

Influence of swelling spruce fibers with different organic and inorganic solvents

SDEWES Conference – Rome 2024 DI Cornelia Hofbauer

In cooperation with...

Cornelia Hofbauer^{1*}, Sebastian Serna-Loaiza¹, Luis Zelaya², Thomas Harter^{1,3}, Ulrich Hirn³, Luisa Scolari¹, Josef Füssl², Markus Lukacevic², Michael Harasek¹

¹ Christian Doppler Laboratory for Next-Generation Wood-Based Biocomposite, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria

² Christian Doppler Laboratory for Next-Generation Wood-Based Biocomposite, Institute for Mechanics of Materials and Structures, TU Wien, Vienna, Austria

³ Institute of Bioproducts and Paper Technology, TU Graz, Graz, Austria

Fractionation

- Sawmill by-products are used as raw material
- Material is pre-treated chemi-mechanically and thermally
- Components are fractionated to be transformed into a new form
- During forming fibers are re-arranged and re-compacted

5

What is the purpose...

- Long-term CO₂ storage
- Composites without nondegradable synthetic adhesives
- Biodegradable and environmentally friendly building material
- Improve the value chain of sawmill by-products (wood chips, sawdust, etc.)

Background and aim of the study...

Enhancing the characteristics of **reinforcement material for biocomposites**

- Working with by-products of the wood industry
- Pulping with "green" solvents
- Swelling pulping material to enhance fiber properties
 - Well established method in the paper industry
 - Makes the fibers more accessible and increases the uptake capacity of solvents
 - Important for solvents which can act as an additive carrier for matrix material

Finding sufficient swelling agents to prepare the fibers for impregnation with additives and/or matrix material, to create an **intermediate product for biocomposites**.

Why peracetic acidpulping (PAA)?

- Fibrillation process without severe mechanical treatment
- Initial fiber length almost completely preserved
- Pulping at 80-100°C moderate temperatures
- Selective extraction of lignin
- Preserving hemicellulose to enhance the binding ability^[2-4] – holocellulose pulp

Why swelling?

- Increases surface area for hydrogen bonding, enhances fiber bonding in variable products
- Improves fiber flexibility and elasticity
- Enhances the accessibility and uptake of solvents (with additives or matrix material)
- Improves tensile strength and tear resistance

Feedstock

- Spruce wood chips (softwood)
- Different particle sizes (1mm < x < 5cm)
- Air dried and stored at controlled temperature and humidity

Methods

PAA – process Peracetic Acid^[5]

Holocellulose pulp

Methods

Swelling Different solvents

Methods for analysis

- Liquid retention value (LRV)^[6]
 - Capacity of the fiber for liquid uptake

Microscopy

- Optical analysis of the fibers
- Crystallinity Index
 - Determination of crystalline and amorphous content
 - Wide Angle X-ray Diffraction (WAXD)

2.00 **Value [g liquid uptaken /g dry pulp]** 1.60 1.70 1.70 1.00 0.80 **Liquid Retention** 0.40 0.20 0.00 2% Water 50% 70% 100% 4% NaOH Ethanol

Liquid retention value Different solvents

- Liquid retention value (LRV)
 - Reflects on the liquid holding capacity

$$LRV(g/g) = \frac{m_{wet} - m_{dry}}{m_{dry}}$$

 m_{wet} represented the mass of the pulp before drying (after centrifugation) m_{drv} the dry weight of the pulp

- The best results were achieved with NaOH 2%
- At ethanol 100% is the lowest uptake

With increasing ethanol content, the LRV is decreasing

Swelling - Water

- Uniformly swollen along the length
- Width between 50-60µm
- Flexible and soft structure

- Uniformly swollen along the length
- Width between 50-60µm
- Flexible and soft structure

Swelling - Water

Swelling – Ethanol (EtOH) 50% to 100%

- Uniformly swollen with increasing water content
- Width 30-50µm, more even distributed with increasing water content
- Dried out to soft structure (100% \rightarrow 50% EtOH)

- Uniformly swollen with increasing water content
- Width 30-50µm, more even distributed with increasing water content
- Dried out to soft structure (100% \rightarrow 50% EtOH)

Swelling Ethanol 50%

Swelling Ethanol 100%

Swelling – Sodium hydroxide (NaOH) 2wt% and 4wt%

- Uniformly swollen along the length
- Width between 40-65µm
- Flexible and soft structure

Swelling NaOH 2wt%

- Uniformly swollen along the length
- Width between 40-65µm
- Flexible and soft structure

Results

Swelling NaOH 4wt%

Copyright Comparison of the LRV values 2.00 EtoH 100% and NaOH 2wt% Difference is noticeable on the surface and the morphology EtOH 100% Dired out and brittle structure NaOH 2wt% Swollen and soft structure 0.00

Swelling Ethanol 100%

Swelling NaOH 2wt%

EtOH 100%

Difference is noticeable on the

surface and the morphology

1000,0µm

Crystallinity Index Wide Angle X-ray Diffraction (WAXD)

- Investigation of crystalline and amorphous part
 - Reflects on flexibility (amorphous part) and strength (crystalline part)
- Crystallinity Index slightly increases with treatment
- Dissolution of amorphous components like hemicelluloses by NaOH and EtOH.

The reduction in amorphous content leads to a relative increase in the crystalline background.

Conclusions

What we learned...

- NaOH 2wt% resulted in the highest uptake capacity in the fibers
- Pure ethanol caused the fibers to have the lowest uptake capacity
- Compared to water and NaOH solution, ethanol and ethanol solutions swell the fibers unevenly along their length
- The slight increase in Crystallinity Index suggests that NaOH and EtOH treatments dissolve amorphous components, such as hemicelluloses, resulting in a higher relative crystalline content

Outlook

- Screening for matrix material (additives) and other swelling agents
- Testing the swelling agents with the matrix material on holocellulose fibers
- Impregnation with additives or matrix material after swelling
- Study of methods for the analysis of impregnated fibers for biocomposites

Thank you!

And a big thank you to my colleagues and mentors :)

cornelia.hofbauer@tuwien.ac.at

id in 😯

SDEWES | September 2024

References

[1] PAAVILAINEN, Leena. Influence of fibre morphology and processing on the softwood sulphate pulp fibre and paper properties. 1993.

[2] J. Pere, et al, "Influence of the hemicellulose content on the fiber properties, strength, and formability of handsheets", BioResources, 2018, doi: 10.15376/biores.14.1.251-263.

[3] Q. Wang, et al, "The effect of hemicellulose content on mechanical strength, thermal stability, and water resistance of celluloserich fiber material from poplar", BioResources, 2019, doi: 10.15376/biores.14.3.5288-5300.

[4] Z. Han, et al "Effect of Hemicellulose on the Wet Tensile Strength of Kozo Paper", Molecules, 2023, doi: 10.3390/molecules28196996.

[5] Adapted from: WESTIN, Per-Oskar, et al. Single step PAA delignification of wood chips for high-performance holocellulose fibers. Cellulose, 2021, 28. Jg., Nr. 3, S. 1873-1880.

[6] ISO 23714:2014 - "Pulp — Determination of water retention value (WRV)