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Abstract

Bipedal legged locomotion offers improved accessibility and the ability to navigate complex,
non-barrier-free environments more effectively than wheel-based systems. However, this
increased versatility, particularly in humanoid robots, comes at the cost of slower movement.
Based on existing methods for humanoid running, this work extends the analytical concept
for biologically inspired center of mass (CoM) trajectory planning with optimal footstep and
center of pressure adaptation. The analytical method allows for a planner design, where the
desired footsteps are input parameters and the current footstep is adjusted to stabilize the
motion. This forces the controller to select suboptimal footstep placements when kinematic
constraints between the current and next previewed footsteps are reached. The existing
trajectory generation algorithms, developed at the German Aerospace Center (DLR), were
adapted and extended by optimizing all previewed footsteps to avoid kinematic limitations
and increase robustness to disturbances. During stance, the center of pressure (CoP) is
optimally adjusted within the contact area of the stance foot, the optimal adaptation of
the footstep is executed in flight. These two strategies combined, enable high robustness to
challenging starting robot configurations, allowing locomotion transitions, such as walking
to running.
The trajectory planning algorithm is integrated into an inverse-dynamics based whole-body
controller and validated in simulations with the humanoid robot Kangaroo.
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Kurzfassung

Humanoide Roboter bieten im Vergleich zu radbasierten Robotersysteme Fortbewegungs-
möglichkeiten in komplexeren und unwegsamen Umgebungen, jedoch mit einer geringerer
Fortbewegungsgeschwindigkeit.
In dieser Arbeit wird auf Grundlage bestehender Methoden eine biologisch inspirierte
Trajektorienplanung für den Körperschwerpunkt (Center of Mass, CoM) mittels polyno-
mialer Splines angepasst und um optimierte Parameter erweitert. Die Methode basiert
auf einem rein analytischen Reglerentwurf, bei dem die gewünschten Fußschrittpositionen
als Eingabeparameter dienen. Dabei wird nur der aktuelle Fußschritt modifiziert, um die
Bewegung zu stabilisieren. Dies zwingt den Regler dazu, suboptimale Schrittplatzierungen
zu wählen, wenn kinematische Einschränkungen zwischen dem aktuellen und dem nächsten
vorausberechneten Schritt auftreten.
Die am Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelten Methoden bilden
die Grundlage der Arbeit. Das Ziel der Arbeit ist es, den Planungsansatz sowhol durch
die Optimierung einer endlichen Anzahl vorausberechneter Schritte als auch durch die
optimale Positionierung des Druckmittelpunkts (Center of Pressure, CoP) im Standfuß
zu erweitern. Dies soll helfen, kinematische Einschränkungen zu vermeiden und die
Robustheit gegenüber Störungen zu erhöhen. Die Kombination dieser beiden Strategien
ermöglicht die Konvergenz zu einer stabilen Laufbewegung aus einem größeren Bereich
von Anfangsbedingungen, wie zum Beispiel den Übergang vom Stehen und Gehen zum
Laufen.
Die Methode wird durch eine Ganzkörperregelung (Whole-Body Control, WBC) im
Aufgabenraum mit dem humanoiden Roboter Kangaroo in einer Simulation validiert.
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1 Introduction

In recent years, the rise of automation has significantly transformed various industries,
with robots playing an increasingly crucial role in assisting humans across multiple
fields. Robots are designed and tailored to perform specific tasks, ranging from industrial
manufacturing [1] to healthcare [2], and their forms and functions often depend on the
requirements of the tasks they are intended to accomplish. Often, mobile-based systems
are used to cover a large workspace. In research significant progress has been made in
replicating human-like gaits using robot locomotion. While wheeled robots are ideal for
smooth and controlled environments, legged robots have captured interest due to their
ability to navigate complex, human-centric terrains. Despite these advances, current
robots are still a long way from achieving the capabilities of human movement. Humans
can seamlessly adjust their gait to different speeds and surfaces and can maintain stability
under challenging conditions. Such abilities remain difficult to replicate in robotic systems.
For navigating complex terrains and achieving versatile movement, legged locomotion is
generally favored over wheel-based systems.

Bipedal humanoids can overcome stairs, narrow passages, and uneven terrain with versatil-
ity and agility that more closely resemble human movement. This versatility often comes
with the drawback that humanoid robots move very slowly. Additionally, the dynamic
locomotion mode of running features short contact phases that are potentially underactu-
ated and require substantial torque demands on the robot´s joints. Thus, running motions
with bipedal humanoid robots are a challenging field where distinct mathematical models
and control strategies based on the center of mass (CoM) dynamics are used to replicate
human-like running gaits.

1.1 Contribution
This thesis aims to develop a robust planning approach for humanoid robot running. The
work is based on planning approaches for running [3, 4], developed at the Institute of
Mechatronics and Robotics at the German Aerospace Center (DLR), and their extension
for walking to running transitions [5], developed at the Automation and Control Institute
(ACIN) at the Vienna University of Technology. The goal of this thesis is to improve
the robustness of the planning approach by optimizing several preview footsteps and the
position of the center-of-pressure (CoP) in the stance foot. This enables the robot to avoid
kinematic limitations and withstand strong perturbations. Furthermore, the proposed
method enables the robot to recover from challenging initial conditions and achieve a
stable running motion, e.g., in the transition from standing and walking to running.
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1.2 Content outline 2

1.2 Content outline
The thesis is organized as follows. Chapter 2 summarizes the related work in the field of
legged humanoid locomotion, with a focus on running locomotion methods. In chapter 3
the base for this work is introduced. Furthermore, the mathematical model and planning
algorithms are presented, separately for horizontal and vertical planning. Additionally,
the online planning structure is introduced.
Chapter 4 extends the purely analytical planning method with optimal footstep placement
and optimal CoP adaptation to increase the robustness of the planner while respecting
kinematic limitations. In Chapter 5 the planning method is evaluated using a simulated
point-mass model.
The whole-body control framework is derived in Chapter 6. Subsequently, the integration
of the proposed planning method in the whole-body control framework is evaluated in
Chapter 7 using the physics simulator MuJoCo [6] with the humanoid robot Kangaroo [7].
Chapter 8 provides the discussion and concludes the work.

Figure 1.1: Timeseries of humanoid robot Kangaroo [7] while running.



2 Related work

In addition to the growing popularity of reinforcement learning (RL) approaches [8, 9],
a common method for implementing robotic bipedal locomotion is to use the center of
mass (CoM) dynamics to describe specific locomotion gaits. The CoM captures the most
important features of a running gait without considering complex robot structures. Due
to unilateral constraints, not every CoM trajectory is feasible. Robots with a mobile
base are generally described with a free-floating model, thus the robot can only interact
with its environment through its feet, assuming a stable motion. Without considering
rotational inertia, all external forces are constrained to pass through the foot´s support
polygon, spanned by the contact points on the ground. These conditions are met with
various models for different gaits.

Many walking strategies are based on the Linear Inverted Pendulum (LIP) model [10,
11]. In this model, external forces are represented by a focal point that corresponds
to the torque-free base joint of the LIP. The direction of the resulting external force is
determined by the relationship between the CoM and the base joint of the LIP on the
ground. Takenaka et al. [12] introduced the Divergent Component of Motion (DCM)
as a new state variable, which separates the CoM dynamics into stable and unstable
components. Unlike the LIP model, the DCM does not approximate the robot model.
Englsberger et al. [13] extended this approach to 3D.

The generation of running motions is typically based on the Spring-Loaded Inverted
Pendulum (SLIP) model, which extends the LIP model with a massless, compliant leg
[14]. Given suitable parameters and starting conditions, the SLIP model can exhibit
open-loop stability [15] or be controlled to achieve a stable limit cycle [16, 17]. The
SLIP model’s dynamics are nonlinear, which means they cannot be analytically solved
to produce closed-form solutions. Consequently, this model is not ideal for producing
running trajectories in aperiodic locomotion with predefined footstep placement and
timing. Sovukluk et al. [18] extends the SLIP model with a foot, enabling center of
pressure (CoP) adaptation.

Englsberger et al. [3] proposed a method to replicate human-like ground reaction forces
using polynomial splines to create CoM trajectories. These trajectories are stabilized
by a Biologically Inspired Deadbeat (BID) controller, which enables humanoid running
motions in simulations [3]. The BID method shows promising running trajectories and
good robustness to disturbances using footstep adaptation. Egle et al. [5] extended this
approach with a purely analytical planning method for the transition between BID-based
running and DCM-based walking. An alternative approach by Mesesan et al. [19] presents
a 3D-DCM framework enabling walking, running, and jumping transitions.
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3 Center-of-Mass Trajectory Planning

The running algorithm presented in this chapter was first introduced by Englsberger et
al. [3] with the biologically inspired deadbeat (BID) control method, and then extended
by Egle et al. [5] for the transition between walking and running. The BID method
shows promising results in simulation for robust and stable online running given specific
initial conditions, i.e. initial CoM velocities. Additionally, the robustness of the controller
is limited by only adapting for the next footstep. Therefore, the BID is not feasible
for challenging initial conditions, such as a standstill. This work adapts the existing
biologically inspired running methods [3, 5] with an extension for optimal n-preview
footstep adaptation and CoP adaptation. Both methods use a biologically inspired CoM
trajectory generation for humanoid running locomotion.
Human running experiments [3] show specific ground reaction force (GRF) profiles while
running on a force plate treadmill, that can be approximated using polynomial splines, as
shown in Figure 3.1. The vertical and horizontal components of the GRF are approximated
with a 2nd- and 3rd-order polynomial, respectively. Except for the impact dynamics, the
approximation is accurate.

The total force Fcom ∈ R3 acting on the robot´s CoM x ∈ R3 is computed using the
leg-force Fleg ∈ R3 (corresponding to the GRF profiles) and the gravitational force Fg ∈ R3

as
Fcom = Fleg + Fg = Fleg + mg, (3.1)

where m is the robot´s total mass and g =


0 0 −g

�T
is the gravitational acceleration.

The acceleration of the CoM ẍ is expressed using Newton´s second law and the total force

Figure 3.1: Human running experiments on a force plate treadmill [3]. The human leg
forces are approximated with 2nd- and 3rd-order spline polynomials (red lines),
for vertical (green line) and horizontal (blue line) directions.
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3 Center-of-Mass Trajectory Planning 5

Figure 3.2: Vertical CoM trajectory planning for two preview phases. The CoM trajectory
during stance is projected to the corresponding force focus point xint,i using
leg forces.

acting on the CoM as
ẍ = Fcom

m
. (3.2)

The constant offset from Fleg to Fcom, allows us to express the CoM acceleration using
the previously defined polynomial splines. Therefore the vertical and horizontal CoM
positions x can be approximated using 4th- and 5th-order polynomial splines. The CoM
velocities ẋ are approximated using 3rd- and 4th-order polynomials, accordingly.

Generally, one running motion can be separated into two phases, the stance phase and
the flight phase. The planning method uses at least two preview footsteps, denoted as
n ≥ 2. Figure 3.2 shows the vertical position of the CoM for two preview phases (n = 2),
where zT D is the touch-down (TD) height and zT O is the take-off (TO) height. In the
stance phase, the robot is in single-leg contact with the floor, therefore the robot´s CoM
is actuated via the contact force Fleg on the ground. The CoM trajectory is planned using
polynomial splines with boundary conditions that ensure stable running.

On the other hand, in the flight phase, the robot is under-actuated and follows the natural
dynamics of a parabolic flight curve. At a given time t, the robot´s CoM position x(t),
velocity ẋ(t) and acceleration ẍ(t) in flight are defined asx(t)

ẋ(t)
ẍ(t)

 =

x0 + ẋ0t + g t2

2
ẋ0 + gt

g

, (3.3)

where x0, ẋ0 and ẍ0 are the initial (t = 0) CoM position, velocity and acceleration at
TO, with x(t) =



x(t) y(t) z(t)

�T
.

The following sections show the planning process of the CoM trajectories for the vertical
and horizontal directions, separately. The vertical trajectory planning (in the z-axis) is
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solved locally for each phase and aims to reach a desired TD height at the upcoming
footstep, besides solving for continuity between stance and flight phase. The horizontal
planning approach (in the x- and y-axis) aims to compute a CoM trajectory according to
a sequence of n desired footstep positions and a final CoM TO velocity. Additionally, the
distance of the leg force intersection point with the ground is minimized.
The following planning algorithms are adapted from [3, 5].

3.1 Vertical planning
The vertical CoM trajectories are planned using 4th-order polynomials for each preview
phase i, defined as

z(t)
ż(t)
z̈(t)

 =

1 t t2 t3 t4

0 1 2t 3t2 4t3

0 0 2 6t 12t2

pz =

tT
z (t)

tT
ż (t)

tT
z̈ (t)

pz. (3.4)

Here, the time-mapping row vectors tT
z (t), tT

ż (t) and tT
z̈ (t) map the parameter vector

pz ∈ R5 to the position z(t), velocity ż(t) and acceleration z̈(t) of the CoM.

Five linear boundary conditions for five polynomial parameters pz,i ∈ R5 are defined for
each preview step i as

zT D,i

żT D,i

z̈T D,i

−g

zT D,i+1,des + g
T 2

f,i+1
2


� �� �

Hz,i

=


tz(0)
tż(0)
tz̈(0)

tz̈(Ts,i)
tz(Ts,i) + tż(Ts,i)Tf,i+1


� �� �

Bz,i

pz,i , i ∈ [1, n]. (3.5)

Here, the first three boundaries set the given CoM TD position, velocity, and acceleration.
The fourth boundary sets the constant TO acceleration z̈T O,i = −g. The fifth boundary
sets a desired TD position for the next preview step, which is derived using the flight
dynamics as

zT D,i+1,des = zT O,i + żT O,iTf,i+1 −g
T 2

f,i+1
2 = [tz(Ts,i)+ tż(Ts,i)Tf,i+1]pz,i −g

T 2
f,i+1
2 . (3.6)

The desired TD position zT D,i,des, flight time Tf,i, and stance time Ts,i are considered as
design parameters, for each preview phase i separately. In [3, 5] the desired apex height is
used as a fifth boundary condition enabling an adapted flight time, while also forcing the
CoM trajectory to reach the desired apex height. We use the desired touch-down position
to have a fixed flight time.
The solution for the parameter vector pz,i is found, for each preview phase separately, as

pz,i = B−1
z,i Hz,i. (3.7)
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Figure 3.3: Computation flow of vertical planning

The vertical CoM trajectories are planned in a forward iterative manner, starting at
the first preview phase i with given initial conditions (CoM TD position, velocity, and
acceleration). The TD position, velocity, and acceleration for the next preview phases are
evaluated using the CoM flight dynamics from (3.3) and the previous TO state aszT D,i

żT D,i

z̈T D,i

 =

tz(Ts,i−1)pz,i−1 + tż(Ts,i−1)pz,i−1Tf,i − g
T 2

f,i

2
tż(Ts,i−1)pz,i−1 − gTf,i

−g

 , i > 1. (3.8)

Figure 3.3 shows an outline of the vertical planning method.

3.2 Horizontal planning
The horizontal CoM trajectories are computed using 5th-order polynomials for each preview
phase i. Here, the horizontal CoM position vector is defined as χ(t) =



x(t) y(t)

�T

combining both horizontal axes. Analogous to (3.4), the horizontal polynomials of fifth
order are defined asχT (t)

χ̇T (t)
χ̈T (t)

 =

1 t t2 t3 t4 t5

0 1 2t 3t2 4t3 5t4

0 0 2 6t 12t2 20t3

pχ =

tT
χ (t)

tT
χ̇ (t)

tT
χ̈ (t)

pχ. (3.9)

Five linear boundary conditions for six polynomial parameters pχ,i = [px,i, py,i] ∈ R6x2

are set for each preview step i as
χT

T D,i

χ̇T
T D,i

χ̈T
T D,i

χ̈T
T O,i

χT
ft,i


� �� �

Hχ,i

=


tχ(0)
tχ̇(0)
tχ̈(0)

tχ̈(Ts,i)
lT
χ,i


� �� �

Bχ,i

pχ,i , i ∈ [1, n]. (3.10)
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The first three boundaries set the initial CoM state to the CoM TD state. The fourth
boundary sets the constant CoM TO state χ̈T O,i = [0, 0]T to zero for a continuous
transition from stance to flight. The fifth boundary includes the step location during
stance. The vector lχ,i maps the polynomial parameters to the corresponding step location
χft,i, as derived below. The step location for each preview step is commanded by the
user. The general solution for (3.10) is found as

pχ,i = BT
χ,i


Bχ,iB

T
χ,i

�−1
Hχ,i + rχ,ip̃χ,i. (3.11)

where p̃χ,i =


p̃x,i p̃y,i

�
∈ R2 is a row vector of scalar multiples of the nullspace spanned

by the column vector

rχ,i =
�
−B−1

χ,i,squarebχ,i,final

1

�
. (3.12)

Here, bχ,i,final is the last row of Bχ,i. Bχ,i,square contains the remaining rows of Bχ,i. The
goal is to find p̃χ,i which provides the best possible focus of leg forces at an intersection
point with the ground (z = zfloor). Figure 3.4 illustrates the focus of leg forces projected
from the CoM trajectory during stance. We want to minimize the mean square deviation
of the intersection point with the ground, corresponding to the foot contact position. The
horizontal components of the intersection point for the i-th stance phase (t ∈ [0, Ts,i]) are

χint,i(t) = χ(t) − fleg,χ,i(t)
fleg,z,i(t)

(z(t) − zfloor,i)

= [tT
χ (t) − tT

χ̈ (t)
(tT

z̈ (t)pz,i + g)
(tT

z (t)pz,i − zfloor,i)]� �� �
dT

χ,i(t)

pχ,i.
(3.13)

Figure 3.4: Three different CoM trajectories with the force focus point below (left figure),
on (center figure), and above (right figure) the floor height. The force focus
point with the optimal parameter p̃χ is located at the floor height. [3]

The variation of the force focus point over one phase is defined as

∆χint,i(t) = χint,i(t) − χint,i = (dχ,i(t) − lχ,i)� �� �
kT

χ,i(t)

pχ,i, (3.14)
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Figure 3.5: Computation flow of the horizontal CoM trajectory planning.

where lχ,i =
� Ts,i

0 dχ,i(t)dt maps the mean force focus point χint,i using the parameter
vector pχ,i.
The mean square deviation of the force focus point results in

∆χint,i,ms =
� Ts,i

0
∆χ2

int,i(t)dt

= pT
χ,i

� Ts,i

0
kχ,i(t)kT

χ,i(t)dt� �� �
Mχ,i

pχ,i

= rT
χ,iMχ,ir

T
χ,ip̃

2
χ,i + 2rχ,iMχ,ipχ,i,0p̃2

χ,i + pT
χ,iMχ,ipχ,i,0.

(3.15)

Due to nonlinearity of (3.13), we approximate Mχ,i with nf approximation points. We
minimize (3.15) with respect to p̃χ,i and find the optimal parameter p̃∗

χ,i. Equation (3.11)
with optimal parameters yields

pχ,i =

I − rχ,ir

T
χ,iMχ,i

rT
χ,iMχ,ir

�
� �� �

Ωχ,i

BT
χ,i


Bχ,iB

T
χ,i

�−1

� �� �
B+

χ,i

Hχ,i. (3.16)

Therefore, the boundary conditions are fulfilled and the best possible force focus point is
achieved. As proposed by Egle et al. [5], the way-points are computed analytically using
a matrix formulation for all n preview phases. Figure 3.5 illustrates the computation
flow of the proposed horizontal planning approach. The TO state ST O at the end of each
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preview stance phase i is defined as�
χT O,i

χ̇T O,i

�
� �� �

ST O,i

=
�
tT

χ (Ts,i)
tT

χ̇ (Ts,i)

�
� �� �

Tχ,i

pχ,i. (3.17)

Here, we insert (3.16) as
ST O,i = Tχ,iΩχ,iB

+
χ,i� �� �

Dχ,i∈R2x5

Hχ,i. (3.18)

The matrix Dχ,i is separated into the first two columns as the matrix Dα,i and the
remaining columns as the vectors dβ,i, dγ,i and dδ,i. Encoding Hχ,i accordingly, the TO
state for each preview phase i results in

ST O,i = Dα,i

�
χT D,i

χ̇T D,i

�
� �� �

ST D,i

+dβ,iχ̈T D,i + dγ,iχ̈T O,i + dδ,iχft,i. (3.19)

Combining the matrices for all preview phases yields

ST O =


ST

T O,1 · · · ST
T O,n

�T
,

ST D =


ST

T D,1 · · · ST
T D,n

�T
,

Xft =


χT

ft,1 · · · χT
ft,n

�T
.

(3.20)

The starting acceleration χT D,1 is defined by the current robot state, the acceleration at
the end of the last preview step χT O,n can be chosen as a design parameter. All other
way-point accelerations are zero due to the CoM flight dynamics. The TO state in matrix
form is expressed as

ST O = DαST D + Dβχ̈T D,1 + Dγχ̈T O,n + DδXft, (3.21)

where Dβ = ZT
1 dβ,1, Dγ = ZT

N dγ,n and Dα and Dδ are block diagonal matrices whose
diagonal contains the single-phase matrices Dα,i and vectors dγ,i, respectively. The
selection matrices are defined as

Z1 =


e2n,1 e2n,2

�T
, ZN =



e2n,2n−1 e2n,2n

�T
,

ZT =


e2n,3 · · · e2n,2n

�T
, Z0 =



e2n,1 · · · e2n,2n−3

�T
,

(3.22)

where Z1 and ZN select the first and last state from ST O and ST D. The selection matrices
ZT and Z0 select the states [2 · · · n] and [1 · · · n − 1], respectively.

We can separate the mapping of the TD states using ZT
1 Dα,1, which corresponds to the

first two columns of Dα, and DαZT
T containing all remaining columns of Dα. Thus, the

TO state matrix results in

ST O = ZT
1 Dα,1ST D,1 + DαZT

T ST D,T + Dβχ̈T D,1 + Dγχ̈T O,n + DδXft, (3.23)
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where ST D,T = ZT ST D encodes all TD states except the first. The TD state ST D,i is
expressed using the flight dynamics from (3.3) as�

χT D,i+1
χ̇T D,i+1

�
� �� �

ST D,i+1

=
�
1 Tf,i+1
0 1

�
� �� �

AF,i

�
χT O,i

χ̇T O,i

�
� �� �

ST O,i

. (3.24)

Therefore, the matrix formulation for all TD states, except the initial state, is defined as

ST D,T = AF Z0ST O, (3.25)

where AF is a block diagonal matrix whose diagonal contains the single flight phase
mapping matrices AF,i. We insert (3.23) into (3.25) and solve for ST O as

ST O = DR(ZT
1 Dα,1ST D,1 + Dβχ̈T D,1 + Dγχ̈T O,n + DδXft), (3.26)

with DR = (I − DαZT
T AF Z0)−1. This solution is valid if the matrix D−1

R is a lower
triangular matrix with non-zero elements on the diagonal, thus invertible. After computing
the TO way-points ST O, we insert (3.26) into (3.21) which leads to the TD way-points
for all preview phases as

ST D = D−1
α (ST O − Dβχ̈T D,1 − Dγχ̈T O,n − DδXft). (3.27)

Here, the solution is valid if Dα is a lower triangular matrix with non-zero elements on
the diagonal and is thus invertible. With the results from (3.26) and (3.27) the parameter
vector for the horizontal polynomial spline (3.16) is solved for each preview step. The
design parameters for horizontal planning are the final desired CoM acceleration χ̈T O,n and
the target footstep locations Xft. The initial TD positions, velocities, and accelerations
are given.

3.3 Planner structure
The combination of vertical and horizontal CoM trajectory planning offers a comprehensible
method to compute the CoM trajectory for several preview footsteps. Here, we want to
show an overview of the planning procedure. Given a general preview phase i, the planned
CoM trajectory xp,i, at the current phase time tp,i ∈ [0, Tp,i], is defined within the phase
period Tp,i = Tf,i + Ts,i as

xp,i(tp,i) =

x(0) + ẋ(0)tp,i + g
t2
p,i

2 , if 0 ≤ tp,i < Tf,i

tT
χ (tp,i − Tf,i)pi, if Tf,i ≤ tp,i < Tp,i

(3.28)

with the general parameter vector pi = [pT
χ,i, pT

z,i, 0]T . During the flight phase, the planned
trajectory is described using the CoM flight dynamics. The TO position x(0) and velocity
ẋ(0) are given. In the stance phase, the planned CoM trajectory is described using the
polynomial splines evaluated at the corresponding phase time.
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Figure 3.6: Computation flow of the CoM trajectory running planner.

The planned trajectory for all n preview phases, at a given time t within the preview
horizon, is defined as

xp(t) =

����������

xp,1(t), if 0 ≤ t < Tp,1

xp,2(t − Tp,1), if Tp,1 ≤ t < Tp,1 + Tp,2
...
xp,n(t − τn−1), if τn−1 ≤ t < τn

(3.29)

where τk = �k
j=1 Tp,j is the time passed after k phase periods. The planned CoM velocity

and acceleration are defined analogous, considering the derived flight dynamics and time
mapping vector in Section 3.28.

Figure 3.6 shows the computation flow of the planner structure outline. The first step is
the touch-down state preview, where the upcoming CoM touch-down state is computed
using the CoM flight dynamics. Further explanation for this step can be found in Section
3.3.1. In parallel, the foot target planner computes the desired foot targets for all preview
phases using the commanded desired speed ẋdes and the current foot positions.

The second step computes the vertical polynomial spline parameters pz,i (see Section
3.1) for all preview phases. After that, we compute the horizontal polynomial spline
parameters pχ,i (see Section 3.2) for all preview phases. In the last step, the planned
trajectory is evaluated at the next timestep t′ = t + dt, where dt is the sampling time.
The resulting desired CoM acceleration ẍdes is forwarded to the robot model, where the
desired leg force Fleg,des is computed using (3.1).

The foot trajectory generator computes spline-based trajectories for both feet, according
to the foot target positions xft,i for the first and second preview phases. The foot target
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positions xft,i are considered equal to the desired foot target positions xft,i,des. For more
details about the foot trajectory generator, see Section 3.3.2.

3.3.1 Online planning
To enable robust and dynamic running, we propose an online planning approach using
a finite horizon, spanned by n preview phases. The planned trajectory is re-computed
at each timestep t, according to the current CoM state. Therefore, the planned CoM
trajectory and foot target positions are adapted online. Figure 3.7 illustrates the online
planning approach with three different scenarios in vertical planning. The current CoM
state is used as an input parameter to determine the touch-down state of the first preview
phase (i = 1), thus the initial touch-down state (marked with an orange circle). The
computation of the first touch-down state depends on the current subphase (flight or
stance).

The first scenario (see Figure 3.7a) shows the current CoM position in flight. Here,
∆Tf,1 = Tf,1 − tp,1 denotes the remaining flight time using the passed phase time tp,1,
starting from the previous take-off waypoint. In the flight phase, the upcoming TD state
is estimated using the flight dynamics as

x(t + ∆Tf,1) = x(t) + ẋ(t)∆Tf,1 + g
∆T 2

f,1
2 , (3.30)

with the remaining flight time ∆Tf,1 = Tf,1 − tp,1 and the current CoM position x(t) and
velocity ẋ(t).
The second scenario (see Figure 3.7b) shows the current CoM position in stance. Here,
the TD state is set to the current CoM state. Therefore, the polynomial spline for
the first preview phase is evaluated from the current CoM state to the take-off with a
reduced stance time ∆Ts,1 = Tp,1 − tp,1. Both subphases, allow for continuous trajectory
adaptation.
The third scenario (see Figure 3.7c) shows a take-off, where the phase time exceeded the
first preview phase tp,1 > Tp,1. Thus, the phase indices are shifted, so that the second
phase is considered as the new first preview phase. An additional preview phase is added
at the last index i = n. This ensures a continuous definition of the initial CoM touch-down
state.

The planner output is a trajectory evaluated at the upcoming timestep t′ = t + ∆t, where
∆t is the sampling time, for each timestep. The output includes the full reference CoM
state (position, velocity, and acceleration), and the reference foot state (position, velocity,
and acceleration) for each foot. Figure 3.8 illustrates the planner output at the upcoming
timestep t′ (marked with the green circle).
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(a) CoM in flight subphase.

(b) CoM in stance subphase.

(c) CoM in next flight subphase. Subphase-indices are shifted to the right.

Figure 3.7: Online CoM trajectory planning with three scenarios. The orange dot illus-
trates the first TD position. The red dot shows the current CoM position.
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Figure 3.8: Current CoM trajectory (red dot) at timestep t with the reference CoM
position (green circle) at timestep t′. The sampling rate is denoted as ∆t.

The online planner increases the robustness of the planning method significantly, due to
continuous CoM trajectory re-planning.

3.3.2 Foot trajectory planning
The planning method offers foot target positions, which could be used on a real robot with
set-point control for the swing foot. However, this work uses foot trajectories with 5-th
order polynomial splines. These enable smooth transitions adapted for the corresponding
timing setting.

For the current stance foot, we assume no slippage and command a constant reference
foot position with zero velocity and acceleration. On the other hand, during flight, the
footstep trajectory is computed using 5-th order polynomials for each axis separately.
Similar to the CoM spline polynomials from Section 3.1 and Section 3.2, the footstep
trajectory for the swing foot is defined asσT

ft(t)
σ̇T

ft(t)
σ̈T

ft(t)

 =

tT
σft

(t)
tT

σ̇ft
(t)

tT
σ̈ft

(t)

pσft
, σft ∈ [xft, yft, zft]. (3.31)

The time-mapping vectors are equal to Section 3.2. The trajectory should enable a
smooth transition between the start foot position σft(t = 0) and the target foot position
σft(t = Tft) with zero velocity and acceleration at the start and end of the foot flight



3.3 Planner structure 16

Figure 3.9: Exemplary foot trajectories.

phase Tft. Six boundary conditions fulfill these requirements as

σft(0)
σ̇ft(0)
σ̈ft(0)
σft(T )
σ̇ft(T )
σ̈ft(T )


� �� �

Hσ

=



tσft
(0)

tσ̇ft
(0)

tσ̈ft
(0)

tσft
(T )

tσ̇ft
(T )

tσ̈ft
(T )


� �� �

Bσ

pσ , σft ∈ [xft, yft, zft]. (3.32)

The solution of the parameter vector is pσ = B−1
σ Hσ. The horizontal components (x,y)

are computed for the whole foot flight phase t = [0, Tft] with the starting footstep σft(0) =
σft,start and target footstep σft(T ) = σft,target. The vertical axis (z) is separated into two
subphases, lifting and lowering the foot. The lifting phase reaches from t = [0, Tft/2]
with the starting footstep zft(0) = zft,start and target foot position zft(T ) = zft,apex. The
lowering phase reaches from t = [Tft/2, Tft] with the starting footstep zft(0) = zft,apex
and target foot position zft(T ) = zft,apex. Figure 3.9 shows the foot trajectories for a
single foot flight phase.
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3.4 Conclusion
The planning approach presented in this chapter offers a comprehensible method to
compute CoM trajectories that approximate human-like running GRF profiles. For
vertical and horizontal CoM trajectory planning, polynomial splines of 4-th and 5-th order
are used, both fulfilling a continuous transition between the stance and the flight phase
for several preview phases. The vertical CoM trajectory planning is solved locally, for
each preview phase separately, and aims to reach a desired TD height. The horizontal
CoM trajectory planning aims to find a CoM trajectory according to a sequence of n
desired footsteps, the final CoM TO velocity, and a minimized vertical distance of the leg
force intersection point with the ground. The combination of both planning approaches
enables an online planning structure with a finite horizon (n preview footsteps). The
planned CoM trajectory is updated after each timestep using the current CoM state. Thus,
perturbations on the CoM are considered in planning, increasing the planner´s robustness.

The limitations of this method are within its design parameters. Sub-optimally placed
desired foot positions and fixed phase timing can cause the running locomotion to diverge,
thus causing the robot to fall. Especially during challenging robot states, such as running
from a standstill or with external perturbations, the method does not converge to a stable
running motion.

Therefore, we extend the planning method with optimized design parameters to enable
robust running even during challenging robot states or with high perturbations.



4 Optimal Step Location Adapation

This chapter extends the proposed biologically-inspired CoM trajectory planning method
with optimal foot target placement and consequently optimal CoM waypoints. This
enables a robust running locomotion method that can withstand strong perturbations and
allows stable running even during challenging robot configurations using step adaptation.
Additionally, with this method, the force focus point is shifted optimally within the
stance foot contact area. Thus, two adaptation strategies are used to compensate for
perturbations.
The optimization affects only the horizontal trajectory planning part. Therefore, the
vertical CoM trajectory planning is computed locally for each preview phase separately
without optimization as proposed in Section 3.1. Phase timing is not considered for
optimization. This would result in a more general non-linear optimization problem which
might be challenging to solve in real-time.

The adapted computation flow scheme is illustrated in Figure 4.1. Here, the analytical
solution of the CoM take-off states (for all preview steps) from (3.26) is integrated in an
optimization problem. This enables optimal target foot positions for all preview steps
and optimal CoM waypoints. More details on the optimization problem formulation are
elaborated in this chapter.

4.1 Optimization Problem
The cost function G is minimized in the quadratic program (QP). Here, the foot adjustment
distance ∆χft,i between the target foot positions χft,i and desired foot positions χft,i,d

is minimized, for each phase and each horizontal axis separately. Additionally, the error
between the target CoM velocity χ̇T O,n and desired CoM velocity χ̇T O,n,d at the last
preview phase (i = n) is minimized, for each axis separately.

18
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Figure 4.1: Computation flow diagram for horizontal CoM planning, extended with optimal
target foot placement and optimal CoM waypoints for all preview phases.
Changes to Figure 3.5 are marked in orange.

The optimization problem is formulated as

min
ϵ

G =
n�

i=1
αft,i(||xft,i − xft,i,d|| + ||yft,i − yft,i,d||)+

αχp,n(||ẋT O,n − ẋT O,n,d|| + ||ẏT O,n − ẏT O,n,d||),

s.t. ST O = DR(Dδχft + ZT
1 Dα,1ST D,1 + Dβχ̈T D,1 + Dγχ̈T O,N ),

χft,i ∈
�

Ωs, if i = 1 and stance
Ωi, otherwise

∀i ∈ n,

(4.1)

with the full optimization vector

ϵ = [xft,1, · · · , xft,n,

yft,1, · · · , yft,n,

xT O,1, ẋT O,1, · · · , xT O,n, ẋT O,n,

yT O,1, ẏT O,1, · · · , yT O,n, ẏT O,n].

(4.2)

The first 2n elements of ϵ are the target foot positions in both horizontal axes and the
last 4n elements are the TO states ST O (position and velocity) for all preview phases and
both horizontal axes.

Equation (3.26) is used as an equality constraint in (4.1), thus the biologically-inspired
horizontal trajectory boundaries are fulfilled. The inequality constraints ensure that
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the target foot positions are within a specified footstep region Ω, thus leg collisions are
prevented and the robot´s maximum step length and width are not exceeded. In stance,
the weight for the first (i = 1) foot adjustment distance is set to zero αft,1 = 0, as well
as the footstep region for the first target footstep position is defined within the foot
contact area to enable an adaptation of the force focus point. Further details regarding
the footstep regions are shown in the following section.

4.2 Convex Footstep Regions
The footstep region Ω is defined as an area where the target foot position is considered
feasible to reach. In this method, we want to prevent the robot´s foot distance from
exceeding its kinematic limits and prevent leg collisions. To fulfill these conditions and
meet the convexity requirements of the quadratic program we use the approximation of
half an ellipse as a feasible footstep region.

(a) Walking (b) Running

Figure 4.2: Feasible footstep region Ωi (blue area) for the right foot target χft,i considering
the left foot χft,i−1 in stance and as a starting point (k = −1) with the
locomotion modes (a) walking and (b) running. The CoM trajectory (red) is
shown with flight phases (dashed) while running.

Figure 4.2a shows the footstep region Ωi for the target foot position χft,i with one preview
footstep. The center of the ellipse is located at the previous target foot position χft,i−1,
shifted by the minimum step width Wmin in the lateral axis. The ellipse´s length, thus the
feasible area in the longitudinal direction, is set to the maximum step length Lmax. The
feasible step width is defined by the difference of maximum step width and minimum step
with as Wmax − Wmin. The area of the ellipse limits the robot´s footstep distance from
exceeding its kinematic limits. Leg collisions are prevented by limiting the lateral footstep
area of the ellipse to a step width greater than Wmin, see the blue area in Figure 4.2a.
The footstep region Ωi is defined as

(xft,i − xft,i−1)2

L2
max

+ (yft,i − yft,i−1 − kWmin)2

(Wmax − Wmin)2 <= 1, with k∆yft,i >= Wmin. (4.3)

The target footstep χft,i can be placed anywhere in the footstep region (blue area). In
Figures 4.2a and 4.2b the visualized target foot positions are selected arbitrarily and
can be placed anywhere within the footstep region. The footstep region of the ellipse
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alternates in the lateral direction (lower half or upper half) depending on the previous
footstep χft,i−1, set with the variable k. The variable k is selected k = 1 for the right
foot as the previous footstep, and k = −1 for the left foot as the previous footstep.

During walking (see Figure 4.2a), i.e. without flight phases, the CoM traveled distance
in flight ∆χi = χT D,i − χT O,i−1 equals to zero. Thus, at the moment of impact of the
i-th footstep (i-th TD), the distance to the previous footstep is exactly χft,i − χft,i−1.
While running (see Figure 4.2b), the robot´s body movement in flight shifts significantly,
especially with long flight phases. Therefore, we propose to shift the position of the
footstep region with the CoM traveled distance in flight ∆χi. This extension enables a
faster running speed, due to a shift of the footstep region ellipse in the running direction.

Figure 4.3a shows the footstep regions (Ω1 and Ω2) for two preview steps in the flight
subphase. Both footstep regions are computed using the corresponding previous target
foot position (χft,0 and χft,1) as a starting point with the foot distance offset according
to the CoM traveled distance in flight.
Figure 4.3b illustrates the footstep regions for the stance subphase. The stance foot
(here right foot) is constrained to the touch-down foot position. Here, the robot´s center
of pressure (CoP)1 (force focus point) is located at the stance foot position and fixed.
However, robots with planar feet can shift the CoP within the foot support polygon, i.e.
foot contact points with the ground, while ensuring stability. Therefore, we propose a
stance CoP region Ωs spanned by the foot support polygon in which the CoP can be
shifted. Figure 4.3c shows the footstep regions with the right foot in stance and a shifted
CoP, thus with active CoP adaptation.
Due to less controllability without CoP adaptation, the second target footstep (in Figure
4.3b) needs to be adjusted more to ensure stable running.

1The center of pressure (CoP) is the location where the resultant force vector would act if it could be
considered to have a single point of application [20].
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(a) Flight subphase with both feet in the air.

(b) Stance subphase with the right foot in stance and left foot in the air,
without CoP adaptation.

(c) Stance subphase with the right foot in stance and left foot in the air, with
active CoP adaptation.

Figure 4.3: Feasible footstep regions for two preview steps and both subphases: (a) flight,
(b) stance without CoP adaptation, and (c) stance with CoP adaptation.



4.3 Hopping locomotion 23

4.3 Hopping locomotion
The proposed CoM trajectory planning approach for running locomotion, with single-stance
footsteps, can be easily adapted to hopping using double-stance footsteps. Figure 4.4 shows
the analogy between the two locomotion gaits. Here, each single-stance footstep from the
running locomotion corresponds to one double-stance footstep. The foot trajectories for
both feet, during hopping, share the same target foot locations in longitudinal (x-axis)
and vertical (z-axis) directions. The lateral offset corresponds to the user-defined step
width.

Figure 4.4: Comparison of the planned target foot positions for running and hopping.

Additionally to the adapted footsteps, the footstep regions Ωi are adapted. In general, the
footstep regions Ωi,h for hopping are defined using a rectangular-shaped area centered at
the previous hopping footstep (center between both previous footsteps). The total length
of the area is twice the maximum step length Lmax. The total width of the area is twice
the maximum step width Wmax. The center of the area is shifted with an offset according
to the CoM traveled distance during flight ∆χi. The first footstep region (only in stance)
Ωs,h for hopping is defined within the foot support polygon, spanned by the outer contact
points of both feet, i.e. area between the two feet. Therefore, the position of the CoP is
restricted within a large area, which offers higher flexibility in case of perturbations or
challenging robot configurations.
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(a) (b)

Figure 4.5: Feasible footstep regions in hopping for two preview steps and both subphases:
(a) flight and (b) stance with CoP adaptation.

4.4 Conclusion
In this chapter, we propose an optimal CoM trajectory planning approach, extending the
analytical planning method shown in Chapter 3. The CoM trajectory in the vertical axis is
evaluated analytically as proposed in Section 3.1. The horizontal CoM trajectory planning,
from Section 3.2, is extended with optimal foot target placement and consequently optimal
CoM trajectory waypoints. Additionally, with this method, the CoP is shifted optimally
within the stance foot contact area. Thus, two adaptation strategies are used to compensate
for perturbations.
In the optimization formulation (Section 4.1), the foot adjustment distance ∆χft,i is
minimized for all preview footsteps, i.e. the distance from the target footstep to the
corresponding desired footstep. Additionally, the CoM take-off velocity χ̇T O,n at the last
preview step i = n is minimized to a desired final CoM velocity, e.g. χ̇T O,n

!= 0. The
solution for the take-off states from (3.26) is used as an equality constraint, to ensure a
stable running CoM trajectory considering the optimized target foot positions.
The placement of the target foot positions is restricted within feasible footstep regions
Ω (see Section 4.2). The footstep regions guarantee kinematic feasibility and prevent leg
collisions while running. The CoP in the stance foot is adapted within the foot support
polygon (contact points with the ground), enabling higher robustness of the planner.
The last section shows how the CoM trajectory planning can be used to enable a stable
hopping locomotion gait. For that, the target footsteps are converted to target hopping
footsteps (combining both feet) and the footstep regions Ω are adapted for hopping to
Ωi,h.

The next chapter evaluates the presented method using a point-mass in simulation,
assuming ideal CoM and foot position tracking. Subsequently, the method is evaluated
using the robot Kangaroo [7] in simulation.



5 Evaluation of the presented planning
method

This chapter evaluates the proposed biologically-inspired CoM trajectory planning method
using a simulated point-mass (PM) robot model. In particular, we assume ideal CoM and
foot position tracking, i.e. the reference output of the planner at timestep t is considered
the input at the next timestep t′ = t + ∆t.
Figure 5.1 shows a simplified version of the planner structure (from Figure 3.6) with the
PM model. The output of the running planner is the desired CoM acceleration ẍdes and
the desired foot trajectories. The PM model integrates the desired CoM acceleration, once
to obtain the desired CoM velocity ẋ, and twice for the desired CoM position x. The
desired CoM state is fed back to the running planner input. The foot trajectories are fed
back to the input of the running planner, which enables ideal foot tracking.
In this chapter, we evaluate the functionality of the proposed method. Furthermore,
the optimal CoM trajectory planning approach is compared to the analytical planning
approach. The last experiment investigates the robustness of the method with different
initial robot configurations while comparing the impact of the CoP adaptation.

Figure 5.1: Planner structure with the Point-Mass model. Ideal feedback for the CoM
state and foot positions.

The planning algorithm was implemented in Python1 3.10 using the QP solver qpSWIFT
[21] for the foot target optimization from Chapter 4. The simulation frequency of 1ms
could not be reached in real-time with the implementation in Python. However, the
planning method was also implemented in Matlab/Simulink which was feasible for real-
time performance.
The following experiments use a commanded reference CoM velocity of vx = 0.5ms−1 (in

1https://www.python.org/

25
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x-direction). The flight time Tf is set to 0.17s and the stance time Ts is set to 0.33s for
each preview phase. Further parameters are found in the appendix Section A.1.

Figure 5.2 shows the spatial view of a running gait using the proposed CoM trajectory
planning method. The red line corresponds to the past CoM trajectory and the dashed
lines show the flight phases with the corresponding way-points (touch-down and take-off).
The preview CoM trajectory is marked in grey. The filled rectangles show the footstep
history of each foot separately. The cross- and circle-shaped markers show the target and
desired footsteps, respectively.
This experiment shows a stable running pattern, where the adjustment of the first
right footstep is sufficient to converge to the desired motion. The optimal trajectory
planner uses two strategies to compensate for perturbations, such as a difference in
commanded and measured CoM velocity (vx,ref = 0.5ms−1 > vx,ini = 0.0ms−1). The first
strategy adapts the CoP in the stance foot within the foot support area to counteract
small perturbations. However, larger perturbations need to be adapted using footstep
adaptation. In this experiment, the first right footstep is adapted to accelerate the robot
to the desired velocity, after that, all target footstep positions correspond to the desired
footstep positions. Therefore, step adaptation only affects the first footstep while the CoP
adaptation compensates for smaller deviations throughout the process.

Figure 5.2: Spatial view of a stable running gait using the proposed planning method with
optimal target footstep placement and optimal CoM trajectory waypoints..

Figure 5.3 shows the CoM trajectory in the vertical axis (side view). Here, the height at
touch-down corresponds to the commanded desired TD height, as proposed in (3.5). The
TO height results from the evaluated polynomial splines at the end of each stance phase
(3.6).

The CoM behavior in time is shown in Figure 5.4. Here, the horizontal CoM trajectories (x
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Figure 5.3: Vertical CoM trajectory with optimal target footstep placement.

and y) show linear flight phases, due to zero acceleration in flight (3.10). The vertical CoM
trajectory (z-axis) shows parabolic flight curves, corresponding to a constant acceleration.

Figure 5.4: CoM trajectories in time with ideal robot behavior (point-mass model).

Figure 5.5 displays the desired leg forces Fleg, computed using the desired CoM acceleration,
robot mass m = 40kg and gravitational vector g as

Fleg = m(ẍdes + g). (5.1)



5.1 Optimal footstep placement 28

The vertical component Fleg,z shows strictly positive and rather high forces compared to
the horizontal components, Fleg,x and Fleg,y. These show repetitive longitudinal forces
(x-axis), due to a constant forward velocity. The lateral forces (y-axis) show alternating
signs, depending on the current foot in stance. For example in the third stance phase
(1.05 < t < 1.38) the right foot is in stance, therefore, the resulting lateral forces are
positive (pushing towards the left leg).
The commanded leg forces resemble measured human leg forces (compared with Figure
3.1). Therefore, the biologically inspired CoM trajectory planning successfully imitates
the GRF of a human running gait.

Figure 5.5: Commanded desired robot leg forces (5.1) in Newton.

5.1 Optimal footstep placement
In this experiment, we show that the purely analytical planning method will diverge even
for finely tuned initial conditions. On the other hand, the extended optimized planner
approach will converge from a large set of initial conditions.
The analytical planner computes the CoM trajectory take-off waypoints (3.26) using fixed
target footsteps (desired footsteps). Therefore, a sub-optimal set of desired footsteps and
initial robot configurations leads to unstable running, i.e. the robot falls. The optimized
planning method minimizes the footstep adjustment distance while ensuring stable running
locomotion (4.1). Therefore, the selection of the desired footsteps must not be ideal.
The selection of the initial CoM velocity (vini = [0.46, −0.1, −0.2]T ), for this experiment,
was determined empirically. This starting configuration enables stable running, for the
analytical planning approach, for a few steps until the CoM trajectory diverges.

The experiment is executed using a reference CoM forward velocity of vx = 0.5ms−1, flight
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time of 0.17s and stance time of 0.33s. Further parameters are found in the appendix
Section A.1.
Figures 5.6 and 5.7 show the CoM trajectory and footstep pattern for both planning
approaches. The analytical planner approach shows that every target footstep is equal
to the corresponding desired footstep, due to fixed target footsteps, defined by the user.
At first, the running gait is stable, but due to sub-optimal footstep placement the CoM
trajectory diverges after five steps. The continuous trajectory re-planning (online) enables
the planner to adapt the reference leg forces (derived from the CoM acceleration), however,
this is not sufficient to avoid divergence.

On the other hand, the optimal planner approach (Figure 5.7) shows a stable running
gait using optimal target footstep placement. As discussed in the previous experiment,
the CoM velocity difference is compensated by step adaptation in the first right footstep.
The consecutive footsteps show perfect footstep placement (corresponding to the desired
footsteps).

Figure 5.6: Purely analytical planner approach
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Figure 5.7: Optimized planner approach

5.2 Challenging initial robot configurations
In this experiment, we investigate the robustness of the planning method using three
challenging initial configurations, i.e. initial CoM velocities. Additionally, we discuss
the impact of the CoP adaptation (see Section 4.2), offering higher robustness for the
planning method. The following experiments use the same parameter settings as the
previous experiments (see appendix Section A.1), with different initial CoM velocities vini.

Figure 5.8: Horizontal planning for the CoM in a standstill without CoP adaptation -
initial velocity vini = [0, 0, 0]T .

First, we show the running gait for the CoM in a standstill without CoP adaptation,
i.e. initial CoM velocity vini = [0, 0, 0]T . Figure 5.8 displays the CoM trajectory and
footstep placement (filled rectangles) with the corresponding footstep adjustment distance
∆xft,i = xft,i − xft,i,des, i.e. difference between optimized and desired footstep locations.
The first footstep is considered as the initial footstep in stance (fixed), thus the first
footstep distance ∆xft,1 is always zero. The consecutive footsteps i > 1 show a significant
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footstep distance, which converges after five footsteps. This footstep pattern achieves a
stable running motion using only step adaptation (CoP adaptation inactive).

Next, we compare running gaits with three challenging initial robot configurations, with
and without CoP adaptation.
The first experiment (Figure 5.9) shows a running pattern with the robot in a standstill.
In the second and third experiment (Figure 5.10 and Figure 5.11) the robot starts in the
opposite direction of the desired running direction and different lateral velocities. All
experiments show stable running gaits. The use of CoP adaptation acts as an additional
strategy to compensate for disturbances (e.g. challenging initial conditions), in addition
to footstep adjustment.

(a) With CoP adaptation

(b) Without CoP adaptation

Figure 5.9: Comparision of the horizontal planning with and without CoP adaptation
using the initial CoM velocity vini = [0, 0, 0]T (standstill).
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(a) With CoP adaptation

(b) Without CoP adaptation

Figure 5.10: Comparision of the horizontal planning with and without CoP adaptation
using the initial CoM velocity vini = [−0.1, 0.1, 0.0]T .

(a) With CoP adaptation

(b) Without CoP adaptation

Figure 5.11: Comparision of the horizontal planning with and without CoP adaptation
using the initial CoM velocity vini = [−0.5, −0.4, 0.0]T .
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The convergence of the footstep adjustment distance is used as a metric for comparison.
Figure 5.12 shows the L2-norm of the footstep adjustment distance ||xft,i||2 for various
initial configurations. Colors separate the different initial configurations. Continuous lines
and filled circle-shaped markers indicate active CoP adaptation. For each initial configu-
ration, active CoP adaptation causes a faster footstep distance convergence. Additionally,
the footstep distance after convergence is much lower for the experiments with active
CoP adaptation. Without adaptation, the footstep distance converges to approximately
9mm, for all starting configurations. With adaptation, the footstep distance converges to
approximately 1.8mm, for all starting configurations.
Due to a not optimally selected step width, the optimal footsteps without CoP adaptation
are moved closer to the body, achieving a higher footstep distance after convergence. This
is likely due to the optimization selecting a smaller optimal step width for faster running.
The CoP adaptation compensates for this effect and enables a small footstep distance
after convergence. At even higher velocities, the converged footstep distance will decrease
even for active CoP adaptation.

Figure 5.12: Norm of the footstep adjustment distance ||∆xft,i||2 = ||xft,i,target −
xft,i,des||2 for different initial CoM velocities vini.
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5.3 Conclusion
In this chapter, the proposed biologically-inspired CoM planning method is evaluated
using a point-mass model, assuming ideal CoM and foot position tracking. The online
planner is tested for a forward velocity of vx = 0.5ms−1 converging to a stable running
motion. The commanded leg forces, retrieved by the reference CoM acceleration, replicate
human leg forces from running experiments on a force plate treadmill [3].
Next, the purely analytical planner approach is evaluated showing a diverging running
gait, even for finely tuned parameters and starting conditions. On the other hand, the
optimized planning approach compensates the initial difference in the CoM measured and
commanded velocity, resulting in a stable running gait.

In the last experiment, various challenging initial robot configurations are tested, such
as running from a standstill. Additionally, CoP adaptation is compared to a fixed CoP
in the stance foot. Generally, active CoP adaptation shows a faster convergence for the
footstep distance (difference between the target and desired footstep position), as well as
a lower overall footstep distance after convergence.

The following chapters introduce the whole-body control framework and integrate the
optimized planning method in a simulated robot using a whole-body controller.



6 Whole-Body Control

This chapter presents an overview of the whole-body control (WBC) framework, which
enables humanoid robots to execute a variety of tasks, such as balancing, running, or other
complex movements. Humanoids typically have a large number of degrees of freedom
(DoF) that are exploited to various degrees for different tasks. The WBC framework is
used to find the optimal control outputs while executing various tasks. For instance, a
controlled body orientation plays an important role in balancing during running and can
be implemented as a WBC task. This work uses an inverse-dynamics approach introduced
by Englsberger [22] and is embedded in an QP based optimization framework. In this work,
the WBC is used to enable stable running using commanded reference foot trajectories
and a commanded reference CoM acceleration.

6.1 Dynamic model
Humanoid robots are described with a dynamic free-floating model, gaining an additional
six degrees of freedom compared to stationary robots. These DoF make the system
underactuated because they are not controllable directly. The floating base state vector
qbase ∈ R6 is composed by the base position xbase ∈ R3 and the base local orientation
αbase ∈ R3, e.g. roll-pitch-yaw angles. The robot joints are included in the joint state
vector qjnt ∈ Rn. The extended state vector results in

q =

xbase

αbase

qjnt

 =
�
qbase

qjnt

�
. (6.1)

The equation of motion for a free-floating dynamic model is defined as
M(q)q̈ + C(q, q̇) + τg(q) = ST τ + τext. (6.2)

Here, the system matrices are denoted with the inertia matrix M and the coriolis and
centrifugal matrix C. The vector τg includes the gravitational forces and moments. The
matrix S =



0nx6 Inxn

�
is a selection matrix for the torque vector τ , that selects only

the n joint torques that are actuated directly. The generalized forces and torques acting
on the robot are combined in the vector τext.

6.2 Contact constraints
Due to the gravitational force, the free-floating robot body moves towards the ground
surface. Thus, the robot needs to make contact with its environment. The contact

35
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is modeled by approximating each robot foot with a rectangular foot contact area,
each spanned by four contact points (see figure 6.1). For each contact point j, three

Figure 6.1: Outline of CoM frame, contact frame, and contact force vectors. Figure
adapted from [22].

perpendicular contact force vectors are considered 0fcj =


fcj,x fcj,y fcj,z

�T
. The prefix

0□ indicates, that □ is represented in the world frame. The generalised contact force
vector 0Fcf,k =



0fT

c1 · · · 0fT
c4

�T ∈ R12 combines the contact force vectors 0fcj for four
contact points for each foot k = 2, resulting in a total of nc = 8 contact points. The
generalised spacial wrench 0wcf,k for each foot k is defined as

0wcf,k =
�

0fcf,k
0ωcf,k

�
=

�
I3×3 · · · I3×3
0p̃c1 . . . 0p̃c4

�
� �� �

JT
cf,k


0fc1

...
0fc4


� �� �

0Fcf,k

(6.3)

where 0p̃cj is the skew-symmetric cross-product matrix

0p̃cj =

 0 −pcj,z pcj,y

pcj,z 0 −pcj,x

−pcj,y pcj,x 0

 (6.4)

for the vector 0pcj =


pcj,x pcj,y pcj,z

�T
, denoting the position of the contact frame

0Cj . Further, 0fcf,k =


fx,k fy,k fz,k

�T
and 0ωcf,k =



ωcf,k,x ωcf,k,y ωcf,k,z

�T
denote
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the generalized force vector and generalized angular momentum vector for one foot,
respectively.

The equation of motion, with inserted contact forces, results to

Mq̈ + Cq̇ + τg� �� �
h

= ST τ +
2�

k=1
(0JT

f,k
0JT

cf,k� �� �
JT

k

Fcf,k)

=


ST JT

1 JT
2

�
� �� �

Au

 τ
Fcf,1
Fcf,2


� �� �

u

.

(6.5)

Here, 0JT
f,k denotes the spacial end effector Jacobian corresponding to the k-th end effector

wrench 0wk. The control input vector u combines the robot´s actuated joint torques
and contact forces for both feet. The matrix Au combines the selection matrix S and
the contact force mapping matrix Jcf . These map the control input vector u to the
generalized joint torques. The generalized accelerations q̈ are found as

q̈ = −M−1h� �� �
q̈MB

+ M−1Au� �� �
Q

u. (6.6)

Here, Q maps the control inputs u to the generalized accelerations q̈. In q̈MB the
acceleration due to multi-body effects is included.

Since the robot typically relies on pushing off the ground and moves forward primarily
due to friction, it is essential to account for unilateral contact and friction constraints.
The friction constraints [23] are defined, for each contact point j, as

|fcj,x| ≤ µfcj,z

|fcj,y| ≤ µfcj,z

fcj,z ≥ 0
(6.7)

6.3 Whole-body controller tasks
The whole-body controller enables robots to perform basic activities like walking and
running. Due to the high number of joints, the controller structure is separated into
multiple whole-body control tasks to find a feasible control output for all joints. The
whole-body control tasks are defined using the control input vector u as:

di,des
!= Diu, (6.8)

with the desired task space vector di,des and the task space mapping matrix Di for the
corresponding i-th task.
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6.3.1 CoM acceleration task
One of the outputs of the running planner (3) is the desired CoM acceleration ẍdes. To
map the acceleration to the control input u, the following transformation of the CoM
acceleration to the leg force is considered:

Fleg,des = m(ẍdes + g), (6.9)

where m is the total robot weight and g is the gravitational vector. The resulting leg
force is then mapped to the control input u as

−Fleg,des� �� �
dcom,des

= Jcom� �� �
Dcom

u. (6.10)

Here, Jcom maps the foot contact forces to the desired leg force.

6.3.2 Foot acceleration task
The foot acceleration task aims to follow a commanded reference foot trajectory (see
3.3.2). A task space PD controller is used:

ẍf,des = ẍf,ref + kd(ẋf − ẋf,ref ) + kp(xf − xf,ref ). (6.11)

Here, the desired foot acceleration ẍf,des is computed using the reference foot acceleration
ẍf,ref , the foot velocity error weighted with kd > 0, and the foot position error weighted
with kp > 0. The hybrid foot velocity 0vf introduced by Murray et al. [24],

0vf =
�

0ẋf
0ωf

�
= 0Jf q̇ (6.12)

combines the translational velocity 0ẋf with the angular velocity 0ωf . The hybrid
Jacobian 0Jf maps the generalized joint velocities to the hybrid velocity vector. The
derivative of 0vf results in

0v̇f = 0J̇f q̇ + 0Jf q̈. (6.13)
The derivative of the desired hybrid velocity vector is defined as

0v̇f,des =
�

ẍf,des

ω̇f,des

�
. (6.14)

The desired angular velocity is set to zero 0ωf,des = 03x1, thus not allow foot rotation
during the swing phase. We insert the generalized joint accelerations 6.6 into the derived
hybrid velocity vector 6.13 and set 0v̇f = 0v̇f,des, resulting to

0v̇f,des − 0J̇f q̇ − 0Jf q̈MB� �� �
df,des

= 0Jf Q� �� �
Df

u. (6.15)

Thus, the foot acceleration task can be written as a function of the control input vector u
using the desired foot acceleration task vector df,des and the task mapping matrix Df .
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6.3.3 Further tasks
A stable running locomotion gait requires more WBC tasks, e.g. to stabilize the torso´s
orientation. Table 6.1 decodes the desired task vector di,des and the task mapping matrix
Di for each task i separately. The torso orientation task is defined similarly to the foot
acceleration task, only considering the angular terms, i.e. lower half of the hybrid velocity
vector. The Jacobian Jtorso maps the generalized joint accelerations to the hybrid torso
velocity vector.
Another important task forces the foot to stay in contact during the stance phase. Here,
the foot acceleration notation is used with zero desired foot acceleration ẍf,des = 0, thus
the stance foot should not move.

Task Desired task vector di,des Task mapping matrix Di

CoM acceleration −m(ẍdes + g) 0Jcom

Foot acceleration 0v̇f,des − 0J̇f q̇ − 0Jf q̈MB
0Jf Q

Foot contact tracking 0J̇f q̇ − 0Jf q̈MB
0Jf Q

Torso orientation 0ω̇torso,des − 0J̇torsoq̇ − 0Jtorsoq̈MB
0JtorsoQ

Table 6.1: Whole-body controller tasks with their corresponding desired task vector di,des

and task mapping matrix Di

6.4 Optimization via a quadratic program
The cost function G is minimized in the QP using the task errors Diu − di,des:

min
u

G = 1
2

�
i

((Diu − di,des)T Wi(Diu − di,des)),

s.t. − τmax ≤ τ ≤ τmax,

|fcj,x| ≤ µfcj,z,

|fcj,y| ≤ µfcj,z, ∀j ∈ nc,

0 ≤ fcj,z ≤ fz,max,

(6.16)

where Wi are diagonal weighting matrices for each task i and τmax denotes the joint
torque limits. The residual inequality constraints decode the friction constraints for each
contact point j ∈ nc = 8. The solution yields the optimal input vector u, which balances
the individual tasks based on their respective weights while ensuring compliance with
torque limits and contact friction constraints.



6.5 Conclusion 40

6.5 Conclusion
This Chapter outlines the structure of the inverse-dynamics whole-body control framework,
adapted from [22]. First, the free-floating dynamic model for a humanoid robot is
introduced with the corresponding equation of motion. The contact constraints are
modelled with force vectors, one for each foot corner point with corresponding friction
constraints.
Next, various whole-body controller tasks are presented, e.g. CoM acceleration tracking,
torso orientation tracking, and foot tracking. The combination of all tasks enables the
robot to perform basic activities, such as running, while also balancing the robot. In the
last part, the whole-body tasks are integrated into a QP optimization. Here, constraints
are applied to the maximum robot torques and friction.

In the next chapter, the proposed planning method is integrated on the robot Kangaroo
in simulation using a whole-body controller and evaluated.



7 Whole-Body Simulation

This chapter evaluates the proposed biologically-inspired CoM trajectory planning method
using a simulated robot model of the robot Kangaroo [7] from PAL Robotics. The robot
is a bipedal humanoid robot without arms with an approximate height of 1.45m and a
weight of 40kg, specially designed for dynamic running motions.
The robot is simulated in the physics simulator MuJoCo 3.2.0 [6], short for Multi-Joint
dynamics with Contact, using Python 3.10. For the foot target optimization, we use the
QP solver qpSWIFT [21]. The optimization of the control input vector u in the whole-body
control framework (6.16) is solved with the QP solver OSQP [25]. The controller and
simulator frequency is set to 1kHz.

Figure 7.1 shows a simplified version of the planner structure (from Figure 3.6) with the
whole-body control framework and the robot model. The output of the running planner is
the desired CoM acceleration and desired foot trajectories. These act as an input reference
for the whole-body control framework. The WBC is used to find the optimal control
input while executing various tasks, e.g. CoM acceleration tracking and foot acceleration
tracking. The output of the WBC represents the torque commands for each of the robot´s
joints. Further details on the whole-body control framework can be found in Chapter 6.
The current robot´s CoM position and velocity, as well as the current foot positions, are
fed back to the running planner input from the WBC. The CoM reference acceleration is
directly fed back to the planner input, due to high noise levels in accelerometer sensors.

Figure 7.1: Modified planning structure (from Figure 3.6) with the integrated whole-body
controller and robot model.

41
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The first experiment on the simulated real-robot platform Kangaroo shows a running
gait with a commanded reference CoM velocity of 0.5m/s, starting from a standstill
(vini = [0, 0, 0]T ). The step frequency is set to fstep = 2.5Hz (steps per second) with
a stance percentage of 66% (cs = 0.66). Thus, one phase (stance subphase and flight
subphase) lasts Tphase = f−1

step = 0.4s, with a stance time of Ts = csTphase = 0.264s and a
flight time of Tf = (1 − cs)Tphase = 0.136s. Further parameters used for this experiment
are shown in Appendix A.2.
Figure 7.2 shows a timeseries of the running gait in simulation.

(a) Side view

(b) Top view

Figure 7.2: Timeseries of the humanoid robot Kangaroo [7] running in the simulation
environment MuJoCo with a reference CoM forward velocity of vref,x = 0.5.

The spatial views (top view and side view) of the planned CoM trajectory and planned
footsteps are shown in Figure 7.3.
Due to a standstill at the start, the robot needs to adapt the first right footstep to the
back to achieve the desired running speed (see the grey footstep in the left lower corner of
Figure 7.3a). After three footsteps, the footstep error converges to zero and the desired
CoM velocity is reached. The point-mass model results (Figure 5.2) from Chapter 5 with
the same settings, show similar results. The footstep error converges faster, after one
footstep. Therefore, the WBC framework manages to track the reference trajectories
successfully.
The vertical CoM trajectory, see Figure 7.3b, shows that the running motion is stable and
corresponds to the planned trajectory. The initial CoM height is 0.9m and the desired
touch-down height (grey dashed horizontal line) is 0.83m. The measured touch-down
height shows an average height difference of ∆z = 5mm to the desired touch-down height.
Due to fixed timing, the upcoming vertical touch-down position is estimated using 3.30,
thus the actual CoM touch-down height does not necessarily need to correspond with the
desired TD height.
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(a) Top view

(b) Side view

Figure 7.3: Spatial view of a stable running gait using the proposed planning method with
optimal target footstep placement and optimal CoM trajectory waypoints.
Simulated with the robot Kangaroo in a standstill (vini = [0, 0, 0]T ).
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Figure 7.4 displays the trajectories for the measured foot positions (continuous lines) and
the corresponding target foot positions (dashed lines). The foot trajectories are computed,
as shown in Section 3.3.2, using a polynomial spline for each axis separately. The reference
foot position is computed by evaluating the spline curve at the current phase timestep,
and is then used as an input for the whole-body controller for foot tracking. The goal of
this WBC task is to reach the referenced foot target position after the foot flight time.
The foot target task is prioritized only at the end of the foot flight phase. Therefore,
the time-variant weight of the foot acceleration WBC task is selected lower αft,min at
the beginning of the foot flight phase and higher αft,max at the end of the foot flight
phase. For instance, the foot position in the second foot flight phase (t ∈ [1.0, 1.4]s) does
not correspond to the referenced foot trajectory at the beginning of the foot flight phase.
At the end of the foot flight phase, the foot position corresponds to the commanded
position. Thus, the foot position tracking after stance is not prioritized to enable higher
tracking performance for other WBC tasks. The movement of the left foot in negative
x- and y-direction after stance, shows that the foot creates a moment counter-acting the
body´s moment (illustrated in Figure 7.4 on the right), thus the torso orientation task is
prioritized over the foot tracking task.

Figure 7.4: Foot position trajectories (continuous lines) with the reference foot position
trajectories (dashed lines) for the left foot.

Another essential WBC task is the CoM acceleration task. The reference CoM acceleration
is mapped to the desired leg forces Fleg (5.1) using the robot mass m = 40kg and
gravitational vector g. The commanded desired leg forces are shown in Figure 7.5. The
vertical component Fleg,z shows strictly positive and rather high forces in comparison to the
horizontal components, Fleg,x and Fleg,y. These show repeating longitudinal forces (x-axis),
due to a constant forward velocity. The lateral forces in y-axis show an alternating sign,
depending on the current foot in stance, e.g. in the third stance phase (1.05 < t < 1.38) the
right foot is in stance, therefore, the resulting lateral forces are positive. The commanded
leg forces resemble measured human leg forces [3], thus the biologically inspired CoM
trajectory planning successfully imitates a human running gait.
The desired CoM acceleration and reference foot trajectories are used as a WBC task for
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the whole-body controller.

Figure 7.5: Commanded desired robot leg forces Fleg in Newton computed using (5.1) and
the commanded desired CoM acceleration ẍdes.

Figure 7.6 shows the robot joint torques, commanded from the whole-body controller.
The torque limits of τmax = 1000Nm are included in the WBC optimization formulation
(6.16) and are never exceeded. The linear joints, controlling the leg length for each foot,
show the highest torque values in stance. As shown in Figure 7.5, the commanded vertical
leg forces are the highest, thus the leg length joints controlling mostly the vertical position
of the robot show much higher torque demands than other joints.
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Figure 7.6: Commanded robot joint torques with the upper limit of τmax = 1000Nm. Left
leg torques are continuous lines and right leg torques are dashed lines.

7.1 Push recovery analysis
In this experiment, the robustness of the controller is evaluated. The robot is pushed on
the torso with a disturbance force Fdist for a duration of ∆t from 24 different angles while
running forward at vref = 0.5ms−1. The push occurs in the middle of the stance phase of
the left foot. The maximal recoverable disturbance impulse J = Fdist∆t for each angle is
recorded and visualized. The experiment settings are found in the appendix Section A.2.

The experiments were executed for two different push durations, a short push ∆t = 0.2s
and a longer push ∆t = 0.8s, as well as with and without CoP adaptation. The experiment
for a short push duration, in Figure 7.7a, illustrates a good push recovery for all angles
especially in the longitudinal directions. The maximum recoverable disturbance impulse
of J = 74Ns corresponds to a disturbance force of 370N for ∆t = 0.2s, in forward
running direction (345◦) with CoP adaptation. The maximum disturbances that can be
compensated for lateral pushes are slightly larger on the right side of the robot (lower
half of the plot) because the stance foot at the moment of the push is the left foot.
The results without CoP adaptation show lower recoverable disturbance impulses due
to less controllability of the robot, especially for pushes to the back (180◦). Due to the
short push duration, both strategies, step adaptation and CoP adaptation, are used to
compensate the disturbance. On the other hand, a longer push duration forces the robot
to compensate the disturbance also during stance using only CoP adaptation.
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(a) ∆t = 0.2s

(b) ∆t = 0.8s

Figure 7.7: Comparision of the maximal recoverable disturbance impulse for a push while
running forward at vref = 0.5ms−1. The push occurs in the middle of the left
foot stance phase for push durations of a) ∆t = 0.2s and b) ∆t = 0.8s.
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Figure 7.7b shows the experiment results with a longer push duration of ∆t = 0.8s. Here,
the maximal disturbances without CoP adaptation differs slightly from the short push.
However, the maximal recoverable disturbances with CoP adaptation increase significantly,
especially in longitudinal pushing directions. The maximum recoverable disturbance
impulse of J = 113Ns corresponds to a disturbance force of 141N for ∆t = 0.8s, in forward
running direction (0◦) with CoP adaptation.
Two recovered pushes are visualized in Figures 7.8a and 7.8b for a push in lateral direction
(y-axis) with a duration of ∆t = 0.8s. First, a push with a force of Fdist,y = −50N (Figure
7.8a) is examined. Here, the running gait is stabilized using both strategies. For higher
performance, the stepping stones are re-planned when a large footstep error is reached,
enabling a faster convergence of stable running. The second experiment showcases a push
with Fdist,y = 15N (Figure 7.8b). During the push, the difference between the target and
desired footsteps is minimal, due to the CoP adaptation during stance, compressing the
small disturbance force almost without step adaptation.

(a) Fdist = [0, −50, 0]N

(b) Fdist = [0, 15, 0]N

Figure 7.8: Two running gaits with an external push at t = 1.5s with different forces Fdist

for ∆t = 0.8s. The robot starts in a standstill with a commanded reference
forward velocity of vref = 0.5ms−1
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Figures 7.9a and 7.9b decode the horizontal positions of the CoP in the stance foot over
time, for the previously shown experiment in Figure 7.8b. The CoP can be shifted in the
stance foot within the foot contact area, displayed with the upper and lower boundaries
in the figures. At the start of the experiment, the robot is in a standstill, thus the CoP is
shifted to the back (negative x-axis) to push the robot in front and gain velocity. The
robot starts with the left foot in stance and falls to the right-hand side, therefore the CoP
is also shifted in negative y-direction.
During stable running (t > 2.5s), the CoP is shifted in the same direction as the CoM
approaches the foot to decelerate the robot. Due to forward running the x-component
of the CoP is always shifted to the front, the y-component is shifted to the right for the
right foot in stance and to the left for the left foot in stance.
The push occurs at t = 1.5s, here the CoP is significantly shifted in the pushing direction to
compress the disturbance. The x-component does not show any changed behavior because
the push is orthogonal to this direction. Therefore, the CoP adaptation compresses the
small disturbance with minimal footstep adaptation.

(a)

(b)

Figure 7.9: Relative position of the CoP with origin in the footstep for the a) longitudinal
and b) lateral components for a push at t = 1.5s for ∆t = 0.8s with a magnitude
of Fdist = [0, 15, 0]N.
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7.2 Locomotion transitions
The evaluations of the optimized planner approach showed high robustness to disturbances
and challenging initial conditions. This enables locomotion transitions using a different
controller for other gaits. For instance, in this experiment, the walking locomotion
controller from Egle et al. [26] is used for CoM velocities up to 0.4ms−1 and is then
switched to the proposed running planner. The methods are switched at the beginning of
the left foot stance phase. Figure 7.10 shows a time series of the humanoid robot Kangaroo
during the transition from a standstill to a final running velocity of vx = 1.0ms−1.

Figure 7.10: Time series of the humanoid robot Kangaroo [7] during a walking to running
transition.

7.3 Conclusion
This chapter integrates and evaluates the proposed planning method on the robot Kangaroo
in simulation with an inverse-dynamics whole-body controller from Chapter 6. First, a
stable running gait is evaluated. The footstep pattern shows that the footstep adjustment
distance converges to zero after three footsteps. Foot trajectories show, that the foot
tracking is not following the reference after the foot leaves stance (lift-off), this is caused
by a small time-variant foot task weight at the beginning of the foot flight phase, which
enables the foot to create a counter-momentum to the torso momentum. At the end
of the foot flight phase the foot tracking task is prioritized to guarantee that the swing
foot reaches its target position. The measured robot torques show that the whole-body
controller is successfully limiting the maximum torques and generating a feasible control
input for the robot.
Next, the maximum recoverable disturbance impulses for pushes from various pushing
angles are compared. The planner successfully compensates disturbances of up to Fdist =
370N for ∆t = 0.2s in the forward running direction. Also pushes in lateral direction
are recovered with slightly lower magnitudes. The influence of CoP adaptation during
stance shows significant improvement in robustness, especially for longer pushes ∆t = 0.8s.
The planning method shows robustness against fast dynamic disturbances using step
adaptation and static disturbances using CoP adaptation. Additionally, high robustness
to challenging initial conditions (e.g. standstill) enables locomotion transitions using
different controllers. For instance the DCM-walking controller [26] is used for a walking
to running transition, showing a transition vx = 0.0ms−1 to vx = 1.0ms−1.



8 Discussion and conclusion

8.1 Discussion
The main goal of this thesis is to provide a planning method for humanoid running,
based on the CoM dynamics. The work is based on [3, 5] which provide a biologically
inspired CoM trajectory planning method that approximates human-like running ground-
reaction force profiles. In [3] the planned trajectory is stabilized using the BID controller.
Simulation results show fast running gaits on the humanoid robot Toro with robust
footstep adaptation on the first preview footstep. The BID controller has performance
limitations when handling challenging initial robot states, such as initiating a run from a
standstill. Consequently, the robot’s starting configuration must be adjusted to ensure a
stable running gait.

We propose a different approach, where the CoM trajectory is re-planned at every timestep
(online planning), considering the current CoM position. This approach is extended with
optimal n-preview footstep adjustment and CoP adaptation in the stance foot, allowing for
more robustness to disturbances and initial conditions. Additionally, kinematic limitations
of the robot are considered and leg collisions are prevented (also in [3]) using convex
footstep regions. To meet the convexity requirements of the quadratic program, the
footstep regions cannot be defined for leg cross-over which would be favorable. A solution
to this could be provided by solving multiple QPs with footstep regions that allow leg
cross-over or by using a learned parameter to rotate the convex region around the current
stance foot [27].
The CoP adaptation in the current stance foot, allows the robot to shift the CoP within
the foot contact region, thus enhancing the robustness of the planner.

The proposed method is integrated into a WBC framework and evaluated in simulation
with the humanoid robot Kangaroo [7]. The results show robust and stable running
gaits with various initial conditions and external disturbances. The CoP adaptation
enables high accuracy on stepping stones and can adjust for small static disturbances with
minimal footstep adjustment. Even for large disturbances, CoP adaptation enables faster
convergence of stable running. The maximum velocity reached for this controller reaches
up to vx = 2.1ms−1. Here, the robot diverges from a stable running motion, due to a
significant torso momentum in the vertical z-axis. The foot tracking WBC task manages
to counter-act this moment up to certain speeds. This problem could be solved using a
different robot platform with arms to generate an additional counter-momentum, as used
in [3].
Overall, the method features a robust humanoid running algorithm showing stable running
even when exposed to unknown disturbances or challenging initial robot states.
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8.2 Conclusion
In Chapter 2 and 3 the biologically inspired CoM trajectory planning algorithm is presented
and adapted. The planning algorithm is separated into vertical and horizontal trajectory
planning, using 4-th and 5-th order polynomial splines, respectively. Both trajectories fulfill
a continuous transition between the stance and the flight phase for several preview phases.
The vertical CoM trajectory is solved locally, for each preview phase separately, and aims
to reach a desired touch-down height after each flight phase. The horizontal planning
part aims to find a CoM trajectory according to a sequence of n desired footsteps, the
final CoM take-off velocity, and a minimized vertical distance of the leg force intersection
point with the ground. The combination of both planning approaches enables an online
planning structure with a finite horizon (n preview footsteps). The CoM trajectory is
re-planned after each timestep using the current CoM state, thus, perturbations on the
CoM are considered in planning, increasing the planner’s robustness.
The limitations of the purely analytical planning method are within its design parameters.
Sub-optimally placed desired foot positions and fixed phase timing can cause the running
locomotion to diverge, thus the robot falls. Especially during challenging robot states,
such as running from a standstill or with external perturbations, the method does not
converge to a stable running motion.

Therefore, we extend the purely analytical planning method with optimized design
parameters via a quadratic program (QP), in Chapter 4, to enable robust running even
during challenging robot states or with high external perturbations acting on the robot.
The horizontal planning part is extended with optimal foot target placement and optimal
CoP adaptation in the stance foot. The solution for the take-off states from (3.26) is
used as an equality constraint, to ensure a stable running CoM trajectory considering the
optimized foot target positions. The placement of the foot target positions is restricted
within feasible footstep regions Ω, which guarantees kinematic feasibility and prevents leg
collisions while running. The CoP in the stance foot is adapted within the foot support
polygon, enabling higher robustness of the planner.

The proposed method is evaluated in simulation using a point-mass model, assuming ideal
CoM and foot position tracking. The results, in Chapter 5, show stable running gaits
with commanded leg forces replicating human-like ground-reaction force profiles from
experiments [3]. The optimized planning approach can also manage challenging initial
robot configurations, i.e. initial CoM velocities. Here, the CoP adaptation in the stance
foot shows faster convergence of the foot adjustment distance, compared to a fixed CoP in
the stance foot. This highlights the advantages of this method, where two strategies are
used to compensate for disturbances, i.e. step location adaptation and CoP adaptation.

In Chapter 7, the proposed method is integrated on the humanoid robot Kangaroo in
the simulation environment MuJoCo. The robot is controlled using the inverse-dynamics
whole-body controller from Chapter 6, which finds the optimal control input using a set
of WBC tasks via QP optimization.
The simulation results show stable running gaits with feasible robot torques. Additionally,
a set of robot pushes is examined, showing promising results for different push angles and
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durations, especially in the forward running direction with active CoP adaptation.
The proposed method enables robust running for humanoid robots with n-preview footstep
adjustment and CoP adaptation. Additionally, high robustness to challenging initial
conditions (e.g. standstill) enables locomotion transitions using different controllers, for
instance walking to running transitions using a DCM-based walking controller.

Given the progress made and the challenges identified, this thesis provides a substantial
foundation for future enhancements and improvements:

• Firstly, as mentioned in the discussion, leg cross-over is prevented by convex-shaped
footstep regions. Multiple quadratic programs (QP) could be solved for different
footstep regions allowing for leg cross-over. A different approach could use a learned
parameter to rotate the convex region around the current stance foot [27]. This
improvement could enable human-like dynamic running especially when exposed to
perturbations.

• Phase timing in horizontal planning is not considered for optimization. This would
result in a more general non-linear optimization problem which might be challenging
to solve in real-time. This limits the adaptability of the method due to empirically
tuned timing parameters, that are not adapted to specific situations, e.g. for a
disturbance.

• The planning method is integrated on the robot Kangaroo in Simulation which offers
no arms. Thus, a significant torso moment is observed at higher running speeds
limiting the maximum running speed. A robot with arms could be used to create a
counter-momentum and stabilize the robot.

• So far, the method was only validated in simulation. Humanoid running on a real-life
robot platform is a challenging experiment, due to dynamic movement and high
force demands. However, the high robustness of the planning method could allow
for an integration in real-life.

These advancements could considerably enhance the running planner’s functionality and
allow for its integration into practical, real-world scenarios.



A System Parameters

A.1 Point-Mass Simulations
The parameters shown in Table A.1 and A.2 are used for the point-mass model experiments
from Chapter 5.

Parameter Value Description
fs 1000 Hz Simulation frequency
fp 1000 Hz Planner frequency

fstep 2.5 Hz Step frequency
cstance 0.66 Stance percentage

n 5 Number of preview phases
zT D,des 0.83m Desired touch-down height

αft,i 1e4 QP weight for the footstep error (∀i)
αχp,n 1e3 QP weight for the final CoM take-off velocity
vref



0.5 0 0

�T
ms−1 Reference CoM velocity

χ̇T O,n,des



0 0

�T
ms−1 Desired final CoM take-off velocity

χ̈T O,n,des



0 0

�T
ms−2 Desired final CoM take-off acceleration

Table A.1: Default planner and simulation environment parameters.
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Parameter Value Description
m 40kg Robot mass

∆xft 0.21m Foot length
∆yft 0.09m Foot width
Wnom 0.25m Nominal step width
Wmin 0.12m Minimal step width
Wmax 0.55m Maximal step width
Lmax 0.8m Maximal step length
xini



0 0 0.85

�T
ms−1 Initial CoM position

vini



0 0 0

�T
ms−1 Initial CoM velocity

aini



0 0 0

�T
ms−1 Initial CoM acceleration

xft,right



0 −0.1 0

�T
ms−1 Initial right foot position

xft,left



0 0.1 0

�T
ms−1 Initial left foot position

Table A.2: Default point-mass model parameters.

A.2 WBC Simulations
The parameters shown in Table A.3 and A.4 are used for the experiments from Chapter 7.

Parameter Value Description
fs 1000 Hz Simulation frequency
fp 1000 Hz Planner frequency

fstep 2 Hz Step frequency
cstance 0.62 Stance percentage

n 5 Number of preview phases
zT D,des 0.83m Desired touch-down height

αft,i 1e4 QP weight for the footstep error (i > 1)
αft,1 1e4/0 QP weight for the first footstep error (flight/stance)
αχp,n 1e3 QP weight for the final CoM take-off velocity
vref



0.5 0 0

�T
ms−1 Reference CoM velocity

χ̇T O,n,des



0.2 0

�T
ms−1 Desired final CoM take-off velocity

χ̈T O,n,des



0 0

�T
ms−2 Desired final CoM take-off acceleration

Table A.3: Default planner and simulation environment parameters.
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Parameter Value Description
m 40kg Robot mass

∆xft 0.21m Foot length
∆yft 0.09m Foot width
Wnom 0.25m Nominal step width
Wmin 0.12m Minimal step width
Wmax 0.55m Maximal step width
Lmax 0.8m Maximal step length
vini



0 0 0

�T
ms−1 Initial CoM velocity

aini



0 0 0

�T
ms−1 Initial CoM acceleration

Table A.4: Default parameters used for the humanoid robot Kangaroo in the simulation
environment MuJoCo. The position of the robot and its feet is set by MuJoCo.

Task Parameter Value
CoM acceleration w



100 100 100

�
Torso orientation w 220

kp



500 800 200

�
kd



25 25 25

�
Foot stance w 1000

Foot acceleration w 400
kp



2000 2000 4000

�
kd



70 70 150

�
Foot orientation w 150

kp



500 500 1500

�
kd



80 80 200

�
Closed linkage w 1000

Table A.5: Default parameters of the whole-body controller.
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