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Abstract

Buoyancy affects the horizontal wake far downstream of a heated or cooled body, especially a 
horizontal plate, in an indirect manner via the hydrostatic pressure perturbation. Plane (2D) 
flow at very large Reynolds and Péclet numbers is considered in the present paper. Both 
laminar and turbulent flows are investigated, with the aim of providing asymptotic solutions 
that are suitable as outflow boundary conditions for numerical solutions of the equations of 
continuity, momentum, thermal energy and, in case of turbulent flow, the balance of turbulent 
kinetic energy. Dimensionless variables are introduced, using the total heat flow from, or 
towards, the plate as a parameter. It turns out that the buoyancy effects in the momentum 
equations and in the turbulent kinetic energy balance, respectively, are of the same order of 
magnitude and can be characterized by a Richardson number.

The asymptotic expansions for large distances from the plate lead to a set of ordinary 
differential equations for a self-similar flow field. The interaction between the wake and the 
potential flow is taken into account by applying Bernoulli’s equation as a boundary condition 
to the momentum equation of the wake. As the thermal energy equation as well as the 
boundary conditions for the temperature perturbation are homogeneous, the solution of the 
temperature field contains a free coefficient, which is determined from the over-all thermal 
energy balance.

The results of the analysis are in remarkable contrast to the classical solutions for the wake 
flow without buoyancy. In particular, driven by the hydrostatic pressure disturbance, the flow 
does not decay with increasing distance from the plate. Furthermore, the flow is governed by 
the total heat flow at the plate, whereas the effect of the drag force acting on the plate is 
negligible.

The set of ordinary differential equations is solved numerically. For laminar flow, two kinds 
of solutions are found. One of them describes a flow field containing a region of reversed 
flow. In case of turbulent flow a turbulence model based on the turbulent kinetic energy 
balance is applied. In addition the limit of very weak buoyancy effects is considered, leading 
to power laws in terms of the Richardson number.

 

1 Dedicated to Prof. Dr-Ing. Dr.-Ing. E.h. Klaus Gersten on the occasion of his 95th birthday.
2 Corresponding author.
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1. Introduction

It has been known for many years that the computation of horizontal, or nearly horizontal, 
mixed convection flows suffers from severe problems with regard to the outflow boundary 
conditions [1,2]. If reversed flow far downstream can be excluded, the application of 
conventional outflow boundary conditions may suffice, even if reversed flow regions occur 
within the computational domain [3]. However, the problem with outflow boundary 
conditions persists in case of flows that have, or may have, regions of reversed flow far 
downstream [4,5]. As was already suggested in [2] and further elaborated in [4], a possible 
remedy is to apply asymptotic solutions as outflow boundary conditions.

The wake far downstream of a submerged body is, of course, a classical problem of fluid 
mechanics, commonly considered on the basis of boundary-layer theory, cf. [6], pp. 187-190 
(laminar flow) and pp. 669-671 (turbulent flow). If the body is heated or cooled, a thermal 
wake occurs. Provided buoyancy effects are negligible, the temperature field in free flows is 
analogous to the velocity field, cf. [6], pp. 218-222, 669-671. If, however, buoyancy forces 
affect the flow, the analysis of the wake becomes more complicated. The special case of the 
vertical plane wake above a heated or cooled body was studied analytically, numerically and 
experimentally in [7], where a comprehensive literature survey is also given. In this case, 
buoyancy gives rise to a force term in the momentum equation for the main flow direction, yet 
the asymptotic structure of the far wake remains the same as without buoyancy. Clearly, this 
would also be the case if the wake were not just vertical but arbitrarily inclined with respect to 
the horizontal plane. In case of a horizontal wake, however, there is no buoyancy-force 
component acting in main flow direction, and buoyancy affects the flow only indirectly via a 
perturbation of the hydrostatic pressure. This effect is well-known for both natural and mixed 
convection flows over semi-infinite horizontal plates, see [6], pp. 281-289 for a survey. It is 
remarkable that in case of mixed convection flow over horizontal plates the boundary-layer 
equations exhibit break-downs and non-uniqueness [5,8]. Regarding free flows, it was shown 
in [9,10] that indirect natural convection at a horizontal plate of finite length may be the 
source of horizontal jets. As far as the wake downstream of a horizontal plate of finite length 
is concerned, the question arises whether the far wake is also horizontal. The answer depends 
on the over-all flow field. For large Reynolds numbers it was found in [11]3 and further 
elaborated in [12,13]4 that a potential flow is induced in order to satisfy the Kutta condition at 
the trailing edge of the plate and compensate the hydrostatic pressure perturbation across the 
wake. At the trailing edge, the flow field exhibits a singularity that was investigated for 
laminar flow in [14,15]. Concerning the far field, it was already observed in [11] that a decay 
to free-stream conditions at infinity is not possible for an unbounded flow. Thus, a vertical 
entrance plane (representing, for instance, the outlet of the plate grid of a flow rectifier) at 
some distance upstream of the horizontal plate was introduced in [11] and a vanishing vertical 
velocity component at that entrance plane was prescribed. The flow field can also be bounded 
by horizontal walls of a channel, where the horizontal plate of finite length is placed [12,13]. 
Obviously, far downstream of the trailing edge the wake, guided by the channel walls, will 
become horizontal. The same is true for the flow bounded by a vertical entrance plane, as an 
analysis of the potential flow obtained in [11] shows.

3 An error in the analysis was detected by the present authors. Revised results are given in [4].
4 Corrigendum to [12] by author: All subscripts ought to be 2c in Eq. (33). The coefficient 4/ 𝜋 has to be added 
in front of the brackets in Eq. (48). ― 𝜃2ℎ rather than 𝜃2ℎ is plotted in Fig. 5.
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Another possibility of prescribing suitable boundary conditions for the induced potential flow 
is to assume that the flow far upstream of the plate is slightly inclined with respect to the 
horizontal, cf. [16,17] and the survey given in [18]. In those cases, however, the far wake 
cannot be expected to be horizontal.

In previous work [11–13] the analysis was simplified on the basis of various assumptions, e.g. 
large Reynolds numbers, weak buoyancy effects or small Prandtl numbers. It was also tacitly 
assumed that the classical hierarchy of matched asymptotic expansions is applicable, i.e. that 
the boundary layer solution, in leading order, is independent of the induced potential-flow 
solution. However, under certain conditions, an interaction between the vortex sheet that 
represents the wake and the induced potential flow may be of importance [19]. The interaction 
effect is characterized by a suitably defined interaction parameter. Remarkably, solutions of 
the interaction problem could be obtained in [19] only for values of the interaction parameter 
below a critical value.

In the present analysis we shall try to keep the number of basic assumptions to a minimum. In 
particular, arbitrary values of the Prandtl number will be allowed, and the assumption of weak 
buoyancy effects will be dropped. However, in case of turbulent flow, the limit of vanishing 
buoyancy will be investigated as an interesting special case. To describe the far wake, 
asymptotic expansions for large distances from the plate (or another body) will be performed, 
leading to sets of ordinary differential equations for self-similar laminar and turbulent, 
respectively, flow fields. The interaction between the wake and the potential flow will be 
taken into account by applying Bernoulli’s equation as a boundary condition to the differential 
equations.

The presentation is arranged as follows. After defining dimensionless quantities and 
formulating the basic equations in sections 2 to 4, the laminar wake flow is considered in 
section 5. However, by analogy to the classical laminar wake flow [20], the buoyant 
horizontal laminar wake flow can be expected to become unstable and undergo the transition 
to turbulence already at modestly large local Reynolds numbers. Of course, the streamwise 
pressure gradient induced by buoyancy can have a strong effect on the stability of the laminar 
wake, cf. [21]. To study the associated stability and transition problem is beyond the scope of 
the present investigation. But it appears worthwhile to discuss the main properties of the fully 
turbulent horizontal wake. This will be done in section 6. The last section is devoted to 
conclusions and a discussion of the main results of the analysis. Finally, Appendices provide 
additional material that might be of some interest, but has not been seen as essential for the 
main problem.

2. Dimensionless variables

The plane steady flow in the wake very far from a horizontal plate (or another body of a shape 
that prevents oscillations of the wake) is considered; see Fig.1. For turbulent flow, ensemble 
(or time) averaged quantities are denoted by a bar. The bar can be dropped in case of laminar 
flow.

It is assumed that the Reynolds number and the Péclet number are very large, whereas the 
Prandtl number is of the order of 1, i.e.,

Re = 𝑢∞𝐿/𝜈 ≫ 1 ,  Pe = 𝑢∞𝐿/𝛼 ≫ 1 ,   Pr = 𝜈/𝛼 = O(1) ,    (1)
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where L is the plate length, 𝑢∞ is the constant free-stream velocity far upstream of the plate, 
and 𝜈 and 𝛼 are the fluid’s kinematic viscosity and thermal diffusivity, respectively, which are 
assumed to be constant. For justification of assuming constant fluid properties in contrast to 
accounting for variable fluid properties see [22], pp. 81-96, for a general discussion and 
[23,24] for applications. 

A Cartesian coordinate system (x,y) is used, with the x-axis coinciding with the dividing 
streamline 𝛹 = 0, see Fig. 1. In general, the x-axis deviates from the plane of the plate, 
depending on the whole flow field, see, for instance, Fig. 10 of [13] or Fig. 3 of [4].

 

Fig. 1. The horizontal wake flow far downstream of a horizontal plate with profiles of 
temperature perturbation (𝛩) and pressure perturbation (𝑃) (schematic).

Dimensionless variables are then introduced as follows:

𝑋 = 𝑥/𝐿 ,    𝑌 = 𝑦/𝐿 ,    (2)

𝑈 = 𝑢/𝑢∞ ,   𝑉 = 𝑣/𝑢∞ ,       (3)

𝛩 = 𝜌∞𝑐𝑝𝑢∞𝐿(𝑇 ― 𝑇∞)/𝑄 ,   𝑃 = (𝑝 ― 𝑝∞)/𝜌∞𝑢2
∞ ,     (4)

where 𝑢, 𝑣, T and p are, in this order, the velocity components in direction of x and y, 
respectively, the absolute temperature and the pressure. 𝑇∞ and 𝜌∞ are the constant values of 
temperature T and mass density 𝜌, respectively, in the free stream, 𝑐𝑝 is the fluid’s isobaric 
specific heat capacity, which is assumed to be constant, 𝑄 is the total heat flow from the plate 
per units of time and depth of the plane flow, respectively, and 𝑝∞ is the hydrostatic pressure 
in the undisturbed fluid. The total heat flow rate 𝑄 may be positive or negative, depending on 
whether the plate is heated or cooled. The hydrostatic pressure varies in vertical direction due 
to the gravity force g per unit mass. There are, of course, other possibilities to define 
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dimensionless variables, in particular for the temperature, but the present choice leads to 
formally simple results. 

3. Boundary-layer equations for the dimensionless variables

Considered is the far wake, which is characterized by very large distances from the plate, i.e. 
𝑋→∞. Following the classical estimates for laminar flows at large Reynolds numbers it can be 
seen that the laminar horizontal far wake is slender and satisfies the conditions for applying 
the boundary-layer theory. Regarding the turbulent far wake, it is known from experiments 
that most turbulent free shear layers are sufficiently slender to allow the application of the 
boundary-layer theory, cf. [25] for a survey. Here we will follow that common practice, cf. 
[6], p. 655. A posteriori (Section 6.3) it will be seen that an effective buoyancy parameter 
must not be too large in order not to violate the assumption of slenderness. The width of the 
turbulent far wake even tends to zero in the limiting case of very weak buoyancy effects 
(Section 6.4). 

For formulating the basic equations, further common assumptions are made. Dissipation and 
the work done by pressure are neglected in the thermal energy equation. Justification of that 
simplification is not as trivial as it might appear at the first glance, cf. Appendix A. 
Furthermore, the Boussinesq approximation is applied, cf. [6], pp. 88-89, and the discussion 
in [22], p. 60. Finally, in case of turbulent flow it is assumed that density fluctuations are 
negligible, cf. [6], p. 616. On the basis of those assumptions, we obtain the following 
boundary-layer equations in terms of the dimensionless variables introduced according to Eqs. 
(2) to (4):

∂𝑈
∂𝑋 + ∂𝑉

∂𝑌 = 0 ,     (5)

𝑈∂𝑈
∂𝑋 + 𝑉∂𝑈

∂𝑌 + ∂𝑃
∂𝑋 = ∂

∂𝑌[( 1
Re

+ 1
Re𝑡

) ∂𝑈
∂𝑌] ,     (6)

∂𝑃
∂𝑌 = Ri 𝛩 ,     (7)

𝑈∂𝛩
∂𝑋 + 𝑉∂𝛩

∂𝑌 = ∂
∂𝑌[( 1

Pe
+ 1

Pe𝑡
) ∂𝛩

∂𝑌] ,       (8)

where

Ri = g𝛽𝑝𝑄/𝜌∞𝑐𝑝𝑢3
∞     (9)

is the Richardson number [12,13]. The Richardson number may be positive or negative, 
depending on whether the plate is heated or cooled. The isobaric thermal expansivity 𝛽𝑝 of the 
fluid is assumed to be a positive constant, as usual with the Boussinesq approximation. The 
special case of vanishing 𝛽𝑝 is excluded here; it would require a more complicated analysis 
[26]. The “turbulent” Reynolds number, the “turbulent” Péclet number and, for later use, the 
“turbulent” Prandtl number are defined in analogy to Eq. (1) as

Re𝑡 = 𝑢∞𝐿/𝜈𝑡 ,  Pe𝑡 = 𝑢∞𝐿/𝛼𝑡 ,   Pr𝑡 = 𝜈𝑡/𝛼𝑡 ,      (10)

with 𝜈𝑡 and 𝛼𝑡 as turbulent kinematic viscosity and turbulent thermal diffusivity, respectively. 
Owing to the character of turbulent flow, Re𝑡, Pe𝑡 and Pr𝑡 are, unlike Re, Pe and Pr, not 
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6

constant parameters that govern the flow, but rather dimensionless representations of the flow 
variables 𝜈𝑡 and 𝛼𝑡.

Y is to be taken as a boundary-layer coordinate. For laminar flow with large Reynolds 
numbers, Y is stretched with Re, and matching with the outer, potential flow is accomplished 
with 𝑌 = Re 𝑌→ ± ∞. For turbulent flow, the edges of the wake are described by 𝑦 = 𝑏±(𝑥) 
or 𝑌 = 𝐵±(𝑋), with 𝐵±(𝑋) = 𝐿―1𝑏±(𝑥). The upper and lower signs refer to the upper and 
lower side, respectively, of the wake. The dimensionless width of the wake is then 𝐵(𝑋) = 𝐵+

(𝑋) ― 𝐵―(𝑋), and the slenderness of the wake is expressed by 𝐵(𝑋) ≪ 𝑋.

Apart from the common terms due to convection and shear stresses, respectively, Eq. (6) 
contains a pressure term that represents the indirect effect of buoyancy in horizontal flows. As 
Eq. (7) shows, the pressure term stems from the hydrostatic pressure perturbation that is 
caused by the temperature perturbation. The hydrostatic pressure perturbation is seen to be 
proportional to the Richardson number, Ri. Since the present investigation aims at describing 
wake flows with substantial buoyancy effects, it is assumed that Ri = O(1), with the limiting 
case Ri→0 to be considered separately in Section 6.4 of the paper.

It might be of interest to note that the Richardson number is related to the Archimedes number 
Ar, which is sometimes used in other investigations, e.g. [11], as follows:

Ar = g𝐿𝛽𝑝𝑄/𝑘𝑢2
∞ = Ri Pe .   (11)

To ensure that the wake is horizontal, we require that the dividing streamline, which separates 
the upper part of the wake from the lower one and coincides with the x-axis, is horizontal. 
This gives the boundary condition

𝑉 = 0  at  𝑌 = 0 .   (12)

Since there is no temperature disturbance in the outer, potential flow, the temperature 
disturbance in the wake has to decay according to the boundary condition

                           𝛩 = 0 { as 𝑌→ ± ∞  for laminar flow,
  at 𝑌 = 𝐵±(𝑋)  for turbulent  flow.                            (13)

Finally we have to consider the condition for matching the wake flow with the potential flow, 
in which Bernoulli’s equation is valid. According to Eq. (4), the pressure disturbance 𝑃 is 
defined, in terms of dimensionless variables, as the deviation from the hydrostatic pressure in 
the undisturbed fluid outside the wake. Thus, Bernoulli’s equation without a gravity term is 
applied to obtain the matching condition for the wake as follows:

    𝑃 = (1/2)(1 ― 𝑈2) { as 𝑌→ ± ∞  for laminar flow,
  at 𝑌 = 𝐵±(𝑋)  for turbulent  flow.                (14)

Eq. (14) permits positive as well as negative values of 𝑃 on either side of the wake. However, 
integrating Eq. (7) over the wake cross section gives

     { 
𝑃(𝑋, + ∞) ― 𝑃(𝑋, ― ∞) = (Ri/ Re ) ∫+∞

―∞ 𝛩d𝑌  for laminar flow,

  𝑃(𝑋,𝐵+) ― 𝑃(𝑋,𝐵―) = Ri ∫𝐵+

𝐵― 𝛩d𝑌  for turbulent  flow,
    (15)

indicating that there is a hydrostatic pressure jump across the wake. This pressure jump has to 
be compensated by the potential flow. In outer variables, i.e. from the point of view of the 
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7

potential flow, the wake appears infinitesimally thin, and the pressure jump has to be 
compensated by a vortex sheet. This has already been elaborated in previous work [11–13] for 
weak buoyancy effects, i.e. small values of Ri, and it is equally valid in the present case. 
Thus, the deviation of the longitudinal velocity component from the free-stream value has to 
be antisymmetric as the boundaries of the wake are approached, leading to the following 
additional matching conditions for the wake:

   {  𝑈(𝑋, + ∞) ― 1 = ― [𝑈(𝑋, ― ∞) ― 1]   for laminar flow,
  𝑈(𝑋,𝐵+) ― 1 = ―[𝑈(𝑋,𝐵―) ― 1]   for turbulent  flow.     (16)

Note that applying Bernoulli’s equation implies a coupling (interaction) between the wake 
flow and the potential flow; cf. also the interaction problem investigated in [19].

The set of equations now consists of the 6th order parabolic system of differential equations 
(5) to (8) and the boundary conditions Eqs. (12) to (14) and (16), where Eqs. (13) and (14) 
count for two boundary conditions each. Summing up, the appropriate number of 6 boundary 
conditions is obtained. However, as the thermal energy equation, Eq. (8), is homogenous and, 
furthermore, the associated boundary condition Eq. (13) is also homogeneous, the over-all 
thermal energy balance will have to be considered to fix the maximum value of the 
temperature perturbation.

4. Over-all thermal energy balance

As the Péclet number is assumed to be very large according to Eq. (1), the heat flow due to 
conduction in main flow direction is negligible in comparison to the enthalpy flow. The over-
all thermal energy balance then reduces to 

𝑄 = 𝜌∞𝑐𝑝∫wake
(𝑇 ― 𝑇∞)𝑢d𝑦 = const ,   (17)

where the integral is to be taken over any cross section of the wake. Introducing the 
dimensionless variables according to Eqs. (2) to (4), one obtains

   {(1/ Re ) ∫+∞
―∞ 𝛩𝑈d𝑌 = 1   for laminar flow,

 ∫𝐵+

𝐵― 𝛩𝑈d𝑌 = 1    for turbulent  flow.
                (18)

The formal simplicity of Eqs. (18) indicates that the choice of 𝑄/𝜌∞𝑐𝑝𝑢∞𝐿 as a reference 
temperature in Eq. (4) is a convenient one.

5. The laminar horizontal wake

5.1 Boundary-layer equations for stretched variables

For laminar flow, averaging is not required, i.e. the bars over all variables are to be dropped. 
Furthermore, the terms containing Re𝑡 and Pe𝑡 vanish in Eqs. (6) and (8), respectively. In 
accordance with boundary-layer theory, the lateral coordinate Y and the lateral velocity 
component V are stretched as follows:

𝑌 = Re 𝑌 , 𝑉 = Re 𝑉 .               (19)
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The stretched coordinate 𝑌 was already used in sections 3 and 4. To satisfy the continuity 
equation, Eq. (5), a stream function 𝛹 is introduced with the relations

𝑈 = 𝛹𝑌 ,   𝑉 = ― 𝛹𝑋 .   (20)

Here, and in what follows, partial derivatives with respect to X and 𝑌 are indicated by the 
respective subscripts. The momentum equations, Eqs. (6) and (7), and the thermal energy 
equation, Eq. (8), then become:

𝛹𝑌𝛹𝑋𝑌 ― 𝛹𝑋𝛹𝑌𝑌 + 𝑃𝑋 = 𝛹𝑌𝑌𝑌 ,   (21)

         𝑃𝑌 = (Ri/ Re)𝛩 ,   (22)

 𝛹𝑌𝛩𝑋 ― 𝛹𝑋𝛩𝑌 = Pr―1𝛩𝑌𝑌 .               (23)

5.2 Similarity transformation

Very far downstream of the plate the details of the flow at the plate are not of importance, and 
the flow can be expected to exhibit spatial self-similarity. It might then be tempting to apply 
the similarity transformation known from classical wake solutions, cf. [6], pp. 187-190, 218-
222. This, however, would be misleading in case of substantial buoyancy effects, i.e. if 𝑃𝑌 =
O(1). As a consequence of the pressure term 𝑃𝑋, which is due to buoyancy according to Eq. 
(7), the momentum equation (6) cannot be satisfied with the similarity transformation 
applicable to the non-buoyant wake. However, the present problem is related to the problem 
of a semi-infinite horizontal plate that is thermally isolated with the exception of the leading 
edge, where there is a heat source or a heat sink. This problem was investigated in [27]. 
Guided by [27], the similarity transformation that will turn out to be suitable for the present 
problem is written as follows:

𝜉 = 𝑋 ;  𝜂 = 𝑌/ 𝑋 ,   (24)

𝛹 = 𝜉1/2𝑓(𝜂) ,   (25)

𝛩 = 𝜉―1/2𝜗(𝜂) ,   (26)

𝑃 = 𝑔(𝜂) .   (27)

For later use, the velocity components are of interest. Eq. (25) gives

𝑈 = 𝛹𝑌 = 𝑓′(𝜂) ,   (28)

𝑉 = ― 𝛹𝑋 = (1/2)𝜉―1/2[𝜂𝑓′(𝜂) ― 𝑓(𝜂)] .   (29)

Here, and in what follows, primes indicate derivatives.

With Eq. (27) for P, the pressure jump across the wake according to Eq. (15) becomes 
independent of X, leading to a constant vorticity distribution in the vortex sheet of the 
potential flow. This requires care with formulating proper boundary conditions for the 
potential-flow equations, as discussed in previous work [11–13,16–18].
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5.3 Ordinary differential equations and boundary conditions

Transforming Eqs. (21) to (23) according to Eqs. (24) to (27) gives a set of ordinary 
differential equations for 𝑓, 𝑔 and 𝜗. Eq. (23) is homogeneous and linear with respect to 𝛩. 
Furthermore, the boundary conditions (13) are also homogeneous. Thus, one can introduce a 
normalized temperature disturbance 𝜗 by the relation

𝜗 = 𝐶Θ𝜗,   (30)

together with the boundary condition

𝜗(0) = 1 .   (31)

𝐶Θ is a free constant that will be determined from the over-all thermal energy balance 
considered below. The following set of ordinary differential equations is then obtained:

2𝑓′′′ +𝑓𝑓′′ + 𝐾𝜂𝜗 = 0 ,   (32)

𝑔′ = 𝐾𝜗 ,   (33)

(2/Pr)𝜗′′ + 𝑓𝜗′ + 𝑓′𝜗 = 0 ,     (34)

with the “effective buoyancy parameter” 

  𝐾 = 𝐶ΘRi/ Re .                (35)

According to Eq. (33), buoyancy is a first-order effect if 𝐾 = O(1). Not surprisingly, 
Eqs. (32) and (34) are formally identical with the equations (11a) and (11b), respectively, of 
[27].

The boundary conditions and the matching conditions, Eqs. (12) to (16) transform into the 
following set of equations:

𝑓(0) = 0 ,   (36)

𝜗 = 0  as  𝜂→ ± ∞ ,   (37)

𝑔 = (1/2)[1 ― (𝑓′)²]   as   𝜂→ ± ∞ ,   (38)

   [𝑓′( +∞) ― 1] = ―[𝑓′( ―∞) ―1] .   (39)

Eqs. (36) to (39) are 6 boundary conditions for the 6th-order system of differential equations, 
Eqs. (32) to (34). Since the differential equation (34) as well as the boundary conditions 
according to Eq. (37) are homogeneous, the normalizing condition Eq. (31) has to be obeyed 
in order to fix the maximum value of the temperature perturbation. 

Eq. (34) can be integrated once. Making use of the boundary condition (37), and anticipating 
exponential decay of the temperature perturbation with 𝜂→ ± ∞, cf. Appendix B, the result 
becomes

(2/Pr)𝜗′ + 𝑓𝜗 = 0 .   (40)

A formal solution of this first-order differential equation subject to the normalizing boundary 
condition (31) can be given as follows:

𝜗 = exp( ― Pr
2

∫𝜂
0 𝑓d𝜂) .    (41)
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Whether applying Eq. (41) is preferable to using the differential equation (40) with the 
normalizing boundary condition (31) is a matter of taste. In case of using Eq. (40) for a 
numerical solution it is of interest that the boundary conditions according to Eq. (37) will be 
automatically satisfied, as the formal analytical solution (41) shows. 

Finally, Eq. (33) can also be formally integrated, with the result

𝑔 =  𝐾∫𝜂
𝜂∗ 𝜗d𝜂 ,   (42)

where 𝜂∗ is a constant that is to be determined as part of the solution. Note that 𝜂 = 𝜂∗ gives 
the position of vanishing pressure perturbation.

The buoyancy parameter 𝐾, as well as the Richardson number Ri, can be positive or negative 
for a heated or cooled body, respectively. The system of differential equations (32) to (34) is, 
however, symmetric with respect to the change of signs of 𝐾 and 𝜂. Therefore, only positive 
values of 𝐾, corresponding to a heated body, will be considered. Results for a cooled body 
can be obtained by simply reverting the direction of the 𝜂-axis.

It remains to determine the constant 𝐶Θ, which is required to obtain the temperature 
disturbance associated with a certain over-all heat flow by applying Eq. (30). Inserting the 
transformed variables into the upper equation of Eqs. (18) gives 

𝐶Θ
―1 = (1/ Re)∫+∞

―∞ 𝜗𝑓′d𝜂 .   (43)

A further equation for 𝐶Θ can be obtained from Eq. (43) with an integration by parts, 
substituting for 𝜗′ in the integral according to Eq. (40), and observing the boundary condition 
Eq. (37), thereby anticipating that the temperature perturbation decays exponentially; see 
Appendix B for verification. The result is the following:

𝐶Θ
―1 = (Pr/2 Re)∫+∞

―∞ 𝜗𝑓²d𝜂 .    (44)

As 𝜗 > 0 according to Eq. (41), the integral in Eq. (44) is also positive. Thus 𝐶Θ is positive, as 
required.

The analysis of the asymptotic behavior of the solutions as 𝜂→ ± ∞, which is given in 
Appendix B, is not only useful for deriving Eq. (44), it also shows that there is no reversed 
flow at the wake boundaries. 

5.4 Numerical solutions for the laminar wake

5.4.1 Method of solution

The system of differential equations (32), (33) and (40) with the boundary conditions (31) and 
(36) to (39) is solved with the shooting method, implemented in the numerical differential-
equation solver “NDSolve” of Wolfram Mathematica, version 13.3. For that purpose Eq. (32) 
is transformed into an equivalent system of three first-order differential equations which are 
numerically integrated together with Eqs. (33) and (40) from the initial point 𝜂 = 0 in both 
directions, using Eqs. (31) and (36) as initial conditions. The three remaining unknown initial 
values 𝑓′(0), 𝑓′′(0) and 𝑔(0) are computed iteratively to satisfy the three asymptotic 
matching conditions of Eqs. (38) and (39) at large, but finite, distances from the axis, i.e. at 
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𝜂 =  𝜂―
𝑏  <  0 and 𝜂 = 𝜂+

𝑏 > 0. To ensure that the boundary conditions at finite distances are 
indeed approximating the asymptotic matching conditions, it is advisable to prescribe the 
following additional boundary conditions: 

𝑓′′(𝜂±
𝑏 ) = 0, (45)

where 𝜂±
𝑏  stands for 𝜂+

𝑏  and 𝜂―
𝑏 , respectively. We found the values 𝜂―

𝑏 = ―15 and 𝜂+
𝑏  = 15 to 

be sufficient. In order to enforce the artificial boundary condition (45), the numerical solution 
is sought in the least-norm sense. The L1 norm of the residuals of all boundary conditions is 
required to be smaller than a prescribed numerical tolerance of 10-5.

5.4.2 Non-uniqueness of the solution

Depending on the initial guess for the shooting method, we find two different kinds of the 
solution which co-exist within a certain parameter range. The solutions of the first kind, 
considered in section 5.4.3, are characterized by a monotonous variation of the horizontal 
velocity component f’. In contrast, the solutions of the second kind, which will be discussed in 
section 5.4.4, are characterized by non-monotonous f’. The solutions of the second kind 
exhibit flow reversal within part of the wake’s cross-section, even though the horizontal 
velocity component in the outer flow remains non-negative (see Appendix B).

5.4.3 Solutions of the first kind

The solution of the first kind is obtained when the initial conditions corresponding to the non-
buoyant solution, 𝑓′(0) = 1, 𝑓′′(0) = 0 and 𝑔(0) = 0, are employed as an initial guess for the 
shooting method. For 𝐾 = 1/4 and Pr = 1, the solution converges to the initial conditions 𝑓′

(0) = 1.05, 𝑓′′(0) = ―0.126 and 𝑔(0) = ―0.115. The resulting profiles are shown in Fig. 2. 
The value of the temperature normalization constant is 𝐶Θ =  0.278 Re, leading to the value 
Ri = 0.899 for the Richardson number. For these parameters, the horizontal velocity 
component at the boundaries of the wake is 𝑓′( ± ∞) = 1 ∓ 0.435.              

In the wake the horizontal velocity component varies monotonously between the boundary 
values. Although the perturbation 𝑓′ ―1 of the outer horizontal velocity component is 
antisymmetric about 𝜂 = 0, the antisymmetry is broken inside the wake, which is evident 
from the observation that 𝑓′(0) ≠ 1. For the solution of the first kind, the horizontal velocity 
component at the zero streamline 𝜂 = 0 is always larger than one. The vertical velocity 
component, 𝜂𝑓′ ―𝑓, is negative at both sides of the wake. It vanishes at 𝜂 = 0, such that the 
zero streamline remains horizontal, cf. Eq. (12).

The profile of the temperature perturbation 𝜗 resembles, at the first sight, the classical non-
buoyant solution, cf. [6], pp. 187-190 and 218-219. Its symmetry about 𝜂 = 0 is, however, 
broken due to the asymmetric horizontal velocity component. The temperature profile is wider 
in the upper part of the wake, where the horizontal velocity component is reduced, and 
narrower in the lower part, where the horizontal velocity component is larger. The broken 
symmetry of the temperature profile causes the broken antisymmetry of the profile of the 
horizontal velocity component.

Due to the nonlinearity of the Bernoulli equation, cf. Eq. (38), the pressure perturbation 𝑔 is 
not even antisymmetric at the boundaries. The boundary values are 𝑔(∞) = 0.341 and 𝑔
( ―∞) = ―0.530. The profile of 𝑔 crosses zero at 𝜂 = 𝜂∗ = 0.471.
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Fig. 2. A solution of the first kind: Profiles of horizontal velocity component 𝑓′ (black), 
normalized temperature perturbation 𝜗 (red), pressure perturbation 𝑔 (green) and vertical 

velocity component 𝜂𝑓′ ―𝑓 (blue). 𝐾 = 1/4, Pr = 1.

The solution of the first kind exists up to a critical value of 𝐾, depending on Pr. For Pr = 1, 
the critical value is 𝐾𝑐 = 0.61. The corresponding critical Richardson number is 2.31. At the 
critical value, the horizontal velocity component vanishes at the upper boundary. According 
to Eq. (39) the horizontal velocity component at the lower boundary is 𝑓′( ― ∞) = 2. The 
boundary values of the pressure perturbation then follow from Eq. (38) as 𝑔( ―∞) = ―3/2 
and 𝑔(∞) = 1/2. A further increase of 𝐾 beyond the critical value would require the 
horizontal velocity component to become negative at the upper boundary, which is forbidden 
as it would lead to an exponential growth of temperature, cf. Eq. (B.4).

5.4.4 Solutions of the second kind, reversed flow regimes

The solution of the second kind is obtained when the initial guess for 𝑓′(0) is below a certain 
threshold, depending on the parameters 𝐾 and Pr. For example, the default initial guess 𝑓′(0)
= 0 of the solver typically lies inside the basin of attraction of the solution of the second 
kind. For Pr = 1 and 𝐾 = 0.04, the solution of the second kind is shown in Fig. 3. The main 
difference compared to the solution of the first kind is a reversed flow region in the wake. 
Note that the perturbation of the horizontal velocity component in the reversed-flow region 
remains of the order of 1 even for such small values of 𝐾 as in Fig. 3.

Since, according to Eq. (4), the same reference quantities are used, and, furthermore, the same 
boundary conditions are applied irrespective of whether the flow is in forward direction or 
reversed, it is tacitly assumed that the stagnation pressure far downstream is the same as far 
upstream.
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Due to the reduced horizontal velocity component in the lower part of the wake, the 
temperature perturbation profile is wider in the lower part than in case of the solution of the 
first kind. For 𝐾 < 0.06, the temperature profile contains a second local maximum below the 
dividing streamline. When 𝐾 decreases, the region of the reversed flow grows, as well as the 
distance between the temperature maxima.

Fig. 3. A solution of the second kind: Profiles of flow quantities, distinguished by color. 
𝐾 = 0.04, Pr = 1.

The vertical velocity component is positive at the upper boundary and negative at the lower 
boundary. Note that in the lower part of the wake, the vertical velocity component changes 
sign at the same point as the horizontal velocity component. Therefore, on the lower side, 
fluid is released into the outer flow only from the lower layer of the wake with a positive 
horizontal velocity component. From the reversed-flow region, on the other hand, fluid is 
transported towards the dividing streamline at 𝜂 = 0.

For Pr = 1, the solution of the second kind is found for 𝐾 ≤ 0.27, corresponding to 
Ri ≤ 0.734. Again, the upper bound for 𝐾 corresponds to vanishing horizontal velocity 
component at the upper boundary of the wake. The critical value of 𝐾 is lower as compared to 
the solution of the first kind, because the wider temperature profile leads to a larger pressure 
jump across the wake for the same value of 𝐾, cf. Eq. (42).
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5.4.5 Entrainment

The entrainment of mass into the wake is described by the lateral (i.e. vertical) velocity 
component, cf. Appendix B, Eq. (B.13). Numerical results for solutions of the first kind show 
that entrainment of mass is positive on the upper side and negative on the lower side. For the 
solution of the first kind, the net entrainment is positive, i.e., the mass flow in the wake 
increases with increasing distance from the origin. However, for the solution of the second 
kind, the entrainment is negative on both sides. Those first-order results would have to be 
taken into account in a second-order solution for the potential flow and the wake, which is 
beyond the scope of the present work.

5.4.6 Limitations to the parameter regime

As indicated above for the solutions of both the first and the second kind, no numerical 
solution could be found for values of the buoyancy parameter above an upper bound, 
depending on the Prandtl number. This resembles the critical value found in [16] for the 
interaction between the vortex line that represents the wake and the induced potential flow. In 
our case, the upper bound corresponds to vanishing horizontal velocity component at the 
upper boundary, since the solution exists only for non-negative velocity in the outer flow. We 
expect that for supercritical values of 𝐾 the self-similar structure of the wake, described by 
Eqs. (24) to (27), is broken. This hypothesis is subject to being confirmed by solutions of the 
full Navier-Stokes equations.

6. The turbulent horizontal wake

6.1 Similarity transformation of the equations of motion

The set of basic equations now consists of the continuity equation (5), the momentum 
equations (6), (7) and the thermal energy equation (8). To satisfy the continuity equation (5), a 
stream function 𝛹 is introduced with the relations

𝑈 = 𝛹𝑌 ,   𝑉 = ― 𝛹𝑋 .   (46)

For sufficiently large Reynolds and Péclet numbers the molecular viscosity, ν, and the 
molecular thermal diffusivity, 𝛼, can be neglected in comparison to the turbulent viscosity, νt, 
and the turbulent thermal diffusivity, 𝛼𝑡, respectively. Thus, the terms 1/Re and 1/Pe are 
dropped in Eqs. (6) and (8), respectively. 

With those simplifications, the equations governing the turbulent horizontal far wake do not 
contain a characteristic length as a parameter. It follows from dimensional analysis that the 
width of the far wake has to be proportional to the distance from the plate. Thus, the 
dimensionless width of the wake is written as 𝐵 = 𝐶𝐵𝑋 in terms of the dimensionless 
coordinate system (X,Y), with 𝐶𝐵 = const. This is in contrast to the classical, non-buoyant 
wake [6], pp. 669-671.5 For the turbulent shear layer to be slender, it is required that 𝐶𝐵 ≪  1. 
But in view of the terms that are neglected in the boundary-layer equations, a more 
appropriate criterion for the applicability of the boundary-layer equations stems from the 

5 The non-buoyant turbulent wake contains the length of the plate as a parameter, which enters the basic 
equations via the drag force per unit depth, i.e. 𝑐𝐷𝐿𝜌∞𝑢2

∞/2, with 𝑐𝐷 as the drag coefficient.
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magnitude of the lateral velocity component, i.e. 𝑉 ≪ 1 may serve as a sufficient and 
necessary condition.

In accord with the linear growth rate of the wake, the following similarity transformation is 
applied: 

𝜉 = 𝑋 ;  𝜁 = 𝑌/𝑋 ,   (47)

𝛹 = 𝜉𝑓(𝜁) ,    (48)

𝛩 = 𝜉―1𝜗(𝜁) ,   (49)

𝑃 = 𝑔(𝜁) ,               (50)

1/Re𝑡 = 𝜈𝑡/𝑢∞𝐿 = 𝜉𝑛(𝜁) ,                (51)

1/Pe𝑡 = 𝛼𝑡/𝑢∞𝐿 = 𝜉𝑎(𝜁) .   (52)

Representing the dimensionless width of the wake as 𝐵 = 𝐶𝐵𝑋 is achieved by writing 𝜁 = 𝜁+
𝐵 

and 𝜁 = 𝜁―
𝐵 for the upper and lower wake edges, respectively, and imposing the condition

𝜁+
𝐵 ― 𝜁―

𝐵 = 𝐶𝐵               (53)  

on the constants 𝜁+
𝐵, 𝜁―

𝐵 and 𝐶𝐵. Thus, the equations for the upper and lower edges of the wake, 
i.e. 𝑌 = 𝐵±(𝑋), can be written as 𝑌 = 𝜁+

𝐵𝑋 and 𝑌 = 𝜁―
𝐵𝑋, respectively. The constants 𝜁+

𝐵, 𝜁―
𝐵 and 

𝐶𝐵 have to be found in course of the numerical solutions, cf. below.

According to the definitions of Re𝑡, Pe𝑡 and Pr𝑡 in Eq. (10), the dimensionless turbulent 
kinematic viscosity, 𝑛, and the dimensionless turbulent thermal diffusivity, 𝑎, are related to 
each other as

𝑎 = 𝑛/Pr𝑡 .               (54)

For non-buoyant mixing layers and non-buoyant wakes, see [6], pp. 668 and 670, 
respectively, the value Prt = 0.5 is recommended for the turbulent Prandtl number. However, 
buoyancy in horizontal, or nearly horizontal, turbulent shear layers may affect the turbulent 
Prandtl number, as discussed in [28], p. 378. According to an empirical relationship given in 
[29], p. 19, the effect is small for sufficiently small Richardson numbers. It will turn out that 
the magnitude of the Richardson number is rather limited if the solutions are required to 
satisfy the condition of slenderness of the wake. Thus, the effect of buoyancy on the turbulent 
Prandtl number is neglected and the constant value Prt = 0.5 will be taken for the numerical 
solutions.

Of particular interest are the velocity components in the self-similar flow field, which 
become:

𝑈 = 𝛹𝑌 = 𝑓′(𝜁) ,               (55)

𝑉 = ― 𝛹𝑋 = 𝜁𝑓′(𝜁) ― 𝑓(𝜁) .                (56)

According to Eq. (49) the temperature perturbation decays more rapidly with increasing 
distance from the plate as compared to the classical solution for the wake without buoyancy. 
The opposite is true for the perturbation of the longitudinal velocity component, which is 
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constant in the present case, whereas it decays in the buoyancy-free wake; cf. [6], pp. 669-
671. 

Applying the similarity transformation, Eqs. (47) to (52), (55) and (56), to the momentum 
equations (6) and (7) and the thermal energy equation (8) gives a set of ordinary differential 
equations. As in the case of laminar flow, cf. Eqs. (30) and (31), a normalized temperature 
disturbance 𝜗 is introduced by the relation

𝜗 = 𝐶Θ𝜗,   (57)

together with the boundary condition

𝜗(0) = 1 .   (58)

𝐶Θ is again a free constant that will be determined from the over-all thermal energy balance 
considered below. The following set of ordinary differential equations is then obtained:

𝑓𝑓′′ + 𝜁𝑔′ = ― (𝑛𝑓′′)′ ,                           (59)

  𝑔′ = Ri𝜗 ,                         (60)

𝑓𝜗′ + 𝑓′𝜗 = ― (𝑎𝜗′)′ .               (61)

The parameter Ri is an effective Richardson number defined as Ri = 𝐶ΘRi.

Of course, 𝑔 can be eliminated from the set of differential equations by inserting Eq. (60) into 
Eq. (59). To eliminate 𝑔 also from the boundary conditions, Eq. (60) is formally integrated 
with the result 

𝑔(𝜁) = 𝑔(𝜁―
𝐵) + Ri∫𝜁

𝜁―
𝐵

𝜗d𝜁. (62)

The boundary conditions have been formulated in Section 3. They have to be expressed in 
terms of the variables of the self-similar flow as defined in Eqs. (47) to (50), (55) and (56). In 
addition to Eq. (58), one obtains 

𝑓(0) = 0               (63)

from Eq. (12) as a further boundary condition at the x-axis. At the edges of the wake the 
following boundary conditions are obtained from Eqs. (13), (14) and (16), with 𝜁±

𝐵 standing 
for 𝜁+

𝐵 or 𝜁―
𝐵:

𝜗(𝜁±
𝐵) = 0 ,               (64)

2𝑔(𝜁±
𝐵) = 1 ― [𝑓′(𝜁±

𝐵)]² ,               (65)

  [𝑓′(𝜁+
𝐵) ―1] = ― [𝑓′(𝜁―

𝐵) ―1].               (66)

Owing to the non-linearity of the Bernoulli equation, Eq. (65) is non-linear. This would be a 
disadvantage for the numerical solutions. However, by some algebraic manipulations of 
Eqs. (65) and (66), and with the help of Eq. (62), the following linear boundary conditions can 
be obtained:

𝑓′(𝜁±
𝐵) = 1 ∓ (1 2)Ri∫𝜁+

𝐵

𝜁―
𝐵

𝜗d𝜁 ,   (67)
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where the upper and lower signs, respectively, on the right-hand side correspond to those on 
the left-hand side. How the integral relationships Eqs. (62) and (67) can be of advantage for 
the numerical solutions will be described in Section 6.3.

A smooth transition from the turbulent wake to the potential flow, as required by matching, is 
obtained if the gradients of the turbulent mean values vanish at the wake edges, i.e.

𝑓′′(𝜁±
𝐵) = 0                    (68)

and

𝜗′(𝜁±
𝐵) = 0 .   (69)

It is now convenient to integrate Eq. (61) once and eliminate the constant of integration by 
applying the boundary conditions (64) and (69) to obtain:

𝑎𝜗′ + 𝑓𝜗 = 0 .              (70)

Eq. (70) replaces Eq. (61) in the set of differential equations. Besides, it follows from Eq. (70) 
that a solution that satisfies the boundary condition Eq. (64) also satisfies the smoothness 
condition Eq. (69).

Finally, the lower Eq. (18), which expresses the over-all thermal energy balance, is written in 
terms of the similarity variables to obtain the following relation for the constant 𝐶Θ:

      𝐶Θ
―1 = ∫𝜁+

𝐵

𝜁―
𝐵

𝜗𝑓′d𝜁 .               (71)

The value of 𝐶Θ is required to determine the real temperature disturbance from the normalized 
one with Eq. (57).

As in case of laminar flow, further insight into the qualitative properties of the solution can be 
gained by formally integrating the differential equation (70). Observing the normalizing 
condition, Eq. (58), one obtains:

 𝜗 = exp( ― ∫𝜁
0 (𝑓/𝑎)d𝜁) .             (72)

Furthermore, the integral in Eq. (71) is integrated by parts, 𝜗′ is replaced by 𝜗 according to 
Eq. (70), and the boundary conditions for 𝜗, i.e. Eq. (64), are used. The result is the following:

𝐶Θ
―1 = ∫𝜁+

𝐵

𝜁―
𝐵

(𝜗/𝑎)𝑓²d𝜁 .            (73)

According to Eq. (72) the temperature perturbation 𝜗 is positive in the whole cross section of 
the wake. Thus the integral in Eq. (73) is always positive. A further consequence of Eq. (72) 
will be discussed in the following section.

6.2 Equation for the turbulent kinetic energy and turbulence model equations

Closure of the system of equations requires turbulence modelling. Guided by previous 
experience [25,30], it appears promising to investigate the balance for the turbulent kinetic 
energy, k. For slender shear layers, the modelled balance equation for the turbulent kinetic 
energy can be written as follows, cf. [29], p. 22:
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𝑢∂𝑘
∂𝑥 + 𝑣

∂𝑘
∂𝑦 = 𝜈𝑡(∂𝑢

∂𝑦)2
―𝜀 +

∂
∂𝑦(𝜈𝑡

σ𝑘

∂𝑘
∂𝑦) ― g𝛽𝑝𝛼𝑡

∂𝑇
∂𝑦  ,   (74)

with

 𝜈𝑡 = 𝑐𝜇𝑙𝑘1/2               (75)

as the apparent turbulent viscosity,

𝜀 = 𝑐𝐷𝑙―1𝑘3/2               (76)

as the turbulent dissipation rate6, and

𝑙 = 𝑐𝑙𝑏                 (77)

as a turbulence length, which may be interpreted as an integral length scale. The last term on 
the right-hand side of Eq. (74) is a modelled version of the buoyancy term in the k-equation, 
see [29], p. 22, with ―𝛼𝑡∂𝑇/∂𝑦 representing the lateral heat flux. Note that this term may be 
positive or negative, depending on the sign of ∂𝑇/∂𝑦. According to Eq. (77) the turbulence 
length is a fraction of the total width 𝑏 = 𝑏(𝑥) of the free shear layer, with the edges of the 
free shear layer described by 𝑦 = 𝑏±(𝑥), i.e. 𝑏 = 𝑏+(𝑥) ― 𝑏―(𝑥). This implies the common 
assumption that the turbulence length is constant in a cross section of the slender free shear 
layer. Various sets of the empirical parameters σ𝑘, 𝑐𝜇, 𝑐𝐷 and 𝑐𝑙 can be found in the literature, 
cf. [6], pp. 560-561. In the present notation the empirical constant 𝑐𝑙 combines two of the 
empirical parameters that are commonly used in the one-equation model. The following set, 
which is in accord with the conditions imposed by the asymptotic theory of slender free shear 
layers [25,31,32], has been chosen for the present work: 

σ𝑘 = 0.7 ,  𝑐𝜇 = 0.55 ,  𝑐𝐷 = 1 ,  𝑐𝑙 = 0.3 .                (78)

For future comparisons with experiments it may be of interest to note that the modelling of 
the diffusion term, i.e. the third term on the right-hand side of Eq. (74), has been subject to 
criticism. Improvements have been proposed, see [6], p. 561, and the references given there.

In accord with the definitions of the dimensionless variables given in Eq. (3), the 
dimensionless turbulent kinetic energy, ℎ, is defined as

ℎ(𝜁) = 𝑘/𝑢2
∞ .   (79)

This relation, together with the similarity transformation according to Eqs. (47) to (52), (55) 
and (56) is introduced into Eq. (74), and the derivative 𝜗′ appearing in the buoyancy term is 
eliminated with the help of Eq. (70). This gives the following balance equation for the 
turbulent kinetic energy:

𝑓ℎ′ + 𝑛(𝑓′′)2 + Ri𝑓𝜗 ― 𝑐𝐷𝑐―1
𝑙 ℎ3/2 + 𝜎―1

𝑘 (𝑛ℎ′)′ = 0 ,             (80)

with 

   𝑛 = 𝑐𝜇𝑐𝑙ℎ1/2 .   (81)

6 According to [6], p. 509, it would be appropriate, in contrast to common practice, to address 𝜀 as a “pseudo-
dissipation” rate.
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In the order of appearance, the physical meaning of the terms in Eq. (80) is the following: 
convection, production by turbulent shear stresses, production (positive or negative) by 
buoyancy forces, dissipation and diffusion. Eqs. (59) with (60) and Eq. (80) show that the 
buoyancy effects are of the order of 1 both in the momentum equations and in the turbulent 
kinetic energy balance if the effective Richardson number is of the order of 1.

The various terms in Eq. (80) may not always be of equal importance. A balance equation 
reduced to the second, the third and the fourth terms in Eq. (80) was already discussed in [28], 
p. 372. It is remarkable that a similar problem arises also in the absence of buoyancy, i.e. for 
Ri = 0. It was already discussed in [33], pp. 215-217, and [34], pp. 104-145, that, under 
certain conditions, diffusion and convection of turbulent kinetic energy can be neglected, and 
the k-equation reduces to a balance of dissipation and production by turbulent shear stresses. 
It was shown in [30] and [25] that this reduced balance of the turbulent kinetic energy ceases 
to be valid near the edges of the turbulent shear layer. In terms of a slenderness parameter, 
those sublayers are very thin in comparison to the main layer. In the sublayers near the edges 
all four contributions to the turbulent kinetic energy balance, i.e. production by turbulent 
shear stresses, dissipation, diffusion and convection, are essential. The method of matched 
asymptotic expansions was applied in [31] to obtain solutions for plane, non-buoyant flows of 
mixing layers, jets and wakes, respectively. The same method could certainly be applied also 
to the present case of the buoyancy-controlled horizontal wake, but this is beyond the scope of 
the present work.

With regard to boundary conditions it is required that the turbulent kinetic energy vanishes at 
the wake edges, i.e.

ℎ(𝜁±
𝐵) = 0 .               (82)

The vanishing of the turbulent kinetic energy at the wake edges has severe consequences with 
regard to the existence of the solutions. An inspection of the balance equation, Eq. (80) with 
(81), shows that the dimensionless turbulent kinetic energy vanishes proportional to (𝜁 ― 𝜁±

𝐵)² 
as 𝜁→𝜁±

𝐵. This leads to a non-integrable singularity in the integral of Eq. (72) at the upper and 
lower bounds, i.e. 𝜁 = 𝜁+

𝐵 and 𝜁 = 𝜁―
𝐵, respectively. Obviously, it is a matter of modelling the 

apparent viscosity and, associated with it, the apparent thermal diffusivity according to 
Eqs. (81) and (54), respectively. Since those models are standard ones, we shall deal with the 
problem by replacing 0 on the right-hand side of Eq. (82) by a very small, positive constant; 
for details see the description of the numerical method in section 6.3.

With Eqs. (80) and (81) closure of the system of dimensionless basic equations, i.e. Eqs. (59), 
(60) and (70) for 𝑓, 𝑔 and 𝜗, is accomplished. The system of differential equations is of 7th 
order. It describes a boundary-value problem with two free boundaries, i.e. 𝜁 = 𝜁+

𝐵 and 𝜁 = 𝜁―
𝐵. 

To be satisfied are the boundary conditions Eqs. (58), (63) to (66), (68), (69) and (82), where 
all equations except Eqs. (58), (63) and (66) count for 2 boundary conditions each. But not all 
boundary conditions are independent conditions. First we note that the two smoothness 
conditions of Eq. (69) are satisfied if the transformed thermal energy equation, Eq. (70), with 
the boundary conditions of Eq. (64) are satisfied. Second, writing the right-hand side of the 
transformed momentum equation, Eq. (59), as ― (𝑛′𝑓′′ + 𝑛𝑓′′′), and inserting Eq. (81) for 𝑛 
shows that the two smoothness conditions of Eq. (68) are also satisfied if, in addition to the 
momentum equation, the boundary conditions for the turbulent kinetic energy, i.e. Eq. (82), 
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are satisfied. In conclusion, the number of boundary conditions is in accord with the order of 
the system of differential equations supplemented by two independent free parameters. 

6.3 Numerical solutions for the turbulent wake

For the purpose of obtaining numerical solutions it has turned out to be advantageous not to 
follow the straightforward procedure on the basis of the system of differential equations of 7th 
order as described in the last paragraph of the previous section. Instead, 𝑔 is eliminated from 
the system by inserting Eq. (60) into Eq. (59) and replacing the three boundary conditions, 
Eqs. (65) and (66), by the two conditions of Eq. (67). Thus, Eq. (60) is eliminated, and the 
order of the system is reduced to 6. The computation is then split into two steps. In the first 
step, the 6th order system of equations is solved for 𝑓, 𝜗, ℎ and the two independent free 
parameters 𝜁+

𝐵 and 𝜁―
𝐵. The right-hand side of Eq. (82) is replaced by 10―4 of the maximum 

value of ℎ to ensure the existence of the solution. In the second step, 𝑔(𝜁―
𝐵) is determined 

from Eq. (65) applied at 𝜁―
𝐵. The pressure profile 𝑔(𝜁) is then given by Eq. (62). As suggested 

by the formulation of the equations, the numerical solutions are performed with Ri as a 
parameter. For the presentation of the results, however, the use of Ri appears preferable, as it 
is defined in terms of basic parameters only.  

The shooting method implemented in Wolfram Mathematica, which was employed for the 
computation of the laminar wake, did not lead to suitable solutions of the equations for the 
turbulent wake. Therefore, the system of equations was solved with the collocation solver 
“bvp4c” of MATLAB R2022a. This solver requires fixed prescribed positions of the 
boundaries. It was, however, observed that the same solution is obtained whenever the 
numerical boundaries are located outside of the actual wake. In such a case, the quantities 𝑓′ 
and ℎ become constant outside the wake. Therefore, the numerical boundaries were fixed at 
sufficient distance from the axis 𝜁 = 0. Placing the bottom and top boundaries at 𝜁 = ―0.3 
and 𝜁 = 1.7, respectively, was sufficient for all values of Ri. The locations of the wake edges 
𝜁+

𝐵 and 𝜁―
𝐵 were identified a posteriori as the positions where the temperature perturbation 

drops below 10-5.

As an initial guess for 𝜗 we have selected a cubic spline defined by the boundary conditions, 
Eqs. (58), (64) and (69). The initial guess for 𝑓′ was obtained as a stretched and shifted half-
period of a sinus function, satisfying the boundary conditions, Eqs. (67) and (68). The initial 
guess for 𝑓 was then obtained by integration of 𝑓′, using the boundary condition, Eq. (63). 
Finally, the initial guess for the turbulent kinetic energy was obtained by a mixing-length 
model as ℎ ≈ 𝑐𝜇𝑐2

𝑙 (𝑓′′)2/𝑐𝐷 . The latter initial guess is only suitable for Ri = O(1), as it 
implies the importance of the turbulent shear stress, which, however, turns out to be 
negligibly small for Ri ≪ 1. To cope with that problem, solutions for Ri ≪ 1 were obtained by 
numerical continuation.

A solution for Ri = 0.25 is shown in Fig. 4. The horizontal velocity component varies 
monotonously between the edge values. The vertical velocity component is negative on both 
sides of the wake, with the net entrainment into the wake being positive. Note that the vertical 
velocity component is very small, which a posteriori justifies the boundary-layer equations. 
Similar to the solution of the first kind for laminar flow, the temperature perturbation profile 
is wider at the upper side than at the lower side. However, in the turbulent case the asymmetry 
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of the 𝜗-profile is much more pronounced. The reason for the asymmetry is the distribution of 
the turbulent kinetic energy ℎ and, as a consequence, of the turbulent thermal diffusivity. The 
turbulent kinetic energy is larger at the upper side of the wake, reaching a maximum at 
𝜁 = 0.197, due to the buoyancy term Ri𝑓𝜗 in the turbulent kinetic energy balance, Eq. (80). 
The buoyancy term acts as a source of turbulence for 𝜁 > 0 (unstable thermal stratification) 
and as a sink for 𝜁 < 0 (stable thermal stratification), as shown in Fig. 5. In the lower part of 
the wake, where the turbulent diffusivities are smaller, the profiles of the time-averaged flow 
quantities exhibit larger slopes and curvatures as compared to the upper part. Although Ri is 
by far not large in the case shown in Fig. 5, the production of turbulent kinetic energy is 
dominated by buoyancy in the upper part of the wake, while the contribution of the shear 
stress is comparatively small. The positive production by buoyancy in the upper part is 
compensated mainly by diffusion and dissipation. Diffusion transports turbulent kinetic 
energy towards the upper edge and into the lower part of the wake, where the contribution of 
buoyancy is negative. The lower part of the wake is dominated by the balance between the 
negative contribution of buoyancy and positive contribution of diffusion. The convection term 
is important near the upper edge, where its negative contribution compensates the positive 
diffusion and buoyancy terms.

Fig. 4. Profiles of time-averaged flow quantities. 
Ri = 0.25, 𝐶𝜃 = 2.3, 𝜁―

𝐵 = ―0.17, 𝜁+
𝐵 = 0.59

For values of Ri larger than about 2.1 solutions with reversed flow near the upper edge of the 
wake have been found. Furthermore, the numerical solutions lead to Ri = 4.33 as an upper 
bound for the existence of solutions. The latter result is in qualitative accord with the 
discussion of an upper bound for buoyancy as given in [28], p. 373. However, the 
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dimensionless lateral velocity component V, which is a measure of the slenderness of the 
shear layer, increases with increasing Richardson number. For Ri = 1 the magnitude of V is 
about 0.1. For substantially larger Richardson numbers the assumption of a slender shear layer 
is violated.

Fig. 5. Contributions to the balance of turbulent kinetic energy, Eq. (80). 
Ri = 0.25, 𝐶𝜃 = 2.3, 𝜁―

𝐵 = ―0.17, 𝜁+
𝐵 = 0.59.

𝑓ℎ′…convection; 𝑛(𝑓′′)2…production by shear stress; Ri𝑓𝜗…production by buoyancy; 𝑐𝐷𝑐―1
𝑙

ℎ3/2…dissipation; 𝜎―1
𝑘 (𝑛ℎ′)′…diffusion

6.4 Weak buoyancy effects 

A parameter study with the numerical solutions revealed an interesting behavior of the 
turbulent wake properties for small values of Ri. Guided by the numerical results, the 
following power laws in terms of the effective Richardson number were found to be a proper 
description of the limit Ri→0:

𝜁 = Ri1/3𝑧 , (83)

𝑓 = Ri1/3𝑧 + Ri5/3𝐹(𝑧) , (84)

ℎ = Ri4/3𝐻(𝑧) , (85)

𝑛 = Ri2/3𝑁(𝑧) , (86)

with z, F, H and N being quantities of the order 1. According to Eq. (83), the width of the 
wake vanishes proportional to Ri1/3. As a normalized quantity, the temperature perturbation 𝜗
(𝜁) = 𝜗(Ri1/3𝑧) remains a quantity of the order 1, but the coefficient in Eq. (57) becomes

𝐶Θ = Ri―1/3𝐶Θ ,   𝐶Θ = O(1) , (87)
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indicating that the temperature perturbation grows beyond bounds as Ri→0. This is in accord 
with the over-all thermal energy balance, cf. Section 4, as the width of the wake vanishes. 
With Eqs. (83) and (84), Eq. (71) gives in leading order

 (𝐶Θ)―1 = ∫𝑧+
𝐵

𝑧―
𝐵

𝜗(Ri1/3𝑧)d𝑧 ,    (88)

with 𝑧±
𝐵 = Ri―1/3𝜁±

𝐵 representing the z-values of the edges. Since the effective Richardson 
number is defined as Ri = 𝐶ΘRi, it follows from Eq. (87) that

    Ri = (𝐶Θ)―1Ri4/3              (89)

in the limit Ri→0.

There is an interesting relationship between the velocity difference across the wake, i.e. Δ𝑈 =
𝑓′(𝜁+

𝐵) ― 𝑓′(𝜁―
𝐵), and the Richardson number. Taking 𝑓′(𝜁+

𝐵) ― 𝑓′(𝜁―
𝐵) from Eq. (67), 

transforming the variables from 𝜁 to z by Eq. (83), and replacing the integral by (𝐶Θ)―1 
according to Eq. (88) shows that 

Δ𝑈 = ― Ri   for   Ri→0.   (90)

This relationship is in accord with the analysis of the potential flow induced by both laminar 
and turbulent wake flows in the limit of weak buoyancy effects [12].

Introducing the asymptotic expansions Eqs. (83) to (86) into Eq. (59) gives the following 
momentum equation in leading order:

𝑧(𝐹 + 𝜗) = ― d(𝑁𝐹)/d𝑧 ,                          (91)

where dots refer to derivatives with respect to z. Similarly, the other basic equations and 
boundary conditions transform to equations that are free of Ri. Of particular interest is the 
balance equation for the turbulent kinetic energy. An inspection of Eq. (80) shows that the 
three terms representing convection, production due to buoyancy forces and diffusion of 
turbulent kinetic energy are all of the order of Ri4/3, whereas the terms representing 
dissipation and the work done by the shear stress are of the order of Ri2 and Ri8/3, 
respectively, i.e. much smaller than the three first-mentioned terms. Thus, for Ri→0, Eq. (80) 
reduces to the following balance equation:

 𝑧(𝐻 + 𝜗) + 𝜎―1
𝑘 d(𝑁𝐻)/d𝑧 = 0 ,               (92)

with 

   𝑁 = 𝑐𝜇𝑐𝑙𝐻1/2 .   (93)

Eq. (92) represents a balance of convection, production due to buoyancy forces and diffusion 
of turbulent kinetic energy. Dissipation is not required, as the production due to buoyancy 
forces is positive in a certain part of the wake, while it is negative in another part, with 
diffusion taking care of the necessary distribution. 

The equations for the limit Ri→0 have been solved numerically by the same method as the 
full equations for Ri = O(1), cf. Sections 6.2 and 6.3. The solution of the full equations for Ri
= 0.003 is employed as an initial guess. Selected results are given in Figs. 6 to 8. To check 
the accuracy, the limiting profiles shown in Fig. 6 were compared with numerical solutions of 
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the full equations for the self-similar flow with the very small value Ri =  0.003 of the 
effective buoyancy parameter, and excellent agreement was found. Very good agreement is 
also found for the dependence of the flow quantities on the effective Richardson number, see 
Fig. 8.  For the constants that appear in the limiting equations, the following values have been 
obtained: 𝐶Θ = 1.67, 𝑧+

𝐵 = 0.78, 𝑧―
𝐵 = ―0.33.

Fig. 6. Limiting profiles of longitudinal velocity perturbation, 𝐹, turbulent kinetic energy, H, 
and normalized temperature perturbation, 𝜗.

Fig. 7. Contributions to the balance of turbulent kinetic energy in the limit Ri→0, Eq. (92). 
𝑧𝐻…convection; 𝑧𝜗…production by buoyancy; 𝜎―1

𝑘 d(𝑁𝐻)/d𝑧…diffusion
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Fig. 8. Comparison of the asymptotic analysis with numerical solutions of the full equations 
for the self-similar turbulent wake flow: Ri, max(ℎ), Δ𝑈 = 𝑓′(𝜁+

𝐵) ― 𝑓′(𝜁―
𝐵) vs. Ri.

Analysis: solid lines. Numerical results: +

The asymptotic behavior for Ri→0 according to Eq. (83) to (89) on the basis of Eqs. (47) to 
(52) is in contrast to the classical solution for the turbulent wake in the absence of buoyancy, 
i.e. for Ri = 0, cf. [6], pp. 655-659, 669-671. Written in terms of the present variables it is of 
the following form:

𝑈 = 1 + 𝜉―1/2𝑓0′(𝜂) ,               (94)

𝛩 = 𝜉―1/2𝜗0(𝜂) ,               (95)

with the similarity transformation

𝜉 = 𝑋 ;  𝜂 = 𝑌/ 𝑋 .               (96)

It is remarkable that this solution for the buoyancy-free wake, by contrast to the first-order 
solution for the buoyant wake with Ri→0, is associated with the drag coefficient of the body 
(plate) via an integral of 𝑓0′(𝜂) over the wake cross-section, cf. [6], p. 669.7

For Ri = 0, Eqs. (94) and (95) show that the perturbation of the longitudinal velocity 
component as well as the temperature perturbation decay as 𝑋―1/2 with increasing distance 𝑋 
from the plate. In case of Ri→0, however, it can be seen from Eqs. (55), (83) and (84) that the 
perturbation of the longitudinal velocity component, i.e. 𝑓′ ―1, is as small as Ri4/3, but 
remains constant for 𝑋→∞. The opposite is true for the temperature perturbation, which is as 
large as Ri―1/3, but decays as 𝑋―1, i.e. more rapidly than in the case Ri = 0. Finally, the 
dimensionless width of the wake is proportional to Ri1/3𝑋 for Ri→0, whereas it is 
proportional to 𝑋 for Ri = 0, as can be seen from Eqs. (83) and (96), respectively. The 

7 The differential equations and, consequently, the expressions given in [6] for the functions 𝑓0(𝜂) and 𝜗0(𝜂), 
respectively, are not applicable to the present analysis, as a different turbulence model is used.   
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obvious reason for those differences is the following. In the present analysis the basic 
equations are derived for 𝑋→∞ and then the limit Ri→0 is considered, whereas the case Ri =
0 corresponds to the opposite order of limits. To describe the transition from the solution for 
Ri→0 to the solution for Ri = 0 it is required to consider the double limit Ri→0 and 𝑋→∞. 
That analysis is beyond the scope of the present work.

 

7. Conclusions

The analysis presented above represents the leading order in an expansion for large distances 
from a horizontal plate, i.e. 𝑋→∞, where X is referred to the plate length. In this order the 
horizontal wake flow is affected only by the total heat flow from the plate, not by the drag 
force. The latter would only enter a second-order expansion.

The effects of buoyancy are characterized by a suitably defined Richardson number, Ri. The 
equations of motion together with the thermal energy equation reduce to boundary-layer 
equations, provided the shear layer is slender. This is the case if the Reynolds and Péclet 
numbers are very large and the Richardson number is of the order of 1 or smaller. Similarity 
transformations of the basic equations of both laminar and turbulent flows lead to sets of 
ordinary differential equations describing self-similar flows. The far-wake flow and the outer, 
potential flow are coupled, which is taken into account by matching conditions. In addition to 
the basic differential equations, the over-all thermal energy balance is of importance, as it 
governs the magnitude of the temperature perturbation. Remarkably, the power laws of the 
self-similar flows differ from the classical, i.e. non-buoyant, ones. A survey is given in the 
Table 1.

m
laminar turbulent

Ri ≠ 0 Ri = 0 Ri ≠ 0 Ri = 0
width of wake 1/2 1/2 1 1/2
longitudinal velocity perturbation 0 -1/2 0 -1/2
temperature perturbation -1/2 -1/2 -1 -1/2

Table 1. Powers of distance from plate, 𝑋𝑚

Numerical solutions of the set of ordinary differential equations have revealed that there are 
two types of laminar far-wake flows, one of them featuring a region of reversed flow. 
Reversed flow cannot occur, however, at the boundaries of the laminar far wake. The 
existence of two types of far-wake flow, together with the possibility of reversed flow, 
indicates the usefulness of the far-wake solutions for the proper formulation of downstream 
boundary conditions in CFD applications, e.g. when the full Navier-Stokes equations are to be 
solved for the flow around a horizontal plate of finite length [4].

For turbulent flow, the balance of turbulent kinetic energy plays an important role. If the 
Richardson number is of the order of 1, the contributions of convection, production by the 
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Reynolds shear stress, dissipation, diffusion and production by gravity forces are all essential. 
For very small Richardson numbers, however, it turned out that production by gravity forces, 
though proportional to the Richardson number, outweighs dissipation and production by the 
Reynolds shear stress. 

The numerical solutions are limited by upper bounds of the Richardson number. For laminar 
flow, the upper bound of the Richardson number is attained when the longitudinal velocity 
component vanishes at one of the wake boundaries, whereas in case of turbulent flow the 
upper bound of the Richardson number is attained when the stream function vanishes at one 
of the wake edges.

Since the wake width increases with increasing distance from the plate, the boundary-layer 
equations cease to be valid when the wake boundaries approach side walls of a horizontal 
channel. For details of this restriction see [12], Appendix D, and [13], Appendix B.

There is a possibility that buoyancy affects the boundary layer at a horizontal plate and 
induces an outer (potential) flow even if the over-all heat flow at the plate is zero. This can 
happen when one part of the plate is heated, while another part is cooled, leading to regions of 
positive and negative temperature perturbations in the wake. Numerical solutions of the full 
Navier-Stokes equations (to be published) revealed that in such a case the temperature 
perturbations decay faster than according to the self-similar flow solution. Consequently, a 
self-similar flow solution has not been found for Q = 0. 

Naturally, the present work reveals unsolved problems that deserve further investigations on 
horizontal wake flows with buoyancy. To be mentioned are, among others, the double limit of 
vanishing buoyancy and very large distance from the plate, or the stability of the horizontal 
laminar wake flow, associated with the transition to turbulent flow. Concerning desirable 
comparisons with measurements, it can be noted that unsteady buoyant horizontal wakes 
behind cylinders and other bluff bodies have been studied extensively [35–37]. Experimental 
investigations of buoyant horizontal wakes far behind horizontal plates or other streamlined 
objects that prevent vortex shedding are not known to the authors. However, the importance 
of buoyant production of turbulence in a horizontal turbulent boundary layer behind a heated 
wall-mounted obstacle has been demonstrated in [38].

Appendix A: Dissipation and work by pressure

a) Laminar flow

The thermal energy equation is supplemented by terms due to dissipation and work done by 
pressure, respectively. For laminar flow, the extended version of the energy equation in 
dimensionless form, i.e. Eq. (8), can then be written as

𝑈∂𝛩
∂𝑋 + 𝑉∂𝛩

∂𝑌 + 𝑇∞𝛽𝑝𝑁𝑑Re(𝑈 ∂𝑃
∂𝑋

+ 𝑉 ∂𝑃
∂𝑌

) = 1
Pe

∂²𝛩
∂𝑌² + 𝑁𝑑(∂U

∂𝑌
)2 ,   (A.1)

where the dimensionless parameter 𝑁𝑑, defined as

𝑁𝑑 = 𝜈𝜌∞𝑢2
∞/𝑄 , (A.2)

characterizes the effect of dissipation in the present problem. Since the energy equation is not 
homogeneous anymore, we refrain here from normalizing the temperature perturbation as it is 
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done in the main part of the paper. Introducing, again, the boundary-layer stretching 
according to Eqs. (19) and (20), Eq. (A.1) becomes:

𝛹𝑌𝛩𝑋 ― 𝛹𝑋𝛩𝑌 + 𝑇∞𝛽𝑝𝑁𝑑Re(𝛹𝑌𝑃𝑋 ― 𝛹𝑋𝑃𝑌) = Pr―1𝛩𝑌𝑌 + 𝑁𝑑Re(𝛹𝑌𝑌)² . (A.3)

This is the extended version of Eq. (23). In accord with the Boussinesq approximation, the 
isobaric expansivity, 𝛽𝑝, has been assumed constant. We take the free-stream absolute 
temperature, 𝑇∞, as the reference temperature for 𝛽𝑝. It is then consistent that T has been 
replaced by 𝑇∞ in the coefficient of the pressure-work term in Eq. (A.1).   

Next, the similarity transformation according to Eqs. (24) to (27) is applied. We obtain 

2𝜗′′ + Pr(𝑓𝜗)′ = ― 𝑁𝑑Pe 𝜉[2(𝑓′′)² + 𝑇∞𝛽𝑝𝑓𝑔′] . (A.4)

Eq. (A.4) is an extended version of Eq. (34). The extension consists of the two terms on the 
right-hand side of Eq. (A.4), with the first term representing dissipation, while the second 
term is due to the work done by the pressure. Obviously, Eq. (A.4) is not in accord with the 
assumed self-similarity, but it may serve to provide conditions for neglecting dissipation and 
pressure work. If 𝑇∞𝛽𝑝 ≪ 1, as it is the case for common liquids, the effect of the pressure 
work is much smaller than the effect of dissipation. For common gases, however, 𝑇∞𝛽𝑝 = O
(1), with 𝑇∞𝛽𝑝 = 1 for the special case of perfect gases. The work done by the pressure is 
then of the same order of magnitude as dissipation. With regard to the latter, Eq. (A.4) shows 
that it increases with increasing distance from the plate. However, 𝑁𝑑 is, in general, very 
small. In order to estimate the order of magnitude, it is convenient to relate 𝑄 to a 
characteristic temperature difference between the plate surface and the free-stream 
temperature, i.e. (𝑇𝑤 ― 𝑇∞). Introducing the Stanton number

St = 𝑄/𝜌∞𝑢∞𝐿𝑐𝑝(𝑇𝑤 ― 𝑇∞) , (A.5)

we obtain

𝑁𝑑 = Ec/StRe , (A.6)

where Ec is the Eckert number, i.e.

 Ec = 𝑢2
∞/𝑐𝑝(𝑇𝑤 ― 𝑇∞) . (A.7)

According to the present definitions both 𝑁𝑑 and Ec are positive for a heated plate, whereas 
they are negative in case of a cooled plate. From the theory of mixed convection flow over 
horizontal plates, cf. [27], it is known that St Re = O(1), depending somewhat on the Prandtl 
number. Thus, discarding the influence of the Prandtl number, the coefficient on the right-
hand side of Eq. (A.4) is of the following order of magnitude:

|𝑁𝑑|Pe 𝜉 = O(|Ec| Re𝜉 ) , (A.8)

where Re𝜉 = Re𝜉 is the Reynolds number in terms of the distance from the plate. It follows 
from Eq. (A.4) that dissipation is negligible in the energy equation if |Ec| Re𝜉 ≪ 1. For 
water, for instance, with 𝑢∞ = 1 m/s and |𝑇𝑤 ― 𝑇∞| = 25 K, |Ec| is about 10―5. This value is 
so small that dissipation would become of importance at values of Re𝜉 that are so extremely 
large that transition from laminar to turbulent flow has certainly already taken place.
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b) Turbulent flow

If the thermal energy equation (A.1) is written in terms of ensemble-averaged variables, the 
last term on the right-hand side is due to direct dissipation. In addition, there is a contribution 
of the turbulent dissipation to the thermal energy equation, see [6], p. 510. By suitably 
combining the contributions of viscous diffusion and turbulent dissipation, cf. [6], pp. 508 and 
509, the turbulent dissipation rate is equal to the quantity 𝜀 that appears in the balance of 
turbulent kinetic energy, Eq. (74). Using Eqs. (76), (77) and (79) to express 𝜀 in terms of the 
dimensionless turbulent kinetic energy ℎ, the thermal energy equation for the turbulent wake 
becomes 

   𝑈∂𝛩
∂𝑋 + 𝑉∂𝛩

∂𝑌 + 𝑇∞𝛽𝑝𝑁𝑑Re(𝑈 ∂𝑃
∂𝑋

+ 𝑉 ∂𝑃
∂𝑌

) = ∂
∂𝑌( 1

Pe𝑡

∂𝛩
∂𝑌) + 𝑁𝑑(∂𝑈

∂𝑌
)2

+
𝑐𝐷𝑁𝑑Re
𝑐𝑙 𝐶𝐵 𝑋 ℎ3/2 , (A.9)

where the dissipation parameter 𝑁𝑑 has been introduced according to Eq. (A.2). Normalizing 
the temperature perturbation according to Eq. (57) and applying then the similarity 
transformation according to Sections 6.1 and 6.2, we obtain:  

(𝑓𝜗)′ + (𝑎𝜗′)′ = ― (𝑁𝑑/𝐶Θ){(𝑓′′)² + Re[𝑇∞𝛽𝑝𝑓𝑔′ + 𝑐𝐷𝐶―1
𝐵 𝑐―1

𝑙 ℎ3/2]𝜉}. (A.10)

The terms due to direct dissipation, pressure work and turbulent dissipation, in this order, are 
given on the right-hand side of Eq. (A.10).

The orders of magnitude are now estimated for substantial buoyancy effects, i.e. Ri = O(1), 
as follows. First we note that the empirical constant 𝑐𝐷 is of the order of 1, (1/𝐶Θ) is of the 
order of the slenderness parameter 𝐶𝐵, which is of the order of 1 for Ri = O(1). Secondly, we 
repeat that 𝑇∞𝛽𝑝 is of the order 1 or even much smaller. Thus the term due to the work done 
by the pressure is, at most, of the same order of magnitude as the turbulent dissipation term. It 
remains to estimate the magnitude of 𝑁𝑑. Since it is just a matter of definitions, Eq. (A.6) can 
be applied. Assuming that the flow is laminar at the plate and the transition to turbulent flow 
takes place in the wake, which will be rather the rule than the exception, cf. [39], the estimate 
St Re = O(1) remains valid. It follows that

|𝑁𝑑| = O(|Ec|/ Re ) .           (A.11)

Since the Eckert number is characteristically extremely small, as discussed above, and, 
furthermore, the Reynolds number is assumed to be very large for the present analysis, the 
term due to direct dissipation, i.e. (𝑁𝑑/𝐶Θ)(𝑓′′)², is certainly negligible in Eq. (A.10). The 
term due to turbulent dissipation, however, is seen to be proportional to 𝜉, i.e. the 
dimensionless distance from the plate. Thus, it grows beyond bounds as 𝜉→∞. However, the 
distance where the turbulent-dissipation term becomes of the same order of magnitude as the 
leading terms in Eq. (A.10) is so large that it will hardly be of relevance to applications. 
Besides, there are also other reasons for a possible break-down of the boundary-layer 
equations, as briefly discussed in the Conclusions.

It remains to be noted that in the limit of very weak buoyancy effects, i.e. Ri→0, the 
slenderness parameter 𝐶𝐵 is as small as Ri1/3, cf. Eq. (83). The slope of the velocity profile is 
even smaller, i.e. 𝑓′′ = O(Ri). Since 1/𝐶Θ = O(Ri1/3) according to Eq. (87), (𝑁𝑑/𝐶Θ)(𝑓′′)² is 
as small as 𝑁𝑑Ri7/3, and neglecting that term in the thermal energy equation is even more 
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justified in the limiting case than in the general case of Ri = O(1). Estimates of the other 
terms on the right-hand side of Eq. (A.10) lead to similar conclusions.  

Appendix B: Asymptotic behavior of the solutions for laminar flow as 𝛈→ ± ∞

It may be of general interest and, furthermore, be useful for the numerical solution, to know 
the asymptotic behavior of the dependent variables near the boundaries of the wake. For that 
purpose we insert the following relationships into the system of equations given in Section 5.3 
and consider the limit 𝜂→ ± ∞:

𝑓 = 𝐹±
1 𝜂 + 𝐹±

2 + 𝜑±(𝜂) ,  (B.1)

𝑔 = 𝐺± + 𝛾±(𝜂) ,  (B.2)

𝜗 = 𝜗±(𝜂) ,  (B.3)

with (𝐹±
1,2 , 𝐺±) = const = O(1) and (𝜑±,𝛾±, 𝜗±)→0 as 𝜂→ ± ∞. From Eq. (41) one obtains

𝜗± = exp( ― Pr
4

𝐹±
1 𝜂²) .  (B.4)

This result shows that the boundary condition Eq. (37) requires positive values of 𝐹±
1 , i.e.

𝐹±
1 > 0 .  (B.5)

Since 𝑈 = 𝑓′ according to Eq. (28), Eq. (B.5) indicates that there is no reversed flow at the 
wake boundaries.

The matching condition Eq. (38) shows that the constants have to satisfy the relation

𝐹±
1 = (1 ― 2𝐺±)1/2 .  (B.6)

This equation requires that

𝐺± < 1/2 .  (B.7)

In view of Eq. (B.2), Eq. (B.7) expresses a bound for the pressure perturbation that has to be 
obeyed by the solution of the differential equations.

The result for the temperature disturbance, Eq. (B.4), can be inserted into Eqs. (33) and (32) 
to obtain the following relations for the pressure and velocity disturbances, respectively:

(𝛾±)′ = 𝐾exp( ― Pr
4

𝐹±
1 𝜂²) ,  (B.8)

2(𝜑±)′′′ + 𝐹±
1 𝜂(𝜑±)′′ + 𝐾𝜂 exp( ― Pr

4
𝐹±

1 𝜂²) = 0 .  (B.9)

Eq. (B.8) can be integrated to obtain

𝛾± = ― (2𝐾/Pr𝐹±
1 𝜂)exp( ― Pr

4
𝐹±

1 𝜂²) .           (B.10)

Eq. (B.9) is a linear, inhomogeneous differential equation of first order for (𝜑±)′′. The general 
solution of the homogeneous part is discarded, as it represents a solution of the problem of 
vanishing buoyancy, which is of no interest here. What remains is the following particular 
solution of the inhomogeneous Eq. (B.9):
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 (𝜑±)′′ = [𝐾/(Pr ―1)𝐹±
1  ] exp( ― Pr

4
𝐹±

1 𝜂²)   for  Pr ≠ 1,           (B.11)

 (𝜑±)′′ = ― 1
4𝐾𝜂²exp( ― 1

4
𝐹±

1 𝜂²)   for  Pr = 1.           (B.12)

The coefficient on the right-hand-side of Eq. (B.11) grows beyond bounds as Pr→1. Thus the 
case Pr = 1 has resonance properties.

The decay of the velocity component U to its limiting value at the boundary of the wake is 
represented by (𝜑±)′, which can be obtained by integrating Eqs. (B.11) and (B.12). The first 
integral can be expressed in terms of the complimentary error function, whereas integrating 
Eq. (B.12) would have to be done numerically.  

The results indicate a very strong exponential decay of all perturbations as 𝜂→ ± ∞, as it is 
also the case for classical boundary layers, cf. [40], p. 226. 

A quantity of particular interest is the lateral velocity for 𝜂→ ± ∞, as it represents the 
entrainment of mass into the wake. From Eqs. (29) and (B.1) one obtains

𝑉 = ―(1/2)𝜉―1/2𝐹±
2  ,           (B.13)

i.e., the constant 𝐹±
2 , as introduced in Eq. (B.1), gives the entrainment.

As is natural for asymptotic expansions, the constants 𝐺± (or 𝐹±
1 ) and 𝐹±

2  remain free and are 
to be determined in course of numerical solutions of the differential equations.
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Captions of figures

Fig. 1. The horizontal wake flow far downstream of a horizontal plate with temperature and 
pressure profiles (schematic).

Fig. 2. A solution of the first kind: Profiles of horizontal velocity component 𝑓′ (black), 
normalized temperature perturbation 𝜗 (red), pressure perturbation 𝑔 (green) and vertical 
velocity component 𝜂𝑓′ ―𝑓 (blue). 𝐾 = 1/4, Pr = 1.

Fig. 3. A solution of the second kind: Profiles of flow quantities, distinguished by color. 
𝐾 = 0.04, Pr = 1.

Fig. 4. Profiles of time-averaged flow quantities. 
Ri = 0.25, 𝐶𝜃 = 2.3, 𝜁―

𝐵 = ―0.17, 𝜁+
𝐵 = 0.59

Fig. 5. Contributions to the balance of turbulent kinetic energy, Eq. (80). 
Ri = 0.25, 𝐶𝜃 = 2.3, 𝜁―

𝐵 = ―0.17, 𝜁+
𝐵 = 0.59.

𝑓ℎ′…convection; 𝑛(𝑓′′)2…production by shear stress; Ri𝑓𝜗…production by buoyancy; 𝑐𝐷𝑐―1
𝑙

ℎ3/2…dissipation; 𝜎―1
𝑘 (𝑛ℎ′)′…diffusion

Fig. 6. Limiting profiles of longitudinal velocity perturbation, 𝐹, turbulent kinetic energy, H, 
and normalized temperature perturbation, 𝜗.

Fig. 7. Contributions to the balance of turbulent kinetic energy in the limit Ri→0, Eq. (92). 𝑧𝐻
…convection; 𝑧𝜗…production by buoyancy; 𝜎―1

𝑘 d(𝑁𝐻)/d𝑧…diffusion

Fig. 8. Comparison of the asymptotic analysis with numerical solutions of the full equations 
for the self-similar turbulent wake flow: Ri, max(ℎ), Δ𝑈 = 𝑓′(𝜁+

𝐵) ― 𝑓′(𝜁―
𝐵) vs. Ri.

Analysis: solid lines. Numerical results: +
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