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Abstract

The importance of mitigating loss and noise in free-space satellite quantum key distribution (QKD)
is significant. This thesis develops a model to simulate the impact of solar photon noise on the
quantum transmission during twilight stages and their impact on achievable key rates. The model
used to calculate twilight sky brightness is adapted from a previous approach, considering only
single-scattering events and Rayleigh scattering. The number of photons for various angular posi-
tions of the sun is determined and utilized to calculate key generation rates for a decoy-state BB84
protocol. Combined with the simulations of beam spread loss for free-space QKD, estimations of
maximum link distances for different twilight stages can be obtained. Many contributions to loss
and noise were neglected, leading to an overestimation of the key generation rates and, thus, max-
imum link distances. The simulations, however, yield remarkably accurate results, considering
the approximations and assumptions made. Therefore, the calculations provide a foundational
basis for future model improvements, such as including additional loss mechanisms, atmospheric
turbulence and multiple-scattering events.
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Kurzfassung

Die Reduktion von Verlusten und Rauschen in der Freiraum-Satelliten Quantenschlüsselverteilung
(Quantum Key Distribution, QKD) ist wesentlich. In dieser Arbeit wird ein Modell entwickelt,
um den Einfluss von solaren Photonen und das von ihnen induzierte Rauschen auf die Quanten-
transmission während Dämmerungsphasen, zu simulieren. Das zur Berechnung der Helligkeit
des Himmels in der Dämmerung verwendete Modell ist von einem früheren Ansatz abgeleitet
und berücksichtigt nur Einzelstreuungsereignisse sowie Rayleigh-Streuung. Die Anzahl der Pho-
tonen für verschiedene Sonnenpositionen wird berechnet und verwendet, um die Schlüsselerzeu-
gungsraten für ein Decoy-State BB84-Protokoll zu berechnen. Kombiniert mit der Simulation des
Strahlverbreiterungsverlusts für Freiraum-QKD, können Schätzungen der maximal überwind-
baren Transmissionsdistanzen für verschiedene Dämmerungsphasen berechnet werden. Viele
Beiträge zu Verlusten und Rauschen wurden vernachlässigt, was zu einer Überschätzung der
Schlüsselerzeugungsraten und somit der maximalen Transmissionsdistanzen führt. Die Simula-
tionen liefern jedoch bemerkenswert genaue Ergebnisse, in Anbetracht der gemachten Annahmen
und Vereinfachungen. Die Berechnungen bieten daher eine grundlegende Basis für zukünftige
Modellverbesserungen, wie die Einbeziehung zusätzlicher Verlustmechanismen, atmosphärischer
Turbulenzen und Mehrfachstreuungsereignissen.
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1 Introduction and motivation

The encryption of secret messages has always been a race, ever since humankind invented meth-
ods to maintain some information secret. The various encryption schemes have advanced over
the years and became more complex. Most of today’s schemes are referred to as computationally
secure because they rely on the assumption that the computational power required to break the
encryption is not feasible with current technology.
However, this fundamental assumption cannot always be upheld [1]. Recent developments in
building quantum computers pose a serious threat to those encryption methods, as they can utilize
other algorithms, such as Shor’s algorithm. As a result, quantum computers may be capable of
decrypting currently used encryption schemes in the near future [2].

To prevent the secret data from being exposed, new cryptographic transmission methods have
been developed. Post-quantum cryptography (PQC), for example, offers algorithms that aim to
provide confidence even against quantum computers [3]. Nevertheless, these still rely on compu-
tational assumptions, meaning that once the encryption is broken, all messages can be deciphered
subsequently.

To keep all information secret and to ensure that it cannot be deciphered retroactively, quantum
key distribution (QKD) can be deployed. Unlike conventional encryption schemes, QKD exploits
quantum mechanical principles to distribute a secret key for the encryption of messages. Since it
no longer relies on computational complexity, it is regarded as information-theoretically secure, as
arbitrarily large computational power cannot break the scheme [4]. QKD is often described as
unconditionally secure, because, in theory, every eavesdropping attempt can be detected through
error estimation [5]. This description, however, might be misleading as QKD does not rely on
assumptions on the adversary’s computational power, but does depend on assumptions about
quantum mechanics [4].

Real implementations of QKD protocols induce various challenges in maintaining the secrecy of
the key distribution [6]. For QKD channels can either use fiber or free-space transmission, most
commonly with photons serving as qubits, to carry the transmitted information [4]. In both im-
plementations, loss and noise within the channel are the main problems. A significant portion of
transmitted photons is lost over long distances through either fiber or atmosphere, which reduces
the length of the transmitted key [7]. Furthermore, noise within the channel leads to photons
counts that were not generated by photons from the transmitter source. Those “wrong” counts
induce errors, which cannot be distinguished from those induced by eavesdropping. Therefore,
understanding and simulating noise induced by the environment is of utmost importance for
developing and improving real QKD implementations [5].
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1.1 Structure of the thesis

The aim of this thesis is to simulate some contributions to loss and noise for free-space satellite
QKD during twilight stages and calculate key generation rates based on these findings.
In Section 2, we explain the fundamentals of quantum key distribution, its concept, advantages,
assumptions and challenges. The subsequent section gives an overview of the practical implemen-
tations of QKD protocols in free-space, describing loss and noise contributions in the atmosphere,
as well as a commonly utilized protocol.

In Section 4, the impact of beam spread on the quantum transmission is simulated, while Section
5 examines the impact of background noise, specifically solar photons reaching a receiver during
different twilight stages. These found results are discussed in Section 6 and used in Section 7 to
calculate key generation rates for different levels of background noise in a decoy BB84 protocol.
Moreover, a preliminary comparison to experimental data is made to assess the accuracy of the
simulations performed in this thesis.

For the Sections 1 to 3, ChatGPT was utilized to improve wording and phrasing. For Sections 4 to
8 and the Abstract, it was used to eliminate language and phrasing mistakes.
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2 Theory of quantum key distribution

Quantum key distribution (QKD) utilizes quantum mechanical principles to encrypt information
in qubits. The main advantages compared to classical encryption are that the encryption method
is information-theoretically secure and, therefore, cannot be broken by even arbitrarily large compu-
tational power. Secondly, eavesdropping can (in theory) always be detected by error estimation, as
this interference always causes an error [4]. However, real implementations of the QKD protocol
face various problems and technical challenges [7].

To exploit quantum mechanical principles for distributing information, quantum bits known as
qubits are employed. Most commonly, photons and their polarization degree of freedom are
selected as qubits. Other degrees of freedom, such as orbital angular momentum, position-
momentum, the number of sent photons and more can also be utilized. Quantum key distribution
exploits the fact that measurements must be performed to obtain information about the observed
system. Quantum mechanical measurements alter the observed states depending on the measure-
ment basis.

In QKD, two non-orthogonal bases are randomly chosen for preparation and measurement of the
qubits. Once the qubit transmission is completed, solely classical post-processing is performed.
As part of this phase, sifting, parameter estimation, error correction, and privacy amplification
are deployed. During this phase, the secure key is extracted from the received raw key [7].
The following section discusses the concept, assumptions, advantages, and most commonly de-
ployed protocols.

2.1 From classical to quantum cryptography

Classical encryption algorithms can be categorized into two major classes. The asymmetrical cryp-
tosystems, which use a public-key, allowing Alice and Bob1 to utilize different keys for encryption
and decryption. The most widely used algorithm, known as RSA, was first implemented in 1978
by Rivest, Shamir and Adleman. It relies solely on computational complexity, specifically the
factorization of large integers. If the factors of the product are known, decoding the message is
straightforward; whereas, if they are not, enormous computational power would be required to
break the key [7, 8]. It is worth mentioning that the time required to decode the product grows
exponentially with the number of bits in the code. Therefore, this scheme belongs to the computa-
tionally secure methods [4].

The second class is comprised of symmetrical cryptosystems, which utilize a secret key. In contrast
to asymmetrical cryptosystems, Alice and Bob use the same key for encryption and decryption.
Introduced in 1926, the one-time pad (OTP) is an example of this class. The concept is straightfor-
ward. Alice encrypts the message using a random secret key. She sends the resulting ciphertext
to Bob using a public channel, which is not secure.2 Afterwards, Bob receives the message and
decrypts it using the same key. Eve could copy the ciphertext by listening to the channel, but has

1In cryptography, Alice and Bob commonly refer to the sending and receiving parties. Alice sends her encrypted
message or a secret key to Bob, who deciphers it. An eavesdropper, trying to obtain knowledge about the key and the
secret message, is usually called Eve [7].

2A public channel means that Eve can listen to and gather information transmitted through this channel but cannot
interfere with or alter the message. A channel through which Eve could interfere is called an insecure channel [9][p.7]
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no information about the secret key, leaving her with a random sequence of bits [7, 10].

The one-time pad, unlike the RSA scheme, is categorized as information-theoretically secure, convey-
ing that arbitrarily high computational power cannot break the key [4]. “Actually, this is today the
only provably secure cryptosystem!” [7]. Yet, this statement must not be misunderstood, given
that many problems of implementation are excluded from this proof. Nonetheless, the one-time
pad itself is provably secure. However, it has to meet the following three characteristics to be
considered information-theoretically secure [4], as proven by Shannon in 1949 [11]:

• The key must be truly random, which is a challenging requirement to fulfill. Developing
methods for generating such a key without any correlations between the bits is a current
field of research.

• As the name of the method indicates, the key can only be used for encryption once and must
be at least as long as the message.

• How to exchange a common secret key, without Eve gaining knowledge about it, has to be
addressed separately. Either Alice and Bob meet in person to exchange keys securely, or
they may use a trusted messenger, who is addressed as Charlie [4, 7].

Quantum key distribution is employed to address the last of these three challenges. It does not
constitute a new class of encryption but enables communicating parties to exchange a secret key
without sharing it with potential eavesdroppers.

To discuss the application of QKD, it is essential to first define what constitutes a key in the context
of OTP. Alice aims to encrypt a secret message composed solely of 0s and 1s. Before sending it
to Bob, she uses a key, as long as the message, containing a sequence of random bits (0s and 1s).
Alice performs a bitwise addition (modulo 2)3 of the key with her message, leaving her with a
ciphertext that contains no information. Assuming Bob possesses the same key as Alice and the
cipher was transmitted via a public channel, he again performs a bitwise addition (modulo 2) of
the key and the ciphertext to decrypt it [9].

2.2 Fundamentals of quantum mechanics

To transmit a secret key, Alice and Bob exploit some fundamentals of quantum mechanics. In
quantum mechanics, gathering information about a quantum state requires performing a mea-
surement. Quantum mechanical measurements, however, perturb the initial state, resulting in its
alteration for future measurements. First, we introduce two non-orthogonal bases {|0⟩ , |1⟩}) and
{|+⟩ , |−⟩}), which can be expressed as superpositions of each other as

|+⟩ = 1√
2

( |0⟩ + |1⟩ ) and |−⟩ = 1√
2

( |0⟩ − |1⟩ ). (2.1)

If the basis used to prepare the state is {|0⟩ , |1⟩} and the basis selected for measurement is {|+⟩ , |−⟩},
the outcome will either be |+⟩ or |−⟩, corresponding to one of the basis states of the measuring
basis. Therefore, without knowledge of the preparation basis, the measured states will inevitably

3Modulo 2 refers to the computational operation XOR (exclusive or), meaning 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and
1 + 1 = 0 [9]
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be altered [12].

Another fundamental principle is the no-cloning theorem. This states that one cannot copy a qubit
(state) perfectly if it is not fully known and is a consequence of the linearity of quantum theory [9].
Therefore, it is not possible to copy a state, measure the copy, and leave the original state unaltered.

Additionally, the concept of “intrinsic randomness of quantum states and measurements” [4] is
worth mentioning. This leads to the following effect: Assume a state |ψ⟩ = α |0⟩ + β |1⟩, with α,
β = [0, 1] and α2 + β2 = 1, but otherwise random α and β. If one measures said state, |ψ⟩ in the
basis {|0⟩ , |1⟩}, the outcome will be |0⟩with probability P0 = α2 and |1⟩with probability P1 = β2. In
quantum mechanics, a combination of |0⟩ and |1⟩ cannot be measured [12].

With the aforementioned effects, it becomes possible to develop protocols that are, in theory,
unbreakable and enable communicating parties to detect any eavesdropping attempt. In Section
2.3 the BB84 protocol, one of the most commonly deployed protocols is discussed in greater detail
[6].

2.3 The concept of QKD protocols: The BB84 protocol

Discrete variable (DV) protocols can be divided into two classes. These classes include entanglement-
based QKD protocols and prepare & measure protocols. The first QKD protocol, known as the BB84
protocol, was developed by Bennett and Brassard in 1984 [13] and is the most well-known prepare
& measure protocol [6].

Position of bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) Alice’s random bits 1 1 0 0 0 0 1 0 1 0 0 1 1 1
(b) random sending bases D R R R D R D D D R D R R D
(c) sent photons + 1 0 0 − 0 + − + 0 − 1 1 +
(d) random measuring bases D D R R R R D D R D D R D D
(e) Bobs measured bits 1 0 0 0 1 0 1 0 1 1 0 1 0 1
(f) Bob reports bases D D R R R R D D R D D R D D
(g) Alice confirms bases ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
(h) sifted key 1 0 0 0 1 0 0 1 1
(i) Bob reveals some bits 0 0
(j) Alice confirms them ✓ ✓
(k) Remaining shared Key 1 0 1 1 0 1 1

Table 2.1: Theoretical step-by-step description of the BB84 protocol, showing the quantum trans-
mission, public comparison, key extraction and the error estimation process.

A simple overview of the steps of the BB84 protocol is presented in Table 2.1. Every QKD protocol
can be divided into two parts. The first part is known as quantum key transmission (steps (a) to (e)),
while the second part is referred to as post-processing (steps (f) to (k)), which is a purely classical
process. Beginning with quantum key transmission, the first step (a) involves Alice having her
random secret key, which consists of 0s and 1s. In the second step (b), Alice randomly selects the
preparation basis for each qubit to be either the rectilinear (R) {|0⟩ , |1⟩}, or the diagonal basis (D)
{|+⟩ , |−⟩} 4If at the corresponding position in her key is a 0, she chooses either |0⟩ or |−⟩ as her
initial state 5, and sends the photon in the prepared state to Bob (step (c)). Bob, on the other hand,

4These are superpositions of each other as shown in Equation 2.1.
5For a 1 in the corresponding position, she selects |1⟩ or |+⟩, depending on the preparation basis.
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also selects his measurement basis at random, similarly to Alice, to be either R or D, as shown in
step (d). If Bob chooses the same basis for his measurement as Alice did for the preparation of
that qubit, which occurs for 50 % of the sent photons, Bob obtains the correct state with certainty.
If Bob does not select the same basis as Alice, his results will be completely uncorrelated, meaning
his measured state will align with Alice’s key bit with a probability of 50% and differ with a
probability of 50%, regardless of the sent state. This leads to Bob’s key, agreeing with Alice’s key
with a probability of 75%. These keys are referred to as the raw key (step (e)) [12].

Once the key transmission is completed, Alice and Bob use a public channel to compare their
basis choices. A public channel allows Eve to listen to all communication occurring within this
medium. In the next step (f), Bob reports the basis choices for all measured photons to Alice.
Alice then confirms whether she chose the same basis for preparation or refutes it. Both parties
abort all qubits and the corresponding bits for which they utilized different bases, as these yield
uncorrelated results and therefore do not carry any information. Both parties retain only the bits
for which their basis choices align, resulting in the sifted key (step (h)). For a perfect setup, both
keys would be completely identical. It is evident that neither Alice nor Bob can influence the
resulting key, as it is a random combination of the states of some of the sent qubits. Consequently,
the key strings themselves do not convey any information.

To gain knowledge about the number of errors in their key, which is defined as the quantum bit error
rate (QBER), Alice and Bob perform the parameter estimation. In this step, they agree to announce a
fraction of their sifted key publicly, compare those bits and estimate the QBER (step (i) to (j)). All
announced bits are discarded from the key, as they are no longer secret (step (k)). To understand
the reason for the parameter estimation, it is useful to explain a potential eavesdropping attempt
on the BB84 protocol [4, 6, 12].

2.3.1 Eavesdropping attempts - The intercept-resend-attack

Eavesdropping mechanisms can be separated into three different types of attacks. The separation
depends on the power that Eve is assumed to have. The individual attacks are the simplest, in
terms of Eve’s abilities, and are the ones most commonly discussed. The intercept-resend attack is
part of this class. Security must also be provided against collective and coherent attacks, with the
latter assuming that Eve has unlimited resources and is only restricted by the laws of quantum
mechanics. Security proofs against these attacks are much more difficult to establish, however,
also must be satisfied. In the following, for a better understanding, the simplest one, the intercept-
resend attack, is discussed [12].

If we now assume that a third adversarial party attempts to gather information about the secret
key, it would need to perform quantum measurements. Since all information about the secret
key shared through the public channel is the basis choice after measuring, it does not contain any
information about the resulting bit. When Eve, the adversary, knows the two non-orthogonal
bases and the key bits they refer to, she can attempt to perform measurements on the sent photons
as they travel from Alice to Bob and then send the measured photon further to Bob.

Eve has to choose her measurement basis at random, as Alice and Bob do. If Alice and Bob
select different bases, the resulting key bits are discarded anyway, so Eve’s interference would not
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matter. However, if Alice and Bob choose the same basis and Eve performs a measurement on
the sent photon, she has a 50% chance of guessing the correct basis for her measurement. If she
does, she obtains the correct results and does not alter the qubit state. In this case, her interference
cannot be detected. However, in 50% of the measurements of the sent photons, Eve does not guess
the basis correctly. Let us assume Alice and Bob are using the rectilinear basis and Eve chooses
the diagonal basis. In that case, Eve would observe the state to be |+⟩ or |−⟩with equal probability
of 50%. To avoid detection, she must send that photon to Bob, who then performs a measurement
in the rectilinear basis. Regardless of whether the state that Eve sent is |+⟩ or |−⟩, he will mea-
sure the photon to be either |0⟩ or |1⟩, again with a probability of 50% for each.Assuming that Eve
measures every sent photon, this leads to a disagreement of 25% in the keys held by Alice and Bob.

With this in mind, the communicating parties can identify Eve’s interference by comparing a small
part of their sifted key publicly, referred to as parameter estimation. If the QBER f is 0, they can
be certain that Eve did not listen, meaning she did not perform quantum measurements on the
sent photons, therefore does not possess any information about the shared key. However, if the
error rate is f = 25%, they abort the key and do not use it to encrypt a secret message, since Eve
could have gathered information about it. 6

In realistic implementations, a defined error threshold is established. If the QBER falls below this
threshold, the key is utilized (after further post-processing steps). If it exceeds the threshold, the
key is aborted and never used to encrypt secret information. If the protocol does not get aborted,
further steps are executed. To reduce the errors in their key strings, Alice and Bob utilize a classical
error correction protocol, which also reduces the key length. As Eve may have gained knowledge of
some part of the key, the final step, called privacy amplification, is performed. This step also reduces
the key length, while enhancing the privacy, thereby minimizing Eve’s knowledge [4, 6, 12].

2.3.2 Concepts, advantages and assumptions of QKD

To employ QKD protocols of any kind, one needs two channels. A quantum channel is needed
to distribute the qubits, and a public classical channel is required. The latter refers to a classical
channel that a potential eavesdropper can listen to but cannot alter. This means the protocol
functions if Eve knows which bases Alice and Bob chose for each photon, but she must not be able
to modify the sent classical information.

Contrary to what the term unconditionally secure might suggest, QKD relies on certain assumptions.
The key assumption in QKD is that quantum theory is correct. Due to this, it assumes that Eve
can perform all kinds of quantum mechanical measurements within the quantum channel, but is
restricted by the rules of quantum mechanics. However, no assumptions are made about Eve’s
computational power or technological abilities. For instance, this means that all observed errors
have to be assumed to be induced by Eve, even if other sources of these errors are identified. The
lack of assumptions about Eve’s technological capabilities means that even quantum computers
cannot compromise the key, as no amount of computational power can break it.

Another major advantage of QKD over computationally secure methods is that, in the latter, one
cannot say with certainty whether an adversary has listened to the secret message. One can only

6Of course, Eve could measure only half of the sent photons, for example, leaving her with half the information about
the key, resulting in an error rate of f = 12.5 %.
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state that this is highly unlikely. For QKD protocols, however, one can find an eavesdropper by
comparing parts of the sifted key. As explained earlier, if the QBER is too high and is assumed
to be induced by Eve, the key gets aborted and is not used to encrypt information. This provides
two advantages. First, one can be certain if anyone has gained knowledge of the key or message.
Secondly, if she is able to obtain some information during the key transmission process, the com-
municating parties just discard the key and do not use it for anything. Thus, even if Eve intercepts,
she gains no information about the secret message.

RSA schemes rely on the assumption that it would take too much time to crack the key, with
today’s achievable computational power. However, quantum computers are on the rise and
could potentially increase achievable computational power by orders of magnitude, rendering
currently employed methods insecure. Although such computers are not available today, they
could threaten already encrypted and sent messages. Conventionally encrypted messages can be
recorded and stored by a potential adversary. If quantum computers become available with the
required computational power, these stored messages could subsequently be deciphered. This
creates a new challenge regarding long-term security, which currently employed methods cannot
guarantee [4, 6].

QKD schemes can be considered “future-proof ” [4], as they cannot be broken by any computational
power. Additionally, if the key is successfully distributed and the eavesdropper fails to intercept
it during the process, that key cannot be broken subsequently, providing long-term security in
contrast to computationally secure methods [4, 6].

2.4 Imperfections in the QKD channel

In Section 2.3 the theoretical concept of QKD was presented. However, when sending qubits
through a quantum channel, perfect transmission is unattainable because a perfect quantum
channel does not exist. Therefore, some of the sent photons get lost on their way to the receiver. In
common implementations, a significant portion of the sent photons is lost. This loss is measured
in decibels (dB) and severely impacts the obtained key rates.

Due to the no-cloning theorem, the signal cannot be amplified without inducing noise, meaning
altering the initially sent states [4]. Loss and the resulting reduction of shared qubits between Alice
and Bob directly impacts the length of the extractable key, as one cannot send an arbitrary number
of photons per second (see Section 3.1.1). In realistic implementations, loss primarily affects the
key length, which may become impractically small at some point, but would not influence the
security, as shown by the figures in Section 7.

However, photon loss is not the only imperfection of the quantum channel. Not all bits that
Bob receives lead to the correct outcome, even without Eve’s interference, resulting in a non-zero
QBER. As it signifies the rate of the erroneous bits relative to the total number of measurements,
the QBER plays a significant role in the description of noise during quantum transmission [7, 12].

Noise refers to “wrong” results, specifically erroneous bits in the key induced by environmental
interactions. “Here ”environment” refers to everything outside the degree of freedom used for the
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encoding” [7], which will be assumed to be the polarization of photons in this thesis. The inter-
action with this environment leads to decoherence, perturbing the quantum states, consequently
changes the encrypted information. Mitigating the impact of these interactions on the channel is
a fundamental challenge of QKD implementations, as noise plays a crucial role in the security of
QKD [14].
In order to ensure that Eve did not listen during the quantum key transmission, Alice and Bob
compare a small random sample of their sifted keys during the error estimation step. If the
QBER exceeds the threshold, they abort the protocol, as Eve could have listened. However, in
realistic implementations, noise can arise from various sources, such as photons emitted by the
sun reaching the receiver. To uphold the promise of QKD, that no assumptions are made about
the channel and Eve’s capabilities, the worst-case scenario must be assumed, implying that all
noise is presumed to be introduced by Eve’s interference [4, 12].
Noise contributions, such as environmental photons and dark counts in the detector, lead to
uncorrelated clicks in the detector, which, as two outcomes are possible, are correct by coincidence
in 50% of the cases, therefore inducing a QBER of 50%. To ensure that the system’s QBER is below
a previously defined threshold, the signal-to-noise ratio has to be sufficiently high [15]. This must
be achieved by reducing both the loss of the sent signal and the contributions of noise within the
channel [7, 9].
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3 Realistic implementations and challenges

To implement QKD channels, one can choose either fiber or free-space for quantum transmission.
In this thesis, we will focus on free-space satellite QKD. Wireless optical communication is ad-
vantageous for long transmission channels compared to fiber, as the signal’s attenuation scales
quadratically, while it scales exponentially for fiber implementations [14, 16]. Both implementa-
tions offer advantages for different requirements. Free-space channels require a line of sight, while
fiber implementations are more challenging to realize, since a fiber channel must be established
and built between both parties. As mentioned earlier, long-distance implementations may lead to
excessive loss, rendering key transmission infeasible.

For free-space QKD, most commonly the wavelengths λ = 850 nm and 1550 nm are selected. At
approximately 850 nm, there is a high transmission window that leads to reduced attenuation in
the atmosphere, as the atmosphere is “weakly dispersive and essentially nonbirefringent at these
wavelengths” [7]. The second most commonly used wavelength is λ = 1550 nm, which aligns
with the typically used wavelength for fiber-based communication [7].

However, these implementations face many challenges. Loss and noise in the channel lead to
imperfect key transmission, which must be considered when performing security proofs for the
utilized protocols [17, 18].

3.1 Free-space satellite QKD

In this thesis, the impact of loss and noise in free-space satellite quantum communication is in-
vestigated. In the following section, we discuss the components and setup of these free-space links.

Generally, the setup requires a photon source, a quantum channel, and a detector. The source
and detector are explained in Section 3.1.1 [1]. In free-space QKD, the atmosphere serves as the
quantum channel, distributing the key between a ground station and a satellite. To illustrate the
experimental communication channel between a satellite and a ground station, we reference the
work by Liao et al. [14]. This paper presents satellite-to-ground QKD, referred to as a downlink,
using the low-earth-orbit (LEO) satellite Micius, with a wavelength of λ = 850,nm, photons and
their polarization as qubits, and a decoy state BB84 protocol, which aligns with the choices made
for the calculations in this thesis.

In said setup, a photon source suitable for LEO satellite operations is integrated into the satellite
Micius, sending photons through the atmosphere to a fixed optical ground station (OGS) on earth’s
surface [14]. LEO satellites are typically found at altitudes of 2000 km and lower, but can be as
low as 160 km [19]. Micius can be assumed to be 500 km above sea level. However, one of the
downsides of satellite communication is that a constant link between transmitter and detector
cannot be established. The overpass duration of a LEO satellite over an OGS is typically only
about a few minutes per day. For Micius and the ground station based in Xinglong, China, the
usable time for key extraction is 273 s per day. Furthermore, during these 273 s, the link distance,
loss, angular position of the satellite, and extractable key rate vary significantly [14]. A usual
satellite overpass over an OGS is illustrated in Figure 3.1. At this point it is worth noting that,
in most cases, the satellite’s path does not pass directly over the OGS. Instead, it maintains a
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minimum distance defined by the minimum ground track distance between the OGS and the
satellite, denoted as dmin. At this position, the maximum elevation angle θmax is reached, as shown
in Figure 3.1(a). For angles smaller than θmin (as shown in Figure 3.1(b)), quantum transmission
is no longer possible [20].

Figure 3.1: Geometric visualization of a LEO satellite overpass over a ground station. (a) dmin
refers to the minimum ground distance between the satellite and the OGS for an overpass, at
which the maximum elevation angle θmax is reached (b) θmin refers to the minimum angle of the
satellite related to the zenith, at which quantum transmission is possible. Taken from [20].

In Figure 3.2 the link distance d in kilometers for different LEO satellites, in relation to the overpass
time, is visualized. The significant variations in link distance during an overpass can easily be
observed [21].

Liao et al. [14] utilized a downlink scenario, which demonstrates higher transmission efficiencies
due to the reduced impact of beam wander (see Section 3.2.3). They employed a standard
Cassegrain telescope, which was also assumed to be used in Section 4 for the loss simulations
conducted in this thesis. Additionally, it is important to note that these experiments were limited to
nighttime operations due to the significant impact of solar background noise during the daytime.
The maximum link distance for quantum key distribution between the satellite Micius and the
OGS in Xinglong was reported to be 1200 km. They found the signal loss to be approximately
22 dB, and the beam diameter to be about 12 m at that distance [14].
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Figure 3.2: Distance between a LEO satellite to a receiver, related to the overpass time. t = 0
defined as the moment at which the minimum link distance occurs. The significant variations in
the link distance during the quantum transmission process can be easily observed. Taken from
[21].

3.1.1 Real implementations of photon sources and receivers

To achieve perfect QKD, single photons must be prepared and sent from Alice to Bob. However,
true single photon sources do not exist, necessitating alternative implementations. Commonly,
weak coherent pulses (WCP) are utilized as photon sources. These are lasers that emit, on average,
significantly less than one photon per pulse [6]. The weak coherent pulse serves as an approxi-
mate single photon source, following the Poisson distribution. Alice sends a phase-randomized
coherent state

ρ = e−µ
∞�

n=0

µn

n!
|n⟩ ⟨n| , (3.1)

where µ refers to the average photon number of the laser pulse, typically with values around
µ ≈ 0.1.
Most of the time, the source does not emit any photons, resulting in a vacuum state with a prob-
ability P(0) = e−µ ≈ 90.5%. The probability of sending exactly one photon is P(1) = µ e−µ ≈ 9%,
known as single photon event. Multi-photon events, where more than one photon is emitted,
occur with a probability of P(n > 1) ≈ 0.5%. Although these multi-photon events rarely occur,
they entail risks of exploitation, as discussed in Section 3.3 [12, 22].

The photon detection after the transmission also brings along imperfections, as usually threshold
detectors are deployed. These detectors measure whether at least one photon is present in the
receiver. In other words, it cannot distinguish between a single photon and a multi-photon event.
This indistinguishability introduces another vulnerability to the implementation. Furthermore,
the detector efficiency is not perfect, leading to some single or multi-photon events not causing
a click within the detector, while some vacuum events do cause a click. These false clicks, where
no photon reaches the detector, are referred to as dark counts (DC) [6]. While improving photon
detectors is an important area of research, it is not the focus of this thesis.
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3.2 Sources of loss and noise in free-space QKD

In free-space satellite quantum key distribution, various environmental factors affect quantum
transmission, causing both loss and noise in the channel. The following sections discuss some of
the primary effects on the quantum transmission.

3.2.1 Geometric and misalignment losses

Considering the real implementation of free-space QKD, the decoy state BB84 protocol, presented
in Section 3.3, utilizes a weak coherent laser pulse for photon transmission. These weak coherent
laser pulses are modeled as a Gaussian beam, following [23]. An optical beam on its path through
any medium, however, spreads along its way. In free-space optical communication, the narrow
field of view leads to beam spread loss, as part of the beam escapes the detector, resulting in
energy loss [23–25]. Said beam spread is analyzed in Section 4. A laser beam in the atmosphere
additionally spreads due to diffraction of the beam.

Theoretically, narrowing the beam as much as possible would be advantageous. However, other
imperfections must be considered. Pointing loss, caused by misalignment between the receiver
and transmitter and imperfect tracking systems, can result in significant degradation of system
performance. While increasing beam narrowing is beneficial in theory, a broader signal can
mitigate the impact of misalignment-induced losses [24, 25].

3.2.2 Atmospheric absorption and scattering

Atmospheric loss occurs even under clear sky conditions. Part of the optical field’s energy is
transferred to molecular elements of the atmosphere, leading to a reduction in the optical signal
along its path, a process known as absorption. The impact of said absorption heavily depends on
the wavelength of the optical signal.

In addition to absorption, scattering effects also contribute to atmospheric loss. These scattering
effects can be categorized into two types. The first is Rayleigh scattering, which involves scattering
by atmospheric particles at the molecular scale, describing those with diameters much smaller
than the signal wavelength. It strongly depends on the signal’s wavelength, exhibiting a char-
acteristic λ−4 dependence. The second is Mie scattering, which describes the interaction of light
with atmospheric particles equal to or larger than the wavelength [26]. Therefore, Mie scattering
models the interaction of light with particles such as dust, pollen, pollutants and aerosols, and is
not stronglyλ-dependent [26, 27]. Under clear-sky conditions, Rayleigh scattering dominates [26].

In Rayleigh scattering, the probability that a photon is scattered at a certain angle θ, relative to
its original path, is described by the scattering phase function. Since it exhibits a (1 + cos2 θ)-
dependency, one can conclude that the probability that the photon is not deviated is relatively
high, as is the likelihood of backscattering at 180 degrees. The probability of being deflected by
approximately θ = 90◦ is lower, as visualized in Figure 3.3 [28, 29].
Furthermore, it is necessary to point out that scattering effects not only impact the optical signal
but also cause sky radiance, which induces noise [24], which is further investigated in Section
3.2.3. This effect is accounted for in this thesis to calculate noise contributions during twilight
stages in Section 5.
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Figure 3.3: Schematic visualization of Rayleigh scattering. Taken from [28].

3.2.3 Atmospheric turbulence

Another critical factor to account for in free-space Sat-QKD is atmospheric turbulence. Charac-
terizing said turbulence in the atmosphere is highly complex. Although the effects of turbulence
are not included in the calculations in this thesis, they must be introduced due to their significant
real-world impact.

To describe turbulence, the atmosphere is assumed to be a vicious fluid. Turbulent eddies are
caused by inhomogeneities in atmospheric temperature and pressure, which result from wind
and solar heating. These eddies vary in size and in turn affect the light beam in different ways.
They cause random fluctuations in signal properties such as amplitude and phase, leading to a
further reduction of the system performance.

Atmospheric turbulent eddies are typically characterized by three parameters. These parameters
are the inner scale of the eddy l0, the outer scale of the eddy L0, and the refraction structure pa-
rameter C2

n, also known as turbulence strength. A well-known theory for describing atmospheric
turbulence is the Kolmogorov theory [24, 25].

In optical communication, turbulent eddies lead to additional effects depending on their size.
Beam wander occurs when the eddies are larger than the size of the transmitter beam. Due to
that, the beam is randomly deflected, altering its path. Beam scintillation, also known as fading,
results in random focusing and de-focusing of the optical signal, much like an optical lens, caus-
ing random fluctuations in the signal’s irradiance. If the eddies are smaller than the transmitter
beam size, only a fraction of the beam is deflected independently of the rest of the beam, causing
additional beam spread [24, 25].

It is worth mentioning that beam wander primarily affects uplink satellite communication and
can be neglected for downlink implementations. This can be argued to occur due to the beam
size in downlinks being much greater already, when the beam enters the atmosphere, making it
larger than most of the eddies. However, in uplinks, the effects of beam wander must be taken
into account [24].
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3.2.4 Background radiation and noise

In addition to the effect on the optical signal itself, background radiation or ambient noise leads
to an increase of noise in the channel since the receiver cannot distinguish between the signal
and background radiation. The primary sources of this noise are direct, reflected, and scattered
sunlight. Despite the existence of various technologies to mitigate its effects, ambient noise lowers
the signal-to-noise ratio and, in some cases, even disables the quantum key transmission due to
detector saturation [25]. These mitigation technologies include spatial filtering, spectrum filtering,
temporal filtering, and the selection of a narrow bandwidth [14, 25, 30].

The electromagnetic radiation emitted by a source, in this case the sun, can be described using
Planck’s law of black body radiation

R(λ,Tse) =
2hc2

λ5

1
exp(hc/λkTse) − 1

. (3.2)

Here, c denotes the speed of light, h is the Planck constant, k represents the Boltzmann constant,
λ is the wavelength of interest, and Tse represents the temperature of the sun [26].

According to [30], the noise induced by solar photons differs significantly between day and night
by as much as five orders of magnitude. Daylight free-space satellite QKD is currently being
developed since successful key distribution could only be achieved during nighttime for a long
time [30]. In order to enable daylight satellite QKD, understanding solar photons and their impact
is of major interest. Modeling the behavior of solar photons and the noise they introduce can help
in developing improved technology. As part of this thesis, said solar background noise will be
simulated during twilight stages in Section 5.

3.2.5 Further atmospheric contributions

Several key effects on optical communication have already been covered. This presentation does
not claim to be complete. Other environmental factors include varying weather conditions. Link
performance is highly sensitive to weather conditions, which include fog, snow, or rain. The
impact of these environmental effects is commonly assessed using atmospheric visibility [24].

3.3 Realistic implementation: The decoy-state BB84 protocol

Challenges in implementing secure QKD apply to all kinds of protocols. For better understanding,
in this section, threats, solutions and cutting-edge technology will be explained on the basis of the
BB84 protocol.

Section 3.1.1 has already covered several challenges related to real-world implementations. The
so-called photon-number-splitting attack (PNS) exploits the fact that ideal single photon sources
do not exist, leading to the use of weak coherent pulses instead. The attack works as follows:
Eve can perform a non-demolition measurement by measuring how many photons were sent,
without disturbing the quantum state. If multiple photons were sent in that pulse, Eve stores one
photon for herself and leaves the remaining ones to pass through to Bob. Since all photons in
the same pulse are identically prepared, she now possesses a photon identical to the one Bob will
measure. Eve then stores her photon and waits for Alice and Bob to compare their preparation

17



and measurement bases. Once Eve knows which bases they used, she can measure her photon in
the same basis, gaining complete information about the key bit encoded in it.

If Eve detects that exactly one photon is sent, she can either let it pass through to Bob without
gaining any information about its outcome. Alternatively, she can intercept or measure the photon
herself, but since it won’t be used by Alice and Bob for key extraction, this effectively results in
photon loss [12, 22]. As most of the sent photons are naturally lost during transmission in free-
space QKD, Alice and Bob cannot determine whether Eve is responsible for the loss of certain
photons.

Figure 3.4: Schematic concept of the photon-number-splitting attack, with the yellow dots repre-
senting the sent photons. Taken from [12].

To mitigate the risk of a photon-number-splitting attack, countermeasures can be employed. The
typically deployed scheme is the decoy-state protocol. For this strategy„ a second (sometimes
even a third) weak laser pulse source is used. The so-called decoy source is identical to the signal
source in every aspect except for the average photon number µ. In the decoy state, µDecoy is
much larger (typically around 0.8) compared to the signal state, where µSignal = 0.1. Now, Alice
randomly sends either a signal state or a decoy state. Bob continues to measure the incoming
photons as usual. Eve cannot determine whether the sent state is a signal or a decoy state, forcing
her to perform the same measurements on all of the pulses. If Eve, using the PNS attack, stores a
single photon from each pulse, her interference can now be detected by Alice and Bob. Once the
key transmission is complete, Alice and Bob not only compare their chosen bases but also disclose
whether the sent was a signal or a decoy state. The decoy states are not utilized to generate a
shared secret key, instead, Alice and Bob compare the number of signals sent to the number of
signals received.

The channel’s transmittance should be consistent across all signals, meaning the same percentage
of sent signals must successfully pass through the channel. However, if Eve stores one photon
from each pulse, she alters the signal’s transmittance differently based on different average pho-
ton numbers µ. By comparing the transmittance of the signal and decoy states, they can detect a
photon-number-splitting attack and abort the protocol.

To avoid detection, Eve would have to refrain from interfering with most pulses, limiting her
knowledge to only a small portion of the key, which could then be reduced even further by
applying privacy amplification [12].
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4 Simulating loss due to beam spread in satellite QKD

Beam spread is a major contribution to loss in free-space QKD. In the following, said loss will be
calculated. Ideally, single photons are sent through the atmosphere, but to describe the spatial
intensity distribution transverse to the propagation path, beam optics can be utilized.

4.1 The Gaussian beam and its beam spread

As light is electromagnetic radiation, it is expressed as a transverse electromagnetic wave (TEM),
described by the wave equation

∇2u =
1
c2

∂2u
∂t2 . (4.1)

The derivation in this chapter follows that by Andrews et al. [23]. With the complex amplitude of
the wave U0(R) and the field u(R, t), one finds the Helmholtz equation

∇2U0 + k2U0 = 0. (4.2)

For further calculations - as the wave is symmetric around the z-axis - cylindrical coordinates were
chosen, leading to the form of the wave equation as

1
r
∂
∂r

�
r
∂U0

∂r

�
+
∂2U0

∂z2 + k2U0 = 0. (4.3)

z refers to the propagation distance, as the beam is assumed to originate at the source and prop-
agate along the positive z-axis, while r describes the distance to the z-axis along the propagation
path.

Furthermore, one has to introduce the “paraxial approximation”, which is discussed in further
details in Appendix A.1. It assumes that the longitudinal propagation distance is much larger
than transverse distance. With this approximation and U0(r, z) = V(r, z)eikz one finds the paraxial
wave equation to be

1
r
∂
∂r

�
r
∂V
∂r

�
+ 2ik

∂V
∂z
= 0. (4.4)

For a further description of the propagating laser beam the lowest order Gaussian-beam wave
(TEM00

7) is utilized, which can be assumed for the purposes of this thesis.
Since a collimated beam is assumed, F0 → ∞ must be fulfilled, which is numerically done by
assuming that F0 = 1011 m.

7The index refers to the order of the mode, in this case 00, meaning the lowest order.
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Name description

F0 Focal length - for collimated beam→∞
z propagation distance - with source in z = 0
r distance from the optical axis (z-axis)
a0 amplitude of the beam at r, z = 0

W0 effective beam radius (spot size)
k wave vector

Table 4.1: Required input parameters for the Gaussian wave equation and their description

The lowest-order Gaussian beam wave at z = 0 is given by

U0(r, 0) = a0 exp
�
− r2

W2
0

− ikr2

2F0

�
= a0 exp

�
− 1

2
α0 kr2

�
, (4.5)

where W0 refers to the spot size, which is the distance from the optical axis at which the value
of the amplitude has dropped to 1/e of the initial value at the optical axis. Thus, it serves as a
measure of the width of the Gaussian beam [23]. For free-space QKD applications, the beam width
at the sending aperture W0, can be selected as 8 cm [24].
The amplitude of the Gaussian beam for z = 0 is defined as

A0 = a0 exp
�
− r2

W2
0

�
, (4.6)

and its phase ϕ0 and α0 can be found with

ϕ0 = − kr2

2F0
and α0 =

2
kW2

0

. + i
1
F0

[m−1]. (4.7)

To find the solution, the direct solution ansatz

V(r, z) = A(z) exp
�
− 1

p(z)

�α0kr2

2

��
(4.8)

is chosen.
With this in mind , along with further calculations, one finds the complex amplitude at distance z
to be

U0(r, z) = V(r, z)eikz =
1

1 + iα0z
exp
�
ikz − 1

2

� α0k
1 + iα0z

�
r2
�

(4.9)

=
1

1 + iα0z
exp
�
ikz − ik

2z

� α0kz
1 + iα0z

�
r2
�
. (4.10)

To better handle of this equation, one introduces the new parameters

Θ0 = 1 − z
F0
, Λ0 =

2z
kW2

0

, (4.11)

ϕ = tan−1 Λ0

Θ0
, ϕ = tan−1 Λ0

Θ0
and F =

kW2
0

2

� Λ0(Θ2
0 + Λ

2
0)

Θ0(1 −Θ0) −Λ2
0

�
, (4.12)
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which leads to

U0(r, z) =
1

1 + iα0z
exp
�
ikz +

ik
2z

� iα0k
1 + iα0z

�
r2
�

(4.13)

=
1	
Θ2

0 + Λ
2
0

exp
�
− r2

W2

�
exp
�
i
�
kz − ϕ − kr2

2F

�
r2
�
. (4.14)

After U0(r, z) is determined, one needs to find the intensity of the beam [23]

I0(r, z) = |U0(r, z)|2 = 1
Θ2

0 + Λ
2
0

exp
�
− 2r2

W2

�
in [W/m2]. (4.15)

To demonstrate the beam spread as calculated above, the spot size of the beam W(z) is showcased
in Figure 4.1. At z = 0, referring to the origin of the laser beam, the spot size W(z = 0) = W0 is
chosen to be 8 cm. One can observe that W(z) to increases linearly with the distance z [23].

Figure 4.1: Increase of spot size W(z), showing its linear increase related to the propagation
distance z.

For the calculations in the following section, it is necessary to introduce the total power P at a
distance z0 from the receiver. This is accomplished by integrating over the entire plane orthogonal
to the z-axis as

P∞ =
� 2π

0

� ∞

0
|U0(r, z)|2 dr dϕ (4.16)

= 2π
1

Θ2
0 + Λ

2
0

� ∞

0
exp(− 2r2

W2 ) dr (4.17)

=
1
2
πW2

0 , (4.18)

which aligns with the calculation in [23]. Since no loss of power is assumed, the total power
remains constant for all distances z [23].
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4.2 Calculating the geometric efficiency ηgeom

In this section, the previously discussed calculation by Andrews et al. [23] will be utilized as a
basis to calculate the beam spread loss in terms of the geometric efficiency.

In QKD, light is utilized to transmit photons from a source to a receiver. This is often realized
with a weak coherent pulse (WCP), which is deployed for decoy state protocols. The receiver, in
a certain distance z0 from the source, has a finite diameter. The radius of the receiver can be set
to r = 0.5m [31]. If the propagation distance is large, as is commonly the case in free-space QKD,
the beam spread prevents the entire beam from entering the receiver. The aim of this chapter is to
calculate the part of the beam, which reaches the receiver, depending on z0.

Figure 4.2: Cassegrainian telescope set-up, including primary and secondary mirror. a refers
to the radius of the primary mirror and b is the radius of the secondary mirror, with the latter
obscuring the center of the telescope. Taken from [32].

For the geometric efficiency, one needs to find the fraction of the power P, that enters the receiver.
To do this, one performs the same calculation as in Equation (4.16), but with different integration
limits. Instead of integrating dr from 0 to ∞, as done in [23], one would integrate from 0 to
ra = 0.5 m, which represents the radius of the receiver aperture. For more realistic calculations,
however, at this point it is useful to take into account the geometrical structure of a commonly
utilized telescope, as showcased in Figure 4.2. One finds the secondary mirror to be in the center
of the z-axis, obscuring some part of the receiver. Therefore, the obscuration ratio γ is introduced.
It is defined as the ratio of the circular secondary mirror’s radius rmin and the telescope’s radius
ra [32]. For deployed telescopes in free-space QKD links, one can assume the obscuration ratio to
be γ = rmin/ra ≈ 50 %, leading to rmin = 0.25 m with ra = 0.5 m [31]. This results in new integration
limits for the power P(z, ra) reaching the receiver:

Preceiver(z, ra) =
� 2π

0

� ra

rmin

|U0(r, z)|2 dr dϕ (4.19)

=
πW2

0

2

�
exp (− 2 r2

min

W(z)2 ) − exp (− 2 r2
a

W(z)2 )
�
. (4.20)
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As W(z) increases with z, it is obvious, that P(z, ra) decreases with increasing propagation distance.
Now, one can calculate the geometric efficiency ηgeom(z, ra), which is defined as the ratio of the two
found powers

ηgeom(z, ra) =
Preceicer(z, ra)

P
. (4.21)

Said geometric efficiency ηgeom(z, ra) over the distance z is visualized in Figure 4.3.

Figure 4.3: Geometric efficiency ηgeom(z, ra) presented on a logarithmic scale describing the beam
spread loss in free-space satellite QKD in relation to the link distance z, with an obscuration ratio
γ = 0.5 and a beam sport size of W0 = 8 cm at the source.

As expected, ηgeom(r, za) decreases significantly with increasing link distances. Due to the sub-
stantial reduction in geometric efficiency, the results are presented on a logarithmic scale to better
capture and visualize the magnitude of this decline. The rapid increase observed at z = 0 orig-
inates from the area at the center of the receiver, which is obscured by the telescope. This is
expected, as the beam is fully focused at the source with a beam width of W(z = 0) = 8 cm.

Unlike the noise simulation in Section 5, the calculated beam spread loss is valid for both uplinks
and downlinks, since the beam spread depends on the propagation distance only. As discussed
in Section 3.1 the link distance for an overpass of a usual LEO satellite varies from approximately
600 km up to 3000 km (Figure 3.2) [21]. To gain a better picture of the overall behavior of the loss
in free-space QKD, the observed range was selected to be z = [0 km, 5000 km].

These results are combined with the noise simulations in Section 7.4, to estimate the key generation
rate for a BB84 decoy state protocol.
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5 Simulating noise in Sat-QKD during twilight stages

As the goal of this thesis is to investigate the impact of noise on a free-space satellite QKD link,
this section examines the brightness during different twilight stages. The number of solar photons
per second that reach receiver is calculated for a downlink scenario. These results will later be
utilized to simulate possible key generation rates for different twilight stages in Section 7.

5.1 Models, literature and assumptions

This thesis builds upon "UBVRI twilight sky brightness at ESO-Paranal" by Patat et al. (2006)
[29]. This paper aims to provide measurements and models to describe twilight sky brightness.
It utilizes the UBVRI method, which employs passbands in the range of 366 to 798 nm. The paper
investigates the sun zenith distance angles in a range of 94o −112o. As showcased in Figure 5.4, the
angles are defined as the degrees to the horizon of the sun, relative to a point on the earth’s surface.

Since the paper considers single-scattering events only in the atmosphere and neglects multiple-
scattering events, it is a rather simple model, and can be reconstructed in this thesis. However,
it must be noted that, by neglecting multiple-scattering, the model underestimates the brightness
compared to the experimentally obtained data.

Figure 5.1: Modeled twilight sky brightness compared with experimental data from ESO-Paranal
for the I passband (corresponding to λ = 798 nm) for positions of the sun, just below the horizon
(90◦), showing the decrease of brightness until it reaches the night sky brightness. Taken from
[29].
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5.1.1 Assumptions for the model

In order to calculate the twilight sky brightness, several assumptions where made for the model:

1. The earth is a sphere with radius R0 = 6380 km

2. The atmosphere extends to ∆R= 400 km

3. Numerical density of the atmosphere n(h) 8 is assumed according to the MSIS-E-90 model,
that can be found in [33, 34].

4. There is no atmospheric refraction.

5. The Sun is treated as a point source, and all incoming rays are considered parallel.

6. Only single-scattering events are considered (multiple-scattering is neglected).

7. Only Rayleigh scattering is assumed to contribute to scattering (Mie scattering is neglected).

According to Patat et al. [29], the first five assumptions are valid and can be applied for these
calculations. However, it is also noted that the last two assumptions lead to some deviations in the
results in certain cases. Nevertheless, the results found by utilizing these models, approximately
agree with the experimentally found data.

As stated in [35], multiple-scattering events can no longer be neglected at angular zenith distances
over 96◦, which corresponds to the beginning of nautical twilight. This is in good agreement with
Figure 5.1, where the deviation of the experimental data and the predicted values can be observed.
To get a better understanding of the expected behavior of the surface brightness curve, in Figure
5.3 the experimentally obtained sky brightness in lux for different angular positions of the sun
related to the horizon is shown. It will be taken into account in the following sections to compare
the found model, to experimental values [35].

Figure 5.3: Experimentally obtained brightness for different angles of the sun relative to the
horizon, showing the decrease during different twilight stages until it reaches night sky brightness.
Taken from [35].

8Patat et al. [29] refer to the density as n, whereas in this work it is described as ρ.
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Figure 5.2: Modeled twilight sky brightness for different passbands at zenith (corresponding to
α = 0◦). One can observe the impact of the added night sky brightness, as without it the brightness
would continue to decrease. Taken from [29].

5.1.2 Twilight classification

When the Sun is at an angular zenith distance of ϕ < 90◦ relative to the receiver station, it is
considered daytime. If this angle is ϕ > 108◦, it is classified as nighttime, during which the sky
brightness remains approximately constant. The sky brightness decreases rapidly in the range of
90◦ < ϕ < 108◦, which can be divided into three stages of twilight. The range from ϕ = 90◦ to 96◦

is termed civil twilight. Nautical twilight refers to the angles from 96◦ to 102◦, while astronomical
twilight corresponds to angles betweenϕ = 102◦ and 108◦. It is worth mentioning these definitions,
as they are commonly used in literature and will be referenced throughout this work [35].
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Figure 5.4: Stages of twilight: Between day and night, the three presented stages of twilight can
be found, defined by the position of the sun below the horizon. Taken from [36].

5.1.3 Astronomy and utilized units

In astronomy, specific units are utilized. his section provides a brief explanation of the main units
for better understanding and comparison of the figures.
Fixed wavelengths and bandwidths, referred to as passbands, are typically used when measur-
ing brightness. Patat et al. [29] used the UBVRI passbands. In this thesis the focus is on the
I-passband, as its wavelength of λ = 798nm is the one closest to 850 nm. Its effective bandwidth
is ∆λe f f = 0.15µm = 150 nm. In astronomy the commonly utilized unit for the wavelength is µm,
also called microns [37].

Brightness is measured in magnitudes, a dimensionless unit, that scales exponentially with the
number of photons. It is defined over so-called zeropoints M0, which are (arbitrarily) set values
for different passbands. The brightness decreases with an increasing number of photons within
the beam, allowing for negative values for very bright light [38]. Appendix A.6 presents the
zeropoints, sun’s magnitude, as well as the experimentally determined night sky brightness for
the UBVRI passbands [39, 40]. These experimentally found zeropoints and the definition of the
brightness make it impossible to recalculate the brightness for arbitrarily selected wavelengths.
Therefore, the aim to recalculate the brightness for λ = 850 nm, cannot be reached as initially
aimed.

5.2 Noise calculations

The aim of this thesis is to model the environmental photons emitted by the sun that reach the
receiver. Therefore, it is necessary to calculate the attenuation and scattering of sun rays within
the atmosphere. To find the results in photons per second, the total surface brightness must be
calculated. The following sections present all required parameters and input values, either taken
from Patat et al. [29] or calculated and adapted in this thesis.

5.2.1 Geometrical calculations

To determine the brightness at the receiver during twilight, specifically the sunlight scattered in
the atmosphere that reaches the receiver, we first need to explain and calculate the geometry of
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the setup. It is based on Figure A.1 from [29], which has been modified and is presented below
as Figure 5.5. This chapter follows the calculations of Patat et al. [29] and outlines the necessary
steps for this work. Table 5.1 provides an overview off all utilized values and parameters.

To determine the brightness of sunlight scattering into the receiver, it is necessary to find the
transmittance of the sun’s rays through the atmosphere. This transmittance depends on the den-
sity of scattering particles along the path of the beam. Since the density of scattering particles in
the atmosphere is not constant and decreases with height above sea level (asl), it is necessary to
determine the height above sea level (asl) for every point along the beam’s path, depending on
the angle of the field of view (FOV) α and the sun’s angular position ϕ.

Name Type description

R0 distance earth radius (6380km)
∆R distance assumed height of the atmosphere(400km)
α angle angle of the FOV in elation to the zenith/z-axis
ϕ angle angle distance of the sun’s position related to the horizon
hs distance height asl of the receivers position (small values necessary)
Q point Point, where sun ray enters atmosphere
H point point on path through atmosphere with minimum height als
P point point, where beam meets FOV/scatters in receiver
O point point of receiver
δ distance minimum height asl of beam / height als at point H. Minimum value is 0
l distance distance, which the scattered beam has to pass in the FOV from P to the receiver O
l0 distance minimum value of l, meaning distance from P0 to O
l1 distance maximum value of l
h0 distance height asl of the point P0
Q0 point Q at lowest possible beam path (where δ = 0)
P0 point P at lowest possible beam path (where δ = 0)
H0 point H at lowest possible beam path (where δ = 0)
q distance describes the position on the beam’s path through atmosphere.

It ranges from q = 0 (at Q) to q = QP (at P)
QH distance distance between the points Q and H
HP distance distance between the points H and P
QP distance distance between the points Q and P, is the sum of QH and HP
H0P0 distance distance between the points H0 and P0
HQP distance height asl at every point (dependent on q) on the beam’s path
θR angle scattering angle on the FOV, that scatters into the receiver

Table 5.1: Overview over all values, parameters, points, distances and angles, that are visualized
in Figure 5.5.

In Appendix A.2, detailed calculations and assumptions are explained similar to those in [29].
Using these, one can derive an expression for the height asl at every point along the atmospheric
path hQP(α, ϕ, q, l), denoted as:

hQP =
	

(QH − q)2 + (R0 + δ)2 − R0. (5.1)

It requires α and ϕ as inputs, along with the position along the path q, and l, which means a
specific height asl for the beam must be defined. These parameters contribute to Equation (5.1),
as δ and the distance QH depend on α, ϕ, and l.
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It is important to note that these calculations are valid, but are restricted by an upper bound for
|α|. |α| must be less than a maximum value which depends on ϕ. Furthermore, the calculations
are performed for ϕ ≥ 2◦, as for smaller values of ϕ, the calculations may diverge. The maximum
value αmax, for which reliable results can be found, is approximately 20◦ for ϕ = 2◦, increasing
to about |αmax| = 70◦ at ϕ = 10◦. The calculations, therefore, can be reliably used in ranges
α = [−20◦, 20◦] and ϕ = [2◦, 18◦].

Calculations for higher angles |α| remain to be completes and are briefly discussed in Appendix
A.2. However, we have calculated the geometry to also be valid for negative values of α.

Figure 5.5: Geometrical considerations adapted and adjusted from Figure A.1 of [29].
With the receiver at O at height hs asl, and the FOV rotated at angle α related to the zenith, the
figure illustrates the path of the incoming sun ray for a fixed angular distance ϕ of the sun beneath
the horizon. The beam enters the atmosphere at point Q and travels along q (the red line) to the
point P in the FOV, where it is scattered into the receiver at O. The length from P to the receiver is
referred to as l. Depending on ϕ and α, the height at which the beam crosses the atmosphere can
vary. Point H is where the beam reaches its minimum altitude while traversing the atmosphere.
This minimum altitude is denoted as δ and can vary from 0 to a certain maximum value. Q0,
H0 and P0 represent the positions of Q, H and P along the beams path at lowest possible height
(δ = 0). The distance from P0 to O is referred to as l0, while l1 describes the longest possible path
through the FOV. Thus, l0 and l1 denote the minimum and maximum values of l. Adapted from
[29].
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Some further parameters nee to be defined to obtain reasonable results for the calculations. As
discussed in Section 3, the wavelengths of interest are λ = 850 nm and λ = 1550 nm, as these two
wavelengths are commonly utilized for free-space quantum key distribution and therefore of high
interest for this study. For this work, λ = 850 nm was chosen.

The height above sea level of the receiver at O was arbitrarily set to hs = 800 m for all plots
showcased in this work.

5.2.2 The extinction cross section Cext(λ)

To calculate the extinction cross section theoretically, it is assumed to equal the Rayleigh scattering
cross section σ(λ) 9. The absorption coefficient is neglected here [23]. As discussed by A. Buchholtz
in 1995 [41], the total Rayleigh scattering cross section is given in cm2 as

σ(λ) =
24π3

λ4N2
s
·
�

n2
s − 1

n2
s + 2

�2
· Fk(λ). (5.2)

The variable λ is contained with a λ−4-dependency, which is characteristic of Rayleigh scattering
and is also given in cm. Ns is the molecular number density, which is Ns = 2.54743 · 1019 cm−3

for standard air. ns describes the refractive index of the air and is λ-dependent. Bucholtz [41]
presented an equation for wavelengths greater than 230 nm, called the “four-parameter formula”:

(ns − 1) · 108 =
5791817

238.0185 − λ−2 +
167909

57.362 − λ−2 . (5.3)

For λ = 850 nm, this yields ns = 1.00027. Note that Equation (5.3) takes the wavelength as input in
µm. The last factor Fk(λ) is called the King correction factor, and yields from the depolarization,
with ρn referring to the depolarization factor, as follows:

Fk(λ) =
6 + 3ρn

6 − 7ρn
. (5.4)

The λ-dependency arises from the fact that ρn is λ-dependent. In [41], one can also find a table for
the values of ρn, dependent on the wavelength. As no equations are presented to calculate ρn, this
value must be taken as an input for the utilized λ values. For standard air and λ = 850 nm, one
finds ρn = 0.0273. Since Fk(λ) ≈ 1, it does not have a severe impact and is not of greater interest for
this work. Due to this, it will not be investigated further and is assumed to be a input parameter.
After that, one can calculate the extinction cross section σ(λ = 850 nm) and finds that σ(λ =
850 nm) = 7.7004 · 10−28 cm2, which aligns with the values presented in [41].

Further investigation of the Rayleigh scattering cross section can be found in [42–45].

Calculation from the extinction coefficient κ(λ)

To confirm the above found results, another method to calculate the extinction cross section is
utilized. As Patat et al. suggested in [29], one can find the extinction cross section Cext(λ) by
utilizing the measured extinction coefficient κ(λ). With τz(λ) = 1.086κ(λ), one can use

τz(λ) = ρ0 · Cext(λ)
� ∆R

hs

ρ(h)
ρ0

dh (5.5)

9This can be done at least for N2 in the atmosphere, which is the main component of the earth’s atmosphere.
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to find Cext(λ). To find reasonable values for κ, a previous publication by Patat et al. [46] from 2003
was taken into account. One can find κ(λ = 800 nm) to be approximately 0.0025 magnitudes per air
mass [mag/airmass]10. Mag/airmass is a dimensionless unit that describes the loss of brightness
per air mass. Air mass is a measure for the amount of air along the beam’s path through the
atmosphere. It scales with the altitude angle, starting with 1 air mass at the zenith, 2 air masses at
30◦ and increasing up to approximately 38 air masses at the horizon.
With these values, one can find Cext(λ = 800 nm) = 7.996 · 10−32 m2, with an assumed height
asl of the ground station of hs = 800 m. ρ0 and ρ(λ) refer to the scattering particle density of
the atmosphere, which is further described in Section 5.2.3 [29]. The two found values for the
extinction cross section are approximately the same and therefore can be assumed to be correct
[39].

5.2.3 Atmospheric scattering particle density ρ(h)

The scattering particle density ρ(h) is given as the number of scattering particles per unit volume
element [m−3]. The density distribution of the scattering particles ρ is required as an input pa-
rameter for the calculation of the brightness from the sun that reaches the receiver. ρ(h) depends
on the height asl h and can be modeled with different assumptions.

Patat et al. [29] use the MSIS-E-90 Model presented by Hedin in 1991 [34], which is displayed in
Figure 5.6 (solid line). It can approximately be described by the power law, for altitudes greater
than 120 km. For altitudes of 120 km or lower, it can be assumed to follow an exponential curve [29].

Figure 5.6: Experimentally found, normalized scattering particle density of the atmosphere by
Hedin in 1991 [33]. Taken from [29].

For the calculations in this thesis, however, the distribution was assumed to follow a single

10Note that the ranges of wavelengths that were plotted only extend to 800 nm, but here κ(λ = 800 nm) = κ(λ = 850 nm)
is assumed.
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exponential function, which reads

ρ(h) = ρ0 · exp(−a · h). (5.6)

Here, ρ0 refers to the number of scattering particles per m3 above sea level, which equals Ns =

2.54743 · 1025 m−3, as utilized for the cross section calculations in Section 5.2.2. The constant a
was found by fitting to be a = 0.7555 · 10−4. It was calculated by investigating Figure 5.6, where
one can find, that the density, dependent on height asl, drops about 12 orders of magnitudes
over ∆R compared to ρ0 [29]. Hence, the chosen value for a provides the most realistic density
distribution. The visualization of the density distribution, along the path of the sun ray, utilized
in the calculations can be found in Appendix A.2.2.

Figure 5.7: Experimentally found atmospheric scattering particle density [29, 34] (blue line)
relative to the height above sea level h, scaled by the assumed fixed value for ρ0, compared to the
exponential density distribution chosen for the calculations in this thesis (orange line).

5.2.4 The scattering phase function Φ(θ)

In order to calculate the brightness, it is essential to introduce the scattering phase function Φ(θ).
As a parallel beam scatters at one fixed point, the scattering phase function describes the fraction,
or the intensity, of light scattered at an angle θ. As presented in [29], the normalization condition
for Φ(θ) �

4π
Φ(θ) dΩ = 1 (5.7)

must be satisfied. Due to said normalization condition, the unit of the scattering phase function
Φ(θ) is

�
1
sr

�
. Steradians (sr) is a unit of solid angle, with 4π sr describing the entire surface of the

sphere.
Patat et al. utilized Equation (5.7), which is based on the canonical expression for air molecules
[47], combined with Equation (5.8), which reads

Φ(θ) = 0.0607
�
1 + 0.9324 cos2(θ)

�
. (5.8)

This expression will also be utilized for the calculations in this thesis. Its distribution is visualized
in Figure 5.8 [29, 40].
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Figure 5.8: Scattering phase function Φ(θ), based on [29]. The red area highlights the range of
angles θ, that are relevant for scattering from the line of sight into the receiver.

By calculating values for θ relevant to the brightness calculations, one finds that for α = 0◦, θ
ranges between 92◦ to 110◦ for α = 0◦, corresponding to the red area in Figure 5.8.
Comparing the observed behavior of the graph in Figure 5.8 and the visualization of Rayleigh
scattering in Figure 3.3, one finds that these two figures consistent with one another.

5.2.5 Luminosity of the sun L0

The sun’s Luminosity L0 is a fundamental input parameter for the calculation of the total brightness
reaching the receiver. It is defined as the number of photons emitted per second per wavelength.
The required factor F0 for the brightness is related to the luminosity by

F0 =
L0

4πd2 , (5.9)

where d is the distance between the sun and the earth, meaning 1 astronomical unit (1AU) [29].
Attempting to calculate F0 from the black-body radiation of the sun, did not yield reasonable
results (see appendix A.3). Consequently, the calculation of F0 was performed, using the same
methodology as Patat et al. [29], following consultation with the author [40]. The reference
values for the magnitude scale, commonly utilized in astronomy, were also used to find F0. It
is important to note that these reference values only exist for specific passbands (the UBVRI
passbands), therefore the reference value for the I passband was used, since this is the one closest
to λ = 850nm. F0 is calculated as:

F0 = 10 ˆ (−0.4 (Msun −M0)), (5.10)

where M0 represents the photometric zero-point for the I passband, given as M0 = −12.70 in
[erg s−1 cm−2 µm−1]. The sun’s brightness for the passband of interest is Msun = −27.55 mag
(see Appendix A.6). Utilizing Equation (5.10) one finds that F0 = 8.709 · 105 erg/(cm2 sµm), with
1 erg= 100 nJ (nanojoule). The unit [cm−2] describes the area that is reached by the beam and µm
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in the denominator represents the bandwidth of the observed wavelength λ [29].

For further brightness calculations, said value for F0 is utilized. However, for comparison with
later noise results, it is useful to convert this to number of photons per second per cm2 per nm.
This conversion is performed as described in Section 5.2.7. For the I passband, the number of
photons emitted by the sun per second and nm is found to be F0(I) = 3.726 ·1014 (s cm2 nm)−1 [29].

5.2.6 Optical depth τ

The optical depth τ is another essential physical quantity that must be introduced. It is important
to note that this quantity is not derived in the same way as in [29]. The optical depth is a
dimensionless ratio of incoming light compared to the transmitted light through a medium, in
this case the atmosphere. We use the general definition of τ, given by

τ(z) =
� ∞

z
n(z) σa dz (5.11)

and can be found in [48]. It describes the integral over a path through a medium. In Equation
(5.11), this path dz is vertical and extends from z (a specific height asl) to infinity. Here, n(z)
represents the density distribution, which will be referred to as ρ(h) from now on. σa represents
the cross section, corresponding to Cext(λ), which was already introduced earlier in Section 5.2.2.
The optical depth τ is related to the transmittance by the expression

T = e−τ (5.12)

This relationship is dimensionless and lies within the range [0,1] [48].
In this work, it is necessary to calculate τ along its path through the atmosphere, which is not
vertical. Therefore, some modifications have to be made:
To find the total optical depth τΣ, one needs to integrate over the path dq or dl, starting from point
Q, following along q, passing through H and reaching point P. From there on, the path continues
along l to the receiver at O. It is useful to divide τΣ in sections and sum them afterwards. First,
one calculates τQH, meaning the optical depth along the path from Q to H. The second section
covers the path from H to P, represented by τHP, followed by the path within the FOV, described
by τOP. This leads to the following equations:

τQH(l) = Cext(λ)
� Q

H
ρ(hQP(l, q)) dq, (5.13)

τHP(l) = Cext(λ)
� H

P
ρ(hQP(l, q)) dq and (5.14)

τOP(l) = Cext(λ)
� P

O
ρ(hQP(l, q)) dl. (5.15)

Some important points should be highlighted regarding Equations (5.13) - (5.15):

• Implicit dependencies on the angles α and ϕ are not explicitly states, as the brightness
calculations are performed for fixed values of these angles.

• dq and dl represent the infinitesimal paths through the atmosphere, corresponding to the
sun ray’s path, defined as q and l in Section 5.2.1.
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• Since the extinction cross section Cext(λ) is assumed to be independent of the altitude, it can
be factored outside of the integral.

• All calculations for τ are made for one specific path, meaning it requires a fixed value for l
as input. This dependency is shown by writing τ(l).

• The density ρ depends on the altitude hQP, which in turn depends on l. As defined in
Equation (5.1), hQP is written here as ρ(hQP(l)).

• In this thesis, the results are obtained through numerical integration.

• The total optical depth τΣ(l) is computed as the sum of the optical depths for the three
segments as τΣ = τQH + τHP + τOP.

5.2.7 Calculating the total brightness

The primary goal of this thesis is to develop a model to describe the amount of noise present
in the channel during the distribution of polarized photons. The main contribution to noise in
QKD during twilight are unpolarized photons emitted by the sun. In order to characterize this
noise during twilight, one has to determine the so-called brightness at the receiver. Brightness
is measured in mag/arcsec2, representing magnitude per arcsecond (MPSAS). It is a logarithmic
unit representing brightness per unit of solid angle. One arcsecond equals 1/3600 degrees or
approximately 4.848µrad and 1 sr= 4.26 · 1010arcsec2, as already discussed in Section 5.1.3.

The detailed derivation of Equation (5.26) is provided in Appendix A.4 and follows the calculations
by Patat et al. [29]. It is derived from d f , which represents the number of photons received per
unit time, area, and wavelength.
By differentiating d f with respect to dΩ, which represents the solid angle, one obtains the surface
brightness db, describing the brightness emitted from an infinitesimal small volume 11 To calculate
the total brightness b that scatters into the receiver, an integration is performed over all possible
paths, resulting in the integration limits l0 and l1, as they represent the minimum and maximum
height asl of the incoming beam.

b = F0 Cext(λ)Φ(θ)
� l1

l0
ρ(h(l)) e− τΣ(l) dl (5.16)

yields the total surface brightness scattering into the receiver, as presented by Patat et al. [29].
With reasonable input values, it will be possible to calculate the number of photons from the
brightness [49].
It is worth noting, that the unit of b is [erg / (s cm2 µm sr)], with sr referring to steradians or square
radians, which is the unit for the solid angle. To convert this result to arcseconds squared, one has
to divide the initial result by 4.26 · 1010 [40].

Surface brightness: Unit conversions

Having found the total brightness reaching the receiver in [erg / (s cm2 µm arcsec2)], it must be
converted to [mag / arcsec2], in order to compare with the results from Patat et al. [29], using

B[mag/arcsec2] = −2.5 log10( b[erg / (s cm2 µm arcsec2)] + bnight ) + M0. (5.17)

11The volume depends on the height of the path, which is a function of l.
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bnight refers to the night sky brightness, which is an experimentally found value, that has to be
added, to get comparable results. It is defined as

bnight = 10ˆ( 0.4 ( M0 − Mnight)), (5.18)

with Mnight = 19.7.
In order to do so, one has to assume that the values for the I-passband (λ = 798 nm) also apply for
λ = 850 nm, as was already done for F0 [50, 51].

5.2.8 Calculating the number of photons reaching the receiver

For the calculation of noise in the channel, however, the results must be found in photons per
second. Therefore, the following adjustments were made as part of this thesis. To convert the
brightness from energy to the number of photons [( s cm2 nm arcsec2)−1], the following equation
is used:

b[(s cm2 nm arcsec2)−1] =
10−7 · 10−3

Ephoton(λ)
· b[erg / (s cm2 µm arcsec2)], (5.19)

with
Ephoton(λ) =

hc
λ

(5.20)

describing the energy of a photon at wavelength λ. In order to later calculate the resulting noise,
the number of photons reaching the receiver must be determined in [s−1], requiring the removal
of the units [cm2 nm arcsec2].
To achieve this, further assumptions are necessary. One should note that the following assump-
tions are made to approximate the achievable key generation rates in Section 7,and are thus
approximations, not exact calculations.
First, the angle α is fixed at α = 0 for the following calculations, to simplify understanding. The
geometrical visualization of the following calculations is shown in Figure 5.9.
The calculations in previous chapters account for the scattering phase function Φ(θ), which intro-
duces the unit [sr−1]. To eliminate the dependency on the solid angle, Φ(θ) from Equation (5.8)
must be integrated over all angles that reach the receiver, as 12

�
Φ(θ) dΩ =

�
Φ(θ) sin(θ) dθ dϕ = ∆ϕ

�
Φ(θ) sin(θ)dθ (5.21)

= ∆ϕ · 0.0607
�

cosθ + 0.9324 · 1
3

cos3 θ
����θ+∆θ
θ−∆θ. (5.22)

Since Φ(θ) is independent of the angle ϕ,it appears only occurs as a multiplication factor in the
equations. Next, one needs to determine the integration limits for the angle θ. The opening
angle ∆θ must be calculated for each scattering point during the integration over dl from l0 to
l1 in Equation (5.26), as it depends on the distance from the scattering point to the receiver. As
a first approximation, we assume that a fixed opening angle ∆θ can be calculated for a specific
angular position ϕ of the sun. To achieve this, we calculate the average lmiddle of the minimum l0
and maximum value l1 for the given angle ϕ, and use it to compute the opening angle

∆θ = tan(
ra

lmiddle
) = tan(

2 ra

l0 + l1
). (5.23)

12This is valid due to the normalization of the scattering phase function
�

4π Φ(θ) dΩ = 1.
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Figure 5.9: Visualization of the sun beam’s path through the atmosphere, including its scattering
at point lmiddle at an angle θ into the receiver at 0 with the radius ra, taking into account the
introduced approximations.

This leads to the integration limits θ − ∆θ and θ + ∆θ, where θ is the same angle was used in the
previous section forΦ(θ). SinceΦ(θ) is independent of ϕ, we only need to determine∆ϕ, meaning
the range of ϕ. This can be calculated as ∆ϕ = 2∆θ and therefore

b = F0 Cext(λ)∆ϕ
� θ+∆θ

θ−∆θ
Φ(θ) sin(θ) dθ

� l1

l0
ρ(h(l)) e− τΣ(l) dl, (5.24)

which yields b in units of [erg/(s cm2 µm)]. This can be converted analog to Equation (5.19), to the
units [( s cm2 nm)−1]. Additionally, we need to define a bandwidth for ∆λ for the wavelength λ
and multiply it by b. The final unit that requires conversion is [1/cm2]. This is necessary because
we assume that the field of view can be represented as a line, corresponding to the line of sight. In
reality, we would need to integrate over a volume rather than just a length dl in Equation (5.26). To
accurately account for the field of view, we would need to integrate over the cone that describing
it. As a simplifying assumption, we consider the field of view to always align with the area of the
receiver. This area can be expressed as

Areceiver = π · r2
a , (5.25)

which, due to its independence of the distance z, can be multiplied as a factor to b.
Taking all of this into account, we can derive a new equation for the number of photons per second
reaching the receiver:

b[s−1] =
10−7 · 10−3

Ephoton(λ)
Areceiver ∆λ · F0 Cext(λ) · ∆ϕ

� θ+∆θ

θ−∆θ
Φ(θ) sin(θ) dθ

� l1

l0
ρ(h(l)) e− τΣ(l) dl. (5.26)
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6 Results and outcomes

In this section, the results, outcomes and plots are discussed, comparing them to expected values
to verify consistency.

6.1 The total surface brightness

In order to find results for the total surface brightness dependent on the sun’s angular position,
the transmittance of the atmosphere for different positions of the sun was plotted in Figure 6.1.
In this graph, the x-axis refers to the height above sea level, where the sun’s rays cross the FOV
(which happens at point l). Therefore, Figure 6.1 showcases the transmittance of the sunbeam
related to the height of its path within the atmosphere.

The transmittance is zero for values of l lower than l0(ϕ). Starting at said minimum value l0(ϕ), the
transmittance increases rapidly to approximately one, meaning absorption is negligible for high
values of l. Depending on ϕ, meaning the sun’s position, the height at which the transmittance
starts to grow changes significantly. This observation can be found to be reasonable, considering
the geometrical setup of the simulation.

Figure 6.1: Transmittance on the entire path of the sunbeam, related to its height, with α = 0◦,
for different angles ϕ. The x-axis shows the height at which the beam crosses the line of sight l.
One can observe the transmittance to rapidly increase with increasing height of the path in the
atmosphere.

From the transmittance in the atmosphere, the total surface brightness was calculated and shown
in Figure 6.2. It is plotted against the different angles ϕ and the brightness is given in magnitudes
per arcsecond squared. These units are not practical to estimate the noise in the receiver but can
be utilized to compare the results to the results found by Patat et al. [29]. When comparing the
figures, it is important to point out that the definition of the sun’s angular position ϕ differs. In
this thesis, ϕ corresponds to degrees below the horizon, while Patat et al. [29] define it as the angle
related to the zenith. To properly compare these figures, 90◦ must be added to the ϕ utilized in
this thesis. Additionally, it has to be pointed out, that the lowest calculated angle is ϕ = 2◦, since
lower values of ϕ lead to numerical errors in the calculation.

38



One can observe the trajectory of the curve to be approximately constant until ϕ = 6◦, where it
starts to decline, until it reaches its minimum at approximately ϕ = 14◦. For all of the following
figures, the experimentally measured night sky brightness was added. Without that, the bright-
ness would drop to zero for angles ϕ, for which no path through the atmosphere to the receiver
is possible anymore. The same figure without the night sky brightness can be found in Appendix
A.4. It can be concluded that for twilight stages ϕ ≥ 14◦, the experimentally found night sky
brightness is greater than the calculated brightness from single scattering events.

If one compares the results for different values ofα, the differences between the curves are minimal.
Especially for ϕ ≤ 8◦, almost no difference can be observed. For greater values of ϕ, it can be
seen that for negative α, meaning the line of sight points away from the sun, the b decreases faster
toward the night sky brightness. Since a line of sight pointing away from the sun’s direction
should yield fewer photons in the receiver, this observation aligns with the expectations and is
therefore reasonable.

Figure 6.2: Total surface brightness b, in magnitudes per arcsecond squared for different angles α.
The experimentally measured night sky brightness in included in this graph. The blue, dashed,
vertical lines mark the end of civil, nautical and astronomical night.

In Figure 6.3, the calculated number of solar photons in [(s cm2 µm arcsec2)−1] is presented. Over-
all, this result aligns with expectations. However, for the curve with α = −10◦, a slight increase
in photon count is observed as ϕ increases. This outcome deviates from the expectations but
can be explained by the assumption made. Only single scattering events were considered, and
all scattering was modeled using the scattering phase function Φ(θ), with the scattering angle θ.
The scattering phase function is proportional to (1 + cos2 θ) (see Figure 5.8), with a minimum at
θ = 90◦. In the assumed geometrical setup, θ ranges from 92◦ to 110◦ and increases with ϕ. This
results in an increasing scattering phase function. As for low values of ϕ most other parameters
are approximately constant, the effect of Φ becomes more apparent in this range. If additional
effects, such as multiple-scattering events, were included, this increase would not be expected.

Another interesting observation is that after an almost constant behavior, the number of pho-
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tons drops sharply at ϕ ≈ 5◦, until it reaches its minimum, corresponding to the added night
sky brightness at ϕ ≈ 11◦. This suggests that the twilight brightness remains relatively constant
during civil and astronomical twilight, but changes significantly during the nautical twilight stage.

Figure 6.3: Photons per second cm2, nm and arcsec2, calculated from the total surface brightness
b for different angles α. The blue dashed vertical lines indicate the end of civil, nautical, and
astronomical night. It can be observed that for low angles of ϕ, the number of photons appears to
increase for α ≤ 0. This observation results from the assumption that only single scattering and
Rayleigh scattering, was taken into account.

As explained in Section 5.2.8, the expected number of photons reaching a receiver per second was
calculated and is presented in Figure 6.4. As before, one can observe the approximately constant
curve initially, where roughly 105 photons per second reach the receiver. During the subsequent
twilight stages, this value decreases by six orders of magnitude until it reaches the constant night
sky brightness.
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Figure 6.4: Number of photons per second reaching a realistic receiver for practical values. A
bandwidth of ∆λ = 3 nm was chosen for the wavelength, and the radius of the receiver aperture
is selected to be ra = 50 cm. All necessary assumptions for this calculation can be found in Section
5.2.8.

6.2 Comparison of results to experimental data and literature

When comparing Figure 6.2 with the I-passband in Figure 5.1, one finds that the general dis-
tribution appears similar. Yet, some differences in the brightness behavior occur that require
further examination 13. Both curves are in the same range of brightness values, ranging from
b ≈ 9 mag/arcsec2 to ≈20 mag/arcsec2. The constant behavior during civil twilight was not ex-
pected and thus has to be compared to experimental data and other models. In the calculated
behavior for the I-passband by Patat et al. [29] does not exhibit this constancy, however, a reliable
comparison is not possible, as the curve is only presented in the range of 4.5◦ to 20◦ below the
horizon. Comparing the curves in this range is therefore not feasible.

As the calculations done in this thesis are based on the model by Patat et al. [29], the brightness is
expected to reach night sky brightness at ϕ ≈ 10◦. In contrast, the brightness found in this study
reaches this value at ϕ ≈ 14◦. Despite extensive efforts, this disagreement cannot be explained.
Overall, it can be observed that the curve obtained this thesis is less steep than one anticipated.
Figure 6.2 is in better agreement with the experimentally determined brightness by Patat et al. in
Figure 5.1 than with the calculated brightness, even though the same assumptions were made.
It can be concluded that the observed twilight brightness qualitatively aligns with expectations,
although some differences remain unexplained.

To validate the simulated results, it is beneficial to compare them with data from other sources. To
determine whether the order of magnitude by which the number of photons per second decreases
during twilight is reasonable, Figure 6.4 was compared to Figure 5.3 by Barentine et al. [35] 14.

13Note that the angle ϕ is defined differently, as explained in Section 6.1.
14Barentine et al. used the same definition for ϕ as in this thesis, but with a sign change, meaning negative values for

ϕ refer to twilight and night, while positive values refer to daylight.
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In the latter figure the illuminance and its decrease during twilight are showcased in lux. Lux is
defined as lumen per m2, and lumen is defined as (cd · sr) with cd representing candela and sr
referring to steradians [38]. As the aim of this section is to compare only the order of the decrease,
the data can be directly compared without converting the units. In both figures, the number of
photons is presented on a logarithmic scale, enabling a direct comparison of the two figures.

The first observation that can be made is that the constant behavior in early twilight stages, as
previously noted, does not align with experimental findings. Furthermore, it can be observed that
the brightness begins to decrease even before sunset, rapidly declining during civil and nautical
twilight until it reaches the constant night sky brightness.

In Figure 5.3, one can see that the illuminance decreases from sunset to the end of astronomical
twilight by about seven orders of magnitude [35]. Comparing that to the calculated plot for
the number of photons per second, one can observe a decrease by approximately six orders of
magnitude. There is only a difference of one order of magnitude, which is remarkable considering
all assumptions and simplifications made in these calculations. Hence, one can conclude that the
found results are considerably reasonable.
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7 Simulation of key-rates for the BB84 decoy-state protocol

In order to gain a clearer understanding of the impact of the calculated results, it is helpful
to calculate the key generation rate for different setups. To achieve this, the Decoy-state BB84
protocol, which employs two decoys: one with zero intensity and the other with non-zero intensity,
was selected. The key generation rate calculation was computed following the methodology of
Ma et al. [52]. However, this methodology presents key rates for fiber-based QKD channels.
In order to obtain accurate results for free-space satellite QKD, the transmission efficiency was
adjusted. Instead of the exponential decrease, which is typical for fiber, the loss calculations from
Section 4 were employed.

7.1 Calculating the key generation rate for fiber-based QKD

To establish the lower bound of the key generation rate calculation, the expression

R ≥ qQµ { −H2(Eµ) + (1 − ∆) [1 −H2(
Eµ

1 − ∆ )]} (7.1)

from Ma et al. [52] was utilized, where q = 1
2 for all BB84 protocols and H2(x) is defined as

H2(x) = − x log2(x) − (1 − x) log2(1 − x), (7.2)

representing the binary Shannon information function [12]. Qµ refers to the gain of the signal
states as

Qµ =
∞�

i=0

Yi
µi

i!
e−µ = Y0 + 1 − e−µη, (7.3)

and µ denotes the intensity of the signal states. Eµ describes the overall QBER.∆ is upper bounded
by Wand [53] by the expression

∆ ≤ µ

ν − µ
�µe−µQν
νe−νQµ

− 1
�
+
µe−µ Y0

νQµ
, (7.4)

and depends on µ, the intensity of the non-zero decoy signal ν, as well as Qµ and Y0, which refers
to the background yield [52]. The background yield consists of dark counts in the detector and
other photons reaching the receiver. Y0 denotes the number of counts in the detector when the
source is shut down [54].
To find the required overall gain Qµ, it is necessary to determine η, the overall transmission and
detection efficiency. Equation (7.3) shows the Poisson distribution of the number of photons sent
in the weak coherent pulse. The overall transmission η is given by the product of the channel
transmittance tAB and the attenuation within Bob’s receiver ηBob. The transmission efficiency

tAB = 10−αz/10 with α in [dB/km] (7.5)

demonstrates the typical exponential decrease over the link distance for fiber-based QKD. z again
denotes the link distance. For free-space applications, said transmission must be determined
differently.

The total QBER can be expressed as
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EµQµ =
∞�

i=0

eiYi
µi

i!
e−µ = e0Y0 + edetector(1 − e−µη), (7.6)

with e0 referring to the error in the vacuum. As these erroneous clicks happen at random, it can
be concluded that e0 =

1
2 .

For the protocol with two decoy states, consisting of one vacuum state and the other a weak decoy
state ν, specifically where µ > ν.
To calculate the key rate R, additional parameters must be defined. The attenuation value α, the
two intensities µ and ν, the background counts Y0, the detection efficiency of Bob ηBob, as well as
the number of erroneous clicks in the detector edetector.
When choosing the same values as Ma et al. [52], one finds the key generation rate to disappear
at approximately 140 km link distance. These are reasonable values for fiber channels, but are
anticipated to be significantly higher for free-space QKD [52].

W0 Beam width at link distance z = 0 8 cm
q Fixed for BB84 always: 1/2
µ Signal state intensity 0.48
ν Decoy state intensity 0.05
e0 Background error rate (uncorrelated) 1/2

eDetector Probability that a signal photon produces erroneous click 0.03
ηBob Detector efficiency at Bob 0.85
Ra Radius of the detection aperture 50 cm

Y0 Background detection probability 1.7 · 10−6

f Frequency of the pulses 2 MHz
∆τ/∆T Duty cycle 0.1

Table 7.1: Fixed input values used in the simulations. Some values were later varied to enhance
the understanding of the behavior of the key generation rate R. Unless explicitly stated otherwise,
the values above are utilized [52, 54]

7.2 Including noise induced by environmental photons from the sun during
different twilight stages

In this section, the calculated key generation rates by Ma et al. [52] are adapted, while the subse-
quent calculations and analysis of noise have been developed as part of this thesis.
In order to demonstrate the impact of noise in the channel, the key generation rates will be plotted
against the loss in dB, instead of the distance. This makes it possible to present the impact of noise
without investigating loss contributions, which will be done in the next section.

To assess the impact of environmental photons from the sun on the noise in the channel, it is
necessary to modify Y0, as it refers to the background counts. This includes both the dark counts
in the receiver and additional photons that may reach the detector.

The background yield Y0 is the probability that a photon event is detected, although the source
is shut down, meaning only vacuum states are sent. To account for the dark counts within the
detector, we adopt an initial value for Y0 of 1.7 · 10−6, consistent with the findings of Ma et al. [52].
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To find the background yield, including solar photons, we add this component to Y0. In Figure 6.4,
the number of photons from the sun reaching the receiver for a realistic receiver depending on the
sun’s angular position ϕ is illustrated. Said figure was derived by using Equation (5.26) for b(ϕ) in
[s−1] 15, which we now employ as input to determine Equation (7.7) as follows. First, we consider
the probability that a photon from the sun is measured, although a vacuum state was sent, by
calculating the relation between the number of environmental photons per second reaching the
receiver and the pulse frequency f . This relation must be multiplied by the receiver’s efficiency
ηBob and the so-called duty cycle. This duty cycle refers to the fact that with an aligned receiver
and source, the receiver is not detecting all the time, but only during the designated detection
time ∆τ. This leads to shorter intervals in which environmental photons are effectively measured,
thus reducing their contribution to the noise in the channel. Mitigating the noise contribution by
reducing ∆τ to negligible levels is impossible due to the timing jitter [54]. To calculate the duty
cycle, one must divide ∆τ by the period time ∆T of one pulse, which corresponds to the inverse of
the frequency f . For the calculations in this thesis, the ratio ∆τ/∆T = ∆τ · f is selected to be either
0.1 or 1.
The preceding calculations result in Y∗0 being

Y∗0(ϕ) = Y0 +
b(ϕ)

f
· ηBob · ∆τ

∆T
. (7.7)

Unless explicitly states otherwise, all parameters used in the calculations were selected as in Table
7.1.

7.3 Calculating the key generation rate for loss contributions

Once the noise contributions from the sun are included, it becomes important to include some
contributions to the loss in the channel. In Section 4, the beam spread loss is calculated from
the paraxial wave Equation [23]. The geometric efficiency ηgeom(z, ra) describes the amount of the
transmitted beam that reaches the receiver. In other words, it refers to the channel transmittance,
assuming that beam spread loss is the only contribution to loss within the channel. Although
atmospheric attenuation, turbulence or clouds are neglected, it yields a first impression of the im-
pact of loss and noise on the channel. Therefore, it has to be noted that said model underestimates
loss and thus results in longer link distances at which positive key rates can be achieved.

To apply the key generation rate calculations from Section 7.1, we alter the overall transmission η.
It can be argued that all other parameters and assumptions do not rely on the channel, meaning
fiber or free-space channels, hence can also be applied for our purposes. However, or the overall
transmission for fiber channels

η = tAB · ηBob, (7.8)

the channel transmittance tAB has to be replaced by ηgeom(z, ra) as described in Equation (4.19),
yielding the free-space transmission

ηFS = ηgeom(z, ra) · ηBob. (7.9)

To enhance clarity, the geometric efficiency ηgeom(ra, z) is converted to loss in [dB] as

15Note that the satellite was assumed to be at zenith (α = 0◦).
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Loss[dB] = −10 log10

�
ηgeom(ra, z)

�
, (7.10)

and is illustrated in Figure 7.1.

Figure 7.1: Beam spread loss ηgeom(z, ra) as a function of the link distance z in [dB] with W0 = 8 cm,
obscuration ratio γ = rmin/ra = 0.5 and detection efficiency ηBob = 0.85. Its high values for low
distances results from the secondary mirror obscuring the center of the receiver as explained in
Section 4. The vertical dashed line shows the minimum loss at zmin = 151.95 km.

When investigating said figure, it can be seen, that at z = 151.95 km, the beam spread loss is at
its minimum. The high loss values for low z result from the obscuration due to the secondary
mirror in the center of the telescope as described in Section 4. Since the minimum distance of a
LEO satellite, to the ground station, is approximately 400 km [21], the key rates can reasonably be
investigated for link distances z ≥ 152 km.

In the experiment by Liao et al. [14], the diffraction loss was assumed to be 22 dB at a link distance
of 1200 km, which corresponds to the maximum. Comparing this value to the computed beam
spread loss, it is found to be approximately 17.2 dB at 1200 km. This indicates an underestimation
of the loss, however, it can be considered reasonable since not all diffraction loss was taken into
account.

7.4 Key generation rate: results and comparison

In this section, the results and calculated key generation rates will be discussed.

As previously mentioned, before presenting the results, it is necessary to mention that all calculated
maximum distances to extract positive key rates are overestimated, as only limited contributions
to loss and noise were considered. Only one contribution to loss was assumed, as well as only
solar photons and the night sky brightness were considered for the noise estimation. Further
contributions to loss and noise that were not included, are for example atmospheric turbulence,
city light, fog and many more.
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Additionally, the underestimation of the sun’s photons in the receiver, due to neglecting multiple-
scattering events, leads to an additional underestimation of background noise and thus an over-
estimation of the key generation rate.
However, with that in mind, it is still valuable to investigate the calculated key rates to gain a
better understanding of the general behavior.

7.4.1 Key generation rate: Results

Figures 7.2- 7.5 showcase the lower bound for the key generation rate per pulse R, for different
values of the background noise Y0. The various lines represent the key rates for different noise
values as calculated in Equation (7.7). The blue line (Y0 = 0) shows the key generation rate
without any noise contributions. As they decrease exponentially, they consistently yield positive
key rates, as expected. When background noise is added, it can be observed that R becomes ≤ 0
at some point. Y0(ϕ = 2◦) refers to the background counts within the receiver, which include
photons from the sun when the sun’s angular position is ϕ = 2◦ below the horizon. As expected,
higher values ofϕ correspond to longer distances over which positive key rates can be maintained.

Figure 7.2 presents the key generations rates per pulse for a pulse frequency f = 2 MHz (as in
[52]) and a duty cycle of ∆τ/∆T = 0.1. The maximum distances for successful key distribution,
which represents the cutoff points, can be found in the range of 8 to 42 dB for ϕ = 2◦ TO 18◦. For
comparison, the noise values Y0 used in Figure 7.2 are showcased in Table 7.2.

In all figures, it can be seen that the night sky brightness contribution to noise leads to a maxi-
mum loss for positive key rates of approximately 42 dB, assuming a detector dark count yield of
Y0 = 1.7 · 10−6. For the different selected frequencies and duty cycles, this value does not change
significantly. As for angles ϕ ≥ 14◦ the night sky brightness exceeds the solar photons, the key
generation rates for said angles, roughly align with the values for the night sky brightness.
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Figure 7.2: Key generation rate per pulse with frequency f = 2 MHz and duty cycle ∆τ/∆T = 0.1
for different noise due to solar photons Y∗0(ϕ), for different sun’s angular positions ϕ, plotted
against the loss in [dB]. One can observe the key rate threshold declining for increasing background
noise.

ϕ Y0(ϕ) b(ϕ) [s−1]
2◦ 4.21633752 · 10−3 9.91679417 · 104

3◦ 4.11788543 · 10−3 9.68514218 · 104

4◦ 3.97887486 · 10−3 9.35805849 · 104

5◦ 3.68066632 · 10−3 8.65639133 · 104

6◦ 2.79306922 · 10−3 6.56792758 · 104

7◦ 1.46922791 · 10−3 3.45300684 · 104

8◦ 5.39639024 · 10−4 1.26573888 · 104

9◦ 1.51849511 · 10−4 3.53292967 · 103

10◦ 3.57631737 · 10−5 8.01486441 · 102

11◦ 8.16925204 · 10−6 1.52217695 · 102

12◦ 2.74060527 · 10−6 2.44848299 · 101

13◦ 1.84496151 · 10−6 3.41085913 · 100

14◦ 1.72071660 · 10−6 4.87449418 · 10−1

15◦ 1.70623698 · 10−6 4.87449418 · 10−1

16◦ 1.70482223 · 10−6 1.13464249 · 10−1

17◦ 1.70470665 · 10−6 1.10744728 · 10−1

18◦ 1.70469878 · 10−6 1.10559555 · 10−1

Table 7.2: Background yield Y0 and photons per second reaching the receiver b(ϕ) for λ = 850 nm,
f = 2 MHz and duty cycle ∆τ/∆T = 0.1 for different sun’s angular positions ϕ, along with the
assumed background detector noise Y0 = 1.7 · 10−6. The corresponding key generation rates are
shown in Figure 7.2.

When comparing the key rates for different background noise values in Figure 7.2 to the previ-
ously calculated twilight sky brightness, one can observe the same rapid change in the brightness,
respectively solar photon noise. The key rate cutoff varies by 3 dB for ϕ = [2◦, 6◦] before increas-
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ing from approximately 10 dB to nearly 35 dB in the range ϕ = [6◦, 12◦]. During the subsequent
astronomical twilight, only marginal changes in the key rate cutoff can be observed.

In order to gain a better understanding of the impact of the different parameters, the duty cycle
was set to = 0 in Figure 7.3. Compared to the previous figure, one finds a drastic decline in the loss
threshold. For values ofϕ lower than 6◦, key generation cannot be achieved at all. For Y0(ϕ), where
positive key rates can be achieved, the key rate cutoff points are significantly worse than for a
duty cycle of 0.1. Consequently, one observes a severe impact of the measuring time of the receiver.

Figure 7.3: Key generation rate per pulse with frequency f = 2 MHz and duty cycle∆τ/∆T = 1 for
different noise due to solar photons Y∗0(ϕ), for different sun’s angular positions ϕ, plotted against
the loss in [dB].

Additionally, the pulse frequency f can be varied. For the Figures 7.4 and 7.5, the frequency was
increased to f = 1 GHz, leading to two key observations. First, the key rate threshold increases
significantly compared to the previously utilized pulse frequency. Second, the impact of the sun’s
position declines, with all cutoff points now found in the range of 26 dB up to 43 dB for a duty
cycle of ∆τ/∆T = 1 (Figure 7.4). Said figure also suggests that even for angles just below the
horizon, positive key rates may be obtained for loss up to 26 dB, which is not expected for realistic
implementations. Thus, one can conclude that for f = 1 GHz, the key generation rate is signifi-
cantly overestimated in these results.

Reducing the duty cycle to ∆τ/∆T = 0.1, while keeping the frequency f = 1 GHz, it can be noticed
that the key generation rates R improve further. The impact of solar photons diminishes even
more. It can be stated that Figure 7.5 does not yield reasonable outcomes for free-space satellite
QKD.
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Figure 7.4: Key generation rate per pulse with frequency f = 1 GHz and duty cycle ∆τ/∆T = 1 for
different noise due to solar photons Y∗0(ϕ), for different sun’s angular positions ϕ, plotted against
the loss in [dB].

Figure 7.5: Key generation rate per pulse with frequency f = 1 GHz and duty cycle ∆τ/∆T = 0.1
for different noise due to solar photons Y∗0(ϕ), for different sun’s angular positions ϕ, plotted
against the loss in [dB].
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It can be concluded that the qualitative behavior of the key generation rate per pulse is plausible.
However, the results vary depending on the input parameters, some calculated results may not
be reasonable and realistic results.

7.4.2 Key generation rate: Results for free-space Sat-QKD including beam spread loss

In this section, the calculations for loss and noise are combined and integrated. The same key
generation rates for different twilight stages as in Section 7.4.1 are now displayed in relation to
the link distance z, calculated in Section 7.3.

To interpret the figures, it is useful to recall prior results. The beam spread loss was calculated
with a maximum link distance of 5000 km. The loss at that distance z is calculated to be about
30 dB. Therefore, the key rate cutoff points over 30 dB are not shown in the following plots.

Since the secondary mirror is obscuring the center of the receiver (see Section 4 obscuration ratio),
the loss is decreasing in the range from 0 to 151 km. To obtain reasonable results, this range was
excluded in these figures. Given that the minimum distance between the satellite and the receiver
is 400 km, this assumption is valid.

Figure 7.6: Key generation rate per pulse related to the link distance z in km, at a frequency of
f = 2 MHz and a duty cycle ∆τ/∆T = 1, with varying noise contributions from solar photons
Y∗0(ϕ) at for different solar angular positions ϕ.

Figure 7.6 displays the key rate cutoff points as a function of the link distance for f = 2 MHz and
∆τ/∆T = 1. For ϕ = 7◦ and 8◦, no key distribution can be achieved for any LEO satellite overpass,
since their cutoff points are at z ≈ 172 km and 383 km respectively, both of which are lower than
the minimum link distance of a LEO satellite. For higher values of ϕ, the key rate threshold also
increases markedly, with possible link distances exceeding the observed range for ϕ ≤ 12◦. With
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said parameters and solar photons noise Y0(ϕ = 18◦), the cutoff point would be nearly 19 000 km,
which is drastically overestimated. Also, it is important to note that this calculated was made
with parameters that yield the lowest key generations rates.

Figure 7.7: Key generation rate per pulse related to the link distance z in km, at a frequency of
f = 2 MHz and a duty cycle ∆τ/∆T = 0.1, with varying noise contributions from solar photons
Y∗0(ϕ) at for different solar angular positions ϕ.

When adjusting the duty cycle to be 0.1, it is clear that during a typical overpass of a LEO satellite,
key distribution can be achieved for the entire duration of the overpass for ϕ ≤ 10◦, given that
the maximum link distance z of a LEO satellite overpass is about 3000 km. For ϕ = [2◦, 9◦], key
generation can be achieved up to a certain distance in the range of a satellite overpass.
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Figure 7.8: Key generation rate per pulse related to the link distance z in km, at a frequency of
f = 1 GHz and a duty cycle∆τ/∆T = 1, with varying noise contributions from solar photons Y∗0(ϕ)
at for different solar angular positions ϕ.

Increasing the frequency to f = 1 GHz, with ∆τ/∆T = 0.1, leads to maximum key distribution
distances z exceeding 3000 km across all investigated values of ϕ. Thus, it can be concluded that
the simulation with said parameters does not adequately represent the key generation rates per
pulse for the free-space satellite QKD decoy-state protocol.
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8 Conclusion and outlook

This thesis aimed to model loss and noise in satellite free-space quantum key distribution during
twilight stages and their impact on achievable key generation rates.

A basis for the following calculations was developed by successfully reproducing an already ex-
isting model to describe the twilight sky brightness. Even though results show small deviations
from the existing model, they align well with experimental data. For the purpose of extending
the model to describe solar photons per second reaching a realistic receiver in a downlink setup,
further calculations were necessary.

Neglecting various other loss contributions, the beam spread loss in free-space satellite QKD was
simulated as a representative example. The performed simulations provide a sufficient basis for
calculating key generation rates, related to the impact of loss and noise on the channel.

To estimate the key generation rates for different twilight stages, a decoy-state BB84 protocol was
taken into account. The protocol was adapted to apply to free-space QKD instead of fiber. We
included the results found in the previous solar photon noise calculations and obtained reasonable
key generation rates for different twilight stages.

Investigating the outcomes, the key rate cutoffs appear to be accurate and align with initial expec-
tations. Furthermore, the choice of the pulse frequency and the duty cycle were found to severely
impact achievable key rates. Comparing the data to key rates obtained in free-space experiments
conducted at night, one can conclude that the model overestimates the key rate values. This stems
from the underestimation of loss and noise in the previous simulations.

To mitigate the resulting overestimation, including multiple-scattering events in the solar photon
noise calculations is advantageous. An interesting improvement is the generalization to a three-
dimensional geometrical model, to enable an accurate description of a LEO satellite’s overpass.

Conclusively, the simulated model developed in this thesis can be considered an accurate basis
for describing loss and solar photon noise in free-space quantum key distribution during twilight
stages.
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A Appendix

Additional information, details, and figures are presented below.

A.1 The Gaussian beam - The paraxial approximation

In Section 4.1, the calculation of the Gaussian beam by Andrews et al. [23] is presented. It employs
the paraxial approximation, which is explained in the following.

Figure A.1: Geometric visualization of the paraxial approximation, with the source of the beam at
0 and z denoting the link distance. Taken from [23].

It assumes that the longitudinal propagation distance z is much larger than transverse distance
|r− s|. In this calculation s refers to the transverse distance to the optical axis at link distance z = 0,
as visualized in Figure A.1. R and S correspond to two points in space, with r and s being the
transverse components of these points with

|R − S| = (z2 + |r − s|2)1/2 = z
�
1 +
|r − s|2

z2

�1/2
. (A.1)

As one assumes z << |r − s|, Equation (A.2) can be developed in a Taylor series to be

|R − S| = z +
|r − s|2

2z
+ ... (A.2)

The paraxial approximation now is only taking into account the first two terms in the above
equation. To employ the approximation, one must simplify Equation (4.3) with U0(r, z) = V(r, z)eikz

to

1
r
∂
∂r

�
r
∂V
∂r

�
+
∂2V
∂z2 + 2ik

∂V
∂z
= 0 (A.3)

and finds ���∂2V
∂z2

���≪ ���2k
∂V
∂z

��� and
���∂2V
∂z2

���≪ ���1
r
∂
∂r

�
r
∂V
∂r

����. (A.4)

Therefore, it can be argued that with ∂2V
∂z2 = 0, Equation (A.3) results in

1
r
∂
∂r

�
r
∂V
∂r

�
+ 2ik

∂V
∂z
= 0, (A.5)

which corresponds to Equation (4.4) [23].
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A.2 Geometric calculations

Below the geometrical calculations to find hQP shown in Equation (5.1) are presented in more
details.
As illustrated in Figure 5.5, one assumes an optical receiver located at O, at height above sea level
hs. hs is restricted to be < 3 km, to maintain the applied assumption that the horizon is a flat line
through O. The field of view (FOV) is assumed to be the line of sight (LOS), meaning the opening
angle of the FOV is 0◦. The position of the sun is described by the angle ϕ, with ϕ = 0 representing
the sun at the horizon, corresponding to the sun being an angle of 90◦ related to the zenith. The
range of the sun’s angular position ϕ investigated by Patat et al. [29] expands from 4◦ to 22◦. The
range of interest for this thesis is 2◦ to 18◦. The geometrical calculations are not restricted to said
range, however, are not investigated for exceeding values of ϕ.
The direction of the line of sight is defined by α, which denotes the angle of the LOS related to the
zenith. Positive angles of α point in the direction of the sun, negative values point in the opposite
direction. In the paper by Patat et al. [29] only positive values were discussed.

Additionally, it should be noted that due to geometrical calculations the simulation does not
apply to arbitrary values of α, but is restricted to a maximum angle of |αmax|, depending on ϕ. Said
maximum angle is found in the range of approximately 20◦ for small values of ϕ to |αmax| ≈ 73◦

for ϕ = 18◦. When further increasing ϕ, one finds that at a certain angle no path through the
atmosphere to the line of sight is possible anymore, which results in a brightness of 0 at the
receiver. For the total brightness calculations the experimentally found night sky brightness was
added, which leads to the non-zero brightness even for angles lower than the maximum ϕ.
The calculation works as follows. First, one can find the distance between H0 and P0 as

H0P0 = R0

�
tan(ϕ) − sin(α)

cos(α − ϕ)

�
1 − cos(ϕ)

cos(ϕ)
− hs

R0

� �
. (A.6)

H0P0 only depends on α and ϕ, while the distance HP also depends on l, meaning it requires l as
an input parameter and is written as

HP = H0P0 − ( l − l0 ) sin(α − ϕ). (A.7)

Then one has to calculate h0, which describes the height above sea level of P0 as

h0 =
	

H0P2
0 + R2

0 − R0. (A.8)

To find all possible values of l for fixed α and ϕ, one calculates the minimum l0 and the maximum
l1 of l as

l0 =
	

(R0 + hs)2 cos(α)2 + h2
0 − h2

s + 2R0 (h0 − hs) − (R0 + hs) cos(α) and (A.9)

l1 =
	

(R0 + hs)2 cos(α)2 + 2R0 (∆R − hs) + ∆R2 − hs − (R0 + hs) cos(α). (A.10)

To calculate hQP, one needs to calculate δ, which is expressed as

δ = ( l − l0 ) cos(α − ϕ). (A.11)
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Utilizing the equations above, one finds the distance QH as

QH =



2R0 (∆R − δ) + ∆R2 − δ2. (A.12)

With these in mind, one can calculate the height asl hQP for every point on the beam’s path.
Therefore, q is defined with q = 0 at Q, expanding to QP. Utilizing the equations above, a function
is defined, which requires α and ϕ, but also l and q as input parameters, which is

hQP =
	

(QH − q)2 + (R0 + δ)2 − R0, (A.13)

and align with Equation (5.1) in Section 5.

Additionally, to calculate the fraction of the beam that scatters at an angle θR, which denotes the
scattering angle that leads to the beam reaching the receiver, corresponding to scattering in the
field of view, has to be found:

θR = 90◦ − α − ϕ. (A.14)

For a better understanding of the beam’s path, the height asl hQP for fixed angles α = 1◦ and ϕ = 6◦

is illustrated in Figure A.2 [29].

Figure A.2: Height above sea level hQP on the beam’s path through atmosphere. The vertical line
is representing the point H, at which the height asl is at its minimum, corresponding to the height
asl δ.

A.2.1 Approving negative values for α

Although Patat et al. [29] did not discuss the geometrical setup for negative angles α, it was
proven that the calculations also hold for said angles, as part of this thesis.

We recalculate l0 and l1 to be
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l0 = (R0 + h0) · 1
sinα

· sin
�
α − arcsin

� Rs

R0 + hs
· sinα

��
and (A.15)

l1 =
R0 + ∆R

sinα
· sin(α − ϵ), with (A.16)

ϵ = arcsin
� R0 + hs

R0 + ∆R
· sinα

�
. (A.17)

These yield the same results as the equations presented by Patat et al. [29], thus can be assumed
to be reasonable.

A.2.2 Density distribution of scattering particles in the atmosphere

In Figure A.3 the density distribution ρ(q) along the beam’s path through the atmosphere q is
visualized, which depends on α, ϕ and l. They were selected arbitrarily, with α = 0◦, meaning the
FOV points directly to the zenith. Since we are interested in twilight brightness, therefore small
angles related to the horizon, ϕ = 6◦ was selected for the figure. l was defined as the average of l0
and l1 for said α and ϕ.

Figure A.3: Density distribution ρ over the path q through atmosphere for ϕ = 6◦, α = 0◦.

A.3 Calculating the sun’s luminosity utilizing Planck’s radiation law

In the following, the ansatz to calculate the number of photons independently of the experimen-
tally found zeropoints, is presented. However, it was not possible to find reasonable values for the
sun’s luminosity. As it is considered an interesting approach, it is presented below, nevertheless.

In order to find the number of photons from the sun for arbitrary wavelengths λ and arbitrary
bandwidths∆λ, the sun is assumed to be a perfect black body with temperature T = 5772 K, which
equals the surface temperature of the sun. Due to this approach, the Planck’s radiation law can
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be utilized, which is the quantum mechanical description of radiation and its distribution of the
wavelength and temperature. It is defined as

u(λ, T) =
8πhc
λ5 ·

1

e
hc
λkBT − 1

, (A.18)

and is the energy density of a black body, including the Bose-Einstein distribution for bosons,
meaning for particles with integer spin16 and is given as energy per unit volume and unit wave-
length [55].
However, for these calculations one needs the number of photons per second and not energy per
volume. Therefore, the function will be utilized as a method to describe the energy distribution
of the sun. One integrates over all wavelengths from 0 to infinity, and states that is must be one.
Thus, an additional factor corresponding to a normalization constant n, must be included as

n ·U(T) = n
� ∞

0
u(λ,T) dλ = 1, (A.19)

and one finds n = 1.19082. With that in mind, one can now decide which bandwidth∆λ is required
and calculate the fraction of the entire energy of the sun that is given by the selected wavelength
range p(λ,∆λ), as

p(λ,∆λ) = n · u(λ,T) · ∆λ. (A.20)

It is worth noting that the above equation is only suitable for small values of ∆λ, since the energy
distribution in that range, is here assumed to be constant. For bigger bandwidths, one needs to
integrate over the required bandwidth dλ. For λ = 850 nm and ∆λ = 1 nm this fraction is found
to be p(λ,∆λ) = 0.0007. To find the power of the sun for said bandwidth, one multiplies p(λ,∆λ)
by the total power of the sun Ptot = 3.846 · 1026 W [56].
To calculate the number of photons emitted per second in the required wavelength range, one
calculates the energy of one photon with a certain wavelength λ as

E(λ) =
hc
λ
. (A.21)

Utilizing this equation, one divides the power emitted in the range∆λ by the energy of one photon
with λ. This results in the following number of photons per second:

N(λ,∆λ) =
p(λ,∆λ) · Ptot

E(λ)
. (A.22)

For the values selected for these calculations, one finds that N(λ = 850 nm,∆λ = 1 nm) = 1.2405 ·
1042. To calculate F0, N(λ = 850 nm,∆λ = 1 nm) has to be divided further by 4πd2. This yields
F0 = 4.3873 · 1018 (s cm2 nm)−1, which does not align with the values obtained in Section 5.2.5.
The aim to calculate sun’s luminosity, therefore, cannot be accomplished utilizing the above
calculations.

A.4 Brightness Calculations

In Section 5.2.7 the total brightness is calculated. In the following, additional details are presented
[29].

16The photon’s spin is zero.
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An infinitesimal volume element dV within the line of sight, respectively field of view, is assumed
to find d f , referring to “the number of scattered photons received by he observer per unit time,
unit area, and unit wavelength” 17 as

d f = F0 e−τQP ρ[h(l)] Cext(λ)
Φ(θ)

l2
e−τ0P dV. (A.23)

The volume dV equals dS dl, with dl representing the direction along l and dS = πl2ϕ2. The angle ϕ
describes the “semi-amplitude of the angle subtended by dS at the distance of the observer” [29],
and not the sun’s angular distance. With dS = πϕ2 denoting the solid angle, one can rewrite the
equation to find the surface brightness db produced by the volume element dV to be

db =
d f
dΩ
= F0 e−τQP ρ[h(l)] Cext(λ)Φ(θ) e−τ0P dl. (A.24)

Using db, which represents the brightness from an infinitesimal element dl, one can calculate the
total surface brightness by b =

� l1
l0

db, by integrating over all possible paths for the sun ray through
the atmosphere, which results in the integration limits of l0 and l1.
To find the total brightness, one calculates

b = F0 Cext(λ)Φ(θ)
� l1

l0
ρ(h(l)) e− (τQP + τ0P) dl, (A.25)

which is done numerically in this thesis [29].

A.5 Results: Twilight sky brightness

In Figure A.4, the calculated twilight sky brightness without the added experimentally found
night sky brightness is presented.

Figure A.4: Total surface brightness b, in magnitudes per arcsecond squared for different angles
α, without the experimentally measured night sky brightness. The blue, dashed, vertical lines
mark the end of civil, nautical and astronomical night. The blue, dashed, horizontal line shows
the night sky brightness.

17Note that, τQP and τOP could be combined in τΣ, but in this section, the notation by Patat et al. [29] is followed
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In Figure 6.2 in Section 6, the same brightness is illustrated, but is including the night sky bright-
ness. When comparing these figures, one can observe a significant deviation for angles of ϕ < 14◦.
The calculated twilight sky brightness declines to zero, without the added night sky brightness,
which is reasonable due to the geometrical setup.

A.6 Data: The UBVRI passbands

In the following table, the values of the UBVRI passbands are showcased.

U B V R I

Zeropoint M0 -10.93 -10.5 -11.05 -11.90 -12.70
Sun’s Magnitude Msun -25.96 -26.09 -26.74 -27.26 -27.55

Night sky Brightness Mnight 22.3 22.6 21.6 20.9 19.7

Table A.1: Data for the UBVRI passbands in magnitudes. Taken from [39, 40].
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