
Characterizing Counterfactual
Explanation Search Spaces

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Christian Lutnik, BSc
Matrikelnummer 11808598

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Wien, 31. August 2024
Christian Lutnik Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Characterizing Counterfactual
Explanation Search Spaces

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Christian Lutnik, BSc
Registration Number 11808598

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Vienna, August 31, 2024
Christian Lutnik Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Christian Lutnik, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. August 2024
Christian Lutnik

v

Acknowledgements

From the very first days of my life, a path has been laid out before me that would
eventually lead me to the completion of this thesis. And even with knowing as little of life
as I know now, I am well aware that paving this path must not have been easy for those
who did it for me. I can only begin to imagine the personal and professional sacrifices
that both Mag. phil. Bernadette Lutnik and HR Dir. Dipl.-Ing. Hubert Lutnik have
made and still do to remove obstacles and to ensure my progress on this path, thereby
provide me with all the best education I could get. For this, I will be forever grateful to
them and to the rest of my family.

To continue further in life, one also needs the support of friends, advisors, and teachers,
which I was lucky enough to have enjoyed along my way. I am especially thankful for
Simon Dörrer, MSc ETH QE and Dipl.-Ing. Marc Goritschnig, who provided all the help
I needed to get through high school and university, and for Associate Prof. Dipl.-Ing.
Dr.sc. Jürgen Cito who advised me on this thesis.

In his book "Vom Kriege", Carl von Clausewitz claims that morale is amongst the most
important aspects of war. I find this claim to translate into the civilian world very well,
where a great deal of it is required to complete any nontrivial task. During the most
straining days my of studies, my morale has been greatly improved after meeting Chiara
Egger, BSc, who gave me as much, if not more, emotional support as others have given
me professional support.

Even though the list would be too long to name all of them here, I thank everyone who
went this path along with me, who made sure I would take the proper branches and
would stay on track.

vii

Kurzfassung

Derzeitige statische Quellcodeanalysierungssoftware wird derzeit nicht ausreichend ver-
wendet, weil sie von einer hohen Rate an falsch positiven und falsch negativen Fehlern
betroffen ist. Das Aufkommen von großen Sprachmodellen (LLM) trainiert auf umfas-
senden Mengen an Quellcode, sogenannten „Models of Code“, bringt neue Hoffnung
für die Erkennung von Fehlern und Sicherheitslücken. Das Erkennen von Fehlern bevor
Quellcode kompiliert wird, könnte die Zeit, um Fehler zu finden und zu beheben drastisch
reduzieren. LLMs sind prinzipbedingt nicht in der Lage ihre Antworten zu erklären, was
sich negativ auf ihre vernommene Vertrauenswürdigkeit und Sinnhaftigkeit auswirkt.
Eine Möglichkeit diese Nachteile zu umgehen sind Counterfactuals. Ein Counterfactual
versucht eine Antwort eines Black Box Models, wie eines LLMs, zu erklären, indem es
die Eingabe so lange verändert, bis das Modell zu einem anderen Ergebnis kommt. Diese
Änderung wird als Grund für das ursprüngliche Ergebnis interpretiert. Ist ein Counter-
factual zu weit von der ursprünglichen Eingabe entfernt, liefert es keine Informationen,
da bei einer anderen Eingabe ohnehin eine andere Ausgabe erwartet werden kann.

Nach Counterfactuals zu suchen kann zeitaufwendig sein, da die fortlaufende Änderung
der Eingabe einen exponentiellen Suchraum aufspannt. Diese Arbeit untersucht, wie
unterschiedliche Suchalgorithmen und Konfigurationen den Suchraum beeinflussen, und
verwendet als Vergleich eine exponentielle Suche. Die untersuchten Suchalgorithmen sind
eine Gentische Suche (GS), eine Greedy-Suche, und eine Layer Integrierte Gradienten
(LIG) Suche. Diese werden mit Maskierten Sprachmodellen und unterschiedlichen Models
of Code, sowie mit verschiedenen Permutationsfunktionen und Tokenizern kombiniert.

Die Suche nach Counterfactuals leidet unter der suboptimalen Genauigkeit der derzeit
zur Verfügung stehenden Models of Code, welche auf dem binären Klassifikationsproblem
der Erkennung von fehlerhaften oder vulnerablen C++ Quellcode eine Genauigkeit von
maximal 68.78% aufweisen. Trotzdem sind sowohl die GS als auch die Greedy-Suche
schneller auf einer Zeit pro Counterfactual Basis als eine k-exponentielle, umfassende
Suche (kEES). Die LIG-Suche ist 14-mal langsamer pro Counterfactual als kEES, da
90% der Suchläufe kein Counterfactual finden können. Wird die Zeit bis zum ersten
gefundenen Counterfactual betrachtet, ist der schnellste Algorithmus die Greedy-Suche,
gefolgt von der LIG-Suche, und der GS. kEES ist der langsamste Suchalgorithmus. Die
Wahl des Models of Code, der Perturbationsfunktion und des Tokenizers hat großen
Einfluss auf die Suchdauer pro Counterfactual.

ix

Abstract

Current state-of-the-art static code analysis software is underused as it is plagued by a
high rate of both false negatives and false positives. The emergence of Large Language
Models (LLM) trained on comprehensive amounts of source code, so called models of code,
provides new hope with detecting bugs and insecurities even before code is compiled,
which could greatly reduce the time needed and the cost of finding and fixing bugs.
However, LLMs are inherently unable to provide explanations for their outputs, which
limits the trust that developers place in them, as well as their usefulness. One way
to mitigate this drawback are explanations through counterfactuals. A counterfactual
attempts to explain the reason for a certain decision of a LLM by perturbing the input
such that the LLM comes to a different result. Then, this change might be the reason why
the LLM arrived at its conclusion in the first place. Not all counterfactuals are equally
useful. A counterfactual too far off the original input does not provide any information,
as a completely different input may be expected to lead to a different output.

Searching for counterfactuals can be a time consuming task, as just applying changes to
the input until a counterfactual is found spans up an exponential search space. This thesis
investigates how different search algorithms and configurations affect this search space as
compared to an exponential exhaustive search as benchmark. The search algorithms in
this thesis are the genetic search, greedy search, and the layer integrated gradient (LIG)
search. These are combined with masked language models and different models of code,
Tokenizers and perturbation functions.

The search for counterfactuals suffers from the accuracy of current models of code, which,
on a binary classification task of classifying source code as vulnerable or invulnerable,
reach an accuracy of 68.78% or less on C++ source code. Even so, both the greedy
search and a genetic search outperform the baseline k-Exponential Exhaustive Search
(kEES) significantly in a time-per-counterfactual manner. The LIG search algorithm is 14
times slower than kEES, since 90% of its search run end without finding a counterfactual.
When it comes to finding the first counterfactual, the greedy search algorithm is the
fastest one, followed by the gradient informed search, the genetic search, and lastly
the kEES. The choice of model of code, perturbation function, and Tokenizer greatly
influences the search duration per counterfactual.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Background 5
2.1 Transformer Architecture . 5
2.2 Generative Pretrained Transformer (GPT) 6
2.3 Code Review Models . 8
2.4 Counterfactual Search Heuristics . 8
2.5 Evaluating Counterfactuals . 12

3 Study Design 13
3.1 Overview . 13
3.2 Approach . 14

4 Evaluation 27
4.1 Model Selection . 27
4.2 Methodology . 31
4.3 Measurements . 34
4.4 Results . 35

5 Related Work 45

6 Conclusion 49
6.1 Summary . 49
6.2 Contributions . 52
6.3 Limitations and Future Work . 52
6.4 Threads to Validity . 53

7 Appendix 55

xiii

7.1 Search Configurations . 55
7.2 Search Parameters . 58
7.3 Search Results . 64
7.4 Removed Tokens Categories . 70

List of Figures 77

List of Tables 79

Acronyms 81

Bibliography 83

CHAPTER 1
Introduction

For certain types of bugs, current Machine Learning (ML) models of code can find
potential bugs fast and efficiently, with processing times of less than 20 ms per file,
and an accuracy of about 90% [35]. However, the output of ML models are inherently
inexplicable for humans, which can reduce both the trust and usefulness of the output
[15]. This can be a problem in software engineering, as knowing that a certain code is
inefficient or insecure means little if the developer does not get any information about
the reason or what specific line of code is to blame. Therefore, the developer might fail
to take appropriate actions to resolve the underlying issue.

To make decisions of black box models, such as ML systems, explainable, the concepts of
counterfactuals was introduced. For a given input i that yields an output o from a certain
decision model, a counterfactual is a perturbation δ applied to i resulting in δ(i) = i′,
such that the same decision model comes to a different decision o′ ̸= o when evaluating i′.
Then, δ is considered to be the reason for the change in the decision made by the model.

As an illustrative example, one might imagine an individual who applies for a loan at a
bank. The bank has to decide whether the credit rating of the individual is good enough.
For this task, it employs some black box Artificial Intelligence (AI) system. This system
is fed with the credit history and income of the individual. Imagine further that the
credit history of the individual is considered bad and the income is 50.000€ per year.
Now, the AI might determine that the individual should not be granted the loan. The
individual might not be content with this answer and demand an explanation. With
plain AI systems, such an answer might be impossible to give. However, one could search
for counterfactuals, i.e. change the input until the output changes. One counterfactual
might be an income of 50.000€ per year, but with a good credit history. In this case, the
AI determines the individual to be credit worthy. Another might be a bad credit history,
but an income of 70.000€. Those two counterfactuals are not equally useful, as it might
be possible to increase ones income, but it is not as easy to change the past to attain a

1

1. Introduction

better credit history. A possible search space spun up during this search might look as
displayed in Figure 1.1.

Figure 1.1: One possible search space in the search for a counterfactual to the creditwor-
thiness example. Counterfactuals are marked with a green check mark. The leftmost two
counterfactuals are of low usefulness, as they would require a change in the credit history.
The center counterfactual needs an additional increase in income, and is therefore even
less actionable. The counterfactual to the right requires an increased income, and is
therefore more actionable in this scenario.

As explained in the example, not every perturbation δ is equally useful. If the resulting i′

is too far off the original i, no actual information can be gained, as it is expected that a
completely different input may result in a different output. Therefore, it is required from
counterfactuals to be as close to the original input as possible, while still yielding different
outcomes [17][34] The definition of closeness depends on the context. Furthermore,
counterfactuals are expected to be actionable, i.e. the perturbation has to be a realistic
change, that is still possible to achieve within the context of the input space [34]. To
this end, [8] has proposed a technique to find counterfactuals for source code that appear
"natural" to a human and are plausible, actionable, and consistent with respect to, and lie
in the proximity of, the original input. This technique creates counterfactuals that were
found useful by 83.3% of interviewed users. However, finding an appropriate perturbation
using this method takes between 30 seconds and 10 minutes, depending on the size of
the perturbation. These processing times do not allow for real-time applications and
stem from the exponential complexity of the search for counterfactuals with respect to
the input size. Therefore, it is crucial to find ways to shrink the search space and find
efficient ways to search what remains of it.

This thesis aims at exploring ways to efficiently search through the most relevant parts
of the search space to speed up the search for counterfactuals. To this end, a program
is written that incorporates different search and perturbation strategies and which can
apply those to different models of code. The resulting program is easily extendable and
model agnostic as far as possible. Implemented search algorithms include a k-Exponential
Exhaustive Search (kEES) as baseline, a Genetic Algorithm (GA), a Greedy Search

2

algorithm, and a Layer Integrated Gradients (LIG) search. Perturbation algorithms
include token removal, mask replacement through the use of a Masked Language Model
(MLM), and randomly selecting tokens from the input dictionary. The dictionary is
created from the input through either a Line Tokenizer or a C++ Tokenizer using Clang.
Resulting counterfactuals are evaluated for their similarity to the orignial input using
the Jaro similarity [4]. Algorithms producing these counterfactuals are evaluated for
the amount of counterfactuals and the time needed to produce them. The program also
includes an array of different helper classes to be used in conjunction with the search
algorithms, such as Tokenizers, Perturbers and Unmaskers.

Using this system, the following research questions shall be answered:

• RQ1: What is the search space for possible perturbations with respect to different
search heuristics?
The search space spanned up by employed search algorithms and perturbation
functions might greatly differ according to the exact configuration used. While an
exponential search has to iterate over all possibilities, heuristic search algorithms
can focus their search on promising parts of the search space, thereby saving time
and allowing for a more thorough exploration of these areas.

• RQ2: How can gradient information from the model of code influence the search
space?
Using gradient information could improve the performance of the search for coun-
terfactuals, but the additional computing required could slow down the search such
that heuristic search algorithms could be faster.

• RQ3: How do different perturbations functions influence the search space?
Different perturbation functions paired with different Tokenizers might lead to a
faster convergence on counterfactuals. Tokenizers yielding less but larger tokens
might speed up the search, but the resulting perturbations might be too coarse to
deliver counterfactuals.

3

CHAPTER 2
Background

This chapter explains the technical background of this thesis to the reader.

2.1 Transformer Architecture

The transformer architecture was introduced in the 2017 paper "Attention Is All You
Need" [45]. In this paper, the authors propose a successor to the then state-of-the-art,
the Recurrent Neural Network (RNN). RNNs have two major disadvantages, that limit
their usage for large inputs and outputs. The first disadvantage is their sequential nature.
A RNN requires a computation or time step for each token the input is split into. As
each step requires a hidden state computed by the preceding state, this computation
cannot be parallelized. This makes for a poor performance on large input sizes both
during training and inference. The second disadvantage is the problem of vanishing or
exploding gradients. Here, the efficacy of the backpropagation algorithm used to train the
model declines when the model dimensions increase. This is due to the chaining of the
derivatives of the loss functions of many different neurons results in many multiplications.
If the factors tend to be lower than 1, the result will approach 0 (vanishing gradient), if
they tend to be larger than 1, the resulting number will grow rapidly (exploding gradient).
In either case, this means that the apparent contribution of a neuron to the output is
either massively over- or underestimated [33].

Transformers claim to overcome both of these problems, allowing for fast learning on
comparatively little training data [45], where the training on any one sample takes only a
single computational step independent of the size of the sample. Inference, however, still
requires a subsequent operation for each token. This is possible because the transformer
can take any input of dmodel tokens at one time. If the input is shorter than dmodel, it
needs to be padded with predefined padding tokens.

5

2. Background

The original transformer as proposed in [45] consists of an encoder and a decoder, as
displayed in Fig. 2.1. During training, the encoder is given the input sequence with
prepended Start Of Sequence (<SOS>) token and appended End Of Sequence (<EOS>)
token. The decoder is given the correct output sequence, which is prepended with a
<SOS> token. The transformer is trained to output the output sequence without the
<SOS> token, but with an appended <EOS> token. After one time step, both input and
output sequence are processed by the transformer, finishing this training sample. Both
the <SOS> and <EOS> tokens are special predefined characters in the dictionary of the
transformer.

During inference, the encoder is given the input sequence with prepended <SOS> token
and appended <EOS> token, as was the case during training. It calculates its output,
which is passed on to the decoder. Furthermore, the decoder receives the <SOS> token.
The decoder then generates the first token for the answer of the transformer from the
<SOS> token and the output of the encoder. Then, in the second time step, the decoder
is given the <SOS> token with the appended first token from the previous time step. The
encoder does not need to recompute a new output, as the input does not change during
inference for one sample. After computing the second output token, it is added to the
input for the decoder, and the whole process is repeated until the transformer outputs
the <EOS> token [45].

2.2 Generative Pretrained Transformer (GPT)
Through the use of unsupervised training, the need for large amounts of labeled data
can be reduced. This was achieved in [36], where a transformer decoder variant was
trained on a large corpus of continuous text data. The text data originated from the
BookCorpus dataset, which contains over 7000 unpublished books [53]. The authors of
[36] considered it important that the training data does not consist of random sentences
or words, as they wanted to train their model on coherent text spanning over several
sentences or paragraphs. This way, the model could be trained to generate continuous
and natural text. After the unsupervised training, the model was fine-tuned on tasks
such as natural language inference, text classification, question answering, and others,
using datasets specific for each task. The resulting type of model is today known as
Generative Pretrained Transformer (GPT).

As of the writing of this thesis, the described approach, albeit heavily modified and
expanded, is the state-of-the-art for Large Language Model (LLM), such as GPT-4
[1], BERT [11], and LLaMA [44], among others. However, due to the large size of the
referenced models, the BookCorpus dataset plus the fine tuning data sets would not be
enough. Therefore different and much larger training data sets are used. The exact data
used and ways in which it is used are often kept secret by the organizations creating
these models [3][1]. It is known, however, that next to the quantity, the quality of the
training data is important. This means that textual training data should be written by
humans and should have undergone an editing process. Wikipedia, peer-reviewed journal

6

2.2. Generative Pretrained Transformer (GPT)

Figure 2.1: The transformer architecture as presented in the paper "Attention Is All You
Need". The left side is the encoder which takes the input with start and end tokens. The
right side is the decoder. During training, it is fed the expected output, during inference
it is fed a start token in the first time step and its own output afterwards. Image from
[45].

articles, and books satisfy these requirements, and are therefore considered high quality
training data [3]. More recent models such as GPT-3, GPT-4, and others, also undergo an
additional training step called Reinforcement Learning from Human Feedback (RLHF).
Here, humans validate the responses to input prompts to certain questions aimed at
producing unwanted answers, such as how to build a bomb or how to synthesise dangerous
chemicals. This step is especially aimed at preventing the model from generating offensive
outputs and to reduce bias introduced by the training data [1]. However, RLHF can
overshoot its mark and lead to degraded performance and incorrect responses [38].

Model sizes have increased drastically over the different generations of models. The
original GPT [36] model has a size of 110M parameters, GPT-2 uses 1.5 billion parameters
[50], and GPT-3 175 billion parameters [14]. OpenAI does not disclose the dimensions
of GPT-4 [1]. However, [6] found ways to extract hidden information from transformer
models using only conventional API access, but choose to employ this attack only against
models when given permission from their owners. Therefore they did not find or publish
any previously undisclosed information. Modern GPT models are able to emulate a
conversation in natural language with humans in different languages, and perform well
in a variety of exams aimed at humans. GPT-4 is claimed to perform amongst the top

7

2. Background

10% of test takers of the bar exam1, but also sometimes "hallucinates" and produces
unreliable or wrong outputs [1]. Other models such as CodeBERT [12] are also trained
specifically on programming language tasks. The extensive training of GPTs and their
resulting world knowledge models allows them to be fine tuned to previously unknown
tasks on new data with relatively little additional training [26].

2.3 Code Review Models
Automated code review and bug finding has received increased attention lately, especially
with the increased popularity and availability of deep learning tools. Such tools aim to
overcome both the high false-positive and false-negative rates of static code analysis tools,
which is currently a factor why they are underused [23][41]. Current state of the art
ML models of code are able to find bugs fast and accurately, e.g. DeepBugs [35], which
claims an accuracy of between 84.23% and 94.53% on name based bugs in JavaScript
code, and a processing time of less than 20ms per file. However, these systems cannot
tell how they have reached the conclusion that certain parts of source code contain bugs
and are often limited in the type of bugs that can be detected. The inability of a model
to explain its results limits its usefulness and the trust that developers place in it [15].

2.4 Counterfactual Search Heuristics
To find counterfactuals, this thesis explores different search strategies.

2.4.1 Genetic Search (GS)
A GA or Genetic Search (GS) is an approach to solve complex problems inspired by
the process of natural genetics and natural selection in the real world. These types of
algorithms require little problem information [10]. Some form of loss or fitness function,
however, is required. This means that e.g. a plain binary problem is not solvable by this
type of algorithm.

During the runtime of a GA, several different attempted solutions compete for survival.
Each of these attempts are represented by a binary string of the same arbitrary length
and structure that represents the parameters or variables of the problem. As an example,
one might imagine a GA trying to minimize the surface area of a cylinder, while keeping
the volume above a value of 1000. The fitness function might be the inverse of the surface
area of the cylinder, such that a high surface area corresponds to a low fitness. If the
volume is lower than the specified minimal value, the fitness might be zero. A solution
candidate might consist of an eight bit binary string, where the first four bits encode the
height and the last four bits encode the radius of the cylinder.

1101 0110
1https://www.americanbar.org/groups/legal_education/resources/bar-admissions/bar-exams/

8

https://www.americanbar.org/groups/legal_education/resources/bar-admissions/bar-exams/

2.4. Counterfactual Search Heuristics

height = 13 radius = 6

The example candidate has a height of 13 and a radius of 6, resulting in a volume V of
≈ 1470.27, and a surface area A of ≈ 716.28. Its fitness is 1/A, which is ≈ 0.001396.

During the runtime of the GS, the candidates in the gene pool are evaluated for their
evolutionary fitness by evaluating the loss function given the parameters of the candidate.
Depending on this fitness, candidates are either given the opportunity to reproduce or
are removed from the set of possible solutions, i.e. killed.

Genetic algorithms are structured in phases:

• Phase 1: Initial Population
At the beginning, a gene pool of candidates with random parameters, i.e. binary
strings, is created.

• Phase 2: Evaluation
This phase marks the begging of an iteration or generation. All candidates in the
gene pool are tested against the problem and their fitness is calculated.

• Phase 3: Selection
Candidates are selected for survival. Candidates with a high fitness are more likely
to survive, but still have a chance of being removed from the gene pool. This phase
is crucial to limit the diversity in the gene pool to promising candidates.

• Phase 4: Reproduction
The free space generated by the killing of unfit candidates is now filled up by letting
candidates reproduce. The higher the fitness of a candidate, the higher is its chance
for reproduction. The resulting children hopefully inherit promising traits from
their parent or parents.

• Phase 5: Mutation
To introduce and increase diversity in the gene pool, randomly selected candidates
are mutated. This phase concludes an iteration, and the algorithm starts over at
Phase 2 until the iteration limit is reached or a candidate is found that performs
well enough.

Selection

In the selection phase of a GA, it is decided which solution candidates may live on to the
next generation. This is done by comparing their fitness with the competition. Higher
fitness means greater chance for survival. However, to allow for greater diversity and
thereby lower chance of getting stuck in a local optimum, even the fittest of candidates
might be killed, and the candidates with the lowest fitness might survive. The actual
selection of candidates to be killed is usually done through tournament selection or
roulette wheel selection. In some implementations, the candidate with the highest overall

9

2. Background

fitness is spared from the selection and will always survive. The ratio of candidates killed
from the gene pool per generation is usually predefined before the start of the GA.

Reproduction

Reproduction is done through crossover when using two parents or by copying and
mutating a candidate when a single parent is used.

In crossover, genes from two parents are merged to produce one or two new solution
candidates. The genes are chosen through some random selection from either parents
binary string. The parents are usually chosen through tournament selection or roulette
wheel selection with respect to their fitness. Applied to the cylinder example above,
crossover of parent candidates Ca and Cb producing two children Cab and Cba might look
as follows:

Ca : 110|1 0110 =⇒ Cab : 110|0 1100

Cb : 100|0 1100 =⇒ Cba : 100|1 0110

Where the vertical line | represents the pivot point. Bits before this point are taken from
one parent, bits after this point from the other parent. The position of the pivot point is
random and different for each crossover operation. There may also be a second pivot
point, after which the parent who’s bits are taken from is swapped again.

Mutation

Both the reproduction step and the mutation step aim at increasing the diversity in
the gene pool. Mutating a candidate means to change at least one of its parameters at
random. Applied to the cylinder example above, mutation of candidate Ca might look as
follows:

Ca : 1101 0110 =⇒ Ca′ : 1101 0010

Where the underlined bit is flipped. A mutation could also affect more than one bit and
is not limited to bit flipping.

Both mutation and crossover can produce new candidates that perform badly. This does
not impact the overall performance of the GA, as these candidates will likely be killed
in the next generation. However, since new candidates are created from already well
performing candidates, it is more likely that their children will perform as good as, if not
better than, the parents. Over time, this leads to the gene pool being occupied largely
by good candidates, and the fitness of the total gene pool should increase [10].

GAs are not always restricted to the use of variables and parameters encoded in binary
strings. Different approaches, such as graph encoding as used by NeuroEvolution of

10

2.4. Counterfactual Search Heuristics

Augmenting Topologies (NEAT) [42], exist. In NEAT, the topology of a Neural Network
(NN) is modified randomly. Initially, a NN in NEAT starts out just with as many input
and output neurons as the problem to solve requires. Mutations include the addition or
removal of hidden neurons and connections between neurons, as well as the modifications
of weights associated to the connections between neurons. During crossovers, the graphs
of two parent NN are merged to produce one child. This allows for complex NNs, which
can even have memory by transitively connecting the output of a neuron to its input.
Still, the principles of GAs are followed, as NEAT starts out with an initial population,
and aims to improve this population through selection, crossover and mutation [42].

2.4.2 Greedy Algorithm
A greedy algorithm takes at each decision point the option which promises the highest
local improvement. This strategy does not always lead to an optimal solution, but might
lead to a solution that is good enough and faster than e.g. an exponential search [5]. It
requires some heuristic, which can give an estimate of the magnitude of improvement
for any given choice at any decision point. By following many local optima, it is hoped
that eventually a global optimum will be reached. However, in general such a guarantee
cannot be given [9].

2.4.3 k-Exponential Exhaustive Search (kEES)
A kEES is an exhaustive search algorithm, that searches the whole search space of a given
problem. Since for any nontrivial problem this search space is too large to completely
iterate through in a reasonable time, kEES aborts the search after reaching a search
depth of k. This allows the algorithm to evaluate all possible solutions within this depth,
but prohibits it from focusing its search at promising avenues. In contrast to the GS and
greedy algotrithms, an advantage of the kEES is that it does not require a loss or fitness
function. Furthermore, it does not require any heuristics, structures in, or understanding
of the problem and the effect of individual parameters on the problem, as all possibilities
will be evaluated anyway [32]. Therefore kEES can in theory be used on any problem, but
its runtime might be prohibitively slow for problems with nontrivial branching factors.

2.4.4 Layer Integrated Gradients
This thesis uses the LIG implementation from the Captum Library2 to make the results
of the models of code interpretable [25]. Captum is open source3 and supports an array
of different technologies intended to solve this task. It also provides tools to visualize its
results.

LIG is based on Integrated Gradients (IG), but assigns an importance score to the inputs
or outputs of each layer in the NN [25]. IG works by integrating the gradients of the

2https://captum.ai/api/layer.html#layer-integrated-gradients
3https://github.com/pytorch/captum

11

https://captum.ai/api/layer.html#layer-integrated-gradients
https://github.com/pytorch/captum

2. Background

output of a NN with respect to the input. It does this by computing the average gradient
while the input is shifted from the original input to some baseline. This baseline provided
by the user is usually set to zero or an equivalent value. There are no modifications
required to the NN for IG to work [7].

2.5 Evaluating Counterfactuals
Counterfactuals are evaluated for their closeness to their original input using the Jaro
Distance [22]. This distance is a dimensionless number. A value of 1 means equals strings,
and 0 means no similarity between two given strings. The Jaro similarity function counts
the number of matching characters c and the number of pairs of adjacent characters t
which are swapped in both input strings s1 and s2. Then, the distance is calculated as
follows:

Jaro(s1, s2) = 1
3(c

|s1| + c

|s2| + c − t

c
)

where s1 and s2 are the strings to be compared, and |s| gives the number of characters
in string s [30].

For the context of this thesis, the actual value of a string similarity of a counterfactual
to its respective input is only relevant when it is compared to the similarities of other
counterfactuals. This thesis assumes that if two counterfactuals have a different Jaro
distance, the one with the higher distance is closer to the input and therefore more useful
to the user.

The jellyfish Python library4 is used to compute the Jaro distance in this thesis.

4https://jamesturk.github.io/jellyfish/

12

https://jamesturk.github.io/jellyfish/

CHAPTER 3
Study Design

This chapter shows how this thesis is designed to answer the research questions.

3.1 Overview
To investigate how different settings influence the counterfactual search space, this thesis
uses an array of interchangeable components in a way to produce comparable results.
Each of these components can influence the search space to make the search faster, more
thorough, more efficient, or to change it in some other way. A broad overview of the
types of components is presented in Figure 3.1 and the following text. A more detailed
explanation is given in Section 3.2.

Figure 3.1: The exact configuration of the search methods used influences the search
space, which in turn influences the number and types of produced counterfactuals.

13

3. Study Design

The search space is spun up by the following components:

• Classifiers: In the context of this thesis, a classifier takes some source code snippet
and classifies it into one of two categories, either vulnerable or not vulnerable.
Classifiers can also provide metadata to decisions, such as a confidence score. The
accuracy of classifications and of the provided confidence score can help the search
with finding better counterfactuals, and to do so faster.

• Tokenizers: A Tokenizer splits the source code snippet into a list of tokens, and
can convert a list of tokens back into a source code snippet. Such a list of tokens
can be changed by a Perturber. Tokenizers can split the input by lines, words, or
some other means, and can therefore decide on the granularity of a change and
have great influence on the width of the search space.

• Perturbers: Perturbers change the list of tokens from some source code snippet
by removing, adding new or existing tokens, or changing entries in this list. The
resulting changed source code snippet can then lead to a different classification and
therefore a counterfactual.

• Search Algorithms: The employed search algorithm decides which avenues within
the search space should be explored. This search can be guided through metadata
provided by the classifier or it can perform an exhaustive exploration. The efficiency
of a search algorithm, and its capability to use metadata from the classifier, has a
strong effect on the speed of the search and the number of produced counterfactuals.

• Unmaskers: If the employed Perturber allows it, it can add predefined mask
tokens to the list of tokens. These mask tokens will then be unmasked, i.e. replaced
with source code appropriate for the location of the mask token, by an Unmasker.
If an Unmasker is able to fix vulnerabilities in a source code snippet, this can
easily lead to the discovery of a counterfactual, or at least guide the search into a
promising direction.

Together, these components can change how many counterfactuals can be found, and how
fast the search is. They also affect the quality of the counterfactuals. The aim of this
thesis is to find how different implementations of these components change the search
space differently, and which perform better than others in some regard.

3.2 Approach

This section describes the approach taken in developing the counterfactual generator.

14

3.2. Approach

3.2.1 Project Structure

As is common in the field of ML, the software behind this thesis is implemented in
Python and makes use of an array of different libraries, such as the Transformers library1,
NumPy2, and others. In order to make the system searching for counterfactuals as
easily expandable as possible, it is structured in a modular way. This means, that
each component is abstracted into its own abstract superclass, from which individual
implementations are derived. Components include Classifiers, Tokenizers, Perturbers,
Search Algorithms, and Unmaskers.

Classifiers

In the context of this section, Classifiers are wrapper classes around models of code. These
are given some source code and are asked to provide a classification. If the underlying
model is able to supply one, a confidence score is provided, too. The abstract superclass
is the AbstractClassifier class, as given in Listing 3.1.

1 class AbstractClassifier:
2 def classify(self, source_code: str) -> (bool, float):
3 """Evaluates the input and returns a tuple with (result,

confidence)"""
4 raise NotImplementedError

Listing 3.1: The abstract superclass for all Classifiers.

This class contains a single function classify(self, source_code: str), which
has to be implemented by its inheritors. It returns a tuple containing the classification
and the confidence as float. The classification is returned as a boolean value. Typically,
False means secure code and True means unsecure code. The actual value of this
classification has little consequence, as only a change of this value over different inputs
contains any information with respect to the search for counterfactuals. However, the
actual classification is checked in the AbstractSearchAlgorithm, and searches on
code that is classified as secure are aborted.

One example implementation is the PLBartClassifier, which uses the PLBart [2]
model as described in Section 4.1.2 to classify input strings. Its source code is displayed
in Listing 3.2.

1 class PLBartClassifier(AbstractClassifier):
2 path = "uclanlp/plbart-c-cpp-defect-detection"
3 tokenizer = AutoTokenizer.from_pretrained(path)
4
5 def __init__(self, device):

1https://pypi.org/project/transformers/
2https://numpy.org/

15

https://pypi.org/project/transformers/
https://numpy.org/

3. Study Design

6 self.model =
PLBartForSequenceClassification.from_pretrained(self.path,
output_attentions=True).to(device)

7 self.device = device
8
9 def classify(self, source_code: str) -> (bool, float):

10 """Evaluates the input and returns a tuple with (result,
confidence). A result of 0 means secure code,

11 1 is insecure"""
12 inputs = self.tokenizer(source_code, return_tensors="pt")
13 input_ids = inputs["input_ids"].to(self.device)
14 attention_mask = inputs["attention_mask"].to(self.device)
15
16 with torch.no_grad():
17 logits = self.model(input_ids=input_ids,

attention_mask=attention_mask).logits
18 clazz = logits.argmax().item()
19 return int(clazz) == 0, float(logits[0][clazz])

Listing 3.2: The implementation of the PLBartClassifier. Note that the input
tensors are moved to device, which is either a Graphics Processing Unit (GPU) or
Central Processing Unit (CPU), depending on the software and hardware available.

Additionally, the AbstractClassifier class contains several abstract methods to
provide access to raw data and the models tokenizer to be used by the Captum library
to perform the LIG search. These methods are omitted for brevity, but include getters
for the IDs of begin-of-string, padding, and end-of-string tokens, as well as methods to
map tokens to their ID and vice versa and to obtain the embeddings of the model. An
overview over all Classifiers used in this thesis is given in Figure 3.2.

Figure 3.2: An overview over all Classifiers used in this thesis.

Tokenizers

The Tokenizers split the input string into several tokens, and in the process of this
splitting create a dictionary, which is a list containing at least all tokens in the input.
The ID of a token is its index in the dictionary list. Note that these Tokenizers may
differ from Tokenizers used by the actual models of code as given in Listing 3.2, line
10. The granularity of the tokens depends on the actual implementation. Each to-
ken is assigned an unique token id. Furthermore, a Tokenizer can provide the string

16

3.2. Approach

represented by a list of token IDs. The abstract superclass for all Tokenizers, the
AbstractTokenizer class, is presented in Listing 3.3. This class contains an abstract
function tokenize(self, source_code: str), which has to be implemented by
its inheritors. This function splits the input string into tokens and returns a tuple
containing the number of tokens in the input and the generated dictionary. Furthermore,
the AbstractTokenizer contains the functions to_string(self, dictionary:
List[str], tokens: List[int]) -> str to reconstruct a string from a list of
token IDs, and to_string_unmasked(self, dictionary: List[str], tokens:
List[int], replace_with_mask: int) -> str. The latter function not only
reconstructs the string from the list or token IDs, but, if it finds the predefined
AbstractUnmasker.MASK_INDEX as id, or if the index in the tokens list matches the
replace_with_mask parameter, replaces that token with the result of the AbstractUnmasker
given in the __init__(...) function.

1 class AbstractTokenizer:
2 EMPTY_TOKEN_INDEX = -2
3
4 def __init__(self, language: Language, unmasker: AbstractUnmasker

| None = None):
5 self.language = language
6 self.unmasker = unmasker
7 if unmasker is None:
8 self.mask = None
9 else:

10 self.mask = unmasker.get_mask()
11
12 def tokenize(self, source_code: str) -> (int, List[str]):
13 """Returns a tuple containing the number of tokens in the

document, and a list of all available words,
14 including words not in the document"""
15 raise NotImplementedError
16
17 def to_string(self, dictionary: List[str], tokens: List[int]) ->

str:
18 perturbed_sequence = []
19
20 for i in tokens:
21 if i == AbstractUnmasker.MASK_INDEX:
22 perturbed_sequence.append(self.mask)
23 elif i == self.EMPTY_TOKEN_INDEX:
24 pass
25 else:
26 perturbed_sequence.append(dictionary[i])
27
28 return format_code(’ ’.join(perturbed_sequence), self.language)
29
30 def to_string_unmasked(self, dictionary: List[str], tokens:

17

3. Study Design

List[int], replace_with_mask: int = -1) -> str:
31 perturbed_sequence = []
32
33 for i in tokens:
34 if i == self.EMPTY_TOKEN_INDEX:
35 pass
36 elif i == replace_with_mask or i ==

AbstractUnmasker.MASK_INDEX:
37 code = format_code(self.to_string(dictionary, tokens),

self.language, self.mask)
38 replacement = self.unmasker.get_mask_replacement(code)
39 perturbed_sequence.append(replacement)
40 else:
41 perturbed_sequence.append(dictionary[i])
42
43 return format_code(’ ’.join(perturbed_sequence), self.language)

Listing 3.3: The abstract superclass for all Tokenizers, the AbstractTokenizer.

One example implementation of the AbstractTokenizer is the LineTokenizer.
This Tokenizer splits the input at every newline ’\n’ character and therefore produces
one token per unique line in the input. An overview over both Tokenizers used in this
thesis is given in Figure 3.3.

Figure 3.3: An overview over both Tokenizers used in this thesis.

Perturbers

The task of a Perturber is to change a given source code, such that a Classifier might
classify it differently than the original input, thereby generating a counterfactual. To
help with this task, counterfactual candidates are stored in the program as instances
of the Entry class or variations of it. Each such instance has a classification,
fitness, and document_indices variable. The classification and fitness
variables store meta data according to the search algorithm, or might be left unused.
The document_indices variable stores a list of the token IDs in the correct order
making up the source code of this candidate. By removing or adding an index to this
list, a token can be removed or added to a candidate. It is the task of a Tokenizer
to provide the indices for the list and to convert this list back into a string. To keep
track of the search history of a counterfactual, each Entry object also contains the
number_of_changesvariable which counts the number of changes to the original input,

18

3.2. Approach

and the changed_values set, which contains the token IDs of all tokens that were
changed from the original input.

The base class for all Perturbers is the AbstractPerturber class, as displayed in List-
ing 3.4. It contains a function perturb(self, source: List[int], dictionary_length:
int) -> List[int], which takes a list of token IDs and returns a new and perturbed
list from the source parameter, with perturbances according to the implementation of
perturb_in_place(...). Two further functions are abstract. The first abstract func-
tion, perturb_in_place(self, source: List[int], dictionary_length:
int), applies the perturbation to the source parameter in-place, without creating a
new list. The second abstract function, perturb_at_index(self, index: int,
source: List[int], dictionary_length: int), perturbs the token ID at
index in the source list.

1 class AbstractPerturber:
2 def perturb(self, source: List[int], dictionary_length: int) ->

List[int]:
3 result = [*source]
4 self.perturb_in_place(result, dictionary_length)
5 return result
6
7 def perturb_in_place(self, source: List[int], dictionary_length:

int):
8 raise NotImplementedError
9

10 def perturb_at_index(self, index: int, source: List[int],
dictionary_length: int):

11 raise NotImplementedError

Listing 3.4: The abstract superclass for all Perturbers, the AbstractPerturber.

An example implementation of the AbstractPerturber is the RemoveTokenPerturber,
as displayed in Listing 3.5. This implementation removes a random token from the
source list in the perturb_in_place(...) function, and replaces the token at
index in the source list in the perturb_at_index(...) function with the spe-
cial token AbstractTokenizer.EMPTY_TOKEN_INDEX, which is a placeholder for an
empty string.

1 class RemoveTokenPerturber(AbstractPerturber):
2 def perturb_in_place(self, source: List[int], dictionary_length:

int) -> int:
3 index = int(len(source) * random.random())
4 original = source[index]
5 del source[index]
6 return original
7
8 def perturb_at_index(self, index: int, source: List[int],

dictionary_length: int):

19

3. Study Design

9 source[index] = AbstractTokenizer.EMPTY_TOKEN_INDEX

Listing 3.5: The implementation of the RemoveTokenPerturber.

An overview over the Perturbers used in this thesis is given in Figure 3.4.

Figure 3.4: An overview over the Perturbers used in this thesis.

Search Algorithms

The abstract class AbstractSearchAlgorithm is a wrapper around the actual im-
plementations of the different search algorithms used in this thesis. This is done to
provide a uniform interface between the search algorithms and the rest of the framework.
AbstractSearchAlgorithm contains an abstract function perform_search(...)
-> List[Counterfactual], which has to be implemented by its inheritors. This func-
tion does the actual searching for counterfactuals, and returns a list of all counterfactuals
found during the search. It should not be called by the user. The search(...) ->
SearchResult function is the public facing search function of this abstract class. It does
some preprocessing steps common to all implementations of search algorithms, such as
classifying the original input source code, and then calls perform_search(...). The
returned SearchResult object contains a possibly empty list of Counterfactuals,
the time needed to complete the search, the names of all components assisting in the
search, as well as the original input. If unrecoverable errors occur during the search,
these errors are also stored in the SearchResult object, as discussed in Section 4.2.4.
An overview over the search algorithms used in this thesis is given in Figure 3.5.

Figure 3.5: An overview over all search algorithms used in this thesis.

Unmaskers

Unmaskers turn predefined mask tokens into source code. This can be done through the
use of a MLM. The abstract superclass for all Unmaskers is the AbstractUnmasker.
This class consists of two abstract functions. get_mask(self) -> str | None

20

3.2. Approach

returns the mask token that the MLM uses. get_mask_replacement(...) ->
int is given a source code as string which may contain a mask token. It queries the
mask replacement from the MLM, and appends this new token to the dictionary. Lastly,
it returns the index in the dictionary of this new token. If the given source code does not
contain the mask token, this function will raise an exception, which the search algorithm
has to handle, e.g. by pruning the affected search branch.

One example implementation is the CodeBertUnmasker. It uses the CodeBERT-MLM
as described in Section 4.1.1 to replace <mask> tokens with source code. CodeBERT-
MLM returns a list containing several possible mask replacements, which are sorted
such that the replacement with the highest confidence is at index zero. This particular
implementation always chooses this most promising replacement.

There is also a NoOpUnmasker, which is used when the MaskedPerturber is not used,
and therefore no mask tokens are introduced. This implementation does nothing.

An overview over both Unmaskers used in this thesis is given in Figure 3.6.

Figure 3.6: An overview over all Unmaskers used in this thesis.

3.2.2 Search Algorithms and Heuristics
This section describes the implementation of the following search algorithms.

Genetic Search

This is the implementation of the GS algorithm as described in Section 2.4.1. The Python
class containing the source code is called GeneticSearchAlgorithm and inherits
from AbstractSearchAlgorithm as presented in Section 3.2.1. It overwrites the
perform_search(...) function, which initiates the GA. To instantiate the genetic
search algorithm and use it to search for counterfactuals for some given C++ source
code, the Python code in Listing 3.6 can be used.

1 unmasker = CodeBertUnmasker(device)
2 tokenizer = ClangTokenizer(unmasker)
3 classifier = PLBartClassifier(device)
4 perturber = MaskedPerturber()
5
6 search_algorithm = GeneticSearchAlgorithm(tokenizer, classifier,

perturber, iterations=30, gene_pool_size=10)
7
8 results = search_algorithm.search(some_cpp_code)

21

3. Study Design

Listing 3.6: The Python code to instantiate the genetic search algorithm with a gene pool
size of 10 and an iteration limit of 30. Line eight starts the search for counterfactuals for
some C++ code.

For this implementation, the fitness function is derived from the confidence of the model
in a prediction. The GS expects a stable fitness function, i.e. if a perturbation increases
the fitness of a candidate, then this perturbation must really have improved the candidate.
However, the models tested in this thesis do not always satisfy this criteria as discussed
in Section 6.3.

Initial Population The GA starts by creating a random initial population of a
predefined size. The population consists of Entry objects, as described in Section 3.2.1.
Each of these objects is initialized with the same tokens as the original input, and is then
perturbed according to the Perturber passed in the __init__(...) function.

Selection The fitness of each candidate corresponds to the difference in confidence
of its classification to the confidence of the classification of the original input, and the
difference in the number of tokens of the candidate to the original input. This means,
that if the original input was classified as defective with a confidence score of 0.78
and a candidate is classified as defective with a confidence score of 0.38, its fitness is
0.78 − 0.38 = 0.4. The idea behind this fitness function is that if the model is less certain
that some string is defective, the perturbations applied to that string have made the
source code less defective, and the search heads in the right direction. The second term of
the fitness function calculates the relative length difference of a candidate to the original
input. This is computed by subtracting the quotient of the absolute token difference
and the token length of the original input from one. E.g. if the original input consists
of 10 tokens and the current candidate has 12 tokens, this would result in a penalty of
1 − (abs(10 − 12)/10) = 0.8. To reduce the influence of this penalty term, it is then set
to be the mean of one and the penalty term, e.g. a penalty of 0.8 is transformed into
(0.8 + 1)/2 = 0.9. The penalty term should keep counterfactuals actionable and close to
the original input by punishing possible solutions that stray off too far from the original
input. The total fitness is the multiplication of the confidence score difference and the
penalty, applied to the examples above, this would result in a fitness of 0.4 ∗ 0.9 = 0.36.
Counterfactuals found during this evaluation step are removed from the gene pool to free
up room for new candidates.

After the evaluation phase, the gene pool is culled. Candidates to be killed are chosen
via a roulette selection, such that the fitness of a candidate corresponds to its chance
for survival. It is ensured that the best performing candidate will always survive. The
number of killed candidates is calculated from the kill_ratio parameter and the gene
pool size.

22

3.2. Approach

Reproduction The space in the gene pool freed up by the selection phase is filled
by either reproduction or mutation. One half of the freed up space is filled up through
mutation using one parent, the other half is filled up through reproduction using two
parents. In either case, the parents are selected through a roulette selection.

Mutations are done by copying the selected parent and perturbing the copy through the
perturber. This operation leaves the parent unchanged.

Reproductions are done by choosing two parents with a roulette selection, and then
computing a random pivot index from the token list of the parent with the lowest number
of tokens. All tokens up to this index are taken from the parents with less tokens, all
tokens afterwards are taken from the other parent. This operation produces one new
candidate and leaves both parents unchanged.

After the reproduction phase, the iteration is complete and the algorithm starts over at
the selection phase until the iteration limit is reached.

Greedy Search

This section discusses the implementation of a Greedy Search algorithm as described
in Section 2.4.2. The Python class GreedySearchAlgorithm, which inherits from
AbstractSearchAlgorithm, contains the source code for this implementation.

It works by firstly creating an initial population, and then successively iterating over a
promising candidate, until a counterfactual is found or the iteration limit is reached. The
initial population is created by instantiating a candidate for each token in the input. This
corresponding token is then perturbed by the given Perturber. Then, each such candidate
is classified by the given Classifier. Counterfactuals are removed from the population
and stored in a counterfactuals list. For all other candidates, the heuristic value is
calculated by subtracting their confidence score from the confidence score of the original
input. All candidates are inserted into a list. For each search iteration, a candidate
is selected from the list through a roulette selection, such that the best candidate has
the highest chance for selection, but worse candidates also have a chance. This allows
for a broader search space and also gives less promising candidates the possibility to
prove themselves. The selected candidate is copied, and this copy is perturbed and
evaluated. If a counterfactual has been found, the original best candidate is removed
from the population, and the copy is added to the counterfactuals list. Otherwise,
the original selected candidate remains in the list, and the copy is added to the list with
its heuristic value calculated as described above.

k-Exponential Exhaustive Search

This is the implementation of the kEES algorithm as described in Section 2.4.3. The
Python class containing the source code is called KExpExhaustiveSearch and inherits
from AbstractSearchAlgorithm as presented in Section 3.2.1.

23

3. Study Design

Figure 3.7: A visualization of a code sample evaluated by the Captum library. Tokens
colored in green add to the result, which in this sample is 1 for unsecure code. Tokens
colored in red subtract from the result.

At the start of the kEES, a new candidate is created for each input token. Then, the
token associated with each candidate is perturbed according to the Perturber, and the
candidate is classified by the Classifier. If the candidate is a counterfactual, it is removed
from the set of candidates and added to the list of counterfactuals. Otherwise, new
candidates are created from the current one for each of its tokens that were not modified
by it or by its predecessors. This process is repeated until the iteration limit k is reached,
at which point all counterfactuals are returned.

Layer Integrated Gradients

As discussed in Section 2.4.4, LIG, as implemented by the Captum library, is used to
make the models of code interpretable. The baseline is constructed as a tensor with the
same length as the input. The begin-of-string and end-of-string tokens, typically <s>
and <\s>, respectively, are placed at the same indices as in the input. All other indices
of the baseline tensor are filled with padding tokens, which is typically <pad>.

Captum provides tools to visualize the attributions of tokens to the final result. A
screenshot of such a visualization is given in Figure 3.7. It shows the relative attribution
of each token through a color coding. Tokens that add to the result are colored green,
tokens that subtract from the result are colored red. The intensity of the color corresponds
to the magnitude of contribution of the token.

Not all models can be used with Captum without further ado. The complete pipeline for
the VulBERTa-MLP model does not output the raw logits tensor of the model, instead
the results are mapped in a dictionary for each class, and these dictionaries are put in
a list which is returned to the user. As Captum needs a raw logits tensor, the pipeline
has to be bypassed and the model has to be used directly. The pipeline performs some
preprocessing on the input before passing it to the model, so bypassing it might affect its
accuracy. When Captum is used with the CodeT5 model, the program execution hangs
inside the forward(...) call of the model and does not terminate. Therefore, the LIG
approach is unusable with this model.

Counterfactuals are generated through the use of LIG by computing the attributions of
each input token for the target output class. As counterfactuals have per definition a
different classification than the input, the target class is the opposite of the input class.
Then, the token with the highest attribution is deleted, and the resulting tokens are clas-
sified. If this results in a counterfactual, the search is terminated and this counterfactual
is returned. Otherwise, the search continues. Attributions can be recalculated after each

24

3.2. Approach

iterations if desired. If not, the attributions for the original input are used in each search
iteration. Note that here, the tokenizers are not those discussed in Section 3.2.1, but the
tokenizers downloaded from Hugging Face associated with each model of code.

This approach means that a LIG search will yield at most one counterfactual.

25

CHAPTER 4
Evaluation

This chapter describes how the models used in this thesis were selected, and how the
resulting system was evaluated.

4.1 Model Selection

Depending on the specific algorithm used to search for counterfactuals, different require-
ments must be met by the evaluation model. Some search algorithms, such as a GS
algorithm, require the model to output a confidence score as a real number in addition to
the classification. This is needed as the confidence can be translated to the evolutionary
fitness of a gene as described in Section 2.4.1. If during the GS some gene attains the
same classification than the original input but at a lower confidence, it can be assumed
that it is closer to flipping the decision of the evaluation model, and should therefore be
explored further. Other search algorithms, such as the kEES, do not rely on a confidence
score, as they explore the whole search space exhaustively up to a depth of k in any case.
This section describes the models used in this thesis, some of their properties, and the
source code needed to get a classification for a given input string.

4.1.1 Microsoft CodeBERT and CodeReviewer

The CodeBERT model by Microsoft [12] is available on Hugging Face1, and an array
of testing and training scripts is available on GitHub2. There exist several derivates of
CodeBERT. One derivate is CodeReviewer [26]. It supports quality estimation, comment
generation, and code refinement tasks.

1https://huggingface.co/microsoft/codebert-base
2https://github.com/microsoft/CodeBERT

27

https://huggingface.co/microsoft/codebert-base
https://github.com/microsoft/CodeBERT

4. Evaluation

Another derivate is CodeBERT-MLM. This MLM version is available on Hugging Face3,
and allows the replacement of predefined mask tokens in the input with appropriate
source code.

For this thesis, only the quality estimation task of CodeReviewer/CodeBERT and the
MLM are of relevance.

To classify a given input sequence and counterfactual candidates, the quality estimation
task of the CodeReviewer model is used. The model returns an array containing two
values, which are the confidences in the classes determined by its index. I.e., index 0
contains the confidence the model has in 0 being the appropriate classification for the
given input sequence. The classification is established by determining the larger of the
two values. The classify(self, source_code: str) function returns a tuple
of the classification and the confidence of the model in said classification. Therefore,
CodeReviewer can be used in both GS and kEES algorithms.

According to the authors of [26], CodeReviewer should achieve an accuracy of between
74.04% for Java and 82.7% for Ruby, and an F1 score of 70.53 and 89.23, respectively
for the code quality estimation task. However, the fine tuned checkpoints are not
publicly available. Therefore, for this thesis, an attempt was made to fine tune the base
CodeReviewer model available on Hugging Face. For this purpose, the training and
testing data is published and available for download4, and the GitHub repository provides
both training and testing scripts5. After running the train-cls.sh script for 36,000
iterations, an accuracy of 68.78% and an F1 score of 68.37 was achieved according to the
test script test-cls.sh. After this, both the accuracy and F1 score only declined when
training for further iterations. However, it was not possible to reproduce this accuracy on
any data other than the training and test data. Instead, the fine tuned model classifies
every source code given to it as "1", which is the class for vulnerable source code. This
also applies to models on Hugging Face fine tuned by third parties6.

Another fine tuned version is available on GitHub7. This variant is trained for the paper
Natural Attack for Pre-trained Models of Code by Yang et al. [48], which searches for
ways to find adversarial samples which still look natural to humans. The fine tuned
models was provided by the authors of the mentioned papers for this thesis and is the
model used in this thesis.

4.1.2 PLBart
Another model trained on source code is PLBart [2], which is available on Hugging
Face8. The authors of PLBart also provide a fine tuned version of the model for code

3https://huggingface.co/microsoft/codebert-base-mlm
4https://zenodo.org/records/6900648
5https://github.com/microsoft/CodeBERT/tree/master/CodeReviewer/code
6https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code
7https://github.com/soarsmu/attack-pretrain-models-of-code/tree/main/CodeXGLUE/Defect-

detectionattack
8https://huggingface.co/uclanlp/plbart-base

28

https://huggingface.co/microsoft/codebert-base-mlm
https://zenodo.org/records/6900648
https://github.com/microsoft/CodeBERT/tree/master/CodeReviewer/code
https://huggingface.co/mrm8488/codebert-base-finetuned-detect-insecure-code
https://github.com/soarsmu/attack-pretrain-models-of-code/tree/main/CodeXGLUE/Defect-detection##attack
https://github.com/soarsmu/attack-pretrain-models-of-code/tree/main/CodeXGLUE/Defect-detection##attack
https://huggingface.co/uclanlp/plbart-base

4.1. Model Selection

classification tasks. These tasks are clone detection and vulnerability detection, where the
latter task is of interest for this thesis. The vulnerability detection task was implemented
to test how the model performs on previously unseen programming languages, and is
therefore only available for C++ code. PLBart claims an accuracy of 63.18% on the
vulnerability detection task on the CodeXGLUE benchmark [29]. A number of fine
tuned variations of the base PLBart model are published on Hugging Face, including the
uclanlp/plbart-c-cpp-defect-detection model9 used in this thesis.

As the model outputs both a classification and a confidence score, it can be used with
both brute force algorithms such as the kEES and heuristic algorithms such as the
GS. A Python code sample on how to load the model and compute a classification and
confidence score for a given input string is given in Listing 4.1. The model provided on
Hugging Face is already fine tuned on the vulnerability detection task. However, the
required training and testing scripts, and scripts to download training and testing data
to fine tune the base model are provided on GitHub10 anyway. This script outputs a
classification of 1 for vulnerable source code, and 0 for secure and or invulnerable source
code.

1 path = "uclanlp/plbart-c-cpp-defect-detection"
2 model = PLBartForSequenceClassification.from_pretrained(path)
3 tokenizer = AutoTokenizer.from_pretrained(path)
4
5 def classify(self, source_code: str) -> (bool, float):
6 inputs = self.tokenizer(source_code, return_tensors="pt",

truncation=True)
7 input_ids = inputs["input_ids"].to(self.device)
8 attention_mask = inputs["attention_mask"].to(self.device)
9 with torch.no_grad():

10 logits = self.model(input_ids=input_ids,
attention_mask=attention_mask).logits

11 clazz = logits.argmax().item()
12 return int(clazz) == 0, float(logits[0][clazz])

Listing 4.1: The Python souce code needed to instantiate the PLBart model and to get a
quality estimate for a given source code snippet.

4.1.3 VulBERTa
VulBERTa [20] is a model aimed specifically at detecting vulnerabilities in C/C++ source
code. To this end, it is trained on 1,101,075 functions from 1060 open source GitHub
repositories and an additional 1,274,366 functions from the Draper data set introduced
in [39]. Furthermore, VulBERTa profits from a tokenisation pipeline which is tailored
towards C/C++ code using Clang11. The resulting tokenizer allows the preservation of the

9https://huggingface.co/uclanlp/plbart-c-cpp-defect-detection
10https://github.com/wasiahmad/PLBART
11https://clang.llvm.org/

29

https://huggingface.co/uclanlp/plbart-c-cpp-defect-detection
https://github.com/wasiahmad/PLBART
https://clang.llvm.org/

4. Evaluation

syntactic structure. This holds true even after it is converted into a token sequence. This
sequence of tokens gets further processed to account for predefined tokens. Predefined
tokens include tokens reserved by the VulBERTa transformer, such as <pad> or <mask>,
C/C++ keywords and punctuation such as int, void or ++, and C/C++ API calls
such as strlen or memcpy.

Two versions of VulBERTa exist: VulBERTa-MLP, where the last stage of the transformer
is a Multi Layer Perceptron (MLP), and VulBERTa-CNN, with a Convolutional Neural
Network (CNN) as last stage. This thesis uses the former one, as it has been made
available on Hugging Face by a third party12 and it performs slightly better. VulBERTa-
MLP achieves an accuracy of 64.75% on the CodeXGLUE [29] benchmark, which at the
time [20] was written, was the third best score after CoText and C-BERT, while only
having 55.05% of the number of model parameters of CoText. On the D2A [51] benchmark,
VulBERTa-MLP scored the first place with an accuracy of 62.3% and VulBERTa-CNN
scored second place with an accuracy of 60.68%. Both model variants beat C-BERT in
this benchmark.

As the model returns both a classification and a confidence score, it can be used in both
kEES and GS algorithms. Note, that as the model uses Clang in its tokenisation pipeline,
Clang for Python must be installed, and the path to the library file must be set to the
libclang.dll file. The model outputs a classification of "LABEL_1" for vulnerable
source code, and "LABEL_0" for secure and or invulnerable source code.

4.1.4 CodeT5

The CodeT5 model [47] is based on the Text-To-Text Transfer Transformer (T5) model
[37]. Whereas the original T5 model is only trained on natural language, the CodeT5
model is also trained on programming languages and on converting natural language into
programming language and vice versa. The architecture of CodeT5 allows the model
to use the names of identifiers to extract further information out of source code, which
helps by giving the model additional context. E.g. a function name binarySearch
may already give insight in what this function will do. The model can be fine tuned on a
number of different tasks, including code summarization, code refinement, and defect
detection. The latter task makes this model a candidate for this thesis. According to the
paper [47], CodeT5 achieves an accuracy of 65.78% on the CodeXGLUE benchmark [29],
thereby outperforming both PLBart (Section 4.1.2) and VulBERTa (Section 4.1.3). This
thesis uses a version of the CodeT5 model that is finetuned on the defect detection task
and is available on Hugging Face13. As with other models trained for the CodeXGLUE
benchmark, the model outputs a classification of 1 for vulnerable source code, and 0 for
secure and or invulnerable source code.

12https://huggingface.co/claudios/VulBERTa-MLP-Devign
13https://huggingface.co/mcanoglu/Salesforce-codet5p-770m-finetuned-defect-detection

30

https://huggingface.co/claudios/VulBERTa-MLP-Devign
https://huggingface.co/mcanoglu/Salesforce-codet5p-770m-finetuned-defect-detection

4.2. Methodology

4.1.5 Version Incompatibilities

As is common to many Python libraries and open source code [19][21][49], compatibility
issues exist with the models listed in this section. There is no version of the Hugging Face
transformers library14 which works with all models and all search algorithms. Instead,
different use cases require different versions, as listed in Table 4.1.

Search Algo-
rithm

(Graph) Code-
Bert

PLBart VulBERTa-
MLP

CodeT5

GS ≥ 4.17.0 ≥ 4.17.0 ≥ 4.37.0 ≥ 4.37.0
Greedy Search ≥ 4.17.0 ≥ 4.17.0 ≥ 4.37.0 ≥ 4.37.0
kEES ≥ 4.17.0 ≥ 4.17.0 ≥ 4.37.0 ≥ 4.37.0
LIG 4.17.0 - 4.22.0 4.17.0 - 4.22.0 ≥ 4.37.0 -

Table 4.1: The transformer versions required to run search algorithms on the given models.
Note that these versions are not necessarily the earliest or latest versions for which the
current use case will work, but these versions are tested and verified to function.

4.2 Methodology
This section describes the methodology followed to create and evaluate the results for
this thesis.

4.2.1 Test data

The evaluation of the performance of the system to search for counterfactuals uses data
from the CodeXGLUE benchmark [29], which is available on GitHub15, which uses the
Devign dataset [52]. This test data consists of C++ source code with vulnerabilities that
could be exploited to attack software. Vulnerabilities include resource leaks, use-after-free
and other bugs and insecure source code. The source code originates from the open
source projects FFmpeg and QEMU. Overall, the first 44 to 95 source code samples that
are labeled as vulnerable and lie in the validation split of the dataset are taken. The
exact number of investigated source code samples depends on the search configuration.

4.2.2 Hardware

All experiments were performed on the Idefix server of the TU Wien. Idefix has an AMD
EPYC 7452 32-Core Processor CPU with 1007 GB RAM. To boost NN performance, it
contains four NVIDIA GeForce RTX 3090 GPUs. Experiments were sped up by running
the system for finding counterfactuals in four separate Python processes in parallel, each
one using its own GPU.

14https://huggingface.co/docs/transformers/en/index
15https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection/dataset

31

https://huggingface.co/docs/transformers/en/index
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection/dataset

4. Evaluation

4.2.3 Code formatting
The models used to classify source code were trained at least partially on source code taken
from real world repositories, which are expected to at least in part adhere to formatting
guidelines for their specific programming languages. However, the Tokenizer alone as
described in Section 3.2.1 cannot guarantee a certain output formatting, especially not
one that follows the guideline for a specific language. Therefore, the intermediary output
of the Tokenizer is passed to a formatting script, such that the final output does adhere
to formatting guidelines. This script performs some preprocessing steps on its input
and then spawns a clang-format16 subprocess, which is given the preprocessed source
code and returns it formatted. clang-format ignores any syntax errors or missing
dependencies, which may easily be introduced by the perturbations and formats code on
a best effort basis, even if it is erroneous. This helps with giving the model source code
which is as close to its training data as possible, even if counterfactual candidates are
not syntactically correct.

4.2.4 Error handling during the search
All components provide some degree of error handling in case an error occurs during the
search for counterfactuals. The most common source for errors are too long inputs, which
cannot be handled by the models. In this case, the model specific tokenizers are instructed
to truncate the input to an appropriate length for the models before the search starts. It is
possible that this truncation removes the part which the model considers defective, which
would mean that the model classifies a previously defective input as invulnerable. Then,
the search is aborted before it is started and an InvalidClassificationResult is
returned. Therefore, the search should only ever be started with inputs of appropriate
length. During the search, the length of the input could increase again, e.g. through
source code generated by a MLM Unmasker. This increase could lead to too long inputs
once more, so even during the search the model specific tokenizers are tasked to truncate
inputs. However, in some case they fail to do so, and the model throws an error. The
search algorithms then catch this error or other errors and abort the search for the affected
branch, but continue on other branches. To prevent endless looping over the same best
counterfactual candidate whose descendants throw errors in the Greedy search, each
candidate is associated with an error_count variable. This variable gets incremented
every time a direct descendent of a candidate results in an error. Once it reaches a
value of three, the parent candidate is removed from the pool. One exception to the
error recovery is the LIG search. Since this search algorithm only ever iterates over
the results of the previous search iteration, there is no second branch which could be
continued. Therefore, the search is completely aborted without the chance to retrieve
a counterfactual. Truncating the source code input leads to information loss [27] and
might make it impossible for a model to find vulnerabilities or it could introduce new
vulnerabilities, but it is necessary to make the models work at all. Another option would
be to split the source code into subsequences of appropriate length. However, this would

16https://clang.llvm.org/docs/ClangFormat.html

32

https://clang.llvm.org/docs/ClangFormat.html

4.2. Methodology

not solve the issue, as now a vulnerability could be spread over several substrings, and
with the context of the previous and following substrings missing, might not even be a
vulnerability on its own. An InvalidClassificationResult is also returned if the
model erroneously classifies the original input as invulnerable in the very beginning of
the search.

4.2.5 Removed token classification
To give further insight into which removed tokens resulted in counterfactuals, Clang17

for Python is used to parse the removed tokens. This parsing results in the following
categories.

• FUNC_DEF: This category corresponds to the definition of functions. In the context
of this evaluation, a function definition is any number greater than zero of keywords,
followed by an identifier, followed by an opening round bracket. E.g.: inline
static long int foo(int a, int b)

• LOOP: this category includes for, while, and do-while loops. E.g.: for(i =
0; i < 10; i++)

• KEYWORD: this category includes all keywords, that are not covered by the LOOP
category. E.g.: char32_t count;, return 0;, if (i==0)

• FUNC_CALL: function calls are identifiers followed by an opening round bracket.
E.g.: c = foo(a,b);

• PUNCTUATION: All punctuation characters such as brackets, dots, semicolons and
others.

• IDENTIFIER: All tokens which Clang interprets as identifiers in the context of the
given source code.

• LITERAL: All tokens which Clang interprets as literals in the context of the given
source code.

• UNKNOWN: Everything else.

Note that the tested string does not need to be syntactically correct and that the
categories are presented in the order in which the input string is tested. This means that
the input is firstly checked whether it is a function definition, and only if this test does
not terminate positively, further tests are executed. Each token can only be attributed
to one category. If a given input satisfies several definitions, only the first matching one
is reported.

17https://clang.llvm.org/

33

https://clang.llvm.org/

4. Evaluation

4.3 Measurements
To compare the individual components and resulting search configurations, this thesis
takes an array of measurements. The results of these measurements are discussed in the
corresponding subsections in Section 4.4, and in Section 6.

4.3.1 Invalid Classifications
A classification is considered invalid, if a source code sample is labelled as vulnerable in
the CodeXGLUE dataset, but the employed classifier classifies it as invulnerable. In this
case, a search for a counterfactual is useless, as the model is not able to correctly identify
the vulnerability in the sample. A high rate of invalid classifications indicates a poorly
performing model of code.

4.3.2 Number of Changes for a Counterfactual
As explained in Section 1, counterfactuals that are closer to the original input are
preferable. For this thesis, one such evaluation is the number of tokens that has been
changed to achieve a counterfactual. To normalize this data for the varying source code
snippets in the data sets, this value is given as the number of changes relative to the
number of tokens. A source code snippet with e.g. 15 tokens producing a counterfactual
with 18 tokens would result in a score of 120%.

4.3.3 Search Performance per Search Algorithm
The selected search algorithm has a great influence on the size and structure of the
resulting search space. To measure this influence, the time per counterfactual and per
input token is investigated, as well as the number of counterfactuals per input token.
Search algorithms that find efficient ways to navigate the search space will speed up the
search and deliver more counterfactuals.

4.3.4 Search Performance per Model of Code
To investigate the influence on the search space of the models of code, similar measure-
ments as for the previous subsection are taken. The model of code can influence the
search by providing a more accurate and stable confidence score in its classification, and
by correctly classifying invulnerable inputs as invulnerable. Furthermore, faster models
of code will speed up the search.

4.3.5 First Counterfactual Search Performance
For this measurement, the time needed to find only the first counterfactual is considered.
If no counterfactual can be found, the search run is ignored. This measurement might
be important in real world applications, where a human user would probably not want

34

4.4. Results

to wait until the whole search is finished, but might be content with the first or second
counterfactual delivered.

4.3.6 LIG Search
As the LIG search does not use the same Tokenizers, Unmaskers and Perturbers as the
other search algorithm, their result cannot be directly compared. This is because of the
internal strucutre of the LIG search algorithm and the underlying Captum library. Instead,
only the number of counterfactuals per search run and the time per counterfactuals can
accurately be compared against each other. This also means that if a counterfactual
would require the addition or replacement of a token, it will never be found using the
LIG search.

4.3.7 String Similarities
As discussed in Section 1, counterfactuals that are closer to the original input are of higher
value. Another option that that explained in Section 4.3.2, is to quantise this closeness
by calculating the string similarity of a counterfactual to its input. This closeness is
computed using the Jaro distance, as explained in Section 2.5. The actual values of the
similarity score is not relevant, but the values of the different search configurations can
be compared with each other. The higher a value is, the closer the counterfactual is to
the original input.

4.4 Results
This section displays the results of the developed system, as discussed in Section 4.3.
Due to the high number of different search configurations, the full results are split over
several tables and figures, and are abbreviated as shown in Table 7.1. The full data
is given in Appendix 7, with the relevant parts highlighted here. The parameters for
each configuration are presented in Table 7.2. Since not all parameters are applicable
to each configuration, some cells in this table are marked as "not applicable" or "n.a.".
Performance metrics are displayed in Table 7.3. The values for the parameters were
chosen empirically to give a compromise between search duration, to allow for a large
number of search runs, and a high chance to find counterfactuals within a search run.
Table 7.4 gives insight into the types of removed tokens that resulted in counterfactuals
with less than three changes to the input. Counterfactuals with more than two changes to
the input are assumed to be too far off the input to make such an evaluation meaningful.
The distribution of the relative number of changes to get a counterfactual with respect
to the input size is shown in Fig. 4.1.

4.4.1 Invalid Classifications
Due to the inaccuracies of the used models of code, some code samples labeled as vulner-
able in the CodeXGLUE dataset are erroneously classified as invulnerable. As discussed in

35

4. Evaluation

Section 4.2.4, search runs affected by this issue return an InvalidClassificationResult.
The absolute and relative numbers of these occurrences, as well as the total number of
source code snippets evaluated, are given in Table 4.2.

Classifier Total source code
samples

Invalid classifications Percentage of total
[%]

CodeBert 45 20 44.44
CodeT5 50 22 44.0
PLBart 44 19 43.18
VulBERTa-MLP 95 45 47.37

Table 4.2: The numbers of total classifications and invalid classifications for each classifier.
An invalid classification is when the model identifies a source code sample as invulnerable
when it is labeled as vulnerable in the CodeXGLUE test dataset. In this case the search
for counterfactuals is aborted before it is started. The fourth column gives the relative
percentage with respect to the total number of evaluated source code snippets.

4.4.2 Number of Changes for a Counterfactual

Figure 4.1 shows the distribution of changes to the original input measured against the size
of the input. E.g. if an input input consists of 20 tokens and is classified as a counterfactual
after five changes, 25% of the input were changed to produce this counterfactual. For
simplicity reasons, the system does not treat reoccurring changes differently, i.e. if the
same token gets changed multiple times, this counts as multiple changes, even if previous
changes are lost. Counter intuitively, the number of counterfactuals does not increase
with more changes to the input. This might be because after many changes the source
code will not only be too far off the original input, but also far off correct C++ source
code, and therefore not invulnerable according to the models of code. Similar data is
presented in Figure 4.2, where it is displayed by search configuration.

4.4.3 Search Performance per Search Algorithm

The choice of the search configuration greatly impacts the search performance. As
expected, the exponential nature of kEES means that the average processing time per
input token is highest for this search algorithm, as displayed in Figure 4.3. However, the
large search space also means that kEES produces the most counterfactuals per input
token as shown in Figure 4.5. Furthermore, as it uses a k of two, all its counterfactuals
are relatively close to the original input and should therefore be the most useful. Even
though kEES produces a large number of counterfactuals, it is the slowest algorithm per
counterfactual for all search configurations as depicted in Figure 4.4.

Figures 4.3 and Figure 4.4 suggest that the unmasking operation of the CodeBertUnmasker
introduces a significant time overhead which slows down the search as opposed to the
MutationPerturber and RemoveTokenPerturber. Between the latter two perturbers, the

36

4.4. Results

Figure 4.1: The percentage of changes to produce a counterfactual with respect to the
number of input tokens. If the same input token is changed more than one time, this counts
as multiple changes. This graphics shows the numbers over all search configurations.

RemoveTokenPerturber is faster on a per token basis, but slower when measured per
counterfactual than the MutationPerturber.

4.4.4 Search Performance per Model of Code
Different models also influence the search performance differently. Figure 4.6 shows how
long each model takes to find a counterfactual on average for each search algorithm.
Note that since VulBERTa-MLP did not find any counterfactuals, there is no data for it
present in the figures. As shown in Figure Figure 4.7, CodeBert is on average the fastest
model for every search algorithm per input token, but the slowest per counterfactual.
This can be explained by the numbers in Figure 4.8, which show that CodeBert delivers
the fewest counterfactuals per token.

Overall, the data shows that kEES is the slowest search algorithm by a substantial margin.
Both heuristic search algorithms greatly outperformed kEES. Depending on the exact
search configuration, the GS or greedy search might be faster. The slowest of all search
algorithms is the LIG search. However, its search duration is not directly comparable to
the other algorithms, as it terminates its search after the first counterfactual is found.
Furthermore, depending on the parameters, it needs to perform costly computations after
each removed token. When it comes to finding the most counterfactuals in some time
frame, CodeT5 is slightly slower than PLBart, which in turn is considerably faster than
CodeBert. On a per token basis, those three models are similarly fast, with CodeBert

37

4. Evaluation

Figure 4.2: The percentage of changes to produce a counterfactual with respect to the
number of input tokens by search algorithm.

Figure 4.3: The average processing time per input token over all search configurations
for each search algorithm.

being the fastest by a small margin.

38

4.4. Results

Figure 4.4: The average processing time to find a counterfactual over all search configu-
rations for each search algorithm.

Figure 4.5: The average number of counterfactuals produced by each search configuration
for each search algorithm per input token.

4.4.5 First Counterfactual Search Performance

The time needed for each search configuration to produce its first counterfactual is
displayed in Figure 4.9. For this comparison, the greedy search is consistently able to

39

4. Evaluation

Figure 4.6: The average search duration per counterfactual for each model of code.

Figure 4.7: The average processing time to find a counterfactual over all models of code
for each search algorithm per input token.

outperform all other search algorithms.

40

4.4. Results

Figure 4.8: The average number of counterfactuals produced per input token per model.
Note that VulBERTa-MLP did not produce a counterfactual.

4.4.6 LIG Search
As the LIG search does not use the same Tokenizers, Unmaskers and Perturbers as
the other search algorithm, their result cannot be directly compared. Instead, only the
number of counterfactuals per search run and the time per counterfactuals can accurately
be compared against each other. This is done in Figure 4.10, which displays the average
number of counterfactuals produced per search run, and Figure 4.11, which shows the
average time to find a counterfactual for all search algorithms.

These figures show that the LIG search produces counterfactuals for less inputs than
other search algorithms, and it finds them slower than other search algorithms. This is
because the LIG search only ever removes tokens from the input.

4.4.7 String Similarities
Figure 4.12 shows the results of the comparison Jaro distances of counterfactuals and
their original inputs. No search configuration is significantly better than any other.
However, the greedy search performs consistently worse than the other search algorithms
for all search configurations. The LIG search is at best as good as the greedy search, at
worst it is worse than it. The full data containing all string similarities is given in Table
7.3.

41

4. Evaluation

Figure 4.9: The average time to find the first counterfactual over all search configurations
for each search algorithm. "Recompute" and "Don’t Recompute" indicates the state of
the recompute_attributions_for_each_iteration parameter, i.e. if the LIG
attributes should be recomputed after each removed token. Note that the LIG search
does not use Perturbers or Tokenizers the way the other search algorithms do. This data
only includes times from search runs were at least one counterfactual was found, hence
the disparity with Figure 4.11 for the LIG search.

42

4.4. Results

Figure 4.10: The average number of counterfactuals produced per search run for all
search algorithms, including the LIG search. As the LIG search produces at most one
counterfactual, this data shows that it found a counterfactual on 10% of search runs.

Figure 4.11: The average time to produce a counterfactual for all search algorithms,
including the LIG search. These times also include search runs in which no counterfactuals
were found, hence the disparity with Figure4.9 on the data for the LIG search.

43

4. Evaluation

Figure 4.12: The average string similarity from each produced counterfactual to
the original input. This similarity is calculated using the Jaro distance, as ex-
plained in Section 2.5. Higher values mean higher similarities to the input and are
therefore better. "Recompute" and "Don’t Recompute" indicates the state of the
recompute_attributions_for_each_iteration parameter, i.e. if the LIG at-
tributes should be recomputed after each removed token.

44

CHAPTER 5
Related Work

Humans tend to place less trust in the answers of block box systems if they are not
provided with a reason as to why this output was generated [15]. Therefore, together
with the emergence of black box NNs, ways to make them explainable were developed [17].
Another use case for understanding why outputs occur from specific inputs is to use this
knowledge as an attack vector [16]. This allows to change the classification of an image
by altering just a single pixel in the image [43] or applying noise to an image, which may
be undetectable by humans [13]. However, such adversarial attacks are not the same as
generating counterfactuals, as the aim of an attack is not to provide knowledge about
the reasoning of the model, but to get a different output on what appears to be the
same input. Here, no emphasis is put on making the differences actionable or plausible.
Nevertheless, similar strategies may be followed when searching for counterfactuals or
adversarial examples [17]. For these reasons, this thesis will not go into detail about
generators if their sole purpose is to create adversarial examples. Most existing model
of code based strategies of finding counterfactuals can be subdivided into four distinct
categories [17]:

• Optimization: An optimization strategy defines some loss function and uses
optimization algorithms to minimise the loss according to this function. A notable
example is proposed by Wachter et al., which is one of the first counterfactual
explainer using this strategy. It can use the Adam optimizer [24] on differentiable
models, such as NNs, to approach the least possible loss [46].

• Heuristic Search Strategy: Here, heuristics are used to minimize some cost
function at each iteration. This class of explainers is typically more efficient than
optimization explainers, but the produced results are not always optimal. Published
in 2014, [31] is another early model agnostic explainer. It uses a best-first search
with pruning by following local improvements. The aim of the algorithm is to

45

5. Related Work

find a minimal set of words, which, when removed from a document, changes the
classification of the text from some classifier.

• Instance-Based: This strategy requires a pregenerated dataset of potential
counterfactuals. Counterfactuals are found by choosing entries within this dataset
which have the highest similarity to the input. For each counterfactual, [40] searches
the dataset for the closest sample to the input with a different label than the input.
This has the advantage that the counterfactual will always be plausible, as all
counterfactual candidates do actually exist in the dataset. A disadvantage of this
search is the high computational cost with calculating the distance from the sample
to all entries in the data set. Somewhat overcoming this disadvantage is possible
by limiting the search to a smaller subset of the dataset, but this also means that
the optimal counterfactual might not be present in this subset.

• Decision Tree: A decision tree is trained to closely approximate the behaviour of
the model of code. Then, the tree structure, which is inherently understandable, is
used to find counterfactuals. As described in [18], such a decision tree can either
be trained on the same data set as the model to explain, a subset of this data
set, or a different, synthetic data set. Furthermore, the tree structure allows to
generate high quality counterfactuals. Following only paths that are actionable
at each tree node guarantees actionability. Even if paths have to be followed that
are not actionable, those properties of the counterfactual can be overwritten with
the corresponding properties from the input. A minimal distance to the original
input sample can be achieved by choosing paths that are more similar to the input
than others. Before a counterfactual candidate can be presented as such, it must
undergo validation, as the mentioned correction steps might result in an invalid
candidate, i.e. in a candidate that receives the same classification as the input.

Furthermore, explainers can be classified as Model Specific, if they only work on a specific
model, or Model Agnostic, if they can be used on any model. Additional distinctions can
be made concerning the data type the explainer can work with, e.g. text, source code,
images, and others.

Models of code, such as Microsoft CodeReviewer [26], attempt to tell if some source
code may contain bugs or have performance or security issues. However, they cannot
explain their reasoning, and generally only provide a binary output classification, i.e.
defective or not defective, and a confidence score. Cito et al. [8] specifically aims at
producing counterfactuals for such source code quality estimation models. [8] produces
a set of tokens and replacements for these tokens, such that each replacement changes
the classification of the code input. The algorithm attempts to find counterfactuals of
increasing number of contained tokens, by adding a replacement mapping to the most
promising counterfactual candidate of a set of candidates. Then, the candidate is tested
whether it is classified differently than the original input. If so, a new counterfactual
has been found. Replacements tokens are generated by iterating over the tokens in the

46

input and substituting each token with a mask token. Feeding the resulting source code
snippet to a MLM, gives a set of possible replacement tokens for this mask. This set of
tokens is evaluated for which replacement results in a counterfactual. Users of this system
found the generated explanations useful or very useful 83.3% of cases. The authors note
that the runtime of up to 10 minutes on large inputs somewhat reduces the usefulness
of the algorithm in real world applications, where developers would want to have near
instantaneous feedback when committing source code. As the algorithm makes a local
decision at each iteration, it can be classified as a Heuristic Search Strategy. It is not
tied to a specific model and is therefore Model Agnostic.

A more specialized counterfactual search strategy is [28]. This system does not use
black box models of code, but still explores a search space which is spun up through
mutating a source code snippet, and only works for a specific programming language.
Firstly, a source code snippet is evaluated against a predefined test suite, which it
initially does not pass completely. This test suite contains both positive and negative
tests, to ensure that both improvements and regressions can be identified. [28] then
runs the tests against the source code snippet, with an error localizer supervising the
test runs. This error localization injects call backs before each statement in the source
code snippet to track the progress and runtime performance of the execution. Potential
counterfactuals are generated by applying transformations to program statements that
led to errors. These transformations include additional conditions to if statements,
additional conditional statements which execute the original statement if the condition
is satisfied, or add break, continue, or goto statements in case they are satisfied.
Further transformations include memory initialization, value replacements and copy
transformations. Conditions for the transformations are generated from comparisons of
local or global variables and values that occur somewhere in the program in conjunction
with the selected variable. [28] runs the transformed source code snippets through the
test suite, and reports all improvements.

47

CHAPTER 6
Conclusion

This chapter gives a short overview of the findings of this thesis and possible future
research.

6.1 Summary
For this thesis, a program was developed that uses an array of different search algorithms,
perturbation functions, and Tokenizers to explore how these individual components
contribute to the search for counterfactuals.

• RQ1: What is the search space for possible perturbations with respect to different
search heuristics?
With the exception of the LIG search, which only finds counterfactuals in 10% of
search runs, kEES is the slowest search algorithm by every measure. This shows,
that guiding the search through some heuristic, and thereby focusing the search on
promising areas of the search space, can greatly benefit the search for counterfactuals.
Furthermore, kEES also takes the longest to find its first counterfactual. This is
expected since kEES always starts by perturbing the first token in the source code
sample, which often contains some parts of a function header, such as the name or
visibility, which most likely is not part of some vulnerability. This shows that some
understanding of the structure of the problem is helpful.
Figure 4.2 shows how many changes were required to produce a counterfactual
on average. Note that multiple changes to the same input token are counted,
and that the values are given as percentage of the number of input tokens, i.e.
a counterfactual with 25 changes for an input with 20 tokens would result in a
number of 125%. This figure shows that kEES has on average the lowest number
of changes, which is expected as k is set to two. Other search algorithms produce

49

6. Conclusion

counterfactuals with more changes, partly because they can due to they not having
such a limit. Of the different search configurations, the line Tokenizer produces the
highest number of changes. This is because it produces a lower number of tokens
than the Clang Tokenizer, and therefore less changes have to be made and can be
made until a counterfactual is found.

The exact search configuration has great influence on the search space. For the
kEES, the search space is determined by the cut-off parameter k, but also by the
size of the input, which together span up an exponential search tree. The size of
the search space of the LIG search is equivalent to the number of tokens in the
input. At most, the search iterates over each token, but it aborts as soon as it finds
a counterfactual. Other search algorithms are not as dependent on the input. The
search space of the GS is determined only by its parameters such as the maximum
number of generations, gene pool size, kill ratio and the exact mechanism of the
crossover operation. The search space for the greedy search is independent of the
input size. Instead, the number of search iterations is determined through the
maximum search depth parameter. The exact values for those parameters were
determined empirically to give a compromise between the maximal search duration,
to allow for a large number of search runs, and a high chance to find counterfactuals
within a search run. They are given in Table 7.2.

• RQ2: How can gradient information from the model of code influence the search
space?

Figure 4.10 shows that the gradient informed LIG search produces counterfactuals
for 10% of search runs. Compared with the greedy search, which is the search
algorithm delivering the least number of counterfactuals per search run apart from
the LIG search, that yields on average 3.43 counterfactuals, it can be shown that
the LIG search does not give an improvement in this regard. The kEES baseline
produces on average 285.6 counterfactuals per search run, which is the highest
number of the investigated search algorithms.

The LIG search is also the slowest search algorithm. It takes on average 97.21s
to find a counterfactual (2.55s for the GS, 4.46s for the greedy search, 6.94s for
kEES). However, in this comparison the LIG search suffers from the low number
of search runs for which it produces counterfactuals, as these measurements also
include the run times in which it did not produce any.

When the gradient informed search is compared with the other search algorithms
for how long it took to deliver the first counterfactual, it outperforms kEES for
every search configuration and the GS when the
recompute_attributions_for_each_iteration is set to true. Depend-
ing on the exact search parameters, the greedy search is either significantly faster
(0.61s for greedy search with mutation Perturber vs. 1.55s and 2.13s for LIG)
or slower (4.46s for greedy search with masked Perturber). The exact values are
displayed in Figure 4.9.

50

6.1. Summary

• RQ3: How do different perturbations functions influence the search space?

As discussed in Section 3.2.1, the perturbation functions for this thesis are a masked
Perturber, where tokens are replaced with the output of a MLM, a mutation
Perturber where tokens are replaced with a random token from the dictionary, and
a remove token Perturber, which removes tokens.

These are paired with either a line Tokenizer or a Clang Tokenizer, according to
Section 3.2.1. The former one splits the inputs by newline characters, the latter
one splits the input by C++ source code tokens according to Clang.

Since the line Tokenizer produces less tokens than the Clang Tokenizer, it spans
up a smaller search space. This smaller search space does not translate into a
faster search per counterfactual for all search algorithms, as displayed in Figure 4.4.
Instead, the GS is faster when using the Clang Tokenizer (4.48s for line Tokenizer
vs. 3.77s for the Clang Tokenizer). This can be explained by the search algorithm
being able to make smaller, but more directed changes to the input. kEES and
the greedy search do have a lower search duration per counterfactual with the
line Tokenizer (11.9s and 2.06s vs 586.39s and 6.66s, respectively). The significant
increase of the search duration for kEES stems from the exponential nature of this
algorithm, whereas the maximum search duration of the GS and greedy search are
determined through hyperparameters, and not only through the problem size.

Due to the increased computational demand introduced through the MLM, the
masked Perturber is slower for any search algorithm than the mutation Perturber
and remove token Perturber. This effect is greatest for the kEES algorithm, where
it takes on average 819.58s to find a counterfactual with the masked Perturber,
73.24s with the remove token Perturber, and 34.05s with the mutation Perturber.
This trend also holds true for both the greedy search and the GS (9.55s vs. 2.1s
for remove token Perturber and 1.85s for mutation Perturber, and 7.02s vs. 3.07s
and 3.13s, respectively). The difference between the remove token Perturber and
mutation Perturber is smaller, however the mutation Perturber is faster for any
search algorithm. Even though the removal of tokens might decrease the size of
the search space, it can also make any counterfactual candidate to appear more
vulnerable to a model of code and decrease its similarity to proper C++ source
code. This in turn leads to an increased number of candidates that do not lead to
a counterfactual, and therefore longer search durations and a smaller number of
counterfactuals.

The different search configurations have limited influence on the average string
similarity. No search configuration is significantly better than any other. kEES
achieves the highest similarity, but is not consistently able to outperform the
GS. The greedy search scores a higher similarity than the LIG search, but is still
consistently worse than the other search algorithms.

51

6. Conclusion

6.2 Contributions
The main contributions of this thesis are the following:

• An open source framework to search for and report counterfactuals, available on
GitHub1. This framework is designed to be easily expandable with new search
algorithms, Perturbers, Tokenizers, and models of code.

• An evaluation of currently available open source models of code and search al-
gorithms with respect to their ability to find counterfactuals for C++ source
code.

• A discussion on the results and limiting factors of existing technologies, as well as
possible avenues for further research in the area of search strategies for counterfac-
tuals.

6.3 Limitations and Future Work
As of writing this thesis, the best model of code available achieves an accuracy of 68.78%.
This model is the Microsoft CodeReviewer, as described in Section 4.1.1. Since the
authors of CodeReviewer have not published the fine tuned checkpoints achieving this
accuracy, an attempt at manually finetuning the model with the provided training data
has been made. However, this attempt was unsuccessful at reproducing said accuracy,
and it did not deliver useful results on source code other than the training or testing
data. The next best model is CodeT5 as discussed in Section 4.1.4, which achieved an
accuracy of 65.78%. Other ML models, such as [35] which claims an accuracy of 90% and
a processing time of 20ms per file, can only find a very limited subset of potential errors.
Namely, [35] is specialised at finding name based bugs in JavaScript source code, and is
therefore not comparable to the models used in this thesis which are aimed at finding a
greater variety of bugs and vulnerabilities in C++ code.

Both heuristic search algorithms implemented in this thesis, GA and the Greedy Search,
rely on accurate and stable heuristics to guide them in their search. None of the models
are able to consistently satisfy these requirements, especially on out of distribution data,
which leads to a degraded search performance, increasing the time to find counterfactuals,
and leading to both false positive and false negative results. The models used in this
thesis perform worse than the accuracies claimed in their respective papers. This is
evident from the data in Table 4.2, where the models incorrectly classified between 43.18%
and 47.37% of source code samples from the validation set. Furthermore, no search
configuration using VulBERTA-MLP found a single counterfactual, which indicates that
the model classified all perturbations as vulnerable. Table 4.2 shows that the model in
principle can classify source code as invulnerable, as 47.37% of the source code samples

1https://github.com/chrfwow/MSC

52

https://github.com/chrfwow/MSC

6.4. Threads to Validity

from the CodeXGLUE dataset labeled as vulnerable were not classified as such. This
result could indicate that this model overfits on its training data.

Due to the exponential nature of the kEES algorithm, the parameter k had to be fixed
to a comparatively low value of 2. Higher values slowed the search down prohibitively,
and would have reduced the number of code samples that could have been evaluated too
much. This restriction of k limits the number of counterfactuals produced. It also means
that only counterfactuals with a low number of changes are found, which are closer to
the original input and therefore preferable.

As already discussed, the models of code available at the time or writing this thesis are
not stable enough to properly guide heuristic search strategies. However, the fast advance
of transformer based models of code and other architectures in recent times makes it
plausible that their quality will improve in the near future, and lead to models that are
capable of providing sufficient guidance for heuristic approaches. Furthermore, it can be
assumed that future models will be able to classify input quicker, which will speed up
the search for counterfactuals, and allow for a more thorough exploration of the search
space. Currently, such a thorough exploration is not feasible, as demonstrated with the
poor temporal performance of the kEES algorithm as described in Section 4.4.

A different, if more complex, post processing step could be added to the Perturbers, as
opposed to the current code formatting. This new post processing step could attempt
to fix syntax errors introduced through the perturbation function. With syntax errors
removed, the models of code should classify more counterfactual candidates as invulnerable
and therefore deliver more and more relevant counterfactuals.

As discussed in Section 1, the usefulness of counterfactuals depends on its closeness to
the input. This calculation is done in this thesis. However, an even more expressive
evaluation of the usefulness of counterfactuals would be to ask software developers for
their opinion of counterfactuals, as was done by Cito et al. [8]. Unfortunately, due to
the large number of different search configuration and the lack of available software
developers to ask, no such qualitative assessment could be done. In the future, this
evaluation could be done if more resources are available.

6.4 Threads to Validity
This section discusses both external and internal threads to the validity of this thesis.

6.4.1 Threads to External Validity
External validity describes how well the findings of this thesis can be applied outside of
its context. This thesis only considers the search for counterfactuals for vulnerable source
code snippets from the CodeXGLUE dataset. The CodeXGLUE dataset only contains
source code in the C++ programing language, but from two large open source projects,
FFMPEG and Qemu, which should provide enough diversity in the data to also represent

53

6. Conclusion

other C++ projects. Additionally, within this investigation, a large array of different
models of code, perturbation functions, tokenizers, and search algorithms are used. This
gives confidence in the thoroughness of the performed investigation. In principle, an
efficient search for counterfactuals could be needed in any domain where black box tools
are used. For these unrelated cases, the resulting frameworks presents a starting point for
further studies. In the domain of detection of vulnerable source code, however, the used
models are the best open source models available at the time of writing of this thesis,
and the search algorithms are descriptive examples. Therefore it can be assumed that
the results do hold true also when applied to other programming languages, new models
of code, or new search algorithms.

6.4.2 Threads to Internal Validity
Internal validity is when the findings of this thesis are actually explained through the
data and explanations provided, and not through some other means.

The greatest cause of concern is the poor performance of the VulBERTa-MLP model of
code, which could not find any counterfactuals. This could indicate some bug in the usage
of the model. However, all other models did lead to counterfactuals, which indicates that
the search itself works as expected. Furthermore, VulBERTa did correctly classify 50
of the source code snippets from the CodeXGLUE dataset labelled as vulnerable, and
incorrectly classified 45 additional snippets. This shows that the way the model is used
in this thesis, it is in principle able to classify source code snippets as both vulnerable
and invulnerable. Therefore it can be assumed, that the model does not perform well
on source code not present in the CodeXGLUE dataset, which would result from the
perturbations generated during the counterfactual search. Such a behaviour is one that is
sometimes encountered in machine learning and is called overfitting. If the model indeed
overfits, this could be a sign of it being trained for too long or on too little data, neither
of which could be changed within the scope of this thesis.

Another cause of concern is the poor accuracy of all models of code used in this thesis.
As an example, CodeT5 should achieve an accuracy of 65.78% on the CodeXGLUE
benchmark according to [47]. In this thesis, it incorrectly classified 44% of all source
code samples, which translates to an accuracy of 56%, much worse than the claimed one.
However, for the accuracy analysis in [47], both vulnerable and invulnerable source code
samples from the CodeXGLUE datasets were taken into account. This is not true for
this thesis, where only source code snippets labelled as vulnerable were used. If CodeT5
is much better at correctly identifying invulnerable snippets, such results could occur.
Additionally, the CodeXGLUE dataset contains 12460 snippets labelled as vulnerable, and
14858 labelled as invulnerable. If the model performed better on invulnerable snippets,
naturally a greater accuracy would be reported, just because more of those samples exist
in the dataset. These findings can also be applied to the other models used in this thesis.

54

CHAPTER 7
Appendix

7.1 Search Configurations

Abbreviation Classifier Search Algorithm Perturber Tokenizer Unmasker
CB GA M C CB CodeBert Genetic Masked Clang CodeBert
CB GA M L CB CodeBert Genetic Masked Line CodeBert
CB GA M C NO CodeBert Genetic Mutation Clang NoOp
CB GA M L NO CodeBert Genetic Mutation Line NoOp
CB GA RT C NO CodeBert Genetic RemoveToken Clang NoOp
CB GA RT L NO CodeBert Genetic RemoveToken Line NoOp
CB Gr M C CB CodeBert Greedy Masked Clang CodeBert
CB Gr M L CB CodeBert Greedy Masked Line CodeBert
CB Gr M C NO CodeBert Greedy Mutation Clang NoOp
CB Gr M L NO CodeBert Greedy Mutation Line NoOp
CB Gr RT C NO CodeBert Greedy RemoveToken Clang NoOp
CB Gr RT L NO CodeBert Greedy RemoveToken Line NoOp
CB KEES M C CB CodeBert kEES Masked Clang CodeBert
CB KEES M L CB CodeBert kEES Masked Line CodeBert
CB KEES M C NO CodeBert kEES Mutation Clang NoOp
CB KEES M L NO CodeBert kEES Mutation Line NoOp
CB KEES RT C NO CodeBert kEES RemoveToken Clang NoOp
CB KEES RT L NO CodeBert kEES RemoveToken Line NoOp
CB LS CodeBert LigSearch n.a. n.a. n.a.
CB LS CodeBert LigSearch n.a. n.a. n.a.
CT5 GA M C CB CodeT5 Genetic Masked Clang CodeBert
CT5 GA M L CB CodeT5 Genetic Masked Line CodeBert
CT5 GA M C NO CodeT5 Genetic Mutation Clang NoOp

55

7. Appendix

CT5 GA M L NO CodeT5 Genetic Mutation Line NoOp
CT5 GA RT C NO CodeT5 Genetic RemoveToken Clang NoOp
CT5 GA RT L NO CodeT5 Genetic RemoveToken Line NoOp
CT5 Gr M C CB CodeT5 Greedy Masked Clang CodeBert
CT5 Gr M L CB CodeT5 Greedy Masked Line CodeBert
CT5 Gr M C NO CodeT5 Greedy Mutation Clang NoOp
CT5 Gr M L NO CodeT5 Greedy Mutation Line NoOp
CT5 Gr RT C NO CodeT5 Greedy RemoveToken Clang NoOp
CT5 Gr RT L NO CodeT5 Greedy RemoveToken Line NoOp
CT5 KEES M C CB CodeT5 kEES Masked Clang CodeBert
CT5 KEES M L CB CodeT5 kEES Masked Line CodeBert
CT5 KEES M C NO CodeT5 kEES Mutation Clang NoOp
CT5 KEES M L NO CodeT5 kEES Mutation Line NoOp
CT5 KEES RT C NO CodeT5 kEES RemoveToken Clang NoOp
CT5 KEES RT L NO CodeT5 kEES RemoveToken Line NoOp
PLB GA M C CB PLBart Genetic Masked Clang CodeBert
PLB GA M L CB PLBart Genetic Masked Line CodeBert
PLB GA M C NO PLBart Genetic Mutation Clang NoOp
PLB GA M L NO PLBart Genetic Mutation Line NoOp
PLB GA RT C NO PLBart Genetic RemoveToken Clang NoOp
PLB GA RT L NO PLBart Genetic RemoveToken Line NoOp
PLB Gr M C CB PLBart Greedy Masked Clang CodeBert
PLB Gr M L CB PLBart Greedy Masked Line CodeBert
PLB Gr M C NO PLBart Greedy Mutation Clang NoOp
PLB Gr M L NO PLBart Greedy Mutation Line NoOp
PLB Gr RT C NO PLBart Greedy RemoveToken Clang NoOp
PLB Gr RT L NO PLBart Greedy RemoveToken Line NoOp
PLB KEES M C CB PLBart kEES Masked Clang CodeBert
PLB KEES M L CB PLBart kEES Masked Line CodeBert
PLB KEES M C NO PLBart kEES Mutation Clang NoOp
PLB KEES M L NO PLBart kEES Mutation Line NoOp
PLB KEES RT C NO PLBart kEES RemoveToken Clang NoOp
PLB KEES RT L NO PLBart kEES RemoveToken Line NoOp
PLB LS PLBart LigSearch n.a. n.a. n.a.
PLB LS PLBart LigSearch n.a. n.a. n.a.
VB GA M C CB VulBERTa Genetic Masked Clang CodeBert
VB GA M L CB VulBERTa Genetic Masked Line CodeBert
VB GA M C NO VulBERTa Genetic Mutation Clang NoOp
VB GA M L NO VulBERTa Genetic Mutation Line NoOp
VB GA RT C NO VulBERTa Genetic RemoveToken Clang NoOp
VB GA RT L NO VulBERTa Genetic RemoveToken Line NoOp

56

7.1. Search Configurations

VB Gr M C CB VulBERTa Greedy Masked Clang CodeBert
VB Gr M L CB VulBERTa Greedy Masked Line CodeBert
VB Gr M C NO VulBERTa Greedy Mutation Clang NoOp
VB Gr M L NO VulBERTa Greedy Mutation Line NoOp
VB Gr RT C NO VulBERTa Greedy RemoveToken Clang NoOp
VB Gr RT L NO VulBERTa Greedy RemoveToken Line NoOp
VB KEES M C CB VulBERTa kEES Masked Clang CodeBert
VB KEES M L CB VulBERTa kEES Masked Line CodeBert
VB KEES M C NO VulBERTa kEES Mutation Clang NoOp
VB KEES M L NO VulBERTa kEES Mutation Line NoOp
VB KEES RT C NO VulBERTa kEES RemoveToken Clang NoOp
VB KEES RT L NO VulBERTa kEES RemoveToken Line NoOp
VB LS VulBERTa LigSearch n.a. n.a. n.a.
VB LS VulBERTa LigSearch n.a. n.a. n.a.

Table 7.1: The abbreviations for all combinations of search configurations.

57

7.
2

Se
ar

ch
P

ar
am

et
er

s
A

bb
re

vi
at

io
n

It
er

at
io

ns
G

en
e

po
ol

siz
e

K
ill

ra
tio

M
ax

ag
e

M
ax

su
r-

vi
vo

rs
St

ep
s

pe
r

ite
ra

tio
n

R
ec

om
pu

te
at

tr
ib

u-
tio

ns

M
ax

to
ke

ns
re

m
ov

al
ra

-
tio

C
B

G
A

M
C

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

G
A

M
L

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

G
A

M
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

G
A

M
L

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

G
A

RT
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

G
A

RT
L

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

CB
G

rM
C

C
B

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

CB
G

rM
L

C
B

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

CB
G

rM
C

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

CB
G

rM
L

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

C
B

G
r

RT
C

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

C
B

G
r

RT
L

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

7.2. Search Parameters
C

B
K

EE
S

M
C

C
B

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
B

K
EE

S
M

L
C

B
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

K
EE

S
M

C
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

K
EE

S
M

L
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

K
EE

S
RT

C
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

K
EE

S
RT

L
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
B

LS
10

0
n.

a.
n.

a.
n.

a.
n.

a.
20

Tr
ue

0.
6

C
B

LS
10

0
n.

a.
n.

a.
n.

a.
n.

a.
20

Fa
lse

0.
6

CT
5

G
A

M
C

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

CT
5

G
A

M
L

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

CT
5

G
A

M
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

CT
5

G
A

M
L

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

C
T

5
G

A
RT

C
N

O
10

40
0.

3
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
G

A
RT

L
N

O
10

40
0.

3
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
G

r
M

C
C

B
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

59

7. Appendix

C
T

5
G

r
M

L
C

B
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

C
T

5
G

r
M

C
N

O
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

C
T

5
G

r
M

L
N

O
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

CT
5

G
rR

T
C

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

CT
5

G
rR

T
L

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

C
T

5
K

EE
S

M
C

C
B

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
K

EE
S

M
L

C
B

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
K

EE
S

M
C

N
O

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
K

EE
S

M
L

N
O

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
K

EE
S

RT
C

N
O

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

C
T

5
K

EE
S

RT
L

N
O

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

PL
B

G
A

M
C

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

G
A

M
L

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

G
A

M
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

60

7.2. Search Parameters
PL

B
G

A
M

L
N

O
10

40
0.

3
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

PL
B

G
A

RT
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

G
A

RT
L

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

G
r

M
C

C
B

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

PL
B

G
r

M
L

C
B

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

PL
B

G
r

M
C

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

PL
B

G
r

M
L

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

PL
B

G
rR

T
C

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

PL
B

G
rR

T
L

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

PL
B

K
EE

S
M

C
C

B
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

K
EE

S
M

L
C

B
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

K
EE

S
M

C
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

K
EE

S
M

L
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

K
EE

S
RT

C
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

61

7. Appendix

PL
B

K
EE

S
RT

L
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

PL
B

LS
10

0
n.

a.
n.

a.
n.

a.
n.

a.
20

Tr
ue

0.
6

PL
B

LS
10

0
n.

a.
n.

a.
n.

a.
n.

a.
20

Fa
lse

0.
6

V
B

G
A

M
C

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

G
A

M
L

C
B

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

G
A

M
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

G
A

M
L

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

G
A

RT
C

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

G
A

RT
L

N
O

10
40

0.
3

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

G
rM

C
C

B
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

V
B

G
rM

L
C

B
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

V
B

G
rM

C
N

O
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

V
B

G
rM

L
N

O
30

n.
a.

n.
a.

25
10

n.
a.

n.
a.

n.
a.

V
B

G
r

RT
C

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

V
B

G
r

RT
L

N
O

30
n.

a.
n.

a.
25

10
n.

a.
n.

a.
n.

a.

62

7.2. Search Parameters
V

B
K

EE
S

M
C

C
B

2
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.
n.

a.

V
B

K
EE

S
M

L
C

B
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

K
EE

S
M

C
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

K
EE

S
M

L
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

K
EE

S
RT

C
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

K
EE

S
RT

L
N

O
2

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

V
B

LS
10

0
n.

a.
n.

a.
n.

a.
n.

a.
20

Tr
ue

0.
6

V
B

LS
10

0
n.

a.
n.

a.
n.

a.
n.

a.
20

Fa
lse

0.
6

Ta
bl

e
7.

2:
Se

ar
ch

pa
ra

m
et

er
s

fo
r

ev
er

y
co

m
bi

na
tio

n
of

se
ar

ch
co

nfi
gu

ra
tio

n.
N

ot
ev

er
y

pa
ra

m
et

er
is

ap
pl

ic
ab

le
to

ev
er

y
co

nfi
gu

ra
tio

n.
In

ap
pl

ic
ab

le
pa

ra
m

et
er

s
ar

e
de

no
te

d
as

"n
.a

.".

63

7.
3

Se
ar

ch
R

es
ul

ts
C

on
fig

ur
at

io
n

Av
g.

pr
oc

es
s-

in
g

tim
e

pe
r

to
ke

n
[m

s]

Av
g.

nu
m

be
r

of
C

Fs
pe

r
to

-
ke

n

To
ta

l
nu

m
be

r
of

C
Fs

N
um

be
r

of
C

Fs
w

ith
≤

2
ch

an
ge

s

N
um

be
r

of
C

Fs
w

ith
≤

20
%

of
in

pu
t

to
ke

ns
ch

an
ge

d

Av
g.

st
rin

g
sim

ila
rit

y
of

in
-

pu
t

to
C

F

C
B

G
r

M
L

C
B

39
2.

02
0.

24
11

6
6

0.
07

61

C
B

G
A

M
L

C
B

14
04

.7
7

1.
44

65
11

27
0.

16
7

CB
K

EE
S

M
L

C
B

26
32

.3
6

1.
29

58
58

56
0.

10
42

C
B

G
r

M
L

N
O

67
.7

2
0.

13
6

3
2

0.
08

48

C
B

G
A

M
L

N
O

32
0.

77
0.

87
39

14
17

0.
16

78

CB
K

EE
S

M
L

N
O

29
9.

45
1.

38
62

62
62

0.
14

35

C
B

G
r

RT
L

N
O

69
.8

7
0.

22
10

6
5

0.
05

25

C
B

G
A

RT
L

N
O

32
1.

17
0.

98
44

13
28

0.
19

38

C
B

K
EE

S
RT

L
N

O
33

8.
45

1.
38

62
62

61
0.

13
89

C
B

G
r

M
C

C
B

19
2.

12
0.

24
11

11
11

0.
09

07

C
B

G
A

M
C

C
B

23
6.

61
0.

29
13

7
13

0.
05

41

7.3. Search Results
C

B
K

EE
S

M
C

C
B

24
65

6.
15

75
.5

3
33

99
33

99
33

99
0.

25
04

C
B

G
r

M
C

N
O

30
.1

9
2.

51
11

3
11

3
11

3
0.

12
51

C
B

G
A

M
C

N
O

53
.1

9
2.

76
12

4
86

12
4

0.
14

34

C
B

K
EE

S
M

C
N

O
18

75
.0

6
10

3.
98

46
79

46
79

46
79

0.
21

6

C
B

G
r

RT
C

N
O

29
.5

7
2.

16
97

97
97

0.
10

84

C
B

G
A

RT
C

N
O

53
.6

9
2.

04
92

71
86

0.
18

23

C
B

K
EE

S
RT

C
N

O
18

47
.9

3
70

.0
7

31
53

31
53

31
53

0.
14

72

PL
B

G
r

M
L

C
B

48
1.

16
0.

58
26

13
12

0.
15

25

PL
B

G
A

M
L

C
B

17
27

.9
5

2.
2

99
50

52
0.

16
21

PL
B

K
EE

S
M

L
C

B
30

79
.9

2
1.

89
85

85
73

0.
21

75

PL
B

G
r

M
L

N
O

87
.1

5
0.

44
20

17
14

0.
10

99

PL
B

G
A

M
L

N
O

41
7.

62
2.

73
12

3
64

64
0.

21
44

PL
B

K
EE

S
M

L
N

O
30

2.
99

1.
6

72
72

66
0.

19
48

PL
B

G
r

RT
L

N
O

83
.8

5
0.

69
31

13
10

0.
10

42

65

7. Appendix

PL
B

G
A

RT
L

N
O

40
9.

82
1.

2
54

20
16

0.
16

91

PL
B

K
EE

S
RT

L
N

O
34

5.
41

0.
91

41
41

32
0.

16
08

PL
B

G
r

M
C

C
B

20
6.

87
0.

8
36

35
36

0.
12

81

PL
B

G
A

M
C

C
B

30
8.

51
2.

82
12

7
67

12
3

0.
16

09

PL
B

K
EE

S
M

C
C

B
26

52
8.

56
37

8.
78

17
04

5
17

04
5

17
04

5
0.

32
6

PL
B

G
r

M
C

N
O

34
.6

4
3.

11
14

0
13

9
14

0
0.

18
36

PL
B

G
A

M
C

N
O

71
.8

5
4.

51
20

3
10

8
18

2
0.

22
04

PL
B

K
EE

S
M

C
N

O
17

01
.1

3
53

4.
0

24
03

0
24

03
0

24
03

0
0.

27
36

PL
B

G
r

RT
C

N
O

34
.7

1
3.

58
16

1
16

0
16

1
0.

16
4

PL
B

G
A

RT
C

N
O

71
.9

7
4.

58
20

6
89

18
9

0.
25

43

PL
B

K
EE

S
RT

C
N

O
16

72
.9

9
47

9.
22

21
56

5
21

56
5

21
56

5
0.

25
56

C
B

LS
62

79
.7

1
0.

0
0

0
0

0.
0

C
B

LS
10

09
.0

0.
11

5
0

0
0.

07
71

PL
B

LS
27

39
.2

7
0.

11
5

1
0

0.
09

16
PL

B
LS

85
1.

61
0.

16
7

2
0

0.
11

33
C

T
5

G
r

M
L

C
B

29
4.

18
3.

84
19

2
16

5
16

9
0.

27
05

66

7.3. Search Results
C

T
5

G
A

M
L

C
B

14
97

.9
1

19
.6

4
98

2
34

0
52

1
0.

25
55

C
T

5
K

EE
S

M
L

C
B

21
16

.0
28

.6
8

14
34

14
34

14
31

0.
32

46

C
T

5
G

r
M

L
N

O
89

.6
2

1.
78

89
76

77
0.

19
91

C
T

5
G

A
M

L
N

O
41

2.
99

5.
7

28
5

20
6

23
0

0.
31

71

C
T

5
K

EE
S

M
L

N
O

49
8.

01
13

.8
6

69
3

69
3

68
9

0.
33

07

C
T

5
G

r
RT

L
N

O
90

.5
6

2.
76

13
8

12
2

12
0

0.
24

38

CT
5

G
A

RT
L

N
O

41
7.

91
4.

3
21

5
11

4
15

9
0.

30
57

C
T

5
K

EE
S

RT
L

N
O

51
7.

67
12

.3
8

61
9

61
9

61
3

0.
33

15

C
T

5
G

r
M

C
C

B
16

2.
21

8.
4

42
0

42
0

42
0

0.
25

24

C
T

5
G

A
M

C
C

B
29

5.
47

22
.6

6
11

33
48

3
11

21
0.

23
43

C
T

5
K

EE
S

M
C

C
B

17
99

2.
45

52
8.

42
26

42
1

26
42

1
26

42
1

0.
36

78

C
T

5
G

r
M

C
N

O
43

.0
7

7.
94

39
7

39
7

39
7

0.
26

33

C
T

5
G

A
M

C
N

O
80

.2
5

13
.4

4
67

2
40

2
67

0
0.

34
34

C
T

5
K

EE
S

M
C

N
O

32
38

.3
7

10
18

.6
8

50
93

4
50

93
4

50
93

4
0.

34
35

67

7. Appendix

C
T

5
G

r
RT

C
N

O
44

.3
8

8.
64

43
2

43
2

43
2

0.
31

03

CT
5

G
A

RT
C

N
O

72
.2

4
11

.2
8

56
4

33
6

56
4

0.
32

56

C
T

5
K

EE
S

RT
C

N
O

30
77

.2
1

79
7.

06
39

85
3

39
85

3
39

85
3

0.
34

52

V
B

G
r

M
L

C
B

53
5.

46
0.

0
0

0
0

0.
0

V
B

G
A

M
L

C
B

17
26

.2
5

0.
0

0
0

0
0.

0

V
B

K
EE

S
M

L
C

B
65

22
.9

5
0.

0
0

0
0

0.
0

V
B

G
r

M
L

N
O

11
4.

77
0.

0
0

0
0

0.
0

V
B

G
A

M
L

N
O

52
1.

37
0.

0
0

0
0

0.
0

V
B

K
EE

S
M

L
N

O
74

1.
55

0.
0

0
0

0
0.

0

V
B

G
r

RT
L

N
O

11
7.

39
0.

0
0

0
0

0.
0

V
B

G
A

RT
L

N
O

51
8.

05
0.

0
0

0
0

0.
0

V
B

K
EE

S
RT

L
N

O
78

1.
36

0.
0

0
0

0
0.

0

V
B

G
r

M
C

C
B

30
1.

65
0.

0
0

0
0

0.
0

V
B

G
A

M
C

C
B

32
7.

8
0.

0
0

0
0

0.
0

68

7.3. Search Results
V

B
K

EE
S

M
C

C
B

46
81

3.
41

0.
0

0
0

0
0.

0

V
B

G
r

M
C

N
O

55
.4

1
0.

0
0

0
0

0.
0

V
B

G
A

M
C

N
O

92
.7

6
0.

0
0

0
0

0.
0

V
B

K
EE

S
M

C
N

O
55

67
.4

3
0.

0
0

0
0

0.
0

V
B

G
r

RT
C

N
O

56
.7

1
0.

0
0

0
0

0.
0

V
B

G
A

RT
C

N
O

93
.1

5
0.

0
0

0
0

0.
0

V
B

K
EE

S
RT

C
N

O
50

99
.9

7
0.

0
0

0
0

0.
0

V
B

LS
10

83
93

.4
1

0.
0

0
0

0
0.

0
V

B
LS

10
64

.9
7

0.
0

0
0

0
0.

0

Ta
bl

e
7.

3:
T

he
re

su
lts

fr
om

ev
er

y
co

m
bi

na
tio

n
of

se
ar

ch
al

go
rit

hm
,t

ok
en

iz
er

,p
er

tu
rb

er
,u

nm
as

ke
r

an
d

cl
as

sifi
er

.
St

rin
g

sim
ila

rit
y

is
ca

lc
ul

at
ed

us
in

g
th

e
Ja

ro
di

st
an

ce
[4

],
w

he
re

1
m

ea
ns

id
en

tic
al

st
rin

gs
,a

nd
0

m
ea

ns
no

sim
ila

rit
y

be
tw

ee
n

tw
o

st
rin

gs
.

69

7.
4

R
em

ov
ed

To
ke

ns
C

at
eg

or
ie

s

C
on

fig
.

FU
N

C_
D

EF
[%

]
K

EY
W

O
R

D
[%

]
PU

N
C

T
.

[%
]

U
N

K
N

O
W

N
[%

]
LO

O
P

[%
]

ID
EN

T
.[

%
]

LI
T

ER
A

L
[%

]
C

B
G

r
M

L
C

B
44

.4
4

44
.4

4
11

.1
1

-
-

-
-

CB
G

A
M

L
C

B
55

.5
6

27
.7

8
16

.6
7

-
-

-
-

C
B

K
EE

S
M

L
C

B
45

.6
1

21
.9

3
18

.4
2

14
.0

4
-

-
-

C
B

G
r

M
L

N
O

40
.0

20
.0

40
.0

-
-

-
-

CB
G

A
M

L
N

O
45

.8
3

25
.0

25
.0

4.
17

-
-

-

C
B

K
EE

S
M

L
N

O
34

.1
5

24
.3

9
35

.7
7

5.
69

-
-

-

CB
G

rR
T

L
N

O
50

.0
30

.0
20

.0
-

-
-

-

C
B

G
A

RT
L

N
O

37
.5

33
.3

3
29

.1
7

-
-

-
-

C
B

K
EE

S
RT

L
N

O
48

.3
6

18
.8

5
23

.7
7

6.
56

2.
46

-
-

C
B

G
r

M
C

C
B

-
18

.1
8

36
.3

6
-

-
45

.4
5

-

CB
G

A
M

C
C

B
-

-
81

.8
2

-
-

18
.1

8
-

C
B

K
EE

S
M

C
C

B
-

4.
31

58
.2

4
3.

85
0.

15
27

.6
4

5.
82

C
B

G
r

M
C

N
O

-
13

.2
7

30
.9

7
5.

31
-

46
.9

3.
54

7.4. Removed Tokens Categories
CB

G
A

M
C

N
O

-
5.

15
59

.7
9

-
-

32
.9

9
2.

06

C
B

K
EE

S
M

C
N

O
-

3.
53

55
.4

5
0.

36
0.

05
36

.2
3

4.
38

CB
G

rR
T

C
N

O
-

8.
25

26
.8

6.
19

-
52

.5
8

6.
19

C
B

G
A

RT
C

N
O

-
8.

11
55

.4
1

-
-

25
.6

8
10

.8
1

C
B

K
EE

S
RT

C
N

O
-

2.
85

63
.0

6
0.

3
-

29
.9

3.
89

PL
B

G
rM

L
C

B
70

.5
9

11
.7

6
11

.7
6

5.
88

-
-

-

PL
B

G
A

M
L

C
B

54
.7

9
24

.6
6

10
.9

6
2.

74
6.

85
-

-

PL
B

K
EE

S
M

L
C

B
42

.8
6

25
.4

7
25

.4
7

3.
73

2.
48

-
-

PL
B

G
rM

L
N

O
50

.0
31

.8
2

18
.1

8
-

-
-

-

PL
B

G
A

M
L

N
O

52
.5

3
16

.1
6

19
.1

9
9.

09
3.

03
-

-

PL
B

K
EE

S
M

L
N

O
44

.7
8

21
.6

4
18

.6
6

5.
22

9.
7

-
-

PL
B

G
r

RT
L

N
O

55
.0

30
.0

15
.0

-
-

-
-

PL
B

G
A

RT
L

N
O

70
.5

9
23

.5
3

5.
88

-
-

-
-

PL
B

K
EE

S
RT

L
N

O
55

.8
4

27
.2

7
10

.3
9

3.
9

2.
6

-
-

71

7. Appendix

PL
B

G
r

M
C

C
B

-
2.

86
31

.4
3

2.
86

5.
71

51
.4

3
5.

71

PL
B

G
A

M
C

C
B

-
0.

93
59

.2
6

-
-

31
.4

8
8.

33

PL
B

K
EE

S
M

C
C

B
-

2.
39

61
.8

2
0.

6
0.

97
30

.8
2

3.
41

PL
B

G
r

M
C

N
O

-
7.

91
25

.1
8

7.
19

0.
72

48
.9

2
10

.0
7

PL
B

G
A

M
C

N
O

-
5.

71
55

.7
1

-
0.

71
31

.4
3

6.
43

PL
B

K
EE

S
M

C
N

O
-

3.
39

52
.0

4
1.

75
0.

19
37

.1
9

5.
43

PL
B

G
r

RT
C

N
O

-
10

.0
21

.8
8

8.
12

0.
62

50
.0

9.
38

PL
B

G
A

RT
C

N
O

-
3.

15
55

.9
1

-
-

25
.9

8
14

.9
6

PL
B

K
EE

S
RT

C
N

O
-

2.
62

55
.9

7
1.

96
0.

3
35

.9
7

3.
18

C
B

LS
-

-
-

-
-

-
-

C
B

LS
-

-
-

-
-

-
-

PL
B

LS
-

-
-

-
-

10
0.

0
-

PL
B

LS
-

-
-

-
-

10
0.

0
-

CT
5

G
rM

L
C

B
28

.1
6

25
.7

3
31

.0
7

12
.6

2
1.

94
0.

49
-

C
T

5
G

A
M

L
C

B
35

.7
9

26
.1

8
30

.2
7

6.
54

1.
23

-
-

C
T

5
K

EE
S

M
L

C
B

31
.9

6
26

.8
5

28
.5

9.
45

3.
24

-
-

72

7.4. Removed Tokens Categories
CT

5
G

rM
L

N
O

32
.5

21
.2

5
30

.0
13

.7
5

2.
5

-
-

C
T

5
G

A
M

L
N

O
30

.9
5

29
.3

7
21

.4
3

17
.0

6
1.

19
-

-

C
T

5
K

EE
S

M
L

N
O

21
.4

8
39

.9
7

22
.3

13
.2

2.
98

0.
07

-

C
T

5
G

r
RT

L
N

O
31

.1
1

35
.5

6
19

.2
6

10
.3

7
3.

7
-

-

CT
5

G
A

RT
L

N
O

35
.5

3
26

.9
7

23
.0

3
9.

87
4.

61
-

-

C
T

5
K

EE
S

RT
L

N
O

24
.1

9
37

.6
9

22
.5

6
11

.8
8

3.
68

-
-

CT
5

G
rM

C
C

B
-

19
.2

9
30

.4
8

2.
62

0.
48

40
.2

4
6.

9

C
T

5
G

A
M

C
C

B
-

10
.2

6
53

.9
0.

14
-

33
.6

5
2.

05

C
T

5
K

EE
S

M
C

C
B

-
7.

62
56

.8
2

0.
88

0.
35

30
.5

3
3.

8

CT
5

G
rM

C
N

O
-

14
.3

2
26

.6
3

1.
01

1.
01

50
.5

6.
53

C
T

5
G

A
M

C
N

O
-

6.
94

60
.8

2
-

0.
2

27
.7

6
4.

29

C
T

5
K

EE
S

M
C

N
O

-
4.

25
57

.3
6

0.
86

0.
94

32
.8

3.
8

C
T

5
G

r
RT

C
N

O
-

13
.8

9
29

.1
7

0.
93

0.
93

48
.6

1
6.

48

CT
5

G
A

RT
C

N
O

-
7.

98
61

.1
-

-
28

.1
8

2.
74

73

7. Appendix

C
T

5
K

EE
S

RT
C

N
O

-
3.

52
58

.0
5

1.
31

1.
06

32
.8

2
3.

24

V
B

G
r

M
L

C
B

-
-

-
-

-
-

-

V
B

G
A

M
L

C
B

-
-

-
-

-
-

-

V
B

K
EE

S
M

L
C

B
-

-
-

-
-

-
-

V
B

G
r

M
L

N
O

-
-

-
-

-
-

-

V
B

G
A

M
L

N
O

-
-

-
-

-
-

-

V
B

K
EE

S
M

L
N

O
-

-
-

-
-

-
-

V
B

G
rR

T
L

N
O

-
-

-
-

-
-

-

V
B

G
A

RT
L

N
O

-
-

-
-

-
-

-

V
B

K
EE

S
RT

L
N

O
-

-
-

-
-

-
-

V
B

G
r

M
C

C
B

-
-

-
-

-
-

-

V
B

G
A

M
C

C
B

-
-

-
-

-
-

-

V
B

K
EE

S
M

C
C

B
-

-
-

-
-

-
-

V
B

G
r

M
C

N
O

-
-

-
-

-
-

-

74

7.4. Removed Tokens Categories
V

B
G

A
M

C
N

O
-

-
-

-
-

-
-

V
B

K
EE

S
M

C
N

O
-

-
-

-
-

-
-

V
B

G
rR

T
C

N
O

-
-

-
-

-
-

-

V
B

G
A

RT
C

N
O

-
-

-
-

-
-

-

V
B

K
EE

S
RT

C
N

O
-

-
-

-
-

-
-

V
B

LS
-

-
-

-
-

-
-

V
B

LS
-

-
-

-
-

-
-

Ta
bl

e
7.

4:
T

he
pe

rc
en

ta
ge

of
co

un
te

rfa
ct

ua
ls

w
ith

≤
2

ch
an

ge
s

to
th

e
in

pu
t

w
ith

re
m

ov
al

s
co

nt
ai

ni
ng

th
e

ty
pe

s
of

pr
og

ra
m

st
at

em
en

ts
in

th
e

ta
bl

e.
C

at
eg

or
ie

s
of

re
m

ov
ed

to
ke

ns
ar

e
ex

pl
ai

ne
d

in
Se

ct
io

n
4.

2.
5.

75

List of Figures

1.1 One possible search space in the search for a counterfactual to the creditwor-
thiness example. Counterfactuals are marked with a green check mark. The
leftmost two counterfactuals are of low usefulness, as they would require a
change in the credit history. The center counterfactual needs an additional
increase in income, and is therefore even less actionable. The counterfactual
to the right requires an increased income, and is therefore more actionable in
this scenario. 2

2.1 The transformer architecture as presented in the paper "Attention Is All You
Need". The left side is the encoder which takes the input with start and end
tokens. The right side is the decoder. During training, it is fed the expected
output, during inference it is fed a start token in the first time step and its
own output afterwards. Image from [45]. 7

3.1 The exact configuration of the search methods used influences the search space,
which in turn influences the number and types of produced counterfactuals. 13

3.2 An overview over all Classifiers used in this thesis. 16
3.3 An overview over both Tokenizers used in this thesis. 18
3.4 An overview over the Perturbers used in this thesis. 20
3.5 An overview over all search algorithms used in this thesis. 20
3.6 An overview over all Unmaskers used in this thesis. 21
3.7 A visualization of a code sample evaluated by the Captum library. Tokens

colored in green add to the result, which in this sample is 1 for unsecure code.
Tokens colored in red subtract from the result. 24

4.1 The percentage of changes to produce a counterfactual with respect to the
number of input tokens. If the same input token is changed more than one
time, this counts as multiple changes. This graphics shows the numbers over
all search configurations. 37

4.2 The percentage of changes to produce a counterfactual with respect to the
number of input tokens by search algorithm. 38

4.3 The average processing time per input token over all search configurations for
each search algorithm. 38

77

4.4 The average processing time to find a counterfactual over all search configura-
tions for each search algorithm. 39

4.5 The average number of counterfactuals produced by each search configuration
for each search algorithm per input token. 39

4.6 The average search duration per counterfactual for each model of code. . 40
4.7 The average processing time to find a counterfactual over all models of code

for each search algorithm per input token. 40
4.8 The average number of counterfactuals produced per input token per model.

Note that VulBERTa-MLP did not produce a counterfactual. 41
4.9 The average time to find the first counterfactual over all search configurations

for each search algorithm. "Recompute" and "Don’t Recompute" indicates the
state of the recompute_attributions_for_each_iteration parame-
ter, i.e. if the LIG attributes should be recomputed after each removed token.
Note that the LIG search does not use Perturbers or Tokenizers the way the
other search algorithms do. This data only includes times from search runs
were at least one counterfactual was found, hence the disparity with Figure
4.11 for the LIG search. 42

4.10 The average number of counterfactuals produced per search run for all search
algorithms, including the LIG search. As the LIG search produces at most
one counterfactual, this data shows that it found a counterfactual on 10% of
search runs. 43

4.11 The average time to produce a counterfactual for all search algorithms, in-
cluding the LIG search. These times also include search runs in which no
counterfactuals were found, hence the disparity with Figure4.9 on the data
for the LIG search. 43

4.12 The average string similarity from each produced counterfactual to the original
input. This similarity is calculated using the Jaro distance, as explained in
Section 2.5. Higher values mean higher similarities to the input and are
therefore better. "Recompute" and "Don’t Recompute" indicates the state of
the recompute_attributions_for_each_iteration parameter, i.e.
if the LIG attributes should be recomputed after each removed token. . . 44

78

List of Tables

4.1 The transformer versions required to run search algorithms on the given
models. Note that these versions are not necessarily the earliest or latest
versions for which the current use case will work, but these versions are tested
and verified to function. 31

4.2 The numbers of total classifications and invalid classifications for each classifier.
An invalid classification is when the model identifies a source code sample as
invulnerable when it is labeled as vulnerable in the CodeXGLUE test dataset.
In this case the search for counterfactuals is aborted before it is started. The
fourth column gives the relative percentage with respect to the total number
of evaluated source code snippets. 36

7.1 The abbreviations for all combinations of search configurations. 57
7.2 Search parameters for every combination of search configuration. Not every

parameter is applicable to every configuration. Inapplicable parameters are
denoted as "n.a.". 63

7.3 The results from every combination of search algorithm, tokenizer, perturber,
unmasker and classifier. String similarity is calculated using the Jaro distance
[4], where 1 means identical strings, and 0 means no similarity between two
strings. 69

7.4 The percentage of counterfactuals with ≤ 2 changes to the input with removals
containing the types of program statements in the table. Categories of removed
tokens are explained in Section 4.2.5. 75

79

Acronyms

kEES k-Exponential Exhaustive Search. 2, 11, 23, 24, 27–31, 36, 37, 49–51, 53

<EOS> End Of Sequence. 6

<SOS> Start Of Sequence. 6

AI Artificial Intelligence. 1

CNN Convolutional Neural Network. 30

CPU Central Processing Unit. 16, 31

GA Genetic Algorithm. 2, 8–11, 21, 22, 52

GPT Generative Pretrained Transformer. 6–8

GPU Graphics Processing Unit. 16, 31

GS Genetic Search. 8, 9, 11, 21, 22, 27–31, 37, 50, 51

IG Integrated Gradients. 11, 12

LIG Layer Integrated Gradients. 3, 11, 16, 24, 25, 31, 32, 35, 37, 41–44, 49–51, 78

LLM Large Language Model. 6

ML Machine Learning. 1, 8, 15, 52

MLM Masked Language Model. 3, 20, 21, 28, 32, 47, 51

MLP Multi Layer Perceptron. 30

NEAT NeuroEvolution of Augmenting Topologies. 10, 11

NN Neural Network. 11, 12, 31, 45

81

RLHF Reinforcement Learning from Human Feedback. 7

RNN Recurrent Neural Network. 5

T5 Text-To-Text Transfer Transformer. 30

82

Bibliography

[1] J. Achiam et al. GPT-4 Technical Report. 2023-12-18. doi: 10.48550/arXiv.
2303.08774. arXiv: 2303.08774[cs]. url: http://arxiv.org/abs/
2303.08774 (visited on 2024-02-22).

[2] W. U. Ahmad et al. Unified Pre-training for Program Understanding and Generation.
2021-04-10. doi: 10.48550/arXiv.2103.06333. arXiv: 2103.06333[cs].
url: http://arxiv.org/abs/2103.06333 (visited on 2024-04-04).

[3] A. Albalak et al. A Survey on Data Selection for Language Models. 2024-02-26.
doi: 10.48550/arXiv.2402.16827. arXiv: 2402.16827[cs]. url: http:
//arxiv.org/abs/2402.16827 (visited on 2024-02-28).

[4] J. Basak et al. “On Computing the Jaro Similarity Between Two Strings”. In:
Bioinformatics Research and Applications. Ed. by X. Guo et al. Singapore: Springer
Nature, 2023, pp. 31–44. isbn: 978-981-9970-74-2. doi: 10.1007/978-981-99-
7074-2_3.

[5] P. E. Black. greedy algorithm. greedy algorithm. 2005-02-02. url: https://
xlinux.nist.gov/dads//HTML/greedyalgo.html (visited on 2024-04-20).

[6] N. Carlini et al. Stealing Part of a Production Language Model. 2024-03-11. doi:
10.48550/arXiv.2403.06634. arXiv: 2403.06634[cs]. url: http://
arxiv.org/abs/2403.06634 (visited on 2024-04-08).

[7] I. Čík et al. “Explaining Deep Neural Network using Layer-wise Relevance Prop-
agation and Integrated Gradients”. In: 2021 IEEE 19th World Symposium on
Applied Machine Intelligence and Informatics (SAMI). 2021 IEEE 19th World
Symposium on Applied Machine Intelligence and Informatics (SAMI). 2021-01,
pp. 000381–000386. doi: 10.1109/SAMI50585.2021.9378686. url: https:
//ieeexplore.ieee.org/abstract/document/9378686 (visited on 2024-
04-27).

[8] J. Cito et al. “Counterfactual explanations for models of code”. In: Proceedings of
the 44th International Conference on Software Engineering: Software Engineering
in Practice. ICSE-SEIP ’22. New York, NY, USA: Association for Computing
Machinery, 2022-10-17, pp. 125–134. isbn: 978-1-4503-9226-6. doi: 10.1145/
3510457.3513081. url: https://dl.acm.org/doi/10.1145/3510457.
3513081 (visited on 2023-05-19).

83

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774 [cs]
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2103.06333
https://arxiv.org/abs/2103.06333 [cs]
http://arxiv.org/abs/2103.06333
https://doi.org/10.48550/arXiv.2402.16827
https://arxiv.org/abs/2402.16827 [cs]
http://arxiv.org/abs/2402.16827
http://arxiv.org/abs/2402.16827
https://doi.org/10.1007/978-981-99-7074-2_3
https://doi.org/10.1007/978-981-99-7074-2_3
https://xlinux.nist.gov/dads//HTML/greedyalgo.html
https://xlinux.nist.gov/dads//HTML/greedyalgo.html
https://doi.org/10.48550/arXiv.2403.06634
https://arxiv.org/abs/2403.06634 [cs]
http://arxiv.org/abs/2403.06634
http://arxiv.org/abs/2403.06634
https://doi.org/10.1109/SAMI50585.2021.9378686
https://ieeexplore.ieee.org/abstract/document/9378686
https://ieeexplore.ieee.org/abstract/document/9378686
https://doi.org/10.1145/3510457.3513081
https://doi.org/10.1145/3510457.3513081
https://dl.acm.org/doi/10.1145/3510457.3513081
https://dl.acm.org/doi/10.1145/3510457.3513081

[9] T. H. Cormen et al. Introduction To Algorithms. Google-Books-ID: NLngYy-
WFl_YC. MIT Press, 2001. 1216 pp. isbn: 978-0-262-03293-3.

[10] K. Deb. “An introduction to genetic algorithms”. In: Sadhana 24.4 (1999-08-
01), pp. 293–315. issn: 0973-7677. doi: 10.1007/BF02823145. url: https:
//doi.org/10.1007/BF02823145 (visited on 2024-02-23).

[11] J. Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019-05-24. doi: 10.48550/arXiv.1810.04805. arXiv: 1810.
04805[cs]. url: http://arxiv.org/abs/1810.04805 (visited on 2024-02-
22).

[12] Z. Feng et al. CodeBERT: A Pre-Trained Model for Programming and Natural
Languages. 2020-09-18. doi: 10.48550/arXiv.2002.08155. arXiv: 2002.
08155[cs]. url: http://arxiv.org/abs/2002.08155 (visited on 2024-01-
26).

[13] S. A. Fezza et al. “Perceptual Evaluation of Adversarial Attacks for CNN-based
Image Classification”. In: 2019 Eleventh International Conference on Quality of
Multimedia Experience (QoMEX). 2019 Eleventh International Conference on
Quality of Multimedia Experience (QoMEX). ISSN: 2472-7814. 2019-06, pp. 1–6.
doi: 10.1109/QoMEX.2019.8743213. url: https://ieeexplore.ieee.
org/abstract/document/8743213 (visited on 2024-02-28).

[14] L. Floridi and M. Chiriatti. “GPT-3: Its Nature, Scope, Limits, and Consequences”.
In: Minds and Machines 30.4 (2020-12-01), pp. 681–694. issn: 1572-8641. doi:
10.1007/s11023-020-09548-1. url: https://doi.org/10.1007/
s11023-020-09548-1 (visited on 2024-02-23).

[15] A. A. Freitas. “Comprehensible classification models: a position paper”. In: ACM
SIGKDD Explorations Newsletter. Vol. 15. 2014-03-17, pp. 1–10. doi: 10.1145/
2594473.2594475. url: https://dl.acm.org/doi/10.1145/2594473.
2594475 (visited on 2023-05-19).

[16] D. Gragnaniello et al. “Analysis of Adversarial Attacks against CNN-based Image
Forgery Detectors”. In: 2018 26th European Signal Processing Conference (EU-
SIPCO). 2018 26th European Signal Processing Conference (EUSIPCO). ISSN:
2076-1465. 2018-09, pp. 967–971. doi: 10.23919/EUSIPCO.2018.8553560.
url: https://ieeexplore.ieee.org/abstract/document/8553560
(visited on 2024-02-28).

[17] R. Guidotti. “Counterfactual explanations and how to find them: literature review
and benchmarking”. In: Data Mining and Knowledge Discovery. 2022-04-28. doi:
10.1007/s10618-022-00831-6. url: https://doi.org/10.1007/
s10618-022-00831-6 (visited on 2023-05-19).

[18] R. Guidotti et al. “A Survey of Methods for Explaining Black Box Models”. In:
ACM Computing Surveys 51.5 (2018-08-22), 93:1–93:42. issn: 0360-0300. doi:
10.1145/3236009. url: https://dl.acm.org/doi/10.1145/3236009
(visited on 2024-02-29).

84

https://doi.org/10.1007/BF02823145
https://doi.org/10.1007/BF02823145
https://doi.org/10.1007/BF02823145
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805 [cs]
https://arxiv.org/abs/1810.04805 [cs]
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.2002.08155
https://arxiv.org/abs/2002.08155 [cs]
https://arxiv.org/abs/2002.08155 [cs]
http://arxiv.org/abs/2002.08155
https://doi.org/10.1109/QoMEX.2019.8743213
https://ieeexplore.ieee.org/abstract/document/8743213
https://ieeexplore.ieee.org/abstract/document/8743213
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1145/2594473.2594475
https://dl.acm.org/doi/10.1145/2594473.2594475
https://dl.acm.org/doi/10.1145/2594473.2594475
https://doi.org/10.23919/EUSIPCO.2018.8553560
https://ieeexplore.ieee.org/abstract/document/8553560
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1145/3236009
https://dl.acm.org/doi/10.1145/3236009

[19] J. Han et al. “An Empirical Study of the Dependency Networks of Deep Learn-
ing Libraries”. In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 2020 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). ISSN: 2576-3148. 2020-09, pp. 868–878. doi:
10.1109/ICSME46990.2020.00116. url: https://ieeexplore.ieee.
org/document/9240645 (visited on 2024-04-26).

[20] H. Hanif and S. Maffeis. “VulBERTa: Simplified Source Code Pre-Training for Vul-
nerability Detection”. In: 2022 International Joint Conference on Neural Networks
(IJCNN). 2022 International Joint Conference on Neural Networks (IJCNN). ISSN:
2161-4407. 2022-07, pp. 1–8. doi: 10.1109/IJCNN55064.2022.9892280.
url: https://ieeexplore.ieee.org/document/9892280 (visited on
2024-04-07).

[21] E. Horton and C. Parnin. “Gistable: Evaluating the Executability of Python Code
Snippets on GitHub”. In: 2018 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). ISSN: 2576-3148. 2018-09, pp. 217–227.
doi: 10.1109/ICSME.2018.00031. url: https://ieeexplore.ieee.
org/abstract/document/8530031?casa_token=Kqeg7i9xtusAAAAA:
_HoLfwRlfHfmB7rHP2OYMqztHDeEcVbgXmNW5t3_qA593f2Dr0ifpSKCCGkt_
4ClqPcGZ7tB (visited on 2024-04-26).

[22] M. A. Jaro. “Advances in Record-Linkage Methodology as Applied to Matching the
1985 Census of Tampa, Florida”. In: Journal of the American Statistical Association
84.406 (1989-06-01). Publisher: Taylor & Francis _eprint: https://www.tandfonline.com/doi/pdf/10.1080/01
pp. 414–420. issn: 0162-1459. doi: 10.1080/01621459.1989.10478785. url:
https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.
10478785 (visited on 2024-07-15).

[23] B. Johnson et al. “Why don’t software developers use static analysis tools to find
bugs?” In: 2013 35th International Conference on Software Engineering (ICSE).
2013 35th International Conference on Software Engineering (ICSE). San Francisco,
CA, USA: IEEE, 2013-05, pp. 672–681. isbn: 978-1-4673-3076-3 978-1-4673-3073-2.
doi: 10.1109/ICSE.2013.6606613. url: http://ieeexplore.ieee.
org/document/6606613/ (visited on 2023-06-07).

[24] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017-
01-29. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980[cs]. url:
http://arxiv.org/abs/1412.6980 (visited on 2024-02-28).

[25] N. Kokhlikyan et al. Captum: A unified and generic model interpretability library
for PyTorch. 2020-09-16. doi: 10.48550/arXiv.2009.07896. arXiv: 2009.
07896[cs,stat]. url: http://arxiv.org/abs/2009.07896 (visited on
2024-04-27).

85

https://doi.org/10.1109/ICSME46990.2020.00116
https://ieeexplore.ieee.org/document/9240645
https://ieeexplore.ieee.org/document/9240645
https://doi.org/10.1109/IJCNN55064.2022.9892280
https://ieeexplore.ieee.org/document/9892280
https://doi.org/10.1109/ICSME.2018.00031
https://ieeexplore.ieee.org/abstract/document/8530031?casa_token=Kqeg7i9xtusAAAAA:_HoLfwRlfHfmB7rHP2OYMqztHDeEcVbgXmNW5t3_qA593f2Dr0ifpSKCCGkt_4ClqPcGZ7tB
https://ieeexplore.ieee.org/abstract/document/8530031?casa_token=Kqeg7i9xtusAAAAA:_HoLfwRlfHfmB7rHP2OYMqztHDeEcVbgXmNW5t3_qA593f2Dr0ifpSKCCGkt_4ClqPcGZ7tB
https://ieeexplore.ieee.org/abstract/document/8530031?casa_token=Kqeg7i9xtusAAAAA:_HoLfwRlfHfmB7rHP2OYMqztHDeEcVbgXmNW5t3_qA593f2Dr0ifpSKCCGkt_4ClqPcGZ7tB
https://ieeexplore.ieee.org/abstract/document/8530031?casa_token=Kqeg7i9xtusAAAAA:_HoLfwRlfHfmB7rHP2OYMqztHDeEcVbgXmNW5t3_qA593f2Dr0ifpSKCCGkt_4ClqPcGZ7tB
https://doi.org/10.1080/01621459.1989.10478785
https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478785
https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478785
https://doi.org/10.1109/ICSE.2013.6606613
http://ieeexplore.ieee.org/document/6606613/
http://ieeexplore.ieee.org/document/6606613/
https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980 [cs]
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.2009.07896
https://arxiv.org/abs/2009.07896 [cs, stat]
https://arxiv.org/abs/2009.07896 [cs, stat]
http://arxiv.org/abs/2009.07896

[26] Z. Li et al. “Automating code review activities by large-scale pre-training”. In:
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2022.
New York, NY, USA: Association for Computing Machinery, 2022-11-09, pp. 1035–
1047. isbn: 978-1-4503-9413-0. doi: 10.1145/3540250.3549081. url: https:
//dl.acm.org/doi/10.1145/3540250.3549081 (visited on 2024-01-26).

[27] T. Liu et al. “Understanding Long Programming Languages with Structure-Aware
Sparse Attention”. In: Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’22. New York, NY,
USA: Association for Computing Machinery, 2022-07-07, pp. 2093–2098. isbn:
978-1-4503-8732-3. doi: 10.1145/3477495.3531811. url: https://dl.acm.
org/doi/10.1145/3477495.3531811 (visited on 2024-06-13).

[28] F. Long and M. Rinard. “An analysis of the search spaces for generate and validate
patch generation systems”. In: Proceedings of the 38th International Conference
on Software Engineering. ICSE ’16: 38th International Conference on Software
Engineering. Austin Texas: ACM, 2016-05-14, pp. 702–713. isbn: 978-1-4503-3900-1.
doi: 10.1145/2884781.2884872. url: https://dl.acm.org/doi/10.
1145/2884781.2884872 (visited on 2024-08-23).

[29] S. Lu et al. CodeXGLUE: A Machine Learning Benchmark Dataset for Code
Understanding and Generation. 2021-03-16. doi: 10.48550/arXiv.2102.04664.
arXiv: 2102.04664[cs]. url: http://arxiv.org/abs/2102.04664
(visited on 2024-04-07).

[30] Maria del Pilar Angeles et al. “Analysis of String Comparison Methods During
De-Duplication Process”. In: The Seventh International Conference on Advances in
Databases, Knowledge, and Data Applications. The Second International Workshop
on Large-scale Graph Storage and Management, 2015-05-24, pp. 57–62. isbn:
978-1-61208-408-4. (Visited on 2024-07-15).

[31] D. Martens and F. Provost. “Explaining Data-Driven Document Classifications”. In:
MIS Quarterly 38.1 (2014). Publisher: Management Information Systems Research
Center, University of Minnesota, pp. 73–100. issn: 0276-7783. url: https://www.
jstor.org/stable/26554869 (visited on 2024-02-28).

[32] J. Nievergelt. “Exhaustive Search, Combinatorial Optimization and Enumeration:
Exploring the Potential of Raw Computing Power”. In: SOFSEM 2000: Theory
and Practice of Informatics. Ed. by V. Hlaváč, K. G. Jeffery, and J. Wiedermann.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, pp. 18–35.
isbn: 978-3-540-44411-4. doi: 10.1007/3-540-44411-4_2.

[33] S.-H. Noh. “Analysis of Gradient Vanishing of RNNs and Performance Comparison”.
In: Information 12.11 (2021-11). Number: 11 Publisher: Multidisciplinary Digital
Publishing Institute, p. 442. issn: 2078-2489. doi: 10.3390/info12110442. url:
https://www.mdpi.com/2078-2489/12/11/442 (visited on 2024-02-21).

86

https://doi.org/10.1145/3540250.3549081
https://dl.acm.org/doi/10.1145/3540250.3549081
https://dl.acm.org/doi/10.1145/3540250.3549081
https://doi.org/10.1145/3477495.3531811
https://dl.acm.org/doi/10.1145/3477495.3531811
https://dl.acm.org/doi/10.1145/3477495.3531811
https://doi.org/10.1145/2884781.2884872
https://dl.acm.org/doi/10.1145/2884781.2884872
https://dl.acm.org/doi/10.1145/2884781.2884872
https://doi.org/10.48550/arXiv.2102.04664
https://arxiv.org/abs/2102.04664 [cs]
http://arxiv.org/abs/2102.04664
https://www.jstor.org/stable/26554869
https://www.jstor.org/stable/26554869
https://doi.org/10.1007/3-540-44411-4_2
https://doi.org/10.3390/info12110442
https://www.mdpi.com/2078-2489/12/11/442

[34] R. Poyiadzi et al. “FACE: Feasible and Actionable Counterfactual Explanations”.
In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. AIES ’20.
New York, NY, USA: Association for Computing Machinery, 2020-02-07, pp. 344–
350. isbn: 978-1-4503-7110-0. doi: 10.1145/3375627.3375850. url: https:
//dl.acm.org/doi/10.1145/3375627.3375850 (visited on 2023-06-07).

[35] M. Pradel and K. Sen. “DeepBugs: a learning approach to name-based bug detec-
tion”. In: Proceedings of the ACM on Programming Languages. Vol. 2. 2018-10-24,
147:1–147:25. doi: 10.1145/3276517. url: https://dl.acm.org/doi/10.
1145/3276517 (visited on 2023-05-19).

[36] A. Radford et al. “Improving Language Understanding by Generative Pre-Training”.
In: OpenAI, 2018. (Visited on 2024-02-22).

[37] C. Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer”. In: Journal of Machine Learning Research 21.140 (2020), pp. 1–
67. issn: 1533-7928. url: http://jmlr.org/papers/v21/20-074.html
(visited on 2024-04-10).

[38] P. Raghavan. Gemini image generation got it wrong. We’ll do better. Google. 2024-
02-23. url: https://blog.google/products/gemini/gemini-image-
generation-issue/ (visited on 2024-02-25).

[39] R. Russell et al. “Automated Vulnerability Detection in Source Code Using Deep
Representation Learning”. In: 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA). 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA). 2018-12, pp. 757–762. doi:
10.1109/ICMLA.2018.00120. url: https://ieeexplore.ieee.org/
abstract/document/8614145 (visited on 2024-04-07).

[40] G. Shakhnarovich, ed. Nearest-neighbor methods in learning and vision: theory and
practice. Neural information processing series. Cambridge, Mass.: MIT Press, 2005.
252 pp. isbn: 978-0-262-19547-8.

[41] J. Smith et al. “Questions developers ask while diagnosing potential security
vulnerabilities with static analysis”. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015-08-30, pp. 248–259. isbn: 978-1-4503-
3675-8. doi: 10.1145/2786805.2786812. url: https://dl.acm.org/doi/
10.1145/2786805.2786812 (visited on 2023-06-07).

[42] K. O. Stanley and R. Miikkulainen. “Evolving Neural Networks through Aug-
menting Topologies”. In: Evolutionary Computation 10.2 (2002-06). Conference
Name: Evolutionary Computation, pp. 99–127. issn: 1063-6560. doi: 10.1162/
106365602320169811. url: https://ieeexplore.ieee.org/abstract/
document/6790655 (visited on 2024-02-27).

87

https://doi.org/10.1145/3375627.3375850
https://dl.acm.org/doi/10.1145/3375627.3375850
https://dl.acm.org/doi/10.1145/3375627.3375850
https://doi.org/10.1145/3276517
https://dl.acm.org/doi/10.1145/3276517
https://dl.acm.org/doi/10.1145/3276517
http://jmlr.org/papers/v21/20-074.html
https://blog.google/products/gemini/gemini-image-generation-issue/
https://blog.google/products/gemini/gemini-image-generation-issue/
https://doi.org/10.1109/ICMLA.2018.00120
https://ieeexplore.ieee.org/abstract/document/8614145
https://ieeexplore.ieee.org/abstract/document/8614145
https://doi.org/10.1145/2786805.2786812
https://dl.acm.org/doi/10.1145/2786805.2786812
https://dl.acm.org/doi/10.1145/2786805.2786812
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://ieeexplore.ieee.org/abstract/document/6790655
https://ieeexplore.ieee.org/abstract/document/6790655

[43] J. Su, D. V. Vargas, and K. Sakurai. “One Pixel Attack for Fooling Deep Neural
Networks”. In: IEEE Transactions on Evolutionary Computation 23.5 (2019-10).
Conference Name: IEEE Transactions on Evolutionary Computation, pp. 828–
841. issn: 1941-0026. doi: 10.1109/TEVC.2019.2890858. url: https:
//ieeexplore.ieee.org/abstract/document/8601309?casa_token=
Xns3uw2DYFYAAAAA:OjXke-FKOLhVN1tfOb09ucmPSWxnMCuIBwfIhEPvcGiezPT0z-
7aNHiNh2U77zRyyezkdRwS (visited on 2024-02-28).

[44] H. Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023-
02-27. doi: 10.48550/arXiv.2302.13971. arXiv: 2302.13971[cs]. url:
http://arxiv.org/abs/2302.13971 (visited on 2024-02-22).

[45] A. Vaswani et al. Attention Is All You Need. 2023-08-01. doi: 10.48550/arXiv.
1706.03762. arXiv: 1706.03762[cs]. url: http://arxiv.org/abs/
1706.03762 (visited on 2024-02-21).

[46] S. Wachter, B. Mittelstadt, and C. Russell. “Counterfactual Explanations with-
out Opening the Black Box: Automated Decisions and the GDPR”. In: Harvard
Journal of Law & Technology (Harvard JOLT) 31 (2017), p. 841. url: https:
//heinonline.org/HOL/Page?handle=hein.journals/hjlt31&id=
859&div=&collection=.

[47] Y. Wang et al. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder
Models for Code Understanding and Generation. 2021-09-02. doi: 10.48550/
arXiv.2109.00859. arXiv: 2109.00859[cs]. url: http://arxiv.org/
abs/2109.00859 (visited on 2024-04-10).

[48] Z. Yang et al. “Natural Attack for Pre-trained Models of Code”. In: Proceedings of
the 44th International Conference on Software Engineering. 2022-05-21, pp. 1482–
1493. doi: 10.1145/3510003.3510146. arXiv: 2201.08698[cs]. url: http:
//arxiv.org/abs/2201.08698 (visited on 2024-06-22).

[49] Z. Zhao et al. “Knowledge-Based Version Incompatibility Detection for Deep
Learning”. In: Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE
2023. New York, NY, USA: Association for Computing Machinery, 2023-11-30,
pp. 708–719. isbn: 9798400703270. doi: 10.1145/3611643.3616364. url:
https://dl.acm.org/doi/10.1145/3611643.3616364 (visited on
2024-04-26).

[50] X. Zheng, C. Zhang, and P. C. Woodland. “Adapting GPT, GPT-2 and BERT
Language Models for Speech Recognition”. In: 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU). 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU). 2021-12, pp. 162–168. doi:
10.1109/ASRU51503.2021.9688232. url: https://ieeexplore.ieee.
org/abstract/document/9688232 (visited on 2024-02-23).

88

https://doi.org/10.1109/TEVC.2019.2890858
https://ieeexplore.ieee.org/abstract/document/8601309?casa_token=Xns3uw2DYFYAAAAA:OjXke-FKOLhVN1tfOb09ucmPSWxnMCuIBwfIhEPvcGiezPT0z-7aNHiNh2U77zRyyezkdRwS
https://ieeexplore.ieee.org/abstract/document/8601309?casa_token=Xns3uw2DYFYAAAAA:OjXke-FKOLhVN1tfOb09ucmPSWxnMCuIBwfIhEPvcGiezPT0z-7aNHiNh2U77zRyyezkdRwS
https://ieeexplore.ieee.org/abstract/document/8601309?casa_token=Xns3uw2DYFYAAAAA:OjXke-FKOLhVN1tfOb09ucmPSWxnMCuIBwfIhEPvcGiezPT0z-7aNHiNh2U77zRyyezkdRwS
https://ieeexplore.ieee.org/abstract/document/8601309?casa_token=Xns3uw2DYFYAAAAA:OjXke-FKOLhVN1tfOb09ucmPSWxnMCuIBwfIhEPvcGiezPT0z-7aNHiNh2U77zRyyezkdRwS
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971 [cs]
http://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762 [cs]
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://heinonline.org/HOL/Page?handle=hein.journals/hjlt31&id=859&div=&collection=
https://heinonline.org/HOL/Page?handle=hein.journals/hjlt31&id=859&div=&collection=
https://heinonline.org/HOL/Page?handle=hein.journals/hjlt31&id=859&div=&collection=
https://doi.org/10.48550/arXiv.2109.00859
https://doi.org/10.48550/arXiv.2109.00859
https://arxiv.org/abs/2109.00859 [cs]
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
https://doi.org/10.1145/3510003.3510146
https://arxiv.org/abs/2201.08698 [cs]
http://arxiv.org/abs/2201.08698
http://arxiv.org/abs/2201.08698
https://doi.org/10.1145/3611643.3616364
https://dl.acm.org/doi/10.1145/3611643.3616364
https://doi.org/10.1109/ASRU51503.2021.9688232
https://ieeexplore.ieee.org/abstract/document/9688232
https://ieeexplore.ieee.org/abstract/document/9688232

[51] Y. Zheng et al. “D2A: A Dataset Built for AI-Based Vulnerability Detection
Methods Using Differential Analysis”. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). Madrid, ES: IEEE, 2021-05, pp. 111–
120. isbn: 978-1-66543-869-8. doi: 10.1109/ICSE-SEIP52600.2021.00020.
url: https://ieeexplore.ieee.org/document/9402126/ (visited on
2024-04-07).

[52] Y. Zhou et al. “Devign: Effective Vulnerability Identification by Learning Com-
prehensive Program Semantics via Graph Neural Networks”. In: Advances in
Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.
url: https://proceedings.neurips.cc/paper_files/paper/2019/
hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html (visited on
2024-08-21).

[53] Y. Zhu et al. “Aligning Books and Movies: Towards Story-Like Visual Expla-
nations by Watching Movies and Reading Books”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2015, pp. 19–27. url: https:
//www.cv-foundation.org/openaccess/content_iccv_2015/html/
Zhu_Aligning_Books_and_ICCV_2015_paper.html (visited on 2024-02-
22).

89

https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://ieeexplore.ieee.org/document/9402126/
https://proceedings.neurips.cc/paper_files/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/49265d2447bc3bbfe9e76306ce40a31f-Abstract.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zhu_Aligning_Books_and_ICCV_2015_paper.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Transformer Architecture
	Generative Pretrained Transformer (GPT)
	Code Review Models
	Counterfactual Search Heuristics
	Evaluating Counterfactuals

	Study Design
	Overview
	Approach

	Evaluation
	Model Selection
	Methodology
	Measurements
	Results

	Related Work
	Conclusion
	Summary
	Contributions
	Limitations and Future Work
	Threads to Validity

	Appendix
	Search Configurations
	Search Parameters
	Search Results
	Removed Tokens Categories

	List of Figures
	List of Tables
	Acronyms
	Bibliography

