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Abstract

Program analyzers are critical in safeguarding software reliabil-
ity. However, due to their inherent complexity, they are likely to
contain bugs themselves, and the question of how to detect them
arises. Existing approaches, primarily based on specification-based,
differential, or metamorphic testing, have been successful in finding
analyzer bugs, but also come with certain limitations.

In this paper, we present interrogation testing, a novel testing
methodology for program analyzers, to address limitations in ex-
isting metamorphic-testing techniques. Specifically, interrogation
testing introduces two key innovations by (1) incorporating more
information from analyzer queries to construct more powerful ora-
cles, and (2) introducing a knowledge base that maintains a history
of diverse queries. We implemented interrogation testing in Sher-
lock and tested 8 mature analyzers—including model checkers,
abstract interpreters, and symbolic-execution engines—that can
prove the safety of assertions in C/C++ programs. We found 24
unique issues in these analyzers, 16 of which are soundness related,
i.e., an analyzer does not report an assertion that can be violated.
Our experimental evaluation demonstrates Sherlock’s effective-
ness by finding issues between 7x and 906x faster than our baseline,
which is inspired by the state of the art.

CCS Concepts

• Software and its engineering → Software testing and de-

bugging.

Keywords

interrogation testing, program analyzers, unsoundness, imprecision

ACM Reference Format:

David Kaindlstorfer, Anastasia Isychev, Valentin Wüstholz, and Maria Chris-
takis. 2024. Interrogation Testing of Program Analyzers for Soundness and
Precision Issues. In 39th IEEE/ACM International Conference on Automated

Software Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA,

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695034

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3691620.
3695034

1 Introduction

There is an abundance of program analyzers that are developed
both in academia and industry with the purpose of guarding the re-
liability of modern-day software. But how can we guard the guards
themselves? Program analyzers are highly complex tools, imple-
menting sophisticated algorithms and performance optimizations.
In addition, analyzers typically integrate several self-contained,
core analysis components, such as specialized solvers, which are
complex as well. Due to this overall complexity, program analyzers
are all the more likely to contain reliability issues themselves.

The most important reliability issues in analyzers are soundness
and precision issues. The former are the most critical since theymay
cause an analyzer to return ‘correct’ for incorrect software (false
negative). False negatives can have disastrous consequences when
analyzing safety-critical software. The latter are also important;
theymay cause an analyzer to return ‘incorrect’ for correct software
(false positive). False positives are cumbersome and time-consuming
for users to distinguish, and perhaps more importantly, they may
discourage users from taking true positives seriously or from using
program analysis altogether [14].

State of the art and challenges. Although it is possible to
prove properties about the design of a program analysis, verifying
the absence of issues in its implementation is extremely demanding
(see, for instance, [27, 29] for long-term efforts to fully verify large
systems). In contrast to verification, automated test-generation
techniques have been used to detect issues in program analyzers
without providing absolute correctness guarantees. However, each
of the existing testing techniques comes with its own limitations.

Program generation, in the context of testing analyzers, aims to
produce programs such that their correctness is known by construc-
tion (e.g., [8, 23]). The analyzers are then run on these programs,
and if they contradict the expectation about a program’s correct-
ness, an issue is detected. In the general case however, knowing
what to anticipate from a program analyzer on a given input is
undecidable. For this reason, such approaches typically restrict the
diversity and complexity of the generated programs.

Specification-based testing (e.g., [9, 33, 40]) involves specifying
the correct behavior of the analyzer and testing it, for instance using
fuzzing, against this provided specification. Similar to verification,
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fully specifying large systems is highly non-trivial and requires
prohibitive amounts of time and effort.

Differential testing of program analyzers (e.g., [18, 25, 28, 35, 41])
constitutes running multiple of them on the same input program
and comparing their responses for disagreement. If a disagreement
exists, then at least one analyzer must be wrong. A benefit of this
approach is that it does not require a specification of correct be-
havior. However, differential testing is not suitable for emerging
domains where there do not yet exist many (or even two) analyzers,
or for domains without standardization where no two analyzers
accept the same input. For instance, this is the case with Datalog
engines, where many tools support different Datalog dialects. More-
over, when using differential testing, it is unclear which analyzer
is to blame for a disagreement, e.g., it could be that the majority is
wrong and a single analyzer correct.

Metamorphic testing (e.g., [20, 30–32, 34, 42, 44–46]) transforms
an input program such that the expected analysis response is known.
For example, consider an analyzer and a program that it finds in-
correct. A metamorphic transformation could add dead code to
the program. Then, the resulting program should still be found
incorrect by the analyzer. If this is not the case, an issue has been
found. In general, metamorphic testing lies in the middle of the spec-
trum between specification-based and differential testing. It only
requires defining metamorphic transformations, which is much eas-
ier than writing full-blown specifications, and it does not require
the existence of multiple analyzers accepting the same input.

However, the metamorphic transformations that can be defined
are restricted, thereby limiting the effectiveness of this approach.
In particular, metamorphic testing of program analyzers typically
consists of the following workflow: query the analyzer on an input
and get its response (i.e., the input is correct or incorrect); based
on the response, transform the input such that the new expected
response is known; query the analyzer again on the transformed
input and get the new actual response; detect a bug if the new actual
response does not match the expected one.

Our approach. In this paper, we propose interrogation testing

of program analyzers, which is at least as powerful as metamorphic
testing. Consider a suspect-interrogation analogy, where the goal
is to force the suspect into a contradiction. Metamorphic testing
resembles having a new investigator interrogate the suspect after
every two yes/no questions. Interrogation testing, on the other
hand, is like having the same investigator carry out the entire
interrogation and ask for more details than yes/no responses.

Specifically, there are two key innovations. First, interrogation
testing may use more information than the analyzer response in
order to form queries. Second, it integrates a knowledge base that
enables maintaining a (long) history of past analyzer queries (in-
cluding the analyzer’s response) to formmore diverse queries in the
future. With these innovations, we can design more sophisticated
and challenging queries for the program analyzers under test. In
turn, this allows detecting more soundness and precision issues.

We instantiate interrogation testing in a technique for testing
program analyzers that reason about reachability, such as abstract
interpreters, bounded model checkers, and symbolic-execution en-
gines. We implement our technique in a tool called Sherlock,
which we used to test 8 analyzers, namely, CBMC [15], Clam [19],

query Program Analyzer trick
query

response,
verification

results

Interrogator Knowledge Base Detector

Figure 1: Overview of interrogation testing.

CPAchecker [6], ESBMC [16], KLEE [10], MOPSA [24], Symbi-
otic [37, 38], and UAutomizer [21, 22].

Contributions. Our paper makes the following contributions:
(1) We introduce interrogation testing, a general methodology

for testing program analyzers, which subsumes existing
metamorphic-testing techniques.

(2) We instantiate interrogation testing in a technique for testing
analyzers that reason about reachability.

(3) We implement our technique in a tool called Sherlock.
(4) We evaluate Sherlock by testing 8 mature analyzers. Sher-

lock found 24 unique issues, 23 of which were confirmed
by the analyzer developers. Of the analyzers we tested, 7
contained a total of 16 soundness issues.

Data availability.We provide our tool and documentation at:
https://github.com/Rigorous-Software-Engineering/sherlock

Outline. In Sect. 2, we present interrogation testing, and in
Sect. 3, we instantiate it in a technique for testing program analyzers
that reason about reachability. Sect. 4 describes implementation
aspects of Sherlock. We present our experimental evaluation in
Sect. 5, discuss related work in Sect. 6, and conclude in Sect. 7.

2 Interrogation Testing Overview

On a high level, interrogation testing aims to force the analyzer
under test into a contradiction. Finding a contradiction means that a
soundness or precision issue is detected. To this end, our methodol-
ogy may use not only the analyzer’s Boolean response (i.e., whether
the analyzer found the analyzed program to be correct), but also its
more fine-grained verification results (e.g., the concrete set of fail-
ing assertions) to both expose contradictions and form new queries.
It also maintains a history of responses and verification results from
previous queries, enabling the construction of more diverse queries
over time. Fig. 1 shows an overview of interrogation testing.

Given a program analyzer under interrogation, an interrogator

starts by posing a query to the analyzer requesting its response on
the correctness of an input. As an example, consider an analyzer that
reasons about reachability of error locations. If no error location
is reachable, the program is found correct, otherwise it is found
incorrect. In addition to the analyzer response, the interrogator
may request the corresponding verification results. In the above
example, the verification results are the specific error locations
that are (un)reachable. Generally, verification results refer to the
verification status of individual specifications (e.g., pre- and post-
conditions, assertions, or invariants) in the program.

The interrogator remembers the analyzer response and its ver-
ification results by storing them in a knowledge base. Such an in-
terrogation round may be repeated any number of times, and the
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interrogator may use the knowledge base for constructing further,
more diverse queries. For instance, the interrogator could randomly
mutate queries from the knowledge base to derive new queries, and
thereby, enrich the knowledge base.

At any point during the interrogation, a detector may pose a trick
query to the analyzer. A trick query differs from other queries in
that the expected response and potentially also the corresponding
verification results are known a-priori, i.e., they can be derived from
the knowledge base. If the analyzer contradicts what is expected,
then an issue has been found. For example, a program that was
found incorrect by the above analyzer should remain incorrect
when extending it with, say, additional, unreachable error locations.
Moreover, the reachable error locations of the extended program
should exactly match those of the original program.

Although these example trick queries might appear too simple to
be able to uncover issues in analyzers, consider that existing work
(e.g., [30, 31, 42, 44]) has already detected a few such issues with
much more restricted approaches, i.e., without verification results
or access to previous queries through the knowledge base.

Algorithm. Alg. 1 describes the general interrogation-testing
algorithm. It takes as input an analyzer a and a set of seed input
programs seeds (line 1). Each seed can be an existing program, e.g.,
from an open-source project, or automatically generated, e.g., using
Csmith [43] or similar tools. For each seed (line 2), we initialize an
empty knowledge base kb (line 3), which remembers queries to the
analyzer under test, the analyzer’s responses, and its verification
results. The interrogator first queries the analyzer with seed to get
its response r

seed
and verification results vr

seed
(line 4), which it

then stores in the knowledge base (line 5).
As long as there is budget (line 6), which is specified by the user,

we interrogate the analyzer as follows. We select a query x with
the corresponding analyzer response rx and verification results vrx
from the knowledge base (line 7). The selection may be performed
uniformly at random or using any other distribution that prioritizes
more interesting queries. Using x, rx, vrx , we generate a new query
y together with the expected analyzer response ry and verification
results vry (line 8). If y is not a trick query, that is, if we do not need
to know the expected analyzer response and verification results,
ry and vry are empty. On line 9, we pose query y to the analyzer
and get its actual response ry and verification results vry . Next, if
y, ry, vry achieves more diversity, we store it in the knowledge base.

Observe that we use a diversity criterion for adding a new entry
in the knowledge base. This criterion could be trivially true, thereby
allowing all generated queries to be stored. The downside of such
a permissive criterion is that the knowledge base would constantly
grow, resulting in clusters of similar entries. As a result, when
selecting a query from the knowledge base, it becomes more likely
to pick from one of the large clusters and grow them even more.
Alternative diversity criteria include checking whether new code
coverage of the analyzer under test or new verification results are
achieved. We discuss our instantiation of the diversity criterion in
the next section.

If y is a trick query, we check the oracle (line 12). Specifically, we
check whether the actual response and verification results match
the expected ones. If they do not, then the algorithm reports that
an issue has been found in analyzer a. Note that the algorithm does
not determine the type of issue, i.e., soundness or precision. For

Algorithm 1: Interrogation testing.

1 function interrogate(a, seeds):
/* for each seed input in seeds */

2 foreach seed ∈ seeds do

/* initialize an empty knowledge base kb */

3 kb := initKnowledgeBase();
/* pose query seed to analyzer a */

/* get response r
seed

and verification results vr
seed

*/

4 r
seed
, vr

seed
:= poseQuery(seed, a);

/* store query in knowledge base */

5 kb.rememberQuery(seed, r
seed
, vr

seed
);

6 while ¬budgetDepleted() do

/* get random query from knowledge base */

/* query distribution may be non-uniform */

7 x, rx, vrx := kb.getRandQuery();
/* generate random query from existing query */

/* predict expected response ry and results vry */

8 y, ry, vry := kb.genRandQuery(x, rx, vrx );
/* pose new query y */

/* get actual response ry and results vry */

9 ry, vry := poseQuery(y, a);
/* if new query achieves more diversity */

10 if kb.achievesMoreDiversity(y, ry, vry) then

/* store query in knowledge base */

11 kb.rememberQuery(y, ry, vry );
/* if new query is trick query, i.e., */

/* expected response and results are not empty, */

/* and if oracle does not hold */

12 if isTrickQuery(y, ry, vry) ∧

oracleFails(ry, ry, vry, vry) then

13 reportIssue(x, y, a);

instance, consider the earlier example of a program, say x, which
was found incorrect by an analyzer, and an extended version of x,
say y, with additional unreachable error locations. If the reachable
error locations of y do not exactly match those of x because, say,
more error locations are found to be reachable for y, the oracle
fails. However, our algorithm cannot know if analyzer a missed a
reachable error location in x (soundness issue) or if it reports an
unreachable error location in y as reachable (precision issue).

Interrogation testing may be used to test analyzers other than
those reasoning about reachability, despite our focus on reachability
in this paper. Consider Datalog engines, which compute data-flow
information. For each response, Datalog engines typically record
provenance, which, similar to verification results, shows how the
response is derived. Of course, knowing how data flows to the pro-
gram output allows for generating more sophisticated queries than
when only knowing the output. Another example are SMT solvers,
which compute proof artifacts, such as a model for satisfiable formu-
las or an unsatisfiable core for unsatisfiable formulas. Again, using
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1 int main() {

2 float f = ⋆;

3 assert(f < 1.0 || f > -1.0);

4 assume(f > 0.0);

5 printf("%f\n", f);

6 assert(f > 0.0);

7 // assert(true);

8 return 0;

9 }

(a) Soundness issue in ESBMC.

1 void main() {

2 int z = ⋆;

3 int k = ⋆;

4 assume (1 < z);

5 assume (1 <= z && k <= 1);

6 // assume (1 < z && k <= 1);

7 assert (0);
8 }

(b) Soundness issue in CBMC.

1 int main() {

2 int s = ⋆;

3 assume(s != 0 && s <= 1);

4 assume(s > 1);

5 assert (0);
6 assume(s < 2);

7 return 0;

8 }

(c) Precision issue in Clam.

Figure 2: Example soundness and precision issues detected by Sherlock and fixed by the analyzer developers.

these artifacts makes it possible to create more complex queries
than when only knowing a formula’s satisfiability.

3 Interrogation Testing in Sherlock

As mentioned earlier, we instantiate interrogation testing in a tech-
nique for testing program analyzers that derive reachability of error
locations. Examples of such analyzers include abstract interpreters,
bounded model checkers, and symbolic-execution engines. We im-
plemented our technique in a tool called Sherlock, which we used
to test 8 analyzers and found 24 issues in these analyzers.

The analyzers we target accept C/C++ programs and understand
assertions and assumptions (expressed using assume statements or
similar constructs). At runtime, executions that violate an asserted
or assumed condition are immediately terminated. However, only
assertion violations are considered “errors” and are, thus, reported
by analyzers. In this context, given a program annotated with asser-
tions and assumptions, the analyzer response refers to whether the
program is found correct or incorrect, and the verification results
consist in which assertions are proved correct and which are not.

On a high level, Sherlock produces trick queries by adding or
mutating assertions and assumptions in a program x to generate a
transformed program y. The transformations are designed such that
the expected analyzer response and verification results for y are
easily derived from those of x. For example, when generating y by
strengthening an assumed condition in x, fewer program executions
are allowed through the assumption, fewer error locations might be
reachable, and therefore, fewer assertions might fail. So, the failing
assertions in x should contain the failing assertions in y. Similarly,
when generating y by converting a verified assertion in x into an
assumption, no new error locations are made reachable, and thus,
the sets of failing assertions for x and y should be the same.

In the rest of this section, we provide examples of soundness
and precision issues that Sherlock detected using interrogation
testing. We also describe in detail the program transformations that
Sherlock performs based on the analyzer response and verification
results as well as the diversity criterion we use for adding new
entries in the knowledge base.

3.1 Examples of Detected Issues

Fig. 2 shows three soundness and precision issues that Sherlock
detected in ESBMC, CBMC, and Clam. All three issues were con-
firmed and fixed by the analyzer developers. Note that we reported

all issues anonymously; in the figure, each sub-caption links to the
corresponding bug report.

ESBMC. Fig. 2a shows a program that revealed a soundness
issue in ESBMC. Variable f is a non-deterministic float, denoted
by ⋆ (line 2). The assertion on line 3 may fail as f may have value
NaN (Not a Number). The assertion on line 6 never fails due to the
assumption on line 4. ESBMC misses the potential assertion failure
in this program and unsoundly proves it correct. Interestingly, when
dropping line 5, ESBMC does report the assertion violation.

Sherlock detects this issue by comparing the analyzer response
and verification results for the program in Fig. 2a (let us refer to
it as program x) with those for a program where the assertion on
line 6 is replaced with the weaker assertion on line 7 (program y).
The ESBMC response for x is correct, and the verification results
are that both assertions (lines 3 and 6) are verified. When an asser-
tion is verified, all executions through the assertion must satisfy
its condition. Consequently, all executions through the assertion
should also satisfy a weaker condition.

This is exactly the trick query that Sherlock generates from
program x: since the assertion on line 6 is verified, its condition
could be replaced with a weaker one in program y, and the fail-
ing assertions in x and y should be exactly the same. In this case,
Sherlock randomly generates the weaker condition true, but any
other weaker condition could also be generated, e.g., f > -2.0. The
analyzer response for y is incorrect, and the verification results are
that the assertion on line 3 fails. As a result, Sherlock detects an
issue, which, after manual inspection and confirmation from the
analyzer developers, we classify as a soundness issue.

Note that x and y are minimized versions of the programs that
actually revealed this soundness issue (see Sect. 4), which are in turn
generated by performing a series of (trick) queries on an existing
or automatically generated seed program. The seed program may
be free of any assertions or assumptions.

CBMC. Fig. 2b shows a program that revealed a soundness issue
in CBMC. Variables z and k are assigned non-deterministic integer
values (lines 2–3). On lines 4–5, we assume properties about the
values of these variables, and on line 7, we have an assertion that
always fails when reachable. Program x is the program in Fig. 2b
when replacing the assumption on line 5 with the one on line 6. For
x, CBMC reports the assertion failure.

Sherlock generates program y by weakening the assumption
on line 6 to assume (1 <= z && k <= 1). When weakening an as-
sumption, more program executions are allowed through it, more
error locations might be reachable, and thus, more assertions might
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fail. So, the failing assertions in y should contain the failing asser-
tions in x. However, CBMC does not report any assertion violation
for y, and Sherlock detects the issue. The analyzer developers
explained that, instead of assuming 1 <= z && k <= 1 on line 5,
CBMC incorrectly assumes z == 1, which in conjunction with the
assumption on line 4 makes the assertion unreachable.

Clam. Fig. 2c shows a program y that revealed a precision is-
sue in Clam. The assumptions on lines 3–4 make the assertion
on line 5 unreachable. Despite this, Clam imprecisely reports an
assertion violation. To generate this program y, Sherlock added
the assumption on line 6. For x (without line 6), Clam is precise and
does not report an assertion violation. Conversely to the trick query
revealing the soundness issue in CBMC, when adding or strength-
ening an assumption in x to generate y, the failing assertions in
x should contain the failing assertions in y. In particular, when
adding or strengthening an assumption, fewer program executions
are allowed through it, fewer error locations might be reachable,
and thus, fewer assertions might fail. This is not the case here, and
Sherlock detects the issue.

3.2 Interrogator

In Sherlock, the interrogator is used to bootstrap the knowledge
base for each seed program (see lines 4–5 in Alg. 1). In the future,
we plan to experiment with alternative interrogation strategies.

3.3 Detector

We now describe in detail how the detector constructs trick queries.
Trick queries. In interrogation testing, trick queries serve a

dual purpose: (a) they contribute in expanding the knowledge base
with new entries, and (b) potentially reveal soundness and preci-
sion issues in the analyzer under test. As mentioned earlier, given a
program x, Sherlock generates a program y by adding or mutating
assertions and assumptions in x. The transformations are designed
so that we can derive the expected analyzer response and verifi-
cation results for y by knowing those for x. Then, the oracle for
correct (with respect to soundness and precision) analyzer behavior
is that the actual analyzer response and verification results for y
match the expected ones.

We now describe our transformations and their respective ora-
cles in detail (see the last two columns of Tab. 1 for an overview).
Note that, in our oracles, the set of failing assertions in x is denoted
by Fx and the set of failing assertions in y by Fy . Analyzers do not
typically report failing assumptions; we, therefore, do not use failing
assumptions in our oracles.
AddAssert: Given a program x and a location l in x, program y

is generated by adding a random assertion s, which may or may
not fail, at l. (Although s is generated randomly, Sherlock takes
into account live variables at l, their types, and constants in the
program.) The oracle for this transformation is Fy \ {s} ⊆ Fx . It
covers the following cases: (a) if s does not fail, we expect Fy = Fx ,
and (b) if s fails, other, previously failing assertions may now hold
due to the additional constraints from s; consequently, except for
s, there should be no additional failing assertions in program y.

AddAssume: Given a program x and a location l in x, program
y is generated by adding a random assumption, which may or
may not hold, at l. The oracle for this transformation is Fy ⊆ Fx .

Table 1: The transformations applied by Sherlock and their

respective oracles.

Type Transformation Oracle

Strengthen

AddAssert Fy \ {s} ⊆ Fx

AddAssume Fy ⊆ Fx

StrengthenAssert Fy \ {s} ⊆ Fx

StrengthenAssume Fy ⊆ Fx

Weaken WeakenAssume Fx ⊆ Fy

WeakenAssert Fx \ {s} ⊆ Fy

Even WeakenInvariant Fx = Fy

AssumeInvariant Fx = Fy

Similar to the previous transformation, it covers the following
cases: (a) if the assumption holds, we expect Fy = Fx , and (b) if
not, other, previously failing assertions may now hold due to the
additional constraints from the assumption.

StrengthenAssert: Given a program x and a location l in
x with an assertion s, program y is generated by potentially
strengthening the asserted condition P of s. For instance, P may
be transformed into P∧P ′, where P ′ is randomly generated (again
taking into account live variables at l, their types, and constants
in the program). Since P ′ can be true, the transformed condition
may be equivalent to P . The oracle for this transformation is
Fy \ {s} ⊆ Fx . It covers the following cases: (a) if s fails in x, s
must also fail in y, and we expect Fy = Fx , (b) if s fails neither in
x nor in y, we again expect Fy = Fx , and (c) if s does not fail in x

but does fail in y, other, previously failing assertions may now
hold in y due to the stronger constraints; consequently, except
for s, there should be no additional failing assertions in y.

StrengthenAssume: Given a program x and a location l in
x with an assumption, program y is generated by potentially
strengthening the assumed condition. Similar to AddAssume, the
oracle for this transformation is Fy ⊆ Fx .

WeakenAssert: In contrast to StrengthenAssert, this trans-
formation potentially weakens the asserted condition. The oracle
for this transformation is Fx \ {s} ⊆ Fy . It covers the following
cases: (a) if s does not fail in x, s must also not fail in y, and
we expect Fy = Fx , (b) if s fails in x, other, previously verified
assertions may now fail in y due to the weaker constraints.

WeakenAssume: In contrast to StrengthenAssume, this trans-
formation potentially weakens the assumed condition. Hence, the
oracle for this transformation is Fx ⊆ Fy .

WeakenInvariant: In contrast toWeakenAssert, this trans-
formation is only applied if the assertion s has been verified (by
the analyzer under test) in x, i.e., it is an invariant. The oracle
for this transformation is Fx = Fy . Since the analyzer claims
that s does not fail in x, the oracle is equivalent to case (a) from
WeakenAssert.

AssumeInvariant: Given a program x and a location l in x with
an assertion s that has been verified (by the analyzer under test),
program y is generated by converting s into an assumption. The
oracle for this transformation is Fx = Fy . Since the analyzer claims
that s does not fail in x, converting s into an assumption should
not affect the set of failing assertions.
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Recall that, in Fig. 2a, both assertions (lines 3 and 6) are verified by
ESBMC. We can then applyWeakenInvariant on line 6 to weaken
the asserted condition to true (line 7). For the generated program
however, ESBMC warns that the assertion on line 3 fails, which
violates the oracle for this transformation, i.e., the set of failing
assertions for the two programs should be the same. Similarly, in
Fig. 2b, we can apply WeakenAssume on line 6 to obtain line 5,
and in Fig. 2c, we can apply AddAssume to obtain line 6.

Note that we generate random assertions and assumptions by
producing random Boolean conditions; for instance, (in-)equalities,
with random expressions as operands. The expressions are over
initialized numerical variables that are in scope, constants from the
program, and random constants.

Stacked transformations. To increase the chances of detecting
issues in the analyzer under test, Sherlock stacks the above trans-
formations, that is, it applies multiple transformations to program
x when generating y. Note, however, that transformations are only
stacked when they share the same generic oracle type.

As shown in the first column of Tab. 1, we categorize our trans-
formations into three oracle-based types, Strengthen,Weaken,
and Even. The oracle for transformations of type Strengthen
is Fy \ Mx ,y ⊆ Fx , where Mx ,y denotes the set of all assertions
that are added or mutated when transforming x to y; the oracle for
Weaken is Fx \Mx ,y ⊆ Fy ; and the oracle for Even is Fx = Fy .

For example, to generate the program in Fig. 2a, we can first
apply stacked transformations of type Strengthen, which add as-
sertions and assumptions as well as strengthen them. The generated
program together with the analyzer response and its verification
results can then be stored in the knowledge base. When it is se-
lected for transformation, we can apply Even, which weakens the
invariant on line 6 and reveals the soundness issue.

Transformation strategy. Alg. 2 describes in more detail how
Sherlock applies stacked transformations. In particular, it shows
the implementation of function genRandQuery, which is called on
line 8 of Alg. 1. The function takes as input a program x as well as
the analyzer response rx and verification results vrx for x (line 1).
It returns a transformed program y together with the expected
analyzer response ry and verification results vry .

On line 2, we choose the number of transformations to apply,
numTr , according to a maximum-exponent setting, maxExp. In our
experiments, we set maxExp to 5 and, therefore, may apply up to
32 transformations. This is inspired by how AFL [3] chooses the
number of stacked mutations to apply to an input. On line 3, we
define the maximum number of failed transformation attempts,
numFailAtt, that we tolerate based on an attempt-factor setting,
attFctr . In our experiments, we set attFctr to 10. (We explain in
which cases failed attempts occur and provide examples in the
following.) Next, we choose a random transformation type (line 4)
and initialize the return variables (line 5).

While the number of failed attempts has not been depleted and
there are more transformations to apply (line 6), we choose a ran-
dom location, l, in y to transform (line 7). On line 8, we call do-
RandTr to apply a transformation of type trType to location l in
y. In Sherlock, the knowledge base kb is, for instance, used to
check if theWeakenInvariant transformation can be applied at
the selected location. Note that trType determines the oracle, and
thus, the expected analyzer response and verification results for y.

Algorithm 2: Transformation strategy in Sherlock.

1 function genRandQuery(x, rx, vrx):
/* choose number of transformations to apply */

2 numTr := 2randInt(0,maxExp);
/* compute number of failed attempts to transform */

3 numFailAtt := attFctr * numTr ;
/* choose transformation type */

4 trType := rand({Strengthen,Weaken, Even});
/* initialize return variables */

5 y, ry, vry := x, rx, vrx ;
6 while numFailAtt > 0 ∧ numTr > 0 do

/* choose location to transform */

7 l := y.locs[randInt(0, len(y.locs))];
/* try to apply random transformation */

8 y
′, ry

′, vry
′, tr := kb.doRandTr(y, ry, vry, l, trType);

/* if failed to apply */

9 if tr = NULL then

/* update the number of failed attempts */

10 numFailAtt := numFailAtt − 1;
11 continue;

/* if applied successfully */

/* update the number of transformations */

12 numTr := numTr − 1;
/* update return variables */

13 y, ry, vry := y
′, ry

′, vry
′;

14 return y, ry, vry ;

However, we may fail to apply a certain transformation to a
particular location l (line 9). For example, transformations of type
Even require that l contains a verified assertion. In case of a failed
transformation attempt, we decrement numFailAtt (line 10) and
continue with the next loop iteration (line 11). If the transformation
is applied successfully, we decrement the number of transforma-
tions (line 12) and update the return variables (line 13).

3.4 Knowledge Base

On a high level, the knowledge base maintains a history of previous,
diverse queries together with the corresponding analyzer response
and verification results. It is partially inspired by how greybox
fuzzers maintain a corpus of interesting inputs.

Diversity criterion. To control the size and diversity of the
knowledge base, we introduce a diversity criterion, which serves as
a knowledge-base gatekeeper. In particular, we use this criterion to
determine if an analyzer query should be added to the knowledge
base. This is similar to how greybox fuzzers only add inputs to
the corpus if they increase coverage. The goal is to prevent the
formation of large clusters of similar entries, which bias the search.

Specifically, after each analyzer query, we track, for each location
in program p, whether it contains an assertion that the analyzer
does not verify. Note that we track the locations in p with respect
to the original seed (line 2 of Alg. 1), that is, our transformations do
not affect program locations. In other words, for each p, we obtain a
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diversity profile, which is encoded as a mapping seed.locs 7→ {0, 1}.
If a program p has the same diversity profile as any program in the
knowledge base, then we do not add p to the knowledge base.

Time to live. For our diversity criterion, the maximum number
of entries in the knowledge base is 2seed .locs . Consequently, for small
seed programs, we might quickly fill the knowledge base. From this
point on, diverse and potentially rare queries, which could lead to
detecting analyzer issues, are no longer added to the knowledge
base. As a result, some interesting areas of the search space are not
explored effectively (thereby reducing query diversity) since the
knowledge base has reached a “local optimum”.

To address this, we assign a time-to-live (TTL) attribute to each
program in the knowledge base and replace the program once
its TTL has expired. More specifically, whenever a program a is
selected for further transformation, we decrement its TTL. Once
we have a program b that has the same diversity profile as a and
a’s TTL has expired, we replace a with b in the knowledge base. As
our experiments show, this mechanism increases the effectiveness
of Sherlock in detecting analyzer issues. It is partially inspired by
optimization techniques that try to escape local optima, for instance,
by restarting the search from a different point in the search space.

3.5 Discussion

For Sherlock, we assume that the analyzers under test reason about
reachability of assertions and understand assumptions. Note that
assertions may also be expressed as if-statements guarding an error
(e.g., overflow, null-pointer dereference, etc.) and assumptions as if-
statements that successfully terminate the program. Consequently,
it is actually not even necessary for analyzers to support explicit
assert and assume statements.

In addition, Sherlock assumes that the analyzers report all reach-
able assertion violations in an analyzed program. Note, however,
that Sherlock can also handle analyzers that stop after reporting
the first assertion violation by ensuring there is a single assertion
in the program. For programs with multiple assertions, one can
perform multiple analyzer queries, each with a single assertion.

As for interrogation testing in general, the above assumptions
can be relaxed further depending on the type of tested analyzers.

4 Implementation

In order to increase the chances that the issues we report are fixed,
we developed the following two improvements in Sherlock.

Issue prioritization.When testing program analyzers that may
be imprecise, such as abstract interpreters, we found that Sherlock
may report several, potential precision issues. In our experience,
however, analyzer developers do not value these as much as sound-
ness issues and are less likely to fix them. After all, these analyzers
are usually designed to trade precision for other qualities, such
as scalability. When reporting issues for analyzers with known
imprecision, we therefore prefer to prioritize soundness issues. For
this, we use differential testing with analyzers that are not designed
to be imprecise, such as model checkers. More specifically, when
an imprecise analyzer exhibits an issue for a pair of programs, we
also run a (more) precise analyzer on the corresponding programs.
If the precise analyzer reports more warnings for any of the two
programs, we prioritize the issue; it is likely a soundness issue.

Issue minimization. Once an issue is detected, we try to mini-
mize the program(s) that exhibit it before reporting it to the devel-
opers. This step is important for developers as it may significantly
facilitate debugging, and thus, improve their response time. For is-
sue minimization, we use C-Reduce [1], a popular C/C++ program
reducer. C-Reduce takes as input a program that has a particular
property of interest (e.g., it triggers a compiler crash) and iteratively
produces a much smaller program that exhibits the same property.

We adapt C-Reduce as follows. Consider an issue that is detected
by Sherlockwhen applying stacked transformations T on program
x to obtain program y; assume that x and y (i.e., their set of failing
assertions) violate oracle O. We use C-Reduce for reducing x to x

′

such that, when we re-apply transformations T to x
′, we obtain

y
′, and x

′ and y
′ violate oracle O. Note that we do not allow the

reduction of assertions or assumptions that are affected by T . For
instance, if the condition of an assumption is reduced, re-applying
our transformation might yield a completely different condition
or not be possible at all. Nevertheless, C-Reduce may reduce all
other assertions and assumptions. This minimization technique has
been very effective in practice; we have observed reductions of up
to 300x in lines of code (e.g., for issue 13 in Tab. 2).

5 Experimental Evaluation

In this section, we address the following research questions:
RQ1: How effective is Sherlock in detecting analyzer issues?
RQ2: What are characteristics of the detected issues?
RQ3: Which transformations are effective in detecting issues?
RQ4: How does Sherlock compare to metamorphic testing?
RQ5: Is the knowledge base effective in detecting issues?

5.1 Setup

We used Sherlock to test 8 well known and publicly available
analyzers, namely, CBMC, Clam, CPAchecker, ESBMC, KLEE,
MOPSA, Symbiotic, and UAutomizer, that use a wide range of
different program-analysis techniques, including abstract inter-
pretation, model checking, and symbolic execution. We use the
following two setups for our experiments with these analyzers.
Issue detection: To detect analyzer issues (RQ1–2), we collected
seeds (see inputs of Alg. 1) from several sources, namely, the Com-
petition on Software Verification (SV-COMP) [4], the Competition
on Software Testing (Test-COMP) [5], and the open-source repos-
itory of the Goblint static analyzer [2]. We also generated seeds
using Csmith [43]. In total, we assembled a set of 4500 seeds.
For each seed, the budget is depleted (see Alg. 1) (1) if no ana-
lyzer query is added to the knowledge base after 100 consecutive
queries, or (2) after 2000 queries. We use a time limit of 30 secs
for each analyzer query.

Issue reproduction: With this setup, we aim to re-find already de-
tected issues (RQ3–5) and evaluate the performance of Sherlock.
Here, the seeds of Alg. 1 contain the single seed that originally
revealed the issue. The budget of Alg. 1 is seven days unless stated
otherwise. Note, however, that we cannot be sure that each de-
tected issue corresponds to the original issue we want to re-find.
After all, an analyzer may have several issues. For this reason, we
only focus on fixed issues: for each detected issue, we apply the
fix proposed by the analyzer developers and check that the issue
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Table 2: Analyzer issues detected by Sherlock.

Issue Program Issue Issue Seed

ID Analyzer Type Status LOCs

1 CBMC Soundness Fixed 57
2 CBMC Soundness Confirmed 1519
3 CBMC Soundness Confirmed 2820
4 CBMC Precision Confirmed 7
5 CBMC Other Confirmed 29
6 Clam Soundness Fixed 863
7 Clam Precision Fixed 24
8 Clam Precision Fixed 40
9 Clam Soundness Fixed 24
10 Clam Soundness Fixed 38
11 CPAchecker Precision Confirmed 42
12 ESBMC Precision Fixed 2747
13 ESBMC Soundness Fixed 2820
14 ESBMC Soundness Confirmed 2790
15 ESBMC Soundness Fixed 19
16 ESBMC Soundness Confirmed 13
17 KLEE Soundness Confirmed 41
18 KLEE Soundness Fixed 237
19 KLEE Crash Fixed 42
20 MOPSA Soundness Fixed 36
21 MOPSA Precision Confirmed 477
22 MOPSA Soundness Fixed 38
23 Symbiotic Soundness Reported 54
24 UAutomizer Soundness Confirmed 2820

no longer occurs. To account for the randomness in Sherlock,
we repeat this experiment with 5 different random seeds.

We performed all experiments on a machine with two AMD
EPYC 9474F CPUs @ 3.60GHz and 1.5TB of memory, running De-
bian GNU/Linux 12 (bookworm).

5.2 Results

We now discuss our findings for each research question.
RQ1: Issues detected by Sherlock. We completed the im-

plementation of an initial version of Sherlock in the summer of
2023, and we reported the first issue in August. We incrementally
added more transformations, analyzers, and seeds until April 2024,
when we stopped testing. We used the issue-detection setup (see
Sect. 5.1), and whenever an issue was detected, we either stopped
testing the affected analyzer until a fix was provided or we manu-
ally de-duplicated any additional issues before reporting them. On
average, we spent about 1–2 months testing each analyzer, except
for Symbiotic, which we realized is no longer maintained.

Tab. 2 shows the list of unique analyzer issues detected by Sher-
lock. The first column provides an identifier for each issue and
links to the (anonymized) bug report on GitHub/GitLab. The second
column shows the program analyzer for which the issue was found.
The next two columns indicate the type of issue (e.g., soundness
or precision) and its status (e.g., reported, confirmed, or fixed). The
last column shows the size of the seed program, in lines of code,
that led to eventually detecting the issue.

In total, Sherlock detected 24 issues, 23 of which are confirmed

by the analyzer developers and 13 are fixed. We found issues in all

analyzers we tested, 16 of which are soundness issues and 6 are preci-

sion issues. As a by-product, we also found 2 issues (5 and 19) that
are not related to soundness or precision. Issue 5 refers to CBMC’s
parser reporting an assertion violation on an incorrect line—the
issue is revealed only for syntactically large expressions. Issue 19
is a crash in KLEE—our report triggered the developers to re-assess
the effectiveness of a certain tool option and eventually remove it.

Although many of the confirmed issues have already been fixed,
certain issues are non-trivial to fix. For instance, issue 2 was as-
signed high priority and triggered a long discussion among several
CBMC developers. Issue 4 revealed an uncommon treatment of
assertions in CBMC. More specifically, when analyzing executions
through the successful branch of an assertion, the analyzer does
not take into account that the asserted condition holds. Since this
treatment may lead to false positives, a developer mentioned it
might be revisited in the future. For now, the CBMC documentation
has been updated to clarify the treatment of assertions.

RQ2: Description of detected issues. To better understand
the detected issues, we discuss some of them in detail. Sherlock
detected 16 soundness and 6 precision issues—in addition to the
issues of Fig. 2 (1, 7, and 15), let us take a closer look at issues 9, 13,
18, 20, 22, and 8, all of which were fixed by the analyzer developers.

Fig. 3a shows the (minimized) program y that revealed sound-
ness issue 9 in Clam. Given the non-deterministic integer S, the
assertions on lines 3 and 5 should fail. Clam, however, missed the
second assertion violation (line 5). This issue was caused by incon-
sistent handling of signed and unsigned integers in comparisons.
Sherlock transformed program x to derive program y by replacing
line 4 with 3; precisely, it weakened the assertion on line 4 (using
WeakenAssert), thereby revealing the issue.

Fig. 3b revealed soundness issue 13 in ESBMC. The assertion
on line 6, which compares pointers str0 and str1, is unsoundly
verified. Given this program x, Sherlock generated y by adding the
assumption on line 2 (using AddAssume). For y, ESBMC correctly
reports the assertion violation, and Sherlock detects the issue.

Soundness issue 18 was detected in KLEE with the program of
Fig. 3c. Line 2 declares several non-deterministic, integer variables,
and lines 3 and 5 specify relations among these using assumptions.
Note that the assumptions do not imply the asserted condition
on line 6, and the assertion may fail. Nevertheless, when KLEE is
configured to verify this program, i.e., by turning off any unsound
state-space pruning techniques, it unsoundly proves that the asser-
tion holds. Given this program x, Sherlock generated y by adding
the assumption on line 4. For y, KLEE soundly reports an assertion
violation, thereby revealing the issue.

TheKLEE developers found that the issue was caused by variable-
name clashes when generating queries for Z3. All variable names
were expected to be unique after appending a number suffix. How-
ever, when a name already ended with a number, uniqueness was
no longer guaranteed, e.g., consider variable v1 with the appended
suffix 11 and variable v11 with the appended suffix 1. This resulted
in solver queries that were semantically different than expected.

Fig. 3d revealed soundness issue 20 in MOPSA. For program
x, shown in the figure, MOPSA unsoundly verified the assertion
on line 6, which however fails for a = 1 (and x = 0.5). Sherlock
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1 int main() {

2 int S = ⋆;

3 assert(S != 2U && S != 1U);

4 // assert(S != 2U && S < 1U);

5 assert(S > 2);

6 return 0;

7 }

(a) Soundness issue in Clam.

1 int main (){

2 // assume(NULL != "a");

3 char *str0 =

4 (char *) 0xFFFFFFFFFFFFFFFF;

5 char *str1 = "";

6 assert(str0 <= str1);

7 }

(b) Soundness issue in ESBMC.

1 void main() {

2 int p1 , ..., p15 , cond = ⋆;

3 assume(p12 > p14); assume(p6 > p3);

4 // assume(p2 > 0);

5 assume(p7 != 0); ... assume (0 > p4);

6 assert(p2 > p11);

7 }

(c) Soundness issue in KLEE.

1 int main() {

2 int a = ⋆;

3 assume(a <= 1);

4 // assume(a <= 1 && a >= 1);

5 double x = a / 2.0; ...

6 assert(x <= 0.0); ...

7 }

(d) Soundness issue in MOPSA.

1 int main() {

2 int MAX = ⋆;

3 char str1[MAX];

4 assert(MAX >= 0);

5 }

(e) Soundness issue in MOPSA.

1 void main() {

2 N = ⋆;

3 assume(N != -2147483648 &&

4 N != 2147483647);

5 for (int i = 0; i < N; i++)

6 assert(N >= -1);

7 }

(f) Precision issue in Clam.

Figure 3: Additional soundness and precision issues detected by Sherlock and fixed by the analyzer developers.

generated y by strengthening the assumption on line 3 to the one
on line 4, restricting the value of a to 1. For y, MOPSA does report
the assertion violation. This issue was likely caused by a copy-paste
mistake. The fix involved changing a single line of code, where
floating-point interval addition was replaced by multiplication in
the definition of the backward multiplication operator.MOPSA also
misses the assertion violation in Fig. 3e (issue 22). The issue occurs
in the presence of undefined behavior, i.e., MAX is used to declare
the length of array str1 but may have a negative value.

Precision issue 8 was detected in Clam with the program shown
in Fig. 3f. Since non-deterministic variable N is used as loop bound,
the assertion on line 6 is only reachable with non-negative values of
N; it can, therefore, not fail. Clam imprecisely reports an assertion
violation due to the assumption on lines 3–4, which causes the
analyzer to infer incorrect ranges for N. Without this assumption,
Clam precisely verifies the assertion.

Overall, Sherlock detected issues in diverse components of pro-

gram analyzers implementing a wide range of analysis techniques.

RQ3: Transformations. We now discuss which transforma-
tions helped to detect analyzer issues. For this and the remain-
ing research questions, we use the issue-reproduction setup (see
Sect. 5.1), which aims to re-find fixed issues with 5 independent
random seeds. We only focus on fixed soundness and precision
issues and omit by-product issue 19, which revealed a crash. We
also omit issue 10 because, interestingly, Sherlock finds a (not yet
fixed) precision issue for the given seed, and it is our minimization
technique that reveals the soundness issue. Finally, we omit issue
12 because the fix involved disabling the buggy code altogether;
we, thus, can no longer confirm whether a detected issue reveals
the same problem.

Once Sherlock re-detected an issue, we inspected the sequence
of stacked transformations that led to adding programs in the knowl-
edge base and eventually finding the issue. The sequences, of course,
varied across different, random seeds. We found that, for all is-
sues, transformations of each type (Strengthen,Weaken and Even)

appeared in at least one sequence. AddAssert and AddAssume
constitute 60% of all transformations. While Sherlock chooses a

transformation type uniformly (line 4 of Alg. 2), not all transfor-
mations may be applied at a particular location. For example, an
assertion may always be added, whereas an assertion strengthening
or weakening requires that an assertion exists at the location. The
least frequent type of transformation is Even, making up only 2%
of all transformations. This is because transformations of this type
require that the location is instrumented with an assertion and that
the analyzer verified this assertion. Another reason why transfor-
mations of type Even are rare is that theWeakenInvariant and
AssumeInvariant transformations do not change the diversity
profile of a program (see Sect. 3.4) and do not lead to adding the
program to the knowledge base.

Interestingly however, these transformations do seem to con-
tribute to revealing issues since they appear in 20% of the last
stacked transformations in the sequences, i.e., the stacked transfor-
mations that led to detecting an issue. We observed that, despite
changing the random seed, the last transformations for certain is-
sues were always the same, indicating that they were necessary for
detecting these issues. In particular,WeakenAssert orWeakenAs-
sume were needed to detect issues 1 and 9, andWeakenInvariant
or AssumeInvariant to detect issue 15.

RQ4: Sherlock vs. metamorphic testing. In this research
question, we compare our approach to metamorphic testing. Note
that we do not consider differential testing here for the following
reasons. First, differential testing requires at least two analyzers to
be applicable, whereas our approach can test a single analyzer in
isolation. Second, it is challenging to differentially test two arbitrary
analyzers, for instance, an abstract interpreter that is designed to
be imprecise with a model checker that is designed to be unsound.
This would inherently result in a large number of differences in the
verification results [28]. Third, even when differentially testing two
analyzers that implement the same technique, it is unclear which
analyzer is at fault. None of these issues arise in our approach or in
metamorphic testing.

As we discussed in Sect. 1, metamorphic testing (MT) of program
analyzers typically applies the following workflow: query the ana-
lyzer on a program and get its response (i.e., the program is correct
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Table 3: The transformations applied by MT and their re-

spective oracles.

Type Transformation Oracle

Strengthen AddAssume rx = ⇒ ry =

StrengthenAssume rx = ⇒ ry =

Weaken WeakenAssume rx = ⇒ ry =

Even WeakenInvariant ry =

AssumeInvariant ry =

or incorrect); based on the response, transform the program such
that the new expected response is known; query the analyzer again
on the transformed program and get the new actual response; detect
an issue if the new actual response does not match the expected
one.

On the other hand, interrogation testing as instantiated in Sher-
lock uses more information than just the analyzer response to
form queries; it additionally uses the verification results that the
analyzer achieves for each query, that is, the assertions that are
(un)verified. Moreover, it integrates a knowledge base that enables
maintaining a history of analyzer queries. In this research question,
we evaluate whether these two key innovations significantly in-
crease the bug-finding effectiveness of Sherlock in comparison
to MT. As there are no existing MT tools targeting these analyzers
and types of issues, we implement MT in Sherlock. To create this
baseline, we disable usage of the knowledge base and verification
results.

Disabling the latter means that the detector may apply stacked
transformations that solely rely on the analyzer response, and not
its verification results. In other words, issues are detected based on
the transformations and oracles shown in Tab. 3. In particular, trans-
formations AddAssert, StrengthenAssert, and WeakenAssert
may no longer be applied because we cannot define an oracle based
only on the analyzer response. For instance, if an assertion is added
to a correct program, we cannot predict the correctness of the re-
sulting program. For AddAssume and StrengthenAssume, the
oracle becomes “if program x is found to be correct, then program
y must also be correct”. If x is found to be incorrect and we add
or strengthen an assumption, we cannot predict the correctness of
the resulting program. Similarly, forWeakenAssume, the oracle
becomes “if program x is found to be incorrect, then program y

must also be incorrect”. The oracles for transformations Weak-
enInvariant and AssumeInvariant remain the same, but these
transformations may only be applied to correct programs.

The results of the MT and Sherlock comparison are shown
in Tab. 4a—columnMT+VR should be ignored for now. The table
shows the average time (in minutes and over 5 runs with different
random integer seeds) to re-find a fixed issue as well as for how
many random seeds (out of 5) the issue is re-found. Recall that we
only focus on fixed issues to ensure that a detected issue is indeed
the one we intend to re-find (see Sect. 5.1). The average time in the
table is computed by calculating the mean over the seeds that do
detect an issue (i.e., by not counting timeouts). The best results per
issue are shown in bold.

As shown in the table, Sherlock is able to detect all 10 issues,

whereas MT only finds 8. Moreover, Sherlock consistently detects,

i.e., for all 5 random runs, 9 out of 10 issues, whereas MT only con-

sistently detects 6. For issues that are consistently found by both MT

and Sherlock, Sherlock achieves a speedup between 7x (for issue 9)

and 906x (for issue 20).

Sherlock did not consistently find issue 15. We observed that
this issue was detected with the smallest seed program (across all
10 issues used in this experiment). Due to the small size of the seed
program and our diversity criterion, the knowledge base could be
filled with programs that are not effective in revealing the issue.
This problem, which may only occur for small seeds, is alleviated
when enabling TTL (see Sect. 3.4). In fact, when setting TTL = 250,
Sherlock consistently detected the issue (across all 5 runs) within
an average of 28 minutes. Note that, for the remaining issues, TTL
with value 250 does not kick in, i.e., no programs are replaced in
the knowledge base.

Tab. 4b shows the same results as Tab. 4a but for a time limit of
two hours (instead of seven days). Sherlock still clearly outper-
formsMT. Specifically, Sherlock is able to detect 8 issues, whereas
MT only finds 4. Moreover, Sherlock consistently detects 5 out of
8 issues, whereasMT only consistently detects 3. For issues that are
consistently found by both MT and Sherlock, Sherlock achieves
a speedup between 7x and 8x.

RQ5: Knowledge base. In this research question, we extend
MT with verification results (VR), to obtainMT+VR, and compare
it with Sherlock. In other words, MT+VR may apply the same
transformations as Sherlock, i.e., those of Tab. 1, but it may not use
a knowledge base. The results are shown Tab. 4a, when comparing
columns MT+VR and Sherlock.

As shown in the table, Sherlock is able to detect all 10 issues,

whereasMT+VR only finds 9. Moreover, Sherlock consistently detects,

i.e., for all 5 random runs, 9 out of 10 issues (when not enabling

TTL), whereas MT+VR only consistently detects 7. For issues that are

consistently found by bothMT+VR and Sherlock, Sherlock achieves

a speedup between 7x (for issue 7) and 20x (for issue 20).

Observe that issue 13 could not be detected by MT, but it is
detected when enabling the use of verification results inMT+VR.
Moreover, note that issue 18 cannot be detected without the use
of the knowledge base. This issue was found in KLEE, which of-
ten timed out when being tested withMT orMT+VR. In contrast,
the knowledge base in Sherlock helps to filter and retain “good”
programs, which can be handled by KLEE without a timeout. This
indicates that, over time, the queries become more and more tar-
geted to the capabilities of the analyzer under test.

In Tab. 4b (for the 2-hour time limit), Sherlock is able to de-
tect 8 issues, whereas MT+VR only finds 6. Moreover, Sherlock
consistently detects 5 out of 8 issues (when not enabling TTL),
whereasMT+VR only consistently detects 4. For issues that are con-
sistently found by both MT+VR and Sherlock, Sherlock achieves
a speedup between 7x and 20x.

5.3 Threats to Validity

Our experimental results depend on the program analyzers under
test, the seed programs, and randomness in the applied transforma-
tions. To address the first potential threat, we diversified the set of
analyzers we tested. In particular, we selected mature analyzers that
implement conceptually different analysis techniques. Similarly, we
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Issue MT MT+VR Sherlock

ID Time Seeds Time Seeds Time Seeds

1 8814 1 3567 3 521 5

6 8576 1 1779 5 97 5

7 32 5 26 5 4 5

8 1117 5 78 5 9 5

9 21 5 23 5 3 5

13 - 0 4351 1 4142 5

15 49 5 8 5 < 1 1
18 - 0 - 0 1369 5

20 1811 5 39 5 2 5

22 738 5 161 5 20 5

(a) 7-day time limit

Issue MT MT+VR Sherlock

ID Time Seeds Time Seeds Time Seeds

1 - 0 - 0 15 1

6 - 0 - 0 88 4

7 32 5 26 5 4 5

8 - 0 60 4 9 5

9 21 5 23 5 3 5

13 - 0 - 0 - 0
15 49 5 8 5 < 1 1
18 - 0 - 0 - 0
20 - 0 39 5 2 5

22 10 1 15 3 20 5

(b) 2-hour time limit

Figure 4: Average time to detect a fixed issue for MT, MT+VR, and Sherlock (7-day time limit for (a) and 2-hour time limit

for (b)). Time is displayed in minutes, averaged across 5 runs with different random integer seeds.

selected the seed programs from popular open-source repositories
or we generated them automatically. Lastly, to limit the effect of
randomness in our results, we ran Sherlock as well as theMT and
MT+VR baselines multiple times using independent random seeds.

6 Related Work

The most closely related work aims to find bugs in program ana-
lyzers or their components, for instance, abstract domains [9, 33],
constraint solvers [31, 35, 41, 42], or Datalog engines [30, 32].

In Sect. 1, we have described four high-level approaches for
analyzer testing, including their limitations. These approaches are
based on (1) program generation (e.g., [8, 23]), (2) specification-
based testing (e.g., [9, 33, 40]), (3) differential testing (e.g., [18, 25,
28, 35, 41]), and (4) metamorphic testing (e.g., [20, 30–32, 34, 42, 44–
46]). In contrast, interrogation testing introduces a novel testing
framework that incorporates ideas from metamorphic testing [13,
36] (to create powerful test oracles) and greybox fuzzing [3] (to
generate more diverse queries using a knowledge base that captures
more information than just the analyzer response).

There are two interesting connections with recent work we em-
phasize next. Feedback-directed metamorphic testing (FDMT) [39]
extends metamorphic testing to dynamically adjust how metamor-
phic relations and source test cases (i.e., test cases that are trans-
formed by metamorphic relations) are selected. FDMT and interro-
gation testing both aim to improve over random selection of source
test cases but use very different approaches. For instance, interro-
gation testing selects diverse tests based on the output of the tested
analyzer, while FDMT uses partition testing that typically focuses
on the test input.

In contrast to both interrogation testing and FDMT, GrayC [18]
aims to improve the selection of source test cases that are sub-
sequently used for differential testing of program analyzers (and
compilers). GrayC builds a corpus of interesting test cases by col-
lecting code-coverage feedback during compilation. In contrast, our
diversity metric uses the verification results of the tested analyzer.

Compiler testing [12] is another related area given that compil-
ers often incorporate fast and scalable analysis components, such
as data-flow analyses. These analyses may introduce compilation

failures, for instance, by wrongly optimizing the program based on
results from an incorrect data-flow computation. However, finding
bugs in the analysis components is essentially a by-product, not
the main objective. In contrast, interrogation testing aims to find
issues in general-purpose program analyzers that use a much wider
range of analysis techniques, such as abstract interpretation [17],
bounded model checking [7], and symbolic execution [11, 26].

7 Conclusion

We have presented interrogation testing, a novel systematic testing
framework for detecting soundness and precision issues in pro-
gram analyzers. Our approach introduces two key innovations that
drastically boost its bug-finding effectiveness (as shown in our ex-
perimental evaluation): (1) incorporating more information from
analyzer queries to obtain more powerful oracles, and (2) introduc-
ing a knowledge base maintaining a history of diverse queries.

We have also described a concrete instantiation of this general
framework for program analyzers that reason about reachability;
these include a wide range of analyzers, such as model checkers,
abstract interpreters, and symbolic-execution engines. Sherlock,
the corresponding tool, has already revealed 24 unique issues (16
soundness and 6 precision issues), 23 of which were confirmed by
the analyzer developers. Sherlock found issues in all 8 analyzers
we tested, and soundness issues in 7 of them.

In future work, we plan to explore new instantiations of interro-
gation testing for other classes of analyzers (e.g., taint analyzers).
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