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Abstract 

In order to limit the adverse impacts of climate change we already feel today, humanity 

has to stop adding greenhouse gases to the atmosphere. Many countries have committed 

to do that and pledged to reach net zero by the mid-century. To support these countries, 

the International Energy Agency has published a landmark report outlining a technically 

feasible and economically viable roadmap to reach net zero globally by 2050. This study 

dynamically modelled the demand for Nd, a critical raw material used in wind turbines 

and electric vehicles, that is needed to implement the roadmap outlined by the 

International Energy Agency and explores different scenarios for Nd demand. The results 

show that mining has to increase to meet the demand for Nd for wind turbines and EVs. 

Recycling will partly offset the demand for primary Nd from 2035 on and could cover 50 

– 68 % of the Nd demand for wind turbines and 32 – 60 % for EVs in 2050. Assuming 

an increase in mining production of ~10% annually, the demand for primary Nd for wind 

turbines and EVs alone could exceed production for a short period of time around 2030 

under a high demand scenario. If other uses for Nd are considered too, the high demand 

scenario overshoots the supply and only from 2035 onwards the demand can be met if Nd 

is recycled efficiently (recycling rate >50%). A considerable supply risk for Nd arises 

from the fact, that illegal mining in China makes up around 30% of the total supply. 

However, for the low demand scenario official mining, without any illegal mining, would 

be able cover all the demand and mining would not have to increase from 2030 onwards, 

as all increase in demand could be covered by recycling. 
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1. Introduction 

The introduction presents the motivation of the study and gives the reader the necessary 

background to understand the core part of the study and follow the methods and results. 

1.1 Motivation 

Global warming and the associated ecological and social changes are the most important 

challenges of humanity of our time and they require a global answer. Rapid 

decarbonization and ensuring reliable access to clean energy for all are at the heart of 

securing sustainable development and preventing a collapse of ecological, social, and 

economic systems. With its flagship report “Net Zero by 2050 – A Roadmap for the 

Global Energy Sector” (Roadmap to Net Zero; Net Zero 2050 Report) the international 

energy agency (IEA) laid out a technically feasible, cost-effective and socially acceptable 

pathway to reach net-zero emissions globally (IEA 2021c). The report shows clearly that 

the goal of reaching net zero globally is achievable but challenging and requires 

immediate determined action. One of the big challenges of the green transition from a 

fossil fuel based economy to a renewable energy based economy is the raw material need 

of green technologies (IEA 2021b). For many of the transition metals, rare-earth elements 

and other raw materials ranging from lithium to natural rubber, supply risk is high due to 

politically unstable conditions in the producing countries, concentration of the world 

production in very few countries and geopolitical tensions between major economic 

blocks, or simply because demand projections are higher than supply prospects (e.g. 

Bobba et al., 2020).  

The aim of this study, is to take a closer look at one key raw material required in the 

energy transition for renewable energy and decarbonising transport, assess the raw 

material need of the IEA Roadmap to Net Zero and find out whether the demand can be 

met based on mining and recycling prospects. Neodymium (Nd) was chosen for this in-

depth analysis as this rare earth element is a crucial component in strong permanent 

magnets (NdFeB magnets) which are commonly used in wind turbines and electric 

vehicle (EV) motors, two key technologies to decarbonize energy generation and 

transport. 

Previous studies have already modeled the Nd demand for wind energy and EVs or both 

under different scenarios and for different regions. For example, Elshkaki and Graedel 

(2013) modeled the global metal flows and stocks for electricity generation 
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tehchnologies, Li et al. (2020) and Deng et al. (2020) modeled the global metal demand 

for wind energy, Habib and Wenzel (2016) did the same for a particular type of wind 

turbines, Månberger and Stenqvist (2018) modeled metal demands for the renewable 

energy transition including wind energy and EVs, and Deetman et al. (2018) not only 

assessed the global Nd demand for EVs and wind turbines but also for household 

appliances. Several studies only focus on one country or region, for example Fishman et 

al. (2018), examine the rare earth demand for EVs in the US, Viebahn et al. (2015) the 

Nd-demand for wind turbines in Germany, and Yao et al. (2021) and Sekine et al. (2017) 

performed dynamic material analyses of Nd in China and Japan, respectively. The Joint 

Research Council of the EU has published multiple reports assessing the supply and 

demand of critical raw materials (including Nd) in energy generation, EVs and other 

strategic technologies and sectors (European Commission n.d.). Also international 

organisations such as the World Bank and the International Energy Agency published 

reports dedicated to the demand for metals or minerals for the energy transition (World 

Bank 2017; 2020; IEA 2021b). This study assesses for the first time the global Nd demand 

to implement the Roadmap to Net Zero by 2050 of the IEA, which is a technically 

feasible, cost-effective and socially acceptable scenario and can serve as a guideline for 

the countries having pledged to reach net zero by 2050. 

1.2 Net Zero by 2050 – A Roadmap for the Global Energy Sector 

The flagship report “Net Zero by 2050 – A Roadmap for the Global Energy Sector” was 

prepared by the IEA in 2021 at the request of the President of COP 26 (conference of the 

Parties to the UN Framework Convention on climate Change) and is intended as guidance 

for the increasing number of countries having pledged to reach net zero. Already in 2021, 

the 44 countries plus the EU which have made commitments to reach net zero accounted 

for about 70% of the global CO2 emissions (IEA 2021c). However, the IEA acknowledges 

that the complete transformation of our energy system is not an easy task with a narrow 

pathway but doable and would even bring major benefits for the economy, and most 

importantly human wellbeing. Unfortunately, only fewer than a quarter of the announced 

pledges to reach net zero are enshrined in domestic laws and the stated policies fall far 

short of reaching net zero globally by 2050. This means that countries do not only have 

to enact strong legislation but the success of the endeavour to reach net zero globally 

hinges most of all on the implementation of these policies as well as on consumer choices, 

business decisions in all sectors and private and public investment.  
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The report is structured into four chapters. The first chapter explores how far targets stated 

in Nationally Determined Contributions to the Paris Agreement and net zero pledges as 

well as stated policies would take us in terms of emission reductions. In the following 

chapter, the Net Zero Emissions by 2050 scenario is presented, what it means for the 

projected energy demand and mix, and how it depends on uncertain factors such as 

investment, technology development and behavioural change. Chapter 3 sets out industry-

specific pathways for the electricity sector, industry (chemicals, iron and steel, and 

cement production), transport and buildings, highlighting how these sectors have to 

change to reach net zero. The final chapter treats the wider implications of reaching net 

zero for the global economy and employment, the energy industry, citizens’ access to 

affordable energy and their behavioural change, as well as implications for governments 

concerning energy security, infrastructure, innovation, changes in tax revenue streams 

and international cooperation. 

Already in the summary for policy makers, the report mentions the challenge of the 

energy transition: the high demand for critical minerals, which is estimated to grow nearly 

sevenfold only between 2020 and 2030. Rare earth elements are among these critical raw 

materials playing a key role in low carbon technologies. 

1.3 Nd – a rare earth metal and example of a critical raw material 

Rare earth elements (REE), also called rare earth metals, are a group of 17 metals 

comprising the 15 lanthanides together with scandium and yttrium. The lanthanides with 

atomic numbers of 57 (lanthanum) through 79 (lutetium) are further subdivided into the 

light rare earth elements (lanthanum cerium, praseodymium, neodymium, promethium, 

samarium and europium) and heavy rare earth elements (gadolinium, terbium, 

dysprosium, holmium, erbium, thulium, ytterbium and lutetium). One of them, 

promethium has no stable isotope and does not occur naturally (Latunussa et al. 2020). 

Their name rare earth element is misleading as they are not that rare in the earths crust, 

but rather are rarely found in highly concentrated occurrences and never in metallic form 

(Walters, Lusty, and Hill 2011). The abundance of individual REEs varies with those 

having an even atomic number being more abundant than their neighbours in the periodic 

table, and a general trend of decreasing abundance with atomic number (Haxel, Hedrick, 

and Orris 2002; Walters, Lusty, and Hill 2011). This means that cerium, the most 

abundant of the REEs with a crustal abundance of 43 ppm, is much more abundant than 

for example copper and lead with crustal abundances of 27 ppm and 11 ppm, respectively 
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(Walters, Lusty, and Hill 2011). Neodymium has a concentration of 20 ppm in the 

continental crust (Rudnick and Fountain 1995). In minerals, REEs usually occur together, 

as they can substitute for each other in the crystal lattices due to their similar atomic radius 

and charge (Walters, Lusty, and Hill 2011). However, minerals usually either contain 

higher amounts of light or heavy REEs (Haxel, Hedrick, and Orris 2002; Walters, Lusty, 

and Hill 2011). The economically most important REE ores are carbonatite-associated 

deposits containing bastnäsite including the Bayan Obo mine in China and the historically 

important Mountain Pass mine in the USA, as well as so called placer deposits of 

monazite sands (Long et al. 2010; Walters, Lusty, and Hill 2011; Haxel, Hedrick, and 

Orris 2002), whereas ion absorption clays or laterites that form from weathering of REE 

containing rocks are important for their high ore grades and relative abundance of heavy 

REEs. 

Up until the 1980s, the US dominated REE production, but from the 1990s onwards, 

China took over the leading position (Haxel, Hedrick, and Orris 2002) and now accounts 

for around 70% of mining after having lost some share of the global mining, but still 

accounts for 90% of processing of ores to intermediary products such as metals, alloys 

and magnets (Latunussa et al. 2020). This supply concentration and the high volatility of 

supply due to the strong state control over REE mining in China are the main reason why 

REEs are classified as critical raw materials in the EU since the EU first defined critical 

raw materials in 2010 (European Commission - Report of the Ad-hoc Working Group on 

defining critical raw materials 2010). Criticality of raw materials also including natural 

materials such as rubber, are assessed based on two factors: the economic importance and 

the supply risk (European Commission n.d.). REEs and Nd specifically are especially 

critical in the form of high performance permanent magnets, NdFeB magnets, which are 

crucial for the production of wind turbines, EVs and robotics but are also relevant for data 

storage on hard disk drives (Bobba et al. 2020). 

The importance of Nd in wind energy technology and EVs is discussed in further detail 

in the following two subchapters. 

1.4 Wind energy technologies 

Wind turbines are used to harness wind to generate electricity. Almost all commercial 

wind turbines follow the same design principle: the turbine is mounted on a tower made 

from steel or cast-iron or, in rare cases, concrete and consists of three rotor blades which 

transmit their movement via the main shaft to a generator directly or via a gearbox to 
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increase the rotation speed (Lacal-Arántegui et al. 2012). The electric generator has two 

main parts: a fixed stator and a rotor, producing a rotating magnetic field that induces 

electric energy into the windings of the stator. The magnetic field can either be produced 

by permanent magnets or by electromagnets (Lacal-Arántegui et al. 2012). Wind turbine 

sub-technologies can be classified according to their drivetrain configuration (direct drive 

(DD) or using a gearbox (GB)) and the type of generator (Figure 1). Drive train 

configuration with a gearbox either increase the rotation to high speed (> 900 rpm) or to 

medium speed (>80 rpm) (Carrara et al. 2020). In direct drive configurations, the rotor in 

the generator always rotates at the same speed as the blades at around 20 rpm (Pavel, 

Lacal-Arántegui, et al. 2017). 

Acronyms used to refer to the different sub-technologies are listed in Table 1 and are 

combined with the acronyms for drive train configuration e.g., DD-PMSG referring to 

direct drive permanent magnet synchronous generator, or GB-DFIG referring to gearbox 

doubly-fed induction generator. 

Table 1 Acronyms used to refer to different wind turbine generator types. 

Generator type Acronym 

Permanent magnet synchronous 

generator 

PMSG 

Electrically excited synchronous 

generator 

EESG 

High-temperature superconductor HTS 

Doubly-fed induction generator DFIG 

Squirrel-cage induction generator SCIG 
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Figure 1 Wind turbine sub-technologies according to drivetrain configuration and type of turbine as well 
as according to their main application for offshore (blue), onshore (orange) or both (green).*High-
temperature superconductor generators are not commercialized yet. 

Each sub-technology has their advantages and shortcomings making it suitable for the 

use in different settings either onshore or offshore. 

The main advantage of DD wind turbines is their lower maintenance as they avoid failure-

prone gearboxes and economic losses due to downtime and repair costs (Lacal-Arántegui 

et al. 2012). This advantage plays an even bigger role in the offshore wind segment, where 

the turbines are harder to reach or in larger wind parks (Carrara et al. 2020). However, 

the lower rotation speed and resulting higher torque require bigger generators for 

technical reasons (Lacal-Arántegui et al. 2012). In general, wind turbine producers strive 

to limit the size and weight of the turbines. For this reason, DD turbines use either PMSG 

or EESG, even though the latter are heavier than PMSG due to the larger amounts of 

copper needed for windings of the electric excitation and thus not used in offshore wind 

parks (Pavel, Lacal-Arántegui, et al. 2017).  

Another advantage of DD-EESG besides their lower maintenance is the fact that they do 

not require REE and rely on simple design using available know-how. Moreover, their 

efficiency is high in partial and nominal loads (Pavel, Lacal-Arántegui, et al. 2017), even 

though it is still 6% lower than for PMSGs (Månberger and Stenqvist 2018). 

Especially in the offshore sector, DD-HTS could replace DD-PMSG because of their 

lightweight design which could remove about 50% of the generator due to the very high 
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turbines

Direct 
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field strength of the superconductor. Moreover, they have an extremely high efficiency 

outperforming DD-PMSG (Lacal-Arántegui et al. 2012).  

In the onshore domain, GB-DFIG are most widely used because of their low 

manufacturing cost and REE-free design, even though they have a lower efficiency than 

EESG or PMSG when they operate in partial load at low wind speeds. Furthermore, they 

are easy to connect to the grid and adaptable to most grid codes, although they fail to 

comply with the most stringent ones demanding black starts (Pavel, Lacal-Arántegui, et 

al. 2017; Lacal-Arántegui et al. 2012).  

GB-SCIG without a full converter, which meant that the rotation speed had to be kept 

constant, were widely used in the 1990s, but are now replaced by DFIG (Pavel, Lacal-

Arántegui, et al. 2017; Lacal-Arántegui et al. 2012; Carrara et al. 2020). Nowadays, GB-

SCIG with a full converter are used to end the dependency on REEs of PMSG (Pavel, 

Lacal-Arántegui, et al. 2017). 

Neodymium is used in wind parks regardless of the sub-technology of turbines used, 

however, the amounts used vary greatly. DD-PMSG, which have become more and more 

popular since 2005 (Alves Dias et al. 2020), especially in offshore wind turbines, use the 

highest amounts of Nd as Nd makes up about 30% of the NdFeB permanent magnets used 

in the generator, wheighing up to 4 t (Carrara et al. 2020). 

1.5 Electric vehicles technologies 

Electric vehicles are cars using an electric motor as their main source of propulsion 

(Pavel, Thiel, et al. 2017). There are a variety of different types of EV: battery electric 

vehicles (BEV), which rely only on electricity stored in an onboard battery as an energy 

source, plug-in hybrid electric vehicles (PHEV) with an internal combustion engine to 

recharge the battery, and fuel cell electric vehicles (FCEV), which do not store electricity 

in a battery but produce it onboard usually from hydrogen through a fuel cell. Hybrid 

electric vehicles, where the main propulsion comes from an internal combustion engine 

and the electric motor merely supports it as a secondary source of propulsion, are not 

counted as EVs (Pavel, Thiel, et al. 2017).  

Currently, more than 90% of all EVs rely on NdFeB permanent magnets for their electric 

traction motors (Pavel, Thiel, et al. 2017) and also in future these high performing 

magnets are expected to be the dominant technology with 80% of all EVs produced using 

them (Latunussa et al. 2020). One reason for the preference of car makers for NdFeB 
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magnet technologies are the very strong magnetic field of NdFeB magnets which allows 

for a compact design of the motor, which is especially for hybrid cars where two 

drivetrains have to fit into the limited space of a car (Bobba et al. 2020; Pavel, Thiel, et 

al. 2017). Moreover, permanent magnet synchronous motors, the main technology of PM-

based motors, supply high torque and are easy to be controlled. Another advantage over 

induction motors, which substitute the permanent magnet by electro magnets, is the 

higher efficiency since no electricity is needed to produce the electric field (Pavel, Thiel, 

et al. 2017). 

However, the volatility of REE supply and prices for NdFeB magnets caused by Chinese 

export restrictions, have encouraged the use of technologies which do not rely on REEs 

(Latunussa et al. 2020; IEA 2021b). Already today, there are EVs on the market which 

rely on induction motors that do not use any REEs (e.g. Tesla model S, Audi e-tron) or 

significantly reduce the amount of NdFeB magnets through optimised design (IEA 

2021b; Pavel, Thiel, et al. 2017). Switched reluctance motors are also a promising 

technology without REEs, however they are still in the prototype phase (IEA 2021b; 

Pavel, Thiel, et al. 2017). 

1.6 Recycling of Nd from NdFeB permanent magnets 

NdFeB permanent magnets are the main application of Nd and their market share and 

absolute production numbers are growing fast due to the growth in wind turbine and EV 

use (Ciacci et al. 2019). Recycling of NdFeB magnets is important as it diminishes the 

dependence on primary Nd subject to high price volatility and demand could soon exceed 

supply from mining (Latunussa et al. 2020). However, currently the recycling rate of Nd 

is only about 1% and only very few industrial scale recycling facilities for the recovery 

of Nd exist (Latunussa et al. 2020). The obstacles for recycling include the lack of 

separate collection for recycling of NdFeB magnet containing products, the small size of 

magnets in many applications such as hard disk drives or acoustic transducers and lack 

of automated dismantling. In addition, the variety of the composition of magnets 

complicate generic recycling processes, and low REE prices in the past discourage 

recycling (Latunussa et al. 2020). A considerable amount of NdFeB magnets is lost even 

for appliances and vehicles that are collected for recycling because the conventional 

shredding procedures fail to separate the magnets which stick to the ferrous metal fraction 

and end up in recycled steel (Habib 2015; Widmer et al. 2015; Yang et al. 2016). 
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Permanent magnet waste is generated during manufacturing of the magnets, where 15% 

- 30 % or even up to 73 % of the raw material become scrap called swarf  (Kumari et al. 

2018; Chowdhury et al. 2021), as well as at the end of life of products containing PMs. 

In general, two different routes exist for the recycling of NdFeB magnets: direct recycling 

and indirect recycling. Direct recycling refers to the reuse of the magnets without 

separating the contained elements as is done in indirect recycling (Latunussa et al. 2020). 

Direct recycling is a suitable strategy for the internal recycling of swarf in the production 

process (Schulze and Buchert 2016). Finished magnets contain a Ni-coating to protect 

them from corrosion, which would deteriorate the quality of the magnet if remelted during 

direct recycling. Therefore, indirect recycling is the preferred option for off-quality 

magnets that cannot be sold as well as for small magnets recovered from end-of-life 

(EOL) products (Schulze and Buchert 2016), whereas large magnets like the ones used in 

EVs and wind turbines can be recycled directly in an economic way (Zhang et al. 2020; 

Yang et al. 2016).  

For indirect recycling several technologies exist, which are generally able to recover more 

than 80% of the contained REEs at high purity (Yang et al. 2016). Their main advantage 

over direct recycling is that they are applicable to all types of magnets with different 

compositions (Zhang et al. 2020; Yang et al. 2016).  However, depending on the 

technology, they are very energy intensive, consume large amounts of chemicals, or 

produce large amounts of waste (Zhang et al. 2020; Yang et al. 2016). Indirect recycling 

technologies can be classified in two groups: hydrometallurgical and pyrometallurgical 

methods. For hydrometallurgical methods the first step is always leaching, which 

dissolves the REEs or the whole magnet, in some cases after a roasting step that converts 

the metals into oxides (Yang et al. 2016). After leaching, the REEs are separated via 

solvent extraction using organic extractants, ionic liquid extraction or via precipitation 

(Zhang et al. 2020).  

For pyrometallurgical methods, different technologies can be distinguished: (i) roasting 

as a preparatory step for more efficient hydrometallurgical treatment, (ii)  melt processing 

where the REEs of the magnets are selectively dissolved into a liquid metal phase (liquid 

metal extraction), into a molten chloride or fluoride salt (molten salt extraction),  into a 

molten slag (molten slag extraction), and (iii)  electrochemical processing in 

electrochemical reactors (Yang et al. 2016).  
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1.7 Research Question and goal of the study 

The overall research question to be answered in this thesis is: “Can the Nd-demand 

required for the goal to reach net zero by 2050 be met according to projections of primary 

production (i.e. mining) and secondary production (i.e. recycling)?”. The flagship report 

“Net Zero by 2050 – A Roadmap for the Global Energy Sector” by the IEA and the 

scenario outlined therein is used as a basis to answer the question. 

Several sub-questions concerning the Nd-demand to reach net zero, the Nd-metabolism 

and supply risks of Nd, arise which have to be answered too. These sub-questions are:  

(i) How high does the newly installed wind generation capacity have to be to 

reach the goals of the Net Zero by 2050 Roadmap, taking into account retiring 

wind turbines?  

(ii)  What will the number of cars on the road be according to the Net Zero by 

2050 Roadmap and how many cars have to be sold annually to reach this 

number?  

(iii) What are the technology shares of wind turbine technologies and the shares 

of different EVs of the annually installed or sold wind turbines and cars? 

(iv) What is the Nd-intensity of each of these sub technologies of wind turbines 

and EVs? 

(v) What is the recycling potential of Nd - how much Nd is potentially going to be 

recovered from wind turbines and EVs reaching their end of life each year? 

(vi) How high is the current and possible future primary production of Nd?  

2. Methods 

In the methods section, it is described how the sub-questions of the research questions 

were answered and what assumptions were made. 

In principle, this study conducts a global dynamic material flow analysis for Nd in wind 

energy and EVs for the time-period of 2020 to 2050. By incorporating technical 

parameters such as the lifetime, technology shares and material intensities into this 

technology -specific model, different scenarios are explored. 

Annex 1 includes the MatLab code used for the modelling and plotting of graphs. 
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2.1 Nd Demand for wind turbines  

Since the Net Zero by 2050 Roadmap only gives, the installed wind power capacity, this 

value had to be converted to the mass of Nd required to instal the wind turbines. This was 

done through the Nd intensity of wind turbines. However, as there are very different 

designs requiring different amounts of Nd (e.g. Carrara et al., 2020), the technology share 

of the installed capacity has to be taken into account too. As can be seen in the structure 

of the results section, the Nd demand for wind turbines was assessed in 3 steps: first, the 

Nd intensity of wind turbines of different technologies, second the required newly 

installed wind power capacity each year, and third, the share of different wind turbine 

technologies for the period of 2020 to 2050 were found to subsequently model the Nd 

demand. 

To find the Nd intensity of wind turbines, the mass of Nd per unit of installed capacity, 

the literature was reviewed. The results of the literature review for the Nd intensity of 

different types of wind turbines are listed in Table 4 in the Results section. As described 

in the introduction, not all wind turbine technologies rely on NdFeB permanent magnets 

for their generators. However, they still use smaller quantities of permanent magnets, as 

magnets are also used to attach internal fixtures in the towers (Carrara et al. 2020). 

Whereas most sources only give values for permanent magnet generator type turbines 

with a direct drive or gearbox setup, Carrara et al., (2020) also estimated the Nd intensity 

of other common turbine technologies. Most studies base their estimation of the Nd 

content of wind turbines on the mass of the permanent magnet and an average Nd content 

for these NdFeB magnets. However, the Nd content reported in the literature varies a lot 

from 20% to up to 32% (Viebahn et al. 2015). Even though most authors use values 

between 27% (e.g. Li et al., 2020) and 31% (e.g. Viebahn et al., 2015), this still makes a 

noticable difference of about 15% for the calculated mass of Nd. 

Next, the required annual capacity additions of wind power were modelled. The IAE 

states in its Roadmap to Net Zero 2050, that annual capacity additions for wind energy 

have to reach 114 GW (5 of which offshore) in 2020, 390 GW (80 of which offshore) by 

2030, and would slightly go down to 350 GW annual added capacity (70 of which 

offshore) by 2050. Total installed wind capacity would reach 737 GW in 2020, compared 

to 623 GW in 2019, 3,101 GW in 2030, 6,252 GW in 2040 and 8,265 GW in 2050, 

increasing the share of wind power capacity from 9% in 2020 to 21% in 2030 and 25% 
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in 2050 (IEA 2021c). This translates into a compound annual average growth rate of 15% 

between 2020 and 2030 or 8.4% between 2020 and 2050 (IEA 2021c).  

To interpolate the annual values of the total installed capacity between 2020 and 2050, 

the MatLab polyfit function was used to fit a third order polynomial function between the 

values given in the Net Zero 2050 report with intervals of 5 years. For offshore wind 

capacity, linear growth was assumed as an approximation. Based on that, the annual 

capacity growth was calculated as the difference between two consecutive years. A 

polynomial function was chosen as its shape reflects the forecasted capacity development 

and to avoid non-continuity in the capacity growth curve. Since onshore and offshore 

wind turbines are modelled separately, the respective capacity growth had to be 

calculated.  

Since the annual growth equals the newly installed capacity minus the retired capacity, 

the retired capacity had to be calculated too. To do this, a lifetime function in the form of 

a probability density function of a Weibull distribution was used, a commonly used 

function to estimate lifetime of machines, including wind turbines (Welte and Wang 

2014). Weibull functions have two to three parameters, a shape parameter α determining 

the skewedness or shape, and a scale parameter β defining the scale of the values along 

the x-axis, plus in some cases a location parameter used to shift the whole distribution 

(Melo 1999). The Weibull distribution is given by:  

(ݔ)݂ = ఉߙߚ  ݔ)−) ఉିଵ expݔ  ⁄ߙ )ఉ) 

Figure 2 visualizes the frequency distributions of Weibull functions with different 

parameters. 
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Figure 2 Frequency distributions for Weibull functions with different parameters as used for the lifetime 
modelling in this study 8solid lines) and to exemplify the effect of different shape factors (dashed and dash-
dot). 

The shape parameter used for wind turbines in this study is 5.1, a value empirically 

derived for wind turbines with gearboxes (Gray and Watson 2010). The scale factor was 

set equal to the expected lifetime of 25 years for onshore and 30 years offshore wind 

turbines (Carrara et al. 2020). The resulting Weibull distribution (Figure 2) gives the 

fraction of wind turbines reaching their end of life each year after the installation of the 

batch of wind turbines. Based on this, the wind generation capacity retiring each year is 

calculated. It is important to note, that the number of wind turbines reaching their end of 

life is calculated based on the annual capacity growth and not the newly installed capacity 

each year. Therefore, the retiring capacity is a lower estimate, especially for the later 

years, when the newly added capacity starts to deviate more from the capacity growth. 

However, given the long lifetime of wind turbines the effect is assumed to be negligible. 

In a last step, the added, i.e., newly installed capacity, is calculated as the sum of the 

retiring capacity and the capacity growth for onshore and offshore wind.  

The technology shares used to explore different scenarios of future Nd-demand were 

taken from two different sources: Carrara et al. (2020) and IEA (2021a). However, as the 

data by the latter only makes predictions until 2040, a continuation of the trend from 2030 

to 2040 is assumed for onshore wind under the baseline scenario, no change in technology 

share is assumed for the restricted REE supply scenario onshore and the baseline scenario 
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offshore, and for the restricted REE supply scenario offshore, it is assumed that DD-HTS 

gain 10% at the expense of DD-PMG. This follows the trends predicted by Carrara et al. 

(2020). It is important to note, that the technology shares in IEA (2021a) were only 

presented in figures and the values had to be read off the figures, which introduces some 

error. 

2.2 Nd Demand for EVs 

The number of EVs having to be produced to reach net zero globally is not directly given 

in the Net Zero 2050 Report. Instead, the vehicle kilometers (vkm) travelled globally by 

passenger cars are stated. However, since the share of households owning 1, 2 or 3+ cars 

is given for 2050 for a scenario with and without behavioural change, the total number of 

cars can be calculated and from that the number of cars per vehicle kilometer (neglecting 

households owning more than 3 cars and counting them as owning 3 only). This results 

in a factor of 95 cars per million vkm without behavioural change (10,573 km per vehicle 

per year) and 47 cars per million vkm after behavioural change (21,147 km per vehicle 

per year). For comparison, the global average kilometers driven per car annually was 

18,000 km in 2008, with regional differences ranging from 8,276 km (Japan) to 26,000 

(China) (Deetman et al. 2018). 

Since only vkm for the years 2019, 2020, 2030, 2040 and 2050 are given, the annual data 

for 2021 to 2050 were interpolated with a polynomial fit using MatLab Polyfit function 

to fit a square function. For the scenario without behavioural change, a rebound of car 

sales to 2019 levels in 2021 was assumed. 

Knowing the total stock of cars each year, the growth in stocks can be calculated, and - 

by subtracting the cars retiring - the annually sold cars. 

The number of cars reaching their end of life is calculated based on a Weibull lifetime 

function with a shape factor of 5 and a scale factor equal to the expected lifetime of 17 

years (see Figure 2) as used in the Net Zero 2050 Report and by (Dworak, Rechberger, 

and Fellner 2022). However, since car sales data are only known from 2005 onwards and 

the integral of the Weibull function only reaches 1 after 27 years, a fixed lifetime of 17 

years was assumed to calculate the number of retiring cars for the years 2021 to 2031. 

For the years 2032 to 2050, the number of retiring cars was calculated based on data from 

the lifetime distribution of the previous 27 years. This was done for the scenario without 

behavioural change as well as for the scenario with gradual behavioural change. 
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However, as this study is only interested in EVs, the number of EVs sold annually has to 

be modelled, which is done via the share of BEVs, PHEVs and FCEVs of car sales each 

year. According to the roadmap laid out in the Net Zero 2050 Report, no internal 

combustion engine cars (ICE) will be sold globally from 2035 on. The technology share 

of light duty vehicles (i.e. cars and vans) sold in 2020, 2030 and 2050 according to the 

roadmap is given in Table 2. It was assumed for further calculations, that change in 

vehicle type is linear and that the technology share of 2050 is already reached in 2035 

and then stays constant. 

Table 2 Technology shares of Battery electric vehicles, Plug-in hybrid vehicles and Fuel cell electric 
vehicles in the sale of light duty vehicles (cars and vans) according to the Net Zero 2050 Report. 

      2020 2030 2050 
Battery electric 2.80% 54.60% 90.20% 
Plug-in hybrid electric  1.20% 7.00% 0.42% 
Fuel cell electric  0.02% 2.90% 9.30% 

 

Next, the Nd intensity of each of the EV subtechnologies is assessed by conducting a 

literature review. Since there is a lot of uncertainty about the Nd intensity of EVs given 

their constant development, a low and high estimate for each technology is considered 

for the calculation of the Nd demand for EVs. The values derived from the literature 

review and used for further calculations are given in Table 3. 

Table 3 Low and high Nd intensities for BEV, PHEV and FCEV used for the modelling of Nd demand in 
EVs. 

 g Nd/car (low) g Nd/car (high) 
BEV 567 2 250 
PHEV 473 1 460 
FCEV 473 2 920 

 

Based on these Nd intensity and the number of BEVs, PHEVs and FCEVs sold annually, 

the Nd demand is calculated. 

2.3 Nd Reserves and future production capacities 

 The assessment of Nd reserves and future production capacities is based on a literature 

review of mineral production statistics: the Mineral Commodity Summaries by the U.S. 

Geological Survey, the World Mineral Production report by the British Geological Survey 

and the World Mining Data report by the Austrian Federal Ministry for Agriculture, 
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Regions and Tourism for the International Organizing Committee for the World Mining 

Congresses (U.S. Geological Survey 2022; Idoine et al. 2022; Reichl and Schatz 2022). 

However, as these reports only publish data on (mixed) rare earth oxides (REO) and not 

on individual rare earth metals, the Nd production is inferred from the reported REO 

equivalents by assuming 16% of the REOs to be Nd-oxide and 1.17 kg of Nd-oxides 

required to produce 1 kg of Nd (Blagoeva et al. 2016). 

Furthermore, illegal REE mining in China was also accounted for based on data of Geng 

et al. (2020) and  Yao et al. (2021), who performed static and dynamic material flow 

analyses for Nd in China for 2016 and the period of 2000 to 2050 respectively. 

2.4 Nd Recycling Potential 

In order to calculate the potential contribution of secondary Nd to meet the annual 

demand, firstly the annually released Nd amounts from wind retiring turbines and EVs 

are calculated and then transfer coefficients applied for the efficiency of disassembly and 

recycling. 

The released amounts of Nd from stocks of EVs are estimated based on the expected 

lifetime and therefore equal to the demand 17 years (one expected lifetime) before. 

Historic Nd demand is modeled based on the stock of BEVs and PHEVs given by IEA 

(2020) and the stock of FCEV of 2020 was assumed to have been added all in that year 

(IEA 2021a). It is assumed that no EVs were sold before 2010, therefore the first EVs 

retire in the year 2027. Released stocks were modelled for all considered scenarios, 

however, since historic data is underlying most of the calculation, the scenarios only differ 

from 2038 on. 

Given the long lifetime of wind turbines (25 years onshore and 30 years offshore), the 

amount of released Nd would only differ under the different scenarios in the years from 

2045 to 2050 for onshore if the same methodology as for EVs with a static lifetime is 

applied.  

Therefore, a different modelling approach was used: the demand for Nd under each 

scenario was multiplied with the Weibull lifetime distribution and then the released stocks 

of Nd calculated from the lifetime distribution. The historic Nd demand for wind turbines 

was calculated based on the technology shares given by (IEA 2021b) for the year 2010 

applied to all wind turbines installed before 2020. It was assumed that no wind turbines 

were installed before 1997. 
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To find the applicable transfer coefficients or efficiency of disassembly and recycling, 

the literature was reviewed; the results of the literature review are summarised in Table 

13. An overview over the different technologies to recycle NdFeB permanent magnets 

from EOL wind turbines and EVs is given in the Introduction and the assumptions and 

factors used for wind turbines and EVs respectively are described with the results. It was 

assumed that all the Nd embedded in wind turbines and EVs are NdFeB permanent 

magnets or have the same recycling potential as NdFeB magnets. For wind turbines the 

assumption that all Nd is present in permanent magnets is expected to be valid and other 

uses negligible. For EVs, Nd is also present in smaller amounts in printed wiring boards 

of consumer electronics and air conditioning of the car, as well as in capacitors, however 

in masses 1-2 orders of magnitude lower than used for the permanent magnets of the 

electric motor (Cullbrand and Magnusson 2011; Widmer et al. 2015). 

3. Results 

This section describes the findings of the literature reviews and the model results. First, 

findings concerning the Nd demand for wind turbines and EVs are presented, followed 

by the reserves and production capacities of Nd and finally the recycling potential of Nd 

from end-of-life EVs and wind turbines.  

3.1 Nd Demand for wind turbines 

3.1.1 Nd intensity in wind turbines 
Analyzing the different reported Nd intensities, shows that until 2018, studies agree on 

~200 kg Nd per MW installed DD-PMSG while more recent studies report lower values 

of ~ 180 kg Nd per MW, reflecting technological advance. For other technologies, the Nd 

intensities reported in the literature vary much more and often estimates are given for a 

mix of technologies or for onshore and offshore wind turbines (see Table 4). 

For further calculations, the most recent and detailed data from Carrara et al. (2020) are 

going to be used (marked bold in Table 4). They assessed the Nd intensity for four 

technologies (DD-PMSG, GB-PMSG, DD-EESG, GB-DFIG) and for a lack of better data 

for DD-HTS and GB-SCIG they used the intensities of DD-EESG and GB-DFIG 

respectively since they are closest in design. 
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Table 4 Material intensity of permanent magnets (PM) and Nd per MW installed capacity for direct drive 
(DD) and gear box (GB) wind turbines. Where only the permanent magnet intensity was given, the Nd 
intensity was calculated based on 30% Nd content of NdFeB permanent magnets. 

Source material DD [kg/MW] GB [kg/MW] comment 

(Lacal-Arántegui 2015) 
PM 650  160 (mid speed) 

80 (high speed) Given in PM 

Nd 195 48 (mid speed) 
24 (high speed)  

(Månberger and Stenqvist 
2018) Nd 200 20 – 50 

GB 75% - 90% 
less Nd than 
DD 

(Shaw and Constantinides 
2012) 

PM 600 200 Given in PM 
Nd 200 60  

(Habib and Wenzel 2014)  150 
Given in Nd, 
average of 
technologies 

(Habib and Wenzel 2016) Nd 200  Given in Nd 

(Yang et al. 2016) 
PM 250 - 600 Given in PM, 

technology not 
specified Nd 75 - 180 

(Constantinides 2016) 

PM 
600+ (old ≤ 
4MW); 500 
(new ≥ 5MW) 

200 Given in PM 

Nd 
180+ (old ≤ 
4MW); 150 
(new ≥ 5MW) 

60  

(Viebahn et al. 2015) 
PM 650 160 (mid speed) 

80 (high speed) 

From (Lacal-
Arántegui 
2015) 

Nd 201.5 49.6 
24.8 

Based on 31% 
Nd 

(Deetman et al. 2018)  119 – 198 
(“offshore”) 

0 -41 
(“onshore”) Given in Nd 

(Li et al. 2020) 
PM 650 120 

Based on 
(Lacal-
Arántegui 
2015) 

Nd 175.5 32.4 Based on 27% 
Nd 

(Moss et al. 2013) PM 700  
Based on 
industry sources 
and reports 
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Nd 203  Based on 29% 
Nd 

(Carrara et al. 2020) 
 Nd 180 51 

28 for DD-
EESG (and 
DD-HTS); 12 
for GB-DFIG 
(and GB-
SCIG) 

(Tokimatsu et al., 2018) Nd 124 - 168 Technology not 
specified 

(Elshkaki and Graedel 
2013) Nd 124 

For offshore 
wind turbines 
(0 for onshore) 

 

3.1.2 Newly installed wind power capacity to reach Net Zero 2050 

As described in the Methods section, the newly installed wind power capacity was 

modeled based on the total installed capacity given in the Roadmap to Net Zero 2050 for 

every fifth year 2020 to 2050. The polynomial fit used to interpolate the missing values 

to get annual installed capacity is shown in Figure 3. 
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The values fitted for are all within less than 3% difference from the fitted curve, except 

for the 2025 value, which is 9.6% off (Figure 3).  

 

Figure 3 Polynomial fit for the total installed capacity 2019 to 2050 (in GW). 

Furthermore, added wind generation capacity was calculated for onshore and offshore 

wind based on the annual capacity growth and the retiring capacity according to a Weibull 

lifetime-function. The results are shown in Figure 4 for total wind generation capacity, 

Figure 5 for onshore wind, and Figure 6 for offshore wind. 
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Figure 4 Total wind generation capacity growth (in GW), added capacity and retired capacity for the years 
2021 to 2050. 

 

Figure 5 Onshore wind generation capacity growth (in GW), added capacity and retired capacity for the 
years 2021 to 2050. 
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Total added wind generation capacity (Figure 4) as well as added onshore capacity 

(Figure 5) peak in 2037, shortly after capacity growth reaches its peak. Whereas added 

capacity and capacity growth are nearly the same before 2030, they diverge more and 

more as the number of retiring wind turbines having to be replaced rises continuously and 

with an increasing rate. 

 

  

Figure 6 Offshore wind generation capacity growth (in GW), added capacity and retired capacity for the 
years 2021 to 2050. 

Following the values given in the Roadmap to Net Zero 2050 report, capacity growth 

reaches a peak in 2030 and then slowly decreases. Added capacity however stays nearly 

constant between 2030 and 2037. When the number of retiring wind turbines starts to 

increase rapidly around 2040, the added capacity also increases correspondingly. 

3.1.3 Share of wind turbine technologies 2020 to 2050 

The share of wind turbine technologies has changed continuously in the past and the 

future development is hard to predict as it depends on uncertain factors like innovation 

and technological advance on the one hand and price development of key raw materials 

on the other hand. However, many studies agree on general trends based on the 

advantages of each technology. For instance, direct drive configurations, which require 
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less maintenance than generators with a gearbox and permanent magnet turbines, which 

are lighter than electric magnets and more efficient, especially when running below rated 

power, are better suited for large offshore windfarms, whereas the heavier but cheaper 

generators with a gearbox and electric magnets remain competitive onshore. It makes 

sense therefore, to consider multiple scenarios and look at onshore and offshore wind 

energy separately. Since the Net Zero 2050 Report does not specify the sub technology 

of wind energy but only total added capacity for onshore and offshore wind power, the 

technology share predictions from Carrara et al. (2020) and IEA (2021a) are used to 

explore different scenarios. In total 5 Scenarios were considered each for onshore and 

offshore wind: (i) the Low Demand Scenario (LDS) of Carrara et al. (2020), (ii) Medium 

Demand Scenario of Carrara et al. (2020) and (iii) High Demand Scenario Carrara et al. 

(2020), as well as the (iv) Base Case (IEA baseline) of IEA (2021a) and (v) Constrained 

REE supply Case(IEA constrained REE)  of IEA (2021a). The technology shares for the 

years 2030, 2040 and 2050 under each scenario are shown in Figure 7. 

 

Figure 7 Wind turbine technology shares under the scenarios Nd demand was modelled for. 
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3.1.4 Nd demand for wind turbines to reach Net Zero 2050 

The demand for Nd for wind turbines was calculated for 5 scenarios, the low, medium 

and high demand scenarios from Carrara et al. (2020) and the baseline scenario and 

restricted REE-scenario from IEA (2021a). To achieve this, the newly installed onshore 

and offshore wind capacity of each year, the sub-technology share under each scenario 

and the Nd intensity for the different sub-technologies were used.  

The results are given in Table 7 and visualized in   

Figure 8. 

The graphs for Nd demand reflect the shape of the graphs of the added wind generation 

capacity. However, the different scenarios with their distinct technology shares gain 

different results. For offshore wind turbines and total wind turbines, LDS has the lowest 

Nd demand, whereas for onshore, IEA constrained REE is lowest. The highest Nd 

demand is observed with the HDS scenario except for offshore, where the IEA baseline 

scenario shows higher Nd demands. For onshore and total Nd demand for wind turbines, 

the MDS scenario is higher than the IEA baseline. For offshore wind turbines, the IEA 

constrained REE scenario is curiously even higher than the HDS scenario about 2033, 

and it sinks even below the MDS scenario after 2045. 
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Figure 8 Annual Nd demand for offshore-, onshore and total wind turbines under 5 different scenarios, as 
well as cumulative demand over 10-year perios (2021-2030, 2031 – 2040, 2041 – 2050). 

 

Comparing the obtained results with the expected demand for Nd estimated by IEA 

(2021a) for a stated policy and sustainable development scenario (Table 5), it is 

interesting to note, that the modelled demand based on the Nd intensities given by Carrara 

et al. (2020) are already ~80% higher for 2020 than the data given by IEA (2021a) even 

though the IEA (2021a) numbers are also based on Nd intensities of Carrara et al. (2020), 

besides the ones of Månberger and Stenqvist (2018) and private communication with 

companies. However, they are still in the same order of magnitude. It is important to note 

that the sustainable development scenario is not equal to the Net Zero 2050 Roadmap.  

Table 5 Comparison of modelled values for annual Nd demand (int t) in wind turbines and literature data 
from IEA (2021a). 

 2020 2030 2040 
IEA stated policy scenario 3 138 6 132 6 097 
IEA sustainable development 
scenario 

3 138 8 536 8 986 

    
total LDS 5 897 18 580 22 412 
total MDS 6 023 23 420 28 390 
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total HDS 6 035 26 974 35 019 
total IEA baseline 5 637 23 452 26 645 
total IEA constrained REE 5 637 17 306 16 382 

  

If the cumulative amount of Nd demanded for wind energy between 2021 and 2050 is 

compared to published demand predictions from the literature, it can be seen that the 

results of this study are within the range of the literature values and very similar to the 

results of Li et al., (2020) (see Table 6). 

Table 6 Review of different cumulative global Nd demand range projections from 2021 to 2050 from Li et 
al., 2020. (in kt) 

 
Lower 
estimate 

Upper 
estimate 

(World Bank 2020) 80 230 
(World Bank 2017) 30 400 
(Watari, Nansai, and Nakajima 2020) 250 740 
(Månberger and Stenqvist 2018) 95 1208 
(Elshkaki and Graedel 2013) 30 170 
(Valero et al. 2018) 250 250 
(de Koning et al. 2018) 408 408 
(Habib and Wenzel 2014) 45 375 
(Li et al. 2020) 460 902 
This study 445 814 
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Table 7 Annual Nd demand (in t/year) for wind turbines under 5 different scenarios. 

 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029  
onshore LDS 5 360 2 921 4 544 6 031 7 382 8 600 9 685 10 638 11 459 12 150  
onshore MDS 5 449 2 994 4 696 6 284 7 755 9 107 10 339 11 447 12 430 13 285  
onshore HDS 5 449 3 133 4 985 6 764 8 462 10 070 11 580 12 985 14 274 15 440  
onshore IEA baseline 4 904 2 648 4 081 5 365 6 504 7 504 8 367 9 098 9 702 10 181  
onshore IEA 
constrained REE 4 904 2 557 3 799 4 802 5 584 6 161 6 549 6 763 6 821 6 738 

 
              
offshore LDS 537 1 304 2 016 2 677 3 286 3 845 4 352 4 807 5 212 5 566  
offshore MDS 574 1 442 2 310 3 183 4 059 4 940 5 824 6 713 7 607 8 506  
offshore HDS 585 1 484 2 401 3 339 4 297 5 277 6 278 7 300 8 344 9 411  
offshore IEA baseline 734 1 856 2 996 4 158 5 341 6 546 7 774 9 023 10 296 11 592  
offshore IEA 
constrained REE 734 1 822 2 890 3 938 4 968 5 980 6 974 7 950 8 909 9 851 

 
            
 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039  
onshore LDS 12 711 13 664 14 500 15 216 15 810 16 279 16 623 16 842 16 940 16 919  
onshore MDS 14 009 15 106 16 079 16 924 17 637 18 212 18 650 18 949 19111 19 139  
onshore HDS 16 473 17 955 19 312 20 532 21 606 22 523 23 277 23 862 24 274 24 515  
onshore IEA baseline 10 540 11 293 11 947 12 498 12 946 13 290 13 530 13 668 13 707 13 651  
onshore IEA 
constrained REE 6 529 6 825 7 041 7 180 7 246 7 245 7 180 7 058 6 884 6 663 

 
            
offshore LDS 5 869 5 821 5 777 5 739 5 706 5 681 5 663 5 655 5 657 5 671  
offshore MDS 9 411 9 367 9 326 9 290 9 262 9 242 9 233 9 236 9 256 9 293  
offshore HDS 10 501 10 451 10 406 10 366 10 334 10 312 10 302 10 306 10 327 10 370  
offshore IEA baseline 12 913 12 882 12 857 12 839 12 830 12 833 12 850 12 886 12 944 13 027   
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offshore IEA 
constrained REE 10 776 10 652 10 532 10 420 10 315 10 221 10 139 10 070 10 019 9 987 

 
            
            
 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
onshore LDS 16 784 16 540 16 190 15 738 15 182 14 518 13 739 12 831 11 778 10 559 9 150 
onshore MDS 19 037 18 809 18 458 17 987 17 394 16 674 15 817 14 807 13 623 12 241 10 631 
onshore HDS 24 583 24 482 24 212 23 771 23 156 22 356 21 354 20 125 18 639 16 855 14 730 
onshore IEA baseline 13 503 13 270 12 953 12 556 12 080 11 521 10 873 10 128 9 273 8 292 7 167 
onshore IEA 
constrained REE 6 404 6 264 6 086 5 872 5 624 5 339 5 016 4 652 4 240 3 774 3 248 

             
offshore LDS 5 628 5 658 5 705 5 769 5 853 5 958 6 084 6 230 6 398 6 584 6 786 
offshore MDS 9 353 9 437 9 549 9 693 9 870 10 084 10 335 10 624 10 950  11 311 11 703 
offshore HDS 10 436 10 530 10 655 10 815 11 013 11 252 11 532 11 854 12 218  12 621 13 058 
offshore IEA baseline 13 141 13 260 13 418 13 619 13 868 14 168 14 521 14 927 15 386  15 893 16 443 
offshore IEA 
constrained REE 9 978 9 946 9 940 9 964 10 018 10 104 10 221 10 369 10 545 10 746 10 966 
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3.2 Nd Demand for EVs 

3.2.1 Nd intensity in EVs 

The literature review reveals that there is no agreement on the Nd intensity of different 

types of cars and the estimates vary widely (see Table 8). There are big differences also 

within the same type of car (ICE, EV, PHEV etc.) depending on where the studies were 

conducted to analyse for example EOL cars or which car brands are analysed and what 

features the analysed cars have. Moreover, the scope of which components of the cars are 

analysed for their Nd-content differs between studies, some only looking at the traction 

motors of EVs and HEVs, others only at Nd embedded in electrical and electronic 

components and a third group considering both. Four of the studies give Nd intensities 

for HEV with an internal combustion engine as their main driving motor, which are 

therefore not considered as EVs under the Roadmap to Net Zero 2050 Report. Only one 

study discusses the Nd intensities of different types of EVs (BEV, PHEV and PHEV) as 

required for the modelling in the present study (Deetman et al. 2018). 

Table 8 Summary of Nd intensities of different types of cars found in the literature (PM = permanent 
magnet). 

Source Metric given in 
source 

Type 
of car 

g Nd/unit Comment 

(Månberger and 
Stenqvist, 
2018) 
 

PM motor for 
EV: 0.0038 kg 
Nd/kW 

EV 380 assuming 100 kW for an 
average car 

(Habib 2015) 1.14 kg PM 
until 2011,  
1.72 kg PM 
from 2012 on 

ICE 330.6 until 
2011 
498.8 
from 2012 

“conventional car” 29 % 
Nd (case study for 
Denmark) 

As conventional 
vehicle + 2 kg 
of magnet for 
the 
motor/generator 
system 

EV and 
HEV 

1118.8 31 % Nd for PM in 
motor (case study for 
Denmark) 

(Widmer et al. 
2015) 

g Nd per car ICE 2.4 Average midrange car 
(electrical and electronic 
components only) 
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(Shaw and 
Constantinides 
2012) 

250 g NdFeB 
magnet per 
standard car in 
2012 

ICE 75 Assuming 30 % Nd in 
magnet 

(Deetman et al. 
2018) 

g Nd per car ICE 2 – 415 Based on a literature 
review, (see references 
therein) HEV 118 – 995 

PHEV 473 – 
1460 

BEV 567 – 
2250 

FCEV 2 – 2920 
(Ballinger et al. 
2019) 

g Nd/ plug in 
EV motor 

PHEV 
& EV 250 - 470 Lower value - only 

driving motor 

(Yao et al. 
2021) 

g Nd/unit ICE 130  

g Nd/unit HEV 610  

(Sekine, Daigo, 
and Goto 2017) 

1000 – 2000 g 
Magnet weight 
per driving 
motor of HEVs 

HEV 230 – 480  23 – 24 % Nd in PM 
Lower value - only 
driving motor 

(Cullbrand and 
Magnusson 
2011) 

g Nd/car ICE 43.38 – 
205.86 

Conventional midsize 
car, low to high specified 

g Nd/car HEV 531.88 Hybrid midsized car 

g Nd/car ICE 27.60 Conventional large car, 
medium specified 

(Zepf 2013) g Nd/driving 
motor 

EV 430  

(IEA 2021b) kg Nd/PM 
motor 

EV 250 - 500  

(Nordelöf et al. 
2019) 

1.26 kg PM/ 
100 kW motor 

EV 378 Assumption: 30 % Nd in 
PM 

(Ciacci et al. 
2019) 200-661 g/car EV 200 - 661  

(Yang et al. 
2016) 

~1 kg Nd per 
vehicle 

EV and 
HEV ~1000  

(Blagoeva et al. 
2016) 

1.5 kg PM per 
vehicle 

EV and 
PHEV 450 Assuming 30 % Nd in 

magnet 

0.63 kg HEV 189 
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For further calculations, the values of Deetman et al. (2018) were used (marked bold in 

Table 8) with one change: the lower estimate for FCEVs was changed from being equal 

to the lower estimate for ICEs to being equal to the lower estimate of PHEVs. This was 

done because the FCEV will be using an electric driving motor and is therefore more 

similar to a PHEV than to an ICE. 

3.2.2 Annually produced cars to reach Net Zero 2050 

As described in the Methods section, the number of cars produced annually to reach Net 

Zero 2050 was modeled based on the mobility demand given in the Roadmap to Net Zero 

Report for two different scenarios, of car use - one with behavioural change and one 

without behavioural change. Since the mobility demand is only given for 2020, 2030, 

2040 and 2050, the values for the remaining years were interpolated by fitting a square 

function. 

The resulting fit for the scenario without behavioural change is good (Figure 9). On the 

contrary, the data points for the scenario with behavioural change cannot be fitted 

perfectly with a square function (Figure 10). However, since behavioural change is 

expected to be gradual over time, the values of the fitted curve are used for further 

calculations. 
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Figure 9 Development of car stocks in billion cars in a scenario without behavioural change. 

 

Figure 10 Development of global car stocks under the scenario with gradual behavioural change. 
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Based on these fitted values, the change in the stock of cars, as well as the number of cars 

retiring annually, and annual car sales were modeled. The results for the scenario without 

behavioural change is shown in Figure 11 and the results for the scenario with behavioural 

change in Figure 12. 

In both figures, from the year 2032 onwards the graph changes from showing spikes to a 

smooth curve. This is due to the change in modelling approach: before 2032 a fixed 

lifetime was assumed to model the number of retiring cars and based on this number the 

annual car sales, whereas for the years after 2032, a Weibull lifetime function was used. 

 

Figure 11 Global change in the stock of cars, car sales and number of retiring cars reaching their end of 
life in a scenario without behavioural change. 

For the scenario without behavioural change, the stock of cars increases gradually after 

the recovery car sales due to the Covid-19 pandemic between 2020 and 2022. Around the 

year 2040, the number of retiring cars decreases, reflecting the decrease in car sales one 

lifetime of 17 years before during the Covid-19 pandemic. Also, the effect of the financial 

crisis of 2008 is reflected in the results with a dip in car sales around 2008 and the 

corresponding decrease in retiring cars around 2025. The dip in forecasted car sales for 

2025 is due to the way car sales are modelled as the sum of the change in car stocks and 

the number of retiring cars. 
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Figure 12 Global change in the stock of cars, car sales and number of retiring cars reaching their end of 
life in a scenario with gradual behavioural change. 

In contrast to the scenario without behavioural change, where the global car stocks 

increase, the model reveals that behavioural change would lead to decreasing car stocks. 

However, the rate of the decrease diminishes over time as the global population grows. 

As a consequence of the decreasing car stocks, the number of cars retiring each year is 

larger than the number of cars being sold. As for the scenario without behavioural change, 

the effect of the 2008 financial crisis and the Covid-19 pandemic are reflected in the 

graph. 

3.2.3 Annually sold EVs to reach Net Zero 2050 

Using the shares of sales for BEV, PHEV and FCEV of the total car sales (given in Table 

2) and the modeled annual car sales from above, the number of all EVs sold annually was 

calculated. 

If it is compared to the historic EV sales, it can be seen that the strong increase in EV 

sales holds on in 2021, despite of the strong decrease in total car sales due to the pandemic 

(IEA 2020). The model results in comparison to historic EV sales numbers from IEA 

(2020) are shown in Table 9. The car sales in the scenario with gradual behavioural 
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change are only about half the car sales in the scenario without behavioural change in 

2040 and even less in 2050. 

Table 9 Comparison of historic EV sales (IEA 2020) to modeled EV sales under a scenario with and without 
behavioural change. 

  
Historic EV sales (IEA 2020) 

EV sales with gradual 
behavioural change 

EV sales without 
behavioural change 

2015 540 000  -   -   
2016 750 000  -   -   
2017 1 140 000  -   -   
2018 1 950 000  -   -   
2019 2 040 000  -   -   
2020 3 070 000  -   -   
2021 -   4 398 426  5 420 898  
2030 -   45 267 981  60 776 696  
2035 -   59 111 027  95 462 668  
2040 -   45 587 871  99 443 877  
2050 -   51 561 891  144 811 383  

 

3.2.4 Nd demand for EVs to reach Net Zero 2050 
The demand for Nd to build the EVs required for the mobility demand according to the 

Net Zero 2050 Report was also modeled under the two scenarios without behavioural 

change and with gradual behavioural change. Moreover, a lower and upper estimate of 

the Nd-intensity for each of the EV sub-technologies (BEV, PHEV, FCEV) was used to 

get a minimum and maximum expected demand for Nd.  

The modelling results for Nd demand are summed up in Table 11 and visualized in Figure 

13. The difference between the scenarios with and without behavioural change is smaller 

than the difference resulting from using the high and low estimate for Nd intensity of 

EVs. Under the scenario with behavioural change, the Nd demand for EVs is at a roughly 

constant level from 2035 on, whereas it increases continuously for the scenario without 

behavioural change as seen in Figure 13. 
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Figure 13 Annual Nd demand for EVs under 4 different scenarios, and cumulative Nd-demand over 10-
year periods (2021 – 2030, 2031 – 2040, 2041 – 2050). 
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If the modeled results are compared to the published data by IEA (2021a), it is interesting 

to note, that the modeled results are consistently higher, and the extreme model scenario 

without behavioural change and with a high Nd-intensity estimate is even a magnitude 

larger. This firstly is due to the fact that IEA (2021a) only account for the Nd in the 

[traction] motors of the EVs and secondly due to the much lower Nd intensity of 250 – 

500 g per motor reported. Moreover, the used literature sources of IEA (2021a) including 

papers on the substitution of Nd in EV motors, suggest that decreasing Nd intensities due 

to technological advance were accounted for. This study assumes that all EVs use 

permanent magnets in their motors, uses higher Nd intensities (see Table 3) and does not 

account for possible changes of the Nd intensity of EVs over time. 

Table 10 Comparison of the model results for the annual demand of Nd (in t) for EVs with literature data 
from IEA (2021a). 

 2020 2030 2040 
IEA stated policy scenario (EV) 1 801 8 623 10 939 
IEA sustainable development 
scenario (EV) 

1 801 18 374 27 709 

 
   

With behavioural change,  
low Nd-intensity 

2 408 25 014 25 431 

Without behavioural change, 
 low Nd-intensity 

2 968 33 584 55 475 

With behavioural change,  
high Nd-intensity 

9 372 99 335 105 264 

Without behavioural change,  
high Nd-estimate 

11 551 133 368 229 620 
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Table 11 Annual Nd demand (in t) for different types of EVs under the 2 different scenarios (with and without behavioural change) and for a lower and higher estimate for Nd 
intensity of BEV, PHEV and FCEV. 

low Nd intensity 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
BEV with behavioural change 1 977 3 727 5 462 7 476 8 640 9 925 13 434 16 065 18 705 21 727 
PHEV with behavioural change 368 558 730 933 1 030 1 144 1 509 1 769 2 027 2 324 
FCEV with behavioural change 64 141 220 311 367 427 584 704 825 963 
BEV without behavioural change 2 436 4 304 6 478 9 050 10 893 12 976 17 404 21 074 24 871 29 171 
PHEV without behavioural change 453 644 866 1 130 1 298 1 495 1 955 2 321 2 695 3 120 
FCEV without behavioural change 78 163 260 376 462 559 757 923 1 097 1 293 

           
low Nd intensity 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 
BEV with behavioural change 25 697 25 374 27 472 29 132 30 256 28 681 26 913 25 181 23 984 23 334 
PHEV with behavioural change 1 974 1 343 921 508 118 111 105 98 93 91 
FCEV with behavioural change 1 452 1 679 2 033 2 346 2 602 2 467 2 315 2 166 2 063 2 007 
BEV without behavioural change 34 825 36 351 40 731 44 895 48 862 48 902 48 862 48 949 49 633 50 900 
PHEV without behavioural change 2 675 1 924 1 365 783 190 190  190 190 193 198 
FCEV without behavioural change 1 968 2 405 3 015 3 615 4 203 4 206 4 203 4 210 4 269 4 378 

           
low Nd intensity 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
BEV with behavioural change 23 259 23 730 24 635 25 483 26 291 26 925 27 283 27 314 27 004 26 392 
PHEV with behavioural change  90 92 96 99 102 105 106 106 105 103 
FCEV with behavioural change 2 001 2 041 2 119 2 192 2 261 2 316 2 347 2 349 2 323 2 270 
BEV without behavioural change 52 756 55 161 58 000 60 784 63 553 66 176 68 564 70 677 72 513 74 121 
PHEV without behavioural change 205 214 225 236 247 257 266 275  282 288 
FCEV without behavioural change 4 538 4 744 4 989 5 228 5 466 5 692 5 897 6 079 6 237 6 375 
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high Nd intensity 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
BEV with behavioural change 7 844 14 791 21 676 29 665 34 287 39384 53 308 63 752 74 228 86 220 
PHEV with behavioural change 1 135 1 721 2 255 2 881 3 178 3530 4 658 5 461 6 257 7 173 
FCEV with behavioural change 393 869 1 356 1 918 2 264 2637 3 606 4 346 5 091 5 943 
BEV without behavioural change 9 667 17 079 25 706 35 913 43 227 51494 69 062 83 625 98 696 115 758 
PHEV without behavioural change 1 399 1 987 2 674 3 488 4 007 4616 6 035 7 163 8 320 9 630 
FCEV without behavioural change  484 1 004 1 608 2 322 2 854 3448 4 672 5 701 6 770 7 979 

           
high Nd intensity 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 
BEV with behavioural change 101 972 100 689 109 015 115 601 120 062 113813 106 796 99 925 95 173 92 595 
PHEV with behavioural change 6 094 4 146 2 842 1 567 363 344  323 302 288 280 
FCEV with behavioural change 8 963 10 364 12 553 14 482 16 065 15229 14 290 13 371 12 735 12 390 
BEV without behavioural change 138 196 144 250 161 631 178 155 193 897 194057 193 896 194 241 196 955 201 983 
PHEV without behavioural change 8 258 5 939 4 214 2 416 586 586  586 587 595 610 
FCEV without behavioural change 12 146 14 848 18 612 22 319 25 945 25966 25 944 25 991 26 354 27 027 

           
high Nd intensity 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
BEV with behavioural change 92 297 94 167 97 759 101 121 104 330 106844 108 265 108 388 107 159 104 729 
PHEV with behavioural change 279 285 295 306 315 323 327 327 324 316 
FCEV with behavioural change 12 350 12 600 13 081 13 531 13 960 14296 14 487 14 503 14 339 14 013 
BEV without behavioural change 209 348 218 892 230 160 241 208 252 196 262605 272 080 280 464 287 751 294 130 
PHEV without behavioural change 633 661 695 729 762 793 822  847 869  889 
FCEV without behavioural change 28 012 29 289 30 797 32 275 33 745 35138 36 406 37 528 38 503 39 356 
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3.3 Nd Reserves and production capacities 

The official world production of rare earths in rare earth oxide equivalents was between 

226 kt to 240 kt in 2020 which corresponds to 31 kt to 33 kt Nd. Illegal mining in China, 

which is not accounted for in the official figures, plays a very important role as it 

contributed more than 30 % of the total world production in 2017 (Yao et al. 2021; Reichl 

and Schatz 2022) and the upper estimate of Geng et al. (2020) equals to nearly 90 % of 

the official global production of Nd (Reichl and Schatz 2022) (Table 12). Moreover, 

illegal mining in China showed an average growth rate of 10 % between 2000 and 2017 

(Yao et al. 2021). 

Table 12 Official world production of rare earth elements expressed on rare earth oxide equivalents (REO 
eq.) according to different sources (Reichl and Schatz 2022; Idoine et al. 2022; U.S. Geological Survey 
2022), calculated Nd production, and Nd production from illegal mining in China. 

 year 
REO eq. production 
(in t/year) 

Nd production 
(in t/year) 

International Organizing Committee for the 
World Mining Congresses "World Mining Data"  

2020 225 277 30 807 

British Geological Survey "World Mineral 
Production" 

2020 232 039 31 732 

U.S. Gelogical Survey "Mineral Commodity 
Summaries" 

2020 240 000 32 821 
 

U.S. Gelogical Survey "Mineral Commodity 
Summaries" 

2021* 280 000 38 291 
 

     
illegal mining in China (Geng et al., 2020) 2016  12 300 - 17 000  
illegal mining in China (Yao et al., 2021) 2017  11 300  

 

Official REO production increased by 73.52 % comparing 2016 to 2020 (Reichl and 

Schatz 2022), which is even more than during the previous 4-year period from 2015 to 

2019 where production increased by 62.25 % (Reichl and Schatz 2021).  

Reserves of REOs are 120 Mt (U.S. Geological Survey 2022) which corresponds to 19.2 

Mt Nd-oxides assuming 16 % Nd oxides per REO or 17.3 Mt Nd. 

This shows that annual Nd production in 2021, even considering the high estimate for 

illegal mining in China, was only 0,3 % of the known reserves. This finding is in line with 

other studies that also found no risk production exceeding reserves by 2050 under 

different scenarios for demand growth (Månberger and Stenqvist 2018; Habib 2015; 

Blagoeva et al. 2016).  

The average annual growth rate of official REO production between 2011 and 2020 was 

9.7 % (Reichl, Schatz, and Zsak 2017; Reichl and Schatz 2022). If this growth rate is 
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applied to the total Nd production of 2021 (official mining according to (U.S. Geological 

Survey 2022) plus a medium estimate of 15 kt illegal mining (Geng et al. 2020)), Nd 

production reaches 123 kt in 2030, 309 kt in 2040 and 781 kt in 2050 (Figure 14). 

 

Figure 14 Annual Nd production through official mining and the contribution of illegal mining in China, 
assuming 9.7% annual increase in production. 

 The cumulative amount of Nd mined each decade is shown in Figure 15. 
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Figure 15 Amount of Nd mined each decade from 2021 to 2050. 

 

3.4 Nd Recycling Potential 

To calculate the potential contribution of secondary Nd to meet the annual demand, firstly 

the annually released Nd stocks from wind retiring turbines and EVs were calculated 

before applying transfer coefficients for the efficiency of disassembly and recycling.  

The efficiencies of different technologies and steps in the recycling process of NdFeB 

magnets reported in the literature are listed in the following table. All the described 

technologies are currently only proven on a lab scale, as only very limited industrial scale 

NdFeB magnet recycling exists (Goonan 2011; Shaw and Constantinides 2012; Ciacci et 

al. 2019) and the current Nd recycling rate is below 1 % (Yao et al. 2021). In the following 
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Table 13 Literature review of the efficiency of different recycling technologies for NdFeB magnets. 

Source Recycling 

technology 

Efficiency Comment 

(Kumari et al. 

2018) 

Hydrochloric acid 

leaching 

98 %  

(Chowdhury et al. 

2021) 

Copper nitrate 

leaching 

~97 % Economically 

feasible technology 

(Yang et al. 2016) 
 

Hydrometallurgical 

with oxalic 

precipitation 

82 % Total REE recovery 

rate from shredding 

to oxalic 

precipitation 

Pyrometallurgical 

(sulfation roasting 

and waterleaching) 

>95 %  

Molten Slag 

extraction 

99 % Highly effective for 

magnet scarp like 

shredded HDD 

Selective leaching 

with roasting 

70 %  

(Habib and Wenzel 
2014) 

Overall recycling 

rate 

90 % for wind 

turbines 70 % for 

EVs 

Assumption for 

total REE recovery 

with 100 % 

collection rate 

(München, 
Bernardes, and 
Veit 2018) 

Sulphuric acid 

leaching 

≤90.3 %  

(Pietrantonio et al. 
2021) 

Nitric acid leaching 

and oxalate 

precipitation of REE 

90 % Suitable for EOL 

wind turbine 

magnets 

(Schulze and 
Buchert 2016) 

Overall efficiency of 

REE recovery after 

60 % Assumption 
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extraction of NdFeB 

magnet 

(Zhang et al. 2020) Selective leaching 

(different solvents 

and pretreatment like 

roasting) 

>87 % Review of different 

literature sources, 

leaching efficiency 

only 

Complete leaching 

with sulfuric acid 

>99.4 % 

Bioleaching 91 % 

REE separation via 

precipitation 

(different reagents) 

96.7 – 99 % Review of different 

literature sources, 

recovery efficiency 

(after leaching) REE separation via 

solvent extraction 

(different reagents) 

95 - 99.99 % 

(Dupont and 
Binnemans 2015) 

Combined 

leaching/extraction 

with ionic liquid 

>99 %  

(Deng and Ge 
2020) 

Disassembly rate 90 % Efficiency of 
disassembly 

Recycling rate 90 % Efficiency of 

recycling process 

 

3.4.1 Nd Recycling Potential from EOL EVs 

To calculate the amount of Nd that is able to be recovered and reintroduced to the market 

again, it was assumed that 30% of EOL cars have unknown whereabouts and do not end 

up in disassembly and recycling (Dworak, Rechberger, and Fellner 2022). The efficiency 

rate of disassembly as well as the efficiency rate of the recycling process were assumed 

to be 90 % each (Deng and Ge 2020). 

The results for the recycling potential are shown in Table 15. 
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Table 16 shows the percentage of the Nd demand for EVs that could potentially be 

covered from Nd recovered from EOL EVs each year. The scenarios with high or low Nd 

intensity are approximately the same. On the other hand, behavioural change makes a 

difference: in the scenarios with behavioural change, the percentage of Nd demand that 

can potentially be covered by recycled Nd is about twice as high from 2040 on as 

compared to the scenarios without behavioural change. In 2040 ~7 % and ~14 % and in 

2050 ~31 % and ~60 % of Nd demand could be met by recycling respectively for 

scenarios without and with behavioural change. 

The amount of Nd that can potentially be recovered each decade under each scenario is 

visualized in Figure 16. The same observation as for the demand for Nd applies as 

described in Chapter 3.2.4. 

 

Figure 16 Cumulative amount of Nd that could potentially be gained from recycling of EOL EVs each 
decade. 
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Table 14 Released amounts of Nd (in t/year) via end-of-life EVs. 

 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037   
All scenarios  15   96   223   386   555   962  1 332  1 973  3 337  3 405  5 358    
              
 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
with behavioural change, 
low Nd intensity 

2 408  4 426  6 413  8 720  10 037  11 496  15 527  18 539  21 557  25 014  29 123  28 395  30 426  

without behavioural change, 
low Nd intensity 

2 968  5 110  7 605  10 556  12 654  15 030  20 115  24 318  28 663  33 584  39 468  40 680  45 111  

 
             

with behavioural change, 
high Nd-intensity 

9 372  17 382  25 287  34 464  39 728  45 552  61 573  73 559  85 576  99 335  117 029  115 198  124 410  

without behavioural change, 
high Nd-intensity 

11 551  20 070  29 988  41 723  50 088  59 557  79 769  96 489  113 785  133 368  158 600  165 037  184 458  

 

 

Table 15 Recycling potential of Nd from EVs: Potential amount of recycled/reused Nd (in t(year) from EVs reaching the market. 

 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037   
with behavioural change, 
low Nd intensity  3   17   35   62   90   157   217   327   556   576   885    
without behavioural change, 
low Nd intensity  8   54   126   219   315   546   755  1 118  1 892  1 931  3 038    
              
 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037   
with behavioural change, 
high Nd-intensity  2   15   31   55   80   139   193   290   494   512   787    
without behavioural change, 
high Nd-intensity  7   48   112   194   280   485   671   994  1 682  1 716  2 700    
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 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
with behavioural change, 
low Nd intensity 1 365  2 509  3 636  4 944  5 691  6 518  8 804  10 511  12 223  14 183  16 513  16 100  17 252  
without behavioural change, 
low Nd intensity 1 683  2 898  4 312  5 985  7 175  8 522  11 405  13 788  16 252  19 042  22 379  23 066  25 578  

              
with behavioural change, 
high Nd-intensity 5 314  9 856  14 338  19 541  22 526  25 828  34 912  41 708  48 522  56 323  66 355  65 317  70 541  
without behavioural change, 
high Nd-intensity 6 549  11 380  17 003  23 657  28 400  33 769  45 229  54 709  64 516  75 619  89 926  93 576  104 588  

 

 

Table 16 Percentage of the demand for Nd in EVs that could potentially be covered by recovered Nd from end-of-life EVs. 

 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037   
with behavioural change, 
low Nd intensity 0.02% 0.09% 0.16% 0.25% 0.31% 0.55% 0.71% 1.02% 1.69% 1.84% 3.02%   
without behavioural change, 
low Nd intensity 0.04% 0.22% 0.44% 0.65% 0.80% 1.34% 1.67% 2.27% 3.55% 3.62% 5.70%   
              
with behavioural change, 
high Nd-intensity 0.00% 0.02% 0.04% 0.06% 0.07% 0.12% 0.16% 0.22% 0.36% 0.40% 0.65%   
without behavioural change, 
high Nd-intensity 0.01% 0.05% 0.10% 0.15% 0.18% 0.29% 0.36% 0.49% 0.76% 0.78% 1.23%   
              
 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
with behavioural change, 
low Nd intensity 4.98% 9.60% 14.30% 19.50% 22.00% 24.28% 31.70% 36.68% 41.65% 47.70% 55.47% 54.70% 59.98% 
without behavioural change, 
low Nd intensity 3.15% 5.36% 7.77% 10.41% 11.93% 13.48% 17.22% 19.91% 22.53% 25.48% 29.05% 29.19% 31.66% 
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with behavioural change, 
high Nd-intensity 4.68% 9.11% 13.62% 18.62% 21.04% 23.24% 30.37% 35.17% 39.95% 45.76% 53.85% 53.62% 59.25% 
without behavioural change, 
high Nd-intensity 2.97% 5.08% 7.41% 9.94% 11.41% 12.91% 16.49% 19.08% 21.61% 24.45% 28.20% 28.61% 31.28% 
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3.4.2 Nd Recycling Potential from EOL Wind Turbines 

The modelling results for the amounts of Nd released from stocks of wind turbines are 

shown in  

Figure 17. For offshore wind turbines, due to their longer lifetime and later introduction, 

the released amounts of Nd are negligible until 2035. Depending on the scenario, they 

reach between 4 kt (LDS) and over 7 kt (IEA baseline). Amounts of Nd released from 

onshore wind turbines are much larger and reach nearly 2 kt in 2035 and 5.5 kt (IEA 

constrained REE) to 11 kt (HDS) in 2050. 

 

Figure 17 Amount of Nd released from stocks of offshore and onshore wind turbines each year. 

 

To calculate the amount of Nd that is able to be recovered and put on the market again, it 

was assumed that all of the EOL wind turbines are disassembled for recycling or reuse 

(Deng and Ge 2020). The efficiency rate of disassembly as well as the efficiency rate of 

the recycling process were assumed to be 90 % each (Deng and Ge 2020). The results are 

shown in Table 17. Moreover, the results are visualized in Figure 18 for each decade 

cumulatively. The same observation as for the demand for Nd apply as described in 

Chapter 3.1.4. 
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Figure 18 Cumulative amount of Nd that could potentially be gained from recycling of EOL wind turbines 
each decade. 

The percentage of the demand that could potentially be covered by Nd from recycled 

EOL wind turbines is shown in Table 18. The analysis shows that by 2040, 10 % (HDS) 

to 15 % (IEA baseline) or even ~30 % under the IEA constrained REE scenario could be 

met by recycling of Nd from wind turbines for onshore and offshore each and by 2050 

~60 % to over 100 % for onshore, ~37 – 47 % for offshore, and ~51 – 68 % of the total 

Nd demand for wind turbines.
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Table 17 Recycling potential of Nd from wind turbines: Potential amount of recycled/reused Nd (in t/year) from wind turbines reaching the market. 

 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
onshore LDS 122 153 190 233 283 339 402 472 549 634 
onshore MDS 122 153 190 233 283 339 402 472 549 635 
onshore HDS 122 153 190 233 283 339 402 472 550 636 
onshore IEA baseline 122 153 190 233 283 339 401 471 547 631 
onshore IEA 
constrained REE 122 153 190 233 283 339 401 471 547 630 

           
offshore LDS 3 4 5 7 9 12 16 21 28 37 
offshore MDS 3 4 5 7 9 12 16 21 28 38 
offshore HDS 3 4 5 7 9 12 16 21 28 38 
offshore IEA baseline 3 4 5 7 9 12 16 22 29 41 
offshore IEA 
constrained REE 3 4 5 7 9 12 16 21 29 40 

           
           
 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 
onshore LDS 727 829 941 1 064 1 201 1 355 1 529 1 729 1 961 2 229 
onshore MDS 728 831 945 1 070 1 211 1 370 1 552 1 762 2 006 2 292 
onshore HDS 730 835 951 1 081 1 228 1 396 1 590 1 818 2 087 2 405 
onshore IEA baseline 722 821 929 1 045 1 173 1 314 1 471 1 648 1 849 2 080 
onshore IEA 
constrained REE 720 817 921 1 033 1 152 1 281 1 420 1 572 1 740 1 924 

           
offshore LDS 49 67 90 121 162 215 284 371 478 609 
offshore MDS 52 71 97 133 181 245 329 437 574 743 
offshore HDS 52 72 99 136 187 254 343 458 603 785 
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offshore IEA baseline 56 79 111 155 215 296 404 543 721 943 
offshore IEA 
constrained REE 56 77 108 150 206 282 382 510 672 873 

           
           
 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
onshore LDS 2 539 2 896 3 303 3 761 4 271 4 827 5 424 6 054 6 706 7 370 
onshore MDS 2 624 3 009 3 451 3 951 4 509 5 123 5 786 6 490 7 224 7 975 
onshore HDS 2 779 3 218 3 726 4 308 4 964 5 693 6 490 7 347 8 251 9 190 
onshore IEA baseline 2 343 2 644 2 983 3 363 3 781 4 235 4 720 5 228 5 750 6 277 
onshore IEA 
constrained REE 2 128 2 351 2 593 2 853 3 127 3 409 3 695 3 976 4 247 4 499 

                
offshore LDS 766 950 1 162 1 401  1 664 1 946  2 243 2 546 2 847 3 137 
offshore MDS 950 1 197 1 487 1 821 2 196 2 609  3 054 3 522 4 001 4 481 
offshore HDS 1 007 1 273 1 587 1 950 2 359 2 813 3 302 3 820 4 354 4 892 
offshore IEA baseline 1 215 1 544 1 931 2 378 2 885 3 445 4 052 4 695 5 358 6 026 
offshore IEA 
constrained REE 1 118 1 411 1 753 2 145 2 584 3 065 3 579 4 115 4 660 5 199 

 

Table 18 Percentage of the Nd demand for wind turbines that could potentially be covered by recycled Nd from EOL wind turbines. 

 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 
onshore LDS 4.16% 3.37% 3.16% 3.16% 3.29% 3.50% 3.78% 4.11% 4.52% 4.99% 
onshore MDS 2.23% 5.12% 4.05% 3.71% 3.65% 3.72% 3.89% 4.12% 4.42% 4.53% 
onshore HDS 2.23% 4.89% 3.82% 3.45% 3.34% 3.36% 3.47% 3.63% 3.85% 3.86% 
onshore IEA baseline 2.48% 5.78% 4.66% 4.35% 4.35% 4.51% 4.80% 5.17% 5.64% 5.99% 
onshore IEA 
constrained REE 2.48% 5.99% 5.01% 4.86% 5.06% 5.50% 6.13% 6.96% 8.02% 9.65% 
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offshore LDS 0.22% 0.19% 0.19% 0.21% 0.23% 0.27% 0.33% 0.40% 0.49% 0.63% 
offshore MDS 0.20% 0.17% 0.16% 0.17% 0.18% 0.20% 0.23% 0.27% 0.33% 0.40% 
offshore HDS 0.19% 0.16% 0.15% 0.16% 0.17% 0.19% 0.22% 0.25% 0.30% 0.36% 
offshore IEA baseline 0.15% 0.13% 0.12% 0.13% 0.14% 0.15% 0.18% 0.21% 0.25% 0.31% 
offshore IEA 
constrained REE 0.15% 0.13% 0.13% 0.14% 0.15% 0.17% 0.20% 0.24% 0.30% 0.37% 

           
 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 
onshore LDS 5.32% 5.72% 6.18% 6.73% 7.38% 8.15% 9.08% 10.21% 11.59% 13.28% 
onshore MDS 4.82% 5.17% 5.58% 6.07% 6.65% 7.35% 8.19% 9.22% 10.48% 12.04% 
onshore HDS 4.07% 4.32% 4.63% 5.00% 5.45% 6.00% 6.67% 7.49% 8.51% 9.78% 
onshore IEA baseline 6.40% 6.87% 7.43% 8.07% 8.83% 9.71% 10.76% 12.02% 13.55% 15.40% 
onshore IEA 
constrained REE 10.55% 11.61% 12.83% 14.25% 15.90% 17.84% 20.12% 22.84% 26.11% 30.05% 

           
offshore LDS 0.85% 1.15% 1.57% 2.12% 2.85% 3.80% 5.02% 6.55% 8.43% 13.28% 
offshore MDS 0.55% 0.76% 1.04% 1.43% 1.96% 2.66% 3.56% 4.72% 6.17% 12.04% 
offshore HDS 0.50% 0.69% 0.96% 1.32% 1.81% 2.47% 3.33% 4.43% 5.82% 9.78% 
offshore IEA baseline 0.44% 0.61% 0.86% 1.21% 1.68% 2.31% 3.13% 4.20% 5.53% 15.40% 
offshore IEA 
constrained REE 0.52% 0.73% 1.03% 1.45% 2.02% 2.78% 3.79% 5.09% 6.73% 30.05% 

           
 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 
onshore LDS 15.35% 17.89% 20.99% 24.78% 29.42% 35.13% 42.27% 51.40% 63.51% 80.55% 
onshore MDS 13.95% 16.30% 19.18% 22.71% 27.04% 32.39% 39.08% 47.64% 59.01% 75.02% 
onshore HDS 11.35% 13.29% 15.67% 18.60% 22.20% 26.66% 32.25% 39.42% 48.95% 62.39% 
onshore IEA baseline 17.66% 20.41% 23.76% 27.84% 32.82% 38.95% 46.60% 56.37% 69.34% 87.59% 
onshore IEA 
constrained REE 33.97% 38.63% 44.16% 50.73% 58.56% 67.97% 79.44% 93.79% 112.52% 138.52% 
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offshore LDS 13.54% 16.66% 20.15% 23.94% 27.93% 32.00% 36.00% 39.79% 43.23% 46.23% 
offshore MDS 10.07% 12.54% 15.35% 18.45% 21.78% 25.25% 28.75% 32.16% 35.37% 38.29% 
offshore HDS 9.56% 11.95% 14.68% 17.70% 20.97% 24.39% 27.86% 31.27% 34.50% 37.46% 
offshore IEA baseline 9.17% 11.50% 14.18% 17.15% 20.36% 23.73% 27.15% 30.51% 33.71% 36.65% 
offshore IEA 
constrained REE 11.24% 14.19% 17.59% 21.41% 25.57% 29.98% 34.51% 39.02% 43.36% 47.41% 
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4. Discussion 

In this section, the results are discussed in the light of the existing literature and 

interpreted to derive conclusions. In the first sub-chapter, the plausibility of the results is 

discussed and the findings for Nd demand in wind turbines and EVs compared to each 

other. The second sub-chapter briefly discusses the effect of technological advance and 

the substitution of Nd or Nd-based technologies on the demand. Next, arguments are 

presented to answer the research question whether the Nd demand for wind turbines and 

EVs required to follow the Roadmap to Net Zero report by the IEA can be met, and 

finally, the overall future demand of Nd for all applications is compared to supply. 

4.1 Discussion of the model results 

If the Nd demand for EVs and wind turbines are compared, the demand for EVs is larger 

than the one for wind turbines, especially for the high demand scenario (Figure 19 and 

Figure 20). Only during the first decade (2021 to 2030) under the low demand scenario, 

which combines the LDS scenario for wind turbines and the low Nd intensity Scenario 

with behavioural change for EVs, the demand for wind turbines and EVs is the same. 

However, the demand for EVs then increases much faster as ICE cars are phased out and 

all cars sold are EVs, while the demand increase for wind turbines is less steep and reaches 

a peak in the late 2030s (Figure 21). Under both, the low and high demand scenario, the 

cumulative demand for the 2030s is only insignificantly higher than the demand for the 

2040s (Figure 19 and Figure 20). The reason for this observation is the peak for Nd 

demand in wind turbines shortly before 2040 and the roughly symmetric increase and 

decrease of the demand curve, as well as the high number of retiring cars needing to be 

replaced in the 2040s. 

When the low and high demand scenarios for wind are compared to each other, the high 

demand estimate (LDS) is 30 % higher than the low demand estimate (HDS) in the 2020s, 

and the difference increases to 51 % in the 2032s and 65 % in the 2040s as sub-technology 

share developments diverge. 

For EVs, the difference between the low and high demand scenario - both assuming 

behavioural change - is larger, with the high estimate being about 4 times the low 

estimate. 
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This means that the uncertainty for Nd demand is mainly driven by the uncertainty over 

the Nd intensity of EVs, whereas the model for Nd demand for wind turbines is 

constrained much tighter. The high uncertainty about the Nd intensity of EVs is due to 

the relatively new technology and rapidly developing market as well as technology, which 

could mean that future Nd intensity might actually be lower than today if REE-free EV 

motors, that already exist (IEA 2021b; Blagoeva et al. 2016), gain significant market 

shares. The actual future Nd-intensity of EVs is therefore expected to be closer to the 

lower estimate. 

 

Figure 19 Cumulative Nd demand for wind turbines and EVs in each decade 2021 to 2050 under a low 
demand scenario (LDS for wind, low Nd intensity with behavioural change for EVs). 
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Figure 20 Cumulative Nd demand for wind turbines and EVs in each decade 2021 to 2050 under a high 
demand scenario (HDS for wind, high Nd intensity with behavioural change for EVs). 

For the high and low demand scenarios visualized in Figure 19 and Figure 20, the LDS 

and HDS scenario for wind energy were chosen and only the scenario with behavioural 

change of car usage was considered for EVs. The rationale behind this decision is straight 

forward for wind turbines, as the LDS and HDS scenarios are the lowest and highest 

respectively. For EVs the scenario without behavioural change is used as an illustrative 

example to show the importance of behavioural change as it is done in the Net Zero 2050 

Report. Behavioural change is an integral part of the pathway to a sustainable greenhouse 

gas neutral future. Without behavioural change, the Nd demand for EVs would be 1.3 

times higher in the 2020s, 1.7 times higher in the 2030s and 2.5 times higher in the 2040s. 

4.2 How can future demand for Nd in wind turbines and EVs be met? 

To answer the question whether the modeled future demand for Nd in wind turbines and 

EVs can be met, the modeled demand is compared to the mining rate and the recycling 

potential. As for the discussion of the model results in Chapter 4.1, a low and a high 

demand scenario are constructed by combining the model results for wind turbines and 

EVs. 
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If the model results are compared to the current total mining production, it becomes clear 

that mining has to increase to satisfy the demand (Figure 21). However, the extent of the 

overshoot of demand is only minimal in the low demand scenario, where total Nd demand 

exceeds the current production by a few kt around the year 2035. Under the high demand 

scenario, on the other hand, demand already exceeds the current production in 2025, 

driven by the high demand for EVs. and stays above it from that year on. 

The total recycling potential from EVs and wind turbines together is close to zero until 

the late 2030s and then increases rapidly with the same slope as the demand in the 2020s 

(Figure 21, dashed line). This means that recycling of Nd will not play a significant role 

in alleviating the pressure on mining in the short or medium term, a conclusion also drawn 

by earlier studies (Habib 2015). Under both scenarios, the total recycling potential is large 

enough to cover the Nd demand for wind turbines from about 2045 onwards and reaches 

about 60 % of the total demand. However, the recycling potential plus the current mining 

production summed up still cannot cover the total demand under the high demand 

scenario. 

 

Figure 21 Annual Nd demand and recycling potential for EVs, wind turbines and both combined under a 
low demand scenario (LDS for wind, low Nd intensity with behavioural change for EVs) and under a high 
demand scenario (HDS for wind, high Nd intensity with behavioural change for EVs). The current (2021) 
annual mining production of Nd is shown as a black line. Note the different y-axes. 

When the recycling potential is subtracted from demand, it is possible to obtain the mining 

need – the amount of Nd that has to be produced from mining to satisfy demand. The 

mining needs for the high and low demand scenarios are shown in Figure 22. 

Furthermore, the effect of behavioural change on the mining need is indicated through 

the dashed line which marks the mining need under scenarios without behavioural 

change. 
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Figure 22 Annual amount of Nd required to be mined to cover the demand for Nd in wind turbines and EVs 
under a low and high demand scenario. The effect of behavioural change of car use is illustrated by adding 
a dashed line for a scenario without behavioural change. 

In 2021, the modeled demand under the low demand scenario is ~12 % of total Nd mining 

compared to ~26 % under the high demand scenario. 

The mining need with behavioural change under the high demand scenario would already 

exceed the official mining capacity in 2025 and the total mining capacity including illegal 

mining in China in 2030. If there is no behavioural change, the mining capacities would 

be exceeded already 2 to 3 years earlier. For the low demand scenario, the prospect is 

better and the mining need for wind energy and EVs would not exceed the official or total 

mining. Under all scenarios, mining need reaches a peak in 2035 and then decreases in 

the model with behavioural change or stabilizes without behavioural change. This means 

that from 2035 on, mining capacity does not need to increase to be able to satisfy the 

demand of Nd for wind turbines and EVs. 

However, it is important to keep in mind that Nd is also required for other applications 

and Nd used in wind turbines and EVs only made up 26 % of the total demand in the EU 

in 2016 (Ciacci et al. 2019) and the share of permanent magnets used in EVs and wind 

turbines was only 14 % and 17 % respectively worldwide in 2015 (Constantinides 2016). 
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4.3 Assessment of overall supply and demand for Nd 

To estimate the total demand development for Nd including other uses of the metal like 

home appliances, ICE vehicles, electronics and general machinery and others, two 

literature sources are used. Deetman et al. (2018) modeled the demand for Nd in home 

appliances, as well as for electricity generation and cars, for the shared socioeconomic 

pathway based on the global integrated assessment model IMAGE. Their data for 

appliances is used (~8 kt Nd in 2020, ~10 kt in 2030, and 15 kt in 2050 under the low 

demand scenario, which is deemed most realistic). However, since other uses are not 

integrated into the model, the relative share for Nd uses in China of 2016 from Geng et 

al. (2020) is taken to estimate the remaining Nd demand. According to Geng et al. (2020), 

about twice the amount of Nd used in home appliances is used in all other uses excluding 

wind energy and cars, which are already covered by the model of this study. It follows, 

that the total demand for Nd other than cars and wind energy can be approximated by 

multiplying the Nd demand for appliances by 3, assuming that Nd demand increases at 

the same rate across all the sectors. ICE sales numbers are taken from the model of this 

study and a Nd intensity of 200 g Nd is used to calculate the Nd demand. 

Comparing the model result for 2021 to the supply of Nd for the same year (~53 kt total, 

38 kt official mining) shows that the estimate is plausible as total Nd would reach ~42 – 

51 kt. 

The results for total Nd demand compared to mining production is shown in Figure 23. 

For Figure 24, it was assumed that 50 % of the annual demand for applications other than 

EVs and wind turbines can be met by recycling, which is slightly less than assumed for 

EVs. 



 
61  

 

Figure 23 Total annual Nd demand compared to mining. Dashed lines indicate scenarios without 
behavioural change. 

Figure 23 shows clearly, that total demand under a high demand scenario would exceed 

the mining capacity until 2035 or even 2040 if no behavioural change occurs. Nd demand 

under the low demand scenario is approximately equal to the official mining until 2030 

when Nd demand levels off. This means that under the low demand scenario there is no 

risk for supply if China cracks down on illegal mining. 
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Figure 24 Total annual Nd mining need compared to mining. Dashed lines indicate scenarios without 
behavioural change. 

The Nd mining need, which assumes that the recycling potential for Nd is realized from 

2021 on, shows, that with recycling it would already be possible to meet demand without 

illegal mining in China. Comparing the total mining need to the mining need for wind 

energy and EVs, the difference is not very large since it is assumed that recycling covers 

half of the demand for uses other than wind and EV. However, since the current recycling 

rate for Nd is below 1 % (Yao et al. 2021), the scenario without recycling shown in Figure 

23 is more realistic until at least 2030. 

5. Conclusion 

The following conclusions are drawn from this study: 

1. The demand for Nd in EVs is larger than the Nd demand in wind turbines. 

2. The Nd intensity and scenarios for wind turbines are much better constrained and 

more similar to each other than the modeled scenarios for EVs. 

3. With the current mining rate, the Nd demand for EVs and wind turbines cannot 

be met, mining needs to increase. 
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4. Recycling of Nd from end-of-life EVs and wind turbines will not play an 

important role in the supply of Nd in the short or mid-term but increases after 

2035. 

5. By 2050, recycling of Nd from wind turbines and EVs can partly offset the 

demand for primary Nd: ~50 % – 68 % of the Nd demand for wind turbines and 

32 % – 60 % for EVs could be covered by recycling in 2050. 

6. If mining increases by ~10 % annually, the demand for primary Nd for the 

production of wind turbines and EVs could exceed mining around 2030 or even 

earlier and longer (from 2025 to 2037) if illegal mining in China stops. 

7. The modeled total demand for Nd including uses other than wind turbines and 

EVs exceeds Nd mining until 2035 under the high demand scenario, whereas 

official mining would be enough to cover the total Nd demand under the low 

demand scenario. 

For future research, the model for Nd demand in cars could be refined with respect to 

the development of car sales and Nd intensities once the technology is more widely 

adopted. Moreover, it would be interesting to integrate the demand for home 

appliances needed to ensure adequate living standards for the global population into 

the model. With respect to the goal of achieving a truly circular economy, the year 

from which on no more mining would be necessary and all demand for new products 

can be covered from recycled Nd recovered from EOL-products could be calculated. 

However, this can only happen once demand for Nd-containing products stabilizes or 

technological advance and substitution of Nd offset the increase in demand. 

With respect to coupled production of metals, the consequences for the over- or 

undersupply of metals that are mined together with Nd could be examined and the 

economic implications. 

Geopolitically, the criticality of raw materials such as Nd and concentration of the 

production and processing is an important security issue (Li et al. 2020). The potential 

to diversify supply based on the global distribution of Nd reserves and the 

implications of closing the loop and moving to a more circular economy would be 

interesting to assess. 
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Last but not least, the methods used to assess the demand and supply of Nd could be 

applied to other critical and non-critical raw materials that play a role in achieving 

sustainable development. 
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Annex 

Annex 1 MatLab code used for modelling and generation of figures 

 

%%Fit curve for total installed wind capacity 
 
%input data: from Net Zero 2050 report 
 
x = [2019 2020 2025 2029 2030 2035 2040 2045 2050]; 
y = [628 742 1425 2712 3102 4977 6525 7645 8265]; 
 
%start x from 1 
x = x-2018; 
%fit 3rd degree polynome 
fitcoeff = polyfit(x,y,3); 
 
%calculate value for each year 2019 to 2050 
plotx = (2019:2050); 
ploty = zeros(1,length(plotx)); 
for i= 1:length(plotx) 
%ploty (i) = 
plotx(i).^3*fitcoeff(1)+plotx(i).^2*fitcoeff(2)+plotx(i)*fitcoeff(3
)+fitcoeff(4); 
ploty (i) = i^3*fitcoeff(1) + i^2*fitcoeff(2) + i*fitcoeff(3)+ 
fitcoeff(4);  
end 
 
 
%plot 
figure ('Name','polynomial fit 2019 to 2050') 
 
plot(plotx,ploty,'DisplayName',"fitted curve") 
hold on 
 
%plot original points 
plot((x+2018),y,'x','DisplayName',"data points") 
hold off 
legend('Location','northwest') 
title("Polynomial fit 2019 to 2050") 
 
%since the curve is too flat in the last 5 years, assume linear 
growth here 
ploty(32)= y(9); 
for i=1:4 
    ploty(27+i)=ploty(27)+(ploty(32)-ploty(27))/5*i; 
end 
 
%plot 
figure ('Name','Linear fit 2045 to 2050') 
 
plot(plotx,ploty,'DisplayName',"fitted curve") 
hold on 
 
%plot original points 
plot((x+2018),y,'x','DisplayName',"data points") 
hold off 
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legend('Location','northwest') 
title ("linear fit 2045 to 2050") 
 
%% Weibull lifetime-function Wind Turbines 
 
%Weibull functions: shape parameter B=5.1 
%scale parameter A= expected lifetime 
 
x = linspace (0,50,51);     %linspace over 50 years 
 
wbl25=zeros(1,53) ;          %extra zeros 
wbl25(1:51)=wblpdf(x,25,5.1);     %25 years (onshore) 
 
wbl30=zeros(1,53)   ;        %extra zeros 
wbl30(1:51)=wblpdf(x,30,5.1);     %30 years (offshore) 
 
 
%annual installed capacity in GW 
TotalCap = [741 653 591 539 487 436 371 319 283 237
 195 158 121 94 74 59 48 39 31 24 18
 14 10 7];            %total capacity from 2020 to 1997 
(sorted descending) 
TotalOffshore = [32,4560000000000 25,6520000000000 21,5760000000000
 17,2510000000000 13,8820000000000 12,0870000000000
 8,11100000000000 7,00800000000000 5,20400000000000
 3,48200000000000 3,12200000000000 2,12300000000000
 1,52900000000000 1,15300000000000 0,938000000000000
 0,737000000000000 0,644000000000000 0,553000000000000
 0,256000000000000 0,0960000000000000 0,0860000000000000
 0,0320000000000000 0,0320000000000000
 0,0290000000000000];  %total installed offshore capacity from 
2020 to 1997 (sorted descending) 
%load Nd demand for wind under different scenarios (2020 to 2050) 
Nddemand = [5360 2921 4544 6031 7382 8600 9685 10638 11459
 12150 12711 13664 14500 15216 15810 16279 16623 16842 16940
 16919 16784 16540 16190 15738 15182 14518 13739 12831 11778
 10559 9150 
5449 2994 4696 6284 7755 9107 10339 11447 12430 13285 14009
 15106 16079 16924 17637 18212 18650 18949 19111 19139 19037
 18809 18458 17987 17394 16674 15817 14807 13623 12241 10631 
5449 3133 4985 6764 8462 10070 11580 12985 14274 15440 16473
 17955 19312 20532 21606 22523 23277 23862 24274 24515 24583
 24482 24212 23771 23156 22356 21354 20125 18639 16855 14730 
4904 2648 4081 5365 6504 7504 8367 9098 9702 10181 10540
 11293 11947 12498 12946 13290 13530 13668 13707 13651 13503
 13270 12953 12556 12080 11521 10873 10128 9273 8292 7167 
4904 2557 3799 4802 5584 6161 6549 6763 6821 6738 6529 6825
 7041 7180 7246 7245 7180 7058 6884 6663 6404 6264 6086
 5872 5624 5339 5016 4652 4240 3774 3248 
537 1304 2016 2677 3286 3845 4352 4807 5212 5566 5869 5821
 5777 5739 5706 5681 5663 5655 5657 5671 5628 5658 5705
 5769 5853 5958 6084 6230 6398 6584 6786 
574 1442 2310 3183 4059 4940 5824 6713 7607 8506 9411 9367
 9326 9290 9262 9242 9233 9236 9256 9293 9353 9437 9549
 9693 9870 10084 10335 10624 10950 11311 11703 
585 1484 2401 3339 4297 5277 6278 7300 8344 9411 10501
 10451 10406 10366 10334 10312 10302 10306 10327 10370 10436
 10530 10655 10815 11013 11252 11532 11854 12218 12621 13058 
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734 1856 2996 4158 5341 6546 7774 9023 10296 11592 12913
 12882 12857 12839 12830 12833 12850 12886 12944 13027 13141
 13260 13418 13619 13868 14168 14521 14927 15386 15893 16443 
734 1822 2890 3938 4968 5980 6974 7950 8909 9851 10776
 10652 10532 10420 10315 10221 10139 10070 10019 9987 9978 9946
 9940 9964 10018 10104 10221 10369 10545 10746 10966];    
%%  
%  onshore LDS 
%  
% onshore MDS  
%  
% onshore HDS  
%  
%  onshore IEA baseline  
%  
%  onshore IEA constrained REE  
%  
%  offshore LDS  
%  
%  offshore MDS  
%  
%  offshore HDS  
%  
%  offshore IEA baseline  
%  
%  offshore IEA constrained REE  
%% calculate the capacity growth and sort from 1998 to 2050 
 
% capacity growth 
dcap = zeros(1,53);                                         
%placeholder for difference in capacity (capacity growth) 
doffshore = zeros(1,53); 
for i=1:23                                                  %invert 
vectors 
    dcap(i) = (TotalCap(24-i)-TotalCap(24-i+1));            %total 
    doffshore(i) = (TotalOffshore(24-i)-TotalOffshore(24-i+1)); 
%offshore 
end 
 
donshore=dcap-doffshore;                                    
%donshore only 1998 to 2021 
%%  
% load the growth in offshore capacity from 2021 to 2050 (30 years) 
 
%offshore capacity growth doffshore 
offshore20 = [12.5 20 27.5 35 42.5 50 57.5 65 72.5
 80 79.5 79 78.5 78 77.5 77 76.5 76 75.5 75
 74.5 74 73.5 73 72.5 72 71.5 71 70.5 70]; 
%linear growth assumed, taken from excel 
 
doffshore(24:end)=offshore20;   %24th value is year 2021 
%%  
% load the total installed capacity from 2019 to 2050 (from 
fitcurve, 32  
% values), and calculate growth for 2021 until 2050  
%  
% and substract offshore to get onshore 
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%calculate onshore capacity growth donshore 
ploty = [622 689 796 940 1117 1326 1562 1824 2108 2412
 2732 3066 3411 3764 4122 4482 4841 5197 5547 5887 6216
 6529 6825 7100 7351 7576 7771 7934 8062 8153 8202
 8208];            %polynomial fit 2019 until 2050 
%load('fit_installed_19_45','ploty');           %for linear prowth 
from 2045 to 2050 
for i=1:30                                                       
%2021 until 2050 are 30 years to calculate 
    donshore(23+i)=ploty(i+1)-ploty(i) - doffshore(23+i);        
%4th value is year 2021 
end 
%%  
% total capacity growth dcap 
 
dcap(24:53) = ploty(3:32)-ploty(2:31);     %1998 until 2050 
%% Offshore added capacity 
% # matrix with weibull*installed capacity in the rows and lines 
are years from  
% 1998 to 2050 (since weibull starts with 0, we also will add the 
zero from weibull  
% 2050 in 2050) 
%% 
 
wbloff=zeros(53,55);        %weibull offshore dimension: 53x55 
zeros (need some extra zeros at the end) 
for i=1:53 
    wbloff(i,1:53)=wbl30.*doffshore(i);    %from 1998 until 2050 -> 
53 
end 
%%  
%     2.  Add all weibull functions up, and put them into 
addoffshore 
 
addoffshore = 1:30;                 %we calculate the added 
capacity for 2021-2050 -> 30  
retiredall=zeros(1,30); 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wbloff(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
retiredall(i)=retired; 
  addoffshore(i)= doffshore(23+i) + retiredall(i);       
%doffshorefor 2021 is 24th value in doffshore 
     
end 
%%  
%   
%% Plot offshore 
%% 
%plot 
 
plotx=2021:2050; 
plot(plotx,addoffshore,'DisplayName',"added offshore") 
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axis([2020 2050 0 100])                                         
%set axis limits 
hold on 
plot(plotx,retiredall,'DisplayName',"retired offshore") 
plot(plotx,doffshore(24:53),'DisplayName',"offshore capacity 
growth") 
hold off 
legend ('Location','northwest') 
 
%% Onshore added capacity 
% # matrix with weibull*installed capacity in the rows and lines 
are years from  
% 1998 to 2050 (since weibull starts with 0, we also will add the 
zero from weibull  
% 2050 in 2050) 
%% 
 
wblon=zeros(53,55);        %weibull offshore dimension: 53x55 zeros 
(need some extra zeros at the end) 
for i=1:53 
    wblon(i,1:53)=wbl25.*donshore(i);    %from 1998 until 2050 -> 
53 
end 
%%  
%     2.  Add all weibull functions up, and put them into 
addoffshore 
 
addonshore = 1:30;                 %we calculate the added capacity 
for 2021-2050 -> 30  
retiredallon=zeros(1,30); 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblon(j,(24+i-j));        %add for each 
year j from 1998 on the retired (wbloff)          
    end 
retiredallon(i)=retired; 
  addonshore(i)= donshore(23+i) + retiredallon(i);       
%doffshorefor 2021 is 24th value in doffshore 
     
end 
% addoffshore(30) = doffshore 
%%  
%   
%% Plot onshore 
%% 
%plot 
 
plotx=2021:2050; 
plot(plotx,addonshore,'DisplayName',"added onshore") 
hold on 
plot(plotx,retiredallon,'DisplayName',"retired onshore") 
axis([2020 2050 0 400])                                         
%set axis limits 
plot(plotx,donshore(24:53),'DisplayName',"onshore capacity growth") 
hold off 
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legend ('Location','northwest') 
%% Total 
% add onshore and offshore 
%% 
plotx=2021:2050; 
plot(plotx,(addonshore+addoffshore),'DisplayName',"added total") 
hold on 
plot(plotx,(retiredall+retiredallon),'DisplayName',"retired total") 
plot(plotx,donshore(24:53)+doffshore(24:53),'DisplayName',"capacity 
growth total") 
hold off 
legend ('Location','northwest') 
retiredtot = retiredall+retiredallon; 
%% Without lifetime function, fixed age 
% added capacity is growth in capacity + added capacity of 25 years 
ago for  
% onshore and 30 years ago for offshore 
 
%total 
%plot total installed capacity, retired capacity and capacity 
growth 
 
plotx = 1997:2050; 
 
% %total installed capacity 
% totalCaptot=zeros(1,54); 
% for i=1:24 
%     totalCaptot(i) = TotalCap(25-i);              %years 1997 to 
2020 invert sorting 
% end 
% totalCaptot(25:54) = ploty (3:end);        %years 2021 to 2050 
%  
% plot(plotx,totalCaptot,'DisplayName',"total installed capacity") 
% hold on 
 
               
%%  
% comment: up until here dcap was only filled until 2021 (wind 
database  
% values) the rest is filled in now from fitcurve 
 
plot(plotx(2:end),dcap,'DisplayName',"capacity growth") 
hold on 
% retired capacity 25 years lifetime 
retiredtot25 = zeros(1,29);                     %plotx has 54 
values, starting at 25th we need 29 
retiredtot25 = doffshore(1:29)+donshore(1:29);             %add 
onshore and offshore growth 
plot(plotx(26:end),(retiredtot25),'DisplayName',"retired (25 years 
lifetime)") 
 
% retired capacity 30 years lifetime 
retiredtot30 = zeros(1,24);                     %plotx has 54 
values, starting at 30th we need 24 
retiredtot30 = doffshore(1:24)+donshore(1:24);             %add 
onshore and offshore growth 
plot(plotx(31:end),(retiredtot30),'DisplayName',"retired (30 years 
lifetime)") 
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% % total added capacity 
% plot(plotx(2:end),(doffshore+donshore),'DisplayName',"total added 
capacity") 
hold off 
legend ('Location','northwest') 
%% Recycling Potentential 
%  technology shares 2010 (IEA, 2021)  
%  
%  onshore offshore 
%  
% GB-DFIG         0,79    0,21 
%  
% GB-PMSG 0,02    0,25 
%  
% DD-PMSG 0,11    0,54 
%  
% DD-EESG         0,08    0,00 
%% 
%technology shares 
techshare = [0.79 0.21, 0.02 0.25, 0.11 0.54, 0.08 0];     
%%  
% Nd intensities 
%  
%  * technology  t(Nd)/GW * 
%  
%    GB-DFIG  12  
%  
%    GB-PMSG  51  
%  
%    DD-PMSG  180  
%  
%    DD-EESG  28  
 
%Nd intensities 
intens = [12 51 180 28]; 
%% Annual Nd demand historic 
 
%onshore 1998 to 2020 
Ndon = donshore 
(1:23).*(techshare(1)*intens(1)+techshare(3)*intens(2)+techshare(5)
*intens(3)+techshare(7)*intens(4)); 
%offshore 1998 to 2020 
Ndoff = doffshore 
(1:23).*(techshare(2)*intens(1)+techshare(4)*intens(2)+techshare(6)
*intens(3)+techshare(8)*intens(4)); 
 
%% 
%weibull historic 
wblhon=zeros(23,55);        %23 years, 51 and some zeros extra 
for i=1:23 
    wblhon(i,1:53)=wbl25.*Ndon(i);    %from 1998 to 2020 -> 23 
end 
 
wblhoff = zeros(23,55); 
for i=1:23 
    wblhoff(i,1:53)=wbl30.*Ndoff(i);    %from 1998 to 2020 -> 23 
end 
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%% 
 
%weibull onshore scenarios 
wblonLDS=zeros(54,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
wblon = zeros(31,55);         %reused each time 
for i=1:31 
    wblon(i,1:53)=wbl25.*Nddemand(1,i);    %from 2020 until 2050 -> 
31 
end 
wblonLDS(1:23,1:55)=wblhon; 
wblonLDS(24:54,1:55) = wblon;     
 
wblonMDS=zeros(54,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
wblon = zeros(31,55); 
for i=1:31 
    wblon(i,1:53)=wbl25.*Nddemand(2,i);    %from 1998 until 2050 -> 
31 
end 
wblonMDS(1:23,1:55)=wblhon; 
wblonMDS(24:54,1:55) = wblon;  
 
wblonHDS=zeros(54,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
wblon = zeros(31,55); 
for i=1:31 
    wblon(i,1:53)=wbl25.*Nddemand(3,i);    %from 1998 until 2050 -> 
31 
end 
wblonHDS (1:23,1:55)= wblhon; 
wblonHDS (24:54,1:55) = wblon; 
 
 
wblonIEAb=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
 
wblon = zeros(31,55); 
for i=1:31 
    wblon(i,1:53)=wbl25.*Nddemand(4,i);    %from 1998 until 2050 -> 
31 
end 
wblonIEAb(1:23,1:55) = wblhon; 
wblonIEAb (24:54,1:55) = wblon; 
 
 
wblonIEAr=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
wblon = zeros(31,55); 
for i=1:31 
    wblon(i,1:53)=wbl25.*Nddemand(5,i);    %from 1998 until 2050 -> 
31 
end 
wblonIEAr (1:23,1:55) = wblhon; 
wblonIEAr (24:54,1:55) = wblon; 
 
 
%offshore scenarios 
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wbloff = zeros(31,55);         %reused each time 
wbloffLDS=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
for i=1:31 
    wbloff(i,1:53)=wbl25.*Nddemand(6,i);    %from 1998 until 2050 -
> 31 
end 
wbloffLDS (1:23,1:55) = wblhoff; 
wbloffLDS (24:54,1:55) = wbloff; 
wbloff = zeros(31,55);         %reused each time 
 
wbloffMDS=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
for i=1:31 
    wbloff(i,1:53)=wbl25.*Nddemand(7,i);    %from 1998 until 2050 -
> 31 
end 
wbloffMDS (1:23,1:55) = wblhoff; 
wbloffMDS (24:54,1:55) = wbloff; 
wbloff = zeros(31,55);         %reused each time 
 
wbloffHDS=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
for i=1:31 
    wbloff(i,1:53)=wbl25.*Nddemand(8,i);    %from 1998 until 2050 -
> 31 
end 
wbloffHDS (1:23,1:55) = wblhoff; 
wbloffHDS (24:54,1:55) = wbloff; 
wbloff = zeros(31,55);         %reused each time 
 
wbloffIEAb=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
for i=1:31 
    wbloff(i,1:53)=wbl25.*Nddemand(9,i);    %from 1998 until 2050 -
> 31 
end 
wbloffIEAb (1:23,1:55) = wblhoff; 
wbloffIEAb (24:54,1:55) = wbloff; 
wbloff = zeros(31,55);         %reused each time 
 
wbloffIEAr=zeros(31,55);        %weibull offshore dimension: 31x55 
zeros (need some extra zeros at the end) 
for i=1:31 
    wbloff(i,1:53)=wbl25.*Nddemand(10,i);    %from 1998 until 2050 
-> 31 
end 
wbloffIEAr (1:23,1:55) = wblhoff; 
wbloffIEAr (24:54,1:55) = wbloff; 
 
 
%%  
% Released 
 
 
releasedallon=zeros(5,30);         %5 scenarios, for 2021-2050 -> 
30  
for i=1:30             
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    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblonLDS(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedallon(1,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblonMDS(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedallon(2,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblonHDS(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedallon(3,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblonIEAb(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedallon(4,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblonIEAr(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedallon(5,i)=retired; 
end 
 
%offshore 
releasedalloff=zeros(5,30);         %5 scenarios, for 2021-2050 -> 
30  
for i=1:30             
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    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wbloffLDS(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedalloff(1,i)=retired; 
end 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wbloffMDS(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedalloff(2,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wbloffHDS(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedalloff(3,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wbloffIEAb(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedalloff(4,i)=retired; 
end 
 
for i=1:30             
    retired= 0;                           %we calculate retired 
capacity for 2021-2050 -> 30 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wbloffIEAr(j,(24+i-j));        %add for 
each year j from 1998 on the retired (wbloff)          
    end 
releasedalloff(5,i)=retired; 
end 
%%  
% Plot 
%% 
%onshore 
 
plotx = 2021:2050; 
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%LDS 
plot(plotx,releasedallon(1,1:end),'DisplayName','LDS'); 
hold on 
%MDS 
plot(plotx,releasedallon(2,1:end),'DisplayName','MDS'); 
%HDS 
plot(plotx,releasedallon(3,1:end),'DisplayName','HDS'); 
%IEAb 
plot(plotx,releasedallon(4,1:end),'DisplayName','IEA baseline') 
%IEAr 
plot(plotx,releasedallon(5,1:end),'DisplayName','IEA constrained 
REE') 
hold off 
legend ('Location','northwest') 
title("Nd stocks released from onshore wind turbines") 
ylabel("t Nd released") 
%ofshore 
%LDS 
plot(plotx,releasedalloff(1,1:end),'DisplayName','LDS'); 
hold on 
%MDS 
plot(plotx,releasedalloff(2,1:end),'DisplayName','MDS'); 
%HDS 
plot(plotx,releasedalloff(3,1:end),'DisplayName','HDS'); 
%IEAb 
plot(plotx,releasedalloff(4,1:end),'DisplayName','IEA baseline') 
%IEAr 
plot(plotx,releasedalloff(5,1:end),'DisplayName','IEA constrained 
REE') 
hold off 
ylabel("t Nd released") 
title("Nd stocks released from offshore wind turbines") 
legend ('Location','northwest') 
 
 
%% Weibull lifetime-function for EVs 
 
%Weibull functions: shape parameter B=5 
%scale parameter A= expected lifetime = 17 years 
 
x = linspace (0,50,51);     %linspace over 50 years 
wbl17=zeros(1,51) ;          %zeros 
wbl17(1:51)=wblpdf(x,17,5);     %17 years 
 
% historic stock of PHEV and BEV cars (2010 to 2020 -> 11 values) 
hPHEV = [10000  60000  120000  230000  410000 
 730000  1180000 1930000 3260000 4760000 6850000]; 
hBEV = [10000 70000 170000 300000 520000 820000
 1210000 1830000 2370000 3350000]; 
hFCEV = [0 0 0 0 0 0 0 0 0 0 34800]; 
 
% % %required stock of cars in total with gradual behavioural 
change 2021 to 2050 
% % load('stockwc','stockwc'); 
% % %required stock of cars without behavioural change 2021 to 2050 
% % load('stockwoc','stockwoc'); 
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%historic car sales 2005 to 2020 
hSales = [59825389.99 62116927.53 65359757.31 62114472.25
 60399932.78 69107376.96 72212768.99 74636518.9 77780734.07
 80743686.94 84606783.49 89119741.73 91207161.3 91232899.85
 86892329 73197606.2]; 
 
%sales from 2021 to 2050 with and without bahavioural change 
salesw = zeros (1,30);               %to be filled later 
saleswo = zeros (1,30);               %to be filled later 
 
%empty: weibull for car sales from 2005 to 2049 with and without 
change 
wblSaleswc=zeros(45,51);  
wblSaleswoc=zeros(45,51); 
 
%empty: all retired each year from 2021 to 2050 
retiredall = zeros (1,30); 
%need 2 different redired alls: with and without change 
retiredallw = retiredall; 
retiredallwo = retiredall; 
%% Annual growth of car stock 
%% 
%with behavioural change 
dwc = zeros(1,30); 
%without behavioural change 
dwoc = zeros (1,30); 
%%  
% *fit function* without behavioural change 
 
%%Fit curve for car stocks without behavioural change 
 
%input data: from Net Zero 2050 report 
 
x = [2021 2030 2040 2050]; 
y = [1.447038 1.491962 1.812013 2.318760]; 
 
%start x from 1 
x = x-2020; 
%fit 3rd degree polynome 
fitcoeff = polyfit(x,y,2); 
 
%calculate value for each year 2021 to 2050 
plotx = (2021:2050); 
ploty = zeros(1,length(plotx)); 
for i= 1:length(plotx) 
%ploty (i) = 
plotx(i).^3*fitcoeff(1)+plotx(i).^2*fitcoeff(2)+plotx(i)*fitcoeff(3
)+fitcoeff(4); 
ploty (i) = (i)^2*fitcoeff(1) + (i)*fitcoeff(2)+ fitcoeff(3);   
 
end 
 
 
%plot 
figure ('Name','Car stocks without behavioural change 2021 to 
2050') 
 
plot(plotx,ploty,'DisplayName',"fitted curve") 
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hold on 
 
%plot original points 
plot((x+2020),y,'x','DisplayName',"data points") 
hold off 
legend('Location','northwest') 
title("Car stocks without behavioural change 2021 to 2050") 
 
stockwoc = ploty.*10^9; 
 
%stock change without behavioural change 2021 to 2050 
dowc = zeros (1,30); 
dowc(1) = 0;                %assuming no stock change in 2021 
for i=2:30 
    dwoc(i)= stockwoc(i)-stockwoc(i-1); 
end 
%%  
%  
%  
%  
%  
% *fit function* stock of cars 2021 to 2050 with behavioural change 
%% 
%%Fit curve for car stocks with behavioural change 
 
%input data: from Net Zero 2050 report 
 
x = [2020 2030 2040 2050]; 
y = [1.348772 1.243302  1.208009 1.159380]; 
 
%start x from 1 
x = x-2019; 
%fit 3rd degree polynome 
fitcoeff = polyfit(x,y,2); 
 
%calculate value for each year 2020 to 2050 
plotx = (2020:2050); 
ploty = zeros(1,length(plotx)); 
for i= 1:length(plotx) 
% ploty (i) = 
plotx(i).^3*fitcoeff(1)+plotx(i).^2*fitcoeff(2)+plotx(i)*fitcoeff(3
)+fitcoeff(4); 
ploty (i) = (i)^2*fitcoeff(1) + (i)*fitcoeff(2)+ fitcoeff(3);   
 
end 
 
 
%plot 
figure ('Name','Car stocks with gradual behavioural change 2021 to 
2050') 
 
plot(plotx,ploty,'DisplayName',"fitted curve") 
hold on 
 
%plot original points 
plot((x+2019),y,'x','DisplayName',"data points") 
hold off 
legend('Location','northeast') 
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title("Car stocks with gradual behavioural change 2021 to 2050") 
 
stockwc = ploty.*10^9; 
 
%stock change with behavioural change 
dwc = zeros(1,1); 
for i=1:30 
    dwc(i)= stockwc(i+1)-stockwc(i); 
end 
%% Retiring each year 2021 to  2031 
% with a fixed lifetime of 17 years, assuming 10% less car-sales 
for 2004 than  
% for for 2005 
%% 
retiredall (1) =hSales(1)*0.9; 
for i=1:10                      %from hsales 2005 to 2014  
    retiredall(i+1)=hSales(i);  %retired all filled for 2021 to 
2031 
end 
 
%need 2 different redired alls: with and without change 
retiredallw = retiredall; 
retiredallwo = retiredall; 
 
%%  
% 
üüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüü
üüüüüüüüüüüüüüüüüüüüüüüüüüüü 
%% Weibull Matrix with retiring cars (wblSales) 
% always shift next row 1 to the right --> one column are all to 
sum up to get  
% the retiring 
%  
% 2005 to 2050 
%  
% since after 27 years all cars are retired, only 27 needed to sum 
up: i  
% to (26+i) 
%% 
%fill in historic from 2005 to 2020 (same for both scenarios w/wo 
change) 
for i=1:16 
    wblSaleswc(i,i:26+i)=hSales(i).*wbl17(1:27);   
    wblSaleswoc(i,i:26+i)=wbl17(1:27).*hSales(i); 
end 
%%  
% since we assume a fixed lifetime for all curs until 2031, the car 
sales  
% for 2021 to 2031 are retiring + stock change 
 
for i=1:11 
    salesw (i) = retiredallw(i) + dwc(i); 
    saleswo (i) = retiredallwo(i) + dwoc(i); 
end 
%% Sales each year from 3032 to 2050 without behavioural change 
%  
%% 
for i=1:19                      %2032 to 2050 are 19 
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    %retiring  
    retired= 0;                           %start from 0 again 
    for   j=1:(27)                      %27 added up each                        
        retired = retired + wblSaleswoc(27+i-j,27+i);        %for 
2005 2032 is the 27th value, then counting down 27 rows       
    end 
 
 
saleswo (i+11) = retired + dwoc(i+11);                    %sales 
from 2032ff, 11 are already filled 
 
wbli = wbl17.*saleswo(i);                    %wbl only 27 values 
needed 
wblSaleswoc (16+i,16+i:42+i) = wbli(1:27);           %2021 is 17th 
year from 2005 
 
retiredallwo(i+11)=retired;                              %fill in 
retired of 2032ff, 11 are already filed 
end 
%%  
% Plot from 2021 to 2050 growth of stock, sales and retiring 
%% 
plotx = 2021:2050; 
 
 %growth of stocks 
p0= plot(plotx,dwoc,'DisplayName','car stock change'); 
hold on 
 
%sales all from 2005 on 
sales(1:16)=hSales; 
sales(17:46) = saleswo; 
 
p1= plot(2005:2050,sales,'DisplayName','car sales'); 
 
 
%retiring 
p2= plot(plotx,retiredallwo,'DisplayName','retired cars'); 
 
%zero line 
p3= plot(2005:2050,zeros(1,46),'k'); 
 
legend ([p0 p1 p2],'Location','northwest') 
hold off 
 
set(gca,'XGrid','on','YGrid','off') 
 
 
%% Sales each year from 3032 to 2050 with behavioural change 
% 
üüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüüü
üüüüüüüüüüüüüüüüüüüüüüüüüüüü  
%% 
for i=1:19                      %2032 to 2050 are 19 
    %retiring  
    retired= 0;                           %start from 0 again 
    for   j=1:(27)                      %27 added up each                        
        retired = retired + wblSaleswc(27+i-j,27+i);        %for 
2005 2032 is the 27th value, then counting down 27 rows       
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    end 
 
 
salesw (i+11) = retired + dwc(i+11);                    %sales from 
2032ff, 11 are already filled 
 
wbli = wbl17.*salesw(i);                    %wbl only 27 values 
needed 
wblSaleswc (16+i,16+i:42+i) = wbli(1:27);           %2021 is 17th 
year from 2005 
 
retiredallw(i+11)=retired;                              %fill in 
retired of 2032ff, 11 are already filed 
end 
%%  
% Plot from 2021 to 2050 growth of stock, sales and retiring 
%% 
plotx = 2021:2050; 
 
 %growth of stocks 
p0= plot(plotx,dwc,'DisplayName','car stock change'); 
hold on 
 
%sales all from 2005 on 
sales(1:16)=hSales; 
sales(17:46) = salesw; 
 
p1 = plot(2005:2050,sales,'DisplayName','car sales'); 
 
 
%retiring 
p2= plot(plotx,retiredallw,'DisplayName','retired cars'); 
 
%zero line 
p3= plot(2005:2050,zeros(1,46),'k'); 
 
legend ([p0 p1 p2],'Location','northwest') 
 
set(gca,'XGrid','on','YGrid','off') 
hold off 
%% Nd demand for EVs 2021 to 2050 
%% Sold EVs 2021 to 2050 
% based on the technology share of car sales  
%% 
%import technology shares 2021 to 2035 (BEV, PHEV, FCEV) 
Techshare = [0.0798 0.1316 0.1834 0.2352 0.287
 0.3388 0.3906 0.4424 0.4942 0.546 0.6172
 0.6884 0.7596 0.8308 0.902 
0.0178 0.0236 0.0294 0.0352 0.041 0.0468
 0.0526 0.0584 0.0642 0.07 0.05684 0.04368
 0.03052 0.01736 0.00419999999999999 
0.00308 0.00596 0.00884 0.01172 0.0146 0.01748
 0.02036 0.02324 0.02612 0.029 0.0418 0.0546
 0.0674 0.0802 0.093]; 
techshare(1,16:30)=techshare(1,15);     %2036 to 2050 is same as 
2035 
techshare(2,16:30)=techshare(2,15);     %2036 to 2050 is same as 
2035 



 
A18  

techshare(3,16:30)=techshare(3,15);     %2036 to 2050 is same as 
2035 
%%  
% Without behavioural change 
 
BEVwo = zeros(1,30);                %nuber of sold BEV 2021 to 2050 
PHEVwo = zeros (1,30);              %nuber of sold PHEV 2021 to 
2050 
FCEVwo = zeros (1,30);              %nuber of sold FCEV 2021 to 
2050 
for i=1:30 
    BEVwo (i) = techshare(1,i)*saleswo(i); 
    PHEVwo(i) = techshare(2,i)*saleswo(i); 
    FCEVwo (i) = techshare(3,i)*saleswo(i); 
end 
%%  
% With behavioural change 
 
BEVw = zeros(1,30);                %nuber of sold BEV 2021 to 2050 
PHEVw = zeros (1,30);              %nuber of sold PHEV 2021 to 2050 
FCEVw = zeros (1,30);              %nuber of sold FCEV 2021 to 2050 
for i=1:30 
    BEVw (i) = techshare(1,i)*salesw(i); 
    PHEVw(i) = techshare(2,i)*salesw(i); 
    FCEVw (i) = techshare(3,i)*salesw(i); 
end 
 
xlswrite('EV',BEVw,'A1:AD1') 
xlswrite('EV',PHEVw,'A2:AD2') 
xlswrite('EV',FCEVw,'A3:AD3') 
xlswrite('EV',BEVwo,'A4:AD4') 
xlswrite('EV',PHEVwo,'A5:AD5') 
xlswrite('EV',FCEVwo,'A6:AD6') 
%% ICE sales 
%% 
ICEwo = saleswo-(BEVwo + PHEVwo + FCEVwo); 
ICEw = salesw - (BEVw + PHEVw + FCEVw); 
 
 
%% Wind turbine recycling Potential 
 
 
%Weibull functions: shape parameter B=5.1 
%scale parameter A= expected lifetime 
 
x = linspace (0,50,51);     %linspace over 50 years 
 
wbl25=zeros(1,53) ;          %extra zeros 
wbl25(1:51)=wblpdf(x,25,5.1);     %25 years (onshore) 
 
wbl30=zeros(1,53)   ;        %extra zeros 
wbl30(1:51)=wblpdf(x,30,5.1);     %30 years (offshore) 
 
%annual installed capacity in GW 
TotalCap = [741 653 591 539 487 436 371 319 283 237
 195 158 121 94 74 59 48 39 31 24 18
 14 10 7];            %total capacity from 2020 to 1997 
(sorted descending) 
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TotalOffshore = [32,4560000000000 25,6520000000000 21,5760000000000
 17,2510000000000 13,8820000000000 12,0870000000000
 8,11100000000000 7,00800000000000 5,20400000000000
 3,48200000000000 3,12200000000000 2,12300000000000
 1,52900000000000 1,15300000000000 0,938000000000000
 0,737000000000000 0,644000000000000 0,553000000000000
 0,256000000000000 0,0960000000000000 0,0860000000000000
 0,0320000000000000 0,0320000000000000
 0,0290000000000000];  %total installed offshore capacity from 
2020 to 1997 (sorted descending) 
 
%%  
% calculate the capacity growth and sort from 1998 to 2050 
 
% capacity growth 
dcap = zeros(1,53);                                         
%placeholder for difference in capacity (capacity growth) 
doffshore = zeros(1,53); 
for i=1:23                                                  %invert 
vectors 
    dcap(i) = (TotalCap(24-i)-TotalCap(24-i+1));            %total 
    doffshore(i) = (TotalOffshore(24-i)-TotalOffshore(24-i+1)); 
%offshore 
end 
 
donshore=dcap-doffshore;                                    
%donshore only 1998 to 2021 
%%  
% load the growth in offshore capacity from 2021 to 2050 (30 years) 
%  
% [check if this ist still true or whole 1997 to 2050] 
 
%offshore capacity growth doffshore 
offshore20 = [12.5 20 27.5 35 42.5 50 57.5 65 72.5
 80 79.5 79 78.5 78 77.5 77 76.5 76 75.5 75
 74.5 74 73.5 73 72.5 72 71.5 71 70.5 70]; 
%linear growth assumed, taken from excel 
doffshore(24:end)=offshore20;   %24th value is year 2021 
%%  
% load the total installed capacity from 2019 to 2050 (from 
fitcurve, 32  
% values), and calculate growth for 2021 until 2050  
%  
% and substract offshore to get onshore 
 
%calculate onshore capacity growth donshore 
ploty = [622 689 796 940 1117 1326 1562 1824 2108 2412
 2732 3066 3411 3764 4122 4482 4841 5197 5547 5887 6216
 6529 6825 7100 7351 7576 7771 7934 8062 8153 8202
 8208];            %load('fit_installed_19_45','ploty');           
%for linear prowth from 2045 to 2050 
for i=1:30                                                       
%2021 until 2050 are 30 years to calculate 
    donshore(23+i)=ploty(i+1)-ploty(i) - doffshore(23+i);        
%4th value is year 2021 
end 
%%  
% total capacity growth dcap 
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dcap(24:53) = ploty(3:32)-ploty(2:31);     %1998 until 2050 
%%  
%  technology shares 2010 (IEA, 2021)  
%  
%  onshore offshore 
%  
% GB-DFIG         0,79    0,21 
%  
% GB-PMSG 0,02    0,25 
%  
% DD-PMSG 0,11    0,54 
%  
% DD-EESG         0,08    0,00 
%% 
%technology shares 
techshare = [0.79 0.21, 0.02 0.25, 0.11 0.54, 0.08 0];     
%%  
% Nd intensities 
%  
%  * technology  t(Nd)/GW * 
%  
%    GB-DFIG  12  
%  
%    GB-PMSG  51  
%  
%    DD-PMSG  180  
%  
%    DD-EESG  28  
 
%Nd intensities 
intens = [12 51 180 28]; 
%% Annual Nd demand 
 
%onshore 1998 to 2020 
Ndon = donshore 
(1:23).*(techshare(1)*intens(1)+techshare(3)*intens(2)+techshare(5)
*intens(3)+techshare(7)*intens(4)); 
%offshore 1998 to 2020 
Ndoff = doffshore 
(1:23).*(techshare(2)*intens(1)+techshare(4)*intens(2)+techshare(6)
*intens(3)+techshare(8)*intens(4)); 
 
%% 
 
 
%weibull 
wblon=zeros(53,55);        %weibull offshore dimension: 53x55 zeros 
(need some extra zeros at the end) 
for i=1:53 
    wblon(i,1:53)=wbl25.*donshore(i);    %from 1998 until 2050 -> 
53 
end 
%%  
%     2.  Add all weibull functions up, and put them into 
addoffshore 
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addonshore = 1:23;                 %we calculate the added capacity 
for 1998-2020 -> 23  
retiredallon=zeros(1,30); 
for i=1:23             
    retired= 0;                           %we calculate retired 
capacity for 1998-2020 -> 23 
    for   j=1:(23+i)                        %2021 as start year has 
24 years from 1998 to 2021 
        retired = retired + wblon(j,(24+i-j));        %add for each 
year j from 1998 on the retired (wbloff)          
    end 
retiredallon(i)=retired; 
  addonshore(i)= donshore(23+i) + retiredallon(i);       
%donshorefor 2021 is 24th value in donshore 
     
end 
 
 
%% Weibull functions 
 
x = linspace (0,50,51);     %linspace over 50 years 
% wblsekine = wblpdf(x,13.2,3.6)      %used by Sekine et al. 2017 
for cars 
wbl17(1:51) = wblpdf(x,17,5);     %17 years (cars) 
wbl25(1:51)=wblpdf(x,25,5.1);     %25 years (onshore) 
wbl30(1:51)=wblpdf(x,30,5.1);     %30 years (offshore) 
wbl252(1:51)=wblpdf(x,17,2);       %shape parameter = 2 
wbl2510(1:51)=wblpdf(x,17,10);       %shape parameter = 10 
%plot 
%plot(x,wblsekine,'DisplayName','Sekine et al. 2017') 
plot(x,wbl17,'DisplayName','\alpha=5 \beta=17 
(cars)','Color','blue') 
hold on 
plot(x,wbl25,'DisplayName','\alpha=5.1 \beta=25 (onshore wind)') 
plot(x,wbl30,'DisplayName','\alpha=5.1 \beta=30 (offshore wind)') 
plot(x,wbl252,'--','DisplayName','\alpha=2 
\beta=17','Color','blue') 
plot(x,wbl2510,'-.','DisplayName','\alpha=10 
\beta=17','Color','blue') 
hold off 
legend ('show') 
xlabel('x') 
ylabel('frequency distribution') 
%% 
plotx = categorical({'2021 - 2030', '2031 - 2040','2041 - 2050'}); 
 
recpotLDStot = [124 157 195 240 292 351 417 492 576
 671 776 896 1031 1185 1363 1570 1813 2100 2439 2838
 3305 3846 4465 5162 5934 6773 7667 8600 9553 10507]; 
recpotHDStot = [124 157 195 240 292 351 418 493 578
 674 783 907 1050 1217 1415 1650 1934 2276 2690 3189
 3786 4491 5313 6257 7324 8506 9793 11167 12605 14081]; 
recpotEVlow = [0 0 0 0 0 0 3 17 35 62
 90 157 217 327 556 576 885 1365 2509 3636 4944
 5691 6518 8804 10511 12223 14183 16513 16100 17252]; 
recpotEVhigh = [0 0 0 0 0 0 8 54 126 219
 315 546 755 1118 1892 1931 3038 5314 9856 14338
 19541 22526 25828 34912 41708 48522 56323 66355 65317 70541]; 
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recpotEVlown = [0 0 0 0 0 0 3 17 35 62
 90 157 217 327 556 576 885 1683 2898 4312 5985
 7175 8522 11405 13788 16252 19042 22379 23066 25578]; 
recpotEVhighn = [0 0 0 0 0 0 8 54 126
 219 315 546 755 1118 1892 1931 3038 6549 11380
 17003 23657 28400 33769 45229 54709 64516 75619 89926 93576
 104588]; 
%% Wind 
%% 
%demand total 
winddemand = [120715 196807 115999; 141999 251173
 166834; 158450 304925 222360; 142141 238658
 161205; 116024 152434 75766]; 
vals = winddemand'; 
bar (plotx,vals.*10^(-3)) 
legend('LDS','MDS','HDS','IEA baseline','IEA constrained REE') 
title('Cumulative Nd demand for wind turbines') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd demand (kt)') 
%% 
 
%plot annual 2021 to 2050 
%load Nd demand for wind under different scenarios (2020 to 2050) 
Nddemand = [5360 2921 4544 6031 7382 8600 9685 10638 11459
 12150 12711 13664 14500 15216 15810 16279 16623 16842 16940
 16919 16784 16540 16190 15738 15182 14518 13739 12831 11778
 10559 9150 
5449 2994 4696 6284 7755 9107 10339 11447 12430 13285 14009
 15106 16079 16924 17637 18212 18650 18949 19111 19139 19037
 18809 18458 17987 17394 16674 15817 14807 13623 12241 10631 
5449 3133 4985 6764 8462 10070 11580 12985 14274 15440 16473
 17955 19312 20532 21606 22523 23277 23862 24274 24515 24583
 24482 24212 23771 23156 22356 21354 20125 18639 16855 14730 
4904 2648 4081 5365 6504 7504 8367 9098 9702 10181 10540
 11293 11947 12498 12946 13290 13530 13668 13707 13651 13503
 13270 12953 12556 12080 11521 10873 10128 9273 8292 7167 
4904 2557 3799 4802 5584 6161 6549 6763 6821 6738 6529 6825
 7041 7180 7246 7245 7180 7058 6884 6663 6404 6264 6086
 5872 5624 5339 5016 4652 4240 3774 3248 
537 1304 2016 2677 3286 3845 4352 4807 5212 5566 5869 5821
 5777 5739 5706 5681 5663 5655 5657 5671 5628 5658 5705
 5769 5853 5958 6084 6230 6398 6584 6786 
574 1442 2310 3183 4059 4940 5824 6713 7607 8506 9411 9367
 9326 9290 9262 9242 9233 9236 9256 9293 9353 9437 9549
 9693 9870 10084 10335 10624 10950 11311 11703 
585 1484 2401 3339 4297 5277 6278 7300 8344 9411 10501
 10451 10406 10366 10334 10312 10302 10306 10327 10370 10436
 10530 10655 10815 11013 11252 11532 11854 12218 12621 13058 
734 1856 2996 4158 5341 6546 7774 9023 10296 11592 12913
 12882 12857 12839 12830 12833 12850 12886 12944 13027 13141
 13260 13418 13619 13868 14168 14521 14927 15386 15893 16443 
734 1822 2890 3938 4968 5980 6974 7950 8909 9851 10776
 10652 10532 10420 10315 10221 10139 10070 10019 9987 9978 9946
 9940 9964 10018 10104 10221 10369 10545 10746 10966];    
winddemandtot = 0; 
winddemandtot (1,1:30)= Nddemand(1,2:end)+Nddemand(6,2:end); 
winddemandtot (2,1:30)= Nddemand(2,2:end)+Nddemand(7,2:end); 
winddemandtot (3,1:30)= Nddemand(3,2:end)+Nddemand(8,2:end); 
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winddemandtot (4,1:30)= Nddemand(4,2:end)+Nddemand(9,2:end); 
winddemandtot (5,1:30)= Nddemand(1,2:end)+Nddemand(10,2:end); 
 
%total wind 
x = 2021:2050; 
y = winddemandtot; 
plot(x,y*10^(-3)) 
legend('LDS','MDS','HDS','IEA baseline','IEA constrained REE') 
legend ('Location','northwest') 
title('Annual Nd demand for wind turbines') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%onshore 
y = Nddemand(1:5,2:end); 
plot(x,y*10^(-3)) 
legend('LDS','MDS','HDS','IEA baseline','IEA constrained REE') 
legend ('Location','northwest') 
title('Annual Nd demand for onshore wind turbines') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
 
%offshore 
y = Nddemand (6:10,2:end); 
plot(x,y*10^(-3)) 
legend('LDS','MDS','HDS','IEA baseline','IEA constrained REE') 
legend ('Location','northwest') 
title('Annual Nd demand for offshore wind turbines') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%% 
 
%recycling potential total 
windrecpot = [3516 16010 65813; 3519 16629 75462; 3522 17111
 83323; 3517 16575 74854; 3515 15897 62505]; 
vals = windrecpot'; 
bar (plotx,vals.*10^(-3)) 
legend('LDS','MDS','HDS','IEA baseline','IEA constrained REE') 
legend ('Location','northwest') 
title('Cumulative Nd recycling potential from wind turbines') 
set(gca,'XGrid','off','YGrid','on') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%% EV 
%% 
EVdemand = [124135 292512 281536; 160603 497279 700046; 491829 
1202630 1165314; 636389 2046790 2897584]; 
vals = EVdemand'; 
bar (plotx,vals.*10^(-3)) 
legend('low Nd-intensity, behavioural change','low Nd-intensity, no 
behavioural change','high Nd-intensity, behavioural change','high 
Nd-intensity, no behavioural change') 
legend ('Location','northwest') 
title('Cumulative Nd demand for EVs') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd demand (kt)') 
 
%% 
%plot annual 2021 to 2050 



 
A24  

NdEV = [2408 4426 6413 8720 10037 11496 15527 18539 21557
 25014 29123 28395 30426 31985 32975 31259 29332 27445 26140
 25431 25350 25863 26850 27773 28655 29345 29735 29769 29432
 28764 
2968 5110 7605 10556 12654 15030 20115 24318 28663 33584 39468
 40680 45111 49293 53254 53299 53254 53349 54095 55475 57498
 60119 63214 66249 69267 72125 74728 77030 79032 80784 
9372 17382 25287 34464 39728 45552 61573 73559 85576 99335 117029
 115198 124410 131651 136490 129386
 121409 113598 108196 105264 104926
 107052 111135 114957 118605 121463
 123078 123218 121821 119058 
11551 20070 29988 41723 50088 59557 79769 96489 113785 133368
 158600 165037 184458 202889 220427
 220610 220426 220819 223904 229620
 237992 248842 261652 274212 286703
 298536 309308 318839 327123 334375];     
%total EV Nd demand, low int with beh cha; low int without beh cha; 
high int beh ch; high int no beh ch 
y = NdEV; 
plot(x,y*10^(-3)) 
legend('low Nd-intensity, behavioural change','low Nd-intensity, no 
behavioural change','high Nd-intensity, behavioural change','high 
Nd-intensity, no behavioural change') 
legend ('Location','northwest') 
title('Annual Nd demand for EVs') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
 
%% 
EVrecpot = [116 10318 112738; 116 11699 153192; 407 39102 451573; 
407 44527 613990]; 
vals = EVrecpot'; 
bar (plotx,vals.*10^(-3)) 
legend('low Nd-intensity, behavioural change','low Nd-intensity, no 
behavioural change','high Nd-intensity, behavioural change','high 
Nd-intensity, no behavioural change') 
legend ('Location','northwest') 
title('Cumulative Nd recycling potential from EVs') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%% Production 
%% 
Ndproduction = [53291 58460 64130 70351 77175 84661 92873 101882
 111764 122606 134498 147545 161856
 177557 194780 213673 234399 257136
 282078 309440 339456 372383 408504
 448129 491597 539282 591593 648977
 711928 780985 
38291 42005 46079 50549 55452 60831 66732 73205 80305 88095 96640
 106014 116298 127579 139954 153529
 168422 184759 202680 222340 243907
 267566 293520 321992 353225 387488
 425074 466306 511538 561157 
15000 16455 18051 19802 21723 23830 26142 28677 31459 34510 37858
 41530 45559 49978 54826 60144 65978 72378 79398 87100 95548
 104817 114984 126137 138373 151795
 166519 182671 200390 219828]; 
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% 
cumprodtot = [837193 2112963 5332835]; %cumulative Nd production 
starting 2021 
cumprod = [601544 1518216 3831773;235649 594747 1501063 ];   
%official ; illegal 
vals = cumprod'; 
bar (plotx,vals.*10^(-3),'stacked') 
legend('official mining','illegal mining in China') 
legend ('Location','northwest') 
title('Cumulative Nd production') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%% 
 
%plot 
y = Ndproduction; 
plot(x,y.*10^(-3)) 
legend('total mining','official mining','illegal mining in China') 
legend ('Location','northwest') 
title('Annual Nd production') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%% Total demand 
% with behavioural change 
%% 
%low scenario: LDS for wind,  low Nd-intensity for EV 
totdeml = [125055 216572 197250; 124135 292512 281536];     
%wind ; EV; 
 
vals = totdeml'; 
bar (plotx,vals.*10^(-3),'stacked') 
legend('wind turbines','EVs') 
legend ('Location','northwest') 
title('Cumulative Nd demand for wind turbines and EVs, low demand 
scenario') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
 
%high scenario 
totdemh = [162797 326049 325228; 491829 1202630 1165314];     
%wind ; EV 
vals = totdemh'; 
bar (plotx,vals.*10^(-3),'stacked') 
legend('wind turbines','EVs') 
legend ('Location','northwest') 
title('Cumulative Nd demand for wind turbines and EVs, high demand 
scenario') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
%%  
% plot 
%% 
 
%low: LDS, low with beh ch; sum of both 
plot(x,NdEV(1,1:end).*10^(-3),'Color','b') 
hold on 
plot(x,winddemandtot(1,1:end).*10^(-3),'Color','r') 
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plot(x,(NdEV(1,1:end).*10^(-3)+winddemandtot(1,1:end).*10^(-
3)),'Color','g') 
%2021 annual production 
xx =[2021 2050]; 
yy = [53 53]; 
plot(xx,yy,'Color','k') 
%recycling potential 
plot(x,recpotEVlow.*10^(-3),'Color','b','LineStyle','--') 
plot(x,recpotLDStot.*10^(-3),'Color','r','LineStyle','--') 
plot(x,(recpotEVlow + recpotLDStot).*10^(-
3),'Color','g','LineStyle','--') 
legend ('Location','northwest') 
legend ('EVs','Wind turbines','EVs + Wind turbines','2021 annual 
production') 
title('Annual Nd demand and recycling potential, low demand 
scenario') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
 
hold off 
 
%high: HDS, high int with beh cha, sum of both 
plot(x,NdEV(3,1:end).*10^(-3),'Color','b') 
hold on 
plot(x,winddemandtot(3,1:end).*10^(-3),'Color','r') 
plot(x,(NdEV(3,1:end).*10^(-3)+winddemandtot(3,1:end).*10^(-
3)),'Color','g') 
%2021 annual production 
xx =[2021 2050]; 
yy = [53 53]; 
plot(xx,yy,'Color','k') 
%recycling potential 
plot(x,recpotEVhigh.*10^(-3),'Color','b','LineStyle','--') 
plot(x,recpotHDStot.*10^(-3),'Color','r','LineStyle','--') 
plot(x,(recpotEVhigh + recpotHDStot).*10^(-
3),'Color','g','LineStyle','--') 
legend ('Location','northwest') 
legend ('EVs','Wind turbines','EVs + Wind turbines','2021 annual 
production') 
title('Annual Nd demand and recycling potential, high demand 
scenario') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
hold off 
%% 
%production, rec pot , prod-recpot 
 
%with behavioural change 
%production 
y = Ndproduction; 
plot(x,y.*10^(-3)) 
hold on  
%rec pot high 
%plot(x,(recpotEVlow + recpotLDStot).*10^(-3),'LineStyle','--') 
%demand high - recpot 
p1 = plot(x,(NdEV(3,1:end).*10^(-3)+winddemandtot(3,1:end).*10^(-
3)-(recpotEVhigh + recpotHDStot).*10^(-3))) 
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p2 = plot(x,(NdEV(1,1:end).*10^(-3)+winddemandtot(1,1:end).*10^(-
3)-(recpotEVlow + recpotLDStot).*10^(-3))) 
legend('total mining','official mining','illegal mining in 
China','mining need, high demand scenario','mining need, low demand 
scenario') 
legend ('Location','northwest') 
title('Total annual Nd mining need') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
hold off 
 
%without behavioural change 
y = Ndproduction; 
plot(x,y.*10^(-3)) 
hold on  
%rec pot high 
%plot(x,(recpotEVlow + recpotLDStot).*10^(-3),'LineStyle','--') 
%demand high - recpot 
plot(x,(NdEV(4,1:end).*10^(-3)+winddemandtot(3,1:end).*10^(-3)-
(recpotEVhighn + recpotHDStot).*10^(-3))) 
plot(x,(NdEV(2,1:end).*10^(-3)+winddemandtot(1,1:end).*10^(-3)-
(recpotEVlown + recpotLDStot).*10^(-3))) 
legend('total mining','official mining','illegal mining in 
China','mining need, high demand scenario','mining need, low demand 
scenario') 
legend ('Location','northwest') 
title('Annual Nd mining need') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
hold off 
%% 
 
%combined 
%production 
y = Ndproduction; 
plot(x,y.*10^(-3)) 
hold on  
%with behavioural change 
plot(x,(NdEV(3,1:end).*10^(-3)+winddemandtot(3,1:end).*10^(-3)-
(recpotEVhigh + recpotHDStot).*10^(-3)),'LineStyle','-
','Color',[0.4940 0.1840 0.5560]) 
plot(x,(NdEV(1,1:end).*10^(-3)+winddemandtot(1,1:end).*10^(-3)-
(recpotEVlow + recpotLDStot).*10^(-3)),'LineStyle','-
','Color',[0.4660 0.6740 0.1880]) 
%without behavioural change 
plot(x,(NdEV(4,1:end).*10^(-3)+winddemandtot(3,1:end).*10^(-3)-
(recpotEVhighn + recpotHDStot).*10^(-3)),'LineStyle','--
','Color',[0.4940 0.1840 0.5560]) 
plot(x,(NdEV(2,1:end).*10^(-3)+winddemandtot(1,1:end).*10^(-3)-
(recpotEVlown + recpotLDStot).*10^(-3)),'LineStyle','--
','Color',[0.4660 0.6740 0.1880]) 
legend('total mining','official mining','illegal mining in 
China','mining need, high demand scenario','mining need, low demand 
scenario') 
legend ('Location','northwest') 
title('Annual Nd mining need') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
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hold off 
%% Nd demand including other uses 
%% 
Ndotherw = [31858 33047 33511 34048 33648 33501 34508 34763 34880
 34983 34923 34273 34068 33886 33759 34500 35250 36000 36750
 37500 38250 39000 39750 40500 41250 42000 42750 43500 44250
 45000]; 
Ndotherwo = [33684 34344 35031 35743 35468 35398 36431 36664
 36709 36690 36406 35473 34945 34366 33765 34500 35250 36000
 36750 37500 38250 39000 39750 40500 41250 42000 42750 43500
 44250 45000]; 
Ndotherwnet = Ndotherw .*0.5;   %assuming 50% of demand covered 
from recycling 
Ndotherwonet = Ndotherwo .*0.5; %same 
%plot 
%combined 
%production 
y = Ndproduction; 
plot(x,y.*10^(-3)) 
hold on  
%with behavioural change 
plot(x,(Ndotherwnet.*10^(-3) + NdEV(3,1:end).*10^(-
3)+winddemandtot(3,1:end).*10^(-3)-(recpotEVhigh + 
recpotHDStot).*10^(-3)),'LineStyle','-','Color',[0.4940 0.1840 
0.5560]) 
plot(x,(Ndotherwnet.*10^(-3) + NdEV(1,1:end).*10^(-
3)+winddemandtot(1,1:end).*10^(-3)-(recpotEVlow + 
recpotLDStot).*10^(-3)),'LineStyle','-','Color',[0.4660 0.6740 
0.1880]) 
%without behavioural change 
plot(x,(Ndotherwonet.*10^(-3) + NdEV(4,1:end).*10^(-
3)+winddemandtot(3,1:end).*10^(-3)-(recpotEVhighn + 
recpotHDStot).*10^(-3)),'LineStyle','--','Color',[0.4940 0.1840 
0.5560]) 
plot(x,(Ndotherwonet.*10^(-3) + NdEV(2,1:end).*10^(-
3)+winddemandtot(1,1:end).*10^(-3)-(recpotEVlown + 
recpotLDStot).*10^(-3)),'LineStyle','--','Color',[0.4660 0.6740 
0.1880]) 
legend('total mining','official mining','illegal mining in 
China','mining need, high demand scenario','mining need, low demand 
scenario') 
legend ('Location','northwest') 
title('Annual Nd mining need') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
hold off 
 
%demand vs supply 
y = Ndproduction; 
plot(x,y.*10^(-3)) 
hold on  
%with behavioural change 
plot(x,(Ndotherw.*10^(-3) + NdEV(3,1:end).*10^(-
3)+winddemandtot(3,1:end).*10^(-3)),'LineStyle','-','Color',[0.4940 
0.1840 0.5560]) 
plot(x,(Ndotherw.*10^(-3) + NdEV(1,1:end).*10^(-
3)+winddemandtot(1,1:end).*10^(-3)),'LineStyle','-','Color',[0.4660 
0.6740 0.1880]) 
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%without behavioural change 
plot(x,(Ndotherwo.*10^(-3) + NdEV(4,1:end).*10^(-
3)+winddemandtot(3,1:end).*10^(-3)),'LineStyle','--
','Color',[0.4940 0.1840 0.5560]) 
plot(x,(Ndotherwo.*10^(-3) + NdEV(2,1:end).*10^(-
3)+winddemandtot(1,1:end).*10^(-3)),'LineStyle','--
','Color',[0.4660 0.6740 0.1880]) 
legend('total mining','official mining','illegal mining in 
China','mining need, high demand scenario','mining need, low demand 
scenario') 
legend ('Location','northwest') 
title('Annual Nd demand vs mining') 
set(gca,'XGrid','off','YGrid','on') 
ylabel('Nd (kt)') 
hold off 
 


