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Abstract

We give optimally fast O(log p) time (per processor) algorithms for computing round-optimal
broadcast schedules for message-passing parallel computing systems. This affirmatively answers
the questions posed in Träff (2022). The problem is to broadcast n indivisible blocks of data
from a given root processor to all other processors in a (subgraph of a) fully connected network
of p processors with fully bidirectional, one-ported communication capabilities. In this model,
n− 1+ ⌈log2 p⌉ communication rounds are required. Our new algorithms compute for each pro-
cessor in the network receive and send schedules each of size ⌈log2 p⌉ that determine uniquely
in O(1) time for each communication round the new block that the processor will receive, and
the already received block it has to send. Schedule computations are done independently per
processor without communication. The broadcast communication subgraph is the same, easily
computable, directed, ⌈log2 p⌉-regular circulant graph used in Träff (2022) and elsewhere. We
show how the schedule computations can be done in optimal time and space of O(log p), improv-
ing significantly over previous results of O(p log2 p) and O(log3 p). The schedule computation
and broadcast algorithms are simple to implement, but correctness and complexity are not ob-
vious. All algorithms have been implemented, compared to previous algorithms, and briefly
evaluated on a small 36× 32 processor-core cluster.

1 Introduction

We again consider the theoretically and practically immensely important broadcasting problem for
(subgraphs of) fully connected, one-ported message-passing systems.

The broadcasting problem considered here is the following. In a distributed memory system
with p processors, a designated root processor has n indivisible blocks of data that has to be
communicated to all other processors in the system. Each processor can in a communication
operation send an already known block to some other processor and at the same time receive a(n
unknown, new) block from some other processor. Blocks can be sent and received in unit time,
where the time unit depends on the size of the blocks which are assumed to all have (roughly) the
same size. All processors can communicate simultaneously. Since communication of blocks takes
the same time, the complexity of an algorithm for solving the broadcast problem can be stated in
terms of the number of communication rounds in which some or all processors are active that are
required for the last processor to have received all n blocks from the root. In this fully-connected,
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one-ported, fully (send-receive) bidirectional p processor system [1, 2], any broadcast algorithm
requires n−1+⌈log2 p⌉ communication rounds. This follows from the observation that broadcasting
a single block requires ⌈log2 p⌉ communication rounds in any one-ported system (since the number
of processors that know the block can at most double in a communication round). The last block
can be sent from the root after n − 1 communication rounds and ⌈log2 p⌉ final communication
rounds are required for this block to reach all other processors. A number of algorithms reach
this optimal number of communication rounds with different communication patterns in a fully
connected network [2, 3, 5, 12].

The optimal communication round algorithm given in [12] was used to implement the MPI Bcast
operation for the Message-Passing Interface (MPI) [6]. Thus a concrete, implementable solution
was given, unfortunately with a much too high schedule computation cost of O(p log2 p) sequential
steps which could be amortized through careful precomputation [7]. An advantage of the algorithm
compared to other solutions to the broadcast problem is its simple, ⌈log2 p⌉-regular circulant graph
communication pattern, where all processors throughout the broadcasting operation operate sym-
metrically. This makes it possible to use the algorithm for the all-to-all broadcast problem and
implement the difficult, irregular MPI Allgatherv collective more efficiently as was shown recently
in [9, 10]. In these papers, a substantial improvement of the schedule computation cost was given,
from super-linear to O(log3 p) time steps, thus presenting a practically much more relevant algo-
rithm. However, no adequate correctness proof was presented. The other, major challenge posed
in these papers was to get the schedule computation down to O(log p) time steps. This is opti-
mal, since at least ⌈log2 p⌉ communication rounds are required independently of n in which each
processor sends and receives different blocks.

In this paper, we prove the conjecture that correct and round optimal send and receive schedules
can be computed in O(log p) operations per processor (without any communication) by stating
and analyzing the corresponding algorithms. The new algorithms use the same circulant graph
communication pattern and give rise to the same schedules as those constructed by the previous
algorithms of Träff et al. [8–10,12]. They are readily implementable, and of great practical relevance.

2 Algorithms

Assume that n indivisible blocks of data have to be distributed, either from a single, designated
root processor, or from all processors, to all other processors in a p-processor system with processors
r, 0 ≤ r < p that each communicate with certain other processors by simultaneously sending and
receiving data blocks.

We first show how broadcast from a designated root, r = 0 (without loss of generality) and all-
to-all broadcast for any number of processors p can be done with regular, symmetric communication
patterns and explicit send and receive schedules that determine for each communication operation
by each processor which block is received and which block is sent. We use these algorithms to
formulate the correctness conditions on possible send and receive schedules.

The communication pattern is then described concretely. Based on this we present the two
separate, explicit algorithms for the computing receive and send schedules that fulfill the correctness
conditions. As will be shown, these computations can be done fast in O(log p) time per processor,
independently of all other processors and with no communication.

In all of the following, we let p denote the number of processors, and take q = ⌈log2 p⌉.
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2.1 Broadcast and all-to-all broadcast using schedules

Algorithm 1 The n-block broadcast algorithm for processor r, 0 ≤ r < p of data blocks in array
buffer. Round x numbers the first round where actual communication takes place. Blocks smaller
than 0 are neither sent nor received, and for blocks larger than n−1, block n−1 is sent and received
instead. Also blocks to the root processor are not sent. This is assumed to be taken care of by the
bidirectional Send() ∥ Recv() communication operations.

recvschedule(r, recvblock[])
sendschedule(r, sendblock[])

x← (q − (n− 1 + q) mod q) mod q ▷ Number of virtual rounds
i← 0
while i < x do ▷ Adjust schedule, x virtual rounds already done

recvblock[i]← recvblock[i]− x+ q
sendblock[i]← sendblock[i]− x+ q
i← i+ 1

end while
while i < q do

recvblock[i]← recvblock[i]− x
sendblock[i]← sendblock[i]− x
i← i+ 1

end while
i← x
while i < n+ q − 1 + x do

k ← i mod q
tk ← (r + skip[k]) mod p ▷ to- and from-processors
fk ← (r − skip[k] + p) mod p

Send(buffer[sendblock[k]], tk) ∥ Recv(buffer[recvblock[k]], fk)

sendblock[k]← sendblock[k] + q
recvblock[k]← recvblock[k] + q
i← i+ 1

end while

Generic algorithms for n block broadcast and all-to-all broadcast communication operations are
shown as Algorithm 1 and Algorithm 2 (and were also explained in [9, 10]). Both algorithms are
symmetric in the sense that all processes follow the same regular graph communication pattern
and do the same communication operations in each round. For the rooted, asymmetric broadcast
operation, this is perhaps surprising.

The idea of the algorithms is as follows. The processors communicate in rounds, starting from
some round x (to be explained shortly) and ending at n − 1 + q + x for a total of the required
n − 1 + q communication rounds. For round i, x ≤ i < n − 1 + q + x, we take k = i mod q, such
that always 0 ≤ k < q. In round i, each processor r, 0 ≤ r < p simultaneously sends a block
to a to-processor tk = (r + skip[k]) mod p and receives a different block from a from-processor
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fk = (r− skip[k] + p) mod p, determined by a skip per round skip[k], 0 ≤ k < q. The blocks that
are sent and received are numbered consecutively from 0 to n − 1 and stored in a buffer array
indexed by the block number. The block that a processor sends in round i is determined by a send
schedule array sendblock[k] and likewise the block that a processor will receive in round i by a
receive schedule array recvblock[k]. Since the blocks are thus fully determinate, no block indices
or other meta-data information is ever communicated by the algorithms. The sendblock[] and
recvblock[] arrays are computed such that blocks are effectively sent from root processor r = 0
that initially has all n blocks, and such that all n blocks are received and sent further on by all
the other processors. The starting round x is chosen such that (n − 1 + q + x) mod q = 0 and
after this last round which is a multiple of q, all processors will have received all n blocks. The
assumption that processor r = 0 is the root can be made without loss of generality. Should some
other processor r′ be root, the processors are simply renumbered by subtracting r′ (modulo p) from
the processor indices.

The broadcast algorithm is shown as Algorithm 1. Not shown in Algorithm 1 is that no
block is ever sent back to the root which already has all the blocks in the first place (so no
send operation if tk = 0), and that non-existent, negatively indexed blocks are never sent nor
received (if sendblock[k] < 0 or recvblock[k] < 0 for some k, the corresponding send and receive
communication is simply ignored). For block indices larger than the last block n − 1, block n − 1
is instead sent and received. These cases are assumed to be handled by the concurrent send-
and receive operations as indicated by Send() ∥ Recv(). The receive and send block schedules
recvblock[] and sendblock[] are computed by the calls to recvschedule() and sendschedule()
functions to be derived in Section 2.3 and Section 2.4.

For the algorithm to be correct (in the sense of broadcasting all blocks from processor r = 0 to
all other processors), the following conditions must hold:

1. The block that is received in round i with k = i mod q by some processor r must be the block
that is sent by the from-processor fk

r , recvblock[k]r = sendblock[k]fk
r
. Equivalently,

2. the block that processor r sends in round i with k = i mod q must be the block that the
to-processor tkr will receive, sendblock[k]r = recvblock[k]tkr .

3. Over any q successive rounds, each processor must receive q different blocks. More concretely,⋃q−1
k=0 recvblock[k] = ({−1,−2, . . . ,−q} \ {b− q})∪ {b} where b, 0 ≤ b < q is the first actual,

non-negative block received by the processor in one of the first q rounds. This block b is called
the baseblock for processor r.

4. The block that a processor sends in round i with k = i mod q must be a block that has been
received in some previous round, so either sendblock[k] = recvblock[j] for some j, 0 ≤ j < k,
or sendblock[k] = b − q where b ≥ 0 is a first actual, non-negative block received by the
processor.

The last correctness condition implies that sendblock[0] = b− q for each processor. With receive
and send schedules fulfilling these four conditions, it is easy to see that the broadcast algorithm in
Algorithm 1 correctly broadcasts the n blocks over the p processors.

Theorem 1. Let K,K > 0 be a number of communication phases each consisting of q communica-
tion rounds for a total of Kq rounds. Assume that in each round i, 0 ≤ i < Kq, each processor r, 0 ≤
r < p receives a block recvblock[i mod q] + ⌊i/q⌋q and sends a block sendblock[i mod q] + ⌊i/q⌋q
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(provided these blocks are non-negative). By the end of the Kq rounds, processor r will have re-
ceived all blocks {0, 1, . . . , (K − 1)q − 1} ∪ {b+ (K − 1)q} where b is the first (non-negative) block
received by processor r.

Proof. The proof is by induction on the number of phases. For K = 1, there are q rounds i =
0, 1, . . . , q − 1 over which each processor will receive its non-negative baseblock b; all other receive
blocks are negative (Correctness Condition (3)). For K > 1, in the last phase K−1, each processor
will receive the blocks ({(K−2)q, (K−2)q+1, . . . , (K−2)q+q−1}\{b+(K−2)q})∪{b+(K−1)q}
since the set

⋃q−1
k=0 recvblock[k] contains q different block indices, one of which is positive. The

block b+(K − 2)q has been received in phase K − 2 by the induction hypothesis, in its place block
b+(K−1)q is received. Therefore, at the end of phase K−1 using the induction hypothesis, blocks

{0, 1, . . . , (K − 2)q− 1} ∪ {(K − 2)q, (K − 2)q+ 1, . . . , (K − 2)q+ q− 1} = {0, 1, . . . , (K − 1)q− 1}

plus the block b+(K− 1)q have been received, as claimed. By Correctness Condition (4), no block
is sent that has not been received in a previous round or phase.

In order to broadcast a given number of blocks n in the optimal number of rounds n−1+ q, we
use the smallest number of phases K such that Kq ≥ n− 1+ q, and introduce a number of dummy
blocks x = Kq− (n− 1 + q) that do not have to be broadcast. In the K phases, all processors will
have received n+x−1 blocks 0, 1, . . . , n+x−2 plus one larger block. We perform x initial, virtual
rounds with no communication to handle the x dummy blocks, and broadcast the real blocks in
the following n − 1 + q rounds. This is handled by simply subtracting x from all computed block
indices; negative blocks are neither received nor sent. Blocks with index larger than n − 1 in the
last phase are capped to n− 1.

The symmetric communication pattern where each processor (node) r has incoming (receive)
edges (fk

r , r) and outgoing (send) edges (r, tkr ) is a circulant graph with skips (jumps) skip[k], k =
0, 1, . . . , q − 1. The q skips for the circulant graph are explained and computed in Section 2.2.

The explicit send and receive schedules can be used for all-to-all broadcast as shown as Algo-
rithm 2. In this problem, each processor has n blocks of data to be broadcast to all other processors.
The n blocks for each processor r are as for the broadcast algorithm assumed to be roughly of the
same size, but blocks from different processors may be of different size as long as the same number
of n blocks are to be broadcast from each processor only. The algorithm can therefore handle the
irregular case where different processors have different amounts of data to be broadcast as long as
each divides its data into n roughly equal-sized blocks. Due to the fully symmetric, circulant graph
communication pattern, this can be done by doing the p broadcasts for all p processors r, 0 ≤ r < p
simultaneously, in each communication step combining blocks for all processors into a single mes-
sage. The blocks for processor j are assumed to be stored in the buffer array buffers[j][] indexed
by block numbers from 0 to n− 1. Initially, processor r contributes its n blocks from buffers[r][].
The task is to fill all other blocks buffers[j][] for j ̸= r. Each processor r computes a receive
schedule recvblocks[j] for each other processor as root processor j, 0 ≤ j < p which is the receive
schedule for r′ = (r− j + p) mod p. Note that this indexing is slightly different from the algorithm
as stated in [9,10]. Before each communication operation, blocks for all processors j, 0 ≤ j < p are
packed consecutively into a temporary buffer tempin, except the block for the to-processor tk for the
communication round. This processor is the root for that block, and already has the corresponding
block. After communication, blocks from all processors are unpacked from the temporary buffer
tempout into the buffers[j][] arrays for all j, 0 ≤ j < p except for j = r: A processor does not
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Algorithm 2 The n-block all-to-all broadcast algorithm for processor r, 0 ≤ r < p for data in the
arrays buffers[j], 0 ≤ j < p. The count x is the number of empty first rounds. Blocks smaller than
0 are neither sent nor received, and for blocks larger than n − 1, block n − 1 is sent and received
instead.
for j = 0, 1, . . . , p− 1 do

r′ ← (r − j + p) mod p
recvschedule(r′, recvblocks[j][])

end for
for j = 0, 1, . . . , p− 1 do

for k = 0, 1, . . . , q − 1 do
fk ← (j − skip[k] + p) mod p
sendblocks[j][k]← recvblocks[fk][k]

end for
end for

x← (q − (n− 1 + q) mod q) mod q ▷ Number of virtual rounds
for j = 0, 1, . . . , p− 1 do

i← 0
while i < x do ▷ Adjust schedules, x virtual rounds already done

recvblocks[j][i]← recvblocks[j][i]− x+ q
sendblocks[j][i]← sendblocks[j][i]− x+ q
i← i+ 1

end while
while i < q do

recvblocks[j][i]← recvblocks[j][i]− x
sendblocks[j][i]← sendblocks[j][i]− x
i← i+ 1

end while
end for
i← x
while i < n+ q − 1 + x do

k ← i mod q
tk, fk ← (r + skip[k]) mod p, (r − skip[k] + p) mod p ▷ to- and from-processors

j′ ← 0
for j = 0, 1, . . . , p− 1 do ▷ Pack

if j ̸= tk then tempin[j′], j′ ← buffers[j][sendblocks[j][k]], j′ + 1
end if
sendblocks[j][k]← sendblocks[j][k] + q

end for
Send(tempin, tk) ∥ Recv(tempout, fk)
j′ ← 0
for j = 0, 1, . . . , p− 1 do ▷ Unpack

if j ̸= r then buffers[j][recvblocks[j][k]], j′ ← tempout[j′], j′ + 1
end if
recvblocks[j][k]← recvblocks[j][k] + q

end for
i← i+ 1

end while
6



receive blocks that it already has. As in the broadcast algorithm in Algorithm 1, it is assumed that
the packing and unpacking will not pack for negative block indices, and that indices larger than
n − 1 are taken as n − 1. Also packing and unpacking blocks for processors not contributing any
data (as can be the case for highly irregular applications of all-to-all broadcast) shall be entirely
skipped (not shown in Algorithm 2), so that the total time spent in packing and unpacking per
processor over all communication rounds is bounded by the total size of all buffers[j][], j ̸= tk and
buffers[j][], j ̸= r.

2.2 The communication pattern

Algorithm 3 Computing the skips (jumps) for a p-processor circulant graph (q = ⌈log2 p⌉).
k ← q
skip[k]← p
while k > 0 do

k ← k − 1
skip[k]← skip[k + 1]− skip[k + 1]/2

end while

The skips for the circulant graph communication pattern are computed by repeated halving
of p as shown as Algorithm 3. For convenience, we take skip[q] = p. The algorithm iterates
downwards from k = q− 1, in each iteration dividing the previous skip[k+1] by two and rounding
up, here expressed by integer floor-division. It can easily be seen (by induction) that q = ⌈log2 p⌉
halving steps are necessary and sufficient to get skip[0] = 1 (the induction hypothesis being that
for 2q−1 < p ≤ 2q, q halving steps are required). We make a number of observations that are
necessary for developing the receive and send schedules in the following.

Observation 1. For each k, 0 ≤ k < q it holds that skip[k] + skip[k] ≥ skip[k + 1]

This follows directly from the halving scheme of Algorithm 3. If skip[k+1] is even, the halving
is exact and skip[k] + skip[k] = skip[k+ 1], and otherwise skip[k] + skip[k] = skip[k+ 1] + 1 >
skip[k + 1].

Observation 2. For any p, there are at most two k, k > 1 such that skip[k − 2] + skip[k − 1] =
skip[k].

For skip[2] = 3, Algorithm 3 gives skip[1] = 2 and skip[0] = 1 for which the observation holds.
For skip[3] = 5, Algorithm 3 gives skip[2] = 3 and skip[1] = 2 for which the observation holds.
Any p for which skip[2] = 3 or skip[3] = 5 will have this property, and none other. We see that
for all p, skip[0] = 1 and skip[1] = 2, and that skip[2] ≥ 3, skip[3] ≥ 5 and skip[4] ≥ 9, and
therefore skip[k − 2] + skip[k − 1] < skip[k] for k > 3 for all p.

Observation 3. For some p and k > 0, there is an r, r < skip[k] with r + skip[k] = skip[k + 1].

If skip[k + 1] is odd, r = skip[k + 1]− skip[k] fulfills the observation.

Observation 4. For each k, 0 ≤ k < q it holds that 1 +
∑k−1

i=0 skip[i] ≥ skip[k]. For each

k, 0 < k < q, it holds that
∑k−2

i=0 skip[i] < skip[k].
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The claims follow easily by induction with the previous observations as induction bases. Namely,
1 +

∑k−1
i=0 skip[i] + skip[k] ≥ skip[k] + skip[k] ≥ skip[k + 1], and

∑k−2
i=0 skip[i] + skip[k − 1] <

skip[k − 1] + skip[k] ≤ skip[k + 1].

Observation 5. If skip[e] + skip[k] < r for some e, 0 < e < q and k, k < e, then also skip[e −
i] + skip[k + i] < r for i = 0, 1, . . . , e− k.

Lemma 1. For any r, 0 ≤ r < p there is a (possibly empty) sequence [e0, e1, . . . , ej−1] of j, j < q,

different skip indices such that r =
∑j−1

i=0 skip[ei].

We call a (possibly empty) sequence [e0, e1, . . . , ej−1] for which r =
∑j−1

i=0 skip[ei] and where
e0 < e1 < . . . < ej−1 a skip sequence for r.

Proof. The proof is by induction on k. When r = 0 the claim holds for the empty sequence.
Assuming the claim holds for for any r, 0 ≤ r < skip[k], we show that it holds for 0 ≤ r <
skip[k+1]. If already 0 ≤ r < skip[k] the claim holds by assumption. If skip[k] ≤ r < skip[k+1],
then 0 ≤ r − skip[k] < skip[k + 1] − skip[k] ≤ skip[k] by Observation 1. By the induction
hypothesis, there is a sequence of different skips not including skip[k] and summing to r−skip[k],
and skip[k] can be appended to this sequence to sum to r.

The lemma indicates how to recursively compute in O(q) steps a specific, canonical skip sequence
for any r, 0 ≤ r < p. By Observation 2 and Observation 3, for some p there may be more than one
skip sequence for some r; the decomposition of r into a sum of different skips is not unique for all
p (actually, the decomposition is unique only when p is a power of 2). A canonical skip sequence
will contain skip[k] and not skip[k − 2] and skip[k − 1] if skip[k − 2] + skip[k − 1] = skip[k]
(Observation 2), and skip[k + 1] instead of skip[k] if r + skip[k] = skip[k + 1] (Observation 3).

A non-empty skip sequence [e0, e1, . . . , ej−1] for r defines a path from processor 0 to processor
r > 0 as follows. From 0 to skip[e0] through edge (0, skip[e0]), from skip[e0] to (skip[e0] +
skip[e1]) mod p through edge (skip[e0], (skip[e0] + skip[e1]) mod p) and so on. The edges on the
path to r are ((

∑i−1
j=0 skip[ei]) mod p), (

∑i
j=0 skip[ei]) mod p) for i = 0, . . . , j − 1. Note that the

skips along the path strictly increase. We will use the terms skip sequence and path interchangeably.

Algorithm 4 Finding the baseblock for processor r, 0 ≤ r < p.

1: function baseblock(r)
2: k ← q
3: repeat
4: k ← k − 1
5: if skip[k] = r then return k
6: else if skip[k] < r then r ← r − skip[k]
7: end if
8: until k = 0
9: return q ▷ Only processor r = 0 will return q as baseblock

10: end function

The canonical skip sequence for an r, 0 ≤ r < p is implicitly computed iteratively by the
baseblock() function of Algorithm 4 which explicitly returns the first (smallest) skip index in the
canonical skip sequence. This index is called the baseblock for r and is of vital importance for the
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broadcast schedules. For convenience, we define q to be the baseblock of r = 0 for which the skip
sequence is otherwise empty; for other r > 0 the baseblock b satisfies 0 ≤ b < q and is a legal skip
index.

If we let the root processor r = 0 send out blocks one after the other (that is, sendblock[k] =
k, k = 0, 1, . . . , q − 1) on the edges (0, skip[k]), the canonical skip sequence for any other r, r > 0
gives a path through which the baseblock b for r can be sent from the root to processor r. Processor
r will receive its baseblock in communication round e where e is the last, largest skip index in the
skip sequence for r, therefore recvblock[e]r = b. In the broadcast schedules that will be used
in Algorithm 1 and Algorithm 2, the baseblock b for each processor r is therefore first real, non-
negatively indexed block that the processor receives; in each of the following rounds, r will be be
receiving new blocks different from the baseblock.

2.3 The receive schedule

Algorithm 5 Computing receive blocks for processor r, p ≤ r < 2p by depth-first search with
removal of accepted blocks.

1: function DFS-blocks(r, r′, s, e, k, recvblock[])
2: if r′ ≤ r − skip[k + 1] then
3: while e ̸= −1 do
4: if r′ + skip[e] ≤ r − skip[k] then ▷ Index e admissible for k
5: k ← DFSschedule(r, r′ + skip[e], s, e, k, recvblock[])
6: ▷ Even if k has changed, admissibility r′ + skip[e] ≤ r − skip[k] still holds
7: if r′ ≤ r − skip[k + 1] ∧ s > r′ + skip[e] then ▷ Canonical path found
8: s← r′ + skip[e]
9: recvblock[k], k ← e, k + 1 ▷ Accept e, next k

10: next[prev[e]], prev[next[e]]← next[e], prev[e] ▷ Remove e by unlinking
11: end if
12: end if
13: e← next[e]
14: end while
15: end if
16: return k
17: end function

We now show how to compute the receive schedule recvblock[k], k = 0, . . . q−1 for any processor
r, 0 ≤ r < p in O(q) operations. More precisely, we compute for any given r the q blocks that r
will receive in the q successive communication rounds k = 0, 1, . . . , q − 1 when processor 0 is the
root processor. The basis for the receive schedule computation is to find q paths from the root to
r in the form of canonical skip sequences to intermediate processors r′, r′ < r. For q skips, there
are obviously 2q ≥ p (but < 2p) canonical skip sequences, so exploring them all (for instance, by
depth-first search) will give a linear time (or worse) and not an O(log p) time algorithm.

Instead, a greedy search through the skip sequences and paths is done by a special backtracking
algorithm. The complexity of the computation is reduced by removing the first (smallest) skip
index, corresponding to the baseblock for r′, each time a good canonical skip sequence to some
r′ < r has been found. The first skip index of this kth canonical sequence shall be taken as the
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block sent by the root that eventually arrives at processor r in the kth round, k = 0, 1, . . . , q − 1.
This will guarantee that there are indeed q different blocks among recvblock[k] as required by
Correctness Condition (3).

More concretely, the backtrack search finds a canonical skip sequence summing to the r′ with
r′ ≤ r − skip[k] that is closest to r − skip[k] using only skips that have not been removed from
paths closest to r−skip[j] for j < k already found. The processor from which r will receive its kth
block is indeed r − skip[k], and therefore it must hold that r′ ≤ r − skip[k]. This depth-first like
search with removal is shown as Algorithm 5. From this r′, we will show that there is a canonical
skip sequence to r consisting of only some skips j for 0 ≤ j < k.

The DFS-blocks() function assumes that the (remaining) skip indices are in a doubly linked
list in decreasing order. Thus, for skip index e, next[e] is the next, smaller, remaining skip index.
This list is used to try the skips in decreasing order as in Algorithm 4. An index is removed by
linking it out of the doubly linked list and can easily be done in O(1) time as shown in Algorithm 5.
For each k, k ≥ 0, the function recursively and greedily searches for a largest r′ with r′ ≤ r−skip[k]
similarly to the baseblock computation in Algorithm 4. The last (smallest) skip index e for which
this is the case will be taken as the kth receive block recvblock[k] and removed from the list of
skip indices. The corresponding recursive call terminates and the algorithm backtracks to find the
receive block for k+1. The depth first search greedily increases a found r′ by the largest remaining
skip[e] for which r′ + skip[e] ≤ r − skip[k]. In order to ensure that the canonical path from r′ to
r consists of only skip indices j < k, e is accepted only if also r′ ≤ r−skip[k+1]. This means that
even when r′+skip[e] is accepted as the processor closest to r, there is still a path from r′ to r via
skip[k+1]. After the recursive call, skip index e is accepted if the path r′+ skip[e] is not equal to
the length of last found path closest to r−skip[k]. This is necessary to ensure that the path found
is canonical; according to Observation 3 and Observation 2 there may be more than one path to
r′ + skip[e] and the canonical one has to be chosen. The smallest skip index e extending the path
to r′ fulfilling the conditions is the receive block for round k and is stored in recvblock[k].

Algorithm 6 Computing the receive schedule for processor r, 0 ≤ r < p.

procedure recvschedule(r, recvblock[])
▷ Build doubly linked list to scan skips in decreasing order

for e = 0, . . . , q do
next[e], prev[e]← e− 1, e+ 1

end for
prev[q]← −1
next[− 1], prev[− 1]← q, 0

b← baseblock(r)
next[prev[b]], prev[next[b]]← next[b], prev[b] ▷ Remove baseblock index b by unlinking
DFS-blocks(p+ r, 0, p+ p, q, 0, recvblock[]) ▷ Ensure q blocks
for k = 0, . . . , q − 1 do

if recvblock[k] = q then recvblock[k]← b
else recvblock[k]← recvblock[k]− q
end if

end for
end procedure
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The DFS-blocks() algorithm is now used to compute the receive schedule for a processor
r, 0 ≤ r < p as shown in Algorithm 6. In order to avoid problems with r − skip[k] becoming
negative, we instead compute the sequence of closest r′ for (virtual) processor p+ r. The algorithm
uses the q + 1 skips computed by Algorithm 3 (including skip[q] = p) and searches for canonical
paths to p + r. In order to exclude the canonical path leading to r itself with baseblock b (as
computed by Algorithm 4), b is removed from the list of skip indices before calling DFS-blocks.
For the initial call to the recursive procedure, there is no previous path, so both r′ = 0 and s = 0.
The search starts from the largest skip index e with k = 0.

Called this way, upon return the DFS-blocks() function obviously returns q different, positive
skip indices in recvblock[k], 0 ≤ k < q. In Algorithm 1 and Algorithm 2, in the first q communica-
tion rounds where k = 0, 1, . . . , q− 1, only the (positive) baseblocks will be received by the proces-
sors, while all other blocks are blocks that will be received in the next q, q + 1, . . . , 2q − 1 rounds.
Therefore, q is subtracted from the block indices, except for baseblock q in some recvblock[k].
This block corresponds to the round k where p+0 = skip[q] is the processor closest to r− skip[k]
(not using the skip indices removed before round k), so this k is the round where r will receive its
baseblock from the root. For this k, recvblock[k] is set to b.

Proposition 1. When called as DFS-blocks(p + r, 0, p + p, q, 0, recvblock[]) and a list of skip
indices in decreasing order that excludes the baseblock b of r, Algorithm 5 computes q different
blocks {0, 1, . . . , q} \ {b} in recvblock[] in O(log p) operations.

Proof. We first prove that a simplified version of Algorithm 5 fulfills the claim and performs q
recursive calls. Each recursive call is with a new r′ + skip[e] that is closer to r − skip[k]. To
this end, we say that a skip index e is admissible for k if r′ + skip[e] ≤ r − skip[k], and for now
ignore the further conditions r′ ≤ r − skip[k + 1] and s > r′ + skip[e] for accepting a skip index
to the canonical skip sequence. These conditions are necessary to ensure that a computed skip
sequence is indeed canonical as defined by Lemma 1. In the simplified case, each e is removed
after the recursive call, and therefore never considered again (in the while loop of some previous
recursive call). Each e becomes admissible once for some k (since the DFS-blocks() is called with
processor p+ r and skip[k] ≤ p), therefore the number of recursive calls is q. This claim is justified
in Lemma 2.

In the non-simplified version of the algorithm, throughout the recursive calls, s is the sum of
the skips on the most recently accepted path. If an admissible skip index e is not accepted because
s = r′ + skip[e] (which could be the case if skip[k − 2] + skip[k − 1] = skip[k], Observation 2, or
r′ + skip[k] = skip[k + 1], Observation 3) another recursive call on e is necessary on some other
path. Indeed, e will be admissible in the parent recursive call. In the same way, a recursive call
that is terminated because r′ > r− skip[k+1] will have to be repeated. This can happen at most
once for each skip index, since also here e will be admissible in the parent recursive call.

Algorithm 5 therefore performs at most 2q recursive calls which can be done O(log p) operations
since there are at most q additional while-loop iterations over all calls where skip indices are not
admissible.

In order to ensure that one recursive call per skip index e suffices (in the simplified version of
Algorithm 5, two in the full version), it needs to be shown that if skip index e is admissible for k
before the recursive call, it has not been removed and will still be admissible for a possibly larger
k′ upon return.
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Lemma 2. If skip index e is admissible for k and therefore leading to a recursive DFS-blocks()
call on r′+ skip[e], index e will be admissible for the k′ ≥ k returned by the call. By the end of the
while-loop of the call, all skip indices e, . . . , 0 will have been removed, and k′ = e+ 1.

Proof. The proof is by structural induction on the recursive calls to DFS-blocks(). Consider
the first recursive call that does not cause a further recursive call (which costs e − 1 unsuccessful
admissibility checks in the loop of the call). By return from this call, k is unchanged and so the skip
index e remains admissible since it still holds that r′+skip[e] ≤ r−skip[k]. Therefore, index e will
be taken as recvblock[k] and k incremented. Admissibility means that skip[e] + skip[k] ≤ r− r′.
By Observation 5, all smaller e in the remainder of the while-loop will also be admissible, if
they cause no further recursive calls. However, if e > 3, there will be a chain of recursive calls
r′ +

∑e−1
i=0 skip[i] < r − skip[1] each of which will be admissible and cause removal of the skip

indices i in constant time. Thus, by the end of the while-loop, all skip indices 0, 1, . . . , e will have
been removed, and k′ = e+ 1.

Consider now a recursive call on an admissible skip index e that causes further recursive calls,
and let e′, e > e′ be the skip index of the first such call. Before the recursive call, r′ + skip[e] +
skip[e′] ≤ r−skip[k]. By the induction hypothesis, upon return from this call e′ will be admissible
and removed and return with k′ = e′+1. As e′ was admissible, r′+skip[e]+skip[e′] ≤ r−skip[e′],
and therefore r′ + skip[e] ≤ r − skip[′e] − skip[e′] ≤ r − skip[e′ + 1] since by Observation 1
skip[e′] + skip[e′] ≥ skip[e′ + 1]. Therefore e is admissible for e′ + 1 upon return from the call on
(r′ + skip[e]) + skip[e′] and will be deleted from the list of skip indices. All e′′ with e > e′′ > e′,
skip[e′′] will by Observation 5 likewise be admissible (skip[e− i]+skip[e′+ i] ≤ skip[e]+skip[e′]
for i = 0, 1, . . . e − e′) and removed. Therefore, at the end of the while-loop at the call from
r′ + skip[e] it will hold that k′ = e+ 1.

For the correctness of the receive schedules computed by Algorithm 6, we define for processor r
that sendblock[k]r = recvblock[k]tkr where as in Algorithm 1, tkr = r+ skip[k]) mod p. With this
definition, the first two correctness conditions from Section 2.1 are obviously satisfied. It is also
clear from the construction that recvblock[] = {−1,−2, . . . ,−q} \ {b− q} ∪ {b} which means that
all q different blocks can be received over q communication rounds. It needs to be shown that a
sent block sendblock[k] is either the baseblock b or a block that has been received in some earlier
round j, 0 ≤ j < k.

Proposition 2. The receive schedule blocks computed by Algorithm 5 for any processor r fulfill
the correctness condition that either sendblock[k] = recvblock[j] for some j, 0 ≤ j < k, or
sendblock[k] = b− q where b ≥ 0 is the baseblock for processor r, b = baseblock(r).

Proof. We prove that if recvblock[k] ̸= b, then recvblock[k]r = recvblock[j]r−skip[k] for some
j, 0 ≤ j < k.

We summarize the discussion in the following main theorem that states how to compute the
receive schedules for Algorithm 1 and Algorithm 2.

Theorem 2. A correct receive schedule fulfilling the four correctness conditions from Section 2.1
for a p-processor circulant graph with skips computed by Algorithm 3 can be computed in O(log p)
time steps for each processor r, 0 ≤ r < p. The receive schedule computation from in Algorithm 6
can readily be implemented.
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Table 1: A send schedule for a power-of-two number of processors, p = 16, q = log2 p = 4. The
table shows for each processor r, 0 ≤ r < p which block to send (to processor (r + skip[k]) mod p)
in round k, k = 0, 1, 2, 3.

r: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Baseblock b before: 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

Sent in round k = 0: 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
Sent in round k = 1: 4 4 1 1 2 2 1 1 3 3 1 1 2 2 2 1
Sent in round k = 2: 4 4 4 4 2 2 2 2 3 3 3 3 2 2 2 2
Sent in round k = 3: 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3

2.4 The send schedule

The straightforward computation of send schedules from the receive schedules by for processor r
setting sendblock[k]r = recvblock[k]tkr with each recvblock[k] computed by Algorithm 6 will

take O(log2 p) operations. To reach O(log p) operations, a different approach is required. For this
structural approach, which will be described in the following, it is instructive to first consider the
case where p is a power of two, p = 2q, for which it is well-known how to compute send (and receive)
schedules in O(q) operations [4].

An example with p = 16 processors is given in Table 1. We assume that each of the p processors
has already received its baseblock b, 0 ≤ b < q (with as before q = ⌈log2 p⌉). The baseblock b for
processor r, 0 ≤ r < p is the largest b such that r mod 2b = 0. This is also the baseblock that
will be computed by calling baseblock(r) with skip[k] = 2k, k = 0, 1, . . . log2 p (as will computed
by Algorithm 3 for the power-of-two case). The send schedule will be used to ensure that after
q rounds, each processor has received all the q different baseblocks. The (unique) send schedule
that ensures this is for processor r to send its own baseblock to processor (r + skip[k]) mod p) in
rounds k = 0, . . . , b; in rounds k = b + 1, . . . , q − 1 processor r sends the largest block received so
far. Taking r as a binary number, the block corresponding to the next set bit in r ∨ p (here ∨
denotes bitwise-or) after bit k − 1 is the block that is sent in round k (in round k = 0 the block
numbered by the first set (least significant) bit is sent).

Another way to arrive at the same pattern is to start from round k = q−1 and work downwards
to k = 0. Let initially r′ = r, and let c, the block from the previous round. be q (in the example in
Table 1, q = 4). In round k, if r′ < skip[k], send c from the previous round, otherwise (r′ ≥ skip[k])
send c = k and let for the next lower round r′ be r′ − skip[k].

The send schedule computation for arbitrary p (not only powers-of-two) approximates this
behavior (and will be exactly identical, when p is a power of two). In the power-of-two case, it will
always hold that 0 ≤ r′ < skip[k+1]. In round k, processor r sends to processor (r+skip[k]) mod p,
which for r′ < skip[k] is a processor with skip[k] ≤ r′ < skip[k+1], and for r′ ≥ skip[k] a processor
with r′ outside this range. The assumption is that such processors have not received block c = k.

The send schedule computation will maintain for processor r when computing its send schedule
a virtual processor rank r′ and and upper bound e with 0 ≤ r′ < e. Starting from round k = q− 1,
e is initially skip[q] = p and r′ = r. In each round, the range of processors r′ is divided into lower
part 0 ≤ r′ < skip[k] and upper part skip[k] ≤ r′ < e (which may be empty, if e ≤ skip[k]).
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Algorithm 7 Computing the send schedule for processors r = 0 (root) and r, 0 ≤ r < p.

procedure Sendschedule(r, sendblock[])
if r = 0 then

for k = 0, . . . , q − 1 do sendblock[k]← k
end for

else
b← baseblock(r)
r′, c, e← r, b, p
for k = q − 1, . . . , 1 do ▷ Obvious invariant: r′ < e

if r′ < skip[k] then
. . . ▷ Actions for lower r′ here (shown as Algorithm 8):
if e > skip[k] then e← skip[k]
end if

else ▷ Here r′ ≥ skip[k]
c← k − q
. . . ▷ Actions for upper r′ here (shown as Algorithm 9):
r′, e← r′ − skip[k], e− skip[k]

end if
end for
sendblock[0]← b− q

end if
end procedure

To maintain the invariant for the next round k − 1, if r′ is in the upper part, both r′ and e are
decreased by skip[k] at the end of round k.

The block to be sent in round k is denoted by c and is initially for r′ in the lower part the
baseblock b for processor r, and for r′ in the upper part c = k. This outline is shown as Algorithm 7.

If in round k, the r′ for processor r is in the lower part, r′ < skip[k], the processors for which
r′+ skip[k] < e have not yet received block c, so c is to be sent if r′+ skip[k] < e. Otherwise, it is
not known which block processor (r+skip[k]) mod p is missing, so in that case the receive block for
round k for processor (r + skip[k]) mod p is taken as the block to send. This is called a violation,
and if there is more than a constant number of such violations for some processor r, a logarithmic
number of operations in total cannot be guaranteed. The lower part is shown as Algorithm 8. The
algorithm includes some observations that can be made for the case where Observation 2 holds.
Also, if e is very small, e ≤ skip[k− 1], processor (r+ skip[k]) mod p will not have received c and
this block can therefore be sent.

If instead r′ is in the upper part for round k, then only the processor with r′ = skip[k] may
have to use the receive block for processor (r + skip[k]) mod p as the block to send. The upper
part is shown as Algorithm 9.

Proposition 3. Algorithm 7 computes for any r, 0 ≤ r < p a send schedule in O(log p) operations.

Proof. The loop performs q − 1 iterations. Iterations that are not violations take constant time.
We will show that there are only a constant number of violations of the form (1-3), namely at most
four (4). Each violation takes O(log p) steps by the receive schedule Proposition 1. Therefore, the
send schedule computation takes Θ(log p) steps.
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Algorithm 8 The send schedule computation for iteration k for r′ < skip[k] (lower part).

if e < skip[k − 1] ∨ (k = 1 ∧ b > 0) then sendblock[k]← c
else if r′ = 0 ∧ k = 2 then

if e = 2 ∧ skip[2] = 3 then
recvschedule((r + skip[k]) mod p, block[]) ▷ Violation (1)
sendblock[k]← block[k]

else sendblock[k]← c
end if

else if r′ = 0 ∧ skip[k] = 5 then ▷ Implies k = 3
if e = 3 then

recvschedule((r + skip[k]) mod p, block[]) ▷ Violation (1)
sendblock[k]← block[k]

else sendblock[k]← c
end if

else if r′ + skip[k] ≥ e then
recvschedule((r + skip[k]) mod p, block[]) ▷ Violation (2)
sendblock[k]← block[k]

else sendblock[k]← c
end if
if e > skip[k] then e← skip[k]
end if

Algorithm 9 The send schedule computation for iteration k for r′ ≥ skip[k] (upper part).

if k = 1 ∨ r′ > skip[k] ∨ e− skip[k] < skip[k − 1] then sendblock[k]← c
else if k = 2 then

if skip[2] = 3 ∧ e = 5 then ▷ Violation (1)
recvschedule((r + skip[k]) mod p, block[])
sendblock[k]← block[k]

else sendblock[k]← c
end if

else if skip[k] = 5 then ▷ Implies k = 3
if e = 8 then ▷ Violation (1)

recvschedule((r + skip[k]) mod p, block[])
sendblock[k]← block[k]

else sendblock[k]← c
end if

else if r′ + skip[k] > e then ▷ Violation (3)
recvschedule((r + skip[k]) mod p, block[])
sendblock[k]← block[k]

else sendblock[k]← c
end if
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Table 2: Receive and send schedule for a non-power-of-two number of processors, p = 17, q =
⌈log2 p⌉ = 5. The table shows for each processor r, 0 ≤ r < p the baseblock b and the recvblock[k]
and sendblock[k] schedules for k = 0, 1, 2, 3, 4.

r: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
b: 5 0 1 2 0 3 0 1 2 4 0 1 2 0 3 0 1

recvblock[0]: -4 0 -5 -4 -3 -5 -2 -5 -4 -3 -1 -5 -4 -3 -5 -2 -5
recvblock[1]: -5 -4 1 -5 -4 -3 -3 -2 -5 -4 -3 -1 -5 -4 -3 -3 -2
recvblock[2]: -2 -2 -2 2 0 -4 -4 -3 -2 -2 -4 -3 -1 -1 -4 -4 -3
recvblock[3]: -1 -3 -3 -2 -2 3 0 1 2 -5 -2 -2 -2 -2 -1 -1 -1
recvblock[4]: -3 -1 -1 -1 -1 -1 -1 -1 -1 4 0 1 2 0 3 0 1

sendblock[0]: 0 -5 -4 -3 -5 -2 -5 -4 -3 -1 -5 -4 -3 -5 -2 -5 -4
sendblock[1]: 1 -5 -4 -3 -3 -2 -5 -4 -3 -1 -5 -4 -3 -3 -2 -5 -4
sendblock[2]: 2 0 -4 -4 -3 -2 -2 -4 -3 -1 -1 -4 -4 -3 -2 -2 -2
sendblock[3]: 3 0 1 2 -5 -2 -2 -2 -2 -1 -1 -1 -1 -3 -3 -2 -2
sendblock[4]: 4 0 1 2 0 3 0 1 -3 -1 -1 -1 -1 -1 -1 -1 -1

All violations (1) and (3) for the upper part case where r′ ≥ skip[k] for some iteration k can
happen at most once, since for all such possible violations it holds that r′ = skip[k] by the first
condition (indeed, sendblock[k] = c when r′ > skip[k]). After the end of an iteration where such
a violation (1) or (3) could have happened, r′ = 0 for all remaining iterations, thus it will never
again hold that r′ ≥ skip[k].

We therefore only have to consider violations (1) and (2) for the lower part case where r′ ≤
skip[k]. Violations (1) can happen only in the two iterations k = 2 and k = 3 (and here only for
r′ = 0). Violation (2) can happen for k = 1, and k > 2. This violation happens if r′+skip[k] ≥ e. If
r′ < skip[k−1] this violation can possibly happen again at iteration k−1, if also r′+skip[k−1] ≥ e′

where e′ is the upper bound for iteration k − 1. However, for e > skip[k], the upper bound e′ is
skip[k], so r′ + skip[k − 1] > skip[k] can happen only for r′ = skip[k − 1] (which is then taken
care of in the upper part for iteration k − 1). Therefore, only the cases where e ≤ skip[k] have to
be considered.

The possibility that a violation of type (2) happens in the iteration k − 2 (r′ is in the lower
part, then in the upper part, then in the lower part again) can be excluded. In iteration k − 2 it
would then have to hold that r′ − skip[k − 1] ≥ e − skip[k − 1] which is per the invariant that
r′ < e is not possible.

Finite, exhaustive proof for p up to some millions shows that the number of violations is indeed
at most 4 (but sometimes 3), see the discussion in Section 3. Table 2 shows receive and send
schedules as computed by the algorithms for p = 17 processors (not a power of two). There are, for
instance, send schedule violations in the sense of Algorithm 8 in round k = 2 for processor r = 3
and in round k = 3 for processor r = 8.

Proposition 4. The send schedule computed by Algorithm 7 is correct.

Proof. It will be shown that sendblock[k]r = recvblock[k]r+skip[k] for k = 0, 1, . . . , q − 1. The
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Table 3: Timings of old O(log3 p) and new O(log p) time step receive and send schedule algorithms
for different ranges of processors p. Receive and send schedules are computed for all processors
0 ≤ r < p for all p in the given ranges. The expected running times are thus bounded by O(p log3 p)
(old) and O(p log p) (new) time, respectively. Times are in seconds and measured with the clock()
function. We also estimate the average time spent per processor for computing its send and receive
schedules of ⌈log2 p⌉ entries. This is done by measuring for each p the total time for the schedule
computation, dividing by p and averaging over all p in the range. These times are in micro seconds.

Range of processors p Total Time (seconds) Per processor (µseconds)
O(p log3 p) O(p log p) O(log3 p) O(log p)

[1, 17 000] 443.8 50.0 2.769 0.334
[16 000, 33 000] 1567.2 152.8 3.763 0.370
[64, 000 73 000] 3206.0 282.6 5.187 0.454
[131 000, 140 000] 7595.0 653.2 6.226 0.534
[262 000, 267 000] 9579.4 726.6 7.242 0.548
[524 000, 529 000] 21580.2 1492.9 8.196 0.566

[1 048 000, 1 050 000] 18934.3 1083.8 9.024 0.516
[2 097 000, 2 099 000] 44714.9.0 2554.6 10.656 0.608

first block sendblock[0] = b − q is obviously correct. For the cases where there is a violation,
sendblock[k]r is computed as recvblock[k]r+skip[k], so also these cases are obviously correct.

3 Empirical Results

The algorithms for computing receive and send schedules in O(log p) time steps have been imple-
mented for use in implementations for MPI Bcast and MPI Allgatherv. All implementations are
available from the author. To first demonstrate the practical impact of the improvement from
O(log3 p) time steps (per processor) which was the bound given in [9, 10] to O(log p) steps per
processor as shown here, we run the two algorithms for different ranges of processors p. For each
p in range, we compute both receive and send schedules for all processors r, 0 ≤ r < p, and thus
expect total running times bounded by O(p log3 p) and O(p log p), respectively. These runtimes
in seconds, gathered on a standard workstation with an Intel Xeon E3-1225 CPU at 3.3GHz and
measured with the clock() function from the time.h C library, are shown in Table 3. The timings
include both the receive and the send schedule computations, but exclude the time for verifying
the correctness of the schedules, which has also been performed up to some p ≥ 2M,M = 220

(and for a range of 100 000 processors around 16M which took about a week), including verifying
the bounds on the number of recursive calls from Proposition 1 and the number of violations from
Proposition 3. When receive and send schedules have been computed for all processors r, 0 ≤ r < p,
verifying the four correctness conditions from Section 2.1 can obviously be done in O(p log p) time
steps. The difference between the old and the new implementations is significant, from close to a
factor of 10 to significantly more than a factor of 10. However, the difference is not by a factor
of log2 p as would be expected from the derived upper bounds. This is explained by the fact that
the old send schedule implementations employ some improvements beyond the trivial computation
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Figure 1: Broadcast results, native versus new, with the OpenMPI 4.1.4 library with p = 36×32, p =
36× 4, p = 36× 1 MPI processes. The constant factor F for the size of the blocks has been chosen
as F = 70. The MPI datatype is MPI INT.

from the receive schedules which makes the complexity closer to O(log2 p). These improvements
were not documented in [9, 10], but can be found in the actual code. The old receive schedule
computation from [9, 10] is in O(log2 p), though. We also give a coarse estimate of the time spent
per processor by measuring for each p in the given range the time for the schedule computations
for all p processors, dividing this by p and averaging over all p in the given range. This is indicative
of the overhead for the recvblock() and sendblock() computations in the implementations of
Algorithm 1 and Algorithm 2. These times (in microseconds) are listed as columns O(log3 p) and
O(log p), respectively. The difference by a factor of 10 and more is slowly increasing with log2 p.

Preliminary experiments with MPI Bcast and MPI Allgatherv implementations following closely
Algorithm 1 and Algorithm 2 were given previously in [9, 10] as well, and we for completeness
run the same kind of experiments with the new schedule computations. Our system is a small
36×32 processor cluster with 36 dual socket compute nodes, each with two Intel(R) Xeon(R) Gold
6130F 16-core processors. The nodes are interconnected via dual Intel Omnipath interconnects
each with a bandwidth of 100 GigaBytes/s. The implementations and benchmarks were compiled
with gcc 10.2.1-6 with the -O3 option.

The best number of blocks n leading to the smallest broadcast time is chosen based on a linear
cost model. For MPI Bcast, the size of the blocks is chosen as F

√
m/⌈log p⌉ for a constant F chosen

experimentally. For MPI Allgatherv, the number of blocks to be used is chosen as
√
m⌈log p⌉/G

for another, experimentally determined constant G. The constants F and G depend on context,
system, and MPI library. Finding a best n in practice is a highly interesting problem outside the
scope of this work. Likewise, using the the implementations on clustered, hierarchical systems, for
instance as suggested in [11], is likewise open and will be dealt with elsewhere.

The results for MPI Bcast are shown in Figure 1 for the full 36 nodes of the system and dif-
ferent number of MPI processes per node, namely 32, 4 and 1. It is noteworthy that the new
implementation which assumes homogeneous communication can be significantly faster than the
OpenMPI 4.1.4 baseline library implementation even for the 36× 32 process case.

The results for MPI Allgatherv are shown in Figure 2 for p = 36×32 MPI processes and different
types of input problems. The regular problem divides the given input size m roughly evenly over
the processes in chunks of m/p elements. The irregular problem divides the input in chunks of
size roughly (i mod 3)m/p for process i = 0, 1, . . . , p− 1. The degenerate problem has one process
contribute the full input of size m and all other process no input elements. For the degenerate
problem, the performance of the OpenMPI 4.1.4 baseline library indeed degenerates and is a factor
of close to 100 slower than the new implementation, where the running time is largely independent
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Figure 2: Irregular allgather results, native versus new, with the OpenMPI 4.1.4 library with
p = 36 × 32 MPI processes and different types of input problems (regular, irregular, degenerate).
The constant factor G for the number of blocks has been chosen as G = 40. The MPI datatype is
MPI INT.
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Figure 3: Regular allgather results, native versus new, with the OpenMPI 4.1.4 library with p =
36× 32, p = 36× 4, p = 36× 1 MPI processes. The constant factor G for the number of blocks has
been chosen as G = 40. The MPI datatype is MPI INT.
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of the problem type. The running time of the new MPI Allgatherv implementation is in the ballpark
of MPI Bcast for the same total problem size. For completeness, Figure 3 gives the running times
for the regular problems with fewer MPI processes per node, p = 36× 4 and p = 36× 1.

4 Summary

We showed that round-optimal broadcast schedules on fully connected, one-ported, fully bidirec-
tional p-processor systems can indeed be computed in O(log p) time steps per processor. This af-
firmatively answers the long standing open questions posed in [8–10,12]. We repeated experiments
indicating that the computations are feasible for use in practical implementations of MPI Bcast
and MPI Allgatherv. A more careful evaluation of these implementations, also in versions that are
more suitable to systems with hierarchical, non-homogeneous communication systems is ongoing
and should be found elsewhere.

For the full O(log p)-sized schedule computations an overhead of O(log p) is incurred, but com-
plexity per neighboring processor is only O(1) amortized. Would it be possible to find each send
and receive block in O(1) worst-case time? Also interesting is to characterize when the schedules
are unique, how many different schedules there are for a given p, and for which ⌈log2 p⌉-regular
circulant graphs the constructions can work.
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