
Exploring Scalability in C++ Parallel STL Implementations
Ruben Laso

ruben.laso@tuwien.ac.at
Faculty of Informatics

TU Wien
Vienna, Austria

Diego Krupitza
krupitza@par.tuwien.ac.at
Faculty of Informatics

TU Wien
Vienna, Austria

Sascha Hunold
sascha.hunold@tuwien.ac.at

Faculty of Informatics
TU Wien

Vienna, Austria

ABSTRACT
Since the advent of parallel algorithms in the C++17 Standard Tem-
plate Library (STL), the STL has become a viable framework for
creating performance-portable applications. Givenmultiple existing
implementations of the parallel algorithms, a systematic, quantita-
tive performance comparison is essential for choosing the appro-
priate implementation for a particular hardware configuration.

In this work, we introduce a specialized set of micro-benchmarks
to assess the scalability of the parallel algorithms in the STL. By
selecting different backends, our micro-benchmarks can be used
on multi-core systems and GPUs.

Using the suite, in a case study on AMD and Intel CPUs and
NVIDIA GPUs, we were able to identify substantial performance
disparities among different implementations, including GCC+TBB,
GCC+HPX, Intel’s compiler with TBB, or NVIDIA’s compiler with
OpenMP and CUDA.
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• Computing methodologies → Parallel programming lan-
guages.
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1 INTRODUCTION
Writing efficient, parallel applications is notoriously hard, but writ-
ing performance-portable, efficient, parallel applications is harder.
In the last decades, several types of parallel architectures (like GPUs
or Xeon Phis) were introduced, which often required a complete
rewrite of the parallelization approach to make applications ef-
ficient. To overcome the problem of having to combine several
paradigms such as CUDA [18], OpenMP [7], or MPI [6] to write
efficient programs, several frameworks, mainly using C++, such as
Kokkos [26] or Raja [2], were proposed to allow scientists to write
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performance-portable applications. These frameworks allow for an
efficient execution of parallel applications using different hardware
architectures, i.e., the same program can run on one or more GPUs
as well as on multi-core CPUs.

With the advent of C++17, parallel versions of the C++ Standard
Template Library (STL) were standardized, which allows ISO C++
parallel programs to be performance portable [16]. Several works
have compared the resulting performance of various performance-
portability layers [1, 11]. However, their focus lay on comparing
full applications or mini-apps, where specific parts of a rewritten
program may significantly influence the resulting performance.

In this work, we set out to devise a set of micro-benchmarks to
assess the performance of the individual parallel STL algorithms
found in C++ in a quantitative manner. Since different compiler
frameworks provide competing implementations of the STL, our
goal is to capture the current state of the art of the performance of
parallel STL implementations. We compare several combinations
of compilers, including GCC, Intel OneAPI compiler, and NVIDIA
HPC SDK, and backends like Intel’s Threading Building Blocks
(TBB), High-Performance ParalleX (HPX), OpenMP, and CUDA.

In particular, we make the following contributions:

(1) We introduce the benchmark suite pSTL-Bench, which is
an extensible set of micro-benchmarks to assess the per-
formance of parallel STL algorithms on different parallel
architectures (multi-cores, GPUs).

(2) Using the suite, we conduct a study over a selection of al-
gorithms comparing the performance achieved on current
multi-core architectures by different compiler frameworks
and backends implementing the parallel STL. Our results
show that there are significant performance differences be-
tween the available backends.

The remainder of the paper is structured as follows. In Section 2,
we give an overview of the field by summarizing the related work
and current state of the art. Section 3 introduces the specifics of
our proposed set of micro-benchmarks. In Section 4, we detail how
the experiments were carried out before we show and analyze the
experimental results in Section 5. Finally, we draw conclusions from
the findings in Section 6 and outline future work.

2 RELATEDWORK
Allowing for performance portability has always been a goal for pro-
grammers. This is especially true for developers on HPC systems, as
novel HPC systems often provide new hardware architectures for
which no efficient software solutions exist yet (cf. Jack Dongarra’s
interview when receiving the ACM A.M. Turing Award [12]). The
Message Passing Interface (MPI) is one of the standards that en-
ables scientists to write efficient, parallel programs that are also
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portable across architectures. However, MPI has its limits, espe-
cially when it comes to efficiently programming multi-core systems
or accelerators, such as GPUs or Xeon Phis.

For the reasons mentioned above, several parallel programming
frameworks striving for performance portability were introduced.
Note that the term “performance portability” may have completely
different notions or definitions [20, 21]. Contrary to Pennycook
et al.’s restrictive definition, in this work, we consider a program
to be performance-portable if it performs within a threshold of a
specialized program, i.e., a scan algorithm implemented using a
performance portability framework performs equally well on an
NVIDIA GPU as the best-known CUDA implementation.

Our work focuses on micro-benchmarking algorithms from the
ISO C++ standard library. There are several other feature-rich
C++ frameworks that offer performance portability. For instance,
Kokkos [26] and Raja [2] are one of the most prominent libraries
that can be used to program portable HPC applications using differ-
ent backends, such as SYCL [23], HPX [14], or OpenMP. Although
Kokkos may use SYCL as a backend, SYCL itself is a C++ program-
ming model that offers portability between heterogeneous compute
resources. Similar to Kokkos, SYCL is a C++ abstraction layer that
supports a range of processor architectures and accelerators [11].
For GPUs, the Thrust library [3] provides a high-level interface for
STL to C++ programmers. Thrust is used as a backend in the C++
STL implementation of NVIDIA’s High-Performance Computing
(HPC) Software Development Kit.

HPX [14] is another C++ abstraction layer for developing ef-
ficient parallel and concurrent applications. HPX can be used to
write distributed applications using an Active Global Address Space
(AGAS), which is an extension to PGAS for transparently moving
global objects in between compute nodes [14]. SYCL, HPX, and
Kokkos can also be used together to combine their strengths [8].

The benchmark suite SYCL-Bench [15] is a collection of differ-
ent programs to analyze the performance of various SYCL imple-
mentations. Besides micro-benchmarks, SYCL-Bench also features
real-world application benchmarks, such as 2DConvolution, as well
as so-called runtime benchmarks, such as a DAG benchmark with
many independent tasks. Pennycook et al. presented an analysis of
the terminology used in SYCL and ISO C++ to shed light on the rela-
tionship between C++ concepts in both programming models [19].

Our work was inspired by Lin et al. [16], who examined the ISO
C++ capabilities for creating performance-portable applications. In
their work, they developed an ISO C++ parallel version of the Ba-
belStream benchmark [9] and also adapted real-world applications,
such as MiniBude, to utilize the parallel STL of ISO C++.

In the context of the present work, we will evaluate different
implementations of the parallel STL for multi-core systems. That
collection includes the HPX [14] library discussed above. We also
analyze the performance of GNU’s parallel STL, originally based
on MCSTL [24], which uses OpenMP for parallelization and is con-
sidered the original parallel implementation of the STL. Currently,
the GNU and the Intel compilers use the Intel Threading Building
Blocks (TBB) [22] for implementing the parallel C++ STL, whereas
NVIDIA relies on its Thrust [3] library, which uses OpenMP [7]
and CUDA [18] for its parallel implementation of the STL.

Compared to the previous benchmarks, pSTL-Bench targets the
scalability of the individual building blocks, in the same spirit as

the OMPTB [13] or the EPCC OpenMP microbenchmark suite [5]
for benchmarking OpenMP primitives.

Listing 1: Kernel for the for_each benchmark.
1 const auto kernel = []( auto & input , const auto k_it) {
2 volatile size_t I = k_it;
3 pstl:: elem_t a{};
4 for (auto i = 0; i < I; ++i) { a++; }
5 input = a;
6 };

3 MICRO-BENCHMARK SUITE PSTL-BENCH
pSTL-Bench is a micro-benchmark suite designed to assess the
scalability and efficiency of the different implementations of the
parallel C++ STL. The availability of such a benchmark suite will
help us to answer the following research questions. (1) What is the
sweet spot in terms of problem size for each parallel STL algorithm,
i.e., how large a problem has to be such that utilizing the parallel
version is advantageous? This also includes an analysis on which
problem and problem size is better suited for running on a GPU
instead of a CPU. (2)What is the maximum number of cores that can
be effectively utilized by parallel STL algorithms, as many of which
are memory-bound? (3) How do the different STL implementations
and backends compare to each other in terms of run-time?

To facilitate this study across different standard library imple-
mentations, we have compiled these benchmarks into a suite named
pSTL-Bench.1 The list of algorithms supported by pSTL-Bench can
be found in Table 1.

3.1 Description of Benchmark Kernels
Due to space constraints, we analyze five algorithms featuring dis-
tinct computational patterns: (1) The find algorithm performs a
linear search on an input array, while (2) the for_each call per-
forms amap operation on each element of the input array in parallel.
(3) The reduce call represents a parallel reduction operation, needed
for map-reduce type programming. (4) The inclusive_scan rep-
resents a typical, parallel prefix-sum operation, and (5) sort repre-
sents a fundamental function when designing algorithms.

A more detailed, formal description of each of the five selected
algorithms is shown below:
find: Given an array of 𝑛 elements, 𝑣 = [1, 2, . . . , 𝑛], find a random

element 𝑣𝑖 , such that 𝑣𝑖 ∈ 𝑣 .
for_each: Given an array of 𝑛 elements, 𝑣 = [1, 2, . . . , 𝑛], compute

the result of applying the kernel shown in Listing 1 to each
element of 𝑣 . The computational load of the kernel can be
adjusted by changing the number of iterations in the loop,
which we will refer to as 𝑘it in the remainder of this paper.
Note that the number of iterations is stored in a volatile
variable to prevent the compiler from optimizing the loop.

inclusive_scan: Given an array of 𝑛 elements, 𝑣 = [1, 2, . . . , 𝑛],
compute the result of inclusive sum, 𝑟 , such that 𝑟𝑖 =

∑𝑖
𝑗=1 𝑣 𝑗 .

reduce: Given the array 𝑣 = [1, 2, . . . , 𝑛], compute
∑𝑛
𝑖=1 𝑣𝑖 .

sort: Sort the elements of 𝑣 , where 𝑣 is an array of 𝑛 elements
randomly shuffled, such that 𝑣𝑖 ∈ [1, 𝑛] and 𝑣𝑖 ≠ 𝑣 𝑗 ,∀𝑖 ≠ 𝑗 .

1https://github.com/parlab-tuwien/pSTL-Bench
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Table 1: Algorithms that allow execution policies in STL. Algorithms supported in pSTL-Bench are colored in gray.

adjacent_difference adjacent_find all_of any_of
copy copy_if copy_n count
count_if destroy destroy_n equal
exclusive_scan fill fill_n find
find_end find_first_of find_if find_if_not
for_each for_each_n generate generate_n
includes inclusive_scan inplace_merge is_heap
is_heap_until is_partitioned is_sorted is_sorted_until
lexicographical_compare max_element merge min_element
minmax_element mismatch move none_of
nth_element partial_sort partial_sort_copy partition
partition_copy reduce remove* replace*
reverse reverse_copy rotate rotate_copy
search search_n set_difference set_intersection
set_symmetric_difference set_union sort stable_sort
stable_partition swap_ranges transform transform_exclusive_scan
transform_inclusive_scan transform_reduce uninitialized_* unique*

Since each implementation might have a slightly different in-
terface, the calls to the algorithms are wrapped within lambda
functions, as shown in Listings 2. These lambda functions are then
called from a helper function that executes them repeatedly to mea-
sure their execution time with Google’s Benchmark library [10],
see Listing 3. The wrapping function measures the time taken for
the invocation of the function to be executed (function f).

3.2 Benchmark Features
Thenumber of threads to be used by the parallel algorithms can be
set by the user through the environment variable OMP_NUM_THREADS.
This variable is used by default by the OpenMP-based backends
and is also captured to set up the number of threads for the TBB
backend. For determining the number of threads to be used by the
HPX backend, the user can set the argument --hpx:threads=N,
where N is the number of threads to be used.

Listing 3 shows the function SetBytesProcessed() and the
macro WRAP_TIMING. The former sets the number of bytes processed
by the algorithm, which can be used to analyze its throughput.
The latter, detailed in Listing 4, is a macro that wraps the execu-
tion of the function f. It measures not only the execution time
but also enables the support for hardware counters to extract ad-
ditional performance metrics, such as the number of cache misses
or floating-point operations. Currently, the support for hardware
performance counters (HPCs) is available through the high-level
API of PAPI [4] and the Marker API of Likwid [25]. By utilizing
this feature, pSTL-Bench ensures that HPCs are only captured for
the actual STL call, excluding both the environment setup and the
initialization of data structures. Other tools like perf could be used
to obtain HPCs for the whole program, but other program parts
(e.g., shuffling the data before X::sort) could introduce noise into
the measurements.

Finally, it is possible to change the predefined input sizes and
data types (int, float, double, etc.) used in the benchmarks. The
benchmark suite can therefore easily be extended and adjusted to
specific performance requirements.

Listing 2:Wrappers for the sort benchmarkwith the std (top)
and the GNU backend (bottom).

1 auto sort_std = []( auto && policy , auto & input)
2 { std::sort(policy , input.begin(), input.end()); };
3 auto sort_gnu = []( auto && policy , auto & input)
4 { __gnu_parallel ::sort(input.begin(), input.end()); };

Listing 3: Wrapper for X::sort.
1 template <class Policy , class Function >
2 void wrapper(benchmark ::State & state , Function && f) {
3 const auto & size = state.range (0);
4 auto data = pstl:: generate_increment(Policy{}, size);
5 std:: random_device rd;
6 std:: mt19937 g(rd());
7 for (auto _ : state) {
8 std:: shuffle(data.begin(), data.end(), g);
9 pstl:: wrap_timing(state , std::forward <Function >(f),

execution_policy , input);
10 }
11 state.SetBytesProcessed(pstl:: computed_bytes(state ,

input));
12 }

Listing 4: Wrapper pstl::wrap_timing for measuring the ex-
ecution time of a benchmark.

1 template <typename F, typename ... Args >
2 auto wrap_timing(benchmark ::State & state , F && f, Args

&&... args) {
3 hw_counters_begin(state);
4 auto s = std:: chrono :: high_resolution_clock ::now();
5 std::forward <F>(f)(std::forward <Args >(args)...);
6 auto e = std:: chrono :: high_resolution_clock ::now();
7 hw_counters_end(state);
8 state.SetIterationTime(std:: chrono ::duration <double >(e

- s).count());
9 }

3.3 Memory allocation
Memory allocation can have a significant impact on performance
in modern, parallel computer architectures, in particular in NUMA
architectures. For that reason, pSTL-Bench uses a custom parallel
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Listing 5: Function allocate for the customparallel allocator.
1 pointer allocate(size_type cnt , void const * = nullptr) {
2 auto p = static_cast <pointer >(:: operator new(cnt *

sizeof(T)));
3 // touch the first byte of every object
4 std:: for_each(execution_policy , begin , begin + cnt ,
5 [](T & val) { *reinterpret_cast <char*>(&val) = 0; });
6 return p;
7 }

allocator to implement a first-touch policy. By relying on this al-
locator, each thread touches the first byte of each object with the
given parallel policy, as shown in Listing 5. This strategy enforces
the correct placement of threads and memory pages, which is im-
portant for efficiently utilizing the available DRAM bandwidth of
all NUMA nodes on a multi-core system. Our parallel allocator is
an adapted version of the NUMA allocator that is part of HPX.2

4 EXPERIMENTAL SETUP
The experiments are carried out using different configurations in
terms of hardware, software, number of threads, input sizes, and
memory allocation.

4.1 Hardware and Software Setup
We conduct experiments on three multi-core, shared-memory sys-
tems that comprise 32, 64, and 128 cores, which are called Hy-
dra, Nebula, and VSC-5, respectively. For the sake of clarity, we
refer to these systems also as Hydra (Skylake), Nebula (Zen 1), and
VSC-5 (Zen 3), highlighting the underlying architecture.

On the multi-core machines, we evaluate three different com-
pilers: GCC, Intel oneAPI compiler, and NVIDIA HPC SDK. We
also test the following backends: Intel’s Threading Building Blocks
(TBB), High-Performance ParalleX (HPX), and OpenMP through
the implementations of GNU and NVIDIA.

Furthermore, we perform experiments on two GPU-based sys-
tems, Tesla and Ampere, using the NVIDIA HPC SDK with the
CUDA compiler.

We intentionally avoid using 256 threads on VSC-5 (Zen 3) to
prevent the use of multi-threading, which could lead to performance
degradation and is typically disabled in HPC environments. On
Hydra (Skylake) and Nebula (Zen 1), multi-threading is disabled,
and the number of threads is set to the number of physical cores.

Table 2 provides a summarized overview of the hardware and
software.

4.2 Experimental Details
We begin by providing experimental details to facilitate under-
standing and potential reproduction of the results presented in the
following sections.

We test the parallel algorithms with different thread counts and
problem sizes. Specifically, thread counts range from 1 to the maxi-
mum available core count on each machine, and thus, the values
1, 2, 4, . . . , #cores are used. Problem sizes vary from 23 to 230 ele-
ments, using 64-bit floating-point operands, enabling the testing of
2For the NUMA allocator of HPX, see https://github.com/STEllAR-GROUP/hpx/blob/
fe048ee6e01abedad0a60a0fdc204116419871c3/libs/core/compute_local/include/hpx/
compute_local/host/numa_allocator.hpp

a broad set of inputs that are accommodated in various cache levels
or necessitate consistent DRAM traffic. We do not apply any thread-
pinning strategy or provide placement hints to the runtime systems
for two reasons: first, to prevent introducing bias in the results, and
second, to evaluate the runtimes’ capabilities to determine the best
placement of threads and data.

When running the experiments with Slurm [27], the exclusive
use of the node is requested to avoid interference from other users.
Then, the number of threads is set accordingly using the environ-
ment variables and options detailed in Section 3.2.

We present speedup charts (for example, Fig. 3) using a log-
linear scale. Therefore, the 𝑥-axis is logarithmic, representing the
number of threads, and the𝑦-axis is linear, representing the speedup.
Consequently, the ideal speedup is represented by a curved line.
This is a conscious decision to allow for a better comparison of
the results. When using linear-linear plots, it is difficult to observe
effects for a small number of threads, as most values are on the
left side of the plot. On the other hand, using log-log plots might
lead to a misinterpretation of the results, where low speedups seem
closer to the ideal speedup than they actually are.

For further insights into the performance of the parallel algo-
rithms, we use Likwid to gather statistics from the hardware per-
formance counters, such as the number of instructions executed,
use of vectorization, and memory bandwidth. These statistics are
extracted via the Likwid Marker API, as explained in Section 3.2.

All the data presented in Section 5 are derived from the average
running time provided byGoogle Benchmarkwhen using the option
--benchmark_min_time=5s, i.e., each test is executed for at least
5 s (up to 109 iterations).

5 EXPERIMENTAL RESULTS
This section gathers the results of the experiments conducted to
evaluate the performance of the parallel allocator, the algorithms,
the backends, and the GPU offloading.

5.1 The Impact of Memory Allocation
The first set of experiments is designed to evaluate the impact of
pSTL-Bench’s allocator (see Section 3.3) on the performance of the
parallel algorithms.

Figure 1 shows the speedup achieved using the custom parallel al-
locator compared to the default allocator on Hydra (Skylake). There
are two scenarios where the custom allocator has a significant im-
pact on the performance: the X::for_each with small operational
intensity and the X::reduce. In these cases, the speedup is up to
63% and 50%, respectively. There are some cases where the cus-
tom allocator makes no significant difference, most notably the
X::for_eachwhen the computational intensity is high (𝑘it = 1000)
and the X::sort regardless of the compiler. Nevertheless, for the
X::find and X::inclusive_scan algorithms, the custom allocator
affects the performance negatively, with a decrease of up to 24%
and 19 %, respectively.

The GCC-GNU backend benefits the most, improving or main-
taining the performance in all cases. Conversely, the NVC-OMP
backend is the most sensitive to the custom allocator, varying from
a −24 % to a +50 % change in performance.
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Table 2: Summary of the hardware and software used in our study.

Machine Hydra (Skylake) Nebula (Zen 1) VSC-5 (Zen 3) Tesla Ampere

CPU/GPU Intel Xeon 6130F AMD EPYC 7551 AMD EPYC 7713 NVIDIA Tesla T4 NVIDIA Ampere A2
CPU/GPU arch. Skylake Zen Zen 3 Turing Ampere
Core frequency 2.10GHz 2.00GHz 2.00GHz 1.11GHz 1.77GHz
Sockets | NUMA nodes 2 | 2 2 | 8 2 | 8 1 | 1 1 | 1
Total #cores | threads 32 | 32 64 | 64 128 | 256 2560 | 2560 1280 | 1280
Max. #threads used 32 64 128 2560 1280
Memory (node / GPU) 48GiB 32GiB 512GiB 16GiB 8GiB

Compilers g++ 12.1.0 g++ 12.3.0 g++ 12.2.0 g++ 10.2.1 g++ 10.2.1
nvc++ 22.11 nvc++ 23.7 nvc++ 22.9 nvc++ 23.5 nvc++ 23.5
icpx 2021.7.0 icpx 2022.2.1

Libraries TBB 2021.9.0 TBB 2021.10.0 TBB 2021.7.0 CUDA 11.8 CUDA 12.2
HPX 1.9.0 HPX 1.9.1 HPX 1.8.1

GOMP (g++ 12.1.0) GOMP (g++ 12.3.0) GOMP (g++ 12.2.0)
NVOMP 22.11 NVOMP 22.11 NVOMP 22.9

STREAM BW 1 | all core(s) (GiB/s) 11.7 | 135 26.0 | 204 42.6 | 249 N/A | 264 N/A | 172

find for_each
𝑘it = 1

for_each
𝑘it = 1000
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Figure 1: Speedup when using custom parallel allocator with
32 threads and a problem size of 230 elements on Hydra (Sky-
lake). Higher is better.

Based on the results obtained with the parallel allocator, we use
it in the rest of the experiments since the benefits of using the
custom allocator outweigh the drawbacks. The only exceptions are
the HPX backend, which has its own memory allocation strategy,
and the CUDA backend, which uses the GPU’s memory.

5.2 X::for_each
The first benchmark we analyze is X::for_each, which is a simple
loop that applies a function to each element of a container. This
benchmark is interesting because it can provide a good insight into
the overhead of the different parallel backends, especially when
the arithmetic intensity is low. For higher arithmetic intensity, the
performance is expected to be closer to the ideal speedup since
actual computation is the dominant factor.

Figure 2 shows the execution times for the X::for_each bench-
mark with the minimal arithmetic intensity (𝑘it = 1). Results are

consistent across the three machines, with the sequential imple-
mentation outperforming the parallel implementations for small
problem sizes, up to 210 elements. For larger problem sizes, the
parallel implementations start to compensate for the overhead, ulti-
mately being faster than the sequential implementation for problem
sizes of around 216 elements.

Regarding the differences between the backends, the NVIDIA
compiler with the OpenMP backend is the fastest in almost every
scenario, except for extremely small problem sizes. This difference
is particularly noticeable with problem sizes up to 220 or 225 ele-
ments depending on the system. The higher the number of threads,
the bigger the difference between NVC-OMP and the rest of the
backends, as shown in Figure 3. The TBB backend sits in the middle,
with a performance that is consistent regardless of the compiler
used, GCC or ICC. The GNU backend (which uses OpenMP) is often
slightly slower than the TBB backend. It is worth noting that the
GNU backend uses a parallel execution only for problem sizes of 210
elements or larger, using the sequential version for smaller inputs.
Finally, the HPX backend is the slowest in almost every scenario,
with a performance that is consistently worse than the rest of the
backends. Additionally, as shown in Figure 3, the HPX backend has
poor scalability, with a speedup that is almost constant in systems
with more than 16 threads.

To assess the performance differences between the backends,
we utilized Likwid to gather performance counters data for each
backend. Likwid’s report (Tab. 3) indicates that HPX produces more
instructions than the other backends, up to 147 %more than the ICC-
TBB backend, suggesting that HPX spends more time managing
and scheduling the individual work chunks.

When the computational intensity is increased (using 1000 iter-
ations per array element instead of 1 iteration), all compilers and
backends are much closer in performance. Figure 2 shows only
significant differences for small problem sizes, i.e., instances with
up to 210 elements on Hydra (Skylake) and Nebula (Zen 1), and up
to 216 elements on VSC-5 (Zen 3).

As shown in Figure 3, the speedup is close to the ideal speedup for
all the backends and compilers, except for the HPX backend, which
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Figure 2: Results for benchmark X::for_each. Problem scal-
ing using all cores except for GCC’s seq. implementation.
Lower is better.

Table 3: Executed instructions in 100 calls to the function
X::for_each (𝑘it = 1) on Hydra (Skylake).

Metric GCC GCC GCC ICC NVC
TBB GNU HPX TBB OMP

Instructions 1.72T 2.41T 3.83T 1.55T 2.24T
FP scalar 107G 107G 107G 107G 107G
FP 128-bit packed 0 0 0 0 0
FP 256-bit packed 0 0 0 0 0
GFLOP/s 5.41 6.51 4.06 5.02 7.26
Mem. bandwidth (GiB/s) 107.6 116.6 75.6 104.5 119.1
Mem. data volume (GiB) 2128 1925 1850 2151 1762

has a slightly worse performance than the rest of the backends.
For example, on VSC-5 (Zen 3), HPX achieves a maximum speedup
of 84.8 with 128 cores, while the rest of the backends achieve a
speedup between 102.0 and 106.7. These values correspond to a
parallel efficiency of 66 % for HPX, while for the rest of the backends,
the parallel efficiency is between 79 % and 83 %.

5.3 X::find
X::find performs a linear search on an input array that involves
synchronization points between threads.
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Figure 3: Results for benchmark X::for_each. Strong scaling
with 230 elements. Higher is better.

We conducted experiments on all three machines, but only show
results for Nebula (Zen 1) in Figure 4 due to space constraints.

Figure 4a highlights the results for scaling problem sizes while
consistently using 64 threads on the 64-core machine. For small
problem sizes, the sequential implementation significantly outper-
forms the parallel version in execution times, often by orders of
magnitude, which highlights the overhead required for managing
parallel threads. This difference consistently decreases until prob-
lem sizes reach approximately 216, at which point the performance
benefits of using the parallel version begin to compensate for the
overhead. Similarly to the results shown for X::for_each, the GNU
parallel implementation utilizes the sequential version until the
problem size reaches 29, when it switches to a parallel implementa-
tion. This strategy is very effective. Since these switching points
are tunable in the backend, this threshold should be adjusted for
production runs on a specific target architecture.

For problems with more than 218 elements, the parallel imple-
mentations significantly outperform the sequential version. This
observation was consistent across the three machines.

The speedup analysis, shown in Figure 4b, reveals that the re-
sulting parallel efficiency is relatively low. The maximum speedup
achieved by any backend was about 6with GCC-TBB and 64 threads
on Nebula (Zen 1). This observation is not surprising, as X::find
is strongly memory-bound. A previous bandwidth analysis with
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Figure 4: Results for X::find on Nebula (Zen 1).

the STREAM benchmark [17] revealed that a speedup of approxi-
mately 7 can be expected when using all cores instead of just one
(cf. Table 2).

5.4 X::inclusive_scan
We have also evaluated the performance of the various backends for
the inclusive_scan function, which computes an inclusive prefix
sum for a specific binary operation. We used the std::plus<>()
operation, which is the default. We present the results for the prob-
lem and strong scaling experiments on VSC-5 (Zen 3) in Figure 5.

We omit the results of GCC-GNU since the GNU’s collection of
parallel algorithms does not implement a parallel inclusive_scan
function. Additionally, the NVIDIA compiler with the OpenMP
backend currently does not support this operation, falling back to
the sequential implementation.

The performance results of the problem scaling experiments with
X::inclusive_scan are summarized in Figure 5a. We can observe
that the sequential implementations, including NVC-OMP, outper-
form the parallel implementations for problem sizes up to 222 double
elements, which is the L2 cache size of the VSC-5 (Zen 3). When
the problem size exceeds the last-level cache capacity (226 double
elements), the parallel backends are significantly faster than the
sequential implementations, with GCC-HPX being an exception.

Similar results can also be seen in Figure 5b, where the num-
ber of threads is increased until 128. While NVC-OMP and GCC-
HPX backends do not provide any scaling on this machine, the
TBB-based implementations with GCC or ICC reduce the running
time monotonically. Nonetheless, the parallel efficiency is relatively
low, as the TBB-based implementations only achieve a speedup
of about 5 with 128 threads. This result is also expected due to
the memory-bound nature of X::inclusive_scan. Consequently,
the performance is limited by the number of memory controllers
accessible to the threads.

5.5 X::reduce
The X::reduce benchmark computes the sum of all elements in an
array. This is a fundamental operation in parallel computing and is
often used as a building block for more complex algorithms.

Note that the GNU’s collection of algorithms does not include a
reduction function so accumulate has been used instead.
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Figure 5: Results for X::inclusive_scan on VSC-5 (Zen 3).
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Figure 6: Results for X::reduce on Hydra (Skylake).

Regarding the problem scaling (Figure 6a), the same pattern as
in the previous benchmarks is observed. The sequential implemen-
tation is faster for small problem sizes, up to 215 elements, and then
the parallel implementations start to compensate for the overhead.

The speedup, shown in Figure 6b, divides the backends into
two groups. The NVC-OMP, GCC-TBB, and GCC-GNU backends
provide very similar results. Paying attention to the sequential
performance, the produced code is not as efficient as the purely
sequential implementation of GCC. This hinders the speedup, which
is significantly lower than the ideal speedup. The ICC-TBB and HPX
backends are in the second group, with good scalability up to 16
threads. Further than that, the performance is not as good, since two
NUMA nodes are used, and the backends are not able to manage the
data traffic efficiently. The drop in performance is more noticeable
in the HPX backend.

HPX produces the largest number of instructions, up to six times
more than other backends, as shown in Table 4. Nevertheless, HPX
also makes use of 128-bit and 256-bit vector instructions, similar to
ICC. The rest of the backends do not use vector instructions, which
is reflected in the number of floating-point operations per second.

5.6 X::sort
X::sort is a fundamental operation in computer science, chal-
lenging to parallelize efficiently due to the synchronization and
communication required between threads. This is reflected in the
results, as shown in Figure 7.

We monitored the CPU usage and found that, similarly to the
GNU backend, the TBB implementation falls back to a sequential
execution for small problem sizes, up to 29 elements. Likewise, HPX
delegates the work to a single thread with input sizes of 215 or
smaller, making use of parallelism for larger inputs.
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Table 4: Executed instructions in 100 calls to the function
X::reduce on Hydra (Skylake).

Metric GCC GCC GCC ICC NVC
TBB GNU HPX TBB OMP

Instructions (any) 188G 227G 1.74T 107G 295G
FP scalar 107G 107G 472K 1.33M 107G
FP 128-bit packed 0 0 12.8K 0.56M 0
FP 256-bit packed 0 0 26G 26G 0
GFLOP/s 6.88 7.25 6.88 10.3 7.01
Mem. bandwidth (GiB/s) 75.1 58.2 65.1 97.5 56.6
Mem. data volume (GiB) 1.17 0.86 0.90 1.12 0.87
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Figure 7: Results for X::sort on VSC-5 (Zen 3).

The speedup analysis reveals two interesting behaviors. First, the
NVC-OMP backend is the fastest for a small number of threads due
to a more efficient use of the L2 cache. Second, the GNU backend is
the most efficient for a larger number of threads, thanks to a higher
bandwidth, suggesting a better placement of threads and data. The
other backends exhibit poor scalability, achieving a speedup that is
far from ideal.

5.7 Summary and Additional Remarks
Table 5 summarises the results obtained on the three parallel ma-
chines, showing the speedup obtainable with all available cores
compared to a fixed baseline performance. We selected the sequen-
tial implementation of GCC as the baseline, which may result in
speedups exceeding the total core count.

Generally, the parallel implementations are faster than the se-
quential ones, however, the speedup is usually far from ideal when
using the maximum number of threads that the machine provides.
Most of the algorithms achieve a speedup close to 10, a consis-
tent value across different machines. Even in the X::for_each
algorithm, being an embarrassingly parallel problem, the speedup
is highly dependent on the computational load. For high compu-
tational intensity, the speedup is close to the ideal because the
computational load is the leading factor. For low computational
intensity, the overhead of the parallelization is more significant,
resulting in a poor speedup in most cases.

With the poor scalability of the parallel implementations, effi-
ciency must be considered. Table 6 shows the maximum number of
threads for which parallel efficiency is above 70 %. The purpose of
this table is to analyze the number of threads that can be effectively
utilized without excessively wasting resources. The threshold of

70% is somewhat arbitrarily defined, but it assists in estimating
the effectiveness of the parallelization. The results indicate that
backends typically fail to handle more than 16 threads efficiently.
It should be noted that this number matches the cores per NUMA
node in Hydra (Skylake) and VSC-5 (Zen 3). This suggests that the
backends are not able to manage the data/thread placement effi-
ciently when dealing with more than one NUMA node.

The sizes of the binary files generated by the different compilers
and backends are shown in Table 7. The internal complexity of the
backends is reflected in the binary sizes, with the HPX backend
producing the largest binaries, up to 62MiB. Next, the TBB backend
produces binaries of 16.64MiB and 17.21MiB for ICC and GCC, re-
spectively. The GNU backend produces binaries of 5.31MiB, double
the size of sequential binaries of GCC, 2.52MiB. The NVIDIA com-
piler produces remarkably small binaries, 1.81MiB and 7.80MiB
for the OpenMP and CUDA versions, respectively.

5.8 Performance on GPUs
The last set of experiments is focused on the performance of the
parallel algorithms on GPUs, using the NVIDIA HPC SDK with
the CUDA compiler. Since GPUs are traditionally optimized for
float (32-bit) operations, we carried out additional experiments
using this data type. Also, the most interesting algorithms for the
GPUs are the X::for_each and the X::reduce since, given their
structure, the GPUs can exploit their architectural characteristics.

It should be mentioned that the keyword volatile (see List-
ing 1) does not produce any error when compiling the code with
the NVIDIA compiler targeting the GPU, but it seems to be ignored.
Thus, when the number of iterations is known at compile time, the
loop is optimized away. Interestingly, this optimization is always
performed for int, but only for double when the number of itera-
tions is less than 65 001 (suggesting the presence of a magic number
in the compiler). For 32-bit floats, the loop is never optimized.

An important aspect to consider when using GPUs is the commu-
nication between the host and the device. Since the GPUs have their
own memory, data must be transferred between the host and the
device. The CUDA backend uses Unified Memory to automatically
manage the data transfers by copying memory pages on demand.
This approach simplifies the code but might lead to a significant
overhead when the data is frequently accessed by both the host
and the device. Two factors might alleviate this overhead: first, the
kernel’s computational intensity should be high enough, so this is
the leading factor in the execution time; second, consecutive calls
to the GPU with the same data will reduce the overhead of the
memory transfers, as the data will be already in the GPU’s memory.

We explore the first factor by analyzing the performance of the
X::for_each algorithm with different computational intensities, as
shown in Figure 8. In this case, we enforced the data transfer back
to the host between each call to the GPU to evaluate the overhead
of the memory transfers and how it can be mitigated by increasing
the workload. When the intensity is low the performance is limited
by the overhead of the memory transfers. The cost of launching a
kernel and the communication is so high that the GPU is slower
than the CPUs in parallel, and even in some cases, slower than
the sequential implementation. However, when the workload is
increased, the massively parallel architecture of the GPUs allows
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Table 5: Speedup against GCC’s sequential implementation for machines Hydra (Skylake), Nebula (Zen 1), and VSC-5 (Zen 3),
with 32, 64, and 128 cores, respectively. Notation is Hydra |Nebula |VSC-5. Problem size is 230. Higher is better.

X::find X::for_each X::for_each X::inclusive_scan X::reduce X::sort
𝑘it = 1 𝑘it = 1000

GCC-TBB 8.9 | 5.8 | 4.7 14.2 | 6.1 | 8.5 32.5 | 54.9 | 102.0 4.5 | 3.1 | 4.7 10.0 | 5.1 | 6.9 9.7 | 9.4 | 10.6
GCC-GNU 8.0 | 3.2 | 2.2 15.0 | 7.8 | 9.1 32.5 | 54.9 | 106.5 N/A | N/A | N/A 11.0 | 4.7 | 6.0 25.4 | 26.9 | 66.6
GCC-HPX 6.4 | 1.4 | 1.1 7.2 | 1.8 | 1.4 32.4 | 43.7 | 84.8 3.0 | 0.9 | 1.0 7.3 | 0.9 | 1.2 10.1 | 8.0 | 8.1
ICC-TBB 9.0 | N/A | 4.8 13.9 | N/A | 8.2 32.5 | N/A | 106.7 4.5 | N/A | 4.7 10.2 | N/A | 6.8 10.1 | N/A | 9.0
NVC-OMP 6.1 | 1.4 | 1.2 22.1 | 15.0 | 13.0 32.0 | 54.8 | 106.5 0.9 | 0.8 | 0.9 11.0 | 4.8 | 11.9 7.1 | 6.3 | 6.7

Table 6: Maximum number of threads such that efficiency is above 70 % (compared to the seq. execution) for machines Hydra
(Skylake), Nebula (Zen 1), and VSC-5 (Zen 3). Notation is Hydra |Nebula |VSC-5. Problem size is 230. Higher is better.

X::find X::for_each X::for_each X::inclusive_scan X::reduce X::sort
𝑘it = 1 𝑘it = 1000

GCC-TBB 2 | 1 | 2 8 | 4 | 1 32 | 64 | 128 4 | 1 | 1 32 | 8 | 16 8 | 8 | 8
GCC-GNU 8 | 1 | 1 1 | 1 | 1 32 | 64 | 128 N/A | N/A | N/A 32 | 8 | 16 32 | 16 | 32
GCC-HPX 16 | 4 | 1 16 | 2 | 2 32 | 32 | 16 4 | 2 | 1 8 | 2 | 4 4 | 2 | 4
ICC-TBB 2 | N/A | 1 8 | N/A | 4 32 | N/A | 128 4 | N/A | 1 4 | N/A | 1 8 | N/A | 8
NVC-OMP 16 | 4 | 4 32 | 32 | 16 32 | 64 | 128 1 | 1 | 1 32 | 16 | 32 2 | 2 | 2

Table 7: Binary sizes for the different compilers and backends
used in the experiments onHydra (Skylake) and Tesla. Lower
is better.

Target machine Hydra Tesla

Compiler GCC GCC GCC GCC ICC NVC NVC
Backend SEQ TBB GNU HPX TBB OMP CUDA
Bin. size (MiB) 2.52 17.21 5.31 61.98 16.64 1.81 7.80

them to outperform the parallel CPU implementation by a factor
23.5× on Tesla and 13.3× on Ampere.

The effect of chaining multiple calls to the GPU is shown in
Figure 9. On one hand, when data is constantly transferred back
from the GPU to the host, the execution time is communication-
limited, up to a point where the GPUs are slower than the CPU
with sequential implementation. On the other hand, when data is
already in the device’s memory, performance improves enough to
outperform the CPUs.

As a final remark, it is important to note that the input size is a
critical factor in any scenario because launching a kernel is a costly
operation that is not amortized for small problem sizes.

6 CONCLUSIONS
In this work, we introduced a specialized set of benchmarks named
pSTL-Bench to assess the performance of the parallel algorithms
present in the C++ standard template library. With this benchmark
suite, we aim to enable users to compare compilers and backends,
helping them decide which best suits the specific characteristics of
their system.

We demonstrate the usefulness of the benchmarks by conduct-
ing a comprehensive performance analysis on current multi-core
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Figure 8: Results for X::for_each. Problem scaling using all
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Figure 9: Results for X::reduce. Problem scaling using all
cores except for GCC’s seq. implementation. Data type: float.
Lower is better.

architectures, benchmarking some of the most commonly used
algorithms in the STL. This analysis took into account not only
the compiler and backend being used but also the input size, the
number of threads used, and the memory allocation strategy.
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First, we showed the potential performance improvements when
using a custom parallel allocator on NUMA systems. Generally,
execution times are improved, up to 63 % in the best case, but some
losses can be observed in certain scenarios.

Second, by testing various input sizes, we compared the over-
head of launching parallel sections and the differences between
backends. This analysis highlighted the overhead of the HPX back-
end and revealed that GNU’s implementation defaults to sequential
execution for smaller inputs. For large input sizes, the parallel im-
plementations typically outperformed their sequential counterparts.
However, the parallel efficiency is far from ideal in most scenarios.
Thus, computational load has to be the main concern when select-
ing the number of threads, as the performance of the algorithms is
highly dependent on it.

Finally, we evaluated the performance of the CUDA backend for
the NVIDIA compiler with two different GPUs. Not surprisingly,
we found that data transfers were the main bottleneck. Therefore,
users should aim to chain as many operations as possible on the
GPU to minimize the number of data transfers required between
the host and the device. Alternatively, they need to ensure that
the computational load is sufficiently high to compensate for the
overhead of the communication between host and device.

Regarding future work, we would like to expand our benchmark
suite, to support more compilers and backends. Similarly, an ex-
tended analysis could include other architectures, such as ARM
processors or other accelerators like FPGAs.
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