝑥 ∈

𝐶 ⧵ {𝑣}. Thus, 𝐶 is reduced with respect to Λ by (1) and Proposition 3.1. The reverse implication is
proved by similar means. □
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14 of 39 CODENOTTI and FREYER

Remark 3.9. There is no direct generalization of Theorem 3.8 to arbitrary convex bodies. In fact, if
𝐶 is not origin-symmetric, 𝐶⋆ might even be unbounded. Since width and diameter are invariant
with respect to translations one could, however, consider (𝐶 − 𝑥0)

⋆ instead, where 𝑥0 is a point
in int 𝐶. A natural choice for 𝑥0 might be the centroid g(𝐶) = vol(𝐶)−1 ∫𝐶 𝑥 d𝑥. But as we will see
in Remarks 3.13 and 4.13, we have

𝐶 is reduced w.r.t. Λ ⇏ (𝐶 − g(𝐶))⋆ is complete w.r.t. Λ⋆ (3.1)

and

𝐶 is complete w.r.t. Λ ⇏ (𝐶 − g(𝐶))⋆ is reduced w.r.t. Λ⋆. (3.2)

3.4 Constructions and examples

We start by considering two-dimensional examples.

Example 3.10. In this example, we consider the lattice Λ = ℤ2.

(1) The triangle 𝑇orth = conv{0, 𝑒1, 𝑒2} is reduced, but not complete. Its width is attained by the
directions ±𝑒1, ±𝑒2 and ±𝟙. Each of these directions cut out one of the three vertices of
𝑇orth. The diameter of 𝑇orth is attained only by its edges. Thus, 𝑇orth is not complete by
Proposition 3.7.

(2) The square 𝐶2 = [−1, 1]2 is complete since it is a multiple of the Voronoi cell of ℤ2 (cf.
Proposition 3.11). It is not reduced since its width is attained by ±𝑒1 and ±𝑒2, but these
directions support 𝐶2 at its edges, not at vertices, thus violating Proposition 3.1. By polarity,
𝐶⋆

2
= conv{±𝑒1, ±𝑒2} is reduced, but not complete.

(3) Interestingly, the ‘twisted squares’ 𝑄𝑥 = conv{±
(1

𝑥

)
, ±

( 𝑥

−1

)
} are simultaneously reduced and

complete for 𝑥 ∈ (0, 1); indeed, both width and diameter are attained by the directions
±𝑒1, ±𝑒2 and, due to the choice of 𝑥, the corresponding lines support 𝑄𝑥 at its vertices and
the corresponding segments pass between two opposite edges (cf. Figure 1c).

(4) The pentagon conv{
(−1

1

)
,
(1

2

)
,
(2

0

)
,
( 0

−2

)
,
(−2

−1

)
} is reduced and not complete.

(5) The hexagon𝐻 = conv{±
( 2

−1

)
, ±

(−1

2

)
, ±

(1

1

)
} is simultaneously reduced and complete.

Subparts (4) and (5) can be verified by means of elementary, but rather lengthy, computations.

We continue with our ‘standard examples’ for complete and reduced polytopes: The Voronoi
cell 𝑉Λ of a lattice Λ is defined as the set of points that are closer to the origin than to any other
point in Λ. Equivalently, we have

𝑉Λ =
{
𝑥 ∈ ℝ𝑑 ∶ 𝑣 ⋅ 𝑥 ⩽ |𝑣|2∕2, ∀𝑣 ∈ Λ

}
.

SinceΛ is a discrete set, it follows that𝑉Λ is a polytope. The vectors 𝑣 ∈ Λ such that the inequality
𝑣 ⋅ 𝑥 ⩽ |𝑣|2∕2 contributes a facet to 𝑉Λ are called Voronoi relevant.

Proposition 3.11. Let Λ ⊂ ℝ𝑑 be a 𝑑-lattice. Then, 𝑉Λ is complete with respect to Λ and (𝑉Λ)⋆ is
reduced with respect to Λ⋆.
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LATTICE REDUCED AND COMPLETE CONVEX BODIES 15 of 39

Proof. It is well known (see for instance [25, Section 4]) that 2𝑉Λ contains each Voronoi rel-
evant vector 𝑣𝐹 in the relative interior of its corresponding facet 𝐹 and moreover, we have
int(2𝑉Λ) ∩ Λ = {0}. Since𝑉Λ is origin-symmetric, we have 𝜆1(𝑉Λ − 𝑉Λ;Λ) = 𝜆1(2𝑉Λ;Λ) = 1 and,
thus, diamΛ(𝑉Λ) = 1. Again by symmetry around the origin, the diameter is attained by the seg-
ments [𝑣𝐹, −𝑣𝐹]. Hence, Proposition 3.7 applies and 𝑉Λ is indeed complete. The statement for
(𝑉Λ)⋆ follows directly from Proposition 3.8. □

An interesting non-symmetric example is given by the simplices

𝑆𝑑 = conv{−𝟙, 𝑒1, … , 𝑒𝑑} ⊂ ℝ𝑑.

Proposition 3.12. The simplices 𝑆𝑑 ⊂ ℝ𝑑 are simultaneously reduced and complete with respect to
ℤ𝑑.

Proof. We start with the reducedness of 𝑆𝑑. Since 𝑆𝑑 has integer vertices, we have widthℤ𝑑(𝑆𝑑) ∈

ℤ>0. The vectors 𝑒𝑖 , 1 ⩽ 𝑖 ⩽ 𝑑, show thatwidthℤ𝑑(𝑆𝑑) ⩽ 2 and the fact that the origin is an interior
lattice point of 𝑆𝑑 gives widthℤ𝑑(𝑆𝑑) > 1. Hence, widthℤ𝑑(𝑆𝑑) = 2, realized by the standard basis
vectors of ℤ𝑑. The linear functions 𝑥 ↦ 𝑥 ⋅ 𝑒𝑖 are uniquely maximized by the vertices 𝑒𝑖 ∈ 𝑆𝑑 and
uniquely minimized by the vertex −𝟙 ∈ 𝑆𝑑. Therefore, 𝑆𝑑 is reduced by Proposition 3.1.
For the completeness of 𝑆𝑑 weobserve that the facets of𝐶 = 𝑆𝑑 − 𝑆𝑑 are of the form𝐹 = 𝐺 − 𝐺′,

where𝐺 ⊂ 𝑆𝑑 is a proper face of 𝑆𝑑 and𝐺′ is its complementary face, that is, the convex hull of the
vertices of 𝑆𝑑 which are not in 𝐹. So the vertices of 𝐺 and 𝐺′ partition {−𝟙, 𝑒1, … , 𝑒𝑑} and we will
assume that −𝟙 ∈ 𝐺′. Let 𝐽 ⊆ [𝑑] be the set of indices 𝑗 such that 𝑒𝑗 ∈ 𝐺. A simple computation
then shows that

af f 𝐹 = af f {𝑒𝑗 − 𝑒𝑖, 𝑒𝑗 + 𝟙∶ 𝑗 ∈ 𝐽, 𝑖 ∉ 𝐽}

=

{
𝑥 ∈ ℝ𝑑 ∶

𝑑 − |𝐽| + 1

𝑑 + 1

∑
𝑗∈𝐽

𝑥𝑗 −
|𝐽|

𝑑 + 1

∑
𝑗∉𝐽

𝑥𝑗 = 1

}

and, thus,

𝐶 =

{
𝑥 ∈ ℝ𝑑 ∶

||||||
𝑑 − |𝐽| + 1

𝑑 + 1

∑
𝑗∈𝐽

𝑥𝑗 −
|𝐽|

𝑑 + 1

∑
𝑗∉𝐽

𝑥𝑗

|||||| ⩽ 1, ∀𝐽 ⊆ [𝑑], 𝐽 ≠ ∅

}
.

Nowwe claim that diamℤ𝑑(𝑆𝑑) = 1 + 1

𝑑
. First, we observe that the segment 𝐼0 = [−𝟙, 1

𝑑
𝟙] ⊂ 𝑆𝑑 has

lattice length 1 + 1

𝑑
, which shows that diamℤ𝑑(𝑆𝑑) ⩾ 1 + 1

𝑑
, or, in other words, 𝜆1(𝐶; ℤ𝑑) ⩽

𝑑

𝑑+1
. It,

thus, follows from 𝑆𝑑 ⊂ [−1, 1]𝑑 thatdiamℤ𝑑(𝑆𝑑) is attained by a non-zero vector 𝑣 ∈ 𝑑

𝑑+1
𝐶 ∩ ℤ𝑑 ⊂

[−1, 1]𝑑. We may assume that 𝐽 = {𝑗 ∈ [𝑑]∶ 𝑣𝑗 = 1} is non-empty (otherwise, we consider −𝑣

instead). For 𝑗 ∉ 𝐽, we have 𝑣𝑗 ⩽ 0 and we obtain

𝑑 − |𝐽| + 1

𝑑 + 1

∑
𝑗∈𝐽

𝑣𝑗 −
|𝐽|

𝑑 + 1

∑
𝑗∉𝐽

𝑣𝑗 ⩾ |𝐽|𝑑 − |𝐽| + 1

𝑑 + 1
⩾

𝑑

𝑑 + 1
.

So the only non-zero integer points in 𝑑

𝑑+1
𝐶 lie in the boundary. This shows 𝜆1(𝐶; ℤ𝑑) = 𝑑

𝑑+1
and

thus diamℤ𝑑(𝑆𝑑) = 1 + 1

𝑑
.
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16 of 39 CODENOTTI and FREYER

Now it suffices to observe that for any 𝑖 ∈ [𝑑], the segments 𝐼𝑖 = [𝑒𝑖, −
1

𝑑
𝑒𝑖] have lattice length

1 + 1

𝑑
and are contained in 𝑆𝑑; indeed,

−
1

𝑑
𝑒𝑖 =

1

𝑑

(
−𝟙 +

∑
𝑗≠𝑖

𝑒𝑗

)
∈ relint 𝐹𝑖,

where 𝐹𝑖 ⊂ 𝑆𝑑 denotes the facet opposite to 𝑒𝑖 . Thus, 𝑆𝑑 is complete according to Proposi-
tion 3.7. □

Remark 3.13. The simplex 𝑆𝑑 proves (3.1). Its centroid is the origin and its polar 𝑆⋆
𝑑
is equivalent

to the orthogonal simplex conv{0, 𝑒1, … , 𝑒𝑑}, which is not complete.

The following classical constructions preserve completeness and reducedness, respectively.

Lemma 3.14. Let 𝑃 ⊂ ℝ𝑘 and 𝑄 ⊂ ℝ𝑙 be full-dimensional polytopes.

(1) If 𝑃 and 𝑄 are complete with respect to ℤ𝑘 and ℤ𝑙 , respectively, and if diamℤ𝑘(𝑃) = diamℤ𝑙 (𝑄),
then their Cartesian product 𝑃 × 𝑄 is complete with respect to ℤ𝑘+𝑙 .

(2) If 0 ∈ int 𝑃, 0 ∈ int𝑄, and if 𝑃 and 𝑄 are reduced with respect to ℤ𝑘 and ℤ𝑙 , respectively, such
that widthℤ𝑘 (𝑃) = widthℤ𝑙 (𝑄), then their free sum

𝑃 ⊕ 𝑄 = conv
(
(𝑃 × {0}𝑙) ∪ ({0}𝑘 × 𝑄)

)
⊂ ℝ𝑘+𝑙

is reduced with respect to ℤ𝑘+𝑙 .
(3) Under the same conditions of (2), the join of height ℎ

𝑃 ⋆ 𝑄 = conv
(
(𝑃 × {0}𝑙+1) ∪ ({0}𝑘 × 𝑄 × {ℎ})

)
⊂ ℝ𝑘+𝑙+1,

where |ℎ| ⩾ widthℤ𝑘 (𝑃), is reduced with respect to ℤ𝑘+𝑙+1.

Proof. In the following, let diam = diamℤ𝑛 and width = widthℤ𝑛 , where the ambient dimension
𝑛 will be clear from the context.
For (1), we start by proving diam(𝑃 × 𝑄) = diam(𝑃). Clearly, any rational segment in 𝑃 is also

a rational segment in 𝑃 × 𝑄 with the same length and so we have diam(𝑃 × 𝑄) ⩾ diam(𝑃). Con-
versely, let 𝐼 = [(𝑎, 𝑎′), (𝑏, 𝑏′)] ⊂ 𝑃 × 𝑄 be a rational segment, where 𝑎, 𝑏 ∈ 𝑃 and 𝑎′, 𝑏′ ∈ 𝑄. If
𝐼 is orthogonal to {0}𝑘 × ℝ𝑙, that is, if 𝑎′ = 𝑏′, then Vol1(𝐼) = Vol1([𝑎, 𝑏]) ⩽ diam(𝑃). If 𝐼 is not
orthogonal to {0}𝑘 × ℝ𝑙, then the projection

Π ∶ 𝑃 × 𝑄 → 𝑄, (𝑥, 𝑦) ↦ 𝑦

restricted to the segment 𝐼 is injective and maps lattice points to lattice points. It follows that

Vol1(𝐼) ⩽ Vol1(Π(𝐼)) ⩽ diam(𝑄) = diam(𝑃).

This proves diam(𝑃 × 𝑄) = diam(𝑃). In order to see that 𝑃 × 𝑄 is complete, we note that any
facet of 𝑃 × 𝑄 is of the form 𝐹 × 𝑄 or 𝑃 × 𝐺, where 𝐹 ⊂ 𝑃 and 𝐺 ⊂ 𝑄 are facets of 𝑃 and 𝑄,
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LATTICE REDUCED AND COMPLETE CONVEX BODIES 17 of 39

respectively. For a facet of the form 𝐹 × 𝑄, there exists a point 𝑥 ∈ relint 𝐹 and a diameter seg-
ment 𝐼𝐹 = [𝑥, 𝑥′] ⊂ 𝑃, for some 𝑥′ ∈ 𝑃, since 𝑃 is complete. Let 𝑦 ∈ int𝑄 be any interior point of
𝑄. The segment [(𝑥, 𝑦), (𝑥′, 𝑦)] ⊂ 𝑃 × 𝑄 is diameter realizing for 𝑃 × 𝑄 and the point (𝑥, 𝑦) is in
the relative interior of 𝐹 × 𝑄. A facet of the type 𝑃 × 𝐺 is treated analogously.
For (2), we use [15, Theorem 2.2, (3)], which shows that width(𝑃 ⊕ 𝑄) = width(𝑃). In order

to see that 𝑃 ⊕ 𝑄 is reduced, we note that the vertices of 𝑃 ⊕ 𝑄 are of the form (𝑣, 0), or (0, 𝑤),
where 𝑣 ∈ 𝑃 and 𝑤 ∈ 𝑄 are vertices of 𝑃 and 𝑄, respectively. A width-realizing lattice direction
𝑦 ∈ ℤ𝑘, which is uniquelymaximized at 𝑣 leads to awidth-realizing direction (𝑦, 0) ∈ ℤ𝑘+𝑙, which
is uniquely maximized by (𝑣, 0). Thus, 𝑃 ⊕ 𝑄 is reduced.
For (3), we first consider a vector 𝑧 ∈ ℤ𝑘+𝑙 × {0}. By projecting onto ℝ𝑘+𝑙 × {0}, we see that

width(𝑃 ⋆ 𝑄; 𝑧) = width(𝑃 ⊕ 𝑄; 𝑧) ⩾ width(𝑃), with equality, if 𝑧 is the canonical embedding of
one of the width directions of 𝑃 or 𝑄. If 𝑧 ∈ ℤ𝑘+𝑙+1 with 𝑧𝑘+𝑙+1 ≠ 0, we have

width(𝑃 ⋆ 𝑄; 𝑧) ⩾ |𝑧 ⋅ ((0, ℎ) − (0, 0))| ⩾ ℎ ⩾ width(𝑃). (3.3)

Thus, width(𝑃 ⋆ 𝑄) = width(𝑃), which is attained by the canonical embedding of the width
directions of 𝑃 and 𝑄. These vectors also testify that 𝑃 ⋆ 𝑄 is reduced. □

Lemma 3.14 and its proof lead us to a first example of a reduced 3-polytope whose width
directions do not span its ambient space.

Example 3.15. The simplex 𝑆 = conv{(−1, 0, 0)𝑇, (1, 0, 0)𝑇, (0, 1, 3)𝑇, (0, −1, 3)𝑇} is reduced since
it arises as a join as in Lemma 3.14, where 𝑃 = 𝑄 = [−1, 1] and ℎ = 3. As we saw in the proof, the
width directions of 𝑆, ±𝑒1 and ±𝑒2, are given by the canonical embedding of the width directions
of 𝑃. Since ℎ > 2, the inequality in (3.3) is strict, so we have nowidth direction outside span{𝑒1, 𝑒2}.

The remainder of this subsection is devoted to a lifting construction which allows us to con-
struct origin-symmetric complete (reduced) polytopes whose diameter (width) directions are not
full-dimensional. The basic idea of the construction is to lift the normal vectors of a polytope
𝑃 ⊂ ℝ𝑑 into ℝ𝑑+1 to obtain a new polytope 𝑃 ⊂ ℝ𝑑+1 such that 𝑃 ∩ 𝑒⟂

𝑑+1
= 𝑃 and then adjust the

lattice Λ ⊂ ℝ𝑑+1 afterward such that the lifted polytope is indeed complete.
The following lemma makes this geometric idea precise.

Lemma 3.16. Let 𝑃 = {𝑥 ∈ ℝ𝑑 ∶ |𝑥 ⋅ 𝑎𝑖| ⩽ 1, 1 ⩽ 𝑖 ⩽ 𝑚} be an origin-symmetric 𝑑-polytope. Sup-
pose that𝑚 > 𝑑 and each 𝑎𝑖 contributes a pair of facets to 𝑃. Then there exist numbers 𝜂1, … , 𝜂𝑚 ∈ ℝ

such that the polyhedron

𝑃 = {𝑦 ∈ ℝ𝑑+1 ∶ |𝑦 ⋅ 𝑎𝑖| ⩽ 1, 1 ⩽ 𝑖 ⩽ 𝑚},

where 𝑎𝑖 = (𝑎𝑖, 𝜂𝑖)
𝑇 ∈ ℝ𝑑+1, is a bounded origin-symmetric (𝑑 + 1)-polytope with 2𝑚 facets and 𝑃 ∩

𝑒⟂
𝑑+1

= 𝑃.

Proof. It is clear that 𝑃 ∩ 𝑒⟂
𝑑+1

= 𝑃 holds for any choice of 𝜂1, … , 𝜂𝑚 ∈ ℝ. By polarity, it suffices

to prove that we can choose 𝜂1, … , 𝜂𝑚 such that 𝑃
⋆

= conv{±𝑎1, … , ±𝑎𝑚} contains the origin in
its interior and has all of the vectors 𝑎𝑖 as vertices. Again by polarity, we have that 0 ∈ int 𝑃⋆ =

conv{±𝑎1, … , ±𝑎𝑚}. Similarly to the proof of Steinitz’ theorem [50, Theorem 1.3.10], we may
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18 of 39 CODENOTTI and FREYER

F IGURE 2 Lifting the normal vectors of the complete hexagon 𝑃 into ℝ3 yields a parallelotope 𝑃 that is
complete with respect to the 2-lattice Λ. The lattice Λ can easily be extended to a 3-lattice Λ to which 𝑃 is
complete by choosing a plane parallel to Λ which does not intersect 𝑃.

consider an arbitrary line 𝓁 passing through the origin and apply Caratheodory’s theorem in
the two opposite facets of 𝑃⋆ intersecting 𝓁 in order to choose 𝑑 linearly independent vectors
𝑎𝑖1

, … , 𝑎𝑖𝑑
of the vectors 𝑎𝑖 such that the origin is contained in the interior of conv{±𝑎𝑖1

, … , ±𝑎𝑖𝑑
}.

Since𝑚 > 𝑑, wemay assume that 𝑎𝑚 is not among the vectors 𝑎𝑖1
, … , 𝑎𝑖𝑑

.We set 𝜂1 = ⋯ = 𝜂𝑚−1 =

0 and 𝜂𝑚 = 1. This way, 𝑃
⋆
is a double pyramid over conv{±𝑎1, … , ±𝑎𝑚−1}, which contains the

origin in its interior and the vectors 𝑎𝑖 , 1 ⩽ 𝑖 ⩽ 𝑚, as vertices. □

If we perform a lifting of the normal vectors of 𝑃 as in the above Lemma and extend a lattice
Λ ⊂ ℝ𝑑 to a (𝑑 + 1)-dimensional lattice Λ ⊂ ℝ𝑑+1 by adding a vector ‘sufficiently far away from
spanΛ’ we can lift a complete polytope 𝑃 ⊂ ℝ𝑑 to a complete polytope 𝑃 ⊂ ℝ𝑑+1 (cf. Figure 2).
This is formalized in the following proposition.

Proposition 3.17. Let 𝑃 ⊂ ℝ𝑑 be a complete origin-symmetric 𝑑-polytope with respect to some 𝑑-
dimensional lattice Λ. If 𝑃 has more than 2𝑑 facets, there exists an origin-symmetric polytope 𝑃 ⊂

ℝ𝑑+1 and a (𝑑 + 1)-dimensional lattice Λ ⊂ ℝ𝑑+1 such that the following holds:

(1) 𝑃 arises from 𝑃 via a lifting of the normals as in Lemma 3.16;
(2) Λ contains Λ as a primitive sub-lattice;
(3) 𝑃 is a complete polytope with respect to Λ;
(4) the diameter directions of 𝑃 are the same than the ones of 𝑃 (when the latter is embedded in

ℝ𝑑+1).

Proof. We apply Lemma 3.16 to 𝑃 and obtain an origin-symmetric polytope 𝑃 with the same num-
ber of facets and 𝑃 ∩ 𝑒⟂

𝑑+1
= 𝑃. We choose a vector 𝑡 ∈ ℝ𝑑+1 such that 𝑃 ∩ (𝑡 + spanΛ) = ∅. Then,

𝑃 contains no lattice points ofΛ = (Λ × {0}) ⊕ ℤ𝑡 other than those in 𝑃 ∩ Λ. Since 𝑃 is symmetric,
its diameter is then attained by the same directions as for 𝑃 (cf. Lemma 2.1). It remains to check
that 𝑃 is complete. To this end, it is enough to note that for any boundary point 𝑥 ∈ bd(𝑃), we have
𝑥 ⋅ (±𝑎𝑖) = 1 if and only if (𝑥, 0)𝑇 ⋅ (±𝑎𝑖) = 1. Hence, the segments that realized the diameter of
𝑃 intersect the facets of 𝑃 in their relative interior and so 𝑃 is complete. □

3.5 Proofs of Theorems 1.4 and 1.5

We want to use our construction methods in order to prove the Main Theorems 1.4 and 1.5.

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12982 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fjlms.12982&mode=


LATTICE REDUCED AND COMPLETE CONVEX BODIES 19 of 39

Proof of Theorem 1.4. (1) is a direct consequence of Theorem 3.2, since 𝑘 ⩽ 𝑑. (2) follows from
Theorem 3.4 in the same way. In order to see that the number 2𝑑+1 − 2 is best possible, we recall
that the Voronoi cell of 𝐴⋆

𝑑
is a permutohedron [16, Chapter 4, Section 6.6], so it has 2𝑑+1 − 2

facets. Since 𝑉𝐴⋆
𝑑
is complete with respect to 𝐴⋆

𝑑
(cf. Proposition 3.11), the number 2𝑑+1 − 2 is

optimal with respect to 𝐴⋆
𝑑
. But in view of Lemma 2.3(2), it is also optimal with respect to any

other lattice. For reduced polytopes, the optimality is proven in the same way, since (𝑉𝐴⋆
𝑑
)⋆ is

reduced with respect to 𝐴𝑑. □

Proof of Theorem 1.5.

(1) Statement (1) can be derived from Theorem 3.2, since a 𝑑-polytope has at least 𝑑 + 1 vertices.
So it follows that 𝑑 + 1 ⩽ 2𝑘+1 − 2, where 𝑘 is the dimension of the linear space spanned by
the diameter realizing segments. The claim follows by rearranging this inequality.

(2) Statement (2) follows in the same fashion from Theorem 3.4, since a 𝑑-polytope also has at
least 𝑑 + 1 facets.

In order to see that the logarithmic dependence on 𝑑 is optimal, we apply Proposition 3.17 to
the permutohedron 𝑃 = 𝑉𝐴⋆

𝑘
, where 𝑘 ⩾ 2 is arbitrary, which is complete with respect to Λ = 𝐴⋆

𝑘

(here we think of span(𝐴⋆
𝑘
) as ℝ𝑘). Since 𝑃 has 2𝑘 − 1 > 𝑘 pairs of opposite facets, we can apply

Proposition 3.17 multiple times until we obtain an origin-symmetric polytope 𝑄 of dimension
2𝑘 − 1 which is complete with respect to some (2𝑘 − 1)-dimensional lattice Λ ⊃ 𝐴⋆

𝑘
and whose

diameter directions are exactly the ones of 𝑃. Thus, the diameter directions of 𝑄 ⊂ ℝ2𝑘−1 form a
𝑘-dimensional subspace, which proves the optimality of the logarithmic order in the complete
case. For the reduced case it is again enough to use the symmetry of 𝑄 in conjunction with
Proposition 3.8. □

3.6 Reductions and completions

In the Euclidean case, it follows from Zorn’s lemma that any convex body 𝐶 ⊂ ℝ𝑑 has a comple-
tion and a reduction. These are defined as complete (reduced) convex bodies that are supersets
(subsets) of 𝐶 with the same Euclidean diameter (width) as 𝐶.
In the discrete setting, the terms ‘completion’ and ‘reduction’ are defined in the same way with

the appropriate definitions of diameter and width. We want to argue the existence of completions
and reductions in a similar way to the Euclidean setting. However, the argument is more involved
since the Euclidean diameter cannot be bounded by the lattice diameter. Therefore, it is not clear
that the completion is indeed a bounded set. Likewise, when using Zorn’s lemma to find a reduc-
tion, we have to make sure that it has non-empty interior to be a convex body in the sense of our
definition. To this end we use the following two lemmas.

Lemma 3.18. Let 𝐾 ⊂ ℝ𝑑 be an origin-symmetric 𝑑-dimensional convex set and let Λ ⊂ ℝ𝑑 be a
𝑑-dimensional lattice such that int 𝐾 ∩ Λ = {0}. Then, 𝐾 is bounded.

Proof. Suppose 𝐾 is unbounded. Then there exists a sufficiently large 𝑅 > 0 such that vol(𝐾 ∩

[−𝑅, 𝑅]𝑑) > 2𝑑 detΛ. It follows from Minkowski’s first theorem [22, Theorem 2.5.1] that 𝐾 ∩

[−𝑅, 𝑅]𝑑 contains a non-trivial interior lattice point of Λ, a contradiction. □

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12982 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fjlms.12982&mode=


20 of 39 CODENOTTI and FREYER

On the polar side, we have the following statement, where for an arbitrary bounded set 𝐴, the
lattice width widthΛ(𝐴) is defined similarly to (1.1) as

widthΛ(𝐴) = inf
𝑦∈Λ⋆⧵{0}

sup
𝑎,𝑏∈𝐴

𝑦 ⋅ (𝑎 − 𝑏).

Lemma 3.19. Let 𝐾 ⊂ ℝ𝑑 be a compact convex set and let Λ ⊂ ℝ𝑑 be a 𝑑-dimensional lattice. If
widthΛ(𝐾) > 0, then 𝐾 has non-empty interior.

Proof. Let 𝑤 = widthΛ(𝐾) and consider the origin-symmetric convex set 𝑀 = 𝑤(𝐾 − 𝐾)⋆. Then
𝑀 contains no non-trivial interior lattice points of Λ⋆: Suppose to the contrary that there exists
𝑦 ∈ int𝑀 ∩ Λ⋆ ⧵ {0}. Then we have 𝑦 ⋅ (𝑎 − 𝑏) < 𝑤 for all 𝑎, 𝑏 ∈ 𝐾. But as 𝐾 is compact, there
exist 𝑎0, 𝑏0 ∈ 𝐾 such that width(𝐾; 𝑦) = 𝑦 ⋅ (𝑎0 − 𝑏0) < 𝑤, a contradiction. Moreover, since 𝐾

is bounded, 𝑀 is 𝑑-dimensional. Thus, Lemma 3.18 applies and we obtain that 𝑀 is bounded.
Consequently 𝐾 − 𝐾, and thus also 𝐾, have non-empty interior. □

Theorem 3.20. Let 𝐶 ⊂ ℝ𝑑 be a convex body and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice.

(1) There exists a complete convex body 𝐾 ⊇ 𝐶 with diamΛ(𝐾) = diamΛ(𝐶).
(2) There exists a reduced convex body 𝐿 ⊆ 𝐶 with widthΛ(𝐿) = widthΛ(𝐶).

Proof. Without loss of generality, we assume that 0 ∈ int 𝐶. For (1), we consider the set

 = {𝐾 ⊇ 𝐶 convex body∶ diamΛ(𝐾) = diamΛ(𝐶)},

partially ordered by inclusion. Since a completion of 𝐶 is a maximal element of  , we aim to use
Zorn’s lemma in order to find such a maximal element. To this end, we consider a chain  ⊆ 
and we define 𝑀′ =

⋃
 as the union of all convex bodies in , as well as 𝑀 = cl𝑀′. If 𝑀 ∈  ,

then Zorn’s lemma applies and the proof is finished. It, thus, remains to show that𝑀 is a convex
body with diamΛ(𝑀) = diamΛ(𝐶).
Clearly,𝑀 has non-empty interior, since𝐶 ⊆ 𝑀. Since  is a chain,𝑀′ is convex, which implies

that𝑀 is convex as well. Moreover, the convexity of𝑀′ yields int𝑀 ⊆ 𝑀′; Otherwise, there was a
point 𝑥 ∈ int(𝑀) ⧵ 𝑀′, which could be separated from𝑀′ by a hyperplane and, since 𝑥 ∈ int(𝑀),
wemay assume that the separation is strict. In this case, however, 𝑥 ∉ cl𝑀′ = 𝑀, a contradiction.
Now consider a primitive vector 𝑣 ∈ Λ ⧵ {0} and let 𝐼 = [𝑎, 𝑏] ⊂ 𝑀 be a segment of maximal

length in 𝑀 in direction 𝑣. Toward a contradiction, assume that 𝑀 is unbounded in direction
𝑣, that is, diam(𝑀; 𝑣) = ∞. Since 0 ∈ int 𝐶 ⊆ int𝑀, it follows that 𝑀 ∩ span{𝑣} is unbounded.
Since int𝑀 ⊂ 𝑀′, we find that 𝑀′ ∩ span{𝑣} is also unbounded. Hence, there exists a sequence
of points (𝑎𝑛)𝑛∈ℕ ⊂ 𝑀′ ∩ span{𝑣} with lim𝑛→∞ |𝑎𝑛| = ∞. In particular, there exists 𝑛 ∈ ℕ with|𝑎𝑛| > diamΛ(𝐶) ⋅ |𝑣|. Consider 𝐴 ∈  with 𝑎𝑛 ∈ 𝐴. We have

diamΛ(𝐴) ⩾ Vol1([0, 𝑎𝑛]) =
|𝑎𝑛||𝑣| > diamΛ(𝐶),

a contradiction to 𝐴 ∈  . Hence, the longest segment 𝐼 ⊂ 𝑀 parallel to a given primitive vector
𝑣 ∈ Λ is of finite length. Moreover, if 𝐼 = [𝑎, 𝑏], we have, since 0 ∈ int𝑀, that

𝐼𝑛 =
(
1 −

1

𝑛

)
𝐼 ⊂ int𝑀 ⊂ 𝑀′.
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It follows from the definition of 𝑀′ that there exist convex bodies 𝐴, 𝐵 ∈  with (1 − 1∕𝑛)𝑎 ∈

𝐴 and (1 − 1∕𝑛)𝑏 ∈ 𝐵. Since  is a chain, we can assume that 𝐴 ⊆ 𝐵 and, thus, 𝐼𝑛 ⊂ 𝐵. Hence,
Vol1(𝐼𝑛) ⩽ diamΛ(𝐵) = diamΛ(𝐶) and, taking the limit 𝑛 → ∞, Vol1(𝐼) ⩽ diamΛ(𝐶). Since 𝐶 ⊆

𝑀, we have diamΛ(𝑀) = diamΛ(𝐶). It follows that the convex set

𝐷 =
1

diamΛ(𝐶)
(𝑀 − 𝑀)

contains no non-trivial interior lattice points of Λ. From Lemma 3.18 we have that 𝐷 is bounded.
This implies that𝑀 is bounded as well.
In summary, we saw that 𝑀 ∈  is a valid upper bound of  and thus, by Zorn’s lemma, the

completion of 𝐶 exists.
For (2), we consider the set

 = {𝐾 ⊆ 𝐶 convex body∶ widthΛ(𝐾) = widthΛ(𝐶)}, (3.4)

partially ordered by inclusion. Again let  ⊆  be a chain in . As in the proof of (1) it suffices to
show that the intersection𝑀 =

⋂
 of all convex bodies in  is an element of .

It is clear, that 𝑀 is a compact convex set. We have to show that int𝑀 ≠ ∅ and widthΛ(𝑀) =

widthΛ(𝐶). To this end, we consider a primitive direction 𝑦 ∈ Λ⋆ and, toward a contradiction,
we assume that width(𝑀; 𝑦) < widthΛ(𝐶). For a scalar 𝛼 ∈ ℝ, let 𝐻𝛼 = {𝑥 ∈ ℝ𝑑 ∶ 𝑥 ⋅ 𝑦 = 𝛼} and
let 𝐻−

𝛼 and 𝐻+
𝛼 be the closed half-spaces defined by 𝐻𝛼 depending on whether 𝑥 ⋅ 𝑦 is less than

or greater than 𝛼, respectively. Due to our assumption on width(𝑀; 𝑦), there exist 𝛼 < 𝛽 with
𝑀 ⊂ 𝐻+

𝛼 ∩ 𝐻−
𝛽
and 𝛽 − 𝛼 < widthΛ(𝐶).

Let 𝛼′ = 𝛼 − 𝜀 and 𝛽′ = 𝛽 + 𝜀, where 𝜀 > 0 is such that 𝛽′ − 𝛼′ < widthΛ(𝐶). Suppose that each
𝐴 ∈  intersects𝐻−

𝛼′ . Then we consider the family of non-empty convex bodies

′ = {𝐴 ∩ 𝐻−
𝛼′ ∶ 𝐴 ∈ }.

Since is a chain, so is′. In particular, since all𝐴′ ∈ ′ are non-empty,′ satisfies the finite inter-
section property, that is, for any finite collection {𝐴′

1
, … ,𝐴′

𝑛} ⊆ ′, we have
⋂𝑛

𝑖=1 𝐴′
𝑖
≠ ∅. Since any

𝐴′ ∈ ′ is contained in the compact set 𝐶, it follows that𝑀 ∩ 𝐻−
𝛼′ =

⋂
′ ≠ ∅, which contradicts

𝑀 ⊂ 𝐻+
𝛼 . Hence, there is a convex body 𝐴 ∈  with 𝐴 ⊂ 𝐻+

𝛼′ and, likewise, a convex body 𝐵 ∈ 
with 𝐵 ⊂ 𝐻−

𝛽′ . We may assume that 𝐴 ⊂ 𝐵, because  is a chain. It follows that

width(𝐴; 𝑦) ⩽ 𝛽′ − 𝛼′ < widthΛ(𝐶),

a contradiction to 𝐴 ∈ . Thus, we have width(𝑀; 𝑦) ⩾ widthΛ(𝐶) > 0, for all 𝑦 ∈ Λ⋆ ⧵ {0}.
Lemma 3.19 gives that𝑀 has non-empty interior. Also, since𝑀 ⊆ 𝐶, it follows thatwidthΛ(𝑀) =

widthΛ(𝐶) as desired. So𝑀 ∈  is a minimal element of  and Zorn’s lemma gives the existence
of a minimal element 𝐿 ∈ , which is a reduction of 𝐶. □

Remark 3.21.

(1) If the convex body 𝐶 in Theorem 3.20 is symmetric, then its reduction and completion may
also be chosen to be symmetric. To see this, we start with the reduction of 𝐶. Replacing the
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partially ordered set  in (3.4) by

𝑠 = {𝐾 ⊆ 𝐶 convex body∶ widthΛ(𝐾) = widthΛ(𝐶), 𝐾 is origin-symmetric},

Zorn’s lemma yields the existence of a minimal element 𝐿 ∈ 𝑠. Indeed, 𝐿 is reduced. Oth-
erwise, there would be an exposed point 𝑝 ∈ 𝐿 at which the width is not uniquely attained
(cf. Proposition 3.1). The same is then true for −𝑝 ∈ 𝐿. Applying the truncation described
in the proof of Proposition 3.1 to 𝑝 and −𝑝 simultaneously yields an origin-symmetric con-
vex body 𝐿′ ⊊ 𝐿 with widthΛ(𝐿′) = widthΛ(𝐿), a contradiction to the minimality of 𝐿 in 𝑠.
The existence of an origin-symmetric completion can now be deduced immediately from
Theorem 3.8.

(2) The reduction and completion of𝐶 are in general not unique. For instance, each𝑄𝑥, 𝑥 ∈ (0, 1)

in Example 3.10 constitutes a symmetric reduction of [−1, 1]2. Moreover, the right triangle
conv{

(1

1

)
,
( 1

−1

)
,
(−1

−1

)
} is a non-symmetric reduction.

(3) In [29, Lemma 1.2] it is shown that the product of the successive minima of 𝐶 and its polar is
bounded from above by 𝑐 ⋅ 𝑑, where 𝑐 > 0 is an absolute constant, that is, we have

widthΛ(𝐶)

diamΛ(𝐶)
= 𝜆1(𝐶 − 𝐶;Λ) 𝜆1((𝐶 − 𝐶)⋆; Λ⋆) ⩽ 𝑐 ⋅ 𝑑, (3.5)

for any convex body 𝐶 ⊂ ℝ𝑑. Conway and Thompson showed that the linear order of this
upper bound is achieved by certain ellipsoids [27, Theorem 9.5], that is, there exists another
universal constant 𝑐′ such that for each 𝑑 ∈ ℕ there exists an ellipsoid  ⊂ ℝ𝑑 such that

widthΛ()

diamΛ()
⩾ 𝑐′ 𝑑.

Considering a reduction (completion) of  shows that the linear order in the inequality is also
achieved by polytopes with at most 2𝑑+1 − 2 vertices (facets).

For polytopes we can construct a reduction explicitly without the help of Zorn’s lemma.
Moreover, this reduction does not increase the number of vertices of the polytope.

Proposition 3.22. Let 𝑃 ⊂ ℝ𝑑 be a 𝑑-polytope and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice. Then there exists a
reduced 𝑑-polytope 𝑄 ⊆ 𝑃 such that widthΛ(𝑃) = widthΛ(𝑄) and | ext(𝑄)| ⩽ | ext(𝑃)|.
In particular, any simplex has a reduction which is also a simplex. The idea of the construction

is to push the vertices at which the width is not uniquely achieved inside the polytope. This is
formalized in the following lemma.

Lemma 3.23. Let 𝑃 ⊂ ℝ𝑑 be a 𝑑-polytope and let Λ ⊂ ℝ𝑑 be a 𝑑-lattice. Let 𝑊 ⊂ Λ⋆ be the set of
width directions of 𝑃 and let 𝑣 ∈ ext(𝑃) be a vertex at whichwidthΛ(𝑃) is not uniquely attained, that
is, int(ncone(𝑣; 𝑃)) ∩ 𝑊 = ∅. Then, for any 𝑥0 ∈ int 𝑃, there exists a number 𝜆0 ∈ [0, 1) such that

𝑃𝜆 = conv ((ext(𝑃) ⧵ {𝑣}) ∪ {𝜆𝑣 + (1 − 𝜆)𝑥0}) ⊆ 𝑃

satisfies widthΛ(𝑃𝜆) = widthΛ(𝑃), for all 𝜆 ∈ [𝜆0, 1].
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Proof. We consider 𝜆0 = inf {𝜆 ∈ [0, 1]∶ widthΛ(𝑃𝜆) = widthΛ(𝑃)}. Since widthΛ is continuous,
the infimum 𝜆0 is indeed attained. It remains to show that 𝜆0 < 1. To this end,we recall that for 𝜀 >

0 sufficiently small, thewidth directions of 𝑃1−𝜀 are given by𝑊, the set of width directions of 𝑃 (cf.
Lemma 2.2). Since int(ncone(𝑣; 𝑃)) ∩ 𝑊 = ∅, it follows for any 𝑦 ∈ 𝑊 thatwidth(𝑃; 𝑦) is attained
by two vertices 𝑎, 𝑏 ∈ ext(𝑃) ⧵ {𝑣}, which are still present in 𝑃1−𝜀. We obtain thatwidth(𝑃1−𝜀; 𝑦) =

width(𝑃; 𝑦) and, thus, widthΛ(𝑃1−𝜀) = widthΛ(𝑃). This shows 𝜆0 < 1 and finishes the proof. □

Proof of Proposition 3.22. Let 𝑉 = ext(𝑃) be the set of vertices of 𝑃. We call a vertex 𝑣 ∈ 𝑉

reduced if there exists a width-realizing direction 𝑦 ∈ Λ⋆ ⧵ {0} with 𝑣 ⋅ 𝑦 > 𝑥 ⋅ 𝑦, for all 𝑥 ∈

𝑃 ⧵ {𝑣}. We can thus rephrase Proposition 3.1 as follows: 𝑃 is reduced if and only if all of its vertices
are reduced.
So assume that there exists a vertex 𝑣 ∈ 𝑉 which is not reduced. We distinguish two cases.
Case 1: widthΛ(conv(𝑉 ⧵ {𝑣})) = widthΛ(𝑃).
We set 𝑃′ = conv(𝑉 ⧵ {𝑣}) ⊂ 𝑃 and obtain a polytope inside 𝑃 that has the same width as 𝑃 and

one non-reduced vertex less than 𝑃. The polytope 𝑃′ is 𝑑-dimensional in view of Lemma 3.19.
Case 2: widthΛ(conv(𝑉 ⧵ {𝑣})) < widthΛ(𝑃).
We fix some𝑥0 ∈ relint conv(𝑉 ⧵ {𝑣}) and let𝑥𝜆 = 𝜆𝑣 + (1 − 𝜆)𝑥0 ∈ int 𝑃, for 𝜆 ∈ [0, 1]. In view

of Lemma 3.23, there exists aminimal 𝜆0 such thatwidthΛ(conv(𝑉 ⧵ {𝑣} ∪ {𝑥𝜆0
}) = widthΛ(𝑃).We

let 𝑣′ = 𝑥𝜆0
and𝑃′ = conv(𝑉 ⧵ {𝑣} ∪ {𝑣′}) ⊂ 𝑃. By construction,wehavewidthΛ(𝑃′) = widthΛ(𝑃).

We claim that 𝑣′ is a reduced vertex of 𝑃′.
Clearly, 𝑣′ is a vertex of 𝑃′ to begin with. Otherwise, it would not be necessary for the convex

hull description of 𝑃′ and we find ourselves in Case 1. For the same reason (and by the choice
of 𝑥0), we have 𝜆0 > 0. Let 𝑊 ⊂ Λ⋆ be the set of width directions of 𝑃′, that is, 𝑊 = (Λ⋆ ⧵ {0}) ∩

widthΛ(𝑃)(𝑃′ − 𝑃′)⋆. If 𝑣′ is not a reduced vertex of 𝑃′, then for each 𝑦 ∈ 𝑊, there exist 𝑢,𝑤 ∈

𝑉 ⧵ {𝑣} with widthΛ(𝑃) = (𝑢 − 𝑤) ⋅ 𝑦. If we replace 𝑣′ = 𝑥𝜆 by 𝑥𝜆−𝜀, for 𝜀 > 0 sufficiently small,
we obtain a polytope 𝑃′′ whose width directions are still among the vectors 𝑊 (cf. Lemma 2.2).
But this implies widthΛ(𝑃′′) = widthΛ(𝑃), contradicting the minimality of 𝜆. Hence, 𝑣′ is indeed
a reduced vertex of 𝑃′ ⊂ 𝑃. It is also clear by construction that 𝑃′ is a 𝑑-polytope.
In both cases, we constructed a 𝑑-polytope 𝑃′ ⊂ 𝑃 such that widthΛ(𝑃′) = widthΛ(𝑃) and 𝑃′

has one non-reduced vertex less than 𝑃. Also, the total number of vertices of 𝑃′ is not higher than
the number of vertices in 𝑃. Thus, after finitely many steps, we obtain a reduced polytope with
the desired properties. □

Similar to Remark 3.21(i), if 𝑃 is origin-symmetric, a slight adaption of the proof of Proposi-
tion 3.22 yields an origin-symmetric reduction of 𝑃; we simply have to treat the opposite vertices
of 𝑃 simultaneously. Using the polarity in the symmetric case, we can find a completion of 𝑃,
which does not rely on Zorn’s lemma and does not possess more facets than 𝑃. It is obtained by
dualizing the construction of the reduction of 𝑃, that is, pairs of facets of 𝑃 are pushed outward
until they either vanish or contain a lattice point in their interiors.
However, in the non-symmetric case this process will not yield a completion. In fact, if 𝑃 is

a simplex, it produces merely homothetic copies of 𝑃 that have a larger width. Therefore, the
following problem remains open.

Question 3.24. Is there an explicit way of constructing a completion of a (non-symmetric)
polytope 𝑃 ⊂ ℝ𝑑 with respect to a given lattice Λ ⊂ ℝ𝑑?
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4 SIMPLICES AND TRIANGLES

4.1 Simplices

We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. Toward a contradiction, we assume that 𝑆 = conv{𝑣0, … , 𝑣𝑑} ⊂ ℝ𝑑 is a local
maximum of widthΛ on the class of hollow 𝑑-simplices, which is not reduced. Our goal is to find
for any 𝜀 > 0 a hollow simplex 𝑆′ ⊂ ℝ𝑑 with 𝑑(𝑆, 𝑆′) < 𝜀 and widthΛ(𝑆) < widthΛ(𝑆′).
If 𝑆 is not reduced, then there exists a vertex 𝑣0, say, of 𝑆 such that int(ncone(𝑣0; 𝑆)) ∩ 𝑊 = ∅,

where 𝑊 denotes the set of width directions of 𝑆. Using Lemma 3.23, we can replace this vertex
by a new vertex 𝑣′

0
∈ int 𝑆 and obtain a simplex 𝑇 = conv{𝑣′

0
, 𝑣1, … , 𝑣𝑑} ⊂ 𝑆 with 𝑑(𝑆, 𝑇) < 𝜀

2
and

widthΛ(𝑆) = widthΛ(𝑇). We consider an inequality description

𝑇 =
{
𝑥 ∈ ℝ𝑑 ∶ 𝑎𝑖 ⋅ 𝑥 ⩽ 𝑏𝑖, 0 ⩽ 𝑖 ⩽ 𝑑

}
,

for certain 𝑎𝑖 ∈ ℝ𝑑 ⧵ {0} and 𝑏𝑖 ∈ ℝ. We assume that the new vertex 𝑣′
0
is contained in the facets

𝐹𝑖 = {𝑥 ∈ 𝑇∶ 𝑎𝑖 ⋅ 𝑥 = 𝑏𝑖}, for 1 ⩽ 𝑖 ⩽ 𝑑. Since 𝑣′
0
∈ int 𝑆, we have relint 𝐹𝑑 ⊂ int 𝑆. Since 𝑆 is hol-

low, it follows that 𝑇 is hollow as well and relint(𝐹𝑑) ∩ Λ = ∅. Therefore, there exists a number
𝛿 > 0 such that

𝑆′ = {𝑥 ∈ ℝ𝑑 ∶ 𝑎𝑖 ⋅ 𝑥 ⩽ 𝑏𝑖, 0 ⩽ 𝑖 < 𝑑, 𝑎𝑑 ⋅ 𝑥 ⩽ 𝑏𝑑 + 𝛿}

is hollow and 𝑑(𝑇, 𝑆′) < 𝜀

2
. So we have 𝑑(𝑆, 𝑆′) < 𝜀. Moreover, since 𝑇 is a simplex, 𝑆′ is

a translation of 𝜇𝑇, for some scale factor 𝜇 > 1. This implies widthΛ(𝑆′) > widthΛ(𝑇) =

widthΛ(𝑆). □

Remark 4.1. In the plane, Hurkens found a triangle 𝑇2 ⊂ ℝ2 that realizes Flt(2) [26]. In higher
dimensions, the realizers of Flt(𝑑) are unknown, but local maximizers of widthΛ within the
class of hollow simplices have been found. In [15] a tetrahedron 𝑇3 ⊂ ℝ3 that locally maximizes
the width has been obtained, and in [46] the authors construct a four-dimensional local max-
imum 𝑇4 ⊂ ℝ4, as well as a five-dimensional local maximum 𝑇5 ⊂ ℝ5. By Theorem 1.2, these
simplices are reduced.Moreover, a sagemath [51] computation shows that𝑇3 and𝑇4 are complete,
while 𝑇5 is not complete. The script that we used to check the reducedness and complete-
ness of polytopes can be accessed under the following URL: https://github.com/AnsgarFreyer/
lattice_reduced_code

It remains open whether Theorem 1.2 holds true for arbitrary convex bodies.

Question 4.2. Is any realizer of Flt(𝑑) reduced?

We finish this subsection with an interesting observation concerning complete simplices.

Proposition 4.3. Let 𝑆 ⊂ ℝ𝑑 be a complete 𝑑-simplex with respect to some 𝑑-lattice Λ. Then, the
diameter directions of 𝑆 span ℝ𝑑 .
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Proof. According to Proposition 3.7, for every facet 𝐹 ⊂ 𝑆, there exists a diameter segment 𝐼𝐹 ⊂

𝑆 with an endpoint 𝑥𝐹 ∈ relint 𝐹. By Lemma 3.6, the other endpoint of 𝐼𝐹 lies inside the face
opposite of 𝐹. Since 𝑆 is a simplex, this means that the other endpoint is the unique vertex 𝑣𝐹 ∈ 𝑆

opposite to 𝐹.
Toward a contradiction, assume that the directions 𝑥𝐹 − 𝑣𝐹 , where 𝐹 ranges over all facets of

𝑆, are contained in a (𝑑 − 1)-dimensional space 𝐻 ⊂ ℝ𝑑. Let 𝑡 ∈ ℝ𝑑 such that 𝐻 + 𝑡 supports 𝑆.
Then, 𝑆 ∩ (𝐻 + 𝑡) contains a vertex 𝑣 of 𝑆. Let𝐹 be the facet opposite to 𝑣. Then, relint 𝐹 is disjoint
from𝐻 + 𝑡; otherwise𝐹 ⊂ 𝐻 + 𝑡 and the entire simplexwould be lower dimensional. But now the
segment 𝐼𝐹 is not parallel to𝐻, a contradiction. □

Remark 4.4. As we saw in Example 3.15, there exist reduced simplices 𝑆 ⊂ ℝ𝑑 whose width direc-
tions 𝑊 do not span ℝ𝑑. Consider any point of 𝑥0 ∈ int 𝑆. Since the polar (𝑆 − 𝑥0)

⋆ is again a
simplex, the above proposition shows that (𝑆 − 𝑥0)

⋆ cannot be complete with the same diameter
directions𝑊, as it is the case for origin-symmetric convex bodies when polarized with respect to
the origin (cf. Theorem 3.8).

It would be interesting to find more classes of complete (or reduced) convex bodies for which
the diameter (width) directions span the entire ambient space.One such class apart from simplices
are the Voronoi cells from Proposition 3.11, since any Voronoi relevant vector of Λ is a diameter
direction. By duality the width directions of (𝑉Λ)⋆ are full-dimensional.

4.2 Classification of triangles in the plane

In this subsection we give a complete classification of reduced triangles and triangles that are
simultaneously reduced and complete. Finally, we show that every complete triangle is among
the reduced and complete triangles, proving Theorem 1.6.
For convenience, in this subsection we only consider the lattice Λ = ℤ2 and we write diam(𝐶)

for diamℤ2(𝐶), as well as width(𝐶) for widthℤ2(𝐶).

Definition 4.5. Two polygons 𝑃,𝑄 ⊂ ℝ2 are called equivalent, if there exist 𝜆 > 0, 𝑡 ∈ ℝ2 and
𝑈 ∈ GL2(ℤ) such that 𝑃 = 𝑡 + 𝜆𝑈𝑄.

If 𝑃 ⊂ ℝ2 is a reduced polygon, then the primitive vectors in ℤ2 that realize width(𝑃) must be
two-dimensional. Moreover, they contain a basis of ℤ2 (cf. [22, Chapter 1, Theorems 3.4 and 3.7]).
Thus, we have the following lemma.

Lemma 4.6. Let 𝑃 ⊂ ℝ2 be reduced with respect to ℤ2. Then 𝑃 is equivalent to a polygon 𝑄 ⊂

[−1, 1]2, such that each edge of [−1, 1]2 contains a vertex of 𝑄 and width(𝑄) = 2.

First, consider a reduced triangle 𝑇 ⊂ [−1, 1]2 with width(𝑇) = 2 such that every edge of
[−1, 1]2 contains a vertex of 𝑇. Clearly, one of the vertices of 𝑇 is then a vertex of [−1, 1]2 as well.
Without loss of generality, let (−1, −1)𝑇 be a vertex of 𝑇. The other two vertices are then given by
(𝑥, 1)𝑇 and (1, 𝑦)𝑇 for certain 𝑥, 𝑦 ∈ [−1, 1].
Since 𝑇 is reduced, we must have 𝑥 + 𝑦 ⩽ 0; otherwise the vector (−1, 1)𝑇 would achieve a

smaller width. After reflecting at the diagonal if necessary, we can also assume that 𝑥 ⩾ 𝑦. Indeed,
these conditions are also sufficient for 𝑇 to be reduced:
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26 of 39 CODENOTTI and FREYER

Proposition 4.7. A triangle 𝑇 ⊂ ℝ2 is reduced with respect to ℤ2 if and only if it is equivalent to a
triangle of the form

𝑇𝑥𝑦 = conv

{(
−1

−1

)
,

(
𝑥

1

)
,

(
1

𝑦

)}
, (4.1)

where 𝑥 + 𝑦 ⩽ 0 and −1 ⩽ 𝑦 ⩽ 𝑥 ⩽ 1.

This result was proven independently by Cools and Lemmens in [17] for lattice triangles.

Proof. It remains only to prove the sufficiency, that is, we aim to prove that 𝑇𝑥𝑦 is reduced for
any 𝑥, 𝑦 ∈ [−1, 1] with 𝑥 + 𝑦 ⩽ 0. Since width(𝑇𝑥𝑦; 𝑒𝑖) = 2, 𝑖 = 1, 2, we have width(𝑇𝑥𝑦) ⩽ 2 and
if equality holds, then 𝑇𝑥𝑦 is reduced by Proposition 3.1.
So we consider a vector 𝑣 = (𝑎, 𝑏)𝑇 ∈ ℤ2 ⧵ {0} with 𝑎 ≠ 0 and 𝑏 ≠ 0 and we distinguish two

cases (note that the width does not depend on the orientation of 𝑣).
Case 1: 𝑎, 𝑏 > 0.
We consider the vertices (𝑥, 1)𝑇 and (−1, −1)𝑇 . We have

width(𝑇𝑥𝑦; 𝑣) ⩾
|||||
(
𝑎

𝑏

)
⋅
((

𝑥

1

)
−

(
−1

−1

))||||| = 𝑎(𝑥 + 1) + 2𝑏 ⩾ 2𝑏 ⩾ 2,

where we used that 𝑥 + 1 ⩾ 0 and that 𝑏 is an integer.
Case 2: 𝑎 > 0 > 𝑏.
We consider the vertices (𝑥, 1)𝑇 and (1, 𝑦)𝑇 . We have

width(𝑇𝑥𝑦; 𝑣) ⩾
|||||
(
𝑎

𝑏

)
⋅
((

1

𝑦

)
−

(
𝑥

1

))||||| = 𝑎(1 − 𝑥) + 𝑏(𝑦 − 1) ⩾ 1 − 𝑥 − (𝑦 − 1)

= 2 − (𝑥 + 𝑦) ⩾ 2,

where we used that 1 − 𝑥 ⩾ 0, 𝑦 − 1 ⩽ 0 and 𝑎, 𝑏 ∈ ℤ in the first line, as well as 𝑥 + 𝑦 ⩽ 0 in the
second line. □

Remark 4.8. Proposition 4.7 can be used to reprove Hurkens’ result from [26] stating that Flt(2) =

1 + 2√
3
. We sketch the argument here: It is enough to study the width of inclusion-maximal hol-

low convex bodies. Recall that 𝐶 is ‘inclusion-maximal hollow’ if it contains no interior lattice
points, but any convex body 𝐶′ ⊋ 𝐶 contains an interior lattice point. Such bodies in the plane are
polygons which contain a lattice point in the relative interior of each edge and thus, by a parity
argument, they are either triangles or quadrangles (see [2, 42] for details). A short and elementary
calculation shows that the maximum lattice width of an inclusion-maximal hollow quadrangle is
2 [26]. So the crux of Hurkens’ proof is to show that Flt𝑠(2) = 1 + 2√

3
, where again Flt𝑠(2) is the

maximum lattice width of a hollow triangle.
In view of Theorem 1.2, we know that Flt𝑠(2) is attained by a triangle 𝑇 which is both inclusion-

maximal hollow and reduced.Hence,𝑇 is equivalent to a triangle of the form𝑇𝑥𝑦 of Equation (4.1),
where 𝑥 + 𝑦 ⩽ 0 and −1 ⩽ 𝑦 ⩽ 𝑥 ⩽ 1. Of course, our notion of equivalence does not preserve hol-
lowness, since translations and scalings do not. Therefore, we are interested in the minimal 𝜇 > 0
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F IGURE 3 The situation in Remark 4.8.

for which there exists a vector 𝑣 ∈ ℝ2 and real numbers −1 ⩽ 𝑥 ⩽ 𝑦 ⩽ 1 such that 𝑥 + 𝑦 ⩽ 0 and
𝑇𝑥𝑦 is hollow with respect to the affine square lattice = 𝜇ℤ2 + 𝑣. Since the lattice width of 𝑇𝑥𝑦

is always 2, we then have Flt𝑠(2) = 2∕𝜇.
Let (𝑥, 𝑦) be in the domain 𝐷 = {(𝑥, 𝑦)∶ − 1 ⩽ 𝑥 ⩽ 𝑦 ⩽ 1, 𝑥 + 𝑦 ⩽ 0}, and suppose that 𝑇𝑥𝑦

is inclusion-maximal hollow with respect to an affine square lattice  = 𝛼ℤ2 + 𝑣. Then, every
edge of 𝑇𝑥𝑦 contains a point of  in its relative interior. The coordinates of these points are
either equal or they differ by at least 𝛼. From this, one can derive that the points form an
isosceles right triangle 𝑅 with edge direction 𝑒1, 𝑒2 and 𝟙 and the lengths of the catheters is
𝛼. Thus, there are only two choices for 𝛼 so that 𝑇𝑥𝑦 can be inclusion-maximal hollow with
respect to , depending on whether the right angle of 𝑅 is on the edge 𝐸1 = [(−1,−1)𝑇, (𝑥, 1)𝑇]

or 𝐸2 = [(−1,−1)𝑇, (1, 𝑦)𝑇]. Since 𝑥 ⩾ 𝑦, choosing 𝑅 so that the right angle is on 𝐸1 will yield
the smaller 𝛼. We denote this number by 𝛼(𝑥, 𝑦) (cf. Figure 3). By computing the coordinates
of the unique point 𝑝 ∈ 𝐸1 whose vertical distance to 𝐸2 is the same as its horizontal distance
to [(1, 𝑦)𝑇, (𝑥, 1)𝑇], one can express 𝛼(𝑥, 𝑦) explicitly as a function in 𝑥 and 𝑦 with domain
𝐷. The minimum of this function can be computed in exact arithmetic, which then confirms
Flt𝑠(2) = 2∕min𝑥,𝑦 𝛼 = 1 + 2√

3
. The computations were carried out using sagemath [51] and the

code can be found in https://github.com/AnsgarFreyer/lattice_reduced_code.

Now we turn our attention to the case when the triangle 𝑇𝑥𝑦 as in Equation (4.1) is also
complete. From Proposition 4.3, we see that each vertex of 𝑇𝑥𝑦 needs to be the endpoint of a
diameter segment. The diameter directions of 𝑇𝑥𝑦 are the lattice points in 𝜆1(𝐶; ℤ2)𝐶, where
𝐶 = 𝑇𝑥𝑦 − 𝑇𝑥𝑦 ⊂ [−2, 2]2. Since the origin is an interior point of 𝑇𝑥𝑦 (unless 𝑥 = 𝑦 = −1 in which
case 𝑇𝑥𝑦 is not complete), the diameter of 𝑇𝑥𝑦 is greater than 1. Thus, it is realized by lattice points
in int 𝐶 ∩ [−2, 2]2 ∩ ℤ2 ⊆ [−1, 1]2.
So the only possible direction of a segment 𝐼1 that connects (−1, −1)𝑇 with its opposite edge and

that realizes the diameter of 𝑇𝑥𝑦 is (1, 1)𝑇 . A routine computation shows that the lattice length of
𝐼1 is

Vol(𝐼1) =
3 − 𝑥𝑦 − (𝑥 + 𝑦)

2 − (𝑥 + 𝑦)
.
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28 of 39 CODENOTTI and FREYER

At the vertex (𝑥, 1)𝑇 , the diameter could be obtained in the directions (0, −1)𝑇 and (1, −1)𝑇 . But
(0, −1)𝑇 clearly gives the longer segment 𝐼2 and is therefore diameter realizing. The length of 𝐼2
is given by

Vol1(𝐼2) =
3 − 𝑦

2
−

1 + 𝑦

2
𝑥.

Note that, by exchanging the roles of 𝑥 and 𝑦 the third segment 𝐼3 in direction (−1, 0)𝑇 that
connects the vertex (1, 𝑦)𝑇 to its opposite edge is of length

Vol1(𝐼3) =
3 − 𝑥

2
−

1 + 𝑥

2
𝑦 =

3 − 𝑦

2
−

1 + 𝑦

2
𝑥 = Vol1(𝐼2).

Combining these equations we obtain, that 𝑇𝑥𝑦 is complete, only if the following equation is
fulfilled:

3 − 𝑥𝑦 − (𝑥 + 𝑦)

2 − (𝑥 + 𝑦)
=

3 − 𝑦

2
−

1 + 𝑦

2
𝑥.

Aftermultiplyingwith 2 − (𝑥 + 𝑦), we obtain an equationwhich is quadratic in 𝑥. Its solutions are
𝑥 =

3−𝑦

𝑦+1
and 𝑥 = −𝑦. The first solution is not in the interval [−1, 1] for any value of 𝑦 ∈ (−1, 1).

So we obtain that 𝑇𝑥𝑦 is complete, only if 𝑥 = −𝑦. On the other hand, for |𝑥| < 1 and 𝑥 = −𝑦, the
three segments 𝐼1, 𝐼2 and 𝐼3 pass from their respective vertices to the interior of the opposite edge
of that vertex and are all of the same length. The only direction for a longer rational segmentwould
be (1, −1)𝑇 , but we already saw that a segment in this direction has shorter lattice length than 𝐼2
(and 𝐼3). Since for |𝑥| = 1, the triangle 𝑇−𝑥𝑥 is not complete, we can now classify the triangles that
are both complete and reduced as follows:

Proposition 4.9. A triangle 𝑇 ⊂ ℝ2 is simultaneously reduced and complete with respect to ℤ2 if
and only if it is equivalent to a triangle of the form

𝑇𝑥 = conv

{(
−1

−1

)
,

(
𝑥

1

)
,

(
1

−𝑥

)}
,

where 0 ⩽ 𝑥 < 1.

Next, we show that the triangles obtained in Proposition 4.9 are indeed the only complete
triangles up to equivalence. For this, we need two elementary lemmas.

Lemma 4.10. Let 𝐶 ⊂ ℝ2 be an origin-symmetric convex body such that int 𝐶 ∩ ℤ2 = {0} and
{±𝑒1, ±𝑒2} ⊂ 𝐶. If 𝐶 contains a lattice point other than 0, ±𝑒1, or ±𝑒2, it also contains one of the
points (1, 1)𝑇 and (1, −1)𝑇 .

Proof. Let 𝑥 = (𝑎, 𝑏) ≠ ±𝑒𝑖 be a non-zero lattice point in𝐶. As the standard basis vectors are on the
boundary of 𝐶, 𝑥 must be in the interior of one of the four quadrants. Without loss of generality,
we can assume that 𝑥 ∈ ℤ2

>0
. Also, we can assume that 𝑎 ⩾ 𝑏. We may write(

1

1

)
=

1

𝑎
𝑥 +

(
1 −

𝑏

𝑎

)
𝑒2.
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LATTICE REDUCED AND COMPLETE CONVEX BODIES 29 of 39

Since 𝑎 and 𝑏 are integers with 0 < 𝑏 ⩽ 𝑎, it follows that 1 − 𝑏∕𝑎 = (𝑎 − 𝑏)∕𝑎 ∈ [0, 1] and 1∕𝑎 +

(1 − 𝑏∕𝑎) = (1 − 𝑏 + 𝑎)∕𝑎 ⩽ 1. Hence, (1, 1)𝑇 ∈ conv{0, 𝑒2, 𝑥} ⊂ 𝐶. □

Lemma 4.11. Consider two disjoint segments 𝐼𝑖 = [𝑣𝑖, 𝑤𝑖]. 𝑖 = 1, 2, and define the point 𝑣3 as the
intersection of the lines af f {𝑣1, 𝑤2} and af f {𝑣2, 𝑤1} (if any). Then the triangle 𝑇 = conv{𝑣1, 𝑣2, 𝑣3}

does not contain both the segments 𝐼1 and 𝐼2.

Proof. Let 𝓁1 = af f {𝑣1, 𝑤2} and 𝓁2 = af f {𝑣2, 𝑤1} and suppose that 𝐼1 ⊂ 𝑇, that is, 𝑇 contains the
triangle 𝑇′ = conv{𝑣1, 𝑣2, 𝑤1}. Since 𝑣1 and 𝑤1 are on the two edges of 𝑇 adjacent to 𝑣2, any seg-
ment 𝐼 ⊂ 𝑇 that connects 𝑣2 to the line 𝓁1 must intersect [𝑣1, 𝑤1] = 𝐼1. But 𝐼1 and 𝐼2 are disjoint,
so 𝐼2 cannot be contained in 𝑇. □

Proof of Theorem 1.6. Let 𝑇 be a complete triangle. After applying a unimodular transformation
and a dilation we may assume that diam(𝑇) = 1 and that the standard basis vectors are among
the diameter realizing directions of 𝑇. Thus, there is a horizontal segment 𝐼1 ⊂ 𝑇 and a vertical
segment 𝐼2 ⊂ 𝑇 that both realize the diameter of 𝑇. By Proposition 4.3, 𝐼𝑖 connects a vertex 𝑣𝑖 to
a point 𝑤𝑖 in the relative interior of the edge 𝐸𝑖 opposite to 𝑣𝑖 , 𝑖 = 1, 2. Again, after applying a
unimodular transformation if necessary, we can assume that the right endpoint of 𝐼1 is 𝑣1 and
that the upper endpoint of 𝐼2 is 𝑣2. The triangle 𝑇 is now uniquely described; the third vertex 𝑣3

has to be the intersection of the lines af f {𝑣1, 𝑤2} and af f {𝑣2, 𝑤1} (in particular, these lines are not
parallel).
In view of Lemma 4.11, 𝐼1 and 𝐼2 intersect. After a translation, we may assume that 𝐼1 = [(𝑥 −

1, 𝑦)𝑇, (𝑥, 𝑦)𝑇] and 𝐼2 = [0, 𝑒2], for certain 0 < 𝑥, 𝑦 < 1 (Note that we cannot have equality in one
of the constraints on 𝑥 and 𝑦, since then, one of the segments 𝐼𝑖 would be an edge of 𝑇). In order
for the other endpoints 0 and (𝑥 − 1, 𝑦)𝑇 to be part of the triangle conv{𝑣1, 𝑣2, 𝑣3} it is necessary
that 𝑥 > 𝑦.
By Proposition 4.3, there exists a third pair of lattice directions in which the lattice diameter

of 𝑇 is attained. Since by assumption, diam(𝑇) = 1, the difference body 𝐶 = 𝑇 − 𝑇 fulfills the
assumptions of Lemma 4.10. So the diameter of 𝑇 has to be attained in direction (1, −1)𝑇 or (1, 1)𝑇
as well. The direction (1, −1)𝑇 can be ruled out; If it was diameter realizing, the corresponding
segment in 𝑇 had to include 𝑣1 as a vertex. But then the segment would have a shorter lattice
length than 𝐼1. So there is a diameter realizing segment 𝐼3 in direction (1, 1)𝑇 . The only vertex
that this segment can contain is 𝑣3. So we have 𝐼3 = [𝑣3, 𝑤3], where 𝑤3 is the intersection of 𝑣3 +

span{(1, 1)𝑇} with the edge 𝐸3 = [𝑣1, 𝑣2].
We saw that 𝑇 is complete, if and only if it is equivalent to a triangle of the form

conv{𝑒2, (𝑥, 𝑦)𝑇, 𝑣3}, where 0 < 𝑦 < 𝑥 < 1 and Vol1(𝐼3) = 1 (with 𝑣3 and 𝐼3 as above). In the next
step we fix the value of 𝑥 ∈ (0, 1) and show that there is exactly one value of 𝑦 ∈ (0, 𝑥) such that
Vol1(𝐼3) = 1. In this setting the points 𝑣3 and 𝑤3 depend on 𝑦, which is why we denote them by
𝑣3(𝑦) and𝑤3(𝑦). Computing the point of intersection of the lines af f {𝑣1, 𝑤2} = af f {(𝑥, 𝑦)𝑇, (0, 0)𝑇}

and af f {𝑣2, 𝑤1} = af f {(0, 1)𝑇, (𝑥 − 1, 𝑦)𝑇} shows that

𝑣3(𝑦) =

(𝑥(𝑥−1)

𝑥−𝑦
𝑦(𝑥−1)

𝑥−𝑦

)
.

In particular, as 𝑦 increases, 𝑣3(𝑦) moves strictly monotonously downward on the diagonal line
𝓁 = {(𝑎, 𝑏)𝑇 ∶ 𝑎 − 𝑏 = 𝑥 − 1}. The degenerate cases 𝑦 → 0 and 𝑦 → 𝑥 correspond to (𝑥 − 1, 0) and
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30 of 39 CODENOTTI and FREYER

F IGURE 4 Illustration of the monotonicity of 𝑦 ↦ Vol1(𝐼3(𝑦)). As 𝑦 increases, the black vertex 𝑣3(𝑦)moves
downward on the diagonal dashed line 𝓁, while the other endpoint 𝑤3(𝑦) of 𝐼3(𝑦)moves upward on 𝓁.

the ‘point at infinity’ of 𝓁. Since 𝑤3(𝑦) is by definition the intersection of 𝑣3(𝑦) + span{(1, 1)𝑇}

with [𝑒1, (𝑥, 𝑦)𝑇], it follows from the fact that all 𝑣3(𝑦) lie on the same diagonal 𝓁, that 𝑤3(𝑦)

is the intersection of 𝓁 and [𝑒1, (𝑥, 𝑦)𝑇]. Since 𝓁 is independent of 𝑦, the point 𝑤3(𝑦) moves
strictly monotonously upward on 𝓁 as 𝑦 increases. In total, we find that Vol1(𝐼3(𝑦)) is a strictly
monotonous function in 𝑦 ∈ (0, 𝑥) (see also Figure 4). By considering, for example, a projection on
a horizontal line, we see that lim𝑦→0 Vol1(𝐼3(𝑦)) < 1. On the other hand, since 𝑣3(𝑦) is unbounded
for 𝑦 → 𝑥, we have lim𝑦→𝑥 Vol1(𝐼3(𝑦)) = ∞. Consequently, for any 𝑥 ∈ (0, 1), there is exactly one
𝑦𝑥 ∈ (0, 𝑥) such that the triangle Δ𝑥 = conv{𝑒2, (𝑥, 𝑦𝑥)

𝑇, 𝑣3(𝑦𝑥)} is complete.
To conclude, we recall the triangles 𝑇𝑥 = conv{(−1, −1)𝑇, (𝑥, 1), (1, −𝑥)𝑇} from Proposition 4.9.

Let 𝑟 ∈ (0, 1) be the fraction of the horizontal diameter realizing segment that is to the right of the
vertical diameter segment. By considering the limits 𝑥 → ±1, we see that 𝑟 can attain any value
between 0 and 1. Thus, the triangleΔ𝑟 is in fact equivalent to one of the triangles𝑇𝑥, which finishes
the proof. □

At this point, it is natural to ask whether Theorem 1.6 extends to arbitrary 𝑑-simplices. The
following construction, however, leads to counterexamples for 𝑑 = 3 (Remark 4.13(3)).

4.3 A family of complete tetrahedra

We start with the regular tetrahedron

Δ = conv{0, 𝑒𝑖 + 𝑒𝑗 ∶ 1 ⩽ 𝑖 < 𝑗 ⩽ 3} ⊂ [0, 1]3 (4.2)

and we let

𝐷 = Δ − Δ = conv{±𝑒𝑖 ± 𝑒𝑗 ∶ 1 ⩽ 𝑖 < 𝑗 ⩽ 3} ⊂ 𝐶3
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be its difference body. Note that 𝐷 is the convex hull of the midpoints of the edges of the cube 𝐶3.
Thus,𝐷 has six quadrilateral facets corresponding to the original facets of 𝐶3 and eight triangular
facets corresponding to the eight vertices of 𝐶3. Moreover, each quadrilateral facet is of the form
𝑒 − 𝑓, where 𝑒, 𝑓 ⊂ Δ are opposite edges of Δ, and each triangular facet is of the form ±(𝐹 − 𝑣),
where 𝐹 ⊂ Δ is a facet of Δ and 𝑣 ∈ Δ is the vertex opposite to it.
Note that a segment 𝐼 = [𝑎, 𝑏] ⊂ Δpasses froma vertex 𝑣 ∈ Δ to the interior of the facet opposite

to 𝑣, if and only if, 𝑏 − 𝑎 is in the interior of one of the triangular facets of𝐷. Hence, Δ is complete
with respect to a 3-latticeΛ ⊂ ℝ3, if and only if for some 𝜆 > 0, we have int(𝜆𝐷) ∩ Λ = {0} and 𝜆𝐷

possesses a lattice point of Λ in the relative interior of each of its triangular facets.
For each choice of signs 𝜎 ∈ {±1}3, there is a triangular facet

𝐹𝜎 = {𝑥 ∈ 𝐶3 ∶ 𝜎 ⋅ 𝑥 = 2} ⊂ 𝐷

of 𝐷. We start with a point (𝛼, 𝛽, 𝛾)𝑇 ∈ int 𝐹(1,1,1), that is, we have 𝛼 + 𝛽 + 𝛾 = 2 and 𝛼, 𝛽, 𝛾 < 1.
Moreover, we want to require that 𝛼, 𝛽, 𝛾 ⩾

1

2
. Now let

Λ = spanℤ

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
−𝛼

𝛽

𝛾

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

𝛼

−𝛽

𝛾

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

𝛼

𝛽

−𝛾

⎞⎟⎟⎠
⎫⎪⎬⎪⎭. (4.3)

Since

⎛⎜⎜⎝
𝛼

𝛽

𝛾

⎞⎟⎟⎠ =
⎛⎜⎜⎝
−𝛼

𝛽

𝛾

⎞⎟⎟⎠ +
⎛⎜⎜⎝

𝛼

−𝛽

𝛾

⎞⎟⎟⎠ +
⎛⎜⎜⎝

𝛼

𝛽

−𝛾

⎞⎟⎟⎠ ,

the difference body 𝐷 contains a lattice point of Λ in each of the triangular facets 𝐹𝜎, 𝜎 ∈ {±1}3.
It remains to check that int 𝐷 ∩ Λ = {0}. To this end, we first consider a point of the form 𝑥 =

(0, 𝑏, 𝑐) ∈ int 𝐷 ∩ Δ. There exist 𝑧1, 𝑧2, 𝑧3 ∈ ℤ with

⎛⎜⎜⎝
0

𝑏

𝑐

⎞⎟⎟⎠ = 𝑧1

⎛⎜⎜⎝
−𝛼

𝛽

𝛾

⎞⎟⎟⎠ + 𝑧2

⎛⎜⎜⎝
𝛼

−𝛽

𝛾

⎞⎟⎟⎠ + 𝑧3

⎛⎜⎜⎝
𝛼

𝛽

−𝛾

⎞⎟⎟⎠ .

It follows from the first equation that 𝑧1 = 𝑧2 + 𝑧3. Thus, the lattice point 𝑥 is of the form

𝑥 =
⎛⎜⎜⎝

0

2𝑧3𝛽

2𝑧2𝛾

⎞⎟⎟⎠ .

If either 𝑧3 or 𝑧2 is non-zero, then, since 𝛽, 𝛾 ⩾
1

2
, the corresponding entry has an absolute value

of at least 1. But then 𝑥 is on the boundary of 𝐶3. Hence, 𝑧2 = 𝑧3 = 0, which implies 𝑥 = 0.
By symmetry, we can conclude that a non-zero point in 𝑥 ∈ int 𝐷 ∩ Λ cannot have a zero coordi-

nate. So, toward a contradiction, let 𝑥 = (𝑎, 𝑏, 𝑐)𝑇 ∈ int 𝐷 ∩ Λ, where 𝑎, 𝑏, 𝑐 ∈ ℝ ⧵ {0}. Since both
𝐷 and Λ are symmetric with respect to the coordinate hyperplanes, we may even assume that
𝑎, 𝑏, 𝑐 > 0. Since 𝑥 ∈ Λ, there are positive integers 𝑧1, 𝑧2, 𝑧3 ⩾ 1 such that 𝑥 = (𝑧1𝛼, 𝑧2𝛽, 𝑧3𝛾)

𝑇 .
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32 of 39 CODENOTTI and FREYER

It now follows from 𝑥 ∈ int𝐷 and the symmetry properties of 𝐷 that (𝛼, 𝛽, 𝛾)𝑇 ∈ int 𝐷, a
contradiction to (𝛼, 𝛽, 𝛾)𝑇 ∈ 𝐹(1,1,1) ⊂ bd𝐷.
So we have established that int 𝐷 ∩ Λ = {0}. This proves the following proposition.

Proposition 4.12. The regular simplex Δ defined in (4.2) is complete with respect to the latticeΛ as
defined in (4.3) for any choice of

⎛⎜⎜⎝
𝛼

𝛽

𝛾

⎞⎟⎟⎠ ∈

⎧⎪⎨⎪⎩
⎛⎜⎜⎝
𝑎

𝑏

𝑐

⎞⎟⎟⎠ ∶
1

2
⩽ 𝑎, 𝑏, 𝑐 < 1, 𝑎 + 𝑏 + 𝑐 = 2

⎫⎪⎬⎪⎭.

Remark 4.13.

(1) There is no restriction in considering the regular tetrahedronΔ; Since all simplices are affinely
equivalent, finding a lattice with respect to which a fixed simplex is complete is the same as
finding a simplex which is complete with respect to a fixed lattice.

(2) If one of the parameters (𝛼, say) is equal to 1

2
, the difference body 𝐷 contains the point

⎛⎜⎜⎝
1

0

0

⎞⎟⎟⎠ =
⎛⎜⎜⎝

1

2
𝛽

𝛾

⎞⎟⎟⎠ +
⎛⎜⎜⎝

1

2
−𝛽

−𝛾

⎞⎟⎟⎠ ∈ Λ,

which is then a boundary point in one of the quadrilateral facets of 𝐷. For the tetrahedron Δ,
this implies that the diameter is not only attained by the four segments connecting the facets
to their opposite vertices as guaranteed by Proposition 4.3, but also by an additional segment
between two opposite edges.

(3) For a generic choice of the parameters, such as (0.65, 0.65, 0.7), the tetrahedron Δ is not
reduced with respect to Λ, as can be checked using sagemath (cf. Remark 4.1). This shows
that Theorem 1.6 does not hold in dimension 3.

(4) The same tetrahedron has the property that also (Δ − g(Δ))⋆ is not reduced with respect to
Λ⋆. Thus, it confirms (3.2) from Remark 3.9.

5 COMPARISON TO THE EUCLIDEAN CASE

The study of Euclidean reduced convex bodies is in part motivated by the Pál–Kakeya problem,
which asks for the maximal Euclidean width among convex bodies 𝐶 ⊂ ℝ𝑑 with vol(𝐶) ⩽ 1. This
problem is similar in spirit to the flatness problem, in which the Euclidean width is replaced by
the lattice width and the volume constraint is replaced by the condition | int 𝐶 ∩ Λ| < 1. Since the
volume functional is strictly monotonous, it is clear that all the bodies attaining the maximum
width in the Pál–Kakeya problem are Euclidean reduced. It was shown by Pál [47] in 1921 that
for 𝑑 = 2, the maximum is achieved by the regular triangle. In higher dimensions, however, the
problem has been open for more than a century. The fact that the natural generalization of the
regular triangle, the regular simplex, is not Euclidean reduced for 𝑑 ⩾ 3 [44] shows that higher
dimensions require a different approach.
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A more homogeneous lattice variant of the Pál–Kakeya problem, in which the study of lattice
reduced convex bodies could play an important role, is the following. One replaces the Euclidean
volume vol(𝐾) by the lattice-normalized volumeVolΛ(𝐾) ∶= vol(𝐾)

det Λ
⩽ 1. Thus the task is to find the

maximum latticewidthwidthΛ(𝐾) among convex bodies𝐾with normalized volumeVolΛ(𝐾) ⩽ 1.

Makai conjectured that the maximum is 𝑑

√
2𝑑𝑑!

𝑑+1
and that it is attained only by simplices [43]. For

instance, the simplex 𝑆𝑑 = conv{−𝟙, 𝑒1, … , 𝑒𝑑} has width exactly the conjecturedmaximum, if it is
dilated so that its volume is 1. We refer to [20, 24] and the references therein for more information
on Makai’s conjecture. Since the lattice normalized volume is a strictly monotonous functional,
all the extremal cases in Makai’s conjecture are necessarily lattice reduced.
Motivated by these analogies, we want to finish the paper by discussing discrete analogs of

classical properties and conjectures about Euclidean reduced and complete convex bodies.

5.1 Relations between diameter and width

In the Euclidean setting, it is evident that the diameter is bounded from below by the width of
a convex body, that is, we have diamℝ(𝐶) ⩾ widthℝ(𝐶) for any convex body 𝐶 ⊂ ℝ𝑑. The lattice
analog of this fact is inequality (3.5) in Remark 3.21. In general, it is impossible to reverse these
inequalities, even at the cost of a constant depending on the dimension. However, if 𝐶 ⊂ ℝ2 is a
Euclidean reduced convex body in the plane, it was shown by Lassak [32] that

diamℝ(𝐶) ⩽
√

2widthℝ(𝐶). (5.1)

Also, if 𝐶 ⊂ ℝ𝑑 is a Euclidean complete convex body, we readily have diamℝ(𝐶) = widthℝ(𝐶),
since 𝐶 is of constant width (recall that in the Euclidean setting, ‘complete’ is stronger than
‘reduced’). In the lattice setting in the plane, the following analogue to Lassak’s statement holds.

Proposition 5.1. Let 𝐶 ⊂ ℝ2 be lattice reduced or complete with respect to a lattice Λ ⊂ ℝ2. Then,
diamΛ(𝐶) ⩽ widthΛ(𝐶).

We note that equality holds if 𝐶 = conv{±𝑒1, ±𝑒2} (for lattice reduced bodies) or 𝐶 = [−1, 1]2

(for lattice complete bodies).

Proof. Let 𝐶 be lattice reduced with respect to Λ. Consider a diameter direction 𝑣 ∈ Λ ⧵ {0} of 𝐶.
Since 𝐶 is two-dimensional it follows from Proposition 3.1 that there exist two independent width
directions of 𝐶. So let 𝑦 ∈ Λ⋆ be a width direction with 𝑣 ⋅ 𝑦 ≠ 0. Let [𝑎, 𝑎 + diamΛ(𝐶)𝑣] ⊂ 𝐶 be
the diameter realizing segment in direction of 𝑣. We have

widthΛ(𝐶) = width(𝐶; 𝑦) ⩾ |𝑦 ⋅ (𝑎 + diamΛ(𝐶)𝑣 − 𝑎)| = diamΛ(𝐶) |𝑦 ⋅ 𝑣| ⩾ diamΛ(𝐶),

where we used that |𝑦 ⋅ 𝑣| ⩾ 1. The argument for lattice complete bodies is analogous, the
existence of a non-orthogonal pair of diameter and width directions is guaranteed by Proposi-
tion 3.7. □

Just like Lassak’s inequality (5.1) does not generalize to higher dimensions (see [33]), it is impos-
sible to extend Proposition 5.1 to dimensions 𝑑 ⩾ 3. As a counterexample one can consider the

 14697750, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12982 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://londmathsoc.onlinelibrary.wiley.com/action/rightsLink?doi=10.1112%2Fjlms.12982&mode=


34 of 39 CODENOTTI and FREYER

cube𝐶 = [−1, 1]3 together with the latticeΛ = 𝐴2 ⊕ 𝛼ℤ𝟙, for any 𝛼 ⩾ 1. This is a lattice complete
convex body (in fact, it is a special case of Proposition 3.17, see also Figure 2) with diamΛ(𝐶) = 2

and widthΛ(𝐶) = 2∕𝛼. Since 𝛼 ⩾ 1 is arbitrary, this shows that there cannot be a constant 𝑐 > 0

such that diamΛ(𝐶) ⩽ 𝑐 ⋅ widthΛ(𝐶) holds for any three-dimensional lattice complete convex
body. For lattice reduced bodies, it suffices to consider 𝐶⋆ and Λ⋆, since 𝐶 is symmetric.

5.2 Volumetric inequalities

In Euclidean geometry, the isodiametric inequality states that the volume of a convex body𝐶 ⊂ ℝ𝑑

of Euclidean diameter 𝑑 is bounded from above by the volume of a Euclidean ball of diameter 𝑑

[50, Inequality (7.22)]. Again, it is not possible to bound the volume of 𝐶 from below in terms of
the diameter, if 𝐶 is arbitrary. For complete convex bodies in the plane, however, such a lower
bound exists: For any Euclidean complete convex body 𝐶 ⊂ ℝ2 of diameter 𝑑 we have [8, 39]

vol(𝐶) ⩾ vol(𝑈𝑑), (5.2)

where𝑈𝑑 is a Releaux triangle of diameter 𝑑, that is, the intersection of three disks of radius 𝑑 cen-
tered at the vertices of a regular triangle of side length 𝑑. Generalizing (5.2) to higher dimensions
is an open problem, see for instance [1, 11].
For the Euclidean width, the dual statement to the isodiametric inequality is the Pál–Kakeya

problem, which asks for the optimal lower bound on vol(𝐶) in terms ofwidthℝ(𝐶). While it is not
possible to bound vol(𝐶) from above by widthℝ(𝐶), Lassak conjectured a nice reverse version of
Pál’s inequality in the plane [34]: If𝐶 ⊂ ℝ2 is a Euclidean reduced convex body withwidthℝ(𝐶) =

𝑤, let 𝐵𝑤 be a Euclidean disk with width 𝑤. Do we have

vol(𝐶) ⩽ vol(𝐵𝑤)? (5.3)

Interestingly, the equality cases in (5.3) (if true) are not only the disks of width 𝑤 but also the
‘quarter of a disk’ {𝑥 ∈ ℝ2

⩾0
∶ |𝑥| ⩽ 𝑤}.

For lattice reduced and lattice complete convex bodies the volumetric analogs of the isodiamet-
ric inequality and the Pál–Kakeya problem areMinkowski’s first theorem andMakai’s conjecture.
Moreover, in the plane we obtain inequalities similar to (5.2) and (5.3) with comparatively little
effort. Recall that VolΛ(𝐶) = vol(𝐶) det(Λ)−1 denotes the lattice normalized volume of 𝐶.

Proposition 5.2. Let 𝐶 ⊂ ℝ2 be a convex body and let Λ ⊂ ℝ2 be a two-dimensional lattice.

(1) If 𝐶 is reduced with respect to Λ, then VolΛ(𝐶) ⩽ widthΛ(𝐶)2.
(2) If 𝐶 is complete with respect to Λ, then VolΛ(𝐶) ⩾

1

2
diamΛ(𝐶)2.

Both inequalities are sharp.

Proof. Without loss of generality, let Λ = ℤ2 (cf. Lemma 2.3). For (1), let 𝑦1, 𝑦2 ∈ ℤ2 be two inde-
pendent width directions of 𝐶. After applying a unimodular transformation and a translation, we
obtain a copy of 𝐶 that is contained in the square 𝑄 = [0,widthℤ2(𝐶)]2.
For (2), let 𝑆1, 𝑆2 be two non-parallel lattice diameter realizing segments. Again, after applying

a unimodular transformation, we can assume that 𝑆𝑖 is parallel to 𝑒𝑖 . Let 𝑃 = conv(𝑆1 ∪ 𝑆2) ⊆ 𝐶.
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If the segments 𝑆1 and 𝑆2 intersect, it is clear that vol(𝑃) = 1

2
diamΛ(𝐶)2. Otherwise, we have

vol(𝑃) > 1

2
diamΛ(𝐶)2, as can be seen by first applying a Steiner symmetrization with respect to

one of the affine hulls of the 𝑆𝑖 (see [23, Remark 1.1] for details). The inequality now follows from
𝑃 ⊆ 𝑄.
In order to see that the inequalities are sharp, we consider the twisted squares 𝑄𝑥,

𝑥 ∈ (0, 1), from Example 3.10. 𝑄𝑥 is simultaneously lattice reduced and lattice complete
and we have width(𝑄𝑥) = 2 and lim𝑥↗1 vol(𝑄𝑥) = 4, as well as lim𝑥↘0 diam(𝑄𝑥) = 2 and
lim𝑥↘0 vol(𝑄𝑥) = 2. □

5.3 Bodies that are both reduced and complete

Recall that a convex body is complete in the Euclidean setting if and only if it is of constant width.
Hence, the class of Euclidean complete bodies is (properly) contained in the class of Euclidean
reduced bodies.
On the discrete side we have seen that for a fixed lattice Λ ⊂ ℝ𝑑 the class of lattice complete

bodies and the class of lattice reduced bodies are neither contained in one another, nor dual to
one another (at least not in an obvious way). Nonetheless, it would be interesting to gain a better
understanding on how the notions of completeness and reducedness interact in this setting:

Question 5.3. What can be said about convex bodies 𝐶 ⊂ ℝ𝑑 that are simultaneously lattice
reduced and lattice complete? Do there exist origin-symmetric convex bodies that are reduced
and complete for 𝑑 ⩾ 3?

Below we list the convex bodies that are both lattice reduced and lattice complete that we
know.

(1) The simplices 𝑆𝑑 ⊂ ℝ𝑑 from Proposition 3.12.
(2) The quadrangles 𝑄𝑥 ⊂ ℝ2, 𝑥 ∈ (−1, 1) and the hexagon𝐻 from Example 3.10.
(3) The triangles obtained in Proposition 4.9.
(4) The local maximizers of the lattice width 𝑇3 ⊂ ℝ3 and 𝑇4 ⊂ ℝ4 in dimensions 3 and 4 (cf.

Remark 4.1).
(5) The regular simplexΔ from (4.2) with respect to the latticeΛ as in (4.3), where 𝛼 = 𝛽 = 3

4
and

𝛾 = 1

2
. This can be verified using the sagemath script from Remark 4.1. Note that since 𝛾 = 1

2
,

this simplex has an exceptional diameter segment 𝐼 passing between two of its edges.

All examples in this list are either two-dimensional, or simplices. To start with, it would be inter-
esting to see any lattice reduced and lattice complete polytope in dimension higher than 2 which
is not a simplex.

APPENDIX: EXISTENCE OF REALIZERS OF 𝐅𝐥𝐭(𝒅)

Since we are not aware of an immediate argument or a reference in the literature that shows that
the flatness constant is achieved by a convex body, we present a proof here in order to keep the
paper self-contained.
Proposition A.1. Let Λ ⊂ ℝ𝑑 be a 𝑑-dimensional lattice. There exists a hollow (with respect to Λ)
convex body 𝐶 ⊂ ℝ𝑑 withwidthΛ(𝐶) = Flt(𝑑).

The proof requires the selection theorems of Blaschke and Mahler.
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Theorem A.2 (Blaschke). Let (𝐶𝑖)𝑖∈ℕ be a sequence of convex bodies in ℝ𝑑 such that there exist
convex bodies 𝐾, 𝐿 ⊂ ℝ𝑑 with 𝐾 ⊆ 𝐶𝑖 ⊆ 𝐿 for all 𝑖 ∈ ℕ. Then, (𝐶𝑖)𝑖∈ℕ has a convergent subsequence
(in the Hausdorff metric).

Recall from Section 2 that two bases 𝐴, 𝐵 ∈ GL𝑑(ℝ) of a 𝑑-dimensional lattice Λ ⊂ ℝ𝑑 differ
only by a right multiplication with a unimodular matrix, that is, we have 𝐵 = 𝐴𝑈, for some 𝑈 ∈

GL𝑑(ℤ). Therefore, the 𝑑-dimensional lattices in ℝ𝑑 correspond one-to-one to the elements of
GL𝑑(ℝ)∕GL𝑑(ℤ). This turns the set of 𝑑-dimensional lattices into a (metrizable) topological space
by considering the quotient topology on GL𝑑(ℝ)∕GL𝑑(ℤ).

Theorem A.3 (Mahler). Let (Λ𝑖)𝑖∈ℕ be a sequence of 𝑑-dimensional lattices in ℝ𝑑 such that there
exist constants 𝑐1, 𝑐2 > 0 such that detΛ𝑖 < 𝑐1 and 𝜆1(𝐵𝑑, Λ𝑖) > 𝑐2, where 𝐵𝑑 denotes the Euclidean
unit ball. Then the sequence (Λ𝑖)𝑖∈ℕ has a convergent subsequence.

Proof of PropositionA.1. Without loss of generality, letΛ = ℤ𝑑. Let (𝐶𝑖)𝑖∈ℕ be a sequence of hollow
convex bodies such that lim𝑖→∞ widthℤ𝑑(𝐶𝑖) = Flt(𝑑). By John’s theorem [50, Theorem 10.12.2]
there exist vectors 𝑡𝑖 ∈ ℝ𝑑 and linear transformations 𝐴𝑖 ∈ GL𝑑(ℝ) such that

𝐵𝑑 ⊆ 𝐴𝑖𝐶𝑖 + 𝑡𝑖 ⊆ 𝑑 𝐵𝑑. (A.1)

Let 𝐶𝑖 = 𝐴𝑖𝐶𝑖 + 𝑡𝑖 andΛ𝑖 = 𝐴𝑖ℤ
𝑑. By TheoremA.2, we can assume that that (𝐶𝑖)𝑖∈ℕ is convergent

to a convex body 𝐶. Assume that also the sequence (Λ𝑖)𝑖∈ℕ converges to a lattice Λ. Then, by the
continuity of the successive minima,

widthΛ(𝐶) = lim
𝑖→∞

widthΛ𝑖
(𝐶𝑖) = lim

𝑖→∞
widthℤ𝑑(𝐶𝑖) = Flt(𝑑),

which proves the claim.
In order to show that (Λ𝑖)𝑖∈ℕ has a convergent subsequence, we show that the hypothesis of

Theorem A.3 are met. First, we note that by Minkowski’s first theorem on successive minima
combined with the reverse Blaschke-Santaló inequality, there exists a weak resolution of Makai’s
conjecture, that is, a constant 𝑐1 > 0 depending only on 𝑑 such that vol(𝐶𝑖) ⩾ 𝑐1 widthℤ𝑑(𝐶𝑖)

𝑑 (see
for instance [18, Lemma 3.2]). Thus,

detΛ𝑖 = | det𝐴𝑖| =
vol(𝐶𝑖)

vol(𝐶𝑖)
⩽

𝑑𝑑vol(𝐵𝑑)

𝑐1 widthℤ𝑑(𝐶𝑖)
𝑑
, (A.2)

where we also used (A.1) to estimate the numerator. It was shown in [15] that Flt(𝑑) ⩾ Flt(𝑑 −

1) + 1. Since widthℤ𝑑(𝐶𝑖) converges to Flt(𝑑), we may assume

widthℤ𝑑(𝐶𝑖) ⩾ Flt(𝑑 − 1) + 1

2
. (A.3)

So we obtain from (A.2) that detΛ𝑖 ⩽ 𝑐2, for a constant 𝑐2 > 0 depending only on 𝑑.
In order to treat the successiveminima, we first use the inclusion (A.1) that leads to the estimate

𝜆1(𝐵𝑑, Λ𝑖) ⩾ diamΛ𝑖
(𝐶𝑖)

−1 = diamℤ𝑑(𝐶𝑖)
−1.
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We can finish the proof by showing that

diamℤ𝑑(𝐶𝑖) < max{Flt(𝑑) + 1, 2(Flt(𝑑 − 1) + 1)} =∶ 𝑐3. (A.4)

Toward a contradiction, assume that diamℤ𝑑(𝐶𝑖) ⩾ 𝑐3. Then there exists a segment 𝑆 = [𝑎, 𝑎 +

𝑐3𝑣] ⊂ 𝐶𝑖 , where 𝑣 ∈ ℤ𝑑 ⧵ {0}. Let 𝑦 ∈ ℤ𝑑 be a width direction of 𝐶𝑖 . We have

widthℤ𝑑(𝐶𝑖) = width(𝐶𝑖; 𝑦) ⩾ 𝑐3|𝑣 ⋅ 𝑦|.
Since 𝑣 ⋅ 𝑦 ∈ ℤ and 𝑐3 > Flt(𝑑) it follows that the width directions of 𝐶𝑖 are orthogonal to 𝑣. Let
𝐾𝑖 be the orthogonal projection of 𝐶𝑖 on 𝑣⟂ and let Γ be the lattice obtained by projecting ℤ𝑑 on
𝑣⟂. Then we have widthΓ(𝐾𝑖) = widthℤ𝑑(𝐶𝑖).
While 𝐾𝑖 is in general not hollow, we show in the following that it is ‘almost hollow’. Let 𝑝 ∈

𝑣⟂ be the point to which 𝑆 projects under the orthogonal projection 𝜋𝑣 ∶ ℝ𝑑 → 𝑣⟂. For a point
𝑥 ∈ 𝐾𝑖 ⧵ {𝑝}, let

𝑟(𝑥) =
vol1([𝑝, 𝑥])

vol1(𝐶𝑖 ∩ (𝑝 + ℝ⩾0 ⋅ (𝑥 − 𝑝))
.

This is the Minkowski functional of 𝐶𝑖 when 𝑝 is interpreted as the origin. Let 𝑥 ∈ Γ ∩ int(𝐾𝑖).
Since the lattice length of 𝑆 is at least 𝑐3, by convexity, the lattice length of the fiber of 𝑥 under
the projection 𝜋 is at least 𝑐3(1 − 𝑟(𝑥)). On the other hand, since 𝐶𝑖 is hollow, this fiber must not
contain an interior lattice point ofℤ𝑑. Its lattice length is therefore bounded by 1 from above. This
gives 𝑟(𝑥) ⩾ 1 − 1

𝑐3
. This means that the convex body 𝐾′

𝑖
obtained by scaling 𝐾𝑖 by a factor 1 − 1

𝑐3
around 𝑝 is hollow with respect to Γ and so we have with (A.3):

Flt(𝑑 − 1) + 1

2
⩽ widthℤ𝑑(𝐶𝑖) = widthΓ(𝐾𝑖) =

widthΓ(𝐾
′
𝑖
)

1 − 1

𝑐3

⩽
Flt(𝑑 − 1)

1 − 1

𝑐3

.

After rearranging this, we see that 𝑐3 ⩽ 2Flt(𝑑 − 1) + 1, which contradicts the choice of 𝑐3 in (A.4).
This finishes the proof. □
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