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Kurzfassung

Der weltweite Energieverbrauch des Verkehrssektors nimmt aufgrund der Globalisierung
ständig zu. Es wird zunehmend an alternativen Antriebssystemen geforscht, um die Um-
weltauswirkungen von schweren Nutzfahrzeugen zu verringern. In diesem Zusammen-
hang sind Brennstoffzellen-Elektrofahrzeuge eine der vielversprechendsten Lösungen
zur Reduzierung der Treibhausgasemissionen. Diese Fahrzeugarchitektur umfasst ein
Brennstoffzellensystem, das Wasserstoff in Elektrizität umwandelt - wobei nur Wasser
als Nebenprodukt anfällt - und ein Batteriesystem, das die für Automobilanwendungen
typischen schnellen Lastwechseln bewältigt. Daher ist eine Energiemanagementstrategie
(EMS) erforderlich, um den elektrischen Leistungsbedarf zwischen den Brennstoffzellen-
Batteriesystemen zu verteilen. Die Regelung der Leistungsaufteilung kann als komplexes
Optimierungsproblem formuliert werden, das mehrere gegensätzliche Ziele beinhaltet,
wie z. B. den Kraftstoffverbrauch, die Kontrolle des Ladezustands der Batterie und den
Ampere-Durchsatz der Batterie. Mit Hilfe einer prädiktiven Energiemanagementstra-
tegie kann die Leistungsaufteilung auf der Grundlage des künftigen Leistungsbedarfs
optimiert werden, der anhand von Fahrdatenprognosen (z. B. Fahrzeuggeschwindigkeit,
Streckenhöhe, Verkehrsstaus, Wetter) geschätzt wird. Die Fahrprognosen können je nach
Länge des Prädiktionshorizonts in Kurzzeit- und Langzeitprognosen unterteilt werden,
z. B. ein Horizont von einer Minute bzw. einer Stunde. Obwohl die Rechenkapazitäten
industrieller Steuerungen stetig zunehmen, stellt die Online-Verarbeitung verschiedener
langfristiger Vorhersageinformationen immer noch eine große Belastung für moderne
Hardware dar. Unter der Annahme, dass beide Vorhersageebenen verfügbar sind, ist
es daher interessant, neue Ansätze zu untersuchen, um die hohe Rechenkomplexität
prädiktiver Regler zu bewältigen. In dieser Arbeit wird eine neuartige Formulierung
für Model Predictive Control (MPC) vorgeschlagen, um eine prädiktive Energiemana-
gementstrategie mit langen Vorhersagehorizonten und wenigen Entscheidungsvariablen
zu ermöglichen. Insbesondere wird die klassische MPC-Formulierung dahingehend mo-
difiziert, dass sie nicht gleichmäßig verteilte Kontrollvariablen aufweist. Dadurch kann
der prädiktive Regler kurzfristige Informationen (z.B. Verkehr) und langfristige Infor-
mationen (z.B. Streckenhöhe) berücksichtigen. Die vorgeschlagene Vorhersagestrategie
wird anhand von realen Fahrzyklusdaten eines Straßengüterfahrzeuges getestet. Es wer-
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den verschiedene Parameteränderungen und Prognoseszenarien angenommen, um die
Wirksamkeit und Robustheit des MPC zu untersuchen. Die Ergebnisse zeigen, dass das
vorgeschlagene Konzept optimale Kraftstoffverbrauchsergebnisse erzielt, Batterielade-
zustandskontrolle ermöglicht und gleichzeitig die Berechnungskomplexität eines MPC
reduziert.
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Abstract

The world energy consumption of the transport sector is in constant growth due to
globalisation. Increasing research is conducted on alternative propulsion systems to re-
duce the environmental impact of heavy-duty vehicles. In this context, fuel cell electric
vehicles are one of the most promising solutions to reduce greenhouse gas emissions.
This vehicle architecture includes a fuel cell system that converts hydrogen into elec-
tricity - with only water as a by-product - and a battery system that copes with the
fast load transients typical of automotive applications. Therefore, an energy manage-
ment strategy (EMS) is necessary to distribute the electric load demand between the
fuel cell battery systems, usually referred to as the power-split control task. From a
control theory point of view, the power-split task can be formulated as a complex op-
timisation problem involving several contrasting objectives, such as fuel consumption,
battery state-of-charge (SoC) control, and battery ampere throughput. Using a pre-
dictive energy management strategy (PEMS), the power-split can be optimised based
on the future load demand, estimated using driving information forecasts (e.g. vehi-
cle speed, route elevation, traffic congestion level, weather). The driving forecasts can
be classified into short-term and long-term, depending on the future horizon length,
e.g. one minute ahead and one hour, respectively. Although computational capabilities
of industrial controllers are steadily increasing, online processing of various long-term
predictive information still places a heavy burden on modern hardware. Therefore,
assuming that both forecast levels are available, it is interesting to investigate new ap-
proaches to deal with the high computational complexity of predictive controllers. This
thesis proposes a novel model predictive control (MPC) formulation as a PEMS with
long prediction horizons but few decision variables. In particular, the classical MPC
formulation is modified to have non-uniformly distributed control variables. The PEMS
can consider short-term information (e.g. traffic) and long-term information (e.g. route
elevation). The proposed predictive strategy is tested on real-world driving cycles of
road freight vehicles. Several parameter changes and forecast scenarios are adopted to
examine the efficacy and robustness of the MPC. The results show that the proposed
concept achieves optimal fuel consumption and SoC control results while reducing the
computational complexity of MPC.
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Chapter 1

Introduction

1.1 Motivation
The switch to renewable energy sources is probably one of the most significant chal-
lenges of our time. Coal, oil and natural gas will become scarce in the near future,
but also climate change is forcing us to reduce our consumption of fossil fuels signifi-
cantly. Regulations and funding of governments stimulated the production of electric
vehicles for the passenger car market worldwide. For the European Union, the share of
electric vehicle registrations tripled from 3.5% in 2019 to over 11% in 2020 [1]. Due to
heavy-load and range requirements, decarbonisation via electrification is not suitable
for heavy-duty vehicles. They are responsible for about a quarter of CO2 emissions from
road transport in the European Union. In addition, road freight transport is expected
to increase by 33% until 2030 and by 55% until 2050 [2].
Fuel cell electric vehicles (FCEV) can reduce the environmental impact and the depen-
dence on fossil fuels. FCEVs use electricity, which is produced by a fuel cell system,
to power an electric motor. Combined with a battery, such a mix of energy sources
achieves a higher driving range, meets the fast power variations, and absorbs regener-
ative energy during brakes.
An energy management strategy (EMS) operates the power-split of the demanded power
from the driver between multiple power sources (e.g. fuel cell, battery, supercapacitor)
based on component constraints and efficiency criteria. The main objectives considered
by an EMS are fuel economy, fuel cell lifetime, and battery lifetime [3]. These objec-
tives include contrasting targets, such as hydrogen consumption, electric consumption,
battery state-of-charge (SoC) control, and fuel cell voltage degradation minimisation.
The SoC control target - essential to avoid accelerated degradation - is particularly
challenging for trucks driving on hilly routes due to the heavy loads. An effective way
to ensure that the battery charge stays within the desired operating range is to use
a predictive energy management strategy (PEMS). With knowledge of the road gra-
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dient, a PEMS can ensure that before an uphill section, the battery of an FCEV is
fully charged to discharge it to the top of the hill so that energy can be regenerated by
recuperation during the downhill drive. A non-predictive battery SoC control strategy
will have suboptimal fuel economy during mountain routes.
The performance of a PEMS depends on the accuracy of prediction results of future
driving conditions. A weather forecast for the next hour is a sufficiently long horizon,
while a prediction of driver’s behaviours is highly accurate only a few minutes ahead.
Driving forecasts are classified into short-term and long-term information depending
on the future horizon length. This thesis proposes a PEMS that processes short-term
information (e.g. traffic) and long-term information (e.g. power demand). The ar-
chitecture of the PEMS is shown in Figure 1.1. With the forecast of route speed and
elevation from a navigation system, the long-term required electric power of the FCEV
is predicted. Driving uncertainties (e.g., traffic, weather) influence drivers’ behaviour.
The resulting short-term information - speed and demanded electrical power - are used
by the online PEMS to modify the predicted electric power and calculate the optimal
fuel cell power. The adjustment of long-term predictive information with short-term
information is repeated every step. This approach allows the PEMS to have a long-term
insight into the future power demand while considering uncertainties like abrupt speed
changes.

Driving uncertainties (e.g., traffic, weather) 
influence drivers' behaviour

Navigation 
system

Long-term predictive information

Short-term predictive information

Vehicle 
model

Forecast of route speed
and elevation

Predictive energy
management

system

Speed, demanded electric power

Optimal 
fuel cell power

Forecast of
electric power

Figure 1.1: Scheme of the short-term and long-term information processing.
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1.2 Literature survey
An energy management system of an FCEV determines the optimal power-split between
multiple energy sources depending on control objectives. This represents a challenging
task due to various requirements (e.g., availability of high-performance real-time hard-
ware, real-time controllability etc.) and efficiency criteria (e.g., state of charge control,
fuel consumption, battery degradation etc.).
In general, EMS can be classified in rule-based (also referred as heuristic) and model-
based optimisation methods (also referred as optimal) [4] [5]. Heuristic strategies are
based on engineering intuition, and correlations involving various vehicular variables
[5]. Model-based strategies, on the other hand, rely on mathematical models and sys-
tematic optimisation procedures to find (local) minima [5]. Rule-based strategies (RBS)
are easy to implement and widely used but often result in suboptimal solutions. On
the contrary, model-based strategies are hard to be implemented in real-time control
systems, although they overcome the inherent drawback of RBS [6]. For this reason,
research focuses on improving the optimality of rule-based energy management strategy
and reducing the computation load of model-based energy management strategy [6].
One approach for designing a predictive energy management system, widely used in the
literature, is to calculate a reference trajectory based on long-term information, con-
straints and prediction objectives. Furthermore, the reference is used as a final-state
constraint, either by a rule-based or a model-based optimisation.
Sun et al. [7] proposes a predictive energy management strategy that integrates real-
time traffic data. With this data, the traffic flow velocity can be obtained, followed
by the calculation of the optimal SoC trajectory. The MPC uses the horizon velocity
predictor and the SoC reference to forecast the future driving velocities in each reced-
ing horizon. These two aspects correspond to long-term and short-term disturbances,
respectively. The simulation results show that fuel optimality can be achieved.
Lim et al. [8] proposes a distance-based eco-driving scheme using a two-stage hierarchy
for long-term optimisation and local adaptation. Before departure, a speed profile is
calculated in a distance domain for the entire driving route. While driving, the previous
and current speed of the vehicle ahead and the current distance to the preceding vehicle
is used to estimate the future distance to the car. The speed is adjusted if the distance
is below a certain safety threshold. This approach minimises the computing time for
real-time applications while ensuring a long-term balance between fuel consumption
and driving time.
Zendegan et al. [9] proposes a method to use basic route information like speed lim-
its and route topography to estimate the electrical power demand. A location-based
SoC reference signal is obtained using the prediction with quadratic programming. A
rule-based approach is used to track the reference trajectory during online energy man-
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agement implementation. This predictive strategy improves the fuel economy, SoC
control, and the system lifetime.
Xie et al. [10] combines short-term and long-term information by proposing an inte-
grated vehicle trajectory prediction method using multiple models. A physics-based
model and manoeuvre-based model are used to predict vehicle trajectories. While the
first model is based on a kinematic motion model, the latter is based on the dynamic
Bayesian network to infer the driving manoeuvres. Combining the two models achieves
short-term accuracy by considering the vehicle running dynamic parameters and pro-
vides long-term insight into future trajectories by estimating manoeuvres.
One possible approach for combining short-term and long-term information is to use
model predictive control to consider the near and far future. It can be used to calculate
an optimal control sequence that minimises the cost function while considering con-
straints. A high prediction horizon increases computational complexity, and it cannot
be used for real-time operation. Consequently, a solution needs to be found on how to
modify and adapt a model predictive control.
A real-time management strategy for an electric vehicle is developed by Gomozov et al.
[11]. An MPC-based energy management strategy is introduced that benefits from both
short-term and long-term prediction using non-uniformly distributed sampling times.
As the discrete state-space model is formulated beforehand, the distribution of the
sampling time is not changed during the simulation. This approach allows for a fast
dynamics control of the supercapacitor and the long-term prediction of power demand
while minimising the computational load and enabling the online implementation of the
MPC.

1.3 Contribution and outline
This thesis proposes a novel MPC formulation as a PEMS with long prediction hori-
zons but few decision variables. In particular, the classical MPC formulation is modified
to have non-uniformly distributed control variables. While the length of the prediction
horizon significantly impacts the simulation time, it also reduces the hydrogen consump-
tion for the heavy-duty vehicle. However, increasing the number of control variables
does not necessarily result in better fuel economy. Since the weight matrices of the cost
function are chosen to achieve comparability between various prediction horizons, the
results’ robustness depends on the used driving cycle.
This thesis is organised as follows: In Section 2, the heavy-duty fuel cell vehicle is
described. In Section 3, the predictive energy management system is presented. in
Section 4, the simulation results are provided, analysed and validated. The conclusions
are given in Section 5



Chapter 2

Heavy-duty fuel cell vehicle

A basic framework must first be defined to formulate energy and power management.
This chapter presents the basic configuration of the heavy-duty fuel cell vehicle used in
this thesis. After an overview of the powertrain configuration, the component model
approaches from the literature are reviewed, and the chosen models are presented.

2.1 Powertrain architecture
Figure 2.1 depicts the simplified architecture of the powertrain of the fuel cell electric
vehicle. The electric motor and the fuel cell system, including the fuel cell stack and
auxiliary functions such as air compressor and humidifiers, are connected to a DC bus
through power converters. The battery system is directly linked to the powertrain.
The battery can be recharged by the fuel cell or regenerative braking energy. However,
the necessary heating and cooling system (e.g., cooling trucks, air conditioning) is not
depicted, but it is considered in the auxiliary loads Paux.

Battery
system

External loads

Pm

Pfcs

Pb

Paux
Electric
motor

AC
/

DC

Fuel cell
system

DC
/

DC

Figure 2.1: Architecture of the electric powertrain of the vehicle.
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All parameters and constraints of the vehicle model are listed in Table 2.1.

Table 2.1: Parameters and constraints
Parameter Symbol Value

Vehicle mass mv 35 000 kg
Gravitational acceleration g 9.81 m/s2

Rolling friction coefficient at 0 km/h cr 0.005522 kg
Rolling friction coefficient at 100 km/h cr 0.008144 kg

Vehicle frontal area Av 9.57 m2

Drag coefficient cx 0.58
Air density ρair 1.2 kg/m3

Total efficiency ηT 0.87
Auxiliary loads Paux 11500 W

Optimal fuel cell power Pfcs,ref 57811 W
Minimum fuel cell power Pfcs,min 1 W
Maximum fuel cell power Pfcs,max 320000 W

Hydrogen lower heating value LHV 120 MJ/kg
Minimum charging power battery Pb,min -106920 W
Maximum charging power battery Pb,max 427680 W

Battery nominal energy Eb,nom 53.46 kWh
State of energy reference SoEref 0.65
State of energy maximum SoEmax 0.9
State of energy minimum SoEmin 0.4

2.2 Modelling
Models of physical components are required to adequately represent a target system for
analysis and simulation. Since the model approaches available in the literature vary in
complexity and dimension, a brief overview and comparison will be given.
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2.2.1 Longitudinal model
To describe the behaviour of vehicle dynamics, a simple longitudinal model is used (see
Figure 2.2).

FdragFslope

Froll

v

α
Figure 2.2: Scheme of vehicle longitudinal dynamics.

Basically, the resultant force Fres acting on the vehicle is calculated by the resistance
force Froll, the force due the slope of the driving cycle Fslope and the drag force Fdrag.
These forces are given in (2.2), (2.3) and (2.4).

Fres = Froll + Fslope + Fdrag (2.1)

Froll = mv · g · cr · cos α (2.2)

Fslope = mv · g · sin α (2.3)

Fdrag = 1
2 · Av · cx · ρair · v2 (2.4)

The power at wheels Pw is calculated as follows:

Pw = (mv · v̇ + Fres) · v (2.5)

The electric load Pel is calculated in (2.6). For simplicity, the auxiliary loads Paux are
assumed constant. Also, the average total efficiency ηT is a constant value because
power losses due to the electric motor or drivetrain components are not relevant for
this thesis.

Pel = Paux + Pw · η
−sign(Pw)
T (2.6)

The longitudinal model is embedded in a forward-facing simulation approach. A driver
model sends an acceleration or brake signal to the powertrain to follow the desired speed
profile from the drive cycle. The driver model modifies its commands to minimise the
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error between the actual vehicle speed and the desired speed. Still, inevitably a tiny
margin of error between these two velocity profiles will always occur [12]. This approach
is used in this thesis.
A different approach is a backwards-facing simulation. The required power is calculated
directly in the vehicle model based on the speed profile. The needed power is then used
to calculate the necessary torque and imposed onto the powertrain components. In such
an approach, the power flow is calculated backwards through the power train, without
a driver model [12].
In conclusion, the forward simulation uses the available system resources. It represents
the behaviour of an actual vehicle and driver, while a backward simulation approach
can help find the system’s optimum design specifications.

2.2.2 Fuel cell system
Various factors affect the overall performance of a proton-exchange membrane fuel cell
(PEMFC). The energetic performance of a PEMFC depends on its operating conditions
(e.g. temperature, pressure, ageing and degradation phenomena).
Many fuel cell models have developed over the past years. The existing PEMFC models
can be categorised into black box, grey box and white box models. Black-box models
are based only on experimental data, and white-box models are based solely on algebraic
and differential equations. Grey box models combine the previously stated models, and
they are based on empirical equations backed up by experimental data [13].
For this thesis, the required model should be usable for a predictive energy management
system while authentically representing an entire fuel cell system. A simplified static
model is considered, where the fuel cell system power is the difference between stack
power and auxiliaries losses, like a compressor or cooling fan (see Ferrara et al. [14]).



2.2 Modelling 9

The chosen static model neglects the system response time. Therefore, the system
efficiency only depends on the fuel cell power. In Figure 2.3 the efficiency and hydrogen
consumption depending on the power are shown. Since the model provides adequate
results for investigations of a predictive energy management system of FCEVs (see [14],
[15], [9]), it is sufficient for this thesis.

Figure 2.3: Fuel cell efficiency and hydrogen consumption.

2.2.3 Battery model
Various approaches to battery models can be found in the literature as different ap-
plication areas determine the model’s objectives (e.g., battery design, state of charge
estimation, thermal analysis). One major group of battery models consist of electro-
chemical models. They are based on chemical reactions occurring inside the battery
cells. This model is the most accurate one, but due to the complexity of the non-
linear differential equations, it is not useful in terms of vehicular applications [16]. It
is possible to use a mathematical model to describe the battery properties, and such
models can be classified into stochastic or analytical models. Stochastic models are
based on discrete-time Markov chain. A Markov process predicts possible events of the
process depending on its present state. Such a solution is still accurate compared to
electrochemical models, but their computation is faster.
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For an analytical approach, heuristic knowledge or empirical formulas are used to model
specific characteristics of batteries [17]. However, these models are not useful for SoC
estimation, or real-time control [18]. Equivalent electrical circuit models use electrical
components to model the behaviour of a battery. Due to its simplicity, it’s used for
dynamic simulations of hybrid, and electric vehicles [18]. Therefore, an equivalent
electrical circuit model is used for an SoE estimation in this thesis (see [14]).
The ideal voltage source Voc is connected in series with a resistor, representing the
battery internal resistance Rint, as shown in Figure 2.4. Due to simplicity, both are
assumed as constant.

SoE

Ib Vb

Rint
Voc

Load

Figure 2.4: Equivalent circuit of the battery system.

The battery terminal voltage Vb is calculated by (2.7). The battery current Ib is positive
in discharging operation.

Vb = Voc − Rint · Ib (2.7)

Therefore, the battery power is computed in the following way:

Pb = (Voc − Rint · Ib) · Ib (2.8)

The state of energy of the battery is used to indicate the current state of the battery.
It is defined as:

dSoE(t)
dt

= −Pb · ∆t

Eb,nom

(2.9)

where ∆t denotes the sampling time and Eb,nom denotes the battery nominal energy.
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2.3 Realistic driving cycles
In Figure 2.5, speed, elevation and the electrical power demand of a real-world driving
cycle are depicted. The dotted horizontal lines show the maximum and minimum fuel
cell power in the bottom figure. At certain times the electrical power demand is higher
than the maximum fuel cell power (e.g. t=110s). If only fuel cell utilisation is available,
the demand for electrical power cannot be met, and the vehicle needs to decelerate or
stop. In addition, a battery can be recharged by absorbing the kinetic energy from
the mechanical braking process. An energy management system for a fuel cell electric
vehicle must distribute the demanded load between the fuel cell and battery while
maintaining a state of energy control to charge and discharge the battery at the correct
times.

Figure 2.5: Driving cycle B: speed (top), elevation (middle), electrical power
demand (bottom).



Chapter 3

Predictive energy management
system

This chapter is about formulating the new concept of the model predictive controller,
describing the state-space model, defining how predictive information is processed and
modified, and how energy management strategy is implemented.

3.1 Model predictive control

Combining short-term and long-term information
There is a trade-off between the proper prediction horizon length for an MPC. Compared
to a short prediction horizon, a high prediction horizon allows for a longer foresight of
the future states, but the computational complexity increases. Long-term predictive in-
formation of the future road conditions is necessary for optimal SoC control. However,
short-term predictive information compensates for driving uncertainties (e.g., traffic
flow speed).
The purpose of the new concept for MPC is to use a long-term power demand forecast
based on a driving cycle’s velocity and elevation profile while incorporating short-term
information like driver’s behaviour into calculating optimal fuel cell power.
However, combining short-term and long-term information while minimising computa-
tional complexity requires modifying the basic formulation of an MPC.
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The principle of model predictive control is the prediction of future outputs at each
instant k for the prediction horizon Np, using the process model (see Figure 3.1). The
predicted outputs y(k + i|k) depend on the past inputs and outputs up to instant k
and on the future control signal u(k + j|k), where i = 1,2...Np and j = 0,1...Nc-1.
The goal of an MPC is to minimise the error between the reference trajectory and the
output.

reference
past future

past outputs predicted outputs

future inputs
past inputs

k-2 k-1 k k+1 k+2 k+Np

k+Nc

k+3

Figure 3.1: Basic principle of model based predictive control.

With the standard formulation, the control variables are equidistant and act at every
time step till t=k+Nc (see Figure 3.1). If one wants to use a model predictive control
for short-term and long-term prediction, the control horizon must be either high or
equal to the prediction horizon. This is possible, but the matrices’ size increase and the
calculation’s complexity make a classical MPC unusable for online implementation.
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The basic idea of the new concept for MPC is depicted in Figure 3.2. If one compares
Figure 3.1 with Figure 3.2, it can be easily seen that the future inputs are not equally
distributed over the horizon. At the same time, the outputs are still predicted for ev-
ery time step. It is possible to have a high Np while using a small number of control
variables that are distributed over the entire horizon. With a high density of control
variables in the near future and only a few in the far future, the initial goal to combine
short-term and long-term information is achieved.

reference
past future

past outputs predicted outputs

future inputs
past inputs

k-2 k-1 k k+1 k+2 k+Np

k+Nc

k+3

Figure 3.2: New concept for model based predictive control.

While the predicted outputs y(k + i|k) still depend on the past inputs and outputs
up to instant k, the dependency on the future control signal u(k + j|k) is reduced as
the control variables are neglected for specific time steps. This presents a challenge for
the processing of predictive information. Therefore the MPC needs adapted prediction
information (see section 3.3).
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Basic concept of model predictive control
The formulation for the predicted variables in terms of current state variable information
and the future control increments is used to derive the new approach.
First, based on a state-space model, the future state variables are calculated sequentially
using the set of future control parameters:

x(k + 1|k) = A · x(k) + B · ∆u(k) + E · ∆z(k)
x(k + 2|k) = A · x(k + 1|k) + B · ∆u(k + 1) + E · ∆z(k + 1)

= A2 · x(k) + A · B · ∆u(k) + B · ∆u(k + 1)
+A · E · ∆z(k) + E · ∆z(k + 1)
.
.
.

x(k + Np|k) = ANp · x(k)
+ANp−1 · B · ∆u(k) + ANp−2 · B · ∆u(k + 1) · · ·
+ANp−Nc · B · ∆u(k + Nc − 1)
+ANp−1 · E · ∆z(k) + ANp−2 · E · ∆z(k + 1) · · ·
+E · ∆z(k + Np − 1)

The prediction is given by:

y(k + 1|k) = C · A · x(k) + C · B · ∆u(k) + C · E · ∆z(k)
y(k + 2|k) = C · A · x(k + 1|k) + C · B · ∆u(k + 1) + C · E · ∆z(k + 1)

= C · A2 · x(k) + C · A · B · ∆u(k) + C · B · ∆u(k + 1)
+C · A · E · ∆z(k) + C · E · ∆z(k + 1)
.
.
.

y(k + Np|k) = C · ANp · x(k)
+C · ANp−1 · B · ∆u(k) + C · ANp−2 · B · ∆u(k + 1) · · ·
+C · ANp−Nc · B · ∆u(k + Nc − 1)
+C · ANp−1 · E · ∆z(k) + C · ANp−2 · E · ∆z(k + 1) · · ·
+C · E · ∆z(k + Np − 1)

Defining the vectors:

Y =



y(k + 1|k)
y(k + 2|k)
y(k + 3|k)

...
y(k + Np|k)

 , ∆U =



∆u(k)
∆u(k + 1)
∆u(k + 2)

...
∆u(k + Nc − 1)

 , ∆Z =



∆z(k)
∆z(k + 1)
∆z(k + 2)

...
∆z(k + Np − 1)

 (3.1)
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One can formulate the expressions in a compact matrix form as:

Y = F · x(k) + Φu · ∆U + Φz · ∆Z (3.2)

where

F =



C · A

C · A2

C · A3

...
C · ANp

 , (3.3)

Φu =



C · B 0 0 · · · 0
C · A · B C · B 0 · · · 0
C · A2 · B C · A · B C · B · · · 0

... ... ... . . . ...
C · ANp−1 · B C · ANp−2 · B C · ANp−3 · B · · · C · ANp−Nc · B

 (3.4)

Φz =



C · E 0 0 · · · 0
C · A · E C · E 0 · · · 0
C · A2 · E C · A · E C · E · · · 0

... ... ... . . . ...
C · ANp−1 · E C · ANp−2 · E C · ANp−3 · E · · · C · E

 (3.5)

The matrices Φz and Φu have a block Toeplitz structure. In Table 3.1 the dimension
of the matrices is shown, where Np is the prediction horizon, Nc is the control horizon,
nz is the number of disturbances, nu is the number of inputs and ny is the number of
outputs.

Table 3.1: Size of matrices
Variable Size

Φz (Np · ny) × (Np · nz)
Φu (Np · ny) × (Nc · nu)
∆Z Np × nz

∆U Nc × ny

Y Np × ny
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New concept for model predictive control
Table 3.1 shows that a high prediction horizon has a huge impact on the size of the
matrices. If the whole prediction horizon should be controllable, both horizons have
the same length (Np = Nc). Thus, all matrices become large, and the computational
complexity rises. Hence, an useful online implementation is not possible anymore.
This thesis proposes a model predictive control with not-equidistant distributed control
variables over the entire prediction horizon to solve this problem.
Before providing the general form of the new matrices, the approach is demonstrated by
the following example: assuming a SISO System with a prediction horizon of 5 seconds
and two control variables, which act at t=1s and t=4s. A new variable is introduced
that specifies in which time steps the control and disturbance variables act:

Ncs =
	

k

k + 3

�
(3.6)

First, the disturbance increments are assumed to affect the future variables at the same
time steps as the control increments. Therefore, both vectors have the same size. With
this information ∆U and ∆Z can be assembled:

∆U =



∆u(k)
0
0

∆u(k + 3)
0

 , ∆Z =



∆z(k)
0
0

∆z(k + 3)
0

 (3.7)

Now the steps to calculate sequentially the future state space vectors can be repeated.
This leads to:

Φu =



C · B 0 0 0 0
C · A · B 0 0 0 0
C · A2 · B 0 0 0 0
C · A3 · B 0 0 C · B 0
C · A4 · B 0 0 C · A · B 0



Φz =



C · E 0 0 0 0
C · A · E 0 0 0 0
C · A2 · E 0 0 0 0
C · A3 · E 0 0 C · E 0
C · A4 · E 0 0 C · A · E 0



(3.8)
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All zero-columns of Φu and Φz and the corresponding zero-rows of ∆U and ∆Z,
respectively, can be removed. This results to:

∆U =
	

∆u(k)
∆u(k + 3)

�
, ∆Z =

	
∆z(k)

∆z(k + 3)

�
(3.9)

Φu =



C · B 0
C · A · B 0
C · A2 · B 0
C · A3 · B C · B

C · A4 · B C · A · B

 , Φz =



C · E 0
C · A · E 0
C · A2 · E 0
C · A3 · E C · E

C · A4 · E C · A · E

 (3.10)

This example shows that it is not necessary to calculate sequentially the future state
space, but rather a compact matrix formulation can be provided: Ncs specifies in
which time steps the control and disturbance variables act:

Ncs =



k

k + j

k + j
...

k + j

 , where j = 1,2...Np-1 (3.11)

Ncs(n) specifies for the nth column of Φu or Φz and the nth row of ∆U and ∆Z,
where n = 1,2...Nc.
0u and 0z, respectively, represent a zero matrix with dimension (ny ·Ncs(n))×nu) and
((ny · Ncs(n)) × nz). It is assumed that the first variable of the predicted output is not
neglected and therefore the first column has no zero values. This means that Ncs(1)
always has the value 1. The matrices Φu and Φz be assembled in the following way:

Φu =



C · B 0u · · · 0u

C · A · B C · B · · · C · B

C · A2 · B C · A · B · · · C · A · B
... ... ... ...

C · ANp−Ncs(1) · B C · ANp−Ncs(2) · B · · · C · ANp−Ncs(Nc) · B

 (3.12)

Φz =



C · E 0z · · · 0z

C · A · E C · E · · · C · E

C · A2 · E C · A · E · · · C · A · E
... ... ... ...

C · ANp−Ncs(1) · E C · ANp−Ncs(2) · E · · · C · ANp−Ncs(Nc) · E

 (3.13)
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In Table 3.2 a comparison of the dimension size of the matrices between the basic
definition and the new concept is documented.

Table 3.2: Comparison: size of matrices
Variable Size (basic definition) Size (new approach)

Φz (Np · ny) × (Np · nz) (Np · ny) × (Nc · nz)
Φu (Np · ny) × (Nc · nu) (Np · ny) × (Nc · nu)
∆Z Np × nz Nc × nz

∆U Nc × ny Nc × ny

Y Np × ny Np × ny

Ncs - Nc × ny

It can be seen that for Φz and ∆Z, the dimension has been reduced. Due to the new
approach, Nc no longer specifies the control horizon. The whole prediction horizon can
be controlled, so Nc equals the number of control variables for the further thesis.
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3.2 Predictive energy management strategy

State space model
First of all, a state-space model is formulated to use the current information about the
states of the fuel cell electric vehicle to predict the desired outputs. The electric power
is calculated using the power of the battery and the power of the fuel cell:

Pel = Pb + Pfcs (3.14)

By inserting (3.14) into (2.9) following formula is obtained:

SoE(k + 1) = SoE(k) + ∆t

Eb,nom

· Pfcs(k) − ∆t

Eb,nom

· Pel(k) (3.15)

Taking a difference operation on both sides of (3.15) one gets:

∆SoE(k + 1) = ∆SoE(k) + b · (∆u(k) − ∆z(k)) (3.16)

SoE(k + 1) = ∆SoE(k) + SoE(k) + b · (∆u(k) − ∆z(k)) (3.17)

Pfcs(k) = ∆u(k) + Pfcs(k − 1) (3.18)

Pel(k) = ∆z(k) + Pel(k − 1) (3.19)

where b = ∆t
Eb,nom

, ∆u(k) = ∆Pfcs(k) and ∆z(k) = ∆Pel(k).

Now one can formulate the augmented state-space model in compact matrix form:

x(k + 1) = A · x(k) + B · ∆u(k) + E · ∆z(k) (3.20)

y(k) = C · x(k) (3.21)

where

x(k + 1) =

∆SoE(k + 1)
SoE(k + 1)

Pfcs(k)

 , A =

1 0 0
1 1 0
0 0 1

 , B =

b

b

1

 , E =

−b

−b

0

 ,

y(k) =
	

SoE(k)
Pfcs(k − 1)

�
, C =

	
0 1 0
0 0 1

� (3.22)
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Cost function
The objective of the predictive control system is to find the best control parameter ∆U

such that an error function between the set-point and the predicted output is minimised
[19]. The cost function that achieves the control objective can be found in [19]:

J = (Yref − Y )T · Q · (Yref − Y ) + ∆UT · R · ∆U (3.23)

where Q and R are the weight matrices. The optimal ∆U to minimise J is defined as:

∆U = (ΦT
u · Φu + R−1) · ΦT

u · (Yref − F · x(k) − Φz · ∆Z) (3.24)
There are constraints on the battery and fuel cell system and to guarantee feasible so-
lutions, the definition in [19] is used to implement soft constraints using slack variables:

M · ∆Uslack ≤ γ (3.25)

where

M =
	
M1
M2

�
, M1 =


−1 0
−1 0
... ...Φu

−1 0

 , M2 =


0 −1
0 −1
... ...Φu

0 −1

 (3.26)

∆Uslack =
	
∆U

s

�
, γ =

	
Ymin + F · x(k) + Φz · ∆Z

Ymax − F · x(k) − Φz · ∆Z

�
(3.27)

The reference state of energy value and the highest operational efficiency point of the
fuel cell are constant. The vector for set-point information Yref is defined as follows:

Yref = [SoEref , Pfcs,ref , . . . , SoEref , Pfcs,ref ]T (3.28)

The upper and lower limit for the future outputs are defined as:

Ymin = [SoEmin, Pfcs,Y min(k), . . . , SoEmin, Pfcs,Y min(k + Np − 1)]T (3.29)

Ymax = [SoEmax, Pfcs,Y max(k), . . . , SoEmax, Pfcs,Y max(k + Np − 1)]T (3.30)
The minimum and maximum value for the fuel cell power are calculated by reformulat-
ing (3.14) using the battery constraints:

Pfcs,Y min(k) = max(Pfcs,min, Pel(k) − Pb,max) (3.31)
Pfcs,Y max(k) = min(Pfcs,max, Pel(k) − Pb,min) (3.32)

It is important to note that minimum battery power Pbat,min is defined as a negative
value. All constraints used in the cost function are documented in Table 2.1.
In comparison to Yref , the values for Pfcs,Y min and Pfcs,Y max are calculated at each
sampling instance due to the changing demand of electrical power.
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3.3 Processing of predictive information

Averaging of predicted electric power
The processing of predicted power demand needs to be adapted. Firstly, due to the new
concept for the MPC, the number of rows of ∆U and ∆Z are reduced by removing
zero values. Furthermore, the disturbance signal is assumed to act simultaneously with
the control signal. Secondly, a forecast of Pel over the entire prediction horizon Np is
never accurate due to various assumptions and disturbances (e.g., velocity assumption,
driver’s behaviour). Therefore, the prediction is averaged between the computational
points of the disturbance variables. In Figure 3.3, the basic idea of this approach is
depicted.

Figure 3.3: Averaging of predicted electric power.

In this example, points A and C are each one time step after a disturbance variable
and B and D one time step before. First of all, the values AB and CD are calculated
by using the arithmetic mean. Then it is possible to compute the desired disturbance
value z(k + β) by averaging AB and CD. With this approach, a coherent Pel can be
achieved that still depicts the original prediction.
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Control variables distributed over the horizon
In Figure 3.4 two different methods to calculate the distribution between the control
variables, are depicted. For this representation the prediction horizon is 900 seconds
and the number of control variables is 10. The first control variable is always at time
step one and the next variable acts for a uniformly distribution at t = 1 + ∆ and for a
non-uniformly distribution t = 1 + ∆1. The third variable acts at t = 1 + ∆ + ∆ and
t = 1 + ∆1 + ∆2, respectively, and so forth.

Figure 3.4: Comparison between two distribution methods.

In Figure 3.5 and Figure 3.6 two cases for the averaging of predicted electric power are
presented. If the non-uniformly distribution method is used, then there will be a high
distribution of control variables in the near future. This can potentially lead to better
predictions of the future state variables. Since there is also one control variable in the
middle of the prediction horizon, in this case at t = 438s, the trend of the electric power
is included in the calculation.
Compared to the non-uniformly distribution, uniformly distributed control variables Pel

better reflect the trend of the function Pel. Therefore, both approaches are analysed
and compared in this thesis.
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Figure 3.5: Averaged electric power, uniformly distributed control variables.

Figure 3.6: Averaged electric power, non-uniformly distributed control vari-
ables.
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Prediction of the required electric power
Based on the road information, a predictive energy management system uses the lon-
gitudinal model to calculate the required electric power for the driving cycle. (see in
Figure 2.5). An accurate prediction of the required power is essential for the PEMS
to minimise objective functions. Therefore, future driving conditions are one of the
primary prediction objectives in the literature. The future driving condition can be ob-
tained using telemetry devices or environment detecting sensors like global positioning
systems (GPS) and radars [20].
Due to the ubiquitous access to real-time data, a PEMS can enhance the performance
of the vehicle by including short-term information like distribution of traffic signals,
traffic congestion level, or unexpected movements of preceding vehicles [20].
For this thesis, two driving cycles are considered, and both consist of an elevation and
a velocity profile. The road slope has a high impact on the electrical loads due to the
increased mass of the heavy-duty vehicle. It is assumed that the elevation profile is
known at each time step.
Predicting the velocity is a challenging task. Therefore, simplified prediction methods
are proposed. For example, the simplest assumption for a velocity profile is a constant
velocity. However, this can be problematic because the predicted electrical power is too
high or low during acceleration or deceleration phases.
An alternative approach is a speed limit assumption. This case has the benefit that
it is more likely to be closer to the actual driving behaviour than a constant velocity
assumption, but it still varies from the actual velocity.
However, one could use recorded data of the driving cycle for the velocity profile. Using
such a profile can lead to an incorrect forecast due to different drivers’ behaviours or
uncertainties of real-world driving conditions.
Consequently, vehicle speeds and accelerations cannot be accurately predicted. For sim-
plicity, constant velocity and speed limits with a known elevation profile are used for
the prediction of the required power. Four cases are proposed to adjust the predicted
electrical power with respect to the input desired by the driver. However, any velocity
assumption can be used for the long-term prediction of the required electric power.
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Offline calculation of the demanded power
In Figure 3.7 case 1 is depicted. Before the simulation, the predicted electric power Pel

is calculated with a speed assumption and an elevation profile. During the simulation,
the predicted electric power is modified: at time step t=k, the desired value by the
driver is used, and the remaining prediction remains unchanged.

Figure 3.7: Case 1.

Case 2 is identical to case 1, except that the transition between the desired value and
the prediction is realised with a sigmoid function. This allows for a smooth transition
(see Figure 3.8).

Figure 3.8: Case 2.
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Online calculation of the demanded power
The calculation of the demanded power is based on a constant modification of the
velocity assumption (see Figure 3.9). A sigmoid function is used during the simulation
for the transition between the actual velocity and the velocity assumption. The required
electric power is predicted at each step using the elevation profile.

Figure 3.9: Case 3.

In Figure 3.10 it can be seen that case 4 is unique. No velocity assumption is needed for
this case because the predicted velocity is calculated by averaging the past measured
velocity. Also, a sigmoid function is used for the transition between the actual velocity
and the velocity profile assumption. The required electric power is predicted based on
the velocity and elevation profiles.

Figure 3.10: Case 4.
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3.4 Implementation in MATLAB/ SIMULINK
In Figure 3.11 the scheme of implementation in SIMULINK is depicted. The vehicle
model block, which consists of the longitudinal model, the fuel cell system and the
battery model, receives the velocity v and the elevation profile h from the driving cycle.
The electric power demand is predicted based on the elevation profile and velocity esti-
mation. Depending on which prediction case is chosen, Pel,est is calculated either before
or during simulation. The MPC is embedded into a Level-2 MATLAB S-Function,
because this custom block handles multiple input and output ports [21]. The MPC
has the current distance s(k), velocity v(k), acceleration a(k), the desired electric power
Pdes(k), the state of energy SoE(k) and the estimated electric power demand Pel,est as
an input.

Prediction
of Pel

MPC Vehicle 
model

Pel,est

vest

h

Pfcs(k+1)

s(k)
v(k)
a(k)

Pdes(k)
SoE(k)

v,h

Figure 3.11: Scheme of implementation in SIMULINK.

With all the input, the cost function is solved with qpOASES, which is an open-source
implementation to solve quadratic programs [22]. The output of the model predictive
controller is the optimal fuel cell power for the next time step Pfcs(k + 1).
In addition to the SIMULINK blocks, MATLAB functions are called before the simula-
tion to calculate the augmented matrices for the MPC and to load necessary parameters
for the simulation. In section A.1 a listing of all MATLAB functions and their descrip-
tions are documented.



Chapter 4

Simulation results

In this chapter, the proposed predictive energy management system is tested and val-
idated. For the simulation, real-world driving data of heavy-duty vehicles for road
freight transportation are considered.
The influence of the prediction horizon and the number and distribution of control
variables on hydrogen consumption and simulation time are examined. Afterwards, the
robustness of the MPC is investigated.

4.1 Simulation framework
All the simulations are performed using MATLAB R2021b. SIMULINK uses an ode1(Euler)
solver with a fixed-step size of ∆t = 0.2s and the model predictive controller has a sam-
pling time of 1s.
Information on the driving cycles are provided in Table 4.1. In Figure 4.1 and Figure 4.2
the speed, elevation and the electrical power demand profile of both driving cycles is
shown.

Table 4.1: Driving cycle characteristics
Average speed Total distance Driving time

Driving cycle A 72 km/h 316 km 262 min

Driving cycle B 69 km/h 385 km 333 min
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Figure 4.1: Driving cycle A: speed, elevation, electrical power demand.

Figure 4.2: Driving cycle B: speed, elevation, electrical power demand.



4.1 Simulation framework 31

The calculation of fuel consumption mH2,fcs is straightforward, it depends on the fuel
cell power Pfcs, the efficiency of the fuel cell ηfcs and the hydrogen lower heating value
LHV.

mH2,fcs =
� Pfcs

LHV · ηfcs

dt (4.1)

One goal of the MPC is SoE control, but there is no constraint for the final SoE
value. The final SoE value can be higher or lower than the reference for some MPC
configurations. Therefore, an equivalent H2 consumption is introduced to account for
the short-term use of the fuel cell at the end of the simulation: mH2,bat depends on the
initial and final value of SoE, the nominal battery energy Eb,nom, the average efficiency
of the fuel cell ηfcs,avg and the hydrogen lower heating value LHV.

mH2,b = (SoEI − SoEF ) · Eb,nom

LHV · ηfcs,avg

(4.2)

With both equations the adapted hydrogen consumption is calculated in the following
way:

mH2 = mH2,fcs + mH2,b (4.3)

Furthermore, it is necessary to specify cases 2,3 and 4 because they all depend on a
sigmoid function. For the three cases, three different methods are used to calculate
the duration length of the sigmoid function. It is a constant value for case 2, and
for case 3 and case 4, the value depends on the prediction horizon. This approach is
chosen because due to the similarities of the cases, using different methods can verify
the robustness of the MPC. For this thesis, the defined methods are fixed and are not
examined further, although modifying them will affect the results. In Table 4.2 the
values are documented.

Table 4.2: Sigmoid function - duration length
case length (seconds)

Online calculation of Pel
1 not needed
2 45

Offline calculation of Pel
3 0.05 × Np

4 0.6 × Np
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The weight matrices Q and R from the cost function had to be carefully chosen to
achieve comparability between the prediction horizons. The known required electrical
power is plugged into case 1, and the weight matrices are tuned to yield a similar SoE
function for four different prediction horizons (see Figure 4.3(a)). In Figure 4.3(b) the
decreasing hydrogen consumption with increasing prediction horizon is depicted.

Figure 4.3: Comparison of four different prediction: (a) SoE, (b) H2 consump-
tion.

The weight matrices are documented in Table 4.3. A different configuration of the
weight matrices is required for each prediction horizon. For example, as the prediction
horizon increases, the value for Q(1) decreases. A lower value means that the MPC
tries less to minimise the margin of error between the predicted state of energy and the
reference value.

Table 4.3: Weight matrices
Np (min) Q R Rslack

15min [3e2 1e−10] 1e−9 1e3

30min [1e2 1e−10] 4e−9 1e4

45min [1e2 1e−10] 1e−8 1e3

60min [9e1 1e−10] 1e−7 1e3
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4.2 Analysis on model predictive control
parametrization

In this section, several parameters are varied to examine the behaviour of the model
predictive control. The prediction of the demanded electric power is based on a constant
velocity assumption of v=72 km/h, and driving cycle A is considered for the simulation.

Analysis on prediction horizon and number of
control variables
The first analysis examines the influence of the number of control variables and the
length of the prediction horizon on hydrogen consumption and computational complex-
ity. The results for the simulation time are shown in Figure 4.4.

(a) Case 1 (left), case 2 (right) (b) Case 3 (left), case 4 (right)

Figure 4.4: Simulation time depending on the number of control variables and
length of prediction horizon.
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Predicting the required electric power before the simulation (case 1 and case 2) does not
decrease simulation time compared with online computing the necessary electric power
(case 3 and case 4). Since, in case 1, the prediction is not modified with a sigmoid
function, the simulation time is slightly lower compared to the other cases.
A high prediction horizon and a higher number of decision variables lead to a signifi-
cantly higher simulation time (see Figure 4.4). This results from the fact that qpOASES
needs more time to find the optimal ∆U to minimise the cost function due to larger
matrices. A four times larger prediction horizon leads to six to eight times longer sim-
ulation time.

Figure 4.5: H2 consumption depending on the number of decision variables and
length of prediction horizon.

In Figure 4.5 the hydrogen consumption for the driving cycle A is presented. It can be
easily seen that a higher prediction horizon leads to fewer hydrogen consumption of the
vehicle. This result is expected because the MPC has more information on the driving
cycle with a higher prediction horizon at each time step. This allows the vehicle to drive
with more foresight and take better account of uphill and downhill sections, leading to
better results. Although the hydrogen consumption decreases with increasing prediction
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horizon, regardless of the number of decision variables, it is not evident whether a higher
number of decision variables leads to fewer hydrogen consumption. For Np = 45min, a
higher number of control variables reduce the hydrogen consumption for case 1, while
for the other three cases the hydrogen consumption increases (see Figure 4.5(c)).

Interpretation of the results
The different behaviour of hydrogen consumption is investigated for a prediction horizon
of 45min. Case 1 and case 2 are considered, differing only by the sigmoid function used
in case 2. In both cases, the same velocity assumption is used to predict the electrical
power before the simulation. In Figure 4.6, it is shown that for case 1 with an increasing
number of control variables, the regenerative energy increases, while the fuel cell energy
decreases. For case 2, it is exactly the opposite (see (a) and (b)). To neglect the influence
of the final SoE value, the results for the hydrogen consumption mH2,fcs, which only
depend on the fuel cell power, the efficiency of the fuel cell and the hydrogen lower
heating value are presented in Figure 4.6(c). In case 1, the consumption decreases,
while in case 2, it increases. Therefore, the difference in behaviour results from the
sigmoid function used in case 2.

Figure 4.6: Comparison between case 1 and case 2.
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Analysis on the distribution of control variables
An assumption, based on Figure 3.6, is, that an uniformly distribution of decision vari-
ables better reflect the trend of the function Pel. This could lead to better results.
Therefore, a simulation is performed with ten decision variables, a constant velocity
assumption of 72km/h on the driving cycle A with different distribution methods.
In Figure 4.7 the results for the simulation time depending on distribution of decision
variables for different prediction horizon is shown. For case 1 and Np=30min, and
for case 4 and Np=60min, there is a noticeable difference between the results. Other-
wise, unlike the number of variables, the distribution of the decision variables has no
significant influence on the simulation time.

(a) Case 1 (left), case 2 (right) (b) Case 3 (left), case 4 (right)

Figure 4.7: Simulation time depending on distribution of decision variables -
log = non-uniform distribution, lin = uniform distribution.

Although the distribution method does not affect computational complexity, it has
an impact on the hydrogen consumption (see Figure 4.8). In contrast to the non-
uniformly distribution, the uniform distribution does not decrease values for hydrogen
consumption as the prediction horizon increases.
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A higher prediction horizon allows the MPC to have more foresight of the driving cycle.
Still, with a uniform distribution, MPC optimises for moments in time that are too far
away in the future and are not relevant for the next step.

Figure 4.8: H2 consumption depending on the number of decision variables.

The influence of the distribution method can also be seen in Figure 4.9. For case 1,
the regenerative braking and the fuel cell energy results are compared. With uniformly
distributed decision variables, regenerative braking decreases while the used fuel cell
energy increases, resulting in higher hydrogen consumption.

Figure 4.9: Comparison of regenerated energy and fuel cell energy - case 1.
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4.3 Validation on robustness
Validation of the results is necessary, first, to verify that the MPC provides useful
predictions and, second, that the predictive energy management strategy is correctly
implemented in SIMULINK.
In general, it must be verified if the energy management system meets the driver’s
requirements. First of all, the difference between the actual velocity and the velocity
desired by the driver should be small:

ϵv = v − vdes < 1m/s (4.4)

Also, one input of the MPC is the electric power Pel,des desired by the driver. The
minimum value for the fuel cell power, which is required to achieve the desired value by
the driver, is calculated by reformulating (3.14) using the maximum battery constraint:

Pfcs,min,des = Pel,des − Pb,max (4.5)

The fuel cell power calculated by the MPC should always be equal to or greater than
Pfcs,min,des.
The last validation requirement is the exitflag from qpOASES. After every calculation
qpOASES returns a simple status flag [22]. The status flag indicates if the quadratic
problem is solved, infeasible or unbounded. Therefore, this must be checked to guar-
antee a robust energy management system.
For further analysis, the parameters for the model predictive control are fixed (see
Table 4.4).

Table 4.4: Overview of the simulation parameters
Prediction horizon (Np) 15min, 30min, 45min, 60min
Number of control variables (Nc) 10
Distribution method non-uniformly
Velocity assumptions for driving cycle A v=72km/h & v=speed limit
Velocity assumptions for driving cycle B v=69km/h & v=speed limit
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Checking the robustness
To analyse the robustness of the MPC, it is investigated whether the validation pa-
rameters are violated. In Table 4.5, the robustness check is documented for the two
cases where the required electrical power is calculated offline. It can be easily seen that
qpOASES has no problems solving the quadratic problem and that the margin of error
ϵv between the actual velocity and the desired speed is low enough. In addition, the
optimal fuel cell power provided by the MPC is high enough to achieve the electrical
power required by the driver.

Table 4.5: Offline calculation of Pel (case1, case2): overview of robustness check
- driving cycle A & B

Velocity assumption qpOASES ϵv Pfcs,min,des

v = const Pass Pass Pass
v = speed limit Pass Pass Pass

In Table 4.6 the results are documented for the two cases where the required electrical
power is calculated online. The minimum fuel cell power requirement is violated for
both speed assumptions.
The violation of the condition is attributed to the definition of case 3 and case 4. For
case 3, a sigmoid function is used for a smooth transition between the desired velocity
and the velocity assumption. Afterwards, the required electric power is predicted. The
duration of the "S"-shaped curve of the sigmoid function can significantly change the
result prediction. In case 4, the predicted velocity is calculated by averaging the past
measured velocity. Therefore, neither the desired velocity nor the desired fuel cell power
are considered. A solution to avoid constraint violation for both cases is to modify the
original definition. In both cases, it must be checked if the online calculated electrical
power is greater than the electrical power desired by the driver.

Table 4.6: Online calculation of Pel (case3, case4): overview of robustness check
- driving cycle A & B

Velocity assumption qpOASES ϵv Pfcs,min,des

v = const Pass Pass Failed
v = speed limit Pass Pass Failed
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Analysis of hydrogen consumption
Since the online calculation of Pel violates the minimum fuel cell power requirement,
case 3 and case 4 are not examined further. Only case 1 will be investigated further
since the only difference from case 2 is the sigmoid function, and the use of this function
does not significantly affect hydrogen consumption.
In Figure 4.10 the hydrogen consumption for driving cycle A and B with different
velocity assumptions is depicted. It can be seen that a higher prediction horizon does
not lead to fewer hydrogen consumption for driving cycle B.

Figure 4.10: Comparison of hydrogen consumption - case 1.

A speed limit assumption is closer to the actual velocity than a constant velocity as-
sumption. Therefore, the prediction of the required electrical power is more accurate,
resulting in lower hydrogen consumption. This is the case for driving cycle A, but not
for driving cycle B.
Due to the cost function, the MPC tries to minimise the error between the reference
value SoEref and the predicted SoE(k+1) value. This leads to the assumption that the
weight matrices are an essential factor in the different behaviour of the MPC between
the two driving cycles.
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Modification of the weight matrices of the cost function
The matrices are changed to check whether they are responsible for the contrasting
results in Figure 4.10. The changes concern mainly the matrix R. The values for R are
increased, and by doing so, the input signal, Pfcs, is used less by the MPC.
The comparison between the old and new weight matrices is documented in Table 4.7.

Table 4.7: Comparison of the weight matrices
Np (min) Qnew Rnew Rslack,new Q R Rslack

15min [3e2 1e−10] 1e−8 1e3 [3e2 1e−10] 1e−9 1e3

30min [3e2 1e−10] 4e−7 1e3 [1e2 1e−10] 4e−9 1e4

45min [1e2 1e−10] 3e−7 1e3 [1e2 1e−10] 1e−8 1e3

60min [1e2 1e−10] 4e−7 1e3 [9e1 1e−10] 1e−7 1e3

Different results for the driving cycle A and B are obtained by modifying the weight
matrices. In Figure 4.11 the hydrogen consumption for driving cycle A and driving
cycle B with a speed limit assumption and ten decision variables is presented. It can be
seen in (a) that the results computed with the modified weight matrices are lower than
for results calculated with the original weight matrices. For driving cycle B, the results
are lower, and with a higher prediction horizon, the hydrogen consumption decreases.
Due to the changes in the weight matrix, the MPC is distributing less of the demanded
electric load to the fuel cell. The battery has to provide more energy so that the MPC
can meet the required power.
Since the result for SoE is the same for all four prediction horizons, only the predic-
tion horizon of Np=45min is presented in Figure 4.12. The lower values for hydrogen
consumption are a result of higher utilisation of the battery, which in turn violates the
soft constraint SoEmin = 0.4. With a different drive cycle, the changed weight matrices
could lead to a complete battery discharge. This could reduce battery life or violate
the driver’s desired acceleration input.
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Figure 4.11: H2 consumption for (a) driving cyle A, (b) driving cycle B.

Figure 4.12: SoE for (a) driving cyle A, (b) driving cycle B.



Chapter 5

Conclusion

This thesis proposes a novel method for a predictive energy management strategy based
on model prediction control. After modifying the basic mathematical definition to de-
sign a predictive controls system, the energy management system is then embedded
into a suitable simulation framework.
The influence of the prediction horizon and the number and distribution of control vari-
ables on hydrogen consumption and simulation time are examined.
One investigation result is that the simulation time increases significantly with an in-
creasing prediction horizon. A four times larger prediction horizon can lead to six to
eight times longer simulation time. In contrast, hydrogen consumption decreases with
an increasing prediction horizon. A higher number of control variables increases the
simulation time, but it does not necessarily reduce the hydrogen consumption. Fur-
thermore, the research shows that a high density of control variables in the near future
leads to better results in terms of hydrogen consumption than a uniform distribution
over the entire prediction horizon.
The investigations are conducted with two methods for predicting the required electric
power: the demanded power is calculated before or during the simulation. The main
knowledge gained from this approach is that the MPC has to incorporate the electric
power desired by the driver for a robust energy management strategy. If this is not
guaranteed, the optimal fuel cell power results are suboptimal.
The energy management strategy includes only the state of energy control and fuel cell
power utilisation. This is a potential research direction as battery and fuel cell lifetime
could be incorporated into the strategy.
This thesis illustrates that the proposed predictive energy management system works
in principle. Still, it raises the question of whether it is possible to implement the con-
troller in online energy management of heavy-duty fuel cell electric vehicles. Therefore,
further investigations are needed to answer whether such an implementation can be
done.
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Further investigations to evaluate the robustness of the PEMS are required. Not only
should additional driving cycles be considered, but also disturbances and uncertainties
caused by driver behaviour or traffic conditions impact the stability and robustness of
the proposed controller.
Overall, more research is needed to guarantee that the MPC can find an optimal solu-
tion without violating any constraints. In addition, another online energy management
strategy should be used to generate benchmark values to compare the results from the
MPC against.
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Appendix

A.1 Listing of MATLAB Functions

Functions

File Description

Run.m Main file. The main parameters for the sim-
ulation are defined in here.

load_param.m This is called in Run.m. It uses the parame-
ters from the main file to calculate the neces-
sary matrices for the calculation during the
simulation.

generate_nc_sequence.m Function. With the main parameters this file
creates a vector that indicates the distribu-
tion of the actuating variables

mpc_matrices.m Function. This file creates the matrices for
the MPC

mean_of_p_fcs_calculation.m Function. It calculates the average of the
predicted power.

MPC_EMS_Sfunction.m Level-2 MATLAB S-function. Main file for
the MPC. It loads the desired case and it uses
qpOASES to solve the quadratic problem.
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