
104 COMMUNICATIONS OF THE ACM | NOVEMBER 2024 | VOL. 67 | NO. 11

research highlights

DOI:10.1145/3643456

Pitfalls in
Machine Learning for
Computer Security
By Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck

Abstract
With the growing processing power of computing systems
and the increasing availability of massive datasets, machine-
learning (ML) algorithms have led to major breakthroughs
in many different areas. This development has influenced
computer security, spawning a series of work on learning-
based security systems, such as for malware detection,
vulnerability discovery, and binary code analysis. Despite
great potential, ML in security is prone to subtle pitfalls that
undermine its performance and render learning-based sys-
tems potentially unsuitable for security tasks and practical
deployment.

In this paper, we look at this problem with critical eyes.
First, we identify common pitfalls in the design, imple-
mentation, and evaluation of learning-based security sys-
tems. We conduct a study of 30 papers from top-tier secu-
rity conferences within the past 10 years, confirming that
these pitfalls are widespread in the current security lit-
erature. In an empirical analysis, we further demonstrate
how individual pitfalls can lead to unrealistic performance
and interpretations, obstructing the understanding of the
security problem at hand. As a remedy, we propose action-
able recommendations to support researchers in avoiding
or mitigating the pitfalls where possible. Furthermore, we
identify open problems when applying ML in security and
provide directions for further research.

1. INTRODUCTION
No day goes by without reading machine-learning suc-
cess stories. The widespread access to specialized com-
putational resources and large datasets, along with novel
concepts and architectures for deep learning, have paved
the way for ML breakthroughs in several areas, such as
the translation of natural languages22 and the recognition
of image content.14 This development has naturally influ-
enced security research: Although mostly confined to spe-
cific applications in the past, ML has become one of the
key enablers to studying and addressing security-relevant
problems at large in several application domains, includ-
ing intrusion detection,17 malware analysis,11 vulnerabil-
ity discovery,25 and binary code analysis.20

Machine learning, however, has no clairvoyant abilities
and requires reasoning about statistical properties of data
across a fairly delicate workflow: Incorrect assumptions
and experimental biases may cast doubts on this process
to the extent that it becomes unclear whether we can trust
scientific discoveries made using learning algorithms at
all. Attempts to identify such challenges and limitations in
specific security domains, such as network intrusion detec-
tion, started two decades ago5 and were extended more re-
cently to other domains.12,18 Orthogonal to this line of work,
however, we argue that there exist generic pitfalls related to
machine learning that affect all security domains and have
received little attention so far.

These pitfalls can lead to over-optimistic results and,
even worse, affect the entire ML workflow, weakening as-
sumptions, conclusions, and lessons learned. As a conse-
quence, a false sense of achievement is felt that hinders the
adoption of research advances in academia and industry. A
sound scientific methodology is fundamental to support in-
tuitions and draw conclusions. We argue that this need is
especially relevant in security, where processes are often un-
dermined by adversaries that actively aim to bypass analysis
and break systems.

In this paper, we identify 10 common—yet subtle—pit-
falls that pose a threat to validity and hinder interpreta-
tion of research results. To support this claim, we analyze
the prevalence of these pitfalls in 30 top-tier security pa-
pers from the past decade that rely on ML for tackling dif-
ferent problems. To our surprise, each paper suffers from
at least three pitfalls; even worse, several pitfalls affect
most of the papers, which shows how endemic and sub-
tle the problem is. Although the pitfalls are widespread,
it is perhaps more important to understand the extent
to which they weaken results and lead to overoptimistic
conclusions. To this end, we perform an impact analysis
of the pitfalls in four different security fields. The find-
ings support our premise echoing the broader concerns
of the community.

In summary, we make the following contributions:
1. Pitfall Identification. We identify 10 pitfalls as don’ts

of ML in security and propose dos as actionable recom-
mendations to support researchers in avoiding the pitfalls
where possible. Furthermore, we identify open problems
that cannot be mitigated easily and require further re-
search effort (§2).

2. Prevalence Analysis. We analyze the prevalence of the
identified pitfalls in 30 representative top-tier security

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3655635 tp

The original version of this paper, “Dos and Don’ts of
Machine Learning in Computer Security”3 was published
in Proceedings of The USENIX Security Symposium (2022).

https://dx.doi.org/10.1145/3643456
https://doi.acm.org/10.1145/3655635
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643456&domain=pdf&date_stamp=2024-10-25

NOVEMBER 2024 | VOL. 67 | NO. 11 | COMMUNICATIONS OF THE ACM 105

ties. The following two pitfalls frequently induce this prob-
lem and thus require special attention when developing
learning-based systems in computer security.

P1 – Sampling Bias.
The collected data does not sufficiently represent the true
data distribution of the underlying security problem.

60% present

P1 – Sampling Bias.
The collected data does not sufficiently represent the true data
distribution of the underlying security problem.

Description. With a few rare exceptions, researchers de-
velop learning-based approaches without exact knowledge
of the true underlying distribution of the input space. In-
stead, they need to rely on a dataset containing a fixed num-
ber of samples that aim to resemble the actual distribution.
While it is inevitable that some bias exists in most cases, un-
derstanding the specific bias inherent to a particular prob-
lem is crucial to limiting its impact in practice. Drawing
meaningful conclusions from the training data becomes
challenging if the data does not effectively represent the in-
put space or even follows a different distribution.

Security implications. Sampling bias is highly relevant to
security, as the data acquisition is particularly challenging
and often requires using multiple sources of varying qual-
ity. As an example, for the collection of suitable datasets for
Android malware detection, only a few public sources exist
from which to obtain such data.2,4 As a result, it is common
practice to rely on synthetic data or to combine data from
different sources, both of which can introduce bias—as we
demonstrate in §4 with examples on state-of-the-art meth-
ods for intrusion and malware detection.

P2 – Label Inaccuracy.
Ground-truth labels required for classification tasks are inac-
curate, unstable, or erroneous, affecting the overall perfor-
mance of a learning-based system.

10%
present

P2 – Label Inaccuracy.
The ground-truth labels required for classification tasks
are inaccurate,unstable, or erroneous, affecting the overall
performance of a learning-based system.

Description. Many learning-based security systems
are built for classification tasks. To train these systems, a

papers published in the past decade. Additionally, we per-
form a broad survey in which we obtain and evaluate the
feedback of the authors of these papers regarding the iden-
tified pitfalls (§3).

3. Impact Analysis. In four different security domains,
we experimentally analyze the extent to which such pitfalls
introduce experimental bias, and how we can effectively
overcome these problems by applying the proposed recom-
mendations (§4).

Remark. This work should not be interpreted as a finger-
pointing exercise. On the contrary, it is a reflective effort that
shows how subtle pitfalls can have a negative impact on prog-
ress of security research, and how we—as a community—can
mitigate them adequately.

2. PITFALLS IN MACHINE LEARNING
Despite its great success, the application of ML in practice is
often non-trivial and prone to several pitfalls, ranging from
obvious flaws to minor blemishes. Overlooking these issues
may result in experimental bias or incorrect conclusions. In
this section, we present 10 common pitfalls that occur fre-
quently in security research. Although some of these pitfalls
may seem obvious at first glance, they are rooted in subtle
deficiencies that are widespread in security research—even
in papers presented at top conferences (see §3 and §4).

We group these pitfalls with respect to the stages of a typ-
ical machine-learning workflow, as depicted in Figure 1. For
each pitfall, we provide a short description and a discussion
of their security implications. To visualize the prevalence of
a pitfall, we provide a colored bar depicting the proportion
of papers in our analysis that suffer from the pitfall, with
warmer colors indicating the presence of the pitfall. Inter-
ested readers find recommendations on how to avoid these
pitfalls in the original publication.3

2.1. Data collection and labeling.
The design and development of learning-based systems
usually starts with the acquisition of a representative datas-
et. It is clear that conducting experiments using unrealistic
data leads to the misestimation of an approach’s capabili-

Figure 1. Common pitfalls of machine learning in computer security.

Sampling Bias

Label Inaccuracy

Data Snooping

Spurious
Correlations

Biased
Parameters

Inappropriate
Baselines

Inappropriate
Measures

Base Rate Fallacy

Lab-Only Evaluation

Inappropriate
Threat Model

Present

Present (but discussed)

Partly present

Partly present (but discussed)

Unclear from text

Does not apply

Not present

Data Collection
and Labelling

 System Design
and Learning

 Performance
Evaluation

 Deployment
and Operation

Security Problem
Learning-Based

Security Solution

Machine Learning Workflow

P6 P9

P10P7

P8

P3

P4

P5

P1

P2

106 COMMUNICATIONS OF THE ACM | NOVEMBER 2024 | VOL. 67 | NO. 11

research highlights

ground-truth label is required for each observation. Unfor-
tunately, this labeling is rarely perfect and researchers must
account for uncertainty and noise to prevent their models
from suffering from inherent bias.

Security implications. For many relevant security prob-
lems, such as detecting network attacks or malware, reli-
able labels are typically not available, resulting in a chicken-
and-egg problem. As a remedy, researchers often resort to
heuristics, such as using external sources that do not pro-
vide a reliable ground-truth. For example, services such as
VirusTotala are commonly used for acquiring label informa-
tion for malware, but these are not always consistent.

2.2. System design and learning.
Once enough data has been collected, a learning-based se-
curity system can be trained. This process ranges from data
preprocessing to extracting meaningful features and build-
ing an effective learning model. Unfortunately, one can in-
troduce flaws and weak spots at each of these steps.

P3 – Data Snooping.
A learning model is trained with data that is typically not
available in practice. Data snooping can occur in many ways,
some of which are very subtle and hard to identify.

57% present

P3 – Data Snooping.
A learning model is trained with data that is typically not available
in practice. Data snooping can occur in many ways, some of which
are very subtle and hard to identify.

Description. It is common practice to split collected data
into separate training and test sets prior to generating a
learning model. Although splitting the data seems straight-
forward, there are many subtle ways in which test data or
other background information that is not usually available
can affect the training process, leading to data snooping.
We broadly distinguish between three data snooping types
described in the original paper.3

Security implications. In security, data distributions are
often non-stationary and continuously changing due to new
attacks or technologies. Because of this, snooping on data
from the future or from external data sources is a prevalent
pitfall that leads to over-optimistic results. For instance, re-
searchers have identified data snooping in learning-based
malware detection systems.18 In this case, the capabilities of
the methods are overestimated due to mixing samples from
past and present.

P4 – Spurious Correlations.
Artifacts unrelated to the security problem create shortcut pat-
terns for separating classes. Consequently, the learning model
adapts to these artifacts instead of solving the actual task.

20% present

P4 – Spurious Correlations.
Artifacts unrelated to the security problem create shortcut patterns
for separating classes. Consequently, the learning model adapts to
these artifacts instead of solving the actual task.

Description. Spurious correlations result from artifacts
that correlate with the task to solve but are not actually re-
lated to it, leading to false associations. Consider the ex-
ample of a network intrusion detection system, where a
large fraction of the attacks in the dataset originate from
a certain network region. The model may learn to detect a
specific IP range instead of generic attack patterns.

Security implications. Machine learning is typically ap-
plied as a black box in security. As a result, spurious correla-
tions often remain unidentified. These correlations pose a
problem once results are interpreted and used for drawing
general conclusions. Without knowledge of spurious corre-
lations, there is a high risk of overestimating the capabili-
ties of an approach and misjudging its practical limitations.
As an example, §4.2 reports our analysis on a vulnerability
discovery system indicating the presence of notable spuri-
ous correlations in the underlying data.

P5 – Biased Parameter Selection.
The final parameters of a learning-based method are not
entirely fixed at training time. Instead, they indirectly depend
on the test set.

P5 – Biased Parameter Selection.
The final parameters of a learning-based method are not entirely
fixed at training time. Instead, they indirectly depend on the test set.

10%
present

Description. Throughout the learning procedure, it is
common practice to generate different models by varying
hyperparameters. The best-performing model is picked
and its performance on the test set is presented. While this
setup is generally sound, it can still suffer from a biased pa-
rameter selection. For example, over-optimistic results can
be easily produced by calibrating the detection threshold on
the test data instead of the training data.

Security implications. A security system whose param-
eters have not been fully calibrated at training time can per-
form very differently in a realistic setting. While the detec-
tion performance of a network intrusion detection system
may be assessed using a receiver operating characteristic
(ROC) curve obtained on the test set, it can be hard to select
the same operational point in practice due to the diversity of
real-world traffic.21 This may lead to decreased performance
of the system in comparison to the original experimental
setting. Note that this pitfall is related to data snooping (P3),
but should be considered explicitly as it can easily lead to
inflated results.

2.3. Performance evaluation.
The next stage in a typical machine-learning workflow is the
evaluation of the system’s performance. In the following, we
show how different pitfalls can lead to unfair comparisons
and biased results in the evaluation of such systems.

P6 – Inappropriate Baseline.
The evaluation is conducted without, or with limited, base-
line methods. As a result, it is impossible to demonstrate
improvements against the state of the art and other security
mechanisms.

P6 – Inappropriate Baseline.
The final parameters of a learning-based method are not entirely
fixed at training time. Instead, they indirectly depend on the test set.

20% present

Description. To show to what extent a novel method im-
proves the state of the art, it is vital to compare it with
previously proposed methods. When choosing baselines,
it is important to remember that there exists no universal
learning algorithm that outperforms all other approach-
es in general.24 Consequently, providing only results for

NOVEMBER 2024 | VOL. 67 | NO. 11 | COMMUNICATIONS OF THE ACM 107

the proposed approach or a comparison with mostly iden-
tical learning models does not give enough context to as-
sess its impact.

Security implications. An overly complex learning method
increases the chances of overfitting, and also the run-time
overhead, the attack surface, and the time and costs for de-
ployment. To show that ML techniques provide significant
improvements compared to traditional methods, it is thus
essential to compare these systems side by side.

While these automated methods can certainly not re-
place experienced data analysts, they can be used to set the
lower bar the proposed approach should aim for. Finally,
it is critical to check whether non-learning approaches are
also suitable for the application scenario. For example, for
intrusion and malware detection, there exist a wide range of
methods using other detection strategies.

P7 – Inappropriate Performance Measures.
The chosen performance measures do not account for the con-
straints of the application scenario, such as imbalanced data
or the need to keep a low false-positive rate.

33% present

P7 – Inappropriate Performance Measures.
The chosen performance measures do not account for the constraints
of the application scenario, such as imbalanced data or the need to keep
a low false-positive rate.

Description. A wide range of performance measures are
available and not all of them are suitable in the context of
security. For example, when evaluating a detection system,
it is typically insufficient to report just a single performance
value, such as accuracy, because true-positive and false-
positive decisions are not observable. However, even more
advanced measures may obscure experimental results in
some application settings. Therefore, the selection of prop-
er evaluation metrics is a challenging task that requires a
thoughtful decision.

Security implications. Inappropriate performance mea-
sures are a long-standing problem in security research, par-
ticularly in detection tasks. While true and false positives,
for instance, provide a more detailed picture of a system’s
performance, they can also disguise the actual precision
when the prevalence of attacks is low.

P8 – Base Rate Fallacy.
A large class imbalance is ignored when interpreting the per-
formance measures, leading to an overestimation of perfor-
mance.

P8 – Base Rate Fallacy.
A large class imbalance is ignored when interpreting the performance
measures leading to an overestimation of performance.

10%
present

Description. Class imbalance can easily lead to a misin-
terpretation of performance if the base rate of the negative
class is not considered. If this class is predominant, even a
very low false-positive rate can result in surprisingly high
numbers of false positives. Note the difference to the previ-
ous pitfall: while P7 refers to the inappropriate description
of performance, the base-rate fallacy is about the mislead-
ing interpretation of results. This special case is easily over-
looked in practice (see §3).

Security implications. The base rate fallacy is relevant in
a variety of security problems, such as intrusion detection

and website fingerprinting.5,12 As a result, it is challenging to
realistically quantify the security and privacy threat posed
by attackers. Similarly, the probability of installing malware
is usually much lower than is considered in experiments on
malware detection.18

2.4. Deployment and operation.
In the last stage of a typical machine-learning workflow, the
developed system is deployed to tackle the underlying secu-
rity problem in practice.

P9 – Lab-Only Evaluation.
A learning-based system is solely evaluated in a laboratory
setting, without discussing its practical limitations.

P9 – Lab-Only Evaluation.
A learning-based system is solely evaluated in a laboratory setting,
without discussing its practical limitations.

47% present

Description. As in all empirical disciplines, it is com-
mon to perform experiments under certain assumptions
to demonstrate a method’s efficacy. While performing con-
trolled experiments is a legitimate way to examine specific
aspects of an approach, it should be evaluated in a realistic
setting whenever possible to transparently assess its capa-
bilities and showcase the open challenges that will foster
further research.

Security implications. Many learning-based systems in
security are evaluated solely in laboratory settings, overstat-
ing their practical impact. A common example are detection
methods evaluated only in a closed-world setting with lim-
ited diversity and no consideration of non-stationarity. For
example, a large number of website fingerprinting attacks
are evaluated only in closed-world settings spanning a limit-
ed time period.12 Similarly, several learning-based malware
detection systems have been insufficiently examined under
realistic settings.18

P10 – Inappropriate Threat Model.
The security of machine learning is not considered, exposing
the system to a variety of attacks.

P10 – Inappropriate Threat Model.
The security of ma-chine learning is not considered,
exposing the system to a variety of attacks.

17% present

Description. Learning-based security systems operate in
a hostile environment, which should be considered when
designing these systems. Prior work in adversarial learning
has revealed a considerable attack surface introduced by
machine learning itself, at all stages of the workflow. Their
broad attack surface makes these algorithms vulnerable to
various types of attacks.7

Security implications. Including adversarial influence in
the threat model and evaluation is often vital, as systems
prone to attacks are not guaranteed to output trustworthy
and meaningful results. Aside from traditional security is-
sues, it is therefore essential to also consider ML-related
attacks. For instance, an attacker may more easily evade
a model that relies on only a few features than a properly
regularized model designed with security considerations
in mind, although one should also consider domain-spe-
cific implications.19

108 COMMUNICATIONS OF THE ACM | NOVEMBER 2024 | VOL. 67 | NO. 11

research highlights

snooping (P3), which are at least partly present in 90% and
73% of the papers, respectively. In more than 50% of the pa-
pers, we identify inappropriate threat models (P10), lab-only
evaluations (P9), and inappropriate performance measures
(P7) as at least partly present. Every paper is affected by at
least three pitfalls, underlining the pervasiveness of such is-
sues in recent computer security research. In particular, we
find that dataset collection is still very challenging: Some of
the most realistic and expansive open datasets we have de-
veloped as a community are still imperfect (see §4.1).

Moreover, the presence of some pitfalls is more likely
to be unclear from the text than others. We observe this for
biased parameter selection (P5) when no description of the
hyperparameters or tuning procedure is given; for spuri-
ous correlations (P4), when there is no attempt to explain a
model’s decisions; and for data snooping (P3), when the da-
taset splitting or normalization procedure is not explicitly
described in the text. These issues also indicate that experi-
mental settings are more difficult to reproduce due to a lack
of information.

3.4. Feedback from authors.
To foster a discussion within our community, we have con-
tacted the authors of the selected papers and collected feed-
back on our findings. We conducted a survey with 135 au-
thors for whom contact information has been available. To
protect the authors’ privacy and encourage an open discus-
sion, all responses have been anonymized.

The survey consists of a series of general and specific
questions on the identified pitfalls. First, we ask the authors
whether they have read our work and consider it helpful for
the community. Second, for each pitfall, we collect feedback
on whether they agree that (a) their publication might be af-
fected, (b) the pitfall frequently occurs in security papers,
and (c) it is easy to avoid in most cases. To quantitatively as-
sess the responses, for each question we use a five-point Lik-
ert scale ranging from strongly disagree to strongly agree. We
also provide an option of prefer not to answer and allow the
authors to omit questions.

We have received feedback from 49 authors, yielding a re-
sponse rate of 36%. These authors correspond to 13 of the
30 selected papers and thus represent 43% of the considered
research. Regarding the general questions, 46 (95%) of the
authors have read our paper and 48 (98%) agree that it helps
to raise awareness for the identified pitfalls. For the specific
pitfall questions, the overall agreement between the au-
thors and our findings is 63% on average, varying depending
on the security area and pitfall. All authors agree that their
paper may suffer from at least one of the pitfalls. On aver-
age, they indicate that 2.77 pitfalls are present in their work
with a standard deviation of 1.53 and covering all 10 pitfalls.

When assessing the pitfalls in general, the authors es-
pecially agree that lab-only evaluations (92%), the base rate
fallacy (77%), inappropriate performance measures (69%),
and sampling bias (69%) frequently occur in security papers.
Moreover, they state that inappropriate performance mea-
sures (62%), inappropriate parameter selection (62%), and
the base rate fallacy (46%) can be easily avoided in practice,
while the other pitfalls require more effort.

3. PREVALENCE ANALYSIS
Once we understand the pitfalls faced by learning-based se-
curity systems, it becomes necessary to assess their preva-
lence and investigate their impact on scientific advances. To
this end, we conduct a study on 30 papers published in the
last 10 years at the top four conferences for security-related
research in our community. The papers have been selected
as representative examples for our study, as they address a
large variety of security topics and successfully apply ML to
the corresponding research problems. A complete list of all
selected papers can be found in the original paper.3

3.1. Review process.
Each paper is assigned two independent reviewers who assess
the article and identify instances of the described pitfalls.
The pool of reviewers consists of six researchers who have all
previously published work on the topic of machine learning
and security in at least one of the considered security confer-
ences. Reviewers do not consider any material presented out-
side the papers under analysis (aside from appendices and
associated artifacts, such as datasets or source code). Once
both reviewers have completed their assignments, they dis-
cuss the paper in the presence of a third reviewer who may re-
solve any disputes. In case of uncertainty, the authors are giv-
en the benefit of the doubt (for example, in case of a dispute
between partly present and present, we assign partly present).

Throughout the process, all reviewers meet regularly to
discuss their findings and ensure consistency between the
pitfalls’ criteria. Moreover, these meetings have been used
to refine the definitions and scope of pitfalls based on the
reviewers’ experience. Following any adaptation of the crite-
ria, all completed reviews have been reevaluated by the orig-
inal reviewers—this occurred twice during our analysis.
While cumbersome, this adaptive process of incorporating
reviewer feedback ensures the pitfalls are comprehensive
in describing the core issues across the state of the art. We
note that the inter-rater reliability of reviews prior to dispute
resolution is α = 0 . 832 using Krippendorff’s alpha, where
α > 0 . 800 indicates confidently reliable ratings.13

3.2. Assessment criteria.
For each paper, pitfalls are coarsely classified as either pres-
ent, not present, unclear from text, or does not apply. A pitfall
may be wholly present throughout the experiments without
remediation (present), or it may not (not present). If the au-
thors have corrected any bias or have narrowed down their
claims to accommodate the pitfall, this is also counted as
not present. We also introduce partly present as a category
to account for experiments that do suffer from a pitfall, but
where the impact has been partially addressed. If a pitfall
is present or partly present but acknowledged in the text, we
moderate the classification as discussed. If the reviewers are
unable to rule out the presence of a pitfall due to missing
information, we mark the publication as unclear from text.
Finally, in the special case of P10, if the pitfall does not apply
to a paper’s setting, this is considered as a separate category.

3.3. Observations.
The most prevalent pitfalls are sampling bias (P1) and data

NOVEMBER 2024 | VOL. 67 | NO. 11 | COMMUNICATIONS OF THE ACM 109

Dataset collection. A common source of recent mobile
data is the AndroZoo project,2 which collects Android apps
from a large variety of sources, including the official Google
Play store and several Chinese markets. At the time of writ-
ing, it includes more than 11 million Android applications
from 18 different sources. As well as the samples them-
selves, it includes meta-information, such as the number
of antivirus detections. Although AndroZoo is an excellent
source for obtaining mobile apps, we demonstrate that
experiments may suffer from severe sampling bias (P1) if
the peculiarities of the dataset are not taken into account.
Please note that the following discussion is not limited to
the AndroZoo data, but is relevant for the composition of
Android datasets in general.

Dataset analysis. In the first step, we analyze the data dis-
tribution of AndroZoo by considering the origin of an app
and the number of antivirus detections of an Android app.
For our analysis, we broadly divide the individual markets
into four different origins: GooglePlay, Chinese markets, Vi-
rusShare, and all other markets.

Interestingly, we find that when sampling randomly from
the dataset, benign applications come with a probability of
around 80% from GooglePlay. In contrast, malicious apps
mainly originate from Chinese markets, indicating a sam-
pling bias.

Note, however, that this sampling bias is not limited to
AndroZoo. We identify a similar bias for the Drebin data-
set,4 which is commonly used to evaluate the performance
of learning-based methods for Android malware detection.
The details of the analysis of this dataset can be found in the
original publication.3

Experimental setup. To get a better understanding of this
finding, we conduct experiments using two datasets: For
the first dataset (D 1), we merge 10,000 benign apps from
GooglePlay with 1,000 malicious apps from Chinese mar-
kets (Anzhi and AppChina). We then create a second dataset
(D 2) using the same 10,000 benign applications, but com-
bine them with 1,000 malware samples exclusively from
GooglePlay. All malicious apps are detected by at least 10
virus scanners.

Next, we train a linear support vector machine (SVM) on
these datasets using two feature sets taken from state-of-
the-art classifiers (Drebin4 and Opseqs16).

Results. The true positive rate for Drebin and Opseqs
drops by more than 10% and 15%, respectively, between the

In summary, we derive three central observations from
this survey. First, most authors agree that there is a lack
of awareness for the identified pitfalls in our community.
Second, they confirm that the pitfalls are widespread in se-
curity literature and there is a need for mitigating them.
Third, a consistent understanding of the identified pitfalls
is still lacking. As an example, several authors (44%) nei-
ther agree nor disagree on whether data snooping is easy
to avoid, emphasizing the importance of clear definitions
and recommendations.

3.5. Takeaways.
We find that all of the pitfalls introduced in §2 are perva-
sive in security research, affecting between 17% and 90% of
the selected papers. Each paper suffers from at least three
of the pitfalls and only 22% of instances are accompanied
by a discussion in the text. While authors may have even de-
liberately omitted a discussion of pitfalls in some cases, the
results of our prevalence analysis overall suggest a lack of
awareness in our community.

Although these findings point to a serious problem in re-
search, we would like to remark that all of the papers ana-
lyzed provide excellent contributions and valuable insights.
Our objective here is not to blame researchers for stepping
into pitfalls but to raise awareness and increase the experi-
mental quality of research on ML in security.

4. IMPACT ANALYSIS
In the previous sections, we have presented pitfalls that are
widespread in the computer security literature. However,
so far it remains unclear how much the individual pitfalls
could affect experimental results and their conclusions. In
this section, we estimate the experimental impact of some
of these pitfalls in popular applications of machine learn-
ing in security. At the same time, we demonstrate how the
recommendations discussed in §2 help in identifying and
resolving these problems. For our discussion, we consider
four popular research topics in computer security:

 ˲ §4.1: Mobile malware detection (P1, P4, and P7)
 ˲ §4.2: Vulnerability discovery (P2, P4, and P6)
 ˲ §4.3: Source code authorship attribution (P1 and P4)
 ˲ §4.4: Network intrusion detection (P6 and P9)

Remark. For this analysis, we consider state-of-the-art ap-
proaches for each security domain. We remark that the results
within this section do not mean to criticize these approaches
specifically; we choose them as they are representative of how
pitfalls can impact different domains. Notably, the fact that we
have been able to reproduce the approaches speaks highly of
their academic standard.

4.1. Mobile malware detection.
The automatic detection of Android malware using ML is
a particularly lively area of research. The design and evalu-
ation of such methods are delicate and may exhibit some
of the previously discussed pitfalls. In the following, we
discuss the effects of sampling bias (P1), spurious correla-
tions (P4), and inappropriate performance measures (P7) on
learning-based detection in this context.

Table 1. Comparison of results for two classifiers when merging
benign apps from Google Play with Chinese malware (D1) vs.
sampling solely from Google Play (D2). For both classifiers, the
detection performance drops significantly when considering apps
only from Google Play. The standard deviation of the results ranges
between 0–3%.

Metric

Drebin Opseqs

D1 D2 Δ D1 D2 Δ
Accuracy 0.994 0.980 –1.4% 0.972 0.948 –2.5%

Precision 0.968 0.930 –3.9% 0.822 0.713 –13.3%

Recall 0.964 0.846 –12.2% 0.883 0.734 –16.9%

F1-Score 0.970 0.886 –8.7% 0.851 0.722 –15.2%

MCC 0.963 0.876 –9.0% 0.836 0.695 –16.9%

110 COMMUNICATIONS OF THE ACM | NOVEMBER 2024 | VOL. 67 | NO. 11

research highlights

datasets D 1 and D 2 , while the accuracy is only slightly af-
fected (see Table 1). Hence, the choice of the performance
measure is crucial (P7). Interestingly, the Web address play.
google.com turns out to be one of the five most discrimina-
tive features for the benign class, suggesting that the classi-
fier has learned to distinguish the origins of Android apps,
rather than the difference between malware and benign
apps (P4). Although our experimental setup overestimates
the classifiers’ performance by deliberately ignoring time
dependencies (P3), we can still clearly observe the impact of
the pitfalls. Note that the effect of other snooping types in
this setting has been demonstrated in previous work.18

4.2. Vulnerability discovery.
Vulnerabilities in source code are a major threat to the se-
curity of computer systems and networks. Since the manual
search for vulnerabilities is complex and time consuming,
machine learning-based detection approaches have been
proposed in recent years.25 In what follows, we show that a
popular dataset for vulnerability detection contains arti-
facts (P4) used by a state-of-the-art method for vulnerability
discovery, VulDeePecker.15 Surprisingly, we find that it can
be outperformed by a simple linear classifier (P6) and dis-
cuss how VulDeePecker’s preprocessing steps make it im-
possible to decide whether some snippets contain vulner-
abilities or not (P2).

Dataset collection. For our analysis, we use the dataset
published by Li et al.15 We focus on vulnerabilities related to
buffers (CWE-119) and obtain 39,757 source code snippets of
which 10,444 (26%) are labeled as containing a vulnerability.

Experimental setup. We train VulDeePecker, based on a
recurrent neural network (RNN), to classify the code snip-
pets automatically. To this end, we replace variable names
with generic identifiers (for example, INT2) and truncate the
snippets to 50 tokens, as proposed in the paper.15

We use a linear SVM with bag-of-words features based
on n -grams as a baseline for VulDeePecker. To see what
VulDeePecker has learned, we use Layerwise Relevance
Propagation (LRP)6 to explain the predictions and assign
each token a relevance score that indicates its importance
for the classification.

Results. To see how the model derives its decisions, we
analyze the 10 most important tokens for each code snip-
pet. Following this approach, we notice two things: Firstly,
tokens such as ‘(’, ‘]’, and ‘,’ are among the most important
features throughout the training data although they occur
frequently in code from both classes as part of function
calls or array initialization. Secondly, there are many gener-
ic INT* values which frequently correspond to buffer sizes.
From this we conclude that VulDeePecker is relying on com-
binations of artifacts in the dataset and thus suffers from
spurious correlations (P4).

To further support this finding, we show in Table 2 the
performance of VulDeePecker compared to an SVM and an
ensemble of standard models trained with the AutoSklearn
library.10 We find that an SVM with 3-grams yields the best
performance with an 18 × smaller model. This is interesting
as the SVM uses overlapping but independent substrings (n
-grams), rather than the true sequential ordering of all to-

kens as for the RNN. Thus, it is likely that VulDeePecker is
not exploiting relations in the sequence, but merely com-
bines special tokens—an insight that could have been ob-
tained by training a linear classifier (P6). Furthermore, it is
noteworthy that both baselines provide significantly higher
true-positive rates, although the ROC-AUC9 of all approach-
es only slightly differs.

Finally, VulDeePecker discards essential information
during its preprocessing steps, making it impossible to
detect vulnerabilities in certain cases. For instance, num-
bers are converted to generic tokens, which removes cru-
cial information for detecting buffer overflows: After the
conversion, it is not possible to tell how big the buffer is
and whether the content fits into it or not. Depending on
the surrounding code, it can become impossible to say
whether buffer overflows appear or not, leading to cases of
label inaccuracy (P2).

4.3. Source code author attribution.
The task of identifying the developer based on source
code is known as authorship attribution.8 Programming
habits are characterized by a variety of stylistic patterns,
so that state-of-the-art attribution methods use an ex-
pressive set of such features. These range from simple lay-
out properties to more unusual habits in the use of syntax
and control flow. In combination with sampling bias (P1),
this expressiveness may give rise to spurious correlations
(P4) in current attribution methods, leading to an overes-
timation of accuracy.

Dataset collection. Recent approaches have been tested
on data from the Google Code Jam (GCJ) programming com-
petition,1,8 where participants solve the same challenges in
various rounds. An advantage of this dataset is that it en-
sures a classifier learns to separate stylistic patterns rather
than merely overfitting to different challenges. We use the
2017 GCJ dataset, which consists of 1,632 C++ files from 204
authors, solving the same eight challenges.

Dataset analysis. We start with an analysis of the aver-
age similarity score between all files of each respective
programmer, where the score is computed by difflib’s
SequenceMatcher.b We find that most participants copy
code across the challenges, that is, they reuse personal-
ized coding templates. Understandably, this results from
the nature of the competition, where participants are
encouraged to solve challenges quickly. These templates
are often not used to solve the current challenges but are
only present in case they might be needed. As this devi-
ates from real-world settings, we identify a sampling bias
in the dataset.

Current feature sets for authorship attribution include

Table 2. Performance of support vector machines and VulDeePecker
on unseen data. The true-positive rate is determined at 2.9% false
positives.

Model# parameters AUC TPR

VulDeePecker 1.2 × 106 0.984 0.818

SVM 6.6 × 104 0.986 0.963

AutoSklearn 8.5 × 105 0.982 0.894

NOVEMBER 2024 | VOL. 67 | NO. 11 | COMMUNICATIONS OF THE ACM 111

these templates, such that models are learned that strong-
ly focus on them as highly discriminative patterns. Howev-
er, this unused duplicate code leads to features that repre-
sent artifacts rather than coding style which are spurious
correlations.

Experimental setup. Our evaluation on the impact of
both pitfalls builds on the attribution methods by Abuha-
mad et al.1 and Caliskan et al.8 Both represent the state of
the art regarding performance and comprehensiveness
of features.

We implement a linter tool on top of Clang, an open-
source C/C++ front end for the LLVM compiler framework,
to remove unused code that is mostly present due to the
templates. Based on this, we design the following three
experiments: First, we train and test a classifier on the un-
processed dataset (T b) as a baseline. Second, we remove un-
used code from the respective test sets (T 1), which allows
us to test how much the learning methods focus on unused
template code. Finally, we remove unused code from the
training set and retrain the classifier (T 2).

Results. Figure 2 presents the accuracy for both attri-
bution methods on the different experiments. Artifacts
have a substantial impact on the attribution accuracy. If
we remove unused code from the test set (T 1), the accu-
racy drops by 48% for the two approaches. This shows both
systems focus considerably on the unused template code.
After retraining (T 2), the average accuracy drops by 6% and
7% for the methods of Abuhamad et al.1 and Caliskan et
al.,8 demonstrating the reliance on artifacts for the attribu-
tion performance.

Overall, our experiments show that the impact of sam-
pling bias and spurious correlations has been underesti-
mated and reduces the accuracy considerably. At the same
time, our results are encouraging. After accounting for ar-

tifacts, both attribution methods select features that allow
for a more reliable identification.

4.4. Network intrusion detection.
Detecting network intrusions is one of the oldest problems
in security and it comes as no surprise that detection of
anomalous network traffic relies heavily on learning-based
approaches. However, challenges in collecting real attack
data has often led researchers to generate synthetic data
for lab-only evaluations (P9). Here, we demonstrate how
this data is often insufficient for justifying the use of com-
plex models (for example, neural networks) and how using a
simpler model as a baseline would have brought these short-
comings to light (P6).

Dataset collection. We consider the dataset released
by Mirsky et al.,17 which contains a capture of Internet of
Things (IoT) network traffic simulating the initial activation
and propagation of the Mirai botnet malware. The packet
capture covers 119 minutes of traffic on a Wi-Fi network
with three PCs and nine IoT devices.

Dataset analysis. First, we analyze the transmission vol-
ume of the captured network traffic. Figure 3 shows the
frequency of benign and malicious packets across the cap-
ture, divided into bins of 10 seconds. This reveals a strong
signal in the packet frequency, which is highly indicative
of an ongoing attack. Moreover, all benign activity seems
to halt as the attack commences, after 74 minutes, despite
the number of devices on the network. This suggests that
individual observations may have been merged and could
further result in the system benefiting from spurious cor-
relations (P4).

Experimental setup. To illustrate how severe these pitfalls
are, we consider Kitsune,17 a state-of-the-art deep learning-
based intrusion detector built on an ensemble of autoen-
coders. For each packet, 115 features are extracted that are
input to 12 autoencoders, which themselves feed to another,
final autoencoder operating as the anomaly detector.

As a simple baseline to compare against Kitsune, we
choose the boxplot method,23 a common approach for iden-
tifying outliers. We process the packets using a 10-second
sliding window and use the packet frequency per win-
dow as the sole feature. Next, we derive a lower and upper
threshold from the clean calibration distribution: τ low =
Q 1 − 1 . 5 · IQR and τ high = Q 3 + 1 . 5 · IQR . During test-
ing, packets are marked as benign if the sliding window’s
packet frequency is between τ low and τ high , and malicious
otherwise. In Figure 3, these thresholds are shown by the
dashed gray lines.

Results. The classification performance of the autoen-
coder ensemble compared to the boxplot method is shown
in Table 3. While the two approaches perform similarly
in terms of ROC-AUC, the simple boxplot method outper-
forms the autoencoder ensemble at low false-positive rates
(FPR). As well as its superior performance, the boxplot
method is exceedingly lightweight compared to the fea-
ture extraction and test procedures of the ensemble. This
is especially relevant as the ensemble is designed to oper-
ate on resource-constrained devices with low latency (for
example, IoT devices).

Figure 2. Accuracy of authorship attribution after considering
artifacts. The accuracy drops by 48% if unused code is removed from
the test set (T1); After retraining (T2), the average accuracy still drops
by 6% and 7%.

Tb T1 T2 Tb T1 T2

40

60

80

100

A
cc

u
ra

cy
[%

]

(a) Abuhamad et al.

40

60

80

100

A
cc

u
ra

cy
[%

]

(b) Caliskan et al.

Figure 3. Frequency of benign vs. malicious packets in the Mirai
dataset.17 The Gray dashed lines show the thresholds that define
normal traffic calculated using the simple baseline (boxplot
method .23 The span of clean data used for calibration is highlighted
by the light blue shaded area.

0 10 20 30 40 50 60 70 80 90 100 110
Minutes elapsed

0

1K

2K

Fr
eq

u
en

cy
(1

0
s

w
in

d
ow

s)

Benign packets
Malicious packets

Boxplot thresholds
Baseline calibration

Table 3. Comparing Kitsune,17 an autoencoder ensemble NIDS, against
a simple baseline, boxplot method,23 for detecting a Mirai infection.

Detector
AUC TPR TPR

(FPR at 0.001) (FPR at 0)

Kitsune17 0.968 0.882 0.873

Baseline23 0.998 0.996 0.996

112 COMMUNICATIONS OF THE ACM | NOVEMBER 2024 | VOL. 67 | NO. 11

research highlights

Note this experiment does not intend to show that the
boxplot method can detect an instance of Mirai operating
in the wild, nor that Kitsune is incapable of detecting other
attacks, but to demonstrate that an experiment without an
appropriate baseline (P6) is insufficient to justify the complex-
ity and overhead of the ensemble. The success of the boxplot
method also shows how simple methods can reveal issues
with data generated for lab-only evaluations (P9). In the Mi-
rai dataset the infection is overly conspicuous; an attack in
the wild would likely be represented by a tiny proportion of
network traffic.

4.5. Takeaways.
The four case studies clearly demonstrate the impact of the
considered pitfalls across four distinct security scenarios.
Our findings show that subtle errors in the design and ex-
perimental setup of an approach can result in misleading
or erroneous results. Despite the overall valuable contribu-
tions of the research, the frequency and severity of pitfalls
identified in top papers clearly indicate that significantly
more awareness is needed. We also show how pitfalls ap-
ply across multiple domains, indicating a general problem
that cannot be attributed to only one of the security areas.

5. CONCLUSION
We identify and systematically assess ten subtle pitfalls in
the use of machine learning in security. These issues can af-
fect the validity of research and lead to overestimating the
performance of security systems. We find that these pitfalls
are prevalent in security research, and demonstrate the
impact of these pitfalls in different security applications.
To support researchers in avoiding them, we provide rec-
ommendations that are applicable to all security domains,
from intrusion and malware detection to vulnerability dis-
covery.3

Ultimately, we strive to improve the scientific quality
of empirical work on ML in security. A decade after the
seminal study of Sommer and Paxson,21 we again encour-
age the community to reach outside the closed world and
explore the challenges and chances of embedding ML in
real-world security systems.

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding from the
German Federal Ministry of Education and Research
(BMBF) as BIFOLD—Berlin Institute for the Foundations
of Learning and Data (ref. 01IS18025A and ref 01IS18037A),
by the Helmholtz Association (HGF) within topic “46.23
Engineering Secure Systems”, and by the Deutsche Forsc-
hungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy EXC 2092

CASA-390781972, and the projects 456292433; 456292463;
393063728. Moreover, we acknowledge that this research
has been partially sponsored by the U.K. EP/P009301/1 EP-
SRC research grant.

References
1. Abuhamad, M., AbuHmed, T.,

Mohaisen, A., and Nyang, D. Large-
scale and language-oblivious code
authorship identification. In Proc.
of ACM Conf. on Computer and
Communications Security, (2018).

2. Allix, K., Bissyandé, T.F., Klein, J., and
Le Traon, Y. Androzoo: Collecting
millions of android apps for the
research community. In Proc. of
the Int. Conf. on Mining Software
Repositories (2016).

3. Arp, D. et al. Dos and don’ts of
machine learning in computer security.
In Proc. of USENIX Security Symp.
(2022), 3971–3988.

4. Arp, D. et al. Drebin: Efficient and
explainable detection of android
malware in your pocket. In Proc.
of Network and Distributed System
Security Symp. (2014).

5. Axelsson, S. The base-rate fallacy and
the difficulty of intrusion detection.
ACM Transactions on Information and
System Security (Aug. 2000).

6. Bach, S. et al. On pixel-wise
explanations for non-linear classifier
decisions by layer-wise relevance
propagation. PLoS ONE, (July 2015).

7. Biggio, B. et al. Evasion attacks against
machine learning at test time. In
Joint European Conf. on Machine
Learning and Knowledge Discovery in
Databases, Springer (2013).

8. Caliskan, A. et al. De-anonymizing
programmers via code stylometry.
In Proc. of USENIX Security Symp.
(2015).

9. Fawcett, T. An introduction to ROC
analysis. Pattern Recognition Letters
27, 8 (2006), 861–874.

10. Feurer, M. et al. Efficient and robust
automated machine learning. In
Advances in Neural Information
Processing Systems (2015).

11. Jang, J., Brumley, D., and
Venkataraman, S. Bitshred: Feature
hashing malware for scalable triage
and semantic analysis. In Proc.
of ACM Conf. on Computer and
Communications Security (2011).

12. Juarez, M. et al. A critical evaluation
of website fingerprinting attacks. In
Proc. of ACM Conf. on Computer and
Communications Security (2014).

13. Krippendorff, K. Content Analysis: An
Introduction to Its Methodology. Sage
publications (2018).

14. Krizhevsky, A., Sutskever, I., and
Hinton, G.E. Imagenet: Classification
with deep convolutional neural
networks. In Advances in Neural
Information Proccessing Systems
(NIPS), 2012.

15. Li, Z. et al. Vuldeepecker: A
deep learning-based system for
vulnerability detection. In Proc. of
Network and Distributed System
Security Symp. (2018).

16. McLaughlin, N. et al. Deep android
malware detection. In Proc. of ACM
Conf. on Data and Applications
Security and Privacy (2017).

17. Mirsky, Y., Doitshman, T., Elovici, Y.,
and Shabtai, A. Kitsune: An ensemble
of autoencoders for online network
intrusion detection. In Proc. of
Network and Distributed System
Security Symp. (2018).

18. Pendlebury, F. et al. TESSERACT:
Eliminating experimental bias in
malware classification across space
and time. In Proc. of USENIX Security
Symp. (2019)

19. Pierazzi, F., Pendlebury, F., Cortellazzi,
J., and Cavallaro, L. Intriguing
properties of adversarial ML attacks
in the problem space. In Proc. of IEEE
Symp. on Security and Privacy (2020).

20. Shin, E.C.R., Song, D., and Moazzezi, R.
Recognizing functions in binaries with
neural networks. In Proc. of USENIX
Security Symp. (2015).

21. Sommer, R. and Paxson, V. Outside
the closed world: On using machine
learning for network intrusion
detection. In Proc. of IEEE Symp. on
Security and Privacy (2010).

22. Sutskever, I., Vinyals, O., and Le,
Q.V. Sequence to sequence learning
with neural networks. In Advances
in Neural Information Processing
Systems (2014).

23. Tukey, J.W. Addison-wesley series
in behavioral science: Quantitative
methods. Exploratory Data Analysis.
Addison-Wesley (1977).

24. Wolpert, D.H. The lack of a priori
distinctions between learning
algorithms. Neural Computation
(1996).

25. Yamaguchi, F., Maier, A., Gascon, H.,
and Rieck, K. Automatic inference
of search patterns for taint-style
vulnerabilities. In Proc. of IEEE Symp.
on Security and Privacy (2015).

Daniel Arp (d.arp@tu-berlin.de),
Technische Universität Berlin, Germany.

Erwin Quiring (erwin.quiring@rub.de),
ICSI, Ruhr University Bochum, Germany.

Feargus Pendlebury (feargus@
trustypatch.es), University College
London, U.K.

Alexander Warnecke (a.warnecke@tu-
berlin.de), Technische Universität Berlin,
Germany.

Fabio Pierazzi (fabio.pierazzi@kcl.ac.uk),
King’s College London, U.K.

Christian Wressnegger (c.wressegger@
kit.edu), Karlsruhe Institute of Technology,
Germany.

Lorenzo Cavallaro (l.cavallaro@ucl.
ac.uk), University College London, U.K.

Konrad Rieck (rieck@tu-berlin.de),
Technische Universität Berlin, Germany.

This work is licensed under a Creative Commons
Attribution International 4.0 License.

