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Kurzfassung

Präferenzen sind ein wichtiges Konzept im Bereich der Künstlichen Intelligenz sowie dem
Teilbereich Knowledge Representation and Reasoning (KR). Eine wichtige Forschungs-
frage in KR ist wie Präferenzen zusammen mit Informationen über objektive Fakten
repräsentiert und verarbeitet werden können. In dieser Arbeit werden zwei Formalismen
aus dem Bereich KR welche Präferenzen unterschiedlich integrieren untersucht. Zum einen
Choice Logics, welche klassische Aussagenlogik um nicht-klassische Präferenz-Konnektive
erweitern, zum anderen Abstract Argumentation, wo Konflikte zwischen Argumenten
von Präferenzen beeinflusst werden können. In beiden Formalismen sind die Konzepte
von Präferenzen und Fakten eng miteinander verwoben, sei es, weil Präferenzen und
Fakten zusammen repräsentiert werden, wie in Choice Logics, oder weil die zwei Konzep-
te zusammen ausgewertet werden, wie in Abstract Argumentation. Um diese Art von
integrierten Präferenzen im Bereich KR besser zu verstehen, untersuchen wir Choice
Logics und Abstract Argumentation bezüglich ihrer syntaktischen, semantischen, und
komplexitätstheoretischen Eigenschaften.

In Abstract Argumentation verwenden wir vier sogenannte Reduktionen aus der Literatur
um Präferenzen aufzulösen, und untersuchen den Einfluss dieser Reduktionen in zwei
verschiedenen Situationen. Erstens führen wir Conditional Preference-based Argumen-
tation Frameworks (CPAFs) ein, ein neuer Formalismus mit dessen Hilfe man bedingte
Präferenzen darstellen kann. Wir erforschen die Eigenschaften von CPAFs, und zeigen
dass die Wahl der Reduktion sowohl semantische Eigenschaften als auch die Komple-
xität von wichtigen Entscheidungsproblemen beeinflusst. Zweitens verallgemeinern wir
Claim-augmented Argumentation Frameworks (CAFs) indem wir Preference-based CAFs
(PCAFs) einführen. Das Anwenden der Reduktionen führt dazu, dass die in CAFs zentrale
syntaktische Eigenschaft der “well-formedness” nicht mehr garantiert werden kann. Wir
zeigen allerdings, dass der Einfluss der Reduktionen nicht willkürlich ist, sondern Teile der
Struktur, welche mit well-formedness einhergeht, erhalten bleiben. Des Weiteren zeigen
wir, dass manche Reduktionen vorteilhafte semantische und komplexitätstheoretische
Eigenschaften von well-formedness erhalten.

Bezüglich Choice Logics untersuchen wir Preferred Model Entailment, ein zentrales Kon-
zept in Choice Logics welches nichtmonotones Schließen ermöglicht. Wir berücksichtigen
dabei insbesondere Qualitative Choice Logic (QCL), Conjunctive Choice Logic (CCL),
und Lexicographic Choice Logic (LCL), sowie mehrere Methoden um die präferierten
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Modelle einer Theorie zu berechnen. Wir beweisen, dass Preferred Model Entailment
wichtige logische Eigenschaften für nichtmonotones Schließen erfüllt. Des Weiteren zeigen
wir, dass die Komplexität von Preferred Model Entailment auf der zweiten Stufe der
polynomiellen Hierarchie liegt, wobei die exakte Komplexität sowohl von der verwendeten
Logik (QCL, CCL, LCL,. . . ) als auch der verwendeten Methode zum Berechnen der
präferierten Modelle abhängt. Außerdem führen wir Sequenzkalküle für Preferred Model
Entailment ein, und zeigen deren Korrektheit und Vollständigkeit.

Schlussendlich beleuchten wir Zusammenhänge zwischen Choice Logics und Abstract
Argumentation indem wir QCL-Theorien zu SETAFs (Argumentation Frameworks with
Collective Attacks) transformieren. Wir zeigen, dass die ursprüngliche QCL-Theorie und
das konstruierte SETAF semantisch äquivalent sind, und dass das SETAF verwendet
werden kann um Preferred Model Entailment in der ursprünglichen QCL-Theorie zu
entscheiden. Im Gegensatz zu bereits bestehenden Transformationen von Choice Logics zu
Abstract Argumentation ist unsere Konstruktion rein syntaktischer Natur und polynomiell
in Größe sowie Laufzeit.



Abstract

Preferences are an important notion in Artificial Intelligence and many of its subfields
such as Knowledge Representation and Reasoning (KR). A key challenge when it comes
to preferences (or soft-constraints) in KR is how they can be best represented alongside
knowledge about truth (hard-constraints), and what effect they should have in view of the
given hard-constraints. In this thesis, we study two KR-formalisms featuring preferences,
namely choice logics, which extend classical propositional logic with additional non-
classical choice connectives, and abstract argumentation with preferences, where the
attack relation between arguments is influenced by a given preference ordering. While
choice logics and abstract argumentation are quite different from each other, they have
in common that hard- and soft-constraints are tightly interlinked. This motivates us
to identify the notion of integrated preferences, where hard- and soft-contraints are
represented and/or resolved jointly instead of separately. To better understand integrated
preferences in KR, we examine the syntactic, semantic, and computational properties of
choice logics and abstract argumentation with preferences.

Regarding argumentation, we consider four so-called preference reductions from the
literature and study their effects in two settings. Firstly, we introduce Conditional
Preference-based Argumentation Frameworks (CPAFs), a novel formalism capable of
expressing and reasoning with conditional preferences in abstract argumentation. We
formally study CPAFs, and show that the choice of preference reduction has an impact
on the behavior of semantics and the computational complexity of main reasoning
tasks. Secondly, we generalize Claim-augmented Argumentation Frameworks (CAFs)
by introducing Preference-based CAFs (PCAFs). Since the introduction of preferences
to CAFs means that the important property of well-formedness can not be guaranteed,
we analyze PCAFs from a syntactic, semantic, and computational perspective to better
understand the impact of preferences in claim-based argumentation. Our syntactic
analysis shows that some of the structure associated with well-formedness remains intact
even after preferences have been resolved. Moreover, our semantic and computational
analysis shows that, for some of the preference reductions, advantageous properties
associated with well-formedness can still be guaranteed in view of preferences.

In choice logics, we study the important notion of preferred model entailment with
regards to logical, computational, and proof-theoretic properties. To this end, we consider
Qualitative Choice Logic (QCL), Conjunctive Choice Logic (CCL), and Lexicographic
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Choice Logic (LCL), as well as several preferred model semantics, i.e., methods of
determining the preferred models of a choice logic theory. We prove that preferred model
entailment for choice logics satisfies key logical properties for non-montonic entailment.
Our results also show that the computational complexity of preferred model entailment
is located on the second level of the poylnomial hierarchy, with the exact complexity
depending both on the choice logic and preferred model semantics. Moreover, we introduce
the first sequent calculi for preferred model entailment in choice logics and prove soundness
and completeness.

Finally, we investigate the relationship between choice logics and abstract argumentation
by translating QCL-theories to Argumentation Frameworks with Collective Attacks
(SETAFs). We prove that the original QCL-theory is in semantic correspondence to the
constructed SETAF, and we show that our translation can be used to decide preferred
model entailment in QCL. Moreover, we argue that our construction has advantages
compared to an already existing translation from Prioritized QCL-theories to Value-based
AFs since it is purely syntactic and polynomial in both size and runtime.
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CHAPTER 1
Introduction

Storing knowledge in computer systems and letting computers draw conclusions from
available knowledge is a key challenge in modern artificial intelligence (AI) (Russell and
Norvig 2021). Indeed, knowledge representation and reasoning (KR) is an important sub-
field of AI. In KR, knowledge is represented explicitly and “in a symbolic way” (Flasiński
2016, p. 15), e.g., using a logical language or other formal objects such as graphs, and a
method of reasoning with this knowledge is described formally. The study of KR has lead
to the development of many influential concepts and formalisms including non-monotonic
reasoning (Kraus, Lehmann, and Magidor 1990), answer set programming (Lifschitz
2019), description logics (Baader et al. 2017), and formal argumentation (Baroni et al.
2018). Moreover, KR has contributed to other fields of AI such as natural language
processing (Bhattarai, Granmo, and Jiao 2023) or cognitive robotics (Paulius and Sun
2019). Understanding and advancing KR is crucial for designing robust AI systems that
are predictable, explainable, and capable of logical reasoning (Sheth, Roy, and Gaur
2023). This thesis contributes hereto with the study of two KR-formalisms, namely
choice logics (Brewka, Benferhat, and Berre 2004) and abstract argumentation with
preferences (Kaci et al. 2021). Both formalisms are designed to represent preferences and
reason with them, and moreover share the commonality that they closely interlink the
concept of preferences with that of truth.

Preferences are ubiquitous in our everyday lives and guide human decision making in
various situations (Hausman 2011). Both small decisions, such as which movie to watch,
and big decisions, such as which career path to pursue, require us to make a choice
between several alternatives based on our preferences. Consequently, the notion of
preferences has been studied in many research areas including philosophy, economics,
sociology, but also computer science and AI (Pigozzi, Tsoukiàs, and Viappiani 2016). For
instance, recommender systems fulfill tasks such as suggesting songs or movies to users
based on their explicit or implicit preferences (Bobadilla et al. 2013) and computational
social choice considers various ways of aggregating the conflicting preferences of several
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1. Introduction

individuals into a single fair outcome (Brandt et al. 2016). In KR, preferences often
occur naturally as part of the knowledge to be represented. For example, we may know
that a certain user prefers horror movies to documentaries, or that an afternoon kick-off
for a football game is preferable to a morning kick-off, or that a certain argument in
a debate is considered stronger than another argument. Of course, knowledge about
preferences is different in character from knowledge about truth, i.e., the hard facts about
the world. To distinguish these concepts, we will therefore refer to knowledge that deals
with preferences as soft-constraints, while knowledge about truth will be referred to as
hard-constraints. Given the ubiquity of preferences, it is important to develop and study
systems that are capable of faithfully representing and resolving not only hard-constraints
but also soft-constraints.
How exactly preferences are represented and resolved differs from formalism to formalism.
We identify two main paradigms of preference handling in KR, namely those of separated
and integrated preferences.
In systems adhering to the paradigm of separated preferences, hard- and soft-constraints
are specified and resolved independently of each other (Alfano et al. 2022; Brewka,
Niemelä, and Truszczynski 2003; Faber, Truszczyński, and Woltran 2013). Preferences
in such systems are typically defined “on top” of an underlying formalism used for
representing hard-constraints, such as classical logic. Reasoning about the given knowledge
then occurs in two steps: first, the possible world views are established in accordance
with the given hard-constraints; then, the most preferred world views are filtered out in
accordance with the given soft-constraints. In these systems, hard- and soft-constraints
do not interact directly and are clearly separated. While this allows for a high degree of
modularity, it means that knowledge about truth and preferences are not represented in
a single language.
In contrast to this are formalisms adhering to the paradigm of integrated preferences,
where hard- and soft-constraints are jointly represented and/or resolved. Both choice
logics and abstract argumentation with preferences, the two formalisms that are the
focus of this thesis, belong to this paradigm. In choice logics, propositional logic is
extended with an additional connective with which preferences can be expressed. In
abstract argumentation, reasoning with preferences is often not carried out in two separate
steps as described above. Instead, resolving preferences has a direct influence on the
given hard-constraints. While integrated preferences allow us to talk about hard- and
soft-constraints in a single unified language, the interactions between hard- and soft-
constraints can impact syntactic, semantic, and computational properties in different
ways than separated preferences. In this thesis, we study choice logics and preferences in
abstract argumentation in order to better understand the notion of integrated preferences,
the challenges they bring with them, and how they can be overcome.
The remainder of this chapter is organized as follows: in Section 1.1 we explore the concept
of integrated preferences in more detail. In Section 1.2 we list the main contributions of
this thesis, and in Section 1.3 we discuss important related work. Section 1.4 gives a brief
outline and reading guide to the thesis. Section 1.5 lists the publications of the author.
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1.1. Integrated Preferences

1.1 Integrated Preferences
As discussed above, in formalisms featuring integrated preferences, hard-constraints
(truth) and soft-constraints (preferences) are represented and/or resolved together, not
separately. We now explore two formalisms that clearly demonstrate this concept, namely
choice logics, where hard- and soft- constraints are jointly represented, and abstract
argumentation with preferences, where hard- and soft-constraints are jointly resolved.

Qualitative Choice Logic (QCL) (Brewka, Benferhat, and Berre 2004) extends classical
propositional logic with a non-classical connective #»× called ordered disjunction. Intuitively,
F

#»×G means that it is preferable to satisfy F but, if that is not possible, satisfying G is
also acceptable. Thus, QCL allows to express both truth (F or G must be satisfied) and
preferences (satisfying F is better than G) in the same language. As an example for how
QCL can model situations that naturally occur in a knowledge representation context,
consider a product configuration system for cars (Gençay, Schüller, and Erdem 2019).
Assume a user of the system is interested in the sports version of the car and wants an
automatic transmission. Moreover, the user would like cruise control or lane assist, but
cruise control is the preferred option. Such a query could be formalized in QCL:

sport ∧ automatic ∧ (cruise #»×lane).

There are three interpretations that satisfy the hard-constraints of the above formula,
i.e., there are three models of this formula, namely M1 = {sport, automatic, cruise,
lane}, M2 = {sport, automatic, cruise}, and M3 = {sport, automatic, lane}. According to
QCL-semantics, the models M1 and M2 containing the first option cruise in the ordered
cruise #»×lane are the preferred models of this formula. Suppose now that we obtain the
additional information that it is not possible to have the sport version of the car with
cruise control. This situation can be modeled by adapting the above formula as follows:

sport ∧ automatic ∧ (cruise #»×lane) ∧ ¬(sport ∧ cruise).

M3 is the only model, and therefore also the preferred model, of the adapted formula.
This example shows that the notion of preferred models in QCL is non-monotonic, as
adding new information resulted in a completely new preferred model. Another interesting
feature of QCL is that it allows us to express conditional preferences with as little as a
single formula. For instance, we can formalize that we prefer cruise control over a lane
assistant, but only if we choose an automatic transmission.

automatic → (cruise #»×lane).

The preference expressed by cruise #»×lane now only applies to cars with automatic
transmission. The ability of QCL to express conditional preferences brings with it many
possibilities when attempting to model real world situations accurately. On the other
hand, the interplay between hard- and soft-constraints means that the properties of QCL,
whether they are semantic, computational, or proof-theoretic, must be investigated with
care and by taking the unique characteristics of choice logics into account.
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1. Introduction

a b c

(a) Example AF.

a b c

(b) The preference b � c causes an attack reversal.

Figure 1.1: Resolving preferences in abstract argumentation.

We have seen above how choice logics allow us jointly represent hard- and soft-constraints
in a single unified language. We now shift our attention to another KR-formalism
featuring integrated preferences, namely formal argumentation. Abstract Argumentation
Frameworks (AFs) (Dung 1995) are a popular formalism used to find justifiable, consistent
world views when facing conflicting or inconsistent information. As the name suggests,
arguments in AFs are abstract, which means that we are not particularly interested in
the content or internal structure of arguments, but rather in the relationship between the
arguments. Specifically, an argument can attack another argument, resulting in a conflict
between the two. As an example, consider the AF shown in Figure 1.1a, with arguments
a, b, and c, as well as an attack from a to b, from b to a, and from c to b. Note that b is
attacked by both a and c. While b attacks a and thus defends itself against a, it does not
defend itself against c. Thus, in most argumentation semantics, {b} is not an acceptable
world-view. Indeed, the only stable argument set1 in this framework is {a, c}.

AFs have been extended in several ways in the literature, including with preferences.
Specifically, preference-based AFs (PAFs) (Kaci et al. 2021) consist of an AF and a
preference order � over arguments. If b � c holds we say that the argument b is stronger
than the argument c. Notice that, in contrast to choice logics, hard- and soft-constraints
are represented completely separately in this case: hard-constraints are represented by the
AF and soft-constraints by the preference order �. However, hard- and soft-constraints
interact when preferences are resolved. Specifically, the semantics of PAFs are given
relative to so-called preference reductions which modify the attack relation based on the
preference ordering. One such method of resolving the preference b � c in the AF of
Figure 1.1a is to revert the attack from the weaker argument c to the stronger argument
b, i.e., to delete the attack from c to b and add an attack from b to c. The AF that
results from this procedure is shown in Figure 1.1b. The stable argument sets of this
AF are {a, c} and {b}, which is different from before. One can see that, while hard- and
soft-constraints are represented separately in PAFs, they are not independent of each
other when it comes to reasoning. Thus, the approach of using preference reductions to
resolve preferences is another example of integrated preferences in KR.

Note that the interplay of hard- and soft-constraints in abstract argumentation brings
some challenges with it. For instance, the exact method of how preferences should be
resolved has to be chosen with care. In the literature, three other preference reductions
besides reverting attacks have been described, with one option being to simply delete
attacks that go against the preference order. The choice of method has implications on

1A set S of arguments is considered stable if it is conflict-free and every argument in the framework
is either contained in S or attacked by S.
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1.2. Contributions

the reasoning outcome. Another challenge is that resolving preferences by deleting or
reverting attacks changes the structure of the underlying AF, therefore possibly impacting
more general properties, be they semantic or computational. Since many advantageous
properties in argumentation hold only for frameworks with a certain structure (Dvořák
and Woltran 2020; König 2020), this means that we need to carefully investigate the
impact of preferences and whether advantageous properties can still be guaranteed in
view of preferences.

1.2 Contributions
From a high level perspective, this thesis contributes to the field of KR and therefore AI by
studying KR-formalisms that deal with integrated preferences. Specifically, we investigate
abstract argumentation using preference-reductions and choice logics with their joint
representation of hard- and soft-constraints. In abstract argumentation we examine
conditional preferences as well as the effect of preferences on claim-based reasoning
in argumentation. For choice logics we consider the crucial notion of preferred model
entailment and study it in detail. We investigate these formalisms with regards to
semantic, computational, and syntactic properties. Our results provide novel insights
into these formalisms, show the various impacts that integrated preferences can have, and
allow for informed decisions when designing systems based on these formalisms. Moreover,
we formally study the relationship between choice logics and abstract argumentation,
expanding on previous work in this direction from the literature. We now present our
contributions in more detail, chapter by chapter.

In Chapter 3 we introduce Conditional PAFs (CPAFs), a novel formalism that can
deal with conditional preferences in abstract argumentation. CPAFs allow not only
to incorporate but also to talk about preferences, and therefore enable us to directly
represent conditional preferences. We study CPAFs with regards to semantic principles
that have been investigated for PAFs (with unconditional preferences) in the literature,
and find that most, but not all, of the principles satisfied in the unconditional case are
also satisfied for CPAFs. Moreover, we study the complexity of CPAFs and find that, in
contrast to the unconditional preferences in PAFs, conditional preferences can lead to
an increase in computational complexity. Lastly, we compare our CPAFs with related
formalisms from the literature, namely Value-based AFs (Atkinson and Bench-Capon
2021; Bench-Capon, Doutre, and Dunne 2007) and Extended AFs (Modgil 2009).

In Chapter 4 we investigate the effect of preferences on Claim-based AFs (CAFs), a
formalism from the literature that associates each argument in a framework with a
claim/conclusion and therefore allows for claim-centric reasoning in abstract argumen-
tation (Dvořák and Woltran 2020). To this end, we introduce Preference-based CAFs
(PCAFs) and study them with regards to syntactic, semantic, and computational prop-
erties. Our syntactic analysis shows that resolving preferences changes the underlying
structure of the given framework in such a way that the central syntactic property
of well-formedness (arguments with the same claim have the same outgoing attacks)
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1. Introduction

can no longer be guaranteed. Since well-formedness is associated with advantageous
semantic and computational properties, we study the frameworks that result by resolving
preferences and investigate whether these advantageous properties can still be guaranteed.
Regarding semantic properties, we find that whether a property is preserved in view
of preferences largely depends on how exactly preferences are resolved, i.e., on which
preference reduction is chosen. Regarding computational properties, we show that the
low complexity of well-formed CAFs is preserved in most, but not all, cases.

In Chapter 5 we examine the notion of preferred model entailment in choice logics, where
a choice logic theory (a set of choice logic formulas) T entails a classical formula F if
and only if F is true in all preferred models of T . When doing so, we have to consider
two axes of generalization. The first axis is the considered choice logic: while QCL is the
most prominent choice logic in the literature, it is not the only one; other examples are
Conjunctive Choice Logic (CCL) (Boudjelida and Benferhat 2016) and Lexicographic
Choice Logic (LCL) (Bernreiter 2020), both of which replace the ordered disjunction
of QCL with alternative choice connectives. The second axis is the preferred model
semantics, i.e., the method of determining the preferred models of a choice logic theory.
Here we mainly consider three approaches from the literature, namely the lexicographic,
inclusion-based, and minmax approaches. We show that preferred model entailment under
the lexicographic and inclusion-based approaches satisfy key principles for entailment
in non-monotonic logics introduced by Kraus, Lehmann, and Magidor (1990), while the
inclusion-based approach does not satisfy the property of rational monotony. Moreover,
we study the complexity of preferred model entailment and show that it (1) lies on the
second level of the polynomial hierarchy and (2) depends both on which choice logic is
used (i.e. QCL, CCL, LCL,. . . ) and on which preferred model semantics is considered (i.e.
lexicographic, inclusion-based, minmax,. . . ). Lastly, we introduce a sound and complete
sequent calculus for the three preferred model semantics mentioned above, and for the
logics QCL, CCL, and LCL.

Finally, in Chapter 6 we study the relationship between choice logics and abstract
argumentation by providing a translation from QCL-theories to AFs with collective
attacks (SETAFs) (Nielsen and Parsons 2006). To this end we consider both the inclusion-
based and minmax approaches of determining preferred models. In contrast to an already
existing translation (Sedki 2015) from choice logic theories (using the lexicographic
approach) to Value-based AFs (Atkinson and Bench-Capon 2021; Bench-Capon, Doutre,
and Dunne 2007), our translation is purely syntactic and polynomial in size.

1.3 Related Work
In this section we outline important generally related work to this thesis. Note that a
more detailed discussion on related work specific to each chapter are contained in the
chapters themselves.

In abstract argumentation, the reduction-based approach to preferences that we use in
this thesis has been studied before for standard AFs (Kaci et al. 2021). Moreover, it has
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been employed in several extensions of AFs, most notably Value-based AFs (Atkinson and
Bench-Capon 2021; Bench-Capon, Doutre, and Dunne 2007) and Extended AFs (Baroni
et al. 2009; Modgil 2009). In Section 3.4 we investigate the relationship between these
formalisms and our CPAFs in detail.

An alternative approach to preferences in argumentation, which belongs to the paradigm
of separated preferences, is the lifting-based approach in which the given preference
ordering over arguments is lifted to an ordering over argument sets (Alfano et al. 2022,
2023; Amgoud and Vesic 2014; Brewka, Truszczynski, and Woltran 2010; Kaci, van der
Torre, and Villata 2018). The properties that this alternative approach to preferences
induces are quite different to the properties of the reduction-based approach we use in
this thesis. This concerns both semantic (Kaci, van der Torre, and Villata 2018) as well
as computational properties (Alfano et al. 2022), with the complexity of reasoning tasks
being generally higher under the lifting-based approach.

Preferences have also been used extensively in structured argumentation, where in
contrast to abstract argumentation the internal structure of individual arguments is
taken into consideration. Popular formalisms such as ABA+ (Cyras and Toni 2016) and
ASPIC (Modgil and Prakken 2013) both feature preferences, and deal with them akin to
the reduction-based approach used in this thesis.

Regarding choice logics, we want to highlight some applications that have been discussed
in the literature, ranging from logic programming (Brewka, Niemelä, and Syrjänen 2004)
to alert correlation (Benferhat and Sedki 2010) to database querying (Liétard, Hadjali,
and Rocacher 2014) or preference learning (Sedki, Lamy, and Tsopra 2020, 2022).

Besides choice logics, there are other logic-based formalisms that jointly represent hard-
and soft-constraints. This includes the lexicographic logic of Charalambidis et al. (2021),
in which lists of truth values are used to rank interpretations. Maly and Woltran
(2018) propose an alternative semantics for the language of QCL. Logic programs with
ordered disjunction (LPODs) (Brewka, Niemelä, and Syrjänen 2004; Charalambidis,
Rondogiannis, and Troumpoukis 2021; Delgrande, Schaub, and Tompits 2003) feature
ordered disjunction in the head of rules. Another example, and one of the first logic-based
formalisms dealing with preferences, is the preference logic by von Wright (Liu 2010; von
Wright 1963). The focus of this logic, however, lies in reasoning about preferences rather
than representing them and reasoning with them.

As observed in the literature (Brewka, Niemelä, and Truszczynski 2008; Shoham 1987),
non-monotonic reasoning is inherently connected to preferences. Indeed, the notion of
defeasible inference can be viewed as a form of preferential reasoning: the state of the
world that we can defeasibly infer, i.e., the default state, is the preferred state; if new
information comes to light that forces us to retract our conclusion and abandon the default
state and accept an alternative, less preferred, state. As such, preferred model entailment
for choice logics is closely related to the seminal work by Kraus, Lehmann, and Magidor
(1990) and entailment in other non-monotonic logics such as circumscription (McCarthy
1980), default-logic (Reiter 1980), or autoepistemic logic (Moore 1985). In contrast to
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these formalisms, however, choice logics are explicitly designed to represent preferences.
Moreover, choice logics are a representative of integrated preferences, whereas, e.g.,
circumscription, clearly separates hard-constraints (represented as propositional formulas)
from soft-constraints (represented via the circumscription-policy).

Conditional preferences have been studied in a variety of settings, and many for-
malisms have been introduced to this end. Maybe the most prominent example is
CP-nets (Boutilier et al. 2004), with conditional preferences being represented as graphs.
In logic programming, conditional preferences can occur in the head of rules or as
dedicated preference statements (Brewka et al. 2015). In argumentation, conditional
preferences have been studied in structured argumentation (Dung, Thang, and Son 2019)
and recently also in abstract argumentation (Alfano et al. 2023), although this approach
uses the lifting-based approach of handling preferences rather than the reduction-based
approach employed in this thesis.

Of course, preferences also play an important role in areas of AI other than KR. We
have already mentioned recommender systems (Bobadilla et al. 2013) and computational
social choice (Brandt et al. 2016) as examples to this end. For general survey papers on
preferences in AI we refer to Bienvenu, Lang, and Wilson (2010), Domshlak et al. (2011),
and Pigozzi, Tsoukiàs, and Viappiani (2016).

1.4 Reading Guide
While this thesis can certainly be read from start to finish, this is by no means necessary.
We now provide a reading guide for readers that wish to go out of order by specifying
the reading requirements for each chapter. Figure 1.2 visualizes this guide.

It is recommended that readers first go through Chapter 1 (the introduction) and at least
the first two sections of Chapter 2 (the preliminaries), i.e., Section 2.1 (on propositional
logic) and Section 2.2 (on complexity theory).

Before reading Chapter 3 (on conditional preferences in abstract argumentation) it is
recommended to read Subsection 2.3.1 (on abstract argumentation) and Subsection 2.3.2
(on preferences in abstract argumentation) in addition to the generally recommended
preliminaries (Section 2.1 and Section 2.2).

Before reading Chapter 4 (on preferences in claim-based argumentation) it is recommended
to read all of Section 2.3, which, in contrast to the recommended preliminaries for
Chapter 3, includes Subsection 2.3.3 (on claim-based argumentation).

Before reading Chapter 5 (on preferred model entailment in choice logics) it is rec-
ommended to read Section 2.4 (on choice logics) in addition to the generally required
preliminaries (Section 2.1 and Section 2.2).

Finally, before reading Chapter 6 (on the connection between argumentation and choice
logics) it is recommended to read at least Subsection 2.3.1 (on abstract argumentation)
as well as Chapter 5 (on preferred model entailment in choice logics).
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Figure 1.2: Reading guide for this thesis.

Chapter 7 (the conclusion) is best read after reading through all previous chapters.

1.5 Publications
In this section we list the publications used as a basis for this thesis, as well as further
publications co-authored by the author.

Chapter 3 of this thesis is based on the following two publications (the second paper is
an extended version of the first paper).

• Bernreiter, M., Dvořák, W., and Woltran, S. (2022). „Abstract Argumentation
with Conditional Preferences“. In: Proc. COMMA’22. Vol. 353. Frontiers in
Artificial Intelligence and Applications. IOS Press, pp. 92–103

• Bernreiter, M., Dvořák, W., and Woltran, S. (2023). „Abstract Argumentation
with Conditional Preferences“. In: Argument & Computation pre-press, pp. 1–29
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Chapter 4 is based on the following two publications (the second paper is a revised and
shortened version of the first paper). An extended journal publication of these papers is
currently under submission.

• Bernreiter, M., Dvořák, W., Rapberger, A., and Woltran, S. (2022a). „The Effect
of Preferences in Abstract Argumentation Under a Claim-Centric View“. In: Proc.
NMR’22. Vol. 3197. CEUR Workshop Proceedings. CEUR-WS.org, pp. 27–38

• Bernreiter, M., Dvořák, W., Rapberger, A., and Woltran, S. (2023). „The Effect of
Preferences in Abstract Argumentation under a Claim-Centric View“. In: Proc.
AAAI’23. AAAI Press, pp. 6253–6261

Chapter 5 is based on the following three publications (the third paper is an extended
version of the second paper).

• Bernreiter, M., Maly, J., and Woltran, S. (2022). „Choice logics and Their Compu-
tational Properties“. In: Artif. Intell. 311, p. 103755

• Bernreiter, M., Lolic, A., Maly, J., and Woltran, S. (2022b). „Sequent Calculi for
Choice Logics“. In: Proc. IJCAR’22. Springer, pp. 331–349

• Bernreiter, M., Lolic, A., Maly, J., and Woltran, S. (2024a). „Sequent Calculi for
Choice Logics“. In: J. Autom. Reason. (to appear)

Chapter 6 is based on the following publication.

• Bernreiter, M. and König, M. (2023). „From Qualitative Choice Logic to Abstract
Argumentation“. In: Proc. KR’23, pp. 737–741

Additionally, the author of this thesis has co-authored the following publications which
are, however, not part of the contributions of this thesis.

• Bernreiter, M., Maly, J., and Woltran, S. (2020). „Encoding Choice Logics in
ASP“. in: Proc. ASPOCP@ICLP’20. Vol. 2678. CEUR Workshop Proceedings.
CEUR-WS.org

• Bernreiter, M. (2020). „A General Framework for Choice Logics“. Master’s thesis.
Vienna, Austria: TU Wien

• Bernreiter, M., Maly, J., and Woltran, S. (2021). „Choice Logics and Their
Computational Properties“. In: Proc. IJCAI’21. IJCAI Organization, pp. 1794–
1800

10



1.5. Publications

• Freiman, R. and Bernreiter, M. (2023a). „Truth and Preferences - A Game Approach
for Qualitative Choice Logic“. In: Proc. JELIA’23. Vol. 14281. LNCS. Springer,
pp. 547–560

• Freiman, R. and Bernreiter, M. (2023b). „Validity in Choice Logics - A Game-
Theoretic Investigation“. In: Proc. WoLLIC’23. Vol. 13923. LNCS. Springer,
pp. 211–226

• Bernreiter, M., Maly, J., Nardi, O., and Woltran, S. (2024b). „Combining Vot-
ing and Abstract Argumentation to Understand Online Discussions“. In: Proc.
AAMAS’24 (to appear)

Note that (Bernreiter, Maly, and Woltran 2022), which is used in Chapter 5 of this thesis,
is an extended version of (Bernreiter, Maly, and Woltran 2021), which in turn is based
on the master thesis (Bernreiter 2020) of the author. The results from (Bernreiter, Maly,
and Woltran 2022) that are used in Chapter 5 of this thesis are concerned with preferred
model entailment in choice logics, and do not appear in (Bernreiter, Maly, and Woltran
2021) or (Bernreiter 2020). To clearly separate the results of the author’s master thesis
from the results newly presented in this thesis, the results already established in the
master thesis are contained solely in the preliminaries of this thesis (see Section 2.4).
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CHAPTER 2
Preliminaries

In this chapter we introduce central notions and results from the literature that are
used throughout this thesis. Section 2.1 briefly recalls the basics of propositional logic.
In Section 2.2 we define the complexity classes used in this thesis. Section 2.3 cov-
ers abstract argumentation, starting with standard Argumentation Frameworks (AFs)
(Subsection 2.3.1) before detailing Preference-based AFs (Subsection 2.3.2) and Claim-
augmented AFs (Subsection 2.3.3). Finally, in Section 2.4 we define the general choice
logic framework and the most prominent choice logics considered in the literature.

Note that basic set theory or graph theory are not covered in this chapter. We assume
familiarity with these concepts.

2.1 Propositional Logic
Classical propositional logic is one of the most fundamental knowledge representation
languages there is (Russell and Norvig 2021). In this section, we briefly recall the most
fundamental notions. For a more thorough overview, we can recommend (Hodel 2013).
The syntax of propositional logic is based on (propositional) variables as well as logical
connectives. The variables, also called atoms, represent basic statements such as “It is
raining” or “I have an umbrella” that can, from a logical perspective, not be subdivided
further. The connectives allow us to join together propositions to build logical formulas,
also called sentences, such as “It is raining and I have an umbrella”. In this thesis we use
negation (denoted by ¬), conjunction (denoted by ∧), and disjunction (denoted by ∨).
Other connectives such as material implication are not explicitly part of the language
as we define it, but can be modeled using the basic connectives ¬, ∧, ∨ since they form
a functionally complete set of connectives. Propositional variables will be denoted by
lower-case letters such as a, b, c, x, y, z whereas formulas will be denoted by upper-case
latin letters such as F, G, H or greek letters such as ϕ, ψ.
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2. Preliminaries

Definition 2.1. Let U denote the (countably infinite) set of propositional variables
(also called atoms). The set FPL of formulas (over U) of propositional logic is defined
inductively:

1. if a ∈ U , then a ∈ FPL;

2. if F ∈ FPL, then (¬F ) ∈ FPL;

3. if F, G ∈ FPL, then (F ∧ G) ∈ FPL;

4. if F, G ∈ FPL, then (F ∨ G) ∈ FPL.

The semantics of propositional logic assign a truth value to formulas given a specific
interpretation (world view). Interpretations set each propositional variable either to true
(represented by 1) or false (represented by 0). Formally, an interpretation I is a set of
propositional variables, i.e., I ⊆ U . If x ∈ I for some variable x then x is true under I,
and if x *∈ I then x is false under I. The truth value of a non-atomic formula given an
interpretation depends on the connectives with which the formula is built, and the truth
values of the formula’s subformulas.

Definition 2.2. The truth value of a PL-formula under an interpretation I ⊆ U is given
by the function val : 2U × FPL → {0, 1} with

1. val(I, a) =
�

1 if a ∈ I
0 otherwise

for every a ∈ U ;

2. val(I, ¬F ) =
�

1 if val(I, F ) = 0
0 otherwise;

3. val(I, F ∧ G) = min(val(I, F ), val(I, G));

4. val(I, F ∨ G) = max(val(I, F ), val(I, G)).

We also use the alternative notation I |= F for val(I, F ) = 1 and I *|= F for val(I, F ) = 0.
If I |= F , we say that I satisfies F , and if I *|= F , then I does not satisfy F .

Example 2.3. Consider the formula

F = (((a ∨ c) ∧ (b ∨ c)) ∧ ¬(a ∧ b)).

There are eight interpretations relevant for F , namely all I such that I ⊆ {a, b, c}.
To satisfy F , an interpretation must satisfy ¬(a ∧ b). Thus, we have I *|= F for I ∈
{{a, b}, {a, b, c}}. Moreover, since (a∨c) and (b∨c) have to be satisfied, we have I *|= F for
I ∈ {∅, {a}, {b}}. For the three remaining interpretations, i.e., I ∈ {{a, c}, {b, c}, {c}},
we have I |= F .
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2.2 Complexity Theory
Computational complexity theory aims to classify computational problems with respect
to how difficult it is to solve them on a computer. In this section we briefly recall basic
notions of complexity theory before defining some complexity classes of the polynomial
hierarchy. The main source for this section is (Arora and Barak 2009). Note that we
assume familiarity with fundamental concepts of complexity theory such as O-notation,
decision problems, reductions between decision problems, and the complexity classes P,
NP, and coNP.

Often, Turing machines are used as a computational model in complexity theory. However,
due to the strong form of the Church-Turing thesis [p. 26](Arora and Barak 2009),
which states that “every physically realizable computation model can be simulated by a
Turing machine with polynomial overhead”, we can use algorithms written in modern
programming languages instead. In fact, informal descriptions of algorithms can also be
used, as long as it is clear how they can be implemented.

Recall that P is the class of problems solvable in polynomial time, i.e., O(nc) time for
some constant c with respect to the input size n. NP encompasses the problems solvable
in non-deterministic polynomial time, i.e., the problems solvable in polynomial time by a
non-deterministic Turing machine. For informal algorithms, this is equivalent to using a
guess and check procedure, where a certificate or witness can be guessed and then used
in a following deterministic algorithm. The class coNP contains all problems that are the
complement2 of an NP-problem. An example for a problem in P is model checking, where
we are given a propositional formula F and an interpretation I as input, and ask whether
I satisfies F , i.e., whether I |= F . A prototypical NP-problem is Sat, where we are given
a propositional formula F and ask whether there is an interpretation I that satisfies F .
Its complement is the coNP-problem Unsat, where we are given a propositional formula
F and ask whether there is no interpretation that satisfies F .

A crucial notion in complexity theory is that of hardness and completeness of decision
problems for a given complexity class. A decision problem Q is C-hard for a complexity
class C if all problems in C can be reduced to Q, i.e., any instances of a problem in C can
be transformed into an instance of Q, in polynomial time. Moreover, Q is C-complete
if Q is in C and C-hard. Completeness is a crucial notion that allows us to identify the
most difficult to solve problems in a complexity class, and therefore draws the boundaries
between classes. Moreover, reducing a problem such as Sat that is known to be hard
for a complexity class to another problem allows us to show hardness for this other
problem. Sat is known to be NP-complete and Unsat is known to be coNP-complete.
It is famously not known whether the classes P, NP, and coNP are distinct from each
other, but it is widely assumed to be the case (Aaronson 2017).

Next, we consider complexity classes that are located on the second level of the polynomial
hierarchy, a hierarchy of complexity classes that has P, NP, and coNP as its base. We

2A decision problem Q� is the complement of another decision problem Q if for any instance I we
have that I is a yes-instance of Q iff I is a no-instance of Q�.
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do not define the entire polynomial hierarchy, as this is not needed for this thesis. We
simply note that P, NP, and coNP are located on the first level of the hierarchy, and that
the polynomial hierarchy contains an infinite number of levels. For further reading, we
recommend (Arora and Barak 2009, p. 95). We define the problems on the second level
of the polynomial hierarchy via algorithms that have access to a Sat-oracle, which is a
function that takes an instance of Sat as input and decides whether this instance is a
yes-instance or not in constant time. Note that, with access to such an oracle we can
solve any problem in NP (or coNP) in polynomial time, as we can reduce our problem to
Sat (or Unsat) in polynomial time and then make a single call to the Sat-oracle to
solve our problem. Instead of the term Sat-oracle we will also use the term NP-oracle,
as any other NP-complete problem can be used instead of Sat.

Definition 2.4. A decision problem is

• in ΣP
2 if it can be decided in nondeterministic polynomial time by an algorithm with

access to an NP-oracle (Arora and Barak 2009);

• in ΠP
2 if its complement is in ΣP

2 (Arora and Barak 2009).

• in ΔP
2 if it can be decided in polynomial time by an algorithm with access to an

NP-oracle (Krentel 1988);

• in ΘP
2 , also called ΔP

2 [O(log n)], if it can be decided in polynomial time by an
algorithm which is allowed O(log n) number of calls to an NP-oracle, where n is
the size of the input (Wagner 1990);

• in ΔP
2 [O(log2 n)] if it can be decided in polynomial time by an algorithm which is

allowed O(log2 n) number of calls to an NP-oracle, where n is the size of the input
(Castro and Seara 1992);

• in DP if it is the intersection of a problem in NP and a problem in coNP (Papadim-
itriou and Yannakakis 1982).

A useful ΣP
2 -complete problem is QBF2

∃, where we are given a Quantified Boolean Formula
(QBF) of the form Φ = ∃x1, . . . , xn∀y1, . . . , ymϕ with ϕ being a propositional formula
over variables x1, . . . , xn, y1, . . . , ym, and ask whether Φ is valid, meaning that there is
an assignment to x1, . . . , xn such that for all assignments to y1, . . . , ym we satisfy ϕ; For
ΠP

2 we will make use of the analogously defined QBF2
∀, where we are given a QBF of

the form Φ∀x1, . . . , xn∃y1, . . . , ymϕ, see e.g. (Biere et al. 2021). In the case of QBF2
∀, the

propositional formula ϕ can be assumed to be in conjunctive normal form (CNF), i.e.,
ϕ = C1 ∧ · · · ∧ Ck with Ci = (z1 ∨ · · · ∨ zl).

For ΔP
2 we use the LexMaxSat problem where we are given a propositional formula

ϕ and an ordering x1 > . . . > xn over the variables in ϕ, and ask if xn is true in the
lexicographically largest model of ϕ (Creignou, Pichler, and Woltran 2018). The ΘP

2 -
complete LogLexMaxSat problem and the ΔP

2 [O(log2 n)]-complete Log2LexMaxSat
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P

NP coNP

DP

ΘP
2

ΔP
2 [O(log2 n)]

ΔP
2

ΣP
2 ΠP

2

Figure 2.1: The complexity classes used in this thesis. An arrow indicates that the class
from which the arrow originates is a subset of the class to which the arrow is pointing to.

problem are defined analogously, but we are given an ordering over only log(n) (resp.
log(n)2) variables in ϕ (Creignou, Pichler, and Woltran 2018; Segoufin and ten Cate
2013).

Lastly, we will also make use of the DP-complete SatUnsat problem, where we are
given two propositional formulas ϕ1 and ϕ2 and ask whether ϕ1 is satisfiable and ϕ2 is
unsatisfiable (Papadimitriou and Yannakakis 1982).

Figure 2.1 depicts the complexity classes used in this thesis and how they are related.

2.3 Abstract Argumentation
Abstract argumentation is a simple yet powerful tool for modeling discussions and dealing
with conflicting information (Baroni, Caminada, and Giacomin 2018). In Subsection 2.3.1
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we recall the basics of abstract argumentation as introduced by Dung (1995). In Subsec-
tions 2.3.2 and 2.3.3 we then describe two generalizations of Argumentation Frameworks
(AFs) that we will build upon in this thesis, namely Preference-based AFs, which provide
the foundation needed to deal with preferences, and Claim-augmented AFs, which allow
us to take not only arguments but also their claims/conclusions into account.

2.3.1 Abstract Argumentation Frameworks (AFs)
AFs were first introduced by Dung (1995). Arguments in AFs are abstract in the sense
that we are not concerned with the internal structure of the argument themselves. Rather,
we are interested in the relationship between arguments, which is modeled via attacks
between arguments. If there is an attack between two arguments, then the arguments are
in conflict and cannot be jointly accepted. Moreover, usually we require that an attacked
argument must be defended against its attackers in order to be accepted.

Definition 2.5 (AF). An Argumentation Framework (AF) is a tuple F = (A, R) where A
is a finite set of arguments and R ⊆ A×A is an attack relation between arguments. S ⊆ A
attacks b ∈ A (in F ) if (a, b) ∈ R for some a ∈ S; S+

F = {b ∈ A | ∃a ∈ S : (a, b) ∈ R}
denotes the set of arguments attacked by S. S⊕

F = S ∪ S+
F is the range of S in F . An

argument a ∈ A is defended (in F ) by S if b ∈ S+
F for each b with (b, a) ∈ R.

Semantics for AFs are defined as functions σ which assign to each AF F = (A, R) a
set σ(F ) ⊆ 2A of extensions (Baroni, Caminada, and Giacomin 2018). We consider for
σ the functions cf (conflict-free), adm (admissible), com (complete), grd (grounded),
stb (stable), naive (naive), prf (preferred), sem (semi-stable), and stg (stage).

Definition 2.6 (AF-semantics). Let F = (A, R) be an AF. For a set S ⊆ A it holds that

• S ∈ cf (F ) iff there are no a, b ∈ S, such that (a, b) ∈ R;

• S ∈ naive(F ) iff S ∈ cf (F ) and there is no T ∈ cf (F ) with S ⊂ T ;

• S ∈ stg(F ) iff S ∈ cf (F ) and there is no T ∈ cf (F ) with S⊕
F ⊂ T ⊕

F ;

• S ∈ adm(F ) iff S ∈ cf (F ) and each a ∈ S is defended by S in F ;

• S ∈ prf (F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;

• S ∈ sem(F ) iff S ∈ adm(F ) and there is no T ∈ adm(F ) with S⊕
F ⊂ T ⊕

F ;

• S ∈ stb(F ) iff S ∈ cf (F ) and each a ∈ A \ S is attacked by S in F ;

• S ∈ com(F ) iff S ∈ adm(F ) and each a ∈ A defended by S in F is contained in S;

• S ∈ grd(F ) iff S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S.
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a b c d e

f

Figure 2.2: Example AF.

Let us provide a small example. AFs will be depicted as directed graphs, where the nodes
are arguments and the edges are attacks between arguments.

Example 2.7. Let F = (A, R) be the AF depicted in Figure 2.2, i.e.,

A = {a, b, c, d, e, f},

R = {(a, b), (b, a), (b, c), (c, f), (d, c), (d, e), (e, d), (f, e), (f, f)}.

Regarding conflict-free semantics, observe that, e.g., {a, b} *∈ cf (F ) since (a, b) ∈ R. On
the other hand, {a, c} ∈ cf (F ) since (a, c) *∈ R, (c, a) *∈ R, (a, a) *∈ R, and (c, c) *∈ R.
Moreover, note that {f} *∈ cf (F ) since the argument f is self-attacking, i.e., since
(f, f) ∈ R.

cf (F ) = {∅, {a}, {b}, {c}, {d}, {e},

{a, c}, {a, d}, {a, e}, {b, d}, {b, e}, {c, e}, {a, c, e}}.

Since naive extensions are the subset-maximal conflict-free sets, we have

naive(F ) = {{a, d}, {b, d}, {b, e}, {a, c, e}}.

Note that there is only one conflict-free set S such that S⊕
F = A, namely S = {a, c, e}.

Thus, {a, c, e}⊕
F ⊃ T ⊕

F for all T ∈ cf (F ) such that T *= {a, c, e}. Therefore,

stg(F ) = stb(F ) = {{a, c, e}}.

Regarding admissible semantics we have, e.g., {c} *∈ adm(F ) since c does not defend
itself against the attacks from b and d. However, {a, c, e} ∈ adm(F ) since a defends c
and since c defends e. Overall we have

adm(F ) = {∅, {a}, {b}, {d}, {a, d}, {b, d}, {a, c, e}}.

The preferred semantics are the subset-maximal admissible sets, i.e.,

prf (F ) = {{a, d}, {b, d}, {a, c, e}}.

Analogously to conflict-free sets, there is only one admissible set S such that S⊕
F = A,

namely S = {a, c, e}. Thus,

sem(F ) = stb(F ) = {{a, c, e}}.
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Table 2.1: Complexity of AFs (Dvořák and Dunne 2018).

σ CredAF
σ SkeptAF

σ VerAF
σ

cf in P trivial in P
adm NP-c trivial in P
com NP-c P-c in P
grd P-c P-c P-c
stb NP-c coNP-c in P
naive in P in P in P
prf NP-c ΠP

2 -c coNP-c
sem ΣP

2 -c ΠP
2 -c coNP-c

stg ΣP
2 -c ΠP

2 -c coNP-c

As for complete semantics, we have com(F ) = adm(F ) since no admissible set defends
an argument outside of the set. Thus,

com(F ) = {∅, {a}, {b}, {d}, {a, d}, {b, d}, {a, c, e}}.

Lastly, the subset-minimal complete extensions is ∅, i.e.,

grd(F ) = {∅}.

AFs have been studied with regards to many properties such as semantic principles (van
der Torre and Vesic 2018) and computational complexity (Dvořák and Dunne 2018) in the
literature. Regarding semantic principles, we will consider preference-specific principles
(see Subsection 2.3.2) and other properties such as I-maximality (see Definition 2.25
in Subsection 2.3.3). Regarding complexity, which will be a major focus in this thesis,
the three central problems are those of credulous acceptance, skeptical acceptance, and
verification. See below for their formal definition. Table 2.1 shows their complexity.

Definition 2.8. Given an AF-semantics σ we define the following decision problems:

• Credulous Acceptance (CredAF
σ ): given an AF F and an argument x, is x ∈ S for

some S ∈ σ(F )?

• Skeptical Acceptance (SkeptAF
σ ): given an AF F and an argument x, is x ∈ S in

all S ∈ σ(F )?

• Verification (VerAF
σ ): given an AF F and a set of arguments S, is S ∈ σ(F )?
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a b c P with a � b and b � c

a b c R1(P )

a b c R2(P )

a b c R3(P )

a b c R4(P )

Figure 2.3: The four preference reductions used for PAFs.

2.3.2 Preference-based Argumentation Frameworks (PAFs)
Preference-based AFs constitute one way of introducing preferences, in the sense of
variable argument strength, to abstract argumentation (Amgoud and Cayrol 1998, 2002;
Kaci et al. 2021). Specifically, they generalize standard Dung-style AFs by introducing
preferences between arguments.

Definition 2.9 (PAF). A Preference-based AF (PAF) is a triple P = (A, R, �) where
(A, R) is an AF and � is an asymmetric preference relation over A.

Notice that preferences in PAFs are not required to be transitive. While transitivity of
preferences is often assumed in general and also in argumentation (Amgoud and Vesic
2014; Kaci, van der Torre, and Villata 2018), this is not entirely uncontroversial (Kaci
et al. 2021; Schumm 1987). In this thesis, we do not assume transitivity but will consider
the effect of transitive orderings when applicable.

If a and b are arguments and a � b holds then we say that a is stronger than b (and that
b is weaker than a). But what effect should this ordering have? How should this influence,
e.g., the set of admissible arguments? One possibility is to remove all attacks from weaker
to stronger arguments, and to then determine the set of admissible arguments in the
resulting AF. This altering of attacks in a PAF based on its preference-ordering is called
a reduction. The literature describes four such reductions for AFs (Kaci et al. 2021),
which we now define.

Definition 2.10 (Preference reduction). Given a PAF P = (A, R, �), the corresponding
AF Ri(P ) = (A, R�) is constructed via Reduction i, where i ∈ {1, 2, 3, 4}, as follows:

• i = 1: ∀a, b ∈ A : (a, b) ∈ R� ⇔ (a, b) ∈ R, b *� a

• i = 2: ∀a, b ∈ A : (a, b) ∈ R� ⇔ ((a, b) ∈ R, b *� a) ∨ ((b, a) ∈ R, (a, b) /∈ R, a � b)

• i = 3: ∀a, b ∈ A : (a, b) ∈ R� ⇔ ((a, b) ∈ R, b *� a) ∨ ((a, b) ∈ R, (b, a) *∈ R)

• i = 4: ∀a, b ∈ A : (a, b) ∈ R� ⇔ ((a, b) ∈ R, b *� a) ∨ ((b, a) ∈ R, (a, b) /∈ R, a �
b) ∨ ((a, b) ∈ R, (b, a) *∈ R)
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Figure 2.3 visualizes the four preference reductions. Intuitively, Reduction 1 removes
attacks that contradict the preference ordering while Reduction 2 reverts such attacks.
Reduction 3 removes attacks that contradict the preference ordering, but only if the
weaker argument is attacked by the stronger argument also. Reduction 4 can be seen as
a combination of Reductions 2 and 3: if a weak argument attacks a stronger argument,
and there is no reverse attack, add a reverse attack but do not remove the attack from
the weak to the strong argument; if a weak argument attacks a stronger argument, but
there is a reverse attack, remove the attack from the weaker argument.

The semantics for PAFs are defined in a straightforward way: first, one of the four
reductions is applied to the given PAF; then, AF-semantics are applied to the resulting
AF.

Definition 2.11 (PAF-semantics). Let P be a PAF and let i ∈ {1, 2, 3, 4}. The
preference-based variant of an AF-semantics σ relative to Reduction i is defined as
σi(P ) = σ(Ri(P )).

Example 2.12. Consider the PAF P depicted in Figure 2.3, i.e., P = (A, R, �) with

A = {a, b, c},

R = {(a, b), (b, a), (c, b)},

a � b and b � c.

The AFs R1(P ), R2(P ), R3(P ), and R4(P ) resulting from applying the various preference
reductions are also depicted in Figure 2.3.

For Reduction 1 we have cf 1(P ) = cf (R1(P )) = {∅, {a}, {b}, {c}, {a, c}, {b, c}} and thus
naive1(P ) = naive(R1(P )) = {{a, c}, {b, c}}. Moreover, adm1(P ) = adm(R1(P )) =
{∅, {a}, {c}, {a, c}} and therefore prf 1(P ) = prf (R1(P )) = {{a, c}}.

For Reduction 2, on the other hand, we get cf 2(P ) = cf (R2(P )) = {∅, {a}, {b}, {c}, {a, c}},
i.e., {b, c} *∈ cf 2(P ). Thus, naive2(P ) = naive(R2(P )) = {{b}, {a, c}}. Moreover,
adm2(P ) = adm(R2(P )) = {∅, {a}, {a, c}}, i.e., {c} *∈ adm2(P ). The preferred semantics
are the same as under Reduction 1 in this case, i.e., prf 2(P ) = prf (R2(P )) = {{a, c}}.

For Reductions 3 and 4 the conflict free sets are the same as under Reduction 2 in this
case, i.e., cf 2(P ) = cf 3(P ) = cf 4(P ). The admissible sets, on the other hand, are the
same as under Reduction 1, i.e., adm1(P ) = adm3(P ) = adm4(P ).

PAFs have the same complexity as standard AFs (see Table 2.1) with respect to the
decision problems of Definition 2.8: hardness results follow from the fact that PAFs
generalize AFs, and membership results from the fact that the four preference reductions
can be carried out in polynomial time.

A principle-based analysis of the four preference reductions was conducted for complete,
grounded, preferred, and stable semantics (Kaci et al. 2021; Kaci, van der Torre, and
Villata 2018). To this end, ten PAF-properties were laid out and investigated. We now
recall them in Definitions 2.13, 2.14, 2.16, and 2.18 according to (Kaci et al. 2021).
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Definition 2.13. Let σi
p be a PAF-semantics. Let �, ��⊆ (A × A) such that � ∪ �� is

asymmetric.

• P 1 (conflict-freeness): If (x, y)∈R there is no S ∈ σi
p(A, R, �) such that {x, y} ⊆ S.

• P2 (preference selects extensions 1): σi
p(A, R, � ∪ ��) ⊆ σi

p(A, R, �).

• P3 (preference selects extensions 2): σi
p(A, R, �) ⊆ σi

p(A, R, ∅).

Intuitively, P1 states that if there is an attack between two arguments, then there is no
extension containing both of them. P 2 expresses that adding more preferences to a PAF
can exclude extensions, but not introduce them. P3 states that this is in particular true
if we add preferences to a framework without any preferences, i.e., P 3 is a special case of
P2.

Definition 2.14. Let σi
p be a PAF-semantics. Let �, ��⊆ (A × A) such that � ∪ �� is

asymmetric.

• P4 (extension refinement): for all S� ∈ σi
p(A, R, � ∪ ��) there is S ∈ σi

p(A, R, �)
such that S ⊆ S�.

• P5 (extension growth): �(σi
p(A, R, �)) ⊆ �(σi

p(A, R, � ∪ ��)).

• P6 (number of extensions): |σi
p(A, R, � ∪ ��)| ≤ |σi

p(A, R, �)|.

P4 states that adding preferences means extensions will be supersets of extensions in
the original PAF. P5 says that adding preferences will preserve skeptically accepted
arguments, and might cause new arguments to be skeptically accepted. P6 expresses
that the number of extensions will not grow if new preferences are added.

For the next two principles, we need to define the notion of an argument’s status.

Definition 2.15. Let F = (A, R, �) be a PAF and x ∈ A. We write

• status(x, F ) = sk-cr iff x is skeptically and credulously accepted in F ;

• status(x, F ) = cr iff x is credulously but not skeptically accepted in F ;

• status(x, F ) = rej iff status(x, F ) *∈ {sk-cr , cr}.

We define the order over theses statuses as follows: sk-cr > cr > rej.

Note that in stable semantics an argument is not always credulously accepted if it is
skeptically accepted, since there are AFs without stable extensions. Thus, some argument
x might be skeptically accepted with respect to stable semantics, yet we still might have
status(a, F ) = rej.
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Definition 2.16. Let σi
p be a PAF-semantics.

• P7 (status conservation): status(x, (A, R, � ∪ {(x, y)})) ≥ status(x, (A, R, �)).

• P8 (preference-based immunity): if (x, x) *∈ R and x � y for all y ∈ A \ {x} then
status(x, (A, R, �)) *= rej.

If a semantics satisfies P 7 then the status of an argument x cannot be lowered by adding
a preference x � y where x is the preferred (stronger) argument. P8 states that if an
argument x is not self-attacking and also stronger than all other arguments, then x
cannot be rejected.

For principles P9 and P10 we need the concept of paths between two arguments, by
which we mean a path in the underlying undirected graph of a PAF.

Definition 2.17. Let F = (A, R, �) be a PAF. Let R− = {(x, y) | (y, x) ∈ R}. There is
a path between x ∈ A and y ∈ A iff there is a sequence of arguments z1, . . . , zn ∈ A such
that z1 = x, zn = y, and (zk, zk+1) ∈ R ∪ R− for all 1 ≤ k < n.

Definition 2.18. Let σi
p be a PAF-semantics.

• P9 (path preference influence 1): if there is no path from x ∈ A to y ∈ A in
(A, R, �) then σi

p(A, R, �) = σi
p(A, R, � ∪ {(x, y)}).

• P10 (path preference influence 2): if (x, y) *∈ R and (y, x) *∈ R then σi
p(A, R, �) =

σi
p(A, R, � ∪ {(x, y)}).

If P9 is satisfied then adding a preference between two arguments x and y that do not
occur in the same weakly connected component does not change the extensions of a
PAF. P10 is similar to P9, but only requires that there is no direct connection between
arguments x and y.

Table 2.2 shows which semantics satisfy which principle, as investigated in (Kaci et al.
2021; Kaci, van der Torre, and Villata 2018).

2.3.3 Claim-augmented Argumentation Frameworks (CAFs)
CAFs generalize standard AFs by assigning a claim to each argument (Dvořák and
Woltran 2020). The notion of enriching arguments with claims/conclusions appears often
and under various names in the literature. For instance, Conclusion-based AF (Rocha and
Cozman 2022a,b) are equivalent to CAFs as we consider them, while Argument-Conclusion
Structures (Baroni, Governatori, and Riveret 2016) are not technically equivalent but
strongly related to CAFs.
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Table 2.2: Satisfaction of various PAF-principles (Kaci et al. 2021; Kaci, van der Torre,
and Villata 2018). C stands for complete, G for grounded, P for preferred, and S for
stable. × indicates that none of those four semantics satisfy this principle.

R1 R2 R3 R4

P1 (conflict-freeness) × CGPS CGPS CGPS
P2 (preference selects extensions) × × CS ×
P3 (preference selects extensions 2) × × CS ×
P4 (extension refinement) × × CGS ×
P5 (extension growth) × × CG ×
P6 (number of extensions) G G CGPS G
P7 (status conservation) CGPS CGPS CGPS CGPS
P8 (preference-based immunity) CGP CGP × CPS
P9 (path preference influence 1) CGPS CGPS CGPS CGPS
P10 (path preference influence 2) CGPS CGPS CGPS CGPS

Definition 2.19 (CAF). A Claim-augmented AF (CAF) is a triple F = (A, R, cl) where
(A, R) is an AF and cl : A → C is a function that maps arguments to an infinite domain of
claims C. The claim-function is extended to sets of arguments via cl(S) = {cl(a) | a ∈ S}.
A well-formed CAF (wfCAF) is a CAF (A, R, cl) in which all arguments with the same
claim attack the same arguments, i.e., for all a, b ∈ A with cl(a) = cl(b) we have that
{c | (a, c) ∈ R} = {c | (b, c) ∈ R}.

Well-formed CAFs are an important subclass of CAFs that capture a natural behavior
common to many structured argumentation formalisms and instantiations (Cyras and
Toni 2016; Modgil and Prakken 2013), i.e., that all arguments with the same claim attack
the same arguments. Moreover, wfCAFs enjoy advantages when it comes to semantic
and computational properties, as we will see below.

There are two types of semantics for CAFs, inherited and hybrid. Inherited semantics
apply AF-semantics to the underlying AF of a given CAF, and then collect the claims of
arguments contained in an extension.

Definition 2.20 (Inherited semantics). Let F = (A, R, cl) be a CAF. The inherited
CAF-variant of an AF-semantics σ is defined as σinh(F) = {cl(S) | S ∈ σ((A, R))}.

Example 2.21. Let F = (A, R, cl) be the CAF depicted in Figure 2.4, i.e.,

A = {a, b, c, d, e, f},

R = {(a, b), (b, a), (b, c), (c, f), (d, c), (d, e), (e, d), (f, e), (f, f)},

cl(a) = cl(d) = α,

cl(b) = cl(e) = cl(f) = β,

cl(c) = γ.
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a
α

b

β

c
γ

d
α

e

β

f β

Figure 2.4: Example CAF.

Note that F is not well-formed, since, e.g., (a, b) ∈ R but (d, b) *∈ R despite cl(a) = cl(d).

The underlying AF (A, R) of F is the AF we examined in Example 2.7. The extensions of
F on the claim-level can be inferred from the extensions of (A, R) on the argument-level
(see Example 2.7). Thus, we have

cf inh(F) = {∅, {α}, {β}, {γ}, {α, γ}, {α, β}, {β, γ}, {α, β, γ}},

naiveinh(F) = {{α}, {β}, {α, β}, {α, β, γ}},

adminh(F) = cominh(F) = {{∅, {α}, {β}, {α, β}, {α, β, γ}},

prf inh(F) = {{α}, {α, β}, {α, β, γ}},

stginh(F) = seminh(F) = stbinh = {{α, β, γ}},

grd(F) = {∅}.

Hybrid semantics (Dvořák, Rapberger, and Woltran 2023) employ subset-maximization
(such as in preferred semantics) on the claim-level rather than the argument level.

Definition 2.22 (Claim-defeat & claim-range). A set of arguments S ⊆ A defeats a
claim α ∈ cl(A) in F iff S attacks every a ∈ A with cl(a) = α (in F). S∗

F = {α ∈
cl(A) | S defeats α in F} denotes the set of all claims which are defeated by S in F . The
claim-range of a set S of arguments is denoted by S�

F = cl(S) ∪ S∗
F .

Definition 2.23 (Hybrid semantics). Let F = (A, R, cl) be a CAF with underlying AF
F = (A, R). Consider a set of claims C ⊆ cl(A). We call S ⊆ A a σinh-realization of C
in F iff S ∈ σ(A, R) and cl(S) = C.

• C ∈ prf hyb(F) if C is ⊆-maximal in adminh(F);

• C ∈ naivehyb(F) if C is ⊆-maximal in cf inh(F);

• C ∈ stb-admhyb(F) if there is an adminh-realization S of C which defeats any
α ∈ cl(A) \ C (i.e., S�

F = cl(A));

• C ∈ stb-cf hyb(F) if there is a cf inh-realization S of C which defeats any α ∈ cl(A)\C
(i.e., S�

F = cl(A));
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stbinh

stb-admhyb

stb-cf hyb

stghyb stginh

naiveinh naivehyb

semhybseminh

prf hyb prf inh

cominh

adminh

cf inh

(a) General CAFs.

stbinh = stb-admhyb = stb-cf hyb

stghyb stginh

naiveinh

naivehyb

semhybseminh

prf inh = prf hyb

cominh

adminh

cf inh

(b) Well-formed CAFs.

Figure 2.5: Relations between semantics on (well-formed) CAFs. If there is an arrow from
σµ to τν , then σµ(F) ⊆ τν(F) for all CAFs F of the respective CAF-class. Semantics
highlighted in gray are I-maximal.

• C ∈ semhyb(F) if there is an adminh-realization S of C in F such that there is no
T ∈ adm(F ) with S�

F ⊂ T�
F ;

• C ∈ stghyb(F) if there is an cf inh-realization S of C in F such that there is no
T ∈ cf (F ) with S�

F ⊂ T�
F .

To refer to an arbitrary CAF-semantics we write σµ or τν , where σ, τ ∈ {cf , adm, com,
naive, stb, stb-adm, stb-cf , prf , sem, stg} and µ, ν ∈ {inh, hyb}.

Example 2.24. Consider again the CAF F = (A, R, cl) depicted in Figure 2.4. Recall
that we already investigated this CAF with regards to inherited semantics inExample 2.21.
In contrast to inherited semantics, for hybrid naive and preferred semantics we have

naivehyb(F) = prf hyb(F) = {{α, β, γ}}.

Regarding claim-range, notice that the admissible argument-set {a, c, e} already contains
every claim in F , i.e., cl({a, c, e}) = cl(A). Thus, {a, c, e}�F = cl(A). For the admissible
argument set {b, d} we have cl({b, d}) = {α, β} and {b, d}∗

F = {γ}, i.e., {b, d}�F = cl(A).
There is no other admissible argument set S ∈ adm(A, R) such that S�

F = cl(A). Thus,

semhyb(F) = stb-admhyb(F) = {{α, β}, {α, β, γ}}.

For the conflict-free (but not admissible) argument set {b, e} we have cl({b, e}) = {β}
and {b, e}∗

F = {α, γ}, i.e., {b, e}�F = cl(A). There is no other conflict-free argument set
S ∈ cf ((A, R)) such that S�

F = cl(A). Thus,

stghyb(F) = stb-cf hyb(F) = {{β}, {α, β}, {α, β, γ}}.
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Table 2.3: Complexity of CAFs (Dvořák et al. 2023; Dvořák and Woltran 2020).

σµ
CredΔ

σµ
SkeptΔ

σµ
VerΔ

σµ

Δ ∈ {CAF , wfCAF} Δ = CAF Δ = wfCAF Δ = CAF Δ = wfCAF

cf inh in P trivial NP-c in P
adminh NP-c trivial NP-c in P
cominh NP-c P-c NP-c in P
stbinh

NP-c coNP-c NP-c in Pstb-admhyb

stb-cf hyb

naiveinh in P coNP-c NP-c
in P

naivehyb ΠP
2 -c coNP-c DP-c

prf inh NP-c ΠP
2 -c

ΣP
2 -c coNP-c

prf hyb DP-c
seminh ΣP

2 -c ΠP
2 -c ΣP

2 -c coNP-c
semhyb

stginh ΣP
2 -c ΠP

2 -c ΣP
2 -c coNP-c

stghyb

The relationship between the various CAF-semantics has been investigated for both
general and well-formed CAFs (Dvořák, Rapberger, and Woltran 2023). See Figure 2.5
for a summary of these results. It can be seen that many inherited and hybrid semantics
coincide on wfCAFs, but not on general CAFs.

Many argumentation semantics employ argument maximization (e.g. preferred or naive)
and therefore deliver incomparable extensions on standard AFs: for all S, T ∈ prf (F ),
S ⊆ T implies S = T . This property is called I-maximality (Baroni and Giacomin 2007),
and is defined analogously for CAFs:

Definition 2.25 (I-maximality). A CAF-semantics σµ is I-maximal for a class F of
CAFs if, for all CAFs F ∈ F and all C, D ∈ σµ(F), C ⊆ D implies C = D.

Figure 2.5 shows I-maximality properties of CAFs (Dvořák, Rapberger, and Woltran
2023). For wfCAFs, I-maximality is preserved in all maximization-based semantics except
naiveinh , implying natural behavior analogous to AFs; see, e.g., (van der Torre and Vesic
2018) for a general discussion of such properties.

The computational complexity of CAFs has been investigated as well (Dvořák et al.
2023; Dvořák and Woltran 2020), revealing more differences between general CAFs and

28



2.4. Choice Logics

wfCAFs. The main decision problems for CAFs are defined analogously to those for AFs
(see Definition 2.8), except that we are now interested in the acceptance of claims.

Definition 2.26 (Decision problems for CAFs). We consider the following decision
problems pertaining to a CAF-semantics σµ:

• Credulous Acceptance (CredCAF
σµ

): Given a CAF F and claim α, is α contained in
some C ∈ σµ(F)?

• Skeptical Acceptance (SkeptCAF
σµ

): Given a CAF F and claim α, is α contained in
each C ∈ σµ(F)?

• Verification (VerCAF
σµ

): Given a CAF F and a set of claims C, is C ∈ σµ(F)?

We furthermore consider these reasoning problems restricted to wfCAFs and denote them
by CredwfCAF

σµ
, SkeptwfCAF

σµ
, and VerwfCAF

σµ
.

Table 2.3 shows the complexity of these problems. The complexity of the verification
problem drops by one level in the polynomial hierarchy when comparing general CAFs
to wfCAFs. This is an important advantage of wfCAFs, as a lower complexity in the
verification problem allows for a more efficient enumeration of claim-extensions (Dvořák
and Woltran 2020).

2.4 Choice Logics
Qualitative Choice Logic (QCL) (Brewka, Benferhat, and Berre 2004) is a formalism for
preference representation that extends classical propositional logic by the connective #»×
called ordered disjunction. Intuitively, A

#»×B can be read as “A or B but preferably A”.
In this way, QCL enables us to express both hard- and soft-constraints, i.e., both truth
and preferences, in one unified language. In the master thesis of the author (Bernreiter
2020), a general framework that captures QCL as well as other logics such as Conjunctive
Choice Logic (CCL) (Boudjelida and Benferhat 2016) and Lexicographic Choice Logic
(LCL) (Bernreiter 2020) was introduced.

In Subsection 2.4.1 we formally define the notion of choice logics in accordance with the
choice logic framework introduced in (Bernreiter 2020). In Subsection 2.4.2 we explicitly
define QCL, CCL, and LCL. Finally, in Subsection 2.4.3 we recall some crucial properties
of choice logic formulas, including their computational complexity, as investigated in the
master thesis of the author (Bernreiter 2020).

2.4.1 Syntax and Semantics
Choice logics are an extension of classical propositional logic (see Section 2.1). In addition
to the classical connectives (¬, ∧, ∨) a choice logic can feature one or several additional
choice connectives.
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Definition 2.27. Let U denote the (countably infinite) set of propositional variables
(also called atoms). The set of choice connectives CL of a choice logic L is a finite set of
symbols such that CL ∩ {¬, ∧, ∨} = ∅. The set FL of formulas of L is defined inductively
as follows:

1. if a ∈ U , then a ∈ FL;

2. if F ∈ FL, then (¬F ) ∈ FL;

3. if F, G ∈ FL, then (F ◦ G) ∈ FL for ◦ ∈ ({∧, ∨} ∪ CL).

For instance, in QCL the set of choice connectives is CQCL = { #»×}. Formulas that do
not contain a choice connective are referred to as classical formulas. Note that classical
propositional logic is the choice logic containing no choice connectives, i.e., CPL = ∅.

The semantics of a choice logic is given by two functions: satisfaction degree and
optionality. The satisfaction degree of a formula given an interpretation is either a
natural number or ∞. The lower this degree, the more preferable the interpretation. The
optionality of a formula describes the maximal finite satisfaction degree that this formula
can be ascribed, and is used to penalize non-satisfaction.

Definition 2.28. The optionality of a choice connective ◦ ∈ CL in a choice logic L is
given by a function opt◦

L : N2 → N such that opt◦
L(k, ') ≤ (k + 1) · (' + 1) for all k, ' ∈ N.

The optionality of an L-formula is given via optL : FL → N with

1. optL(a) = 1, for every a ∈ U ;

2. optL(¬F ) = 1;

3. optL(F ∧ G) = max(optL(F ), optL(G));

4. optL(F ∨ G) = max(optL(F ), optL(G));

5. optL(F ◦ G) = opt◦
L(optL(F ), optL(G)) for every ◦ ∈ CL.

The optionality of a classical formula is always 1. Moreover, for any choice connective ◦,
the optionality of F ◦G is bounded such that optL(F ◦G) ≤ (optL(F )+1) · (optL(G)+1).
The reason for this is that there are optL(F ) many finite degrees that could be ascribed
to F , plus the infinite degree ∞. Likewise for G. Thus, there are at most (optL(F ) + 1) ·
(optL(G) + 1) possibilities in which the degrees of F and G can be combined.

As in classical propositional logic, interpretations in choice logics are sets of propositional
variables. Again, a variable x is true under I iff x ∈ I, and false under I iff x *∈ I.
Regarding the domain of satisfaction degrees we write N for (N ∪ {∞}).
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Definition 2.29. The satisfaction degree of a choice connective ◦ ∈ CL in a choice logic
L is given by a function deg◦

L : N2 × N2 → N such that deg◦
L(k, ', m, n) ≤ opt◦

L(k, ') or
deg◦

L(k, ', m, n) = ∞ for all k, ' ∈ N and all m, n ∈ N. The satisfaction degree of an
L-formula under an interpretation I ⊆ U is given via degL : 2U × FL → N with

1. degL(I, a) =
�

1 if a ∈ I
∞ otherwise

for every a ∈ U ;

2. degL(I, ¬F ) =
�

1 if degL(I, F ) = ∞
∞ otherwise;

3. degL(I, F ∧ G) = max(degL(I, F ), degL(I, G));

4. degL(I, F ∨ G) = min(degL(I, F ), degL(I, G));

5. degL(I, F ◦ G) = deg◦
L(optL(F ), optL(G), degL(I, F ), degL(I, G)) for every ◦ ∈ CL.

Note that, by definition, either degL(I, F ) ≤ optL(F ) or degL(I, F ) = ∞ for all L-
formulas F . This is as intended, since the optionality of a formula represents its maximal
finite satisfaction degree.

We sometimes use the alternative notation I |=L
m F for degL(I, F ) = m. If m < ∞, we

say that I satisfies F (to a finite degree), and if m = ∞, then I does not satisfy F . If
F is a classical formula, then I |=L

1 F iff I |= F and I |=L∞ F iff I *|= F . The symbol
⊥ is shorthand for the formula (a ∧ ¬a), where a is an arbitrary variable. We have
optL(⊥) = 1 and degL(I, ⊥) = ∞ for any interpretation I in every choice logic.

The models of a choice logic formula are the interpretations that satisfy the formula, and
the preferred models are the models that satisfy the formula to a minimal degree.

Definition 2.30. Let L be a choice logic, I an interpretation, and F an L-formula. I
is a model of F , written as I ∈ ModL(F ), iff degL(I, F ) < ∞. I is a preferred model of
F , written as I ∈ Prf L(F ), iff I ∈ ModL(F ) and degL(I, F ) ≤ degL(J , F ) for all other
interpretations J .

When specifying the (preferred) models of a formula F , we will often only include
interpretations I that are relevant to F , i.e., I ⊆ var(F ) where var(F ) is the set of
variables occurring in F . This is purely for succinctness. In general, a formula that
has a (preferred) model indeed has an infinite number of them, since I ∈ ModQCL(F )
(resp. I ∈ Prf QCL(F )) and x *∈ var(F ) implies I ∪ {x} ∈ ModQCL(F ) (resp. I ∪ {x} ∈
Prf QCL(F )).
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Table 2.4: The satisfaction degrees resulting from applying the classical connectives ∧, ∨
and the choice connectives #»× (QCL), #»� (CCL), #»� (LCL) to atoms.

I a ∧ b a ∨ b a
#»×b a

#»�b a #»� b

∅ ∞ ∞ ∞ ∞ ∞
{b} ∞ 1 2 ∞ 3
{a} ∞ 1 1 2 2

{a, b} 1 1 1 1 1

2.4.2 Prominent Choice Logics
So far we introduced choice logics in a quite abstract way. We now introduce three
particular instantiations, namely QCL (Brewka, Benferhat, and Berre 2004), the first
and most prominent choice logic in the literature, CCL (Boudjelida and Benferhat 2016),
which introduces a connective #»� called ordered conjunction in place of QCL’s ordered
disjunction #»×, and LCL (Bernreiter 2020), which replaces ordered disjunction with a
lexicographic operator #»� .

Definition 2.31. QCL is the choice logic such that CQCL = { #»×}, and, if k = optQCL(F ),
' = optQCL(G), m = degQCL(I, F ), and n = degQCL(I, G), then

optQCL(F #»×G) = opt
#»×
QCL(k, ') = k + ', and

degQCL(I, F
#»×G) = deg

#»×
QCL(k, ', m, n) =

����
m if m < ∞;
n + k if m = ∞, n < ∞;
∞ otherwise.

In the above definition, we can see how optionality is used to penalize non-satisfaction:
given a QCL-formula F

#»×G and an interpretation I, if I satisfies F (to some finite
degree), then degQCL(I, F

#»×G) = degQCL(I, F ) ≤ optQCL(F ); if I does not satisfy F ,
then degQCL(I, F

#»×G) = optQCL(F ) + degQCL(I, G) > optQCL(F ). Therefore, interpre-
tations that satisfy F result in a lower degree, i.e., are more preferable, compared to
interpretations that do not satisfy F . Table 2.4 shows how ordered disjunction behaves
when applied to atoms. The following example highlights how classical conjunction
interacts with ordered disjunction.

Example 2.32. Consider the QCL-formula

F = (a #»×c) ∧ (b #»×c).

Notice that the interpretation {a} satisfies (a #»×c) to a degree of 1 but (b #»×c) to a degree
of ∞. Thus, {a} |=QCL∞ F . Analogously for {b}. Moreover, ∅ satisfies both (a #»×c) and
(b #»×c) to a degree of ∞, i.e., ∅ |=QCL∞ F .
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The interpretation {a, c} satisfies (a #»×c) to a degree of 1 but (b #»×c) to a degree of 2. Thus,
{a, c} |=QCL

2 F . Analogously for {b, c}. Moreover, {c} satisfies both (a #»×c) and (b #»×c) to
a degree of 2, i.e., {c} |=QCL

2 F .

Lastly, the interpretations {a, b} and {a, b, c} satisfy both (a #»×c) and (b #»×c) to a degree
of 1, i.e., I |=QCL

1 F for I ∈ {{a, b}, {a, b, c}}. We can conclude that ModQCL(F ) =
{{c}, {a, c}, {b, c}, {a, b}, {a, b, c}} while Prf QCL(F ) = {{a, b}, {a, b, c}}.

Suppose now we get the additional information that a and b cannot be jointly satisfied.
We encode this in the updated formula

F � = ((a #»×c) ∧ (b #»×c)) ∧ ¬(a ∧ b).

Now the interpretations {a, b} and {a, b, c} satisfy F � to a degree of ∞, while {c},
{a, c}, and {b, c} still satisfy F � to a degree of 2. Thus, we have that Prf QCL(F �) =
{{c}, {a, c}, {b, c}}. This shows that the notion of preferred models in QCL is non-
monotonic, since the addition of new information has lead to entirely new preferred
models.

Next, we define CCL. Note that we follow the revised definition of CCL (Bernreiter
2020), which differs from the initial specification3. Intuitively, given a CCL-formula F

#»�G
it is best to satisfy both F and G, but also acceptable to satisfy only F . For instance,
when buying a new car, one might insist that the car has cruise control (cruise), while
preferring configurations that additionally feature a lane assistant (lane). This can be
formalized in CCL as the formula cruise #»�lane.

Definition 2.33. CCL is the choice logic such that CCCL = { #»�}, and, if k = optCCL(F ),
' = optCCL(G), m = degCCL(I, F ), and n = degCCL(I, G), then

optCCL(F #»�G) = k + ', and

degCCL(I, F
#»�G) =

����
n if m = 1, n < ∞;
m + ' if m < ∞ and (m > 1 or n = ∞);
∞ otherwise.

Example 2.34. Consider the CCL-formula

G = (a #»�c) ∧ (b #»�c).

There are only two interpretations relevant to G that satisfy G, namely ModCCL(G) =
{{a, b}, {a, b, c}}. Of these models, {a, b, c} satisfies G to a degree of 1 while {a, b}
satisfies G to a degree of 2. Therefore, Prf CCL(G) = {{a, b, c}}.

3Under the initial definition of CCL, a
#»�b is always ascribed a degree of 1 or ∞, i.e., non-classical

degrees cannot be obtained (cf. Definition 8 in (Boudjelida and Benferhat 2016)).
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The last choice logic we consider, LCL, employs a more fine-grained type of preference:
given an LCL-formula F #»� G, it is best to satisfy F and G, second-best to satisfy only F ,
and third-best to satisfy only G.

Definition 2.35. LCL is the choice logic such that CLCL = { #»� }, and, if k = optLCL(F ),
' = optLCL(G), m = degLCL(I, F ), and n = degLCL(I, G), then

optLCL(F #»� G) = (k + 1) · (' + 1) − 1, and

degLCL(I, F #»� G) =

����������
(m − 1) · ' + n if m < ∞, n < ∞;
k · ' + m if m < ∞, n = ∞;
k · ' + k + n if m = ∞, n < ∞;
∞ otherwise.

Example 2.36. Consider the LCL-formula

H = (a #»� c) ∧ (b #»� c).

The models relevant to H are ModLCL(H) = {{c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Of these
models, {a, b, c} satisfies H to a degree of 1, {a, b} satisfies H to a degree of 2, and {c},
{a, c}, {b, c} satisfy H to a degree of 3. Therefore, Prf LCL(H) = {{a, b, c}}.

2.4.3 Properties
In this section we present some properties of choice logics that were established in Bern-
reiter (2020) and Bernreiter, Maly, and Woltran (2021), and that we will need in this
thesis.

First, we define the notion of classical counterparts for choice connectives and choice
logic formulas.

Definition 2.37. Let L be a choice logic. The classical counterpart of a choice connective
◦ ∈ CL is the classical binary connective � such that, for all atoms a and b, we have
degL(I, a ◦ b) < ∞ ⇐⇒ I |= a � b. The classical counterpart of an L-formula F is
denoted as cp(F ) and is obtained by replacing all occurrences of choice connectives in F
by their classical counterparts.

Every choice connective has exactly one classical binary connective as its classical
counterpart (Bernreiter 2020, Proposition 22). For example, the classical counterpart
of ordered disjunction #»× is regular disjunction ∨, and the classical counterpart of the
QCL-formula F = (a #»×b) ∨ c is cp(F ) = (a ∨ b) ∨ c. In CCL, the classical counterpart of
#»� is the first projection, i.e., cp(A #»�B) = A. In LCL, the classical counterpart of #»� is ∨.
A natural property of choice logics considered in this thesis is that choice connectives
can be replaced by their classical counterpart without affecting satisfiability.

Proposition 2.38. (Bernreiter 2020, Proposition 23) Let L ∈ {QCL, CCL, LCL}. It
holds that degL(I, F ) < ∞ iff I |= cp(F ) for all interpretations I and all L-formulas F .
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Another result we will make use of is that any choice logic can express arbitrary assign-
ments of satisfaction degrees to interpretations, as long as the degrees are obtainable in
the following sense:

Definition 2.39. A degree m ∈ N is called obtainable in a choice logic L iff there exists
an interpretation I and an L-formula F such that degL(I, F ) = m. By DL we denote
the set of all degrees obtainable in a choice logic L.

For example, DPL = {1, ∞} and DL = N for L ∈ {QCL, CCL, LCL}. As soon as a degree
m is obtainable, any interpretation can be assigned this degree via a suitable formula.
This is useful when proving results for choice logics in general, instead of for a specific
choice logic.

Proposition 2.40. (Bernreiter, Maly, and Woltran 2021, Proposition 1) Let L be
a choice logic. Let V be a finite set of propositional variables, and let s be a function
s : 2V → DL. Then there is an L-formula F such that for every I ⊆ V , degL(I, F ) = s(I).

Lastly, we will make use of complexity results for choice logic formulas established
in (Bernreiter 2020). To this end, we require the notion of tractable choice logics.

Definition 2.41. A choice logic L is called tractable if the optionality- and degree
functions of every choice connective in L are polynomial-time computable.

QCL, CCL, and LCL are all tractable in the above sense.

Definition 2.42. Given a choice logic L we define the following decision problems:

• L-DegreeChecking: given an L-formula F , an interpretation I, and a satisfac-
tion degree k ∈ N, does degL(I, F ) ≤ k hold?

• L-DegreeSat: given an L-formula F and a satisfaction degree k, is there an
interpretation I such that degL(I, F ) ≤ k holds?

• L-PMChecking: given an L-formula F and an interpretation I, does I ∈ Prf L(F )
hold?

• L-PMContainment: given an L-formula F and a propositional variable x, is
there an interpretation I ∈ Prf L(F ) such that x ∈ I?

The complexity of the above decision problems, as investigated in (Bernreiter 2020),
is shown in Table 2.5. Note that L-PMChecking is in P for classical propositional
logic, while it is coNP-complete for the non-classical QCL, CCL, and LCL. Moreover,
the complexity of L-PMContainment ranges from NP-complete (PL) to ΔP

2 -complete
(LCL), with QCL and CCL located inbetween (ΘP

2 -complete).
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Table 2.5: Complexity of choice logic formulas. PL stands for classical propositional logic
and “Tract.‘” stands for an arbitrary tractable choice logic.

Tract. PL QCL/CCL LCL

L-DegreeChecking in P in P in P in P
L-DegreeSat NP-c NP-c NP-c NP-c
L-PMChecking in coNP in P coNP-c coNP-c
L-PMContainment NP-h/in ΔP

2 NP-c ΘP
2 -c ΔP

2 -c

To further study the complexity of choice logics, as we will do in Chapter 5, we need the
notion of a formula’s size. As in (Bernreiter 2020) and (Bernreiter, Maly, and Woltran
2021), |F | denotes the total number of variables occurrences in F , e.g. |(x ∧ x ∧ y)| = 3.
In general, the following holds.

Lemma 2.43. (Bernreiter, Maly, and Woltran 2021, Lemma 11) Let L be a choice logic.
Then, for every L-formula F it holds that optL(F ) < 2(|F |2).

For QCL and CCL, but not LCL, we have optL(F ) ≤ |F |.
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CHAPTER 3
Conditional Preferences in

Abstract Argumentation

Many situations require the use of conditional preferences, where a choice between two
options (e.g. whether to drink tea or coffee) is dependent on other factors (e.g. the time
of day). This has lead to the introduction of formalisms explicitly defined to deal with
conditional preferences. A prominent example are CP-nets (Boutilier et al. 2004), which
use graphs for preference representation. Another example is logic programming, where
conditional preferences may occur in the head of rules (Brewka, Niemelä, and Syrjänen
2004; Charalambidis, Rondogiannis, and Troumpoukis 2021; Delgrande, Schaub, and
Tompits 2003) or as dedicated preference statements (Brewka et al. 2015).

Despite this, conditional preferences have received only limited attention in the field of
argumentation. Dung et al. investigated conditional preferences in the setting of structured
argumentation (Dung, Thang, and Son 2019). There, argumentation frameworks (AFs) are
built from defeasible knowledge bases containing preference rules of the form a1, . . . , an →
d0 � d1, where d0 and d1 are defeasible rules. Similarly, there is only one recent paper
we are aware of that deals with conditional preferences on the abstract level (Alfano et al.
2023). This is in contrast to unconditional preferences, which are extensively studied
both in structured (Modgil and Prakken 2010, 2013, 2018) and abstract (Alfano et al.
2022; Atkinson and Bench-Capon 2021; Bistarelli and Santini 2021; Kaci et al. 2021)
argumentation in the literature.

To demonstrate the importance of conditional preferences in common reasoning tasks,
we now adapt an example from (Dung, Thang, and Son 2019):

Example 3.1. Sherlock Holmes is investigating a murder. There are two suspects,
Person 1 and Person 2. After analyzing the crime scene, Sherlock is sure:

• I1: Person 1 or Person 2 is the culprit, but not both.
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Moreover, Sherlock adheres to the following rules:

• R1: If Person i has a motive but Person j, with j *= i, does not, then this supports
the case that Person i is the culprit.

• R2: If Person i has an alibi but Person j, with j *= i, does not, then this supports
the case that Person j is the culprit.

• R3: Alibis have more importance than motives.

After interrogating the suspects, Sherlock concludes that:

• C1: Person 1 has a motive but Person 2 does not.

• C2: Person 1 has an alibi but Person 2 does not.

If C1 is accepted, but C2 is not, then this supports that Person 1 is the culprit. If C2 is
accepted then this supports that Person 2 is the culprit, regardless of our stance on C1.

In this chapter we aim to capture conditional preferences in argumentation on the abstract
level rather than the structured level. Doing so will generalize existing formalisms for
unconditional preferences in abstract argumentation and may provide a more direct
target formalism for structured approaches.

Contributions. We introduce Conditional Preference-based AFs (CPAFs), where each
subset of arguments S can be associated with its own preference relation �S . Preferences
are then resolved via one of four preference reductions (cf. Subsection 2.3.2) which modify
the attack relation based on the given preferences. As a consequence, S must be justified
in view of its own preferences, i.e., S must be an extension in view of �S . We investigate
the following topics relevant to CPAFs:

• We show that CPAFs generalize Preference-based AFs (PAFs), and demonstrate
that they are capable of dealing with conditional preferences in a general manner.

• We conduct a principle-based analysis of CPAF-semantics and show that especially
complete and stable semantics preserve properties that hold on PAFs. This analysis
is helpful when aiming to understand the behavior of CPAF-semantics in a general
manner, and lets us pinpoint differences to AFs/PAFs formally.

• We analyze the computational complexity of CPAFs in detail, showing that for some
semantics (naive, complete, grounded, preferred) the introduction of conditional
preferences can cause a rise in complexity compared to AFs. This gives insights
into the expressiveness of CPAFs, and differentiates them further from AFs/PAFs.
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• Lastly, we compare CPAFs to related formalisms. Specifically, we show that
CPAFs can capture other generalizations of AFs such as Value-based AFs (VAFs)
(Atkinson and Bench-Capon 2021; Bench-Capon, Doutre, and Dunne 2007) in a
straightforward way, and compare CPAFs to Extended AFs (EAFs) (Baroni et al.
2009; Dunne, Modgil, and Bench-Capon 2010; Modgil 2009) in order to highlight
similarities and differences. Moreover, we discuss a recently introduced alternative
approach to conditional preferences in abstract argumentation (Alfano et al. 2023)
and compare it to our CPAFs.

Publications. This chapter is based on the papers (Bernreiter, Dvořák, and Woltran
2022) and (Bernreiter, Dvořák, and Woltran 2023).

Outline. The remainder of this chapter is structured as follows: In Section 3.1 we
introduce CPAFs and investigate them with respect to some basic properties. Section 3.2
contains our principle-based analysis, and in Section 3.3 we analyze the computational
complexity of CPAFs. We discuss related formalisms in Section 3.4 and conclude in
Section 3.5.

Required preliminaries. Before reading this chapter, it is recommended to read
Section 2.1 (propositional logic), Section 2.2 (computational complexity), and especially
Subsection 2.3.1 (abstract argumentation) and Subsection 2.3.2 (preferences in abstract
argumentation).

3.1 Conditional Preference-Based Argumentation
Frameworks (CPAFs)

As argued above, our aim is to provide a framework for reasoning with conditional
preferences in abstract argumentation. This means that arguments themselves must be
capable of expressing preferences, and that those argument-bound preferences are relevant
only if the corresponding arguments are themselves accepted. How this is implemented
must be considered carefully, as Example 3.1 demonstrates. There, the fact that Person 1
has a motive (let us refer to this as m1) and the fact that Person 1 has an alibi (a1) result
in opposing preferences. When accepting both m1 and a1 it seems natural to combine
these opposing preferences, i.e., to cancel them. But this does not allow us to express
that alibis are more important than motives, as required in Example 3.1. Therefore, we
need to define our formalism in a general way such that the joint acceptance of arguments
must not necessarily result in the combination of their associated preferences. We solve
this by mapping each subset S of arguments to a separate preference relation �S .

Definition 3.2. A Conditional PAF (CPAF) is a triple P = (A, R, cond), where
(A, R) is an AF and cond : 2A → 2(A×A) is a function that maps each set of arguments
S ⊆ A to an irreflexive and asymmetric binary relation �S over A.
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c1 c2 m1 a1
cond:
c1 �S c2 iff m1 ∈ S, a1 *∈ S
c2 �S c1 iff a1 ∈ S

Figure 3.1: The CPAF P from Example 3.4.

c1 c2 m1 a1

RS
i (P) if m1 ∈ S, a1 *∈ S

c1 c2 m1 a1

RS
i (P) if a1 ∈ S

c1 c2 m1 a1

RS
i (P) if m1 *∈ S, a1 *∈ S

Figure 3.2: The preference-reducts of the CPAF P from Figure 3.1/Example 3.4.

We set no restriction on how exactly conditional preferences are represented. This is
deliberate, as we wish to stay as general as possible. In practice, succinct representations
could be achieved, e.g., by expressing the cond-function via rules of the form ϕ ⇒ x � y
where ϕ is a propositional formula over the arguments. Indeed, this representation will
be used by us in Section 3.3 where we analyze the complexity of CPAFs.

Just as in PAFs, preferences in CPAFs are resolved with the help of the four preference-
reductions (cf. Definition 2.10). A set of arguments S is an extension of some CPAF if it
is an extension relative to its associated preference relation cond(S).

Definition 3.3. Let P = (A, R, cond) be a CPAF and let S ⊆ A. The S-reduct
of P with respect to a preference reduction i ∈ {1, 2, 3, 4} is defined as RS

i (P) =
Ri(A, R, cond(S)). Given an AF-semantics σ we define the CPAF-semantics σi

cp as
follows: S ∈ σi

cp(P) iff S ∈ σ(RS
i (P)).

Using CPAFs we can easily formalize our Sherlock Holmes example.

Example 3.4. We continue Example 3.1 and introduce two arguments c1 and c2 ex-
pressing that Person 1 (resp. Person 2) is the culprit. Moreover, we introduce m1
and a1 to express that Person 1 has a motive (resp. alibi) but Person 2 does not. c1
and c2 attack each other while m1 and a1 have no incoming or outgoing attacks, but
rather express preferences. Formally, we model this via the CPAF P = ({c1, c2, m1, a1},
{(c1, c2), (c2, c1)}, cond) with cond such that c1 �S c2 iff m1 ∈ S but a1 *∈ S, c2 �S c1 iff
a1 ∈ S, and cond(S) = ∅ for all other S ⊆ A. Figure 3.1 depicts P and Figure 3.2 shows
the S-reducts of P. Note that m1 and a1 are unattacked in all S-reducts of P. Therefore,
both arguments must be part of any σi

cp-extension for σ ∈ {grd, com, prf , stb} and we can
conclude that σi

cp(P) = {{m1, a1, c2}}.

Note that, according to Definition 3.3, preferred semantics do not maximize over all
admissible sets of a CPAF, but rather over all admissible sets in the given S-reduct.
This means that if there is a set S that is admissible in the S-reduct of P, but there is
also some T ⊃ S that is admissible in the S-reduct of P, then S is not preferred in the
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S-reduct of P (and therefore S *∈ prf i
cp(P)). But this T does not have to be admissible

in P, since it might not be admissible in the T -reduct of P. The situation is analogous
for naive semantics. The following alternative semantics may be considered more natural:

Definition 3.5. Let P = (A, R, cond) be a CPAF and let S ⊆ A. Then

• S ∈ naive-glbi
cp(P) iff S ∈ cf i

cp(P) and there is no T such that S ⊂ T and
T ∈ cf i

cp(P);

• S ∈ prf -glbi
cp(P) iff S ∈ admi

cp(P) and there is no T such that S ⊂ T and
T ∈ admi

cp(P).

Intuitively, naive-glbi
cp and prf -glbi

cp maximize globally over all admissible sets of a CPAF,
while naivei

cp and prf i
cp maximize locally over the admissible sets of the given S-reduct.

Example 3.6. Let P be the CPAF from Example 3.4 and recall that prf i
cp(P) = {{m1,

a1, c2}}. Observe that {m1, c1} is not preferred in the {m1, c1}-reduct of P, but it is a
subset-maximal admissible set in P. Thus, prf -glbi

cp(P) = {{m1, a1, c2}, {m1, c1}}.

The difference between local and global maximization is not only philosophical, but im-
pacts fundamental properties for maximization-based semantics such as I-maximality (Ba-
roni and Giacomin 2007). A semantics σi

cp is I-maximal if and only if S ⊆ T implies
S = T for all CPAFs P and all S, T ∈ σi

cp(P).

Proposition 3.7. prf -glbi
cp is I-maximal, but prf i

cp is not, where i ∈ {1, 2, 3, 4}.

Proof. I-maximality of prf -glbi
cp follows from Definition 3.5. Regarding counterexamples

for prf i
cp we consider the preference-reductions separately. Reduction 1: consider the

CPAF depicted in Figure 3.3a, i.e., P = ({a, b}, {(a, b)}, cond} with cond such that
b �{a,b} a. Then {a} ∈ prf 1

cp(P) and {a, b} ∈ prf 1
cp(P). Reductions 2 and 4: consider

the CPAF depicted in Figure 3.3b, i.e., P � = ({a, b, c}, {(a, b), (b, c), (c, a)}, cond} with
cond such that a �{a} c. Then ∅ ∈ prf i

cp(P �) and {a} ∈ prf i
cp(P �). Reduction 3: consider

the CPAF depicted in Figure 3.3c, i.e., P �� = ({a, b, c}, {(a, b), (b, a), (b, c), (c, a)}, cond}
with cond such that a �∅ b. Then ∅ ∈ prf 3

cp(P ��) and {b} ∈ prf 3
cp(P ��).

One may be tempted to deduce from the above proposition that prf -glbi
cp is more suitable

as a default preferred semantics than prf i
cp. However, we will see in Section 3.4.1 that

prf i
cp allows us to capture the problems of subjective/objective acceptance in VAFs in a

natural way. In our subsequent analysis of CPAFs we consider both local and global subset
maximization. Like preferred semantics, naive and stable semantics satisfy I-maximality
on AFs. Interestingly, on CPAFs, this depends on the preference-reduction.

Proposition 3.8. naive-glbi
cp is I-maximal for i ∈ {1, 2, 3, 4}. Moreover, naivej

cp is
I-maximal for j ∈ {2, 3, 4} but not for j = 1.
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a b
cond:
b �{a,b} a

(a) Counterexample for prf 1
cp, naive1

cp, and stb1
cp.

a

b c

cond:
a �{a} c

(b) Counterexample for prf 2
cp and prf 4

cp.

a

b c

cond:
a �∅ b

(c) Counterexample for prf 3
cp.

Figure 3.3: Counterexamples for I-maximality (cf. Propositions 3.7,3.8,3.9).

Proof. I-maximality of naive-glbi
cp follows from Definition 3.5. I-maximality of naivej

cp
with j ∈ {2, 3, 4} follows from the fact that Reductions 2, 3, and 4 do not remove conflicts
between arguments, and therefore conflict-free sets are the same across all S-reducts.
For naive1

cp we can use the same counter-example as for prf 1
cp (cf. Proposition 3.7 and

Figure 3.3a).

Proposition 3.9. stbj
cp is I-maximal for j ∈ {2, 3, 4} but not for j = 1.

Proof. For stb1
cp we can use the same counter-example as for prf 1

cp (cf. Proposition 3.7
and Figure 3.3a). For stbj

cp with j ∈ {2, 3, 4} we proceed by contradiction: assume
there is a CPAF P = (A, R, cond) with S, T ∈ stbj

cp(P) such that S ⊂ T . Then there
is x ∈ T such that x *∈ S. Since S ∈ stbj

cp(P) there is y ∈ S such that (y, x) ∈ RS
j (P).

Reductions 2, 3, and 4 do not remove conflicts between arguments, and thus either
(y, x) ∈ R or (x, y) ∈ R. Therefore, (y, x) ∈ RT

j (P) or (x, y) ∈ RT
j (P). But y ∈ S implies

y ∈ T , i.e., T *∈ cf j
cp(P).

A further well-known property of AFs is that if an argument set S is stable in a framework
F , then S is also preferred in F (Dung 1995). The same is true for CPAFs, with the
exception of preferred semantics utilizing global maximization and Reduction 1.

Proposition 3.10. If S ∈ stbi
cp(P) then S ∈ prf i

cp(P) for i ∈ {1, 2, 3, 4}. Moreover, if
S ∈ stbj

cp(P) then S ∈ prf -glbj
cp(P) for j ∈ {2, 3, 4}. However, S ∈ stb1

cp(P) does not
necessarily imply S ∈ prf -glb1

cp(P).

Proof. Let P = (A, R, cond) be a CPAF, and let S ∈ stbi
cp(P), where i ∈ {1, 2, 3, 4}.

Then S ∈ stb(RS
i (P)). Since RS

i (P) is an AF this implies S ∈ prf (RS
i (P)) which means

that S ∈ prf i
cp(P).

Now let j ∈ {2, 3, 4}. If S ∈ stbj
cp(P) then every argument in RS

j (P) is either in S or
attacked by it. Towards a contradiction, assume there is T ∈ admj

cp(P) such that T ⊃ S.
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Then there is some x ∈ T \S. Since S attacks x in RS
j (P) there is a conflict between some

y ∈ S and x in the underlying AF (A, R) of P. Note that y ∈ T . But Reductions 2, 3, 4
cannot remove conflicts between arguments, i.e., T *∈ cf (RT

j (P)). Contradiction.

For prf -glb1
cp, let P be the CPAF from Figure 3.3a). Then {a} ∈ stb1

cp(P) but {a} *∈
prf -glb1

cp(P).

A further interesting point is that grounded extensions are not necessarily unique in
CPAFs: consider P = ({a, b}, {(a, b)}, cond) with cond such that b �{b} a. Then
{a} ∈ grd2

cp(P) and {b} ∈ grd2
cp(P). We stress that each grounded extension S is still

unique in the S-reduct of the given CPAF and thus unique with respect to its own
preferences.

One more crucial difference between PAFs and CPAFs we want to highlight concerns
Dung’s fundamental lemma (Dung 1995), which says that if a set of arguments S is
admissible and x is acceptable w.r.t. S then S ∪ {x} is admissible.4 This fundamental
lemma is satisfied in AFs (and therefore PAFs) but not in CPAFs.

Proposition 3.11. Dung’s fundamental lemma does not hold for CPAFs.

Proof. Let P be the CPAF from Example 3.4/Figure 3.1 with its reducts shown in
Figure 3.2. Note that {c2} ∈ admi

cp(P) for all i ∈ {1, 2, 3, 4}. Moreover, m1 is acceptable
w.r.t. {c2} since m1 is unattacked in P and every S-reduct of P. However, {c2, m1} *∈
admi

cp(P).

We argue that not satisfying Dung’s fundamental lemma is no drawback in the case
of CPAFs but rather allows us to deal with conditional preferences in a flexible way.
For example, in the proof of Proposition 3.11 the set {c2} is admissible since, when
considering only admissibility, we are not forced to include the unattacked m1, i.e., we do
not have to accept that Person 1 has a motive. But if we do accept that Person 1 has a
motive, then we can no longer accept c2. Note that the inclusion of unattacked arguments
in CPAFs is handled via more restrictive approaches such as stable or preferred semantics,
as usual.

Lastly, by the following proposition we express that every CPAF-semantics considered
here generalizes their corresponding PAF-semantics, i.e., that CPAFs generalize PAFs.

Proposition 3.12. Let P = (A, R, cond) be a CPAF such that the preference func-
tion cond maps every set of arguments to the same binary relation, i.e., there is
some � such that cond(S) = � for all S ⊆ A. Let σ ∈ {cf , naive, adm, com, grd,
prf , stb}. Then σi

cp(P) = σi
p(A, R, �). Furthermore, naive-glbi

cp(P) = naivei
p(A, R, �)

and prf -glbi
cp(P) = prf i

p(A, R, �).
4An argument x is acceptable w.r.t. a set of arguments S iff S defends x against all attackers.

43



3. Conditional Preferences in Abstract Argumentation

3.2 Principle-Based Analysis
Principles play an important role in argumentation theory, as they allow us to examine
the vast amount of semantics defined for AFs in a general way (Baroni and Giacomin
2007; Dvořák et al. 2024; van der Torre and Vesic 2018). In this section, we generalize the
principles of Kaci et al. (Kaci et al. 2021) for PAFs (cf. Definitions 2.13, 2.14, 2.16, 2.18
in Subsection 2.3.2) to account for conditional preferences. We then investigate by which
semantics these principles are satisfied, and show that there are differences to PAFs.

In the case of PAFs, adding more preferences to a framework (A, R, �) means that we now
deal with the PAF (A, R, � ∪ ��). In the case of CPAFs, if we want (A, R, cond �) to have
at least the same preferences as (A, R, cond), we must require that cond(S) ⊆ cond �(S)
for all S ⊆ A. But if we only want to add a single preference x � y to a CPAF we add
x �S y to a subset S and leave the preferences associated with other subsets unchanged.
Given the above considerations, generalizing the PAF-principles to CPAF-principles
is quite straightforward. The notions of an argument’s status and paths between two
arguments in a CPAF are defined analogously to PAFs (cf. Definitions 2.15, 2.17), e.g.,
status(x, P) = cr iff x is contained in some but not all extensions of the CPAF P.

Definition 3.13. Let σi
cp be a CPAF-semantics. In the following, given a CPAF

(A, R, cond), we denote by cond � an arbitrary function such that cond(S) ⊆ cond �(S) for
all S ⊆ A. Moreover, cond(x,y) is the same as cond except that for some S ⊆ A we have
(x, y) ∈ cond(x,y)(S) but (x, y), (y, x) *∈ cond(S). Lastly, cond∅(S) = ∅ for all S ⊆ A.

• P1∗ (conflict-freeness): If (x, y) ∈ R there is no S ∈ σi
cp(A, R, cond) such that

{x, y} ⊆ S.

• P2∗ (preference selects extensions): σi
cp(A, R, cond �) ⊆ σi

cp(A, R, cond).

• P3∗ (preference selects extensions 2): σi
cp(A, R, cond) ⊆ σi

cp(A, R, cond∅).

• P 4∗ (extension refinement): for all S� ∈ σi
cp(A, R, cond �) there is S ∈ σi

cp(A, R, cond)
s.t. S ⊆ S�.

• P5∗ (extension growth): �(σi
cp(A, R, cond)) ⊆ �(σi

cp(A, R, cond �)).

• P6∗ (number of extensions): |σi
cp(A, R, cond �)| ≤ |σi

cp(A, R, cond)|.
• P7∗ (status conservation): status(x, (A, R, cond(x,y))) ≥ status(x, (A, R, cond)).

• P 8∗ (preference-based immunity): if (x, x) *∈ R and if cond is defined such that for
all S ⊆ A and all y ∈ A \ {x} we have x �S y then status(x, (A, R, cond)) *= rej.

• P9∗ (path preference influence 1): if there is no path from x ∈ A to y ∈ A in
(A, R, cond) then σi

cp(A, R, cond) = σi
cp(A, R, cond(x,y)).

• P10∗ (path preference influence 2): if (x, y) *∈ R and (y, x) *∈ R then σi
cp(A, R, cond) =

σi
cp(A, R, cond(x,y)).
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The following lemma establishes some relationships between the CPAF-principles and is
a generalization of known relationships between PAF-principles (Kaci et al. 2021).

Lemma 3.14. If σi
cp satisfies P 2∗ then it also satisfies P 3∗, P 4∗, and P 6∗. If σi

cp always
returns at least one extension, and if it satisfies P2∗, then it also satisfies P5∗.

Proof. For P3∗, P4∗, and P6∗ this is easy to see. For P5∗ we argue this in de-
tail: let σi

cp be a semantics that returns at least one extension, but does not satisfy
P5∗. Thus, there is A, R, cond, cond � with cond(S) ⊆ cond �(S) for all S ⊆ A, such
that �(σi

cp(A, R, cond)) *⊆ �(σi
cp(A, R, cond �)). Then there is x ∈ A such that x ∈�(σi

cp(A, R, cond)) but x *∈ �(σi
cp(A, R, cond �)), i.e., there is E ⊆ A such that x *∈ E and

E ∈ σi
cp(A, R, cond �). Of course, E *∈ σi

cp(A, R, cond), otherwise x *∈ �(σi
cp(A, R, cond)).

But then σi
cp(A, R, cond �) *⊆ σi

cp(A, R, cond), i.e., σi
cp does not satisfy P2∗.

Observe that, since CPAFs are a generalization of PAFs (cf. Proposition 3.12), a CPAF-
semantics σi

cp cannot satisfy Pj∗ if the corresponding PAF-semantics σi
p does not satisfy

Pj. Moreover, it is obvious that P1∗ is still satisfied under Reductions 2, 3, and 4, as
conflicts are not removed by these reductions even if we consider conditional preferences.
We can also show that satisfaction of P2 carries over from PAFs to CPAFs.

Lemma 3.15. If σi
p satisfies P2 then σi

cp satisfies P2∗.

Proof. By contrapositive, assume σi
cp does not satisfy P2∗. Then there is a CPAF P =

(A, R, cond) and cond � with cond(S) ⊆ cond �(S) for all S ⊆ A such that σi
cp(A, R, cond �) *⊆

σi
cp(A, R, cond). Thus, there is E ⊆ A such that E ∈ σi

cp(A, R, cond �) but E *∈
σi

cp(A, R, cond). Then E ∈ σ(Ri(A, R, cond �(E))) but E *∈ σ(Ri(A, R, cond(E))), i.e.,
σi

p does not satisfy P2.

Lemma 3.15 implies that complete and stable semantics satisfy P2∗ on CPAFs under
Reduction 3. By Lemma 3.14 these semantics also satisfy P3∗, P4∗, and P6∗. However,
we cannot use Lemma 3.14 to show that complete semantics satisfy P 5∗, since conditional
preferences allow for frameworks without complete extensions. Indeed, we can find a
counter-example in this case. Counterexamples for the satisfaction of various principles
can also be found for grounded semantics, both variants of the preferred semantics, and
even stable semantics in the case of P8∗.

Lemma 3.16. The following holds:

• grdi
cp, where i ∈ {1, 2, 3, 4}, does not satisfy any of P4∗, P5∗, or P6∗;

• com3
cp does not satisfy P5∗;

• prf 3
cp and prf -glb3

cp do not satisfy P6∗;

• σi
cp, where for σ ∈ {com, grd, prf , stb} and i ∈ {1, 2, 3, 4}, does not satisfy P8∗.
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a b

cond:
a �∅ b
a �{a} b

cond �:
a ��

∅ b
a ��

{a} b

b ��
{b} a

(a) Counterexample grdi
cp (P4∗, P5∗, P6∗)

a b

cond:
a �∅ b
a �{b} b

cond �:
a ��

∅ b
a ��

{b} b

b ��
{a} a

(b) Counterexample com3
cp (P5∗)

a

b

c

d

cond(S) = ∅
for all S ⊆ A

cond �:
c ��

{b} a

d ��
{a} b

c ��
{a,b} a

d ��
{a,b} b

(c) Counterexample prf 3
cp, prf -glb3

cp (P6∗)

a

b c

cond:
a �S b for all S ⊆ A
a �S c for all S ⊆ A
b �{a} c
b �{a,c} c
c �{a,b} b

(d) Counterexample comi
cp, grdi

cp, prf i
cp,

stbi
cp (P8∗)

Figure 3.4: Counterexamples used in Lemma 3.16.

Proof. We provide counterexamples for all cases.

• For grdi
cp and P4∗, P5∗, P6∗, consider A = {a, b}, R = {(a, b), (b, a)}, and

cond/cond � as shown in Figure 3.4a. Then grdi
cp(A, R, cond) = {{a}} while

grdi
cp(A, R, cond �) = {{a}, {b}}.

• For com3
cp and P5∗, consider A = {a, b}, R = {(a, b), (b, a)}, and cond/cond � as

shown in Figure 3.4b. Then com3
cp(A, R, cond) = {{a}} but com3

cp(A, R, cond �) = ∅.

• For prf 3
cp, prf -glb3

cp and P6∗, consider A = {a, b, c, d}, R = {(a, c), (c, a), (b, d),
(d, b), (c, c), (d, d)}, and cond/cond � as shown in Figure 3.4c. Then prf 3

cp(A, R, cond) =
prf -glb3

cp(A, R, cond) = {{a, b}} while prf 3
cp(A, R, cond �) = prf -glb3

cp(A, R, cond �) =
{{a}, {b}}.

• Regarding P8∗, consider the CPAF P = (A, R, cond) shown in Figure 3.4d. Note
that (a, a) *∈ R and a �S y for all S ⊆ A and all y *∈ {a}. Observe that b

is unattacked in R{a}
i (P). Thus, {a} *∈ σ(R{a}

i (P)) for σ ∈ {com, grd, prf , stb}.
Moreover, b is not defended against c in R{a,b}

i (P). Analogously for c in R{a,c}
i (P).

Thus, status(a, P) = rej.

We have now fully investigated the first six principles. It remains to examine principles
7-10, of which we so far only know that P8∗ is not satisfied by most semantics. It turns
out that P8∗ is retained when using preferred semantics with global maximization.

Lemma 3.17. prf -glbi
cp satisfies P8∗ for i ∈ {1, 2, 4}.
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Proof. Let P = (A, R, cond) be a CPAF containing an argument x ∈ A such that
(x, x) *∈ R and for all S ⊆ A and all y ∈ A \ {x} we have x �S y. Specifically, this means
that x �{x} y for all y ∈ A \ {x}. Then, by definition of Reduction i ∈ {1, 2, 4}, x defends
itself against all attacks in R{x}

i (P). Thus, {x} ∈ admi
cp(P). By this and the definition

of prf -glb, there is some E ∈ prf -glbi
cp(P) such that x ∈ E.

Now we turn our attention to P 7∗, where, analogously to P 2∗ (cf. Lemma 3.15), it turns
out that satisfaction carries over from PAFs to CPAFs.

Lemma 3.18. If σi
p satisfies P7 then σi

cp satisfies P7∗.

Proof. By contrapositive, assume σi
cp does not satisfy P7∗. Then there is a CPAF P =

(A, R, cond) such that status(x, (A, R, cond(x,y))) < status(x, (A, R, cond)). This means
there is some S ⊆ A ∪ {x} for which S ∈ σi

cp(A, R, cond) but S *∈ σi
cp(A, R, cond(x,y)).

By the definition of CPAF-semantics this means that S ∈ σi
p(A, R, cond(S)) but S *∈

σi
p(A, R, cond(S) ∪ {(x, y)}), i.e., σi

p does not satisfy P7.

However, unlike in the case of P2∗, the above lemma does not constitute an exhaustive
investigation of P7∗. The reason for this is that P7, in contrast to P2, is satisfied by
preferred semantics on PAFs (cf. Table 2.2). Lemma 3.18 only allows us to conclude that
prf i

cp satisfies P7∗, but it says nothing about the satisfaction of prf -glbi
cp. We find that

P7∗ is satisfied also when maximizing admissible sets globally.

Lemma 3.19. prf -glbi
cp satisfies P7∗.

Proof. Let P = (A, R, cond) be an arbitrary CPAF and x ∈ A. Let P(x,y) = (A, R, cond(x,y))
as specified in Definition 3.13. There are three possible cases:

1. status(x, P) = rej. Then status(x, P(x,y)) ≥ status(x, P) trivially holds.

2. status(x, P) = cr . Then there is some S ∈ admi
cp(P) with x ∈ S. We distinguish

two cases:

a) cond(S) = cond(x,y)(S). Then clearly S ∈ admi
cp(P(x,y)).

b) cond(S) *= cond(x,y)(S). Then cond(x,y) is the same as cond except that
(x, y) ∈ cond(x,y)(S) but (x, y), (y, x) *∈ cond(S) for some y ∈ A \ {x}. Adding
the preference x � y via cond(x,y) does not introduce any new attacks against
S in RS

i (P(x,y)), no matter which of the preference reductions we consider.
Thus, S ∈ admi

cp(P(x,y)).

In both cases we have S ∈ admi
cp(P(x,y)) and therefore T ∈ prf -glbi

cp(P(x,y)) for
some T ⊇ S. Thus, status(x, P(x,y)) ≥ cr .
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Table 3.1: Satisfaction of CPAF-principles. C stands for complete, G for grounded, P
for preferred (both prf i

cp and prf -glbi
cp), and S for stable. Pg indicates that prf -glbi

cp
satisfies the principle but prf i

cp does not. If a cell is marked with × then none of the
investigated semantics satisfy this principle.

R1 R2 R3 R4

P1∗ (conflict-freeness) × CGPS CGPS CGPS

P2∗ (preference selects extensions) × × CS ×
P3∗ (preference selects extensions 2) × × CS ×
P4∗ (extension refinement) × × CS ×
P5∗ (extension growth) × × × ×
P6∗ (number of extensions) × × CS ×
P7∗ (status conservation) CGPS CGPS CGPS CGPS

P8∗ (preference-based immunity) Pg Pg × Pg

P9∗ (path preference influence 1) CGPS CGPS CGPS CGPS

P10∗ (path preference influence 2) CGPS CGPS CGPS CGPS

3. status(x, P) = sk-cr . By the same line of reasoning as in case (2) we have
status(x, P(x,y)) ≥ cr . Towards a contradiction, assume that status(x, P(x,y)) *=
sk-cr . Then there is some S ∈ prf -glbi

cp(P(x,y)) such that x *∈ S. Since status(x, P) =
sk-cr we know that S *∈ prf -glbi

cp(P). One of the following must be the case:

a) S *∈ cf i
cp(P). Since S ∈ prf -glbi

cp(P(x,y)) it must be that S ∈ cf i
cp(P(x,y)).

Then it must be that the additional preference in cond(x,y) removes a conflict
between two arguments in S. But this preference is x � y for some y ∈ A\{x}.
Thus, x ∈ S. Contradiction.

b) S ∈ cf i
cp(P) but S *∈ admi

cp(P). Since S ∈ prf -glbi
cp(P(x,y)) it must be that

S ∈ admi
cp(P(x,y)). However, the additional preference x � y added via

cond(x,y) at most adds an attack (x, y). Since x *∈ S this means that S is still
not defended in RS

i (P(x,y)). Contradiction.
c) S ∈ admi

cp(P) but there is T ⊃ S such that T ∈ prf -glbi
cp(P). Since

status(x, P) = sk-cr we know that x ∈ T . Since T ∈ prf -glbi
cp(P) we have

T ∈ admi
cp(P). By the same line of reasoning as in case (2) we can conclude

that T ∈ admi
cp(P(x,y)) and therefore S *∈ prf -glbi

cp(P(x,y)). Contradiction.

In all three cases we arrive at a contradiction. Thus, status(x, P(x,y)) = sk-cr .

Lastly, we must consider principles 9 and 10. Below, we show that they retain the
satisfaction of all principles under all considered semantics.
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Lemma 3.20. σi
cp satisfies P9∗ and P10∗ for σ ∈ {com, grd, prf , prf -glb, stb}.

Proof. Let P = (A, R, cond) be an arbitrary CPAF and x ∈ A. Let P(x,y) = (A, R, cond(x,y))
as specified in Definition 3.13. Note that the premise for P9∗ (there is no path from
x ∈ A to y ∈ A) implies the premise of P10∗ ((x, y) *∈ R and (y, x) *∈ R). If (x, y) *∈ R
and (y, x) *∈ R then the additional preference x � y added via cond(x,y) does not
delete or add any attacks, regardless of which preference reduction we consider. This
means that RS

i (P) = RS
i (P(x,y)) for all S ⊆ A and all i ∈ {1, 2, 3, 4} and therefore

σi
cp(A, R, cond) = σi

cp(A, R, cond(x,y)) for all i ∈ {1, 2, 3, 4}.

The above results constitute an exhaustive investigation of the ten CPAF-principles for
all semantics considered in this chapter. Thus, we can conclude:

Theorem 3.21. The satisfaction of CPAF-principles depicted in Table 3.1 holds.

To summarize, complete and stable semantics preserve the satisfaction of PAF-principles
in most cases. Grounded semantics no longer satisfies any of the principles 1-6 on CPAFs
except P1∗ (conflict-freeness) since grounded extensions are not unique on CPAFs, and
since there are even CPAFs without a grounded extension (cf. Lemma 3.16). Unlike on
PAFs, complete semantics does not satisfy P5∗ (extension growth) under Reduction 3.
Furthermore, neither variant of preferred semantics satisfies P6∗ (number of extensions)
under Reduction 3. As for principles 7-10, we note that only P8∗ is no longer satisfied
by all semantics.

3.3 Complexity
The computational complexity of Dung-style AFs and various generalizations thereof has
received considerable attention in the literature (Dvořák and Dunne 2018). Indeed, com-
plexity results give insights into the expressiveness of specific argumentation formalisms
and help to find appropriate methods for solving a given problem. Note that AFs and
PAFs have the same properties with regards to complexity, i.e., none of the four preference
reductions result in a higher complexity when considering unconditional preferences in
the setting of Dung-AFs. The situation is not as clear when dealing with conditional
preferences. As we have seen in previous sections, CPAFs do not necessarily have unique
grounded extensions, there are CPAFs without any complete extensions, and there is
more than one way of dealing with subset maximization (recall the naive/naive-glb and
prf /prf -glb semantics). In this section, we show that these differences between CPAFs
and AFs/PAFs have an impact on complexity.

We define VerCPAF
σ,i , CredCPAF

σ,i , and SkeptCPAF
σ,i analogously to VerAF

σ , CredAF
σ , and

SkeptAF
σ (cf. Definition 2.8 in Subsection 2.3.1), with the difference that the framework

in question is now a CPAF instead of an AF and that we appeal to the σi
cp semantics of

Definitions 3.3 and 3.5 rather than the AF-semantics of Definition 2.6:
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Definition 3.22. Given a CPAF-semantics σi
cp we define the following decision problems:

• Credulous Acceptance (CredCPAF
σ,i ): given a CPAF P and an argument x, is x ∈ S

for some S ∈ σi
cp(P)?

• Skeptical Acceptance (SkeptCPAF
σ,i ): given a CPAF P and an argument x, is x ∈ S

in all S ∈ σi
cp(P)?

• Verification (VerCPAF
σ,i ): given a CPAF P and a set of arguments S, is S ∈ σi

cp(P)?

In the interest of generality, we did not impose a specific method to represent condi-
tional preferences in the previous sections. However, when analyzing the computational
complexity of CPAFs, it is necessary to decide on more specific representations if tight
bounds are to be found. Therefore, we will assume conditional preferences to be expressed
succinctly as arbitrary propositional formulas. Note that if preferences would be stored
explicitly for each possible set of arguments, the input size of our problems would always
be exponentially larger than the underlying AF itself, and thus some decision problems
for CPAFs would be in lower complexity classes than their counterparts for AFs.

Specifically, given the set of arguments A in a framework P = (A, R, cond) we allow a
finite number of rules ϕ ⇒ x � y where x, y ∈ A and ϕ is a propositional formula built
from atoms in A and the usual connectives (¬, ∧, ∨). As for the meaning of these rules,
we define that for some S ⊆ A we have x �S y iff there is a rule ϕ ⇒ x � y such that
S |= ϕ and there is no rule ϕ� ⇒ y � x such that S |= ϕ�.5 Observe that, given S ⊆ A,
it is possible to compute �S in polynomial time with respect to the size of the given
framework P since S |= ϕ can be decided in polynomial time for each rule ϕ ⇒ x � y.6

Our complexity results are summarized in Table 3.2. Note that problems for naive/naive-glb
semantics become harder only under Reduction 1. Intuitively, this is because Reduction 1
can remove conflicts between arguments altogether, unlike Reductions 2-4. Observe that
naive-glb under Reduction 1 is the only semantics for which the verification problem be-
comes harder (coNP-complete) compared to AFs (in P). As a result, skeptical acceptance
for naive-glb is ΠP

2 -complete, i.e., the complexity rises by two levels in the polynomial
hierarchy compared to the case of AFs. For complete semantics, skeptical acceptance
is now coNP-complete regardless of which preference reduction is used. With respect
to grounded semantics we see an increase in complexity for both credulous acceptance
(NP-complete) and skeptical acceptance (coNP-complete). Lastly, for preferred seman-
tics with local maximization, credulous acceptance rises by one level in the polynomial
hierarchy compared to AFs.

5A set of atoms S can be seen as an interpretation, with x set to true under S iff x ∈ S.
6In fact, for our membership results the explicit representation of rules using propositional formulas

is not necessary. It suffices to have some representation such that, given S ⊆ A, we can determine �S

in polynomial time with respect to the size of P = (A, R, cond). However, for hardness results, a more
concrete representation such as via our rules is necessary.
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Table 3.2: Complexity of CPAFs with conditional preferences represented via finitely
many rules of the form ϕ ⇒ x � y. Underlines indicate a rise in complexity compared to
AFs.

σ CredCPAF
σ,1 /CredCPAF

σ,j∈{2,3,4} SkeptCPAF
σ,1 /SkeptCPAF

σ,j∈{2,3,4} VerCPAF
σ,1 /VerCPAF

σ,j∈{2,3,4}

cf in P trivial in P
naive NP-c/in P coNP-c/in P in P
naive-glb in P ΠP

2 -c/in P coNP-c/in P
adm NP-c trivial in P
com NP-c coNP-c in P
grd NP-c coNP-c P-c
stb NP-c coNP-c in P
prf ΣP

2 -c ΠP
2 -c coNP-c

prf -glb NP-c ΠP
2 -c coNP-c

Theorem 3.23. The complexity results for CPAFs depicted in Table 3.2 hold.

The remainder of this section is dedicated to proving Theorem 3.23. We first consider
the verification problem, for which most semantics have the same complexity as in the
case of AFs.

Lemma 3.24. VerCPAF
σ,i , where i ∈ {1, 2, 3, 4}, has the same complexity properties with

regards to membership and hardness as VerAF
σ for σ ∈ {cf , naive, adm, com, grd, stb, prf }.

Moreover, VerCPAF
prf -glb,i is coNP-complete for i ∈ {1, 2, 3, 4}.

Proof. Hardness follows from the fact that CPAFs are a generalization of AFs. Member-
ship for σ ∈ {cf , naive, adm, com, grd, stb, prf }: given a CPAF P and a set of arguments
S, we can determine �S and therefore also RS

i (P) in polynomial time. It then suffices to
check whether S ∈ σ(RS

i (P)). Membership for σ = prf -glb: let (P, S) be an arbitrary
instance of VerCPAF

prf -glb,i, i.e., P = (A, R, cond) is a CPAF and S ⊆ A is a set of arguments.
First, check in polynomial time whether S ∈ admi

cp(P). Then, in coNP-time, check that
for all T we have either T ⊆ S or T *∈ admi

cp(P).

For naive semantics with global maximization (naive-glb) we see a rise in complexity, but
only when using Reduction 1. The following proof makes use of Reduction 1’s ability
to delete conflicts between arguments. By Sat we denote the NP-complete satisfiability
problem for propositional formulas, and by Unsat we denote its complementary problem
which is coNP-complete.

Lemma 3.25. VerCPAF
naive-glb,j is in P for j ∈ {2, 3, 4}. VerCPAF

naive-glb,1 is coNP-complete.
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a

x1 x2 . . . xn

ϕ ⇒ a � xi for all 1 ≤ i ≤ n

Figure 3.5: Construction used in the proof of Lemma 3.25. Given a formula ϕ over
variables X = {x1, x2, . . . , xn}, a CPAF P is constructed such that ϕ is unsatisfiable iff
{a} ∈ naive-glb1

cp(P).

Proof. Let (P, S) be an arbitrary instance of VerCPAF
naive-glb,i, i.e., P = (A, R, cond) is a

CPAF and S ⊆ A is a set of arguments. For Reductions 2, 3, and 4 it suffices to check
whether S ∈ naive(A, R) since these reductions cannot remove or add conflicts.

We now turn our attention to Reduction 1. coNP-membership: first check whether
S ∈ cf 1

cp(P). Then, in coNP-time, check that for all T we have either T ⊆ S or
T *∈ cf 1

cp(P).

To show coNP-hardness we provide a reduction from Unsat: let ϕ be an arbitrary
propositional formula over variables X. Let a be a fresh variable, i.e., a *∈ X. We construct
an instance (P, {a}) of VerCPAF

naive-glb,1 as follows: P = (A, R, cond) with A = X ∪ {a},
R = {(x, a) | x ∈ X}, and cond defined by the rules ϕ ⇒ a � x for x ∈ X, i.e., a �S x iff
S |= ϕ. Figure 3.5 depicts the above construction. We now show that ϕ is unsatisfiable
iff {a} ∈ naive-glb1

cp(P) (i.e., (P, {a}) is a yes-instance of VerCPAF
naive-glb,1).

• Suppose ϕ is unsatisfiable. This means that for all x ∈ X and all S ⊆ A we have
a *�S x, i.e., for each x ∈ X the attack (x, a) is present in RS

1 (P). Thus, there is no
conflict-free set containing a other than {a} which implies {a} ∈ naive-glb1

cp(P).

• Suppose ϕ is satisfiable. Then there is an interpretation I ⊆ X such that I |= ϕ.
We assume that I *= ∅. This is permissible since we can check in polynomial
time whether ∅ satisfies ϕ, and if this is the case, return a trivial no-instance
of VerCPAF

naive-glb,1. Consider S = I ∪ {a}. Since a does not appear in ϕ we have
S |= ϕ and therefore a �S x for all x ∈ X. Thus, S ∈ cf 1

cp(P) and, since {a} ⊂ S,
{a} *∈ naive-glb1

cp(P).

We now consider credulous and skeptical acceptance, starting with semantics based solely
on conflict-freeness. Let us first cover the cases in which there is no rise in complexity.

Lemma 3.26. CredCPAF
σ,i is in P for σ ∈ {cf , naive-glb}, i ∈ {1, 2, 3, 4}. CredCPAF

naive,j is
in P for j ∈ {2, 3, 4}.

Proof. Let (P, x) be an instance of CredCPAF
σ,i . For σ = cf it suffices to check whether x

is self-attacking in the underlying AF of P , since self-attacks are not removed by any of
the four reductions. For σ = naive-glb it suffices to test whether (P, x) is a yes-instance
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a b

x1 x2 . . . xn

x1 x2 . . . xn

¬ϕ ∧ a ∧ ¬b ⇒ b � a

Figure 3.6: Construction used in the proof of Lemma 3.28. Given a formula ϕ over
variables X = {x1, x2, . . . , xn}, a CPAF P is constructed such that ϕ is satisfiable iff
(P, a) is a yes-instance of CredCPAF

naive,1 iff (P, b) is a no-instance of SkeptCPAF
naive,1.

of CredCPAF
cf ,i . For σ = naive and Reductions 2, 3, and 4 it is enough to check whether

x appears in a naive set of the underlying AF, since these reductions cannot remove
conflicts.

Lemma 3.27. SkeptCPAF
cf ,i is trivial for i ∈ {1, 2, 3, 4}. SkeptCPAF

σ,j is in P for σ ∈
{naive, naive-glb} and j ∈ {2, 3, 4}.

Proof. Let (P, x) be an arbitrary instance of Skeptnaive-glb,i, i.e., P = (A, R, cond) is a
CPAF and x ∈ A is an argument. Note that ∅ is always conflict-free in R∅

i (P), i.e., (P, x)
is trivially a no-instance. For σ ∈ {naive, naive-glb} and Reductions 2, 3, and 4 it is
enough to solve the problem on the underlying AF, since these reductions cannot remove
conflicts.

For naive semantics with local maximization the complexity rises by one level in the
polynomial hierarchy under Reduction 1.

Lemma 3.28. CredCPAF
naive,1 is NP-complete and SkeptCPAF

naive,1 is coNP-complete.

Proof. We will consider the complementary problem of SkeptCPAF
naive,1 and show that it is

NP-complete since this allows us to prove both results simultaneously.

NP-Membership: given a CPAF P = (A, R, cond) and an argument x ∈ A, guess a
set S ⊆ A and, in polynomial time, check whether S ∈ naive1

cp(P) and x ∈ S (resp.
S ∈ naive1

cp(P) and x *∈ S).

NP-hardness by reduction from SAT: let ϕ be an arbitrary propositional formula over a
set of variables X. Let a and b be fresh atoms, i.e., a, b *∈ X. We construct an instance
(P, a) of CredCPAF

naive,1 as follows: P = (A, R, cond) with A = X ∪ {x | x ∈ X} ∪ {a, b},
R = {(x, x), (x, x) | x ∈ X} ∪ {(a, b)}, and cond defined by the rule ¬ϕ ∧ a ∧ ¬b ⇒ b � a,
i.e., b �S a iff S |= ¬ϕ ∧ a ∧ ¬b. The above construction is visualized in Figure 3.6. We
show that ϕ is satisfiable iff (P, a) is a yes-instance of CredCPAF

naive,1 iff (P, b) is a no-instance
of SkeptCPAF

naive,1:
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• Assume ϕ is satisfiable. Then there is an interpretation I ⊆ X such that I |= ϕ.
Then also I ∪{a} |= ϕ and I ∪{a} *|= ¬ϕ∧a∧¬b. Let S = I ∪{x | x *∈ I}∪{a}. Note
that b *�S a, which means that a and b are in conflict in RS

1 (P). Furthermore, for
all x ∈ X, we have either x ∈ S or x ∈ S, but not both. Thus, S ∈ naive(RS

1 (P)).
Note that a ∈ S but b *∈ S, i.e., (P, a) is a yes-instance of CredCPAF

naive,1 but (P, b) is
a no-instance of SkeptCPAF

naive,1.

• Assume ϕ is unsatisfiable. Consider some S ⊆ A. If there is some x ∈ X such
that neither x ∈ S nor x ∈ S, then S *∈ naive(RS

1 (P)). Likewise, if there is
some x ∈ X such that both x ∈ S and x ∈ S then S *∈ cf (RS

1 (P)) and therefore
S *∈ naive(RS

1 (P)). It remains to consider sets S in which for all x ∈ X we have
either x ∈ S or x ∈ S but not both. Given such a set, we consider four cases:

1. a *∈ S and b *∈ S. Then S *∈ naive(RS
1 (P)) since S ∪ {a} ∈ cf (RS

1 (P)).
2. a *∈ S and b ∈ S. Then S *|= ¬ϕ ∧ a ∧ ¬b, i.e., b *�S a. This means that the

attack (a, b) is present in RS
1 (P). Note that every argument is either in S or

in conflict with S in RS
1 (P). Moreover, S ∈ cf (RS

1 (P)). We can conclude that
S ∈ naive(RS

1 (P)).
3. a ∈ S and b *∈ S. Then S |= ¬ϕ∧a∧¬b, i.e., b �S a. This means that the attack

(a, b) is deleted in RS
1 (P), which further implies that S ∪ {b} ∈ cf (RS

1 (P)).
Thus, S *∈ naive(RS

1 (P)).
4. a ∈ S and b ∈ S. Then S *|= ¬ϕ ∧ a ∧ ¬b, i.e., b *�S a. This means that

the attack (a, b) is present in RS
1 (P). Thus, S *∈ cf (RS

1 (P)) and therefore
S *∈ naive(RS

1 (P)).

In conclusion, if S ∈ naive1
cp(P) then a *∈ S and b ∈ S. Thus, (P, a) is a no-instance

of CredCPAF
naive,1 but (P, b) is a yes-instance of SkeptCPAF

naive,1.

For naive semantics with global maximization, skeptical acceptance rises by even two
levels in the polynomial hierarchy under Reduction 1. The reason for this is the increased
complexity of the verification problem in this case (cf. Lemma 3.25). Recall that QBF2

∀
denotes the ΠP

2 -complete problem of deciding whether a quantified boolean formula of
the form ∀Y ∃Zϕ, where ϕ is a formula over Y ∪ Z, is true (cf. Section 2.2).

Lemma 3.29. SkeptCPAF
naive-glb,1 is ΠP

2 -complete.

Proof. ΣP
2 -membership for the complementary problem of SkeptCPAF

naive-glb,1: given a CPAF
P = (A, R, cond) and an argument x, guess a set S ⊂ A and check that x *∈ S and, in
coNP-time, that S ∈ naive-glb1

cp(P).

ΠP
2 -hardness: let ∀Y ∃Zϕ be an arbitrary instance of QBF2

∀ over variables Y = {y1, . . . , yn}
and Z = {z1, . . . , zm}. Let X = Y ∪ Z. Using fresh variables a and zm+1 we construct
an instance (P, a) of SkeptCPAF

naive-glb,1 where P = (A, R, cond) with
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ay1 . . . yn

y1 . . . yn z1 . . . zm zm+1

ϕ ∧ zm+1 ⇒ zj � zi for all 1 ≤ i < j ≤ m + 1

ϕ ∧ zm+1 ⇒ a � zi for all 1 ≤ i ≤ m + 1

zi ∧ �
1≤j≤m+1,j �=i(¬zj) ⇒ a � zi for all 1 ≤ i ≤ m

Figure 3.7: Construction used in the proof of Lemma 3.29. Given a quantified boolean
formula ∀Y ∃Zϕ over variables Y = {y1, . . . , yn} and Z = {z1, . . . , zm}, a CPAF P is
constructed such that ∀Y ∃Zϕ is true iff (P, a) is a yes-instance of SkeptCPAF

naive-glb,1.

• A = X ∪ {y | y ∈ Y } ∪ {a, zm+1},

• R = {(y, y), (y, y) | y ∈ Y }∪{(zi, zj) | 1 ≤ i < j ≤ m+1}∪{(zi, a) | 1 ≤ i ≤ m+1},

• and cond defined by the following rules:

– ϕ ∧ zm+1 ⇒ zj � zi for all 1 ≤ i < j ≤ m + 1,
– ϕ ∧ zm+1 ⇒ a � zi for all 1 ≤ i ≤ m + 1,
– zi ∧ �

1≤j≤m+1,j �=i(¬zj) ⇒ a � zi for all 1 ≤ i ≤ m.

Expressed in natural language, the first two rules remove all conflicts between
z1, . . . , zm+1, a if ϕ ∧ zm+1 is satisfied, and the third rule removes the conflict
between some z ∈ Z and a if this z is the only element from Z that is part of the
extension, and if zm+1 is also not part of the extension.

The above construction is visualized in Figure 3.7. Note that the resulting CPAF is
polynomial in the size of ϕ as we employ O(m2) rules, each linear in the size of ϕ. It
remains to show that ∀Y ∃Zϕ is true iff (P, a) is a yes-instance of SkeptCPAF

naive-glb,1.

• Assume that ∀Y ∃Zϕ is true. We want to show that for all S ∈ naive-glb1
cp(P) we

have a ∈ S. Towards a contradiction assume this is not the case, i.e., there is some
S ∈ naive-glb1

cp(P) such that a *∈ S. There are two possibilities:

1. S |= ϕ. Then for S� = S ∪ {a, zm+1} we also have S� |= ϕ since a and zm+1
are fresh variables. Moreover, S� ∈ cf 1

cp(P) since S� |= ϕ ∧ zm+1 and thus all
conflicts between the arguments z1, . . . , zm+1, a are removed. But S ⊂ S�, i.e.,
S *∈ naive-glb1

cp(P). Contradiction.
2. S *|= ϕ. Then S *|= ϕ∧zm+1 and therefore the conflicts between z1, . . . , zm+1, a

are not removed. This means that at most one of z1, . . . , zm+1, a is in S since
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we require S ∈ cf 1
cp(P). Indeed, exactly one argument from z1, . . . , zm+1, a

has to be in S, since if none of them were in S then we could add any of these
arguments to S and the resulting set would still be conflict free regardless of
preferences. By our assumption, a *∈ S. Again, we distinguish two cases:
a) zi ∈ S with 1 ≤ i ≤ m. But then S ∪ {a} ∈ cf 1

cp(P) because the
following rule would apply: zi ∧ �

1≤j≤m+1,j �=i(¬zj) ⇒ a � zi. Thus,
S *∈ naive-glb1

cp(P). Contradiction.
b) zm+1 ∈ S. Let IY = Y ∩ S. Since ∀Y ∃Zϕ is true there is some IZ ⊆ Z

such that IY ∪ IZ |= ϕ. Therefore, S� |= ϕ for S� = IY ∪ {y | y *∈
IY } ∪ IZ ∪ {a, zm+1}. Moreover, S� ∈ cf 1

cp(P) since S� |= ϕ ∧ zm+1 and
thus all conflicts between z1, . . . , zm+1, a are removed. Since S ⊂ S� by
construction we have that S *∈ naive-glb1

cp(P). Contradiction.

In all cases we arrive at a contradiction, and we can conclude that a ∈ S for all
S ∈ naive-glb1

cp(P).

• Assume that ∀Y ∃Zϕ is not true. Then there is some IY ⊆ Y such that IY ∪IZ *|= ϕ
for all IZ ⊆ Z. Let S = IY ∪{y | y *∈ IY }∪{zm+1}. Clearly, S ∈ cf 1

cp(P). Moreover,
there can be no S� ⊃ S such that S� ∈ cf 1

cp(P) since we would need to add at least
one argument from z1, . . . , zm, a to S. But these arguments are all in conflict with
zm+1 unless S� |= ϕ ∧ zm+1, which we know to be impossible.

We now turn our attention to admissibility-based semantics, where, in contrast to
semantics based only on conflict-freeness, the choice of preference reduction makes no
difference with regards to complexity. Again, let us first consider the cases in which there
is no rise in complexity compared to AFs.

Lemma 3.30. CredCPAF
σ,i is NP-complete for σ ∈ {adm, com, stb, prf -glb} and i ∈

{1, 2, 3, 4}.

Proof. Hardness follows from hardness for AFs. Regarding membership of σ ∈ {adm,
com, stb}, given a CPAF P and an argument x we can simply guess a set of arguments
S containing x and, by Lemma 3.24, check whether S ∈ σi

cp(P) in polynomial time.
Regarding membership of prf -glb, it suffices to test whether (P, x) is a yes-instance of
CredCPAF

adm,i .

Lemma 3.31. Let i ∈ {1, 2, 3, 4}. SkeptCPAF
σ,i is trivial for σ = adm, coNP-complete for

σ = stb, and ΠP
2 -complete for σ ∈ {prf , prf -glb}.

Proof. Hardness follows from hardness for AFs. Regarding membership, let P =
(A, R, cond) be a CPAF and x ∈ A. Concerning σ = adm, note that ∅ is always admis-
sible in R∅

i (P), i.e., (P, x) is trivially a no-instance. Regarding σ ∈ {stb, prf , prf -glb}
we consider the complementary problem: guess a set S ⊂ A and check that x *∈ S
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a b

x1 x2 . . . xn

x∗
1 x∗

2 . . . x∗
n

ϕ ⇒ xi � a for all 1 ≤ i ≤ n

¬ϕ ⇒ a � xi for all 1 ≤ i ≤ n

xi ⇒ xi � x∗
i for all 1 ≤ i ≤ n

Figure 3.8: Construction used in the proof of Lemma 3.32. Given a formula ϕ over
variables X = {x1, x2, . . . , xn}, a CPAF P is constructed such that ϕ is satisfiable iff
(P, b) is a yes-instance of CredCPAF

grd,i iff (P, a) is a no-instance of SkeptCPAF
grd,i /SkeptCPAF

com,i .

and that S ∈ σi
cp(P) with σ ∈ {stb, prf , prf -glb}. Checking S ∈ σi

cp(P) can be done in
polynomial time in the case of σ = stb and in coNP-time in the case of σ ∈ {prf , prf -glb}
(cf. Lemma 3.24).

In the case of grounded semantics, both credulous and skeptical acceptance are located
one level higher on the polynomial hierarchy compared to AFs. For complete semantics,
the same is true for skeptical acceptance.

Lemma 3.32. Let i ∈ {1, 2, 3, 4}. CredCPAF
grd,i is NP-complete. SkeptCPAF

σ,i is coNP-
complete for σ ∈ {grd, com}.

Proof. We will consider the complementary problems of SkeptCPAF
grd,i / SkeptCPAF

com,i and show
that they are NP-complete since this allows us to prove all results simultaneously.

NP-membership: given a CPAF P = (A, R, cond) and an argument x ∈ A, guess a
set S ⊆ A and, in polynomial time, check whether S ∈ grdi

cp(P) and x ∈ S (resp.
S ∈ grdi

cp(P) and x *∈ S or S ∈ comi
cp(P) and x *∈ S).

NP-hardness by reduction from SAT: let ϕ be an arbitrary propositional formula over
variables X. Let a and b be fresh variables, i.e., a, b *∈ X. We construct an instance
(P, b) of CredCPAF

grd,i as follows: P = (A, R, cond) with A = X ∪ {x∗ | x ∈ X} ∪ {a, b},
R = {(x, a), (a, x), (x, x∗), (x∗, x) | x ∈ X} ∪ {(a, b)}, and cond defined by the rules
ϕ ⇒ x � a, ¬ϕ ⇒ a � x, and x ⇒ x � x∗ for x ∈ X, i.e., x �S a iff S |= ϕ, a �S x
iff S |= ¬ϕ, and x �S x∗ iff S |= x. Figure 3.8 depicts the above construction. In fact,
this construction also works for the complementary problem of skeptical acceptance with
respect to grounded and complete semantics, except that we will ask for the acceptance
of the argument a instead of b. In this spirit, we now show that ϕ is satisfiable iff (P, b)
is a yes-instance of CredCPAF

grd,i iff (P, a) is a no-instance of SkeptCPAF
grd,i /SkeptCPAF

com,i .

• Suppose ϕ is satisfiable. Then there is an interpretation I ⊆ X such that I |= ϕ.
We assume that I *= ∅. This is permissible since we can check in polynomial
time whether ∅ satisfies ϕ, and if this is the case, return a trivial yes-instance of
CredCPAF

grd,i (or a trivial no-instance of SkeptCPAF
grd,i /SkeptCPAF

com,i ). Consider S = I ∪{b}.
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Then S |= ϕ since I |= ϕ and b does not occur in ϕ. We then have x �S a and
x � x∗ for all x ∈ I, but x *�S x∗ for x ∈ X \ I. Thus, the unattacked arguments in
RS

i (P) are exactly those in I. Since I *= ∅, b is defended in RS
i (P) against a by the

arguments in I. Thus, S is the minimal complete extension in RS
i (P) and therefore

also grounded in RS
i (P). This implies that (P, b) is a yes-instance of CredCPAF

grd,i

while (P, a) is a no-instance of both SkeptCPAF
grd,i and SkeptCPAF

com,i .

• Suppose ϕ is unsatisfiable. Then, for every S ⊆ A and x ∈ X, we have a �S x.
Thus, the argument a is unattacked in every RS

1 (P), i.e., every complete extension
(and therefore also every grounded extension) in P must contain a. Since a and b
are in conflict, b is contained in no complete or grounded extension. Thus, (P, b)
is a no-instance of CredCPAF

grd,i while (P, a) is a yes-instance of both SkeptCPAF
grd,i and

SkeptCPAF
com,i .

Lastly, we consider credulous acceptance for preferred semantics with local maximization.
The following proof is the only one in this section to utilize one of the well-known standard
reductions for AFs (Dvořák and Dunne 2018). Only a very limited inclusion of conditional
preferences is necessary. Indeed, only a single preference rule, consisting of a very simple
propositional formula, is used in the construction.

Lemma 3.33. CredCPAF
prf ,i is ΣP

2 -complete for i ∈ {1, 2, 3, 4}.

Proof. ΣP
2 -membership: given a CPAF P = (A, R, cond) and an argument x, guess a set

S ⊆ A and check that x ∈ S and, in coNP-time, that S ∈ prf i
cp(P).

ΠP
2 -hardness of the complementary problem: let ∀X∃Y ϕ be an arbitrary instance of

QBF2
∀ in 3-CNF over variables Y = {y1, . . . , yn} and Z = {z1, . . . , zm} with clauses

C = {c1, . . . , ck}. Let X = Y ∪ Z. Using fresh variables a and b we construct an instance
(P, a) of co-CredCPAF

prf ,i where P = (A, R, cond),

• A = X ∪ {x | x ∈ X} ∪ C ∪ {a, b, ", ⊥},

• R = {(x, x), (x, x) | x ∈ X} ∪
{(x, c) | x ∈ C} ∪ {(x, c) | ¬x ∈ C} ∪
{(c, c), (c, ") | c ∈ C} ∪
{(⊥, z), (⊥, z) | z ∈ Z} ∪
{(", ⊥), (⊥, ⊥)} ∪ {(a, b), (b, a)},

• and cond defined by the following rule: 	
z∈Z(z ∨ z) ⇒ b � a.

This construction is exemplified in Figure 3.9. It remains to show that ∀Y ∃Zϕ is true iff
a *∈ S for all S ∈ prf i

cp(P).
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a b

y1 y1 y2 y2 z1 z1 z2 z2

c1 c2 c3

" ⊥

z1 ∨ z1 ∨ z2 ∨ z2 ⇒ b � a

Figure 3.9: Construction used in the proof of Lemma 3.33. Given the quantified boolean
formula ∀y1y2∃z1z2 ϕ, with ϕ consisting of clauses c1 = (y1∨¬y2∨z1), c2 = (¬y1∨¬z1∨z2),
and c3 = (y2 ∨ z1 ∨ ¬z2), a CPAF P is constructed such that ∀y1y2∃z1z2 ϕ is true iff
(P, a) is a no-instance of CredCPAF

prf ,i .

• Assume that ∀Y ∃Zϕ is true. Towards a contradiction, assume that there is some
S ∈ prf i

cp(P) such that a ∈ S. Then it must be that b *�S a, otherwise a is
undefended in RS

i (P). Thus, for all z ∈ Z we have z *∈ S and z *∈ S. Let
IY = S ∩ Y . Since ∀Y ∃Zϕ is true there is some IZ ⊆ Z such that IY ∪ IZ |= ϕ. Let
S� = IY ∪ {y | y ∈ Y, y *∈ IY } ∪ IZ ∪ {z | z ∈ Z, z *∈ IZ} ∪ {", a}. Clearly, S ⊂ S�.
Moreover, S� is admissible in RS

i (P): since IY ∪ IZ |= ϕ all clause-arguments c ∈ C
are attacked by arguments in S�, and therefore " is defended by S�. This further
implies that all arguments z, z are defended by S� against ⊥. We can conclude that
S is not preferred in RS

i (P). Contradiction.

• Assume that ∀Y ∃Zϕ is not true. Then there is IY ⊆ Y such that IY ∪ IZ *|= ϕ for
all IZ ⊆ Z. Let S = IY ∪ {y | y ∈ Y, y *∈ IY } ∪ {a}. Note that b *�S a and that
all arguments y, y defend themselves. Thus, S is admissible in RS

i (P). Towards a
contradiction, assume there is S� ⊃ S such that S� is admissible in RS

i (P). This
means one of the following must be the case:

– " ∈ S�. Then " needs to be defended by S� against the clause arguments
c ∈ C. But this means that I = (S� ∩ Y ) ∪ (S� ∩ Z) satisfies all clauses in ϕ,
i.e., I |= ϕ. Note that S contains exactly one of y, y for every y ∈ Y . Thus,
S� ∩Y = S ∩Y = IY . The fact that IY ∪ (S� ∩Z) |= ϕ contradicts IY ∪ IZ *|= ϕ
for all IZ ⊆ Z.

– z ∈ S� for some z ∈ Z. Then z needs to be defended by S� against ⊥. This
is only possible if " ∈ S�, which we already have shown to not be the case.
Contradiction.

– z ∈ S� for some z ∈ Z. Analogous to the case that z ∈ S�.

Since we arrive at a contradiction in all cases, S ∈ prf i
cp(P). Moreover, note that

a ∈ S.
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av1 b v1

cv2 d v2

(a) Example VAF

a b

c d

(b) AF for p1

a b

c d

(c) AF for p2

Figure 3.10: Example VAF with two audiences p1 (v1 � v2) and p2 (v2 � v1).

3.4 Related Formalisms
We now investigate the connection between CPAFs and related formalisms. First, we show
that Value-based Argumentation Frameworks (VAFs) (Atkinson and Bench-Capon 2021;
Bench-Capon, Doutre, and Dunne 2007) can be captured by CPAFs in a straightforward
way. Secondly, we consider Extended Argumentation Frameworks (EAFs) (Baroni et al.
2009; Dunne, Modgil, and Bench-Capon 2010; Modgil 2009) and highlight similarities
and differences to CPAFs. Lastly, we compare our CPAFs with a recently introduced
alternative approach to conditional preferences in abstract argumentation (Alfano et al.
2023).

3.4.1 Capturing Value-Based Argumentation
VAFs, similarly to CPAFs, are capable of dealing with multiple preference relations. But,
in contrast to CPAFs, these preferences are not over individual arguments but over values
associated with arguments. Which values are preferred depends on the audience. A set
of arguments may then be accepted in view of one audience, but not in view of another.

More formally, a VAF is a quintuple (A, R, V, val, P ) such that (A, R) is an AF, V is
a set of values, val : A → V is a mapping from arguments to values, and P is a finite
set of audiences. Each audience p ∈ P is associated with a preference relation �p

over values, and Fp = (A, R, V, val, �p) is called an audience-specific VAF (AVAF). The
extensions of VAFs are determined for each audience separately. Specifically, an argument
x successfully attacks y in Fp iff (x, y) ∈ R and val(y) *�p val(x). Conflict-freeness and
admissibility are then defined over these successful attacks. In essence, this boils down
to using Reduction 1 on Fp, i.e., deleting attacks that contradict the preference ordering.

Figure 3.10a shows a VAF with two values v1 and v2. Let us say there are two audiences
in this VAF, p1 with the preference v1 �p1 v2 and p2 with v2 �p2 v1. The AFs associated
with p1 and p2, i.e., the AFs containing only the successful attacks in the AVAFs of p1
and p2, are depicted in Figures 3.10b and 3.10c.

The reasoning tasks typically associated with VAFs are those of subjective and objective
acceptance. Let F = (A, R, V, val, P ) be a VAF and x ∈ A. Then x is subjectively
accepted in F iff there is p ∈ P such that x is in a preferred extension of the AVAF
(A, R, V, val, �p). Similarly, x is objectively accepted in F iff for all p ∈ P we have that
x is in all preferred extensions of the AVAF (A, R, V, val, �p).
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p1

p2

a b

c d

cond (let x ∈ {a, b}, y ∈ {c, d}):
x �S y iff S ∩ P = {p1}
y �S x iff S ∩ P = {p2}

Figure 3.11: CPAF obtained by translating the VAF of Figure 3.10 according to Defini-
tion 3.34.

We now provide a translation where an arbitrary VAF F = (A, R, V, val, P ) is transformed
into a CPAF Tr(F ) = (A�, R�, cond) such that the subjectively and objectively accepted
arguments in F correspond to the credulously and skeptically preferred arguments in
Tr(F ) respectively.

Definition 3.34. Let F = (A, R, V, val, P ) be a VAF. Then Tr(F ) = (A�, R�, cond) is
the CPAF such that

• A� = A ∪ P ,

• R� = R ∪ {(p, p�), (p�, p) | p, p� ∈ P, p *= p�},

• for every S ⊆ A�, a �S b iff there is p ∈ P with S ∩ P = {p} and val(a) �p val(b).

Intuitively, each audience in the initial VAF is added as its own argument in our CPAF.
The attacks of the VAF are preserved and symmetric attacks are added between all
audience-arguments. Lastly, the preferences in our CPAF correspond to the preferences of
each audience and are controlled by the newly introduced audience-arguments. Figure 3.11
shows the CPAF that results if the above translation is applied to the VAF of Figure 3.10.

Observe that the successful attacks in some AVAF Fp = (A, R, V, val, �p) are also attacks
in RS∪{p}

1 (Tr(F )), where S ⊆ A, and vice versa. This means that the admissible sets in
the initial VAF F stand in direct relationship to the admissible sets in our constructed
CPAF, as expressed be the following lemma.

Lemma 3.35. Let F = (A, R, V, val, P ) be a VAF, S ⊆ A, and p ∈ P . Then S is
admissible in the AVAF Fp = (A, R, V, val, �p) iff S ∪ {p} ∈ adm1

cp(Tr(F )).

Furthermore, note that all audience-arguments in Tr(F ) attack each other, i.e., an
admissible set in Tr(F ) contains at most one audience-argument. In fact, each audience-
argument defends itself, and thus every preferred extension in Tr(F ) must contain exactly
one audience-argument p ∈ P if we appeal to the prf 1

cp-semantics. This allows us to
conclude that the direct correspondence between admissible sets observed in Lemma 3.35
carries over to preferred extensions.

Proposition 3.36. Given a VAF F = (A, R, V, val, P ), x ∈ A is subjectively (resp.
objectively) accepted in F iff x is credulously (resp. skeptically) preferred in Tr(F ) w.r.t.
Reduction 1.
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v1
1

v2
1

v1
2

v2
2

a b

c d

cond (let x ∈ {a, b}, y ∈
{c, d}):
x �S y iff v1

1 ∈ S, v2
2 ∈ S

y �S x iff v1
2 ∈ S, v2

1 ∈ S

Figure 3.12: CPAF obtained by translating the VAF of Figure 3.10 according to Defini-
tion 3.37.

It must be pointed out that the translation provided in Definition 3.34 was designed for
VAFs in which each audience is given explicitly. However, VAFs can also be defined with
preferences given implicitly as the set of all possible audiences (Atkinson and Bench-
Capon 2021), where each audience corresponds to a linear ordering over all values. In
this case, the translation of Definition 3.34 is not polynomial as the number of audience
arguments would be factorial in the number of values. We now provide an alternative
translation that can handle this implicit definition of audiences and where we only need
|V |2 additional arguments.

Definition 3.37. Let F = (A, R, V, val, P ) be a VAF, with P implicitly given as the set
of all possible linear orderings over V . Then Tr2(F ) = (A�, R�, cond) is the CPAF such
that

• A� = A ∪ {vk | v ∈ V, 1 ≤ k ≤ |V |},

• R� = R ∪ {(vk, wk), (wk, vk) | v ∈ V, w ∈ V, 1 ≤ k ≤ |V |, v *= w} ∪ {(vk, vl) | v ∈
V, k *= l},

• cond is defined as follows: for every a, b ∈ A such that val(a) *= val(b) and every
1 ≤ k < |V | we introduce the rule val(a)k ∧ (	|V |

l=k+1 val(b)l) ⇒ a � b.

Figure 3.12 shows the CPAF that results if the above translation is applied to the VAF of
Figure 3.10. As with our first translation (cf. Definition 3.34), there is a direct semantic
correspondence between the initial VAF and the constructed CPAF. The idea is the
following: along with the arguments and attacks of the original VAF, we introduce
arguments v1, . . . , v|V | for each value v ∈ V . If vk is accepted, this means that v is
considered the k-th best value. Since vk attacks all other value-arguments wk with w *= v
we know that no other value is simultaneously ascribed the k-th best position. Moreover,
vk attacks all vl with l *= k, i.e., v is only ascribed the k-th best position and no other.
Then, we prefer an argument a to another argument b if the value of a is preferred
(appears at an earlier position in the linear ordering) than b. In this way, each extension
corresponds to a linear ordering over all values, i.e., each extension corresponds to an
audience. This further implies that each S-reduct of the constructed CPAF has exactly
the same attacks between the arguments of the initial VAFs as the AVAF corresponding
to the value-ordering encoded in S. This gives us a result analogous to Proposition 3.36.
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Proposition 3.38. Given a VAF F = (A, R, V, val, P ) where P is implicitly given as the
set of all possible linear orderings over V , x ∈ A is subjectively (resp. objectively) accepted
in F iff x is credulously (resp. skeptically) preferred in Tr2(F ) w.r.t. Reduction 1.

Our translations highlight the versatility of our formalism. On the one hand, conditional
preferences can be tied to dedicated arguments (in this case the audience-arguments). On
the other hand, these dedicated arguments themselves may be part of the argumentation
process. Note that we used CPAFs with Reduction 1 since preferences in VAFs are
usually handled by deleting attacks. However, our approach also allows for the use of
other preference-reductions in VAF-settings.

Moreover, note that the problem of subjective acceptance in VAFs is NP-complete (Bench-
Capon, Doutre, and Dunne 2007), even if the set of all audiences is represented implicitly.
In contrast, we have shown that credulous acceptance in CPAFs is ΣP

2 -complete (cf.
Table 3.2). Thus, assuming that the polynomial hierarchy does not collapse, finding a
polynomial translation from CPAFs to VAFs analogous to our Proposition 3.36 (resp.
Proposition 3.38) is not possible when considering credulously/subjectively accepted
arguments.

3.4.2 Relationship to Extended Argumentation Frameworks
EAFs allow arguments to express preferences between other arguments by permitting
attacks themselves to be attacked. While EAFs are related to our CPAFs conceptually,
we will see that there are crucial differences in how exactly preferences are handled.

Formally, an EAF is a triple (A, R, D) such that (A, R) is an AF, D ⊆ A × R, and
if (a, (b, c)), (a�, (c, b)) ∈ D then (a, a�), (a�, a) ∈ R. The definition of admissibility in
EAFs is quite involved and requires so-called reinstatement sets. Essentially, a set of
arguments S is admissible in an EAF if all arguments x ∈ S are defended from other
arguments y ∈ A \ S, and if all attacks (z, y) used for defending x are in turn defended
from attacks on attacks (w, (z, y)) and thus reinstated. It is possible that a chain of such
reinstatements is required which is formalized with the aforementioned reinstatement sets.
Formally defining these concepts is not necessary for our purposes, but the corresponding
definitions can be found in (Modgil 2009). Observe that the notion of attacks on attacks
in EAFs is similar to Reduction 1 in the sense that attacks between arguments can be
unsuccessful, but they are never reversed. Therefore, we will compare EAFs to CPAFs
with Reduction 1.

Recall our Sherlock Holmes example from above (Example 3.1) that we modeled as
a CPAF (Example 3.4). Let us first consider a slimmed-down variation without an
argument stating that Person 1 has an alibi. We can model this as an EAF with three
arguments c1 (Person 1 is the culprit), c2 (Person 2 is the culprit), and m1 (Person 1
has a motive) in which m1 attacks the attack from c2 to c1. The corresponding EAF is
depicted in Figure 3.13b. Compare this to the formalization via a CPAF in Figure 3.13a.
Note that {c1} is admissible in the EAF but {c2} is not since (c2, c1) is used to defend
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c1 c2

m1

cond:
c1 �S c2 iff m1 ∈ S

(a) Simple CPAF

c1 c2

m1

(b) Simple EAF

Figure 3.13: A simplified version of the Sherlock Holmes example modeled via a CPAF
and an EAF.

c1 c2

m1

a1

(a) Conflicting preferences

c1 c2

m1

a1

m1, a1

(b) Combination of preferences

Figure 3.14: The full Sherlock Holmes example modeled by two different EAFs.

against (c1, c2) but not reinstated against (m1, (c2, c1)). In the CPAF, {c2} is admissible
(but not stable).

This simple example highlights a fundamental difference in how preferences are viewed
in the two formalisms. In CPAFs, preferences are relevant exactly if the argument that
expresses them (e.g. m1) are part of the set under inspection. In EAFs, preference are
relevant even if the argument that expresses them is not accepted. Modgil (2009) states
that admissibility for EAFs was defined in this way because it was deemed important
to satisfy Dung’s fundamental lemma (Dung 1995), which says that if S is admissible
and x is acceptable w.r.t. S then S ∪ {x} is admissible. This fundamental lemma is
not satisfied in our CPAFs (see Proposition 3.11). However, in our opinion, this is no
drawback but rather a necessary property of formalisms that can deal with conditional
preferences in a flexible way. For example, in Figure 3.13a it is clear that {c2} should be
admissible since, when considering only admissibility, we are not forced to include the
unattacked m1, i.e., we do not have to accept that Person 1 has a motive. The inclusion
of unattacked arguments in CPAFs is handled via more restrictive approaches such as
stable or preferred semantics, as usual.

Another difference between CPAFs and EAFs becomes clear when considering the entire
Sherlock Holmes example. Recall our formalization for CPAFs (cf. Figure 3.1). In order to
express our preference in case Person 1 has an alibi we extend our EAF from Figure 3.13b
by adding an attack from a1 to the attack (c1, c2), as shown in Figure 3.14a7. Note
that a1 and m1 must attack each other in this EAF by definition since they express

7The EAFs of Figure 3.13b and Figure 3.14a are also used as examples in (Modgil 2009).
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conflicting preferences. But this formalization is unsatisfactory since it should be possible
for Person 1 to have both a motive and an alibi. The fact that the preference of one
argument may change in view of another argument must be modeled indirectly in EAFs.
For example, we can introduce an additional argument to express that Person 1 has both
a motive and an alibi. This is depicted in Figure 3.14b. Thus, we can see that CPAFs
allow for more flexibility when combining preferences associated with several arguments.

There are also some differences between CPAFs and EAFs when it comes to preferred
semantics. For instance, stable extensions in EAFs are not necessarily preferred ex-
tensions (Dunne, Modgil, and Bench-Capon 2010). In CPAFs, every stable extension
is also preferred, except if we use global maximization and Reduction 1 (cf. Propo-
sition 3.10). Moreover, credulous acceptance under preferred semantics is in NP for
EAFs (Dunne, Modgil, and Bench-Capon 2010), but ΣP

2 -complete for CPAFs when using
local maximization (cf. Table 3.2).

To summarize, CPAFs are designed to express conditional preferences in abstract argu-
mentation, whereas preferences in EAFs are unconditional in the sense that they may
always influence the argumentation process, even if the argument associated with the
preference is not accepted. Moreover, since CPAFs can make use of all four preference
reductions, they allow for more flexibility in how preferences are handled compared to
EAFs, where unsuccessful attacks are always deleted. However, the two formalisms are
similar in that arguments are capable of reasoning about the argumentation process
itself, i.e., they constitute a form of metalevel argumentation (Modgil and Bench-Capon
2011). Lastly, note that a generalization of EAFs has been suggested in which attacks on
attacks can themselves be attacked, i.e., unlike in EAFs and CPAFs, preferences can be
directly attacked themselves (Baroni et al. 2011).

3.4.3 Lifting Preferences over Arguments to Sets of Arguments
In our CPAFs, we deal with preferences by using preference reductions which modify
the attack relation (see Definition 2.10). There exist other approaches to preferences
in argumentation, where preference orderings over arguments are lifted to sets of argu-
ments (Alfano et al. 2022; Amgoud and Vesic 2014; Brewka, Truszczynski, and Woltran
2010; Kaci, van der Torre, and Villata 2018), and the most preferred extensions are then
selected according to this new preference ordering.

Recently in (Alfano et al. 2023), conditional preferences in abstract argumentation have
been investigated using the aforementioned preference liftings. We refer to the CPAFs
introduced in that work as lifting-based CPAFs. Similarly to our reduction-based CPAFs,
a lifting-based CPAF is given as (A, R, Γ) where (A, R) is an AF and Γ is a set of
conditional preference rules of the form a1 � a2 ← b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn built
from arguments a1, a2, b1, . . . , bm, c1, . . . , cn. The conditional preferences over arguments
given by Γ are lifted to preferences over sets of arguments according to one of three
criteria (democratic, elitist, KTV), and then the ‘best’ extensions are selected according
to this lifted preference ordering.
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Note that lifting-based CPAFs, in contrast to our reduction-based CPAFs, satisfy principle
P2∗ (cf. Definition 3.13) by design, since the ‘best’ extensions selected in a lifting-based
CPAF (A, R, Γ) are always extensions of (A, R). We note that, for complete and stable
semantics, Reduction 3 satisfies P2∗ as well and thus selects extensions in the style of
preference liftings (cf. Table 3.1).

The conditional preference rules Γ of a lifting-based CPAF (A, R, Γ) are usually assumed
to be well-formed8, which ensures that arguments a1, a2 occurring in the head of a rule
a1 � a2 ← b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn do not occur in the body of the same rule. This
is to prevent counterintuitive results, as explained in (Alfano et al. 2023) via the following
example: given (A, R, Γ) with extensions {{a, b}, {a, c}} and Γ given by c � b ← b and
c � b ← c, one would expect the only ‘best’ extension to be {a, c}. However, under
semantics of lifting-based CPAFs, both {a, b} and {a, c} are ‘best’. This problem does
not occur with the well-formed Γ� = {c � b ←}. In our reduction-based CPAFs we have
no analogous assumption of well-formedness. Despite this, the counter-intuitive behavior
observed above does not necessarily occur in our reduction-based CPAFs. For example,
consider (A, R, cond) with A = {a, b, c}, R = {(b, c), (c, b)}, and cond given by the rules
b ⇒ c � b and c ⇒ c � b. Then prf ((A, R)) = {{a, b}, {a, c}}. However, under all four
preference reductions, the attack (b, c) is deleted as soon as b or c is in the extension
under inspection. Thus, prf i

cp((A, R, cond)) = {{a, c}}.

Another difference between lifting-based CPAFs and our reduction-based CPAFs lies
in their computational complexity, which is higher for lifting-based CPAFs in most
cases. For example, verification for stable semantics is coNP-complete in lifting-based
CPAFs (Alfano et al. 2023) but remains in P in reduction-based CPAFs (see Table 3.2).
As a result, credulous and skeptical acceptance for stable semantics are ΣP

2 -complete and
ΠP

2 -complete respectively in lifting-based CPAFs, while they remain NP-complete and
coNP-complete respectively in reduction-based CPAFs. Some problems, such as credulous
and skeptical acceptance of preferred semantics under elitist and KTV criteria, may even
lie on the third level of the polynomial hierarchy for lifting-based CPAFs (tight bounds
for the complexity of these problems have not been established yet). We observe that the
increased complexity of lifting-based CPAFs is in many cases not due to the introduction
of conditional preferences, but rather due to the preference-liftings themselves, as the
complexity of lifting-based PAFs (featuring only unconditional preferences) is already
considerably higher than that of standard Dung-style AFs (Alfano et al. 2022).

Moreover, there are lifting-based CPAFs where not every (best) stable extension is also
a (best) preferred extension (Alfano et al. 2023, Example 2). In contrast, every stable
extension in a reduction-based CPAF is also a preferred extension, except when considering
Reduction 1 and preferred semantics with global maximization (cf. Proposition 3.10).

Lastly, we want to emphasize that there is a conceptual difference between the reduction-
based and lifting-based approaches to resolving preferences in argumentation: when using
preference reductions, x � y expresses that x is stronger than y; when using preference

8Note that this notion of well-formedness is unrelated to the well-formed CAFs used in Chapter 4.

66



3.5. Conclusion

liftings, x � y expresses that we prefer outcomes containing x rather than y. Which of
the two approaches should be chosen depends on the task at hand. In fact, it is also
possible to combine the reduction-based and lifting-based approaches to preferences in a
single formalism. This has already been suggested by Amgoud and Vesic (2014) in the
form of their so-called Rich PAFs.

3.5 Conclusion
In this chapter, we introduced Conditional Preference-based AFs (CPAFs) which generalize
PAFs and allow to flexibly handle conditional preferences in abstract argumentation.

We conducted a principle-based analysis for CPAFs and showed that complete and stable
semantics satisfy the same principles as on PAFs in most cases while grounded semantics
no longer satisfies many of the principles. We further investigated the computational
complexity of CPAFs and showed that this complexity can be influenced by the chosen
preference reduction (in case of naive semantics) or by how maximization is handled
(in case of naive and preferred semantics). Our results also show that the satisfaction
of I-maximality can depend on how maximization is dealt with (in case of preferred
semantics) and on which preference-reduction is chosen (in case of stable semantics).

Moreover, we compared CPAFs to related formalisms. On the one hand, we showed that
CPAFs can be used to capture VAFs via a straightforward translation. On the other hand,
we demonstrated that CPAFs exhibit significant differences to EAFs in terms of how
preferences are handled. We also discussed a recently introduced alternative approach to
conditional preferences in abstract argumentation, where preferences over arguments are
lifted to preferences over sets of arguments.

Regarding future work, in addition to the ten principles from the literature studied in
this chapter, new principles that allow us to further examine conditional preferences
in argumentation may be formalized. Another avenue for future work is to explore
possible restrictions to the structure of CPAFs, be it to the underlying AF or the
conditional preferences themselves, and how such restrictions impact the formal properties
of CPAFs. Moreover, the relationship between CPAFs and existing approaches in
structured argumentation (Dung, Thang, and Son 2019) shall be investigated. Related to
this point, it may also be interesting to see whether conditional preferences can be adapted
to other formalisms such as bipolar argumentation frameworks (Amgoud et al. 2008), in
which both attack and support relations are present. As for preference representation, it
could be investigated how existing formalisms designed to handle conditional preferences
such as CP-nets (Boutilier et al. 2004) or various forms of logic programming (Brewka
et al. 2015; Brewka, Niemelä, and Syrjänen 2004; Charalambidis, Rondogiannis, and
Troumpoukis 2021; Delgrande, Schaub, and Tompits 2003) relate to CPAFs. Lastly, given
the fact that CPAF semantics behave differently from AF semantics in many respects, it
would be interesting to examine how argument justification can be explained in CPAFs
with methods such as discussion games (Caminada 2018).
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CHAPTER 4
Preferences in

Claim-based Argumentation

Claim-centric argumentation, i.e., the evaluation of commonly acceptable statements
while disregarding their particular justifications, has received considerable attention in the
literature (Baroni and Riveret 2019; Dvořák and Woltran 2020; Horty 2002; Rocha and
Cozman 2022a). A simple yet powerful generalization of AFs that allows for claim-based
evaluation are Claim-augmented AFs (CAFs) (Dvořák and Woltran 2020), where each
argument is assigned a claim (sometimes also referred to as conclusion). CAFs serve as
an ideal target formalism for structured argumentation formalisms which utilize abstract
argumentation semantics whilst also considering the claims of the arguments in the
evaluation (Dung, Kowalski, and Toni 2009; Modgil and Prakken 2018) and therefore
help to bridge the gap between abstract and structured argumentation.

Although the acceptance of claims is closely related to argument acceptance, there are
crucial differences as observed in (Dvořák and Woltran 2020; Modgil and Prakken 2018;
Prakken and Vreeswijk 2002) stemming from the fact that a single claim can be associated
with several different arguments. As a consequence, several properties of AF semantics
cannot be taken for granted when considered in terms of the arguments’ claims. For
instance, I-maximality, which gives insights into the expressiveness of semantics (Dunne
et al. 2015) and skeptical argument justification (Baroni and Giacomin 2007) is not
satisfied by most CAF semantics (Dvořák, Rapberger, and Woltran 2023). Furthermore,
the introduction of claims causes a rise in the computational complexity of some standard
decision problems in argumentation (Dvořák et al. 2023). Luckily, these drawbacks can
be alleviated by taking fundamental properties of the attack relation into account: the
basic observation that attacks typically depend on the claim of the attacking arguments
gives rise to the central class of well-formed CAFs (wfCAFs). This class satisfies that all
arguments with the same claim attack the same arguments; thus modeling a very natural
behavior of arguments that is common to structured argumentation formalisms and
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instantiations (Dung, Kowalski, and Toni 2009; Modgil and Prakken 2018). Well-formed
CAFs have the main advantage that most of the semantics behave ‘as expected’, e.g.,
they retain I-maximality, and their computational complexity is located at the same level
of the polynomial hierarchy as for AFs (Dvořák et al. 2023; Dvořák, Rapberger, and
Woltran 2023).

Unfortunately, it turns out that well-formedness cannot be assumed if one deals with
preferences in argumentation, as arguments with the same claim are not necessarily
equally plausible. The following example demonstrates this.

Example 4.1. Consider two arguments a, a� with claim α, and another argument b
having claim β. Moreover, both a and a� attack b, while b attacks a. Furthermore assume
that we are given the additional information that b is preferred over a� (for example, if
assumptions in the support of b are stronger than assumptions made by a�). A common
method to integrate such information on argument rankings is to delete attacks from
arguments that attack preferred arguments. In this case, we delete the attack from a� to b.

Both frameworks are depicted below: F represents the original situation while F � is the
CAF resulting from deleting the unsuccessful attack from a� on the argument b.

F : a
α

b

β

a�
α

F � : a
α

b

β

a�
α

Note that F is well-formed since all arguments with the same claims attack the same
arguments. The unique acceptable argument-set w.r.t. stable semantics (cf. Definition 2.6)
is {a, a�} which translates to {α} on the claim-level.

The CAF F �, on the other hand, is no longer well-formed since a� does not attack b. In
F �, the argument-sets {a, a�} and {a�, b} are both acceptable w.r.t. to stable semantics.
In terms of claims this translates to {α} and {α, β}, which shows that I-maximality is
violated on the claim-level.

Although well-formedness cannot be guaranteed in view of preferences, this does not
imply arbitrary behavior of the resulting CAF: on the one hand, preferences conform
to a certain type of ordering (e.g., asymmetric, transitive) over the set of arguments;
on the other hand, it is evident that the deletion, reversion, and other types of attack
manipulation impose restrictions on the structure of the resulting CAF. Combining both
aspects, we obtain that, assuming well-formedness of the initial framework, it is unlikely
that preference incorporation results in arbitrary behavior. The key motivation of this
chapter is to identify and exploit structural properties of preferential argumentation in
the scope of claim acceptance. The aforementioned restrictions suggest beneficial impact
on both the computational complexity and on desired semantical properties such as
I-maximality.
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Contributions. In this chapter, we introduce Preference-based CAFs (PCAFs) in order
to study the effect of preferences on wfCAFs. We make use of the four commonly used
preference reductions from the literature (see Subsection 2.3.2) and study their effects
under a claim-centric view. In particular, we investigate the following points:

• For each of the four reductions, we characterize the possible structure of CAFs
that are obtained by applying the reduction to a wfCAF and a preference relation.
This results in four novel CAF classes, each of which constitutes a proper extension
of wfCAFs not retaining full expressiveness of general CAFs. We investigate the
relationship between these classes.

• We study semantic properties of the novel CAF classes. Our results highlight a
significant advantage of a particular reduction (namely Reduction 3) when it comes
to admissibility-based semantics: under this modification, subset-maximization
(as used in preferred semantics for example) on the argument-level coincides with
subset-maximization on the claim-level. Moreover, this modification preserves
I-maximality. The other reductions fail to preserve these properties in most cases;
moreover, for the conflict-free-based naive and stage semantics, I-maximality cannot
be guaranteed for any of the four reductions.

• We investigate the complexity of reasoning for CAFs with preferences. We show
that for three of the four reductions (namely Reductions 2, 3, and 4), the verification
problem drops by one level in the polynomial hierarchy for all except complete
semantics and is thus not harder than for wfCAFs (which in turn has the same
complexity as the corresponding AF problems). Complete semantics remain hard
for all but one preference reduction. Moreover, it turns out that verification for the
reduction which deletes attacks from weaker arguments (i.e., Reduction 1) remains
as hard as for general CAFs.

Our results constitute a systematic study of the structural and computational effect
of preferences on claim acceptance. Since we use CAFs as our base formalism, our
investigations extend to large classes of formalisms that can be represented as CAFs, just
like results on AFs yield insights for formalisms that can be captured by AFs.

Publications. This chapter is based on the paper (Bernreiter et al. 2023). The following
contributions are new in this chapter: in addition to inherited CAF-semantics, we now
also consider hybrid CAF-semantics (see Definition 2.23) and investigate them with
respect to their semantic properties (in Section 4.3) and their computational complexity
(in Section 4.4). Moreover, this version contains full proofs for our results, as well as
additional figures and explanations.

Outline. This chapter is organized as follows. In Section 4.1, we introduce preference-
based CAFs (PCAFs) which combine PAFs with wfCAFs. We characterize the novel
CAF classes based on the preference reductions in Section 4.2, study the I-maximality
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of the semantics in Section 4.3, and their computational complexity in Section 4.4. We
conclude in Section 4.5.

Required preliminaries. Before reading this chapter, it is recommended to read
Section 2.1 (propositional logic), Section 2.2 (computational complexity), and especially
Section 2.3 (formal argumentation).

4.1 Preference-based Claim-augmented AFs (PCAFs)
As discussed above and in Subsection 2.3.3, wfCAFs are a natural subclass of CAFs
with advantageous semantic and computational properties. However, when resolving
preferences among arguments, the resulting CAFs are typically no longer well-formed
(cf. Example 4.1). In order to study preferences under a claim-centric view we introduce
Preference-based CAFs. These frameworks enrich the notion of wfCAFs with the concept
of preferences in terms of argument strength. Our main goals are then to understand the
effect of resolved preferences on the structure of the underlying wfCAF, and to determine
whether the advantages of wfCAFs are maintained. Given this motivation, it is reasonable
to consider the impact of preferences on wfCAFs only.

Definition 4.2 (PCAF). A Preference-based Claim-augmented AF (PCAF) is a
quadruple P = (A, R, cl, �) where (A, R, cl) is a wfCAF and (A, R, �) is a PAF.

Given a PCAF P = (A, R, cl, �) we sometimes write a ∈ P for a ∈ A and (a, b) ∈ P for
(a, b) ∈ R. Analogous notation will be used for CAFs and AFs.

Preferences in PCAFs are resolved via one of the four preference reductions, analogously
to how they are resolved in PAFs (cf. Definition 2.10). Observe that all four reductions
are polynomial time computable with respect to the input PCAF.

Definition 4.3 (Preference reductions applied to PCAFs). Let P = (A, R, cl, �) be a
PCAF. The corresponding CAF Ri(P) = (A, R�, cl) is obtained by applying Reduction i,
where i ∈ {1, 2, 3, 4}, to the underlying PAF P = (A, R, �) of P, i.e., (A, R�) = Ri(P ).

The semantics of PCAFs work by first resolving preferences between arguments, and
then applying CAF-semantics to the resulting CAF.

Definition 4.4 (PCAF-semantics). Let P be a PCAF and let i ∈ {1, 2, 3, 4}. The
PCAF-variant of a CAF-semantics σµ relative to Reduction i is defined as σi

µ(P) =
σµ(Ri(P)).

Note that many structured argumentation formalisms use preference reductions. For
instance, ABA+ (Cyras and Toni 2016) employs attack reversal similar to Reduction 2
while some instances of ASPIC (Modgil and Prakken 2013) delete attacks from weaker
arguments in the spirit of Reduction 1.
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Example 4.5. Let P = (A, R, cl, �) be the PCAF with arguments A = {a, a�, b}, attacks
R = {(a, b), (a�, b), (b, a)}, claims cl(a) = cl(a�) = α and cl(b) = β, and the preference
b � a�. The underlying CAF (A, R, cl) of P was examined in Example 2.21.

Note that R1(P) = (A, R�, cl) with R� = {(a, b), (b, a)}, which is the same CAF as F � in
Example 4.1. It can be verified that, e.g., adm1

inh(P) = adminh(R1(P)) = {{∅, {α}, {β},
{α, β}} and stb1

inh(P) = {{α}, {α, β}}.

As in PAFs (cf. Example 2.12) the choice of reduction can influence the extensions of a
PCAF. For example, R2(P) = (A, R��, cl) with R�� = {(a, b), (b, a), (b, a)}, adm2

inh(P) =
{∅, {α}, {β}}, and stb2

inh(P) = {{α}, {β}}.

Remark. In this chapter we require the underlying CAF of a PCAF to be well-formed.
The reason for this is that we are interested in whether the benefits of well-formed
CAFs are preserved when preferences have to be taken into account. Even from a
technical perspective, admitting PCAFs with a non-well-formed underlying CAF is not
very interesting with respect to the questions addressed in this chapter. Indeed, any CAF
could be obtained from such general PCAFs, regardless of which preference reduction we
are using, by simply specifying the desired CAF and an empty preference relation. Thus,
such general PCAFs have the same properties regarding I-maximality and complexity as
general CAFs.

4.2 Syntactic Characterization & Expressiveness
Our first step towards understanding the effect of preferences on wfCAFs is to examine
the impact of resolving preferences on the structure of the underlying CAF. To this end,
we consider four new CAF classes which are obtained from applying the reductions of
Definition 2.10 to PCAFs.

Definition 4.6 (CAF-classes). Ri-CAF denotes the set of CAFs that can be obtained
by applying Reduction i to PCAFs, i.e., Ri-CAF = {Ri(P) | P is a PCAF}.

It is easy to see that Ri-CAF, where i ∈ {1, 2, 3, 4}, contains all wfCAFs (we can simply
specify the desired wfCAF and an empty preference relation). Moreover, not all CAFs
are contained in Ri-CAF, i.e., the four new classes are located in-between wfCAFs and
general CAFs:

Proposition 4.7. Let CAF be the set of all CAFs and wfCAF the set of all wfCAFs.
For all i ∈ {1, 2, 3, 4} it holds that wfCAF ⊂ Ri-CAF ⊂ CAF.

Proof. Let i ∈ {1, 2, 3, 4}. wfCAF ⊆ Ri-CAF follows from the fact that any (A, R, cl) ∈
wfCAF can be obtained via Reduction i from the PCAF (A, R, cl, ∅).

wfCAF ⊂ Ri-CAF: consider the PCAF P = ({a, b}, {(a, a), (a, b), (b, a), (b, b)}, cl, �)
with cl(a) = cl(b), and b � a. For all i ∈ {1, 2, 3, 4} we have Ri(P) = ({a, b}, {(a, a),
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(b, a), (b, b)}, cl), i.e., the resulting CAF Ri(P) is not well-formed since b is attacked by
itself but not by a, even though cl(a) = cl(b).

Ri-CAF ⊂ CAF: Towards a contradiction, assume there is a PCAF P = (A, R, cl, �)
such that Ri(P) = (A, R�, cl) with (a, b), (b, a) ∈ R� but (a, a), (b, b) *∈ R� for some
a, b ∈ A with cl(a) = cl(b). This means that either (a, b) ∈ R or (b, a) ∈ R, since none of
four reductions can introduce the attacks (a, b) and (b, a) at the same time. By symmetry,
we only look at the case that (a, b) ∈ R. Then, since (A, R, cl) is well-formed and since
cl(a) = cl(b), (b, b) ∈ R. But � is non-reflexive, i.e., (b, b) is not removed by Reduction i
and therefore (b, b) ∈ R�. Contradiction.

Furthermore, the new classes are all distinct from each other, i.e., we are indeed dealing
with four new CAF classes. Specifically, R1-CAF, R2-CAF, and R4-CAF are incom-
parable while R3-CAF is strictly contained in the other three classes. This reflects the
fact that Reduction 3 is the most conservative of the four preference reductions, removing
attacks from weak to strong arguments only when there is a counter-attack from the
strong argument.

Proposition 4.8. For all i ∈ {1, 2, 4} and all j ∈ {1, 2, 3, 4} such that i *= j it holds
that Ri-CAF *⊆ Rj-CAF and R3-CAF ⊂ Ri-CAF.

Proof. We show the various statements separately.

• R1-CAF *⊆ Rj-CAF with j ∈ {2, 3, 4}: let F be the CAF shown in Figure 4.1a.
F is in R1-CAF as it can be obtained by applying Reduction 1 to the PCAF
(A, R, cl, �) with R = {(a, b), (b, b)} and b � a. Towards a contradiction, assume
there is a PCAF P such that Rj(P) = F . Since self-attacks cannot be removed
by any of the four reductions, (b, b) ∈ P. Since the underlying CAF of P must
be well-formed, also (a, b) ∈ P. But then, by the definition of Reduction j, either
(a, b) ∈ Rj(P) or (b, a) ∈ Rj(P). Contradiction.

• R2-CAF *⊆ Rj-CAF with j ∈ {1, 3, 4}: let F be the CAF shown in Figure 4.1b.
F is in R2-CAF as it can be obtained by applying Reduction 2 to the PCAF
(A, R, cl, �) with R = {(a, b), (b, b)} and b � a. Towards a contradiction, assume
there is a PCAF P such that Rj(P) = F . Then (b, b) ∈ P and therefore also
(a, b) ∈ P. But (b, a) *∈ P, since (a, a) *∈ F and therefore also (a, a) *∈ P. But
Reductions 1 and 3 cannot introduce (b, a) in this case, while Reduction 4 cannot
introduce (b, a) without retaining (a, b).

• R4-CAF *⊆ Rj-CAF with j ∈ {1, 2, 3}: let F be the CAF shown in Figure 4.1c.
F is in R4-CAF as it can be obtained by applying Reduction 4 to the PCAF
(A, R, cl, �) with R = {(a, b), (b, b)} and b � a. Towards a contradiction, assume
there is a PCAF P such that Rj(P) = F . Then (b, b) ∈ P and therefore also
(a, b) ∈ P. But (b, a) *∈ P, since (a, a) *∈ P. But Reduction 1, 2 and 3 cannot
introduce (b, a), at least not without deleting (a, b).
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aα b α

(a) only in R1-CAF

aα b α

(b) only in R2-CAF

aα b α

(c) only in R4-CAF

Figure 4.1: CAFs that are contained only in R1-CAF, R2-CAF, and R4-CAF respec-
tively. Dashed arrows are attacks that are missing for the CAF to be well-formed.

• R3-CAF ⊂ Rj-CAF with j ∈ {1, 2, 4}: let F be any CAF in R3-CAF. Then there
is a PCAF P = (A, R�, cl, �) such that R3(P) = F . If (a, b) ∈ P and (a, b) ∈ F
we can assume that b *� a without loss of generality. If (a, b) ∈ P but (a, b) *∈ F ,
then, by definition of Reduction 3, (b, a) ∈ P and b � a. In this case, Reduction j
functions in the same way as Reduction 3 (cf. Definition 2.10 and Figure 2.3), i.e.,
Rj(P) = F . This proves R3-CAF ⊆ Rj-CAF. R3-CAF ⊂ Rj-CAF follows from
Rj-CAF *⊆ R3-CAF.

We now know that applying preferences to wfCAFs results in four distinct CAF-classes
that lie in-between wfCAFs and general CAFs. It is still unclear, however, how to
determine whether some CAF belongs to one of these classes or not. Especially for
R2-CAF and R4-CAF this is not straightforward, since Reductions 2 and 4 not only
remove but also introduce attacks and therefore allow for several possibilities by which
a particular CAF can be obtained. We tackle this problem by characterizing the new
classes via the so-called wf-problematic part of a CAF.

Definition 4.9 (wf-problematic part). A pair of arguments (a, b) is wf-problematic in
a CAF F = (A, R, cl) iff a, b ∈ A, (a, b) *∈ R, and there is a� ∈ A with cl(a�) = cl(a)
and (a�, b) ∈ R. The set wfp(F) = {(a, b) | (a, b) is wf-problematic in F} is called the
wf-problematic part of F .

Intuitively, the wf-problematic part of a CAF F consists of those attacks that are missing
for F to be well-formed (cf. Figure 4.1). Indeed, F is a wfCAF if and only if wfp(F) = ∅.

The four new classes can be characterized as follows:

Proposition 4.10. Let F = (A, R, cl) be a CAF. Then

• F ∈ R1-CAF iff (a, b) ∈ wfp(F) implies (b, a) *∈ wfp(F);

• F ∈ R2-CAF iff there are no arguments a, a�, b, b� in F with cl(a) = cl(a�) and
cl(b) = cl(b�) such that (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R, and either (b, a�) ∈ R
or ((a�, b�) *∈ R and (b�, a�) *∈ R);

• F ∈ R3-CAF iff (a, b) ∈ wfp(F) implies (b, a) ∈ R;

• F ∈ R4-CAF iff there are no arguments a, a�, b, b� in F with cl(a) = cl(a�) and
cl(b) = cl(b�) such that (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R, and either (b, a�) *∈ R
or ((a�, b�) *∈ R and (b�, a�) *∈ R).
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aα

a�α b

β

b�

β

cγ c� γ

Figure 4.2: A CAF which shows that R3-CAFtr *⊆ Rj-CAFtr for j ∈ {1, 2, 4}. Dashed
arrows are edges in the wf-problematic part.

Proof. Here we consider R1-CAF. The remaining cases can be found in the appendix
(Lemma A.1 for R2-CAF, Lemma A.2 for R3-CAF, and Lemma A.3 for R4-CAF).

“ =⇒ ”: By contrapositive. Suppose there is (a, b) ∈ wfp(F) such that (b, a) ∈ wfp(F).
Towards a contradiction, assume F ∈ R1-CAF. Then there is a PCAF P = (A, R�, cl, �)
such that R1(P) = F . Since Reduction 1 can only delete but not introduce attacks, and
since the underlying CAF of P must be well-formed, (a, b) ∈ R� and (b, a) ∈ R�. However,
then also (b � a) and (a � b) which means that P is not asymmetric. Contradiction.

“ ⇐= ”: Suppose that (a, b) ∈ wfp(F) implies (b, a) *∈ wfp(F). Then R1(P) = F for
the PCAF P = (A, R�, cl, �) with R� = R ∪ {(a, b) | (a, b) ∈ wfp(F)} as well as a � b
iff (b, a) ∈ R� \ R. The underlying CAF of P is well-formed since wfp((A, R�, cl)) = ∅.
Furthermore, � is asymmetric since (a, b) ∈ wfp(F) implies (b, a) *∈ wfp(F) and by
construction of P.

The above characterizations give us some insights into the effect of the various reductions
on wfCAFs. Indeed, the similarity between the characterizations of R1-CAF and
R3-CAF, resp. R2-CAF and R4-CAF, can intuitively be explained by the fact that
Reductions 1 and 3 only remove attacks, while Reductions 2 and 4 can also introduce
attacks. Proposition 4.10 allows us to decide in polynomial time whether a given CAF F
can be obtained by applying one of the four preference reductions to a PCAF. Moreover,
in the proof of Proposition 4.10 we see how, given F ∈ Ri-CAF, we can construct a
PCAF P such that Ri(P) = F in polynomial time.

But what happens if we restrict ourselves to transitive preferences? Analogously to
Ri-CAF (cf. Definition 4.6), by Ri-CAFtr we denote the set of CAFs obtained by
applying Reduction i to PCAFs with a transitive preference relation. It is clear that
Ri-CAFtr ⊆ Ri-CAF for all i ∈ {1, 2, 3, 4}. Moreover, in the proof of Proposition 4.7
we actually made use of transitive preferences, i.e., wfCAF ⊂ Ri-CAFtr for all i ∈
{1, 2, 3, 4}. Interestingly, however, the relationships between the classes Ri-CAFtr
is different to that between Ri-CAF (Proposition 4.8). Specifically, R3-CAFtr is not
contained in the other classes. The reason for this is that, in certain PCAFs P , transitivity
can force a1 � an via a1 � a2 � . . . � an such that (an, a1) ∈ P but (a1, an) *∈ P . In this
case, only Reduction 3 leaves the attacks between a1 and an unchanged.
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Proposition 4.11. For all i, j ∈ {1, 2, 3, 4} with i *= j it holds that Ri-CAFtr *⊆
Rj-CAFtr . Moreover, for all i ∈ {1, 2, 4} and all j ∈ {1, 2, 3, 4} such that i *= j it holds
that Ri-CAFtr *⊆ Rj-CAF.

Proof. Note that the preference relations of the PCAFs used in the proof of Proposition 4.8
are transitive. We therefore have Ri-CAFtr *⊆ Rj-CAF, which also means Ri-CAFtr *⊆
Rj-CAFtr , for every i ∈ {1, 2, 4} and j ∈ {1, 2, 3, 4} such that i *= j.

It remains to show R3-CAFtr *⊆ Rj-CAFtr for j ∈ {1, 2, 4}. Let F be the CAF shown in
Figure 4.2. F is in R3-CAFtr : to see this, let P be the PCAF with the same arguments
and attacks as F , and additionally attacks (a, b) and (b, c); Moreover, let c � b, b � a,
and c � a; the attack (a, c) is not deleted by Reduction 3 if there is no attack (c, a);
Thus, R3(P) = F . We show that F *∈ Rj-CAFtr for j ∈ {1, 2, 4}.

• F is not in R1-CAFtr since a PCAF that reduces to F would need to have c � b,
b � a, and therefore also c � a. But Reduction 1 would delete the attack (a, c).

• Towards a contradiction, assume there is a PCAF P such that R2(P) = F . First,
we show that (a, b) ∈ P, (b, a) ∈ P, (b, c) ∈ P, and (c, b) ∈ P.

– Assume (a, b) *∈ P. Then two things most hold. Firstly, it must be that
(b, a) ∈ P , otherwise (b, a) *∈ F . Secondly, (a�, b) *∈ P , otherwise the underlying
CAF of P would not be well-formed. This means that (a�, b) must have been
introduced into F by applying Reduction 2, i.e., by reversing (b, a�). Therefore,
(b, a�) ∈ P. But then also (b�, a�) ∈ P, otherwise the underlying CAF of P is
not well-formed. But then, by the definition of Reduction 2, either (b�, a�) ∈ F
or (a�, b�) ∈ F , which is not the case. Contradiction.

– Assume (b, a) *∈ P . Then, since the underlying CAF of P must be well-formed,
(b�, a) *∈ P . This means (a, b�) ∈ P , otherwise we cannot obtain F from P via
Reduction 2. This means that (a�, b�) ∈ P , which is not possible since neither
(a�, b�) ∈ F nor (b�, a�) ∈ P.

– Assume (b, c) *∈ P. Then two things most hold. Firstly, it must be that
(c, b) ∈ P , otherwise (c, b) *∈ F . Secondly, (b�, c) *∈ P , otherwise the underlying
CAF of P would not be well-formed. This means that (b�, c) must have been
introduced into F by applying Reduction 2, i.e., by reversing (c, b�). Therefore,
(c, b�) ∈ P. But then also (c�, b�) ∈ P, otherwise the underlying CAF of P is
not well-formed. But then, by the definition of Reduction 2, either (c�, b�) ∈ F
or (b�, c�) ∈ F , which is not the case. Contradiction.

– Assume (c, b) *∈ P . Then, since the underlying CAF of P must be well-formed,
(c�, b) *∈ P . This means (b, c�) ∈ P, otherwise we cannot obtain F from P via
Reduction 2. This means that (b�, c�) ∈ P, which is not possible since neither
(b�, c�) ∈ F nor (c�, b�) ∈ P.
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wfCAF

R1-CAFtr R2-CAFtr R3-CAFtr R4-CAFtr

R1-CAF R2-CAF

R3-CAF

R4-CAF

CAF

Figure 4.3: Relations between the various CAF-classes. An arrow indicates that a class
is a strict subset of the other, e.g. R3-CAF ⊂ R4-CAF.

Since (a, b) ∈ P, (b, a) ∈ P, (b, c) ∈ P, and (c, b) ∈ P, the only way to obtain F
form P via Reduction 2 is to set c � b and b � a. But then c � a which means
that (a, c) *∈ F . Contradiction, i.e., F *∈ R2-CAFtr .

• Now assume there is a PCAF P � such that R4(P �) = F . It must be that (a, b) ∈ P �

since we cannot obtain (a�, b) ∈ R4(P �) and (b, a�) *∈ R4(P �) without (a�, b) ∈ P �.
Analogously, it must be that (b, c) ∈ P �. Then in order to have R4(P �) = F we
need to set c � b and b � a. But then c � a which means that it cannot be that
(a, c) ∈ R4(P �) and (c, a) *∈ R4(P �). Contradiction, i.e., F *∈ R4-CAFtr .

The above result also implies that Ri-CAFtr ⊂ Ri-CAF for i ∈ {1, 2, 4} since we have
R3-CAFtr ⊆ R3-CAF ⊂ Ri-CAF (cf. Proposition 4.8) and R3-CAFtr *⊂ Ri-CAFtr
(cf. Proposition 4.11), which implies Ri-CAFtr *= Ri-CAF. It is also easy to see that
R3-CAFtr ⊂ R3-CAF: take the CAF from Figure 4.2 and add the additional attack
(c, a). The resulting CAF is in R3-CAF since we do not need to set the preference
c � a, whereas it is not in R3-CAFtr since c � a is enforced by c � b � a. Figure 4.3
summarizes the relationship between the CAF-classes.

We will not characterize all four classes Ri-CAFtr for transitive preferences. Indeed, while
each Ri-CAF and Ri-CAFtr are distinct syntactically, we will show that their semantic
properties (cf. Section 4.3) and their computational complexity (cf. Section 4.4) are the
same. However, we will characterize R1-CAFtr as this will prove useful when analyzing
the computational complexity of PCAFs using Reduction 1. Note that wfp(F) can be
seen as a directed graph, with an edge between vertices a and b whenever (a, b) ∈ wfp(F).
Thus, we may use notions such as paths and cycles in the wf-problematic part of a CAF.

Proposition 4.12. F ∈ R1-CAFtr for a CAF F iff (1) wfp(F) is acyclic and (2) (a, b) ∈
F implies that there is no path from a to b in wfp(F).

Proof. Let F = (A, R, cl).
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• Suppose wfp(F) is acyclic and there is no (a, b) ∈ F with a path from a to b in
wfp(F). Construct the PCAF P = (A, R�, cl, �) with R� = R ∪ {(a, b) | (a, b) ∈
wfp(F)} and b � a iff there is a path from a to b in wfp(F). (A, R�, cl) is well-formed
by construction. � is transitive because if there is a path from a to b and from b to
c, then there is also a path from a to c. � is asymmetric because otherwise there
would be a path from a to b and from b to a, which again would mean that there is
a cycle. It remains to show that R1(P) = F . Let (a, b) be any attack in P. We
distinguish two cases:

– (a, b) ∈ F . Then, since there is no path from a to b in wfp(F), b *� a. Therefore,
(a, b) ∈ R1(P).

– (a, b) *∈ F . Then, by construction, (a, b) ∈ wfp(F) and therefore b � a. Thus,
(a, b) is removed from P by Reduction 1, i.e., (a, b) *∈ R1(P).

Note also that, by construction of P , there can be no (a, b) ∈ F such that (a, b) *∈ P .

• Suppose wfp(F) is cyclic. Then there are arguments x1, . . . , xn ∈ F such that
x1 = xn and (xi, xi+1) ∈ wfp(F) for all 1 ≤ i < n. Towards a contradiction, assume
there is a PCAF P = (A, R�, cl, �) such that R1(P) = F . Then (xi, xi+1) ∈ P
for all 1 ≤ i < n, otherwise (A, R�, cl) would not be well-formed. In order to have
R1(P) = F we must have xi+1 � xi for all 1 ≤ i < n. But then, by transitivity and
since x1 = xn we obtain x1 � x1, which is in contradiction to � being asymmetric.
On the other hand, suppose there is an attack (a, b) ∈ F with a path from a to
b in wfp(F). Let us denote this path as x1, . . . , xn with x1 = a and xn = b. By
the same argument as above, if there were a PCAF P = (A, R�, cl, �) such that
R1(P) = F , then xn � x1, i.e., b � a. But then (a, b) *∈ R1(P). Contradiction.

In summary, we have shown that the four new CAF-classes that result from applying pref-
erences to wfCAFs lie strictly inbetween wfCAFs and general CAFs (see Proposition 4.7)
and that they are distinct from each other (see Propositions 4.8 and 4.11). Figure 4.3
summarizes the relationship between the CAF-classes. Furthermore, we characterize the
four classes (see Proposition 4.10), which allows us to take any CAF, and, in polynomial
time, decide whether this CAF belongs to one of the four classes.
From a high-level point of view, these characterization results yield insights into the
expressiveness of argumentation formalisms that allow for preferences. Propositions 4.10
and 4.12 show which situations can be captured by formalisms which (i) construct attacks
based on the claim of the attacking argument (i.e., formalisms with well-formed attack
relation) and (ii) incorporate asymmetric or transitive preference relations on arguments
using one of the four reductions.

4.3 Semantic Properties
There are key differences between wfCAFs and general CAFs with respect to semantic
properties. It has been shown (Dvořák, Rapberger, and Woltran 2023) that inherited and
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hybrid variants of stable and preferred semantics coincide on wfCAFs but not on general
CAFs (cf. Figure 2.5). This simplifies the choice of semantics when working with wfCAFs.
Moreover, wfCAFs, unlike general CAFs, preserve I-maximality under most maximization-
based semantics (cf. Figure 2.5). This leads to more intuitive behavior of these semantics
when considering extensions on the claim-level. As we have seen in Section 4.2, resolving
preferences on wfCAFs results in four new CAF-classes that, from a syntactic perspective,
lie inbetween wfCAFs and general CAFs. We now investigate whether these new CAF-
classes retain the benefits of wfCAFs when it comes to semantic properties. We summarize
and discuss our results at the end of this section (cf. Theorem 4.26 and Figure 4.6).

Firstly, we observe that the basic relations between semantics carry over from general
CAFs, i.e., if we have σµ(F) ⊆ τν(F) for two CAF-semantics σµ, τν and all CAFs F ,
then we also have also σi

µ(P) ⊆ τ i
ν(P) for all PCAFs P and Reduction i ∈ {1, 2, 3, 4}.

Likewise, if we have σµ(F) *⊆ τν(F), then we also have σi
µ(P) *⊆ τ i

ν(P).

Secondly, we note that Reductions 2, 3, and 4 cannot entirely remove conflicts between
arguments, and that therefore the resolution of preferences has no impact on conflict-free
extensions (both on the argument- and claim-level) under these preference reductions.

Lemma 4.13. Let P = (A, R, cl, �) be a PCAF and let Ri(P) = (A, R�, cl) with
i ∈ {2, 3, 4}. Then cf ((A, R)) = cf ((A, R�)) and cf inh((A, R, cl)) = cf inh((A, R�, cl)).

Proof. Let P = (A, R, cl, �) be a PCAF and let Ri(P) = (A, R�, cl) for i ∈ {2, 3, 4}. By
definition of Reduction i, if (a, b) ∈ R then either (a, b) ∈ R� or (b, a) ∈ R�. Conversely, if
(a, b) ∈ R�, then it must be that either (a, b) ∈ R or (b, a) ∈ R. Thus, for any S ⊆ A we
have S ∈ cf ((A, R)) iff S ∈ cf ((A, R�)). This further implies that for any C ⊆ cl(A) we
have C ∈ cf inh((A, R, cl)) iff C ∈ cf inh((A, R�, cl)).

The fact that Reductions 2–4 do not remove conflicts, and the well-formedness of a
PCAF’s underlying CAF, allow us to show that inherited stable semantics and hybrid
admissibility-based stable semantics coincide under Reductions 2–4. Under Reduction 1
the two semantics do not coincide.

Proposition 4.14. stbi
inh(P) = stb-admi

hyb(P), where i ∈ {2, 3, 4}, holds for every
PCAF P.

Proof. stbinh(F) ⊆ stb-admhyb(F) holds for all CAFs. We must show that stb-admhyb(F) ⊆
stbinh(F) for all F ∈ Ri-CAF, where i ∈ {2, 3, 4}. Let F = (A, R, cl) ∈ Ri-CAF, and
let P = (A, R�, cl, �) be a PCAF such that Ri(P) = F . Moreover, let C ∈ stb-admhyb(F).
Then there is an argument-set S ⊆ A such that S ∈ adm(F), cl(S) = C, and
C ∪ S∗

F = cl(A). Let S� = S ∪ {x ∈ A \ S | (x, y) *∈ R, (y, x) *∈ R for all y ∈ S},
i.e., S� is obtained by adding all arguments to S that are not in conflict with S. We show
that C ∈ stbinh(F) by showing the following:
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aα a� α

(a) R1(P) from Proposi-
tion 4.15.

aα b β

b� β

(b) R1(P) from Proposi-
tion 4.17.

aα a� α

(c) R2(P) from Proposi-
tion 4.18.

Figure 4.4: CAFs used to show that some variants of stable semantics do not coincide
under Reductions 1 and 2. Dashed arrows are attacks in the wf-problematic part of the
CAF.

1. cl(S�) = C: clearly, cl(S) ⊆ cl(S�). Now consider any x ∈ S� \ S. Then S does not
defeat cl(x), since there is no conflict between S and x. Since cl(S) ∪ S∗

F = cl(A)
there must be x� ∈ S with cl(x�) = cl(x). Thus, cl(S) ⊇ cl(S�).

2. S� ∈ cf (A, R): since S ∈ adm(A, R), there is no conflict between any two arguments
in S. Moreover, by construction, there is no conflict between arguments in S and
arguments in S� \ S. It remains to show there is no conflict between any two
arguments in S� \ S. Towards a contradiction, assume there are x�, y� ∈ S� \ S such
that (x�, y�) ∈ R. Since there is no conflict between S and x� (resp. y�), S does not
defeat cl(x�) (resp. cl(y�)). Since cl(S) ∪ S∗

F = cl(A), there must be x, y ∈ S with
cl(x) = cl(x�) and cl(y) = cl(y�). Since Reductions 2,3,4 cannot remove conflicts, we
have (x�, y�) ∈ R� or (y�, x�) ∈ R� in the original PCAF P. By the well-formedness
of P, we have (x, y�) ∈ R� or (y, x�) ∈ R�. Since Reductions 2,3,4 cannot remove
conflicts, if (x, y�) ∈ R� then (x, y�) ∈ R or (y�, x) ∈ R, and if (y, x�) ∈ R� then
(y, x�) ∈ R or (x�, y) ∈ R. But then either x� *∈ S� or y� *∈ S�. Contradiction.

3. for all z ∈ A \ S� there is x ∈ S� such that (x, z) ∈ R: let z ∈ A \ S�. Then there
must be x ∈ S such that either (x, z) ∈ R or (z, x) ∈ R, otherwise we would have
z ∈ S�. If (z, x) ∈ R but (x, z) *∈ R, there must be y ∈ S such that (y, z) ∈ R,
otherwise we would have S *∈ adm(F).

Proposition 4.15. There is a PCAF P such that stb1
inh(P) *= stb-adm1

hyb(P).

Proof. Let P = (A, R, cl, �) with A = {a, a�}, R = {(a, a), (a�, a)}, cl(a) = cl(a�) = α,
and a � a�. Figure 4.4a depicts R1(P) = (A, R�, cl), i.e., R� = {(a, a)}. Note that
stbinh(R1(P)) = ∅ while stb-admhyb(R1(P)) = stb-cf hyb(R1(P)) = {{α}}.

Similarly, we can show that both variants (conflict-free and admissibility-based) of stable
semantics coincide under Reductions 3 and 4, but not under Reductions 1 and 2.

Proposition 4.16. stb-admi
hyb(P) = stb-cf i

hyb(P), where i ∈ {3, 4}, holds for every
PCAF P.
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Proof. stb-admhyb(F) ⊆ stb-cf hyb(F) holds for all CAFs. We show that stb-cf hyb(F) ⊆
stb-admhyb(F) for F ∈ Ri-CAF, where i ∈ {3, 4}. Let F = (A, R, cl) ∈ Ri-CAF, and
let P = (A, R�, cl, �) be a PCAF such that Ri(P) = F . Moreover, let C ∈ stb-cf hyb(F).
Then there is an argument-set S ⊆ A such that S ∈ cf (A, R), cl(S) = C, and C ∪ S∗

F =
cl(A). We show that C ∈ stb-admhyb(F) by showing that S ∈ adm(F):

Consider any x ∈ S and y ∈ A\S such that (y, x) ∈ R but (x, y) *∈ R. Under Reductions 3
and 4 a non-symmetric attack (y, x) in R3(P) means that (y, x) was also present in
the original PCAF P, i.e., (y, x) ∈ R�. Towards a contradiction, assume that S does
not defeat cl(y) in F . Since cl(S) ∪ S∗

F = cl(A), this means that there is y� ∈ S with
cl(y�) = cl(y). By the well-formedness of P this further implies (y�, x) ∈ R�. But
Reductions 3 and 4 cannot remove conflicts, i.e., either (y�, x) ∈ R or (x, y�) ∈ R. Thus,
S *∈ cf (A, R). Contradiction. Therefore, S defeats cl(y) in F , i.e., there is z ∈ S such
that (z, y) ∈ R. We can conclude that S ∈ adm(F).

Proposition 4.17. There is a PCAF P such that stb-adm1
hyb(P) *= stb-cf 1

hyb(P).

Proof. Let P = (A, R, cl, �) with A = {a, b, b�}, R = {(b, a), (b, b), (b�, a), (b�, b)}, cl(a) =
α, cl(b) = cl(b�) = β, and a � b�, b � b�. The attacks (b�, a) and (b�, b) are deleted in R1(P),
see Figure 4.4b. Moreover, stb-admhyb(R1(P)) = ∅ but stb-cf hyb(R1(P)) = {{α, β}}.

Proposition 4.18. There is a PCAF P such that stb-adm2
hyb(P) *= stb-cf 2

hyb(P).

Proof. Consider the PCAF P = (A, R, cl, �) with A = {a, a�}, R = {(a, a), (a�, a)},
cl(a) = cl(a�) = α, and a � a�. Then R2(P) = (A, R�, cl) with R� = {(a, a), (a, a�)}, see
Figure 4.4c. Note that stbinh(R2(P)) = stb-admhyb(R2(P)) = ∅ while stb-cf hyb(R2(P)) =
{{α}}.

Before investigating whether inherited and hybrid preferred semantics coincide, we
examine the I-maximality property. The following is analogous to Definition 2.25.

Definition 4.19 (I-maximality for PCAFs). σi
µ is I-maximal for PCAFs if, for all

PCAFs P and all C, D ∈ σi
µ(P), C ⊆ D implies C = D.

From known properties of wfCAFs (cf. Figure 2.5) it follows directly that naivei
inh , where

i ∈ {1, 2, 3, 4}, is not I-maximal for PCAFs. Likewise, from the properties of general
CAFs we know that naivei

hyb and prf i
hyb are I-maximal for all i ∈ {1, 2, 3, 4}. It remains

to investigate I-maximality of prf i
inh and all inherited and hybrid variants of stable,

semi-stable, and stage semantics.

As it turns out, Reduction 3 manages to preserve I-maximality in all cases except for
inherited and hybrid stage semantics.
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Proposition 4.20. prf 3
inh, sem3

inh, sem3
hyb, stb3

inh, stb-adm3
hyb, and stb-cf 3

hyb are I-
maximal for PCAFs.

Proof. We show this for prf 3
inh . The other results follow from sem3

inh(P) ⊆ prf 3
inh(P) (by

properties of general CAFs), sem3
hyb(P) ⊆ prf 3

inh(P) (by properties of general CAFs), and
stb3

inh(P) = stb-adm3
hyb(P) = stb-cf 3

hyb(P) ⊆ prf 3
inh(P) (by Propositions 4.14 and 4.16 as

well as properties of general CAFs). Towards a contradiction, assume there is a PCAF
P = (A, R, cl, �) such that C ⊂ D for some C, D ∈ prf 3

inh(P). Then there must be
S ⊆ A such that S ∈ prf (R3(P)) and cl(S) = C, as well as T ⊆ A with T ∈ prf (R3(P))
and cl(T ) = D. Observe that S *⊆ T , otherwise S *∈ prf (R3(P)). Thus, there is x ∈ S
(with cl(x) ∈ C) such that x *∈ T . However, cl(x) ∈ D since C ⊂ D, i.e., there is some
x� ∈ T such that cl(x�) = cl(x). There are two possibilities for why x is not in T :

1. T ∪ {x} *∈ cf (R3(P)). By Lemma 4.13, T ∪ {x} *∈ cf ((A, R, cl)). Therefore, there is
some y ∈ T such that y *∈ S and either (x, y) ∈ P or (y, x) ∈ P . Actually, it cannot
be that (x, y) ∈ P, otherwise, by the well-formedness of (A, R, cl), we would have
(x�, y) ∈ P which, also by Lemma 4.13, would mean that T *∈ cf (R3(P)). Thus,
(y, x) ∈ P. Since (x, y) *∈ P, and by the definition of Reduction 3, (y, x) ∈ R3(P).
S must defend x from y in R3(P), i.e., there is some z ∈ S such that (z, y) ∈ R3(P).
Therefore, also (z, y) ∈ P. Since we have that C ⊂ D there is some z� ∈ T such
that cl(z�) = cl(z). (z�, y) ∈ P by the well-formedness of (A, R, cl). But then, by
Lemma 4.13, T *∈ cf (R3(P)). Contradiction.

2. x is not defended by T . Then there is some y ∈ A such that (y, x) ∈ R3(P)
and such that y is not attacked by any argument in T . But S must defend x
against y in R3(P), i.e., there is z ∈ S such that (z, y) ∈ R3(P). Then also
(z, y) ∈ P. Since C ⊂ D there is some z� ∈ T such that cl(z�) = cl(z). (z�, y) ∈ P
by the well-formedness of (A, R, cl). It cannot be that (z�, y) ∈ R3(P), i.e., y � z�.
But then, by the definition of Reduction 3, we must have (y, z�) ∈ P and also
(y, z�) ∈ R3(P), which means that T is attacked by y but not defended against it,
i.e., T *∈ adm(R3(P)). Contradiction.

For negative results, it suffices to show that I-maximality is not preserved for transitive
preference orderings to obtain results for the more general case.

Proposition 4.21. stg3
inh and stg3

hyb are not I-maximal for PCAFs, even when consid-
ering only transitive preferences.

Proof. Let F = (A, R, cl) be the CAF shown in Figure 4.5a, and let F = (A, R) be its
underlying AF. Clearly, F ∈ R3-CAFtr .

We can see that cf (F ) = {∅, {a}, {a�}, {b}, {c}, {a, a�}, {a�, c}} and thus naive(F ) =
{{a, a�}, {a�, c}, {b}}.
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aα

a�
α

bβ

cγ

(a) in R3-CAFtr

a
α

b

β

a�α

(b) in R1-CAFtr and
R4-CAFtr

aα

a� αbβ

b� β

a�� α

(c) in R2-CAFtr

Figure 4.5: CAFs used as counter examples for I-maximality of some semantics. Dashed
arrows are edges in the respective wf-problematic part.

Regarding stg3
inh , we have {a, a�}⊕

F = {a, a�, b}, {a�, c}⊕
F = {a, a�, c}, and {b}⊕

F = {a�, b, c}.
The three ranges are incomparable, i.e., stg(F ) = naive(F ) and therefore stginh(F) =
{{α}, {α, γ}, {β}}.

Regarding stg3
hyb, {a, a�} defeats {β} while {b} defeats {γ}. Thus, {a, a�}�F = {α, β},

{a�, c}�F = {α, γ}, and {b}�F = {β, γ}. The three claim-ranges are incomparable, and we
have stghyb(F) = {{α}, {α, γ}, {β}}.

Reductions 1, 2, and 4 lose I-maximality for all semantics that are I-maximal on wfCAFs
but not on general CAFs.

Proposition 4.22. For i ∈ {1, 2, 4}, the following semantics are not I-maximal for
PCAFs, even when considering only transitive preferences: stbi

inh , stb-admi
hyb, stb-cf i

hyb,

semi
inh , semi

hyb, prf i
inh , stgi

inh , stgi
hyb.

Proof. We show this for stbi
inh . For all other σi

µ this follows from stbi
inh(P) ⊆ σi

µ(P)
(which holds by the properties of general CAFs).

For i ∈ {1, 4}, let F be the CAF shown in Figure 4.5b. F ∈ R1-CAFtr by Proposi-
tion 4.12. F ∈ R4-CAFtr since R4(P) = F for P = (A, R, cl, �) with A = {a, a�, b},
R = {(b, a)}, cl(a) = cl(a�) = α, cl(b) = β, and a � b. As required, the underlying
CAF of P is well-formed. It can be verified that stb(F) = {{a, a�}, {a�, b}} and thus
stbinh(F) = {{α}, {α, β}}.

For i = 2, let F � be the CAF of Figure 4.5c. F � ∈ R2-CAFtr since R2(P �) = F �

for the PCAF P � = (A�, R�, cl �, �) with R� = {(b, a), (b, a�), (b�, a), (b�, a�)}, a � b, and
a� � b�. As required, the underlying CAF of P � is well-formed. It can be verified that
stb(F �) = {{a, a�, a��}, {a��, b, b�}} and thus stbinh(F �) = {{α}, {α, β}}.

We can now use the fact that inherited preferred semantics are I-maximal under Reduc-
tion 3 to show that inherited and hybrid preferred semantics coincide under Reduction 3.

Proposition 4.23. prf 3
inh(P) = prf 3

hyb(P) for every PCAF P.
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Proof. prf hyb(F) ⊆ prf inh(F) holds for all CAFs. We must show prf inh(F) ⊆ prf hyb(F)
for all F ∈ R3-CAF. Towards a contradiction, assume there is F = (A, R, cl) ∈
R3-CAF such that C ∈ prf inh(F) but C *∈ prf hyb(F) for some C ⊆ cl(A). Then
C ∈ adminh(F). Since C *∈ prf hyb(F), there must be D ∈ prf hyb(F) such that D ⊃ C.
Since prf hyb(F) ⊆ prf inh(F) we have D ∈ prf inh(F). But then we have C, D ∈ prf inh(F)
and D ⊃ C. This means that prf inh is not I-maximal for CAFs in R3-CAF, which
contradicts Proposition 4.20.

Our results regarding I-maximality also allow us to infer negative results regarding the
relationship between semantics: if σi

µ is I-maximal while τ i
ν is not, then there must be a

PCAF P such that σi
µ(P) *⊆ τ i

ν(P). Thus, we can conclude:

Proposition 4.24. For every i ∈ {1, 2, 4} there is:

• a PCAF P such that prf i
inh(P) *⊆ prf i

hyb(P);

• a PCAF P such that semi
inh(P) *⊆ prf i

hyb(P);

• a PCAF P such that semhyb(P) *⊆ prf hyb(P).

Proposition 4.25. For every i ∈ {1, 2, 3, 4} there is:

• a PCAF P such that stgi
inh(P) *⊆ naivei

hyb(P);

• a PCAF P such that stgi
hyb(P) *⊆ naivei

hyb(P).

We have now determined the relationship between PCAF-semantics and their properties
with respect to I-maximality. In summary:

Theorem 4.26. The results depicted in Figure 4.6 hold, even when considering only
PCAFs with transitive preferences.

Reduction 3 preserves the properties of wfCAFs for semantics that are based on admissibil-
ity (stable, semi-stable, preferred) but not for semantics that are based on conflict-freeness
(stage, naive). Reductions 1, 2, and 4 on the other hand lose the I-maximality properties
of wfCAFs in all cases (except for those semantics that are I-maximal on general CAFs
already). Under Reduction 4 all variants of stable semantics coincide, while under Reduc-
tion 2 the inherited and admissibility-based hybrid stable semantics coincide. Reduction 1
preserves none of the investigated semantic properties of wfCAFs.

Intuitively, these results can be explained by the fact that Reduction 3 is the most
conservative of the reductions, not adding new attacks and preserving conflict-freeness
(i.e., given a PCAF P , a set of arguments E is conflict-free in the underlying CAF of P iff
E is conflict-free in R3(P)). Reductions 2 and 4 preserve conflict-freeness too, but they
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Figure 4.6: Relations between PCAF-semantics. If there is an arrow from σ to τ , then
σ(P) ⊆ τ(P) for all PCAFs P. Semantics highlighted in gray are I-maximal.

may introduce new attacks in contrast to Reduction 3. Reduction 1 on the other hand
does not preserve conflict-freeness. In fact, it has been deemed problematic for exactly
this reason when applied to AFs (Amgoud and Vesic 2014), although it is still discussed
and considered in the literature alongside the other reductions (Kaci et al. 2021).

Our results support the decision-making process when choosing how preferences should
be resolved (i.e., which preference reduction should be used). For example, if Reduction 3
is chosen then no attention has to be paid to the existence of several variants for preferred
or stable semantics, since all the variants coincide. What is more, we know that these
semantics are I-maximal and therefore behave ‘as expected’ on the claim level. If on the
other hand Reduction 1 is chosen, then one must be aware that the different variants for
stable and preferred semantics may deliver different extensions, and that none of them
(except hybrid preferred semantics) are I-maximal.

86



4.4. Complexity

4.4 Complexity
In this section, we investigate the impact of preferences on the computational complexity
of claim-based reasoning. To this end, we define the three main decision problems for
PCAFs analogously to those for CAFs (cf. Definition 2.26), except that we take a PCAF
instead of a CAF as input and appeal to PCAF-semantics σi

µ instead of CAF-semantics σµ.

Definition 4.27 (Decision problems for PCAFs). We consider the following decision
problems pertaining to a PCAF-semantics σi

µ:

• Credulous Acceptance (CredPCAF
σi

µ
): Given a PCAF P and claim α, is α contained

in some C ∈ σi
µ(P)?

• Skeptical Acceptance (SkeptPCAF
σi

µ
): Given a CAF P and claim α, is α contained

in each C ∈ σi
µ(P)?

• Verification (VerPCAF
σi

µ
): Given a CAF P and a set of claims C, is C ∈ σi

µ(P)?

Membership results for PCAFs can be inferred from results for general CAFs (recall that
the preference reductions from PCAFs to CAFs can be done in polynomial time), and
hardness results from results for wfCAFs. Thus, except for naivei

hyb, the complexity of
credulous and skeptical acceptance follows immediately from known results for CAFs and
wfCAFs (cf. Table 2.3):

Observation 4.28. Let i ∈ {1, 2, 3, 4} and let σi
µ be any PCAF-semantics considered in

this chapter. CredPCAF
σi

µ
has the same complexity as CredwfCAF

σµ
. SkeptPCAF

σi
µ

has the same
complexity as SkeptwfCAF

σµ
, except for σi

µ = naivei
hyb.

The computational complexity of the verification problem, on the other hand, is one level
higher on the polynomial hierarchy for general CAFs compared to wfCAFs (cf. Table 2.3),
i.e., the bounds that existing results yield for PCAFs are not tight. We address this open
problem and comprehensively analyze VerPCAF

σi
µ

for each of the considered reductions
and semantics. Moreover, we investigate the complexity of SkeptPCAF

naivei
hyb

.

Regarding conflict-free and naive semantics, the fact that Reductions 2–4 do not remove
conflicts straightforwardly implies that the properties of wfCAFs are preserved.

Proposition 4.29. VerPCAF
σi

µ
is in P for σµ ∈ {cf inh , naiveinh , naivehyb} and i ∈ {2, 3, 4}.

Proof. Let P = (A, R, cl, �) be a PCAF, C a set of claims, and i ∈ {2, 3, 4}. To check
whether C ∈ cf i

inh(P), by Lemma 4.13, it suffices to check whether C ∈ cf inh((A, R, cl)).
This can be done in polynomial time on wfCAFs (cf. Table 2.3). Analogously for
naivei

inh(P) and naivei
hyb(P).
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Figure 4.7: Reduction of 3-SAT-instance ω1 = {x, y}, ω2 = {¬x, ¬y}, ω3 = {¬x, z},
ω4 = {y, ¬z}, to an instance (P, C) of VerPCAF
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. Dashed arrows are attacks deleted in
R1(P), i.e., they are edges in wfp(R1(P)).

Proposition 4.30. SkeptPCAF
naivei

hyb
is coNP-complete for σi

µ = naivei
hyb and i ∈ {2, 3, 4}.

Proof. coNP-hardness follows from known results for wfCAFs (see Table 2.3). Regarding
coNP-membership, let P = (A, R, cl, �) be a PCAF, α ∈ cl(A), and i ∈ {2, 3, 4}. To
decide whether α is skeptically accepted in P under naivei

hyb-semantics, by Lemma 4.13,
it suffices to decide whether α is skeptically accepted in the underlying CAF (A, R, cl) of
P. This can be done in coNP-time on wfCAFs (cf. Table 2.3).

4.4.1 Hardness under Reduction 1
Since Reduction 1 does remove conflicts between arguments, we cannot apply the same
reasoning as above when analyzing the complexity of conflict-free and naive semantics
under Reduction 1. Indeed, it turns out we lose the benfits of wfCAFs for these semantics
(as well as stb-cf hyb). In the proof of Proposition 4.31 we make use of Reduction 1’s
ability to remove conflicts in order to show hardness.

Proposition 4.31. VerPCAF
σi

µ
is NP-hard for σi

µ ∈ {cf 1
inh , naive1

inh , stb-cf 1
hyb}, even if we

restrict ourselves to PCAFs with transitive preference relations.

Proof. Let ϕ be an arbitrary instance of 3-SAT given as a set Ω = {ω1, . . . , ωm} of clauses
over variables X. Without loss of generality, we can assume that every variable appears
both positively and negatively in ϕ. We construct a PCAF P = (A, R, cl, �) as well as a
set of claims C:

• A = V ∪V ∪H where V = {xi | x ∈ ωi, 1 ≤ i ≤ m}, V = {xi | ¬x ∈ ωi, 1 ≤ i ≤ m},
and H = {xT , xF | x ∈ X};

• R = {(xT , xi), (xF , xi) | xi ∈ V } ∪ {(xT , xi), (xF , xi) | xi ∈ V };

• cl(xi) = cl(xi) = i for all xi, xi ∈ V ∪ V , cl(xT ) = cl(xF ) = x for all x ∈ X;

• xi � xT for all xi ∈ V and xi � xF for all xi ∈ V ;

• C = {1, . . . , m} ∪ X.
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Figure 4.7 illustrates the above construction. Note that the preferences xi � xT remove
all conflicts between the ‘true’ variable arguments xT and their unnegated occurrences
xi. Likewise for preferences of the form xi � xF . Now let F = R1(P) = (A, R�, cl). We
must show that ϕ is satisfiable iff C ∈ σµ(F) for σµ ∈ {cf inh , naiveinh , stb-cf hyb}.

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {xT ∈ H | x ∈ I}∪{xF ∈ H | x *∈ I}∪{xi ∈ V | x ∈ I}∪{xi ∈ V | x *∈ I}. It can be
easily verified that S is conflict free in (A, R�) and that cl(S) = C. Note that C contains
all claims in F , i.e., C = cl(A). Thus, C ∈ stb-cf hyb(F). Moreover, C ∈ naiveinh(F) and
C ∈ cf inh(F) since stb-cf hyb(F) ⊆ naiveinh(F) ⊆ cf inh(F).

Assume C ∈ cf inh(F). Then there is some S ⊆ A such that S ∈ cf ((A, R�)) and cl(S) = C.
Let x be any variable in X. Since x ∈ cl(S) it must be that either xT ∈ S or xF ∈ S.
Thus, for all i, j, we have xi ∈ S =⇒ xj *∈ S and xi ∈ S =⇒ xj *∈ S (otherwise,
we would need both xT *∈ S and xF *∈ S for S to be conflict-free). Furthermore,
for any i ∈ {1, . . . , m}, there must be some x such that xi ∈ S or xi ∈ S. Let
I = {x | xi ∈ S for some i}. Then for every i there is some x such that either x ∈ ωi and
x ∈ I or ¬x ∈ ωi and x *∈ I. Thus, I satisfies all clauses ω1, . . . , ωm which means that ϕ
is satisfiable. The proof works likewise if we assume C ∈ naiveinh(F) or C ∈ stb-cf hyb(F)
since stb-cf hyb(F) ⊆ naiveinh(F) ⊆ cf inh(F).

Note that the above construction does not work for admissible-based semantics, since
the variable-arguments xi resp. xi in the extension S would remain undefended. The
existing hardness proof for general CAFs (Dvořák and Woltran 2020, Proposition 2)
cannot be used either, as the constructed CAFs are not in R1-CAF. Specifically, there
are symmetric attacks between arguments whose claims occur multiple times, which leads
to cycles in the wf-problematic part of the constructed CAF. Instead, we show hardness
via a more involved construction in which symmetric attacks are avoided.

Proposition 4.32. VerPCAF
σi

µ
is NP-hard for σi

µ ∈ {stb1
inh , stb-adm1

hyb, com1
inh , adm1

inh},
even if we restrict ourselves to PCAFs with transitive preference relations.

Proof. Let ϕ be an arbitrary 3-SAT-instance given as a set Ω = {ω1, . . . , ωm} of clauses
over variables X. For convenience, we directly construct a CAF F = (A, R, cl) with
F ∈ R1-CAFtr instead of providing a PCAF P such that R1(P) = F . This is legitimate,
as, by our characterization of R1-CAFtr (see Proposition 4.12), we can obtain P by
simply adding all edges in wfp(F) to R and defining � accordingly. We also construct a
set of claims C.

• A = V ∪V ∪H where V = {xi | x ∈ ωi, 1 ≤ i ≤ m}, V = {xi | ¬x ∈ ωi, 1 ≤ i ≤ m},
and H = {xk

i,j , x̂k
i,j | 1 ≤ k ≤ 4, xi ∈ V, xj ∈ V };

• R = {(xi, x1
i,j), (x1

i,j , x2
i,j), (x2

i,j , xj), (xj , x3
i,j), (x3

i,j , x4
i,j), (x4

i,j , xi) | xi ∈ V, xj ∈ V };

• cl(xi) = cl(xi) = i for all xi, xi and cl(xk
i,j) = cl(x̂k

i,j) = xk
i,j for all xk

i,j , x̂k
i,j ;
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Figure 4.8: Reduction of 3-SAT-instance ω1 = {x}, ω2 = {¬x, y}, ω3 = {¬y, z}, to an
instance (P, C) of VerPCAF

stb1
inh

. Dashed arrows are attacks deleted in R1(F �), i.e., they are
edges in wfp(R1(P)).

• C = {1, . . . , m} ∪ {cl(a) | a ∈ H}.

Figure 4.8 illustrates the above construction. In general, every x̂k
i,j only has outgoing

edges in the wf-problematic part, and no incoming or outgoing attacks in R. Every xk
i,j

only has incoming edges in the wf-problematic part. Finally, there can be no edges in
the wf-problematic part between any xi (or xi) and any other xj (or xj). From this, and
by the above construction, we can infer that (A, R, cl) fulfills all of the conditions to be
in R1-CAFtr (cf. Proposition 4.12). It remains to show the correctness of the above
construction.

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {xi ∈ V | x ∈ I} ∪ {xi ∈ V | x *∈ I} ∪ {x2

i,j , x3
i,j | xi, xj ∈ A, x ∈ I} ∪ {x1

i,j , x4
i,j |

xi, xj ∈ A, x *∈ I} ∪ {x̂k
i,j | x̂k

i,j ∈ A}. It can be verified that S ∈ stb((A, R)) and that
cl(S) = C. Thus, C ∈ stbinh(F). Moreover, C ∈ stb-admhyb(F), C ∈ cominh(F), and
C ∈ adminh(F), since stbinh(F) ⊆ stb-admhyb(F) ⊆ cominh(F) ⊆ adminh(F).

Assume C ∈ adminh(F). Then there is some S ⊆ A such that S ∈ adm((A, R)) and
cl(S) = C. Thus, for any i ∈ {1, . . . , m}, there must be some x such that xi ∈ S or
xi ∈ S. Consider the case that xi ∈ S. Since S is admissible, x1

i,j *∈ S for any j such that
xj ∈ A. This further means that xj *∈ S for any xj ∈ A, since we would need x1

i,j ∈ S to
defend xj from the attack by x2

i,j . Likewise, if xi ∈ S, then xj *∈ S for all xj ∈ A. Let
I = {x | xi ∈ S for some i}. Then for every i there is some x such that either x ∈ ωi and
x ∈ I or ¬x ∈ ωi and x *∈ I. Thus, I satisfies all clauses ω1, . . . , ωm which means that ϕ
is satisfiable. The proof works likewise if we assume C ∈ stbinh(F), C ∈ stb-admhyb(F),
or C ∈ cominh(F), since stbinh(F) ⊆ stb-admhyb(F) ⊆ cominh(F) ⊆ adminh(F).

As for semi-stable and inherited preferred semantics, we can build upon the standard
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Figure 4.9: Reduction of the QBF2
∀ instance Φ = ∀y1, y2∃z1, z2ϕ with ϕ given by clauses

ω1 = {y1, ¬y2, z1}, ω2 = {¬y1, ¬z1, z2}, ω3 = {y2, z1, ¬z2} to an instance of VerPCAF
sem1

inh
.

translation for skeptical acceptance of preferred-semantics (Dvořák and Dunne 2018,
Reduction 3.7). We introduce helper arguments and avoid symmetric attacks between
arguments of the same claim.

Proposition 4.33. VerPCAF
σi

µ
is ΣP

2 -hard for σi
µ ∈ {prf 1

inh , sem1
inh , sem1

hyb, stg1
inh , stg1

hyb},
even if we restrict ourselves to PCAFs with transitive preference relations.

Proof. We show hardness for σµ ∈ {prf 1
inh , sem1

inh , sem1
hyb}. The remaining cases can be

found in the appendix (Lemma A.4). Let Φ = ∀Y ∃Zϕ be an instance of QBF2
∀, where

ϕ is given by a set Ω of clauses over atoms X = Y ∪ Z. We provide a reduction to the
complementary problem of VerPCAF

σ1
µ

. In particular, we construct the CAF F = (A, R, cl)
with underlying AF F = (A, R) and a set of claims C:

• A = {ϕ, ϕ}∪Ω∪X∪X∪Ya∪Y a∪Yb∪Y b, where X = {x | x ∈ X}, Ya = {ay | y ∈ Y },
Y a = {ay | y ∈ Y }, Yb = {by | y ∈ Y }, Y b = {by | y ∈ Y };

• R = {(x, x), (x, x) | x ∈ X} ∪ {(ω, ω), (ω, ϕ) | ω ∈ Ω} ∪ {(ϕ, ϕ), (ϕ, ϕ)} ∪
{(x, ω) | x ∈ ω, ω ∈ Ω} ∪ {(x, ω) | ¬x ∈ ω, ω ∈ Ω} ∪
{(av, av), (v, av) | v ∈ Y ∪ Y } ∪ {(ϕ, z), (ϕ, z) | z ∈ Z};

• cl(bv) = v for bv ∈ Yb ∪ Y b and cl(v) = v else;

• C = Y ∪ Y .
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Figure 4.9 illustrates the above construction. Note that F ∈ R1-CAFtr (cf. Proposi-
tion 4.12) since all paths in wfp(F) = {(ba, v) | v ∈ Y ∪Y } are of length 1 (only arguments
in Yb ∪ Y b have outgoing edges in wfp(F)). It remains to verify the correctness of the
reduction, i.e., we will show that Φ is valid iff C /∈ σµ(F).
“ =⇒ ”: Assume Φ is valid. Consider any S ⊆ A such that S ∈ adm(F ) and cl(S) = C.
Then S ⊆ Y ∪ Y ∪ Yb ∪ Y b. Let Y � = S ∩ Y . Since Φ is valid, there is Z � ⊆ Z such that
M = Y � ∪ Z � is a model of ϕ. Let T = M ∪ {x | x ∈ X \ M} ∪ Yb ∪ Y b ∪ {ϕ}. Note
that S ⊂ T and T ∈ cf (F ) by construction. Moreover, T ∈ adm(F ) since ϕ defends
v ∈ Z � ∪ {z | z ∈ Z \ Z �} against ϕ; moreover, each argument v ∈ X defends itself
against v and vice verca; also, M ∪ {x | x ∈ X \ M} defends ϕ against each attack from
clause-arguments ω ∈ Ω since M |= ϕ: for each clause ω ∈ Ω, there is either v ∈ M with
v ∈ ω or ¬v ∈ ω for some v /∈ M . In the first case, (v, ω) ∈ R and v ∈ S, in the latter,
(v, ω) ∈ R and v ∈ S. Thus, S *∈ prf (F ). Since S was chosen as an arbitrary admissible
set such that cl(S) = C, we can conclude that C *∈ prf inh(F). Moreover, C *∈ seminh(F)
and C *∈ semhyb(F), since seminh(F) ⊆ prf inh(F) and semhyb(F) ⊆ prf inh(F).
“ ⇐= ”: Assume C /∈ seminh(F) (resp. C *∈ semhyb(F)). Consider any Y � ⊆ Y . We
will show that there is some Z � ⊆ Z such that Y � ∪ Z � |= ϕ. Let S = Y � ∪ {y | y ∈
Y \ Y �} ∪ Yb ∪ Y b. Observe that cl(S) = C and S ∈ adm(F ). Since C /∈ seminh(F)
(resp. C /∈ semhyb(F)), there is T ∈ adm(F ) with T ∪ T +

F ⊃ S ∪ S+
F (resp. cl(T ) ∪ T ∗

F ⊃
cl(S) ∪ S∗

F ).
In particular, we have Y � ∪ {y | y ∈ Y \ Y �} ⊆ T since each av ∈ S+

F (resp. av ∈ S∗
F )

with v ∈ Y ∪ Y has precisely one non-self-attacking attacker (namely the argument v).
Moreover, we can assume that T contains each argument v ∈ Yb ∪ Y b since each such v
is unattacked and does not attack any other argument. We can conclude that T ⊃ S.
It follows that ϕ ∈ T : since S ⊂ T , there is some v ∈ A \ S such that v ∈ T . Clearly,
v ∈ {ϕ} ∪ Z ∪ Z since each remaining argument is either self-attacking or attacked by S
(and thus also by T ). In case v = ϕ, we are done; in case v ∈ Z ∪ Z, we have ϕ ∈ T by
admissibility of T (observe that ϕ is the only attacker of ϕ). Consequently, T defends ϕ
against each attack from each clause-argument ω ∈ Ω.
Now, let Z � = Z ∩T . We show that M = Y � ∪Z � is a model of ϕ. Consider some arbitrary
clause ω ∈ Ω. Since ϕ ∈ T , there is some v ∈ T such that (v, ω) ∈ R by admissibility of T .
In case v ∈ X, we have v ∈ M and v ∈ ω by construction of F ; similarly, in case v ∈ X
we have v /∈ M and ¬v ∈ ω. Thus, ω is satisfied by M . Since ω was chosen arbitrarily it
follows that M |= ϕ. We can conclude that Φ is valid. The proof works likewise if we
assume C *∈ prf inh(F) since seminh(F) ⊆ prf inh(F) (resp. semhyb(F) ⊆ prf inh(F)).

Just like inherited preferred/naive semantics, hybrid preferred/naive semantics are DP-
complete and thus preserve the high complexity of general CAFs. To show this for prf 1

hyb,
we adapt an existing reduction from SatUnsat to general CAFs (Dvořák et al. 2023).

Proposition 4.34. VerPCAF
σi

µ
is DP-hard for σi

µ ∈ {prf 1
hyb, naive1

hyb}, even if we restrict
ourselves to PCAFs with transitive preference relations.
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Figure 4.10: Reduction of the QBF2
∀ instance Φ = ∀y, y�∃zϕ with ϕ given by ω1 =

{y, y�, z}, ω2 = {y, ¬y�, ¬z}, ω3 = {y, ¬y�, z}, to an instance of SkeptPCAF
naive1

hyb
.

Proof. We show hardness for σµ = prf 1
hyb. The proof for σµ = naive1

hyb can be found in
the appendix (Lemma A.5). Let (ϕ1, ϕ2) be an arbitrary instance of SatUnsat, where
ϕi is given over a set of clauses Ωi and a set of variables Xi such that X1 ∩ X2 = ∅. Given
Xi, we define Xi = {x | x ∈ Xi}. Instead of constructing a PCAF, we directly construct
a CAF F = (A, R, cl) ∈ R1-CAFtr :

• A = A1 ∪ A2, where Ai = Xi ∪ Xi ∪ Ωi ∪ {ϕi} ∪ {dx | x ∈ Xi ∪ Xi};

• R = R1 ∪ R2, where Ri = {(x, ω) | ω ∈ Ωi, x ∈ Ωi} ∪ {(x, ω) | ω ∈ Ωi, ¬x ∈
Ωi} ∪ {(x, x), (x, x) | x ∈ Xi} ∪ {(ω, ϕi), (ω, ω) | ω ∈ Ωi};

• cl(dx) = x for x ∈ Xi ∪ Xi, cl(x) = x for all other arguments in A.

The claim-set to be verified is C = X1 ∪ X1 ∪ X2 ∪ X2 ∪ {ϕ1}. Observe that C =
cl(A) \ (Ω1 ∪ Ω2 ∪ {ϕ2}), i.e., all claims except those of clauses and ϕ2 are contained in
C. We show that (ϕ1, ϕ2) is a yes-instance of SatUnsat if and only if C ∈ prf hyb(F):

Assume (ϕ1, ϕ2) is a yes-instance of SatUnsat. Then there is an interpretation I such
that I |= ϕ1, but there is no interpretation that satisfies ϕ2. Thus, ϕ2 cannot be part of
any admissible extension, since it must be defended against all clause arguments from Ω2.
Let S = I ∪ {x | x ∈ (X1 ∪ X2) \ I} ∪ {dx | x ∈ X1 ∪ X2} ∪ {ϕ1}. It can be verified that
cl(S) = C, S ∈ adm((A, R)), and that there is no S� ∈ adm((A, R)) with cl(S�) ⊃ cl(S).

Assume (ϕ1, ϕ2) is a no-instance of SatUnsat. There are two cases: (1) ϕ1 is unsatisfiable.
Then ϕ1 cannot be part of any admissible extension, i.e., C *∈ adminh(F). (2) Both ϕ1
and ϕ2 are satisfiable. Since ϕ1 and ϕ2 share no variables, there is an interpretation I such
that I |= ϕ1 and I |= ϕ2. Let S = I∪{x | x ∈ (X1∪X2)\I}∪{dx | x ∈ X1∪X2}∪{ϕ1, ϕ2}.
Note that cl(S) ⊃ C and S ∈ adm((A, R)). Thus, C *∈ prf hyb(F).

It only remains to investigate skeptical acceptance for naive1
hyb, which, as we show, also

preserves the higher complexity of general CAFs. This means that Reduction 1 loses the
computational benefits of wfCAFs for all semantics considered in this chapter.

Proposition 4.35. SkeptPCAF
σi

µ
is ΠP

2 -hard for σi
µ = naive1

hyb, even if we restrict ourselves
to PCAFs with transitive preference relations.
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Proof. Let Φ = ∀Y ∃Zϕ be an instance of QBF2
∀, where ϕ is given by a set Ω =

{ω1, . . . , ωm} of clauses over atoms X = Y ∪ Z. We construct F = (A, R, cl) with

• A = {ϕ} ∪ Ω ∪ {x, x | x ∈ X} ∪ {z∗, z∗ | z ∈ Z} ∪
{xi | x ∈ X, x ∈ ωi, 1 ≤ i ≤ m} ∪ {xi | x ∈ X, ¬x ∈ ωi, 1 ≤ i ≤ m} ;

• R = {(ϕ, ω) | ω ∈ Ω} ∪ {(x, x) | x ∈ X} ∪ {(z∗, z∗) | z ∈ Z} ∪
{(x, xi) | x ∈ X, ¬x ∈ ωi, 1 ≤ i ≤ m} ∪ {(x, xi) | x ∈ X, x ∈ ωi, 1 ≤ i ≤ m};

• cl(xi) = cl(xi) = cl(ωi) = i for 1 ≤ i ≤ m,
cl(z∗) = z, cl(z∗) = cl(z), and
cl(v) = cl(v) for all other v ∈ A.

Figure 4.10 illustrates the above construction. Note that F ∈ R1-CAFtr (cf. Proposi-
tion 4.12): the only arguments with both incoming and outgoing edges in wfp(F) are
the z∗ arguments, with z ∈ Z. The edge leading to z∗ comes from z, and the edge going
out of z∗ leads to some zi. Thus, there is no cycle in wfp(F). Moreover, the only path
in wfp(F) with more than one edge is from z to some zi, while (z, zi) *∈ R. It remains
to verify the correctness of the reduction: we show that Φ is valid iff ϕ ∈ C for all
C ∈ naivehyb(F).

“ =⇒ ”: Assume Φ is valid. Let C ∈ naivehyb(F). Note that, for each y ∈ Y , we cannot
have y ∈ C and y ∈ C at the same time. Consider the argument set SY = (Y ∩C)∪{y | y ∈
Y \ C}. Note that cl(SY ) ⊇ (C ∩ {y, y | y ∈ Y }). Let Y � = SY ∩ Y . Since Φ is valid there
is Z � ⊆ Z such that I |= ϕ for I = Y � ∪Z �. Let SZ = {z, z∗ | z ∈ Z �}∪{z, z∗ | z ∈ Z \Z �}.
Note that cl(SZ) = {z, z | z ∈ Z} ⊇ (C ∩ {z, z | z ∈ Z}). Now let SX = SY ∪ SZ

and finally S = SX ∪ {xi | x ∈ SX , xi ∈ A} ∪ {xi | x ∈ SX , xi ∈ A} ∪ {ϕ}. Note that
S ∈ cf ((A, R)) by construction. Moreover, since I satisfies all clauses in Ω we have
cl(S) ⊇ {1, . . . , m} ⊇ (C ∩ {1, . . . , m}). Since also ϕ ∈ cl(S) we can conclude that
cl(S) ⊇ C. But C ∈ naivehyb(F), i.e., it cannot be that cl(S) ⊃ C. Thus, cl(S) = C and
therefore ϕ ∈ C.

“ ⇐= ”: Assume Φ is not valid. Then there is Y � ⊆ Y such that for all Z � ⊆ Z we have
Y � ∪ Z � *|= ϕ. Let S = Y � ∪ {y | y ∈ Y \ Y �} ∪ {z, z∗ | z ∈ Z} ∪ {ω1, . . . , ωm}. Towards a
contradiction, assume there is T ∈ cf ((A, R)) such that cl(T ) ⊃ cl(S). Since for every
y ∈ Y we already have y ∈ S or y ∈ S, and since y and y are in conflict, we have y ∈ T iff
y ∈ S and y ∈ T iff y ∈ S. Moreover, since ({z, z∗ | z ∈ Z} ∪ {1, . . . , m}) ⊆ cl(S) ⊂ cl(T )
it must be that ϕ ∈ T . This further implies that ωi *∈ T for all ωi ∈ Ω. Note that for
every z ∈ Z we must have z, z∗ ∈ T or z, z∗ ∈ T since {z, z∗ | z ∈ Z} ⊂ cl(T ). Let
Z � = T ∩ Z. Since {1, . . . , m} ⊂ cl(T ), we can infer that every clause ωi ∈ Ω is satisfied
by Y � ∪ Z �, i.e., Y � ∪ Z � |= ϕ. Contradiction.

4.4.2 Efficient Algorithms for Reductions 2–4
We have already seen that the computational benefits of wfCAFs are preserved when
using Reductions 2–4 and considering conflict-free/naive semantics (cf. Propositions 4.29
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and 4.30). In this subsection we show that the benefits of wfCAFs are in fact retained
under Reductions 2–4 for the vast majority of admissible-based semantics, with the only
exception being complete semantics under Reductions 2 and 4. To do so, we require a more
involved argument than in the case of conflict-free/naive semantics, since Reductions 2–4
may very well cause certain arguments to be undefended. Consider for example the
PCAF P = (A, R, cl, �) with two arguments A = {x, y}, attacks R = {(x, y), (y, x)},
claims cl(x) = x and cl(y) = y, and the preference x � y. The preferred claim-extensions
before resolving preferences are prf inh((A, R, L)) = {{x}, {y}} while the only preferred
claim-extension after resolving preferences is prf inh(Ri(P)) = {{x}}.

Given a wfCAF F and a set of claims C, a set of arguments S can be constructed in
polynomial time such that S is the unique maximal admissible set in F with claim
cl(S) = C (Dvořák and Woltran 2020). Making use of the fact that Reductions 2–4 do
not alter conflicts between arguments, we can construct such a maximal set of arguments
also for PCAFs: given a PCAF P and set C of claims, we define the set E0(C) containing
all arguments of P with a claim in C; the set Ei

1(C) is obtained from E0(C) by removing
all arguments attacked by E0(C) in the underlying CAF of P; finally, the set Ei∗(C) is
obtained by repeatedly removing all arguments not defended by Ei

1(C) in Ri(P) until a
fixed point is reached.

Definition 4.36. Given a PCAF P = (A, R, cl, �), a set of claims C, and i ∈ {2, 3, 4},
let

E0(C) ={a ∈ A | cl(a) ∈ C};
Ei

1(C) =E0(C) \ E0(C)+
(A,R);

Ei
k(C) ={x ∈ Ei

k−1(C) | x is defended by Ei
k−1(C) in Ri(P)} for k ≥ 2;

Ei
∗(C) =Ei

k for k ≥ 2 such that Ei
k(C) = Ei

k−1(C).

The above definition is based on (Dvořák and Woltran 2020, Definition 5), but with the
crucial differences that undefended arguments are (i) computed w.r.t. Ri(P) and (ii) are
iteratively removed until a fixed point is reached.

Lemma 4.37. Let P be a PCAF, C a set of claims, and i ∈ {2, 3, 4}. The following
holds:

• C ∈ cf i
inh(P) iff cl(Ei

1(C)) = C. Moreover, if C ∈ cf i
inh(P) then Ei

1(C) is the
unique maximal conflict-free set S in Ri(P) such that cl(S) = C;

• C ∈ admi
inh(P) iff cl(Ei∗(C)) = C. If C ∈ admi

inh(P) then Ei∗(C) is the unique
maximal admissible set S in Ri(P) such that cl(S) = C.

Proof. We consider the two statements separately:
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• Conflict-freeness: let P = (A, R, cl, �) be a PCAF. From (Dvořák and Woltran
2020, Lemma 1) we know that C ∈ cf inh((A, R, cl)) iff cl(Ei

1(C)) = C, as well as
that, if C ∈ cf inh((A, R, cl)) then Ei

1(C) is the unique maximal conflict-free set S
in (A, R, cl) with cl(S) = C. From this and our Lemma 4.13, our result follows
immediately.

• Admissibility: let P = (A, R, cl, �) be a PCAF, C a set of claims, and i ∈ {2, 3, 4}.
Assume cl(Ei∗(C)) = C. By construction, Ei∗(C) ∈ adm(Ri(P)), and thus C ∈
admi

inh(P).
Now assume C ∈ admi

inh(P). Then there exists S ⊆ A such that cl(S) = C
and S ∈ adm(Ri(P)). Furthermore, C ∈ cf i

inh(P) and therefore S ⊆ Ei
1(C). By

construction, Ei∗(C) ⊆ Ei
1(C). Moreover, any x ∈ S is defended by S in Ri(P) and

therefore also by Ei
1(C). Thus, by definition, x ∈ Ei

2(C). By the same argument, if
x ∈ S and x ∈ Ei

k(C) then x ∈ Ei
k+1(C). We can conclude that S ⊆ Ei∗(C) ⊆ Ei

1(C)
and thus cl(Ei∗(C)) = C. By the above we have that Ei∗(C) is admissible and each
S ⊆ A such that cl(S) = C is a subset of Ei∗(C). In other words Ei∗(C) is the
unique maximal admissible set S in Ri(P) such that cl(S) = C.

By computing the maximal conflict-free (resp. admissible) extensions Ei
1(C) (resp. Ei∗(C))

for a claim set C, verification becomes easier for most semantics.

Proposition 4.38. VerPCAF
σi

µ
is in P for σµ ∈ {adminh , stbinh , stb-admhyb, stb-cf hyb} and

i ∈ {2, 3, 4}, as well as for σi
µ = com3

inh.

Proof. Let P = (A, R, cl, �) be a PCAF, let C be a set of claims, and let i ∈ {2, 3, 4}.
Our goal is to verify that C ∈ σi

µ(P). Note that we can compute Ri(P) = (A, R�, cl),
Ei

1(C), and Ei∗(C) in polynomial time.

• σi
µ = admi

inh : by Lemma 4.37, it suffices to test whether cl(Ei∗(C)) = C.

• σi
µ ∈ {stbi

inh , stb-admi
hyb}: note that stbi

inh(P) = stb-admi
hyb(P) under Reduc-

tions 2,3,4 (cf. Proposition 4.14), i.e., we must only verify that C ∈ stbi
inh(P).

We first check whether C ∈ admi
inh(P). If not, C *∈ stbi

inh(P). If yes, then
cl(Ei∗(C)) = C by Lemma 4.37. We can check in polynomial time if Ei∗(C) ∈
stb((A, R�)). If yes, we are done. If no, then there is an argument x that is not in
Ei∗(C) but is also not attacked by Ei∗(C) in Ri(P). Moreover, there can be no other
S ∈ stb((A, R�)) with cl(S) = C since for any such S we would have S ⊆ Ei∗(C) by
Lemma 4.37, which would imply that S does not attack x and that x *∈ S.

• σi
µ = stb-cf i

hyb: we first check whether C ∈ cf i
inh(P). If not, C *∈ stb-cf i

hyb(P). If
yes, then, by Lemma 4.37, cl(Ei

1(C)) = C. We can check in polynomial time if
Ei

1(C)�(A,R�) = cl(A). If yes, then C ∈ stb-cf hyb(Ri(P)) and we are done. If no, then
there is an argument x such that x *∈ Ei

1(C), cl(x) *∈ C, and x is not attacked by

96



4.4. Complexity

Ei
1(C) in Ri(P). Moreover, there can be no other S ∈ cf ((A, R�)) with cl(S) = C

and S�
(A,R�) = cl(A) since for any such S we would have S ⊆ Ei

1(C) by Lemma 4.37,
which would imply that S does not attack x.

• σi
µ = com3

inh : we first check if C ∈ adm3
inh(P). If not, C *∈ com3

inh(P). If yes, then
cl(E3∗(C)) = C. We can check in polynomial time if E3∗(C) ∈ com(R3(P)). If no,
then E3∗(C) defends some x *∈ E3∗(C) in R3(P). Towards a contradiction, assume
there is some S ⊆ A such that S ∈ com(R3(P)) and cl(S) = C. By Lemma 4.37,
S ⊆ E3∗(C), which implies x *∈ S. Then S cannot defend x in R3(P), i.e., there
must be y and z such that y ∈ E3∗(C), y *∈ S, (z, x) ∈ R3(P), and (y, z) ∈ R3(P).
Then also (y, z) ∈ P by the definition of Reduction 3. But there must also be some
y� ∈ S with cl(y�) = cl(y), and since the underlying CAF of P is well-formed there
must be (y�, z) ∈ P. Since there cannot be (y�, z) ∈ R3(P), otherwise S would
defend x, it has to be that z � y�. For Reduction 3 this further requires (z, y�) ∈ P .
Crucially, (z, y�) ∈ R3(P). But then S must be defended from z, i.e., there must
be some w ∈ S such that (w, z) ∈ R3(P). But this means that S defends x, i.e., S
is not complete. Contradiction.

Proposition 4.39. VerPCAF
σi

µ
is in coNP for σµ ∈ {prf inh , prf hyb, seminh , semhyb, stginh ,

stghyb} and i ∈ {2, 3, 4}.

Proof. We show that the complementary problem is in NP. Let P = (A, R, cl, �) be a
PCAF with Ri(P) = (A, R�, cl) for i ∈ {2, 3, 4}. Let C ⊆ cl(A) be a set of claims. Our
algorithm must verify that C *∈ σi

µ(P) in NP-time. Note that the argument-sets Ei
1(C)

and Ei∗(C) can be computed in polynomial time with respect to P (cf. Definition 4.36).

• σi
µ ∈ {prf i

inh , prf i
hyb, semi

inh , semi
hyb}: first, guess a set of claims D ⊆ cl(A). Then,

check whether cl(Ei∗(C)) = C. If no, then, by Lemma 4.37, C *∈ adminh(Ri(P))
and we are done. If yes, we proceed differently depending on which semantics we
consider:

– σi
µ = prf i

inh : verify that D ∈ admi
inh(P) and Ei∗(C) ⊂ Ei∗(D). Since Ei∗(C) is

the unique maximal admissible set in Ri(P) with claim C (cf. Lemma 4.37),
we have S ⊆ Ei∗(C) ⊂ Ei∗(D) for every S ∈ adm((A, R�)) with cl(S) = C.
Hence, C *∈ prf i

inh(P).
– σi

µ = prf i
hyb: verify that D ∈ admi

inh(P) and C ⊂ D. Then C *∈ prf i
hyb(P).

– σi
µ = semi

inh : verify that D ∈ admi
inh(P) and Ei∗(C)⊕

(A,R�) ⊂ Ei∗(D)⊕
(A,R�).

As above, we have S ⊆ Ei∗(C) and therefore also S⊕
(A,R�) ⊆ Ei∗(C)⊕

(A,R�) ⊂
Ei∗(D)⊕

(A,R�) for every S ∈ adm((A, R�)) with cl(S) = C. Hence, C *∈
semi

inh(P).
– σi

µ = semi
hyb: verify that D ∈ admi

inh(P) and Ei∗(C)�Ri(P ) ⊂ Ei∗(D)�Ri(P ).
As above, we have S ⊆ Ei∗(C) and therefore also S�

Ri(P ) ⊆ Ei∗(C)�Ri(P ) ⊂
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Figure 4.11: R4(P) from the proof of Proposition 4.40, with ϕ given by clauses ω1 =
{x, y, z}, ω2 = {¬x, ¬y, ¬z}. Symmetric attacks (gray/thick) have been introduced by
Reduction 4.

Ei∗(D)�Ri(P ) for every S ∈ adm((A, R�)) with cl(S) = C. Hence, C *∈
semi

hyb(P).

• σi
µ ∈ {stgi

inh , stgi
hyb}: first, guess a set of claims D ⊆ cl(A). Then, check whether

cl(Ei
1(C)) = C. If no, then, by Lemma 4.37, C *∈ cf inh(Ri(P)) and we are done. If

yes, we proceed differently depending on which semantics we consider:

– σi
µ = stgi

inh : verify that D ∈ cf i
inh(P) and Ei

1(C)⊕
(A,R�) ⊂ Ei

1(D)⊕
(A,R�). Since

Ei
1(C) is the unique maximal conflict-free set in Ri(P) with claim C (cf.

Lemma 4.37), we have S ⊆ Ei
1(C) and therefore also S⊕

(A,R�) ⊆ Ei
1(C)⊕

(A,R�) ⊂
Ei

1(D)⊕
(A,R�) for every S ∈ cf ((A, R�)) with cl(S) = C. Hence, C *∈ stgi

inh(P).

– σi
µ = stgi

hyb: verify that D ∈ cf i
inh(P) and Ei

1(C)�Ri(P ) ⊂ Ei
1(D)�Ri(P ). As

above, we have S ⊆ Ei
1(C) and therefore also S�

Ri(P ) ⊆ Ei
1(C)�Ri(P ) ⊂

Ei
1(D)�Ri(P ) for every S ∈ cf ((A, R�)) with cl(S) = C. Hence, C *∈ stgi

hyb(P).

For complete semantics, only Reduction 3 retains the benefits of wfCAFs. Here, the fact
that Reductions 2 and 4 can introduce new attacks leads to an increase in complexity.

Proposition 4.40. VerPCAF
σi

µ
is NP-hard for σµ = cominh and i ∈ {2, 4}, even if we

restrict ourselves to PCAFs with transitive preference relations.

Proof. We show NP-hardness for σi
µ = com4

inh . The proof for σi
µ = com2

inh is similar and
can be found in the appendix (Lemma A.6).

98



4.4. Complexity

Let ϕ be an arbitrary instance of 3-SAT given as a set Ω of clauses over variables X
and let X = {x | x ∈ X}. We construct a PCAF P = (A, R, cl, �) as well as a set of
claims C:

• A = {ϕ} ∪ Ω ∪ X ∪ X ∪ {ax | x ∈ X ∪ X} ∪ {bx | x ∈ X};

• R = {(ω, ϕ) | ω ∈ Ω} ∪ {(ω, ω) | ω ∈ Ω} ∪
{(ω, x) | x ∈ ω, ω ∈ Ω} ∪ {(ω, x) | ¬x ∈ ω, ω ∈ Ω} ∪
{(ax, x) | x ∈ X ∪ X} ∪ {(ax, bx), (ax, bx) | x ∈ X};

• cl(x) = cl(x) = x for x ∈ X, cl(v) = v otherwise;

• x � ω, x � ax for all x ∈ X ∪ X and all ω ∈ Ω;

• C = X ∪ {ϕ}.

Figure 4.11 illustrates the above construction. It remains to show that ϕ is satisfiable if
and only if C ∈ cominh(R4(P)).

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {x | x ∈ X, x ∈ I} ∪ {x | x ∈ X, x *∈ I} ∪ {ϕ}. Clearly, cl(S) = C. Furthermore, S
defends ϕ in R4(P) since each clause is satisfied by I, and thus each clause argument ωj

is attacked by some x (or x) in S. Each variable x ∈ X clearly defends itself. Moreover,
if x ∈ S, then x *∈ S and none of bx, x, or ax is defended by S. Analogously for the
case that x ∈ S. Thus, S is admissible, and contains all arguments it defends, i.e.,
S ∈ com(R4(P)).

Assume C ∈ cominh(R4(P)). Then there is S ⊆ A such that cl(S) = C and S ∈
com(R4(P)). For each x ∈ X, at least one of x, x must be contained in S. In fact, it
cannot be that x ∈ S and x ∈ S, otherwise bx would be defended by S and we would
have cl(S) *= C. Thus, for each x ∈ X, there is either x ∈ S or x ∈ S, but not both.
Furthermore, S defends ϕ, i.e., S attacks all clause arguments ωj . Thus, I |= ϕ for
I = X ∩ S.

4.4.3 Summary and Impact of Complexity Results
When using Reduction 1 we obtain the same complexity as for general CAFs, i.e., the
benefits of wfCAFs are lost. On the other hand, Reductions 2–4 preserve the lower
complexity of wfCAFs for almost all semantics. Intuitively, this can be explained by the
fact that these reductions do not remove conflicts between arguments. This in turn means
that Reductions 2–4 retain enough of the structure of wfCAFs in order to, given a claim,
efficiently compute a subset-maximal admissible argument set with that claim. The only
outlier is complete semantics, for which verification remains hard under Reductions 2
and 4 but not Reduction 3. Here, the fact that Reductions 2 and 4 can introduce new
attacks leads to an increase in complexity. We conclude:
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Table 4.1: Complexity of PCAFs. Results in boldface had to be proven explicitly. All
other results follow directly from known properties (cf. Observation 4.28).

σi
µ

CredPCAF
σi

µ
SkeptPCAF

σi
µ

VerPCAF
σi

µ

i ∈ {1, 2, 3, 4} i = 1 i ∈ {2, 3, 4} i = 1 i ∈ {2, 4} i = 3

cf inh in P trivial NP-c in P
adminh NP-c trivial NP-c in P
cominh NP-c P-c NP-c in P
stbinh

NP-c coNP-c NP-c in Pstb-admhyb

stb-cf hyb

naiveinh in P coNP-c NP-c
in P

naivehyb ΠP
2-c coNP-c DP-c

prf inh NP-c ΠP
2 -c

ΣP
2-c coNP-c

prf hyb DP-c
seminh ΣP

2 -c ΠP
2 -c ΣP

2-c coNP-c
semhyb

stginh ΣP
2 -c ΠP

2 -c ΣP
2-c coNP-c

stghyb

Theorem 4.41. The complexity results in Table 4.1 hold, even if we restrict ourselves
to PCAFs with transitive preference relations.

The lower complexity of the verification problem is crucial for enumerating claim-
extensions in wfCAFs (Dvořák and Woltran 2020). Indeed, this is also true for PCAFs
using Reductions 2–4, as we will now show. If claim sets can be verified in polynomial
time we can simply iterate through all claim sets. For preferred, semi-stable, and stage
semantics the algorithm builds heavily on the existence and polynomial-time computabil-
ity of unique maximal realizations for conflict-free and admissible claim-sets, i.e., Ei

1(C)
and Ei∗(C) (cf. Definition 4.36).

Proposition 4.42. Consider PCAFs P = (A, R, cl, �) with |A| ≤ n and |cl(A)| ≤ k.

• If VerPCAF
σi

µ
is in P for a PCAF-semantics σi

µ, then there is a polynomial poly(·)
such that σi

µ(P) can be enumerated in O(2k · poly(n)) time.

• For σi
µ with σµ ∈ {prf inh , prf hyb, seminh , semhyb, stginh , stghyb} and i ∈ {2, 3, 4}

there is a polynomial poly(·) such that σi
µ(P) can be enumerated in O(4k · poly(n))

time.
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Proof. If VerPCAF
σi

µ
is in P we can iterate through all 2k claim-sets C ⊆ cl(A) and check

whether C ∈ σi(F) in polynomial time. This procedure runs in O(2k · poly(n)) time.
For σi

µ with σµ ∈ {prf inh , prf hyb, seminh , semhyb, stginh , stghyb} and i ∈ {2, 3, 4}, recall
the proof of Proposition 4.39. There, to decide that C *∈ σi

µ(P), we guessed a claim-set
D ⊆ cl(A) and performed some checks in polynomial time. Instead of guessing D, we
can iterate through all 2k claim-sets D ⊆ cl(A). If C ∈ adminh(P) (resp. C ∈ cf inh(P)
in case σi

µ ∈ {stgi
inh , stgi

hyb}), and if no D that witnesses C *∈ σi
µ(P) is found, we have

C ∈ σi
µ(P). Therefore, to enumerate σi

µ(P) we can iterate through all (2k)2 = 4k pairs
(C, D) of claim-sets. This procedure runs in O(4k · poly(n)) time.

Proposition 4.42 directly implies that deciding the main decision problems is tractable if
the number of claims is bounded by a constant k, i.e., these problems are fixed parameter
tractable (FPT).

Corollary 4.43. For all PCAF-semantics σi
µ considered in this chapter, except for those

such that i = 1 and except for com2
inh and com4

inh, there is a polynomial poly(·) such that
CredPCAF

σi
µ

, SkeptPCAF
σi

µ
, and VerPCAF

σi
µ

can be solved in time O(4k · poly(n)) for PCAFs
(A, R, cl, �) with |cl(A)| ≤ k.

4.5 Conclusion
Many approaches to argumentation assume that arguments with the same claims attack
the same arguments. This gives rise to the natural class of wfCAFs, which enjoy several
desired semantic and computational properties (Dvořák et al. 2023; Dvořák, Rapberger,
and Woltran 2023). However, in formalisms in which preferences are used, well-formedness
cannot be assumed in general. In this chapter, we analyzed whether the desired properties
of wfCAFs still hold when preferences are taken into account. To this end, we introduced
Preference-based CAFs (PCAFs) and investigated the impact of the four commonly used
preference reductions on PCAFs.
We examined and characterized resulting CAF-classes, yielding insights into the expres-
siveness of argumentation formalisms that can be instantiated as CAFs and allow for
preference incorporation. Furthermore, we investigated PCAFs with respect to semantic
properties, computational complexity, and their relationship to structured formalisms.
Preserving semantic properties such as I-maximality can be desirable since it implies intu-
itive behavior of maximization-based semantics, while the complexity of the verification
problem is crucial for the enumeration of claim-extensions. Note that insights in terms
of both semantical and computational properties often provide the necessary theoretical
foundations towards practical realizations. This has been demonstrated before in similar
research endeavors, e.g., for incomplete AFs (Baumeister et al. 2021; Fazzinga, Flesca,
and Furfaro 2020).
Our results show that (i) Reduction 3 exhibits the same properties as wfCAFs regarding
computational complexity, and mostly preserves semantic properties such as I-maximality;
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4. Preferences in Claim-based Argumentation

(ii) Reductions 2 and 4 retain the advantages of wfCAFs regarding complexity for all but
complete semantics, but do not preserve I-maximality; (iii) under Reduction 1, neither
complexity properties nor semantic properties are preserved. The above results hold
even if we restrict ourselves to transitive preferences. It is worth noting that Reduction 3
behaves favorably on standard Dung-style AFs as well, fulfilling many principles for
preference-based semantics (Kaci et al. 2021).

Regarding future work, one could consider different methods for handling preferences,
and examine the effect of these methods in (well-formed) CAFs. In this work, we dealt
with preferences via preference reductions that modify the attack relation. Another
approach is to lift orderings over arguments to sets of arguments and select extensions in
this way (Alfano et al. 2022, 2023; Amgoud and Vesic 2014; Brewka, Truszczynski, and
Woltran 2010; Kaci, van der Torre, and Villata 2018). These two paradigms interpret the
meaning of preferences between arguments differently: using reductions, x � y expresses
that x is stronger than y, while in the second approach x � y expresses that it is preferred
to have outcomes with x rather than with y. Interestingly, under Reduction 3, the
admissible/complete/stable extensions of a preference-based AF are also extensions in the
underlying AF (Kaci et al. 2021). Thus, Reduction 3 selects the ‘best’ extensions from the
underlying AF in these cases. A similar dichotomy concerning preference handling can be
observed in related areas such as logic programs, where preferences can be incorporated
either on the syntactic level or by ranking the outcome (Brewka et al. 2015; Brewka,
Niemelä, and Syrjänen 2004; Delgrande, Schaub, and Tompits 2003; Sakama and Inoue
2000).

Another possibility for future work is to lower the level of abstraction used here, e.g., by
incorporating more structure into arguments, by allowing arguments to act in support
of other arguments as is done in bipolar AFs (Amgoud et al. 2008), or by preserving
more information about the claims of arguments. Regarding the latter point, recent
research (Wakaki 2020) has shown that formalisms which permit strong negation require
careful examination with regards to consistency.
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CHAPTER 5
Preferred Model Entailment

in Choice Logics

In this chapter, we investigate preferred model entailment in choice logics, a crucial
notion that allows us to draw conclusions from available knowledge about hard- and soft-
constraints. Specifically, a choice logic theory T , i.e., a set of choice logic formulas, entails
a classical formula F if and only if F is true in all preferred models of T . Preferred model
entailment is closely related to notions of entailment in other non-monotonic systems
such as circumscription (McCarthy 1980), default logic (Reiter 1980), autoepistemic
logic (Moore 1985), or conditional knowledge bases (Kraus, Lehmann, and Magidor
1990; Lehmann and Magidor 1992). However, while these related formalisms have been
extensively studied in the literature with respect to various properties (Bonatti and
Olivetti 2002; Eiter and Gottlob 1993; Eiter and Lukasiewicz 2000), only little is known
about preferred model entailment in choice logics. While Brewka, Benferhat, and Berre
(2004) investigated Qualitative Choice Logic (QCL) regarding properties for defeasible
entailment laid out by Kraus, Lehmann, and Magidor (1990), the subsequently introduced
Concjunctive Choice Logic (CCL) (Boudjelida and Benferhat 2016) and Lexicographic
Choice Logic (LCL) (Bernreiter 2020) have not been studied in this respect. Moreover,
the computational and proof-theoretic properties of preferred model entailment in choice
logics are entirely unknown.

When addressing these open questions regarding preferred model entailment in choice
logics, we must consider two axes of generalization. Firstly, there are several choice logics
such as QCL or CCL defined in the literature. Indeed, the general choice logic framework
(cf. Section 2.4) allows us to study choice logics that belong to this framework but have
not been defined explicitly yet. Secondly, the preferred models of a choice logic theory
can be determined in several ways, with the lexicographic and inclusion-based approaches
being the most commonly used such preferred model semantics in the literature (Brewka,
Benferhat, and Berre 2004).
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5. Preferred Model Entailment in Choice Logics

Contributions. We study the semantic, computational, and proof-theoretic properties
of preferred model entailment in choice logics. We consider large classes of choice
logics, with a particular focus on QCL, CCL, and LCL. Moreover, we investigate several
preferred model semantics, including the lexicographic and inclusion-based approaches
from the literature, but also two newly introduced semantics, namely the minmax and
log-lexicographic approaches. In detail, the contributions of this chapter are as follows:

• We examine preferred model entailment with respect to some key properties for
defeasible entailment laid out by Kraus, Lehmann, and Magidor (1990), namely
cautious monotonicity, cumulative transitivity (called cut by Kraus, Lehmann,
and Magidor (1990)), and rational monotonicity. Given finite theories, cautious
monotonicity and cumulative transitivity are satisfied for all considered preferred
model semantics and all choice logics. Moreover, rational monotonicity is satisfied
under all preferred model semantics except for the inclusion-based approach.

• We study the complexity of preferred model checking, i.e., verifying whether a given
interpretation is a preferred model, and find this problem to be coNP-complete
for all preferred model semantics and all choice logics that feature more than two
satisfaction degrees, which includes QCL, CCL, and LCL. We then investigate the
complexity of deciding preferred model entailment, and find that it is located on
the second level of the polynomial hierarchy. The exact complexity depends both
on the considered preferred model semantics and the considered choice logic. For
QCL and CCL, the complexity ranges from ΘP

2 -complete (minmax semantics) to
ΠP

2 -complete (inclusion-based semantics), with the other semantics being located
inbetween (ΔP

2 [O(log2 n)]-complete for the log-lexicographic semantics and ΔP
2 -

complete for the lexicographic semantics). For LCL, the complexity ranges from
ΔP

2 -complete (minmax and (log-)lexicographic semantics) to ΠP
2 -complete (inclusion-

based semantics).

• Lastly, we introduce sequent calculi for preferred model entailment. We con-
sider various choice logics (QCL, CCL, and LCL) and preferred model semantics
(lexicographic, inclusion-based, and minmax). Each calculus for preferred model
entailment is based on two labeled calculi, a monotonic calculus and a refutation
calculus, together with a non-monotonic rule. We show that all considered calculi
are sound and complete.

Publications. This chapter is based on the papers (Bernreiter, Maly, and Woltran
2022), (Bernreiter et al. 2022b), and (Bernreiter et al. 2024a).

Outline. In Section 5.1 we define the notion of preferred model entailment and the
various preferred model semantics formally. In Section 5.2 we investigate preferred
model entailment with respect to the properties of Kraus, Lehmann, and Magidor (1990).
Section 5.3 contains the complexity analysis of preferred model entailment, while our
sequent calculi are presented in Section 5.4. We conclude in Section 5.5.
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5.1. Formal Definition

Required preliminaries. Before reading this chapter, it is recommended to read
Section 2.1 (propositional logic), Section 2.2 (computational complexity), and Section 2.4
(choice logics).

5.1 Formal Definition

Formally, if L is a choice logic, then a set of L-formulas is called an L-theory. An
L-theory T entails a classical formula F , written as T |∼ F , if F is true in all preferred
models of T . However, we first need to define what the preferred models of a choice logic
theory are. There are several approaches for how to determine the preferred models of a
choice logic theory. In the original QCL paper (Brewka, Benferhat, and Berre 2004), a
lexicographic and an inclusion-based approach were introduced. In addition, we introduce
the simple yet previously not considered minmax-approach.

Definition 5.1. Let L be a choice logic, I an interpretation, and T an L-theory.
I is a model of T , written as I ∈ ModL(T ), iff degL(I, F ) < ∞ for all F ∈ T .
Moreover, Ik

L(T ) denotes the set of formulas in T satisfied to a degree of k by I, that
is, Ik

L(T ) = {F ∈ T | degL(I, F ) = k}.

• I is a minmax preferred model of T , denoted I ∈ Prf mm
L (T ), iff I ∈ ModL(T )

and there is no J ∈ ModL(T ) such that max{degL(I, F ) | F ∈ T} >
max{degL(J , F ) | F ∈ T}.

• I is a lexicographically preferred model of T , denoted I ∈ Prf lex
L (T ), iff I ∈

ModL(T ) and there is no J ∈ ModL(T ) such that, for some k ∈ N and all l < k,
|Ik

L(T )| < |J k
L (T )| and |I l

L(T )| = |J l
L(T )| holds.

• I is an inclusion-based preferred model of T , denoted I ∈ Prf inc
L (T ), iff I ∈

ModL(T ) and there is no J ∈ ModL(T ) such that, for some k ∈ N and all l < k,
Ik

L(T ) ⊂ J k
L (T ) and I l

L(T ) = J l
L(T ) holds.

Intuitively, under the minmax approach a finite L-theory T = {A1, . . . , An} can be seen
as the L-formula A1 ∧ · · · ∧ An. On the other hand, the lexicographic and inclusion-based
approaches choose those models as preferred models that satisfy as many formulas as
possible in the theory to a degree of 1. If there is a tie between two interpretations with
regards to degree 1, then it is determined which interpretation satisfies more formulas to
a degree of 2, and so forth. The differences between the two approaches is how the phrase
‘as many degrees as possible’ is understood: either in terms of cardinality (lexicographic
approach) or in terms of subset-maximization (inclusion-based approach).

We now provide an example for the various preferred model semantics. Note that we
will only give the interpretations that are relevant to a given theory T , i.e., only the
interpretations that contain variables that actually occur in T .
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5. Preferred Model Entailment in Choice Logics

Example 5.2. Consider the QCL-theory

T = {a
#»×c, b

#»×c, ¬(a ∧ b)}.

Regarding the classical models of T we have ModQCL(T ) = {{c}, {a, c}, {b, c}}.

Regarding the minmax semantics, note that for all three models I ∈ ModQCL(T ) we have
max{degL(J , F ) | F ∈ T} = 2. Thus, Prf mm

QCL(T ) = {{a, c}, {b, c}, {c}}.

For the lexicographic approach, observe that

{c}1
QCL(T ) = {¬(a ∧ b)} and {c}2

QCL(T ) = {a
#»×c, b

#»×c},

{a, c}1
QCL(T ) = {a

#»×c, ¬(a ∧ b)} and {a, c}2
QCL(T ) = {b

#»×c},

{b, c}1
QCL(T ) = {b

#»×c, ¬(a ∧ b)} and {b, c}2
QCL(T ) = {a

#»×c}.

Thus, {c} satisfies less formulas to a degree of 1 than {a, c} or {b, c}. Formally,

|{c}1
QCL(T )| = 1 and |{c}2

QCL(T )| = 2,

|{a, c}1
QCL(T )| = 2 and |{a, c}2

QCL(T )| = 1,

|{b, c}1
QCL(T )| = 2 and |{b, c}2

QCL(T )| = 1.

Therefore, Prf lex
QCL(T ) = {{a, c}, {b, c}}, i.e., {c} *∈ Prf lex

QCL(T ).

Regarding the inclusion-based semantics, note that {c}1
QCL(T ) ⊂ {a, c}1

QCL(T ). Moreover,
{a, c}1

QCL(T ) *⊂ {b, c}1
QCL(T ) and {b, c}1

QCL(T ) *⊂ {a, c}1
QCL(T ). We can conclude that

Prf inc
QCL(T ) = {{a, c}, {b, c}}.

Note that under the minmax semantics the ranking of an interpretation depends only
on a single formula, namely that with the highest degree under the given interpretation.
In contrast, under the lexicographic and inclusion-based semantics all formulas in a
theory may influence an interpretation’s ranking. We will now propose a preferred
model semantics that constitutes a middle ground in this matter: given an L-theory
T = {A1, . . . , An} and an interpretation I, the log(n) formulas with the highest degree
will influence the ranking of I. The resulting preferred model semantics is defined below,
and is especially interesting for our complexity analysis in Section 5.3.

Definition 5.3. Let L be a choice logic and T = {A1, . . . , An} a finite L-theory.
The log-worst formulas of T relative to an interpretation I is a set LI

L(T ) such that
|LI

L(T )| = �log(n)� and such that, for all A ∈ T \ LI
L(T ), we have that degL(I, A) ≤

min{degL(I, B) | B ∈ LI
L(T )}. An interpretation I is a log-lexicographically preferred

model of T , written as I ∈ Prf log
L (T ), iff I ∈ ModL(T ) and if there is no J ∈

ModL(T ) such that, for some k ∈ N and all l > k, |Ik
L(LI

L(T ))| > |J k
L (LJ

L (T ))| and
|I l

L(LI
L(T ))| = |J l

L(LJ
L (T ))| holds.
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In the log-lexicographic approach, satisfaction degrees are considered in a top-down
manner, i.e., we strive to minimize the number of formulas satisfied to high degrees.
As a result, I ∈ Prf log

L (T ) implies I ∈ Prf mm
L (T ), meaning that the log-lexicographic

semantics is a refinement of the minmax semantics.

Moreover, note that LI
L(T ) from Definition 5.3 is not necessarily unique for a given T .

However, for the log-lexicographic semantics it is of no importance which exact LI
L(T ) is

considered, as we only care about how many formulas are satisfied to certain degrees,
not which formulas.

Example 5.4. Let T = {a
#»×c, b

#»×c, ¬(a ∧ b)}, just as in Example 5.2. Note that
�log2(3)� = 2, i.e., given an interpretation, using the log-lexicographic semantics we
are only interested in those two formulas that are satisfied to a maximal degree. For {c}
this is L

{c}
QCL(T ) = {a

#»×c, b
#»×c} with both formulas satisfied to a degree of 2. For {a, c}

this can be L
{a,c}
QCL (T ) = {¬(a ∧ b), b

#»×c} or L
{a,c}
QCL (T ) = {a

#»×c, b
#»×c} with b

#»×c satisfied to
a degree of 2 but ¬(a ∧ b) and a

#»×b satisfied to a degree of 1. Analogously for L
{b,c}
QCL(T ).

Thus, Prf log
QCL(T ) = {{a, c}, {b, c}}.

Now that we introduced some ways to determine the preferred models of a choice logic
theory, we formally define the notion of preferred model entailment and provide a small
example.

Definition 5.5. Let L be a choice logic, T an L-theory, F a classical formula, and σ
a preferred model semantics, e.g., σ ∈ {mm, lex , inc, log}. Then T |∼σ

L F if and only if
I ∈ Prf σ

L(T ) implies I |= F .

Example 5.6. Let T be the same theory as in Example 5.2, and recall that Prf lex
QCL(T ) =

{{a, c}, {b, c}}. Thus, T |∼lex
QCL c ∧ (a ∨ b). However, T *|∼ lex

QCL a and T *|∼ lex
QCL b.

Analogously for |∼inc
QCL and |∼log

QCL. Moreover, recall that Prf mm
QCL(T ) = {{a, c}, {b, c}, {c}}.

Thus, T *|∼ mm
QCLc ∧ (a ∨ b).

In the following sections, we examine the notion of preferred models with regards to
logical properties, computational complexity, and proof systems.

5.2 Logical Properties
In this section, we investigate preferred model entailment with respects to some key
properties for defeasible inference laid out by Kraus, Lehmann, and Magidor (1990).
Specifically, we consider the properties of cautious monotonicity, cumulative transitivity
(called cut by Kraus, Lehmann, and Magidor (1990)), and rational monotonicity. First
however, we show that preferred model entailment is non-monotonic for all preferred
model semantics considered in this chapter (mm, lex , inc, log) and for all choice logics in
which more than two satisfaction degrees can be obtained (which of course includes QCL,
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5. Preferred Model Entailment in Choice Logics

CCL, and LCL). Recall that DL denotes the obtainable degrees in a choice logic L (see
Definition 2.39).

Proposition 5.7. Let L be a choice logic such that DL *= {1, ∞} and let σ ∈ {mm, lex ,
inc, log}. The preferred model entailment |∼σ

L is non-monotonic, i.e., T |∼σ
L B does not

necessarily imply T ∪ {A} |∼σ
L B.

Proof. Let k ∈ DL \ {1, ∞} and let a be a propositional variable. By Proposition 2.40 we
know that there is an L-formula F such that degL(I, F ) = 1 if a ∈ I and degL(I, F ) = k
if a *∈ I. Then under all considered semantics I is a preferred model of F if and only
if it contains a. Therefore, we have {F} |∼σ

L a. Now consider {F} ∪ {¬a}. We observe
that I ∈ ModL({F} ∪ {¬a}) if and only if a *∈ I. It follows that for all preferred model
semantics {F} ∪ {¬a} * |∼σ

L a.

The first property we examine is that of cautious monotonicity, where T |∼ A and T |∼ B
implies T ∪ {A} |∼ B. In the original QCL-paper, Brewka, Benferhat, and Berre (2004)
show that |∼lex

QCL satisfies this property. In fact, cautious monotonicity is satisfied by all
choice logics under all preferred model semantics considered in this chapter:

Proposition 5.8. Let L be a choice logic and σ ∈ {mm, lex , inc, log}. The inference
relation |∼σ

L satisfies cautious monotonicity for finite theories, i.e., T |∼σ
L A and

T |∼σ
L B implies T ∪ {A} |∼σ

L B for all finite L-theories T and all classical formulas
A, B.

Proof. Assume T |∼σ
L A and T |∼σ

L B. Note that A and B are classical formulas. Let
I ∈ Prf σ

L(T ∪ {A}). Then I ∈ ModL(T ) and degL(I, A) = 1. Towards a contradiction,
assume I *∈ Prf σ

L(T ). Since I ∈ ModL(T ), and since T is finite, there must be J ∈
Prf σ

L(T ) that is more preferable than I with respect to T . By T |∼σ
L A also degL(J , A) =

1. We claim that then J is more preferable than I for T ∪{A} for all considered semantics,
which is a contradiction:

• For σ = mm the minmax semantics, observe that max{degL(I, F ) | F ∈ T} =
max{degL(I, F ) | F ∈ T ∪ {A}}. The same holds for J .

• For σ ∈ {lex , inc}, observe that for l *= 1 we have I l
L(T ∪ {A}) = I l

L(T ) and for
l = 1 we have I1

L(T ∪ {A}) = I1
L(T ) ∪ {A}. The same holds for J .

• For σ = log there exists a k ∈ N such that for all l > k, |Ik
L(LI

L(T ))| > |J k
L (LJ

L (T ))|
and |I l

L(LI
L(T ))| = |J l

L(LJ
L (T ))|. As |LI

L(T )| = |LJ
L (T )| it is not possible that

k = 1. Therefore, we must have |Ik
L(LI

L(T ∪ {A}))| > |J k
L (LJ

L (T ∪ {A}))| and
|I l

L(LI
L(T ∪ {A}))| = |J l

L(LJ
L (T ∪ {A}))| for all l > k.

Thus, I ∈ Prf σ
L(T ) and by T |∼σ

L B also I |= B.
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Note that we only considered finite theories in Proposition 5.8. Brewka, Benferhat, and
Berre (2004) did not explicitly make this assumption when investigating |∼lex

QCL, but we
believe it was implicitly assumed. In fact, |∼lex

QCL does not satisfy cautious monotonicity
if infinite theories are allowed. The following result can likely be generalized for other
preferred model semantics and choice logics, but we do not consider this here.

Proposition 5.9. The inference relation |∼lex
QCL does not satisfy cautious monotonicity

for infinite theories, i.e., there is an infinite QCL-theory T and classical formulas A, B
such that T |∼lex

QCL A, T |∼lex
QCL B, but T ∪ {A} * |∼lex

QCL B.

Proof. In the following, by "i we denote i occurrences of " connected by #»×. For example,
"1 = ", "2 = " #»×", and "3 = " #»×" #»×". For i ∈ N, let

Ai = {ai
#»×"1, ai

#»×"2, . . . , ai
#»×"i}.

The additional occurrences of " are added simply to duplicate the formula ai
#»×". Observe

that {ai} satisfies all i formulas in Ai to a degree of 1, and that an interpretation that
sets ai to false satisfies all i formulas in Ai to a degree of 2. Furthermore, we define

R = {⊥ #»×¬(ai ∧ aj) | i, j ∈ N, i *= j}

and finally

T = R ∪

i∈N

Ai.

The formulas in R can at best be satisfied to a degree of 2. Furthermore, R enforces
that, if i *= j, then ai and aj cannot be set to true by the same interpretation. For any
i ∈ N, the interpretation {ai} satisfies all formulas in T to some finite degree. Moreover,
|{ai}1

QCL(T )| = i. This means that, for any i ∈ N, {ai} is not a preferred model of T

since there is always j > i such that |{ai}1
QCL(T )| < |{aj}1

QCL(T )|. In fact, T has no
preferred models, since if some I does not satisfy any ai, then |I1

QCL(T )| = 0. Thus,
T |∼lex

QCL a1 and T |∼lex
QCL a2 hold vacuously.

Now we consider the extension of T by a1, i.e. T ∪ {a1}. To satisfy T ∪ {a1}, a1 must be
set to true, but a1 cannot be set to true at the same time as any other ai with i *= 1.
Thus, {a1} is the only model of T ∪ {a1} (without loss of generality, we can assume
I ⊆ {a1, a2, . . .} for all interpretations I we are dealing with). Therefore, {a1} is the
single preferred model of T ∪ {a1} which means that T ∪ {a1} * |∼lex

QCL a2,

The next property we examine is that of cumulative transitivity, which is known to hold
for |∼lex

QCL (Brewka, Benferhat, and Berre 2004). As before with cautious monotonicity,
we can generalize this result for the other preferred model semantics and all choice
logics. Note that the following proposition holds for infinite theories, except for the
log-lexicographic semantics which are only defined for finite theories.

109



5. Preferred Model Entailment in Choice Logics

Proposition 5.10. Let L be a choice logic and σ ∈ {mm, lex , inc, log}. The inference
relation |∼σ

L satisfies cumulative transitivity, i.e., T |∼σ
L A and T ∪ {A} |∼σ

L B implies
T |∼σ

L B for all L-theories T and all classical formulas A, B.

Proof. Assume T |∼σ
L A and T ∪ {A} |∼σ

L B. Note that A and B are classical formulas.
Let I ∈ Prf σ

L(T ). Then I ∈ ModL(T ) and, by T |∼σ
L A, degL(I, A) = 1. It is easy to see

that I ∈ Prf σ
L(T ∪ {A}) which, by T ∪ {A} |∼σ

L B, implies I |= B.

Lastly, (Brewka, Benferhat, and Berre 2004) also considered the property of rational
monotonicity and showed that it is satisfied by |∼lex

QCL. The result is achieved by
transforming all formulas in a given QCL-theory into a normal form, and to then further
transform the theory into a stratified knowledge base. We now show that rational
monotonicity is satisfied in all choice logics and under all considered preferred model
semantics except the inclusion-based approach. Note that we give a direct proof, and do
not require a translation to another formalism.

Proposition 5.11. Let L be a choice logic and σ ∈ {mm, lex , log}. The inference
relation |∼σ

L satisfies rational monotonicity, i.e., T ∪{A} * |∼σ
L B and T * |∼σ

L ¬A implies
T * |∼σ

L B for all L-theories T and all classical formulas A, B.

Proof. Assume T ∪ {A} * |∼σ
L B and T * |∼σ

L ¬A. Then there is I ∈ Prf σ
L(T ∪ {A}) such

that I *|= B and J ∈ Prf σ
L(T ) such that J |= A. Note that degL(I, A) = degL(J , A) = 1.

Towards a contradiction, assume that I *∈ Prf σ
L(T ). Then J is more preferable than I for

T , which also means that J is more preferable than I for T ∪{A}, i.e., I *∈ Prf σ
L(T ∪ {A}).

Contradiction. Thus, I ∈ Prf σ
L(T ). Since I *|= B we have T * |∼σ

L B.

Proposition 5.12. Let L be a choice logic such that DL *= {1, ∞}. The inference relation
|∼inc

L does not satisfy rational monotonicity, i.e., there is an L-theory T and classical
formulas A, B such that T ∪ {A} * |∼σ

L B, T * |∼σ
L ¬A, but T |∼σ

L B.

Proof. Let k ∈ DL \ {1, ∞}. Let a, b, c, be propositional variables. By Proposition 2.40
we know that there are L-formulas F, G, H over {a, b, c} such that

degL({a}, F ) = 1, degL({a}, G) = k, degL({a}, H) = k

degL({b}, F ) = k, degL({b}, G) = 1, degL({b}, H) = 1
degL({c}, F ) = k, degL({c}, G) = k, degL({c}, H) = 1,

and degL(I, F ) = degL(I, G) = degL(I, H) = ∞ for all other I ⊆ {a, b, c}. Let T =
{F, G, H}, A = ¬b, and B = a ∨ b. It can be verified that Prf inc

L (T ) = {{a}, {b}} and
Prf inc

L (T ∪ {A}) = {{a}, {c}}. Thus, T ∪ {A} * |∼σ
L B, T * |∼σ

L ¬A, but T |∼σ
L B.
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In conclusion, we have shown that preferred model entailment in choice logics satisfies the
key properties of cautious monotonicity and cumulative transitivity, which Lehmann and
Magidor (1992) include in their list of properties that consequence relations are “expected
to satisfy”. Moreover, preferred model entailment under all except the inclusion-based
preferred model semantics satisfies rational monotonicity.

5.3 Complexity
In this section, we analyze the computational complexity of preferred model entailment
in choice logics. We consider the minmax, lexicographic, inclusion-based, and log-
lexicographic preferred model semantics. While membership results will apply to all
tractable choice logics (cf. Definition 2.41), hardness results will be less general and
mainly apply to specific choice logics. In particular, we investigate QCL, CCL, LCL,
and, as a base line, classical propositional logic (PL). The considered decision problems
are checking whether a given interpretation is a preferred model, and deciding preferred
model entailment:

Definition 5.13. Let L be a choice logic and σ a preferred-model semantics for L-theories,
e.g., σ ∈ {mm, lex , inc, log}. We define the decision problems

• L-PMChecking[σ]: Given a finite L-theory T and an interpretation I, decide
whether I ∈ Prf σ

L(T );

• L-Entailment[σ]: Given a finite L-theory T and a classical formula F , decide
whether T |∼σ

L F .

A summary of results for the above problems can be found at the end of this section in
Table 5.1. Regarding L-PMChecking[σ] for choice logic theories, we see no complexity
increase compared to L-PMChecking for single formulas (cf. Table 2.5).

Proposition 5.14. For all σ ∈ {mm, lex , inc, log}, L-PMChecking[σ] is in P for
L = PL and in coNP for any tractable choice logic L. L-PMChecking[σ] is coNP-
complete for any tractable choice logic L for which DL *= {1, ∞} holds.

Proof. P-membership for PL is straightforward, since we only need to verify whether the
given interpretation I satisfies all formulas in the given theory T . Furthermore, coNP-
hardness for tractable choice logics with DL *= {1, ∞} follows from the complexity of
L-PMChecking for single choice logic formulas (see Table 2.5). As for coNP-membership
of tractable choice logics, it is easy to see that the complementary problem is in NP: given
an L-theory T and an interpretation I, guess an interpretation J and check whether J
is more preferred than I. This can be done in polynomial time for all preferred-model
semantics we are concerned with (σ ∈ {mm, lex , inc, log}).
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Note that in classical propositional logic the problem PL-Entailment[σ] with σ ∈
{mm, lex , inc, log} is simply the problem of classical entailment and is thus coNP-complete
by well-known properties of PL. We now turn our attention to L-Entailment[mm]
in the general case. For convenience, we write optL(T ) for max{optL(F ) | F ∈ T}.
Moreover, recall that optL(F ) < 2(|F |2) (see Lemma 2.43). Thus, showing that a function
is logarithmic in optL(F ) also shows that the function is polynomial in |F |. Finally, recall
that in QCL and CCL, but not LCL, we have optL(F ) ≤ |F | (see Section 2.4).

Proposition 5.15. L-Entailment[mm] is in ΔP
2 and coNP-hard for all tractable choice

logics. L-Entailment[mm] is in ΘP
2 for a tractable choice logic L if for some constant c

and all L-formulas F it holds that optL(F ) ∈ O(|F |c).

Proof. coNP-hardness follows from coNP-hardness of PL. We show membership for the
complementary problem, where we ask whether a classical formula F evaluates to false
under some minmax preferred model of a given theory T = {A1, . . . , An}: first, we
conduct a binary search over (1, . . . , optL(T )), in each step using an NP-oracle to answer
whether there is an interpretation I such that max{degL(I, A) | A ∈ T} ≤ k, where k
is the current position of the binary search. In this way, we find the minimum m such
that max{degL(J , A) | A ∈ T} = m for any interpretation J . If m = ∞, we already
have a no-instance since Prf mm

L (T ) = ∅, i.e., F is true in all preferred models of T . If
m < ∞, we conduct a final NP-oracle call in which we guess an interpretation I and
ask whether max{degL(I, A) | A ∈ T} = m and whether I *|= F . This procedure runs in
polynomial time, making use of O(log(optL(T ))) NP-oracle calls. If optL(F ) ∈ O(|F |c)
for every L-formula F , then we require only O(log(|F �|)) NP-oracle calls, where F � is the
formula in T with the highest optionality, which means we have ΘP

2 -membership in these
cases.

Completeness results for specific choice logics follow directly by the above proposition as
well as from known results for single formulas (cf. Table 2.5).

Proposition 5.16. L-Entailment[mm] is ΘP
2 -complete for L ∈ {QCL, CCL} and

ΔP
2 -complete for L = LCL.

Proof. Membership is established in Proposition 5.15. Hardness follows from the ΘP
2 -

hardness of L-PMContainment for L ∈ {QCL, CCL} and from the ΔP
2 -hardness of

L-PMContainment for L = LCL (cf. Table 2.5). Specifically, an instance (F, a) of
L-PMContainment can be reduced to an instance ({F}, ¬a) of co-L-Entailment[mm].
Then a is true in some preferred model I of F if and only if degL(I, ¬a) = ∞ for
some I ∈ Prf mm

L ({F}) iff ¬a is not entailed by {F} under the minmax preferred model
semantics.

As the minmax semantics is equivalent to taking the conjunction of all formulas in
the theory, it is not surprising that we see the same complexity landscape as for L-
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PMContainment. This is different for L-Entailment[lex ], which cannot be represented
in terms of single formulas.

Proposition 5.17. L-Entailment[lex] is in ΔP
2 and coNP-hard for every tractable

choice logic L.

Proof. The coNP-hardness of L-Entailment[lex] follows from the coNP-hardness for
L = PL. We now show ΔP

2 -Membership of co-L-Entailment[lex]: given a theory
T = {A1, . . . , An} and a classical formula F , we first conduct a binary search over
(1, . . . , optL(T )) to find the smallest k1 such that some formula A ∈ T is satisfied by a
model of T to a degree of k1. We then conduct a binary search over (1, . . . , n) to find
the maximum number m1 such that |Ik1

L (T )| = m1 for some I ∈ ModL(T ). Observe that
any J ∈ Prf lex

L (T ) must satisfy exactly m1 formulas in T to a degree of k1. The above
procedure makes O(log(optL(T )) + log(n)) NP-oracle calls.
We proceed inductively: for i > 1, we conduct a binary search over (ki−1 +1, . . . , optL(T ))
to find the minimum degree ki with ki > ki−1 such that degL(I, A) = ki for some
A ∈ T and I ∈ ModL(T ) with |Ikj

L (T )| = mj for all j < i. Then we conduct a
binary search over (1, . . . , n − �i−1

j=1 mj) to find the maximum number mi such that
|Iki

L (T )| = mi for some I ∈ ModL(T ) with |Ikj

L (T )| = mj for all j < i. Again, this
requires O(log(optL(T )) + log(n)) NP-oracle calls.
The above procedure has to be executed at most n times to find the ‘degree-profile’ for
preferred models of T , i.e., every preferred model of T must satisfy exactly mj formulas
in T to a degree of kj . Thus, O(n · (log(optL(T )) + log(n))) NP-oracle calls are required
so far.
Lastly, we make a final NP-oracle call to guess an interpretation I and, using kj and mj ,
check whether I ∈ Prf lex

L (T ) and I *|= F .

Crucially, L-Entailment[lex] is ΔP
2 -hard for all logics considered here. We show this

via a reduction from LexMaxSat (Creignou, Pichler, and Woltran 2018).

Definition 5.18. LexMaxSat is the decision problem where, given a PL-formula F
and an ordering a1 > · · · > an over all variables in F , we ask whether an is true in the
lexicographically largest model of F .

Proposition 5.19. L-Entailment[lex] is ΔP
2 -complete for L ∈ {QCL, CCL, LCL}.

Proof. ΔP
2 -membership for each L ∈ {QCL, CCL, LCL} is established in Proposition 5.17.

Hardness for L = LCL follows from LCL-PMContainment (cf. Table 2.5 and the
proof of Proposition 5.16). We now show ΔP

2 -hardness for the complementary problem
and L ∈ {QCL, CCL}: consider an instance (F, (a1 . . . , an)) of LexMaxSat. For
every 1 ≤ i ≤ n we construct an L-formula Ai such that, for any interpretation I,
degL(I, Ai) = i if ai ∈ I and degL(I, ai) = n + 1 if ai *∈ I:
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• For L = QCL we realize this with

Ai = ⊥ #»× . . .
#»×⊥ #»×ai

#»×⊥ #»× . . .
#»×⊥ #»×",

where ⊥ occures i − 1 times before ai and n − i times after ai. For example, if
n = 4, then A1 = a1

#»×⊥ #»×⊥ #»×⊥ #»×", A2 = ⊥ #»×a2
#»×⊥ #»×⊥ #»×", and so on.

• For L = CCL we construct

Ai = " #»�ai
#»� . . .

#»�ai
#»�⊥ #»� . . .

#»�⊥,

where ai occurs n − i + 1 times and ⊥ occurs i − 1 times. For example, if n = 4,
then A1 = " #»�a1

#»�a1
#»�a1

#»�a1, A2 = " #»�a2
#»�a2

#»�a2
#»�⊥, and so on.

We now construct an instance (T, ¬an) of co-L-Entailment[lex ] with T = {F, A1, . . . , An}.
It remains to show that an is true in the lexicographically maximal model of F with
respect to a1 > · · · > an if and only if ¬an is false in some lexicographically preferred
model of T .

Assume an is true in the lexicographically maximal model I of F with respect to
a1 > · · · > an. Since each Ai is always satisfied to some degree, and since I |= F , we
have I ∈ ModL(T ). Moreover, there can be no other J ∈ ModL(T ) such that, for some
k, |Ik

L(T )| < |J k
L (T )| and, for all l < k, |I l

L(T )| = |J l
L(T )|. Otherwise, there would be

some variable ak such that J |= ak, I *|= ak, and J |= al ⇐⇒ I |= al for all l < k. But
then I would not be the lexicographically maximal model of F . Thus, I ∈ Prf lex

L (T ).
Furthermore, I *|= ¬an.

Assume an is not true in the lexicographically maximal model of F . If F is not satisfiable,
then neither is T , i.e., T has no preferred model and we have a no-instance of co-L-
Entailment[lex ]. If F is satisfiable, then, by the same argument as above, I ∈ Prf lex

L (T )
for the lexicographically largest model I of F with respect to a1 > · · · > an. In fact, I is
the unique lexicographically preferred model of T . Furthermore, I |= ¬an.

The proofs for log-lexicographic semantics are similar to those of regular lexicographic se-
mantics. However, the complexity for choice logics with polynomially-bounded optionality
is actually located inbetween ΘP

2 and ΔP
2 , namely in ΔP

2 [O(log2 n)]. The only truly natural
ΔP

2 [O(log2 n)]-complete problem we are aware of is model checking for a specific temporal
logic (Schnoebelen 2003). A less natural, but useful ΔP

2 [O(log2 n)]-complete problem is
Log2LexMaxSat, which is defined analogously to LexMaxSat (cf. Definition 5.18)
and LogLexMaxSat (cf. Section 2.2) except that we are given a lexicographic order
over log2(n) variables (Segoufin and ten Cate 2013).

Proposition 5.20. L-Entailment[log] is in ΔP
2 and coNP-hard for all tractable choice

logics. L-Entailment[log] is in ΔP
2 [O(log2 n)] for tractable L if for some constant c and

all L-formulas F it holds that optL(F ) ∈ O(|F |c).
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Proof. The coNP-hardness of L-Entailment[log] follows from coNP-hardness for L = PL.
Regarding membership, we can determine the degree-profile of T ’s log-lexicographically
preferred models analogously to the proof of Proposition 5.17, except that we do not need
to execute the binary searches n times. In fact, by the definition of the log-lexicographic
preferred model semantics, we need to execute the binary searches only O(log(n)) times,
giving us a decision procedure that in total makes use of O(log(n)·(log(optL(T ))+log(n)))
NP-oracle calls.

Definition 5.21. Log2LexMaxSat is the decision problem where, given a PL-formula
F and an ordering a1 > · · · > aj over l = log(n)2 of the n variables in F , we ask whether
al is true in the lexicographically largest interpretation J ⊆ {a1, . . . , al} that can be
extended to a model of F .

Proposition 5.22. L-Entailment[log] is ΔP
2 [O(log2 n)]-complete for L ∈ {QCL,

CCL} and ΔP
2 -complete for L = LCL.

Proof. Membership for each L ∈ {QCL, CCL, LCL} is established in Proposition 5.17.
Hardness for LCL follows from LCL-PMContainment (cf. Table 2.5 and the proof of
Proposition 5.16). We show hardness for co-L-Entailment[log] and L = QCL by a
reduction from Log2LexMaxSat, i.e., we are given a classical formula F over variables
X = {x1, . . . , xn} and an ordering x1 > . . . > xl over l = log2(n) variables. Observe that
we cannot inspect all 2log(n)2 interpretations over the variables {x1, . . . , xl} as this would
not be polynomial in n. Instead, we break up the ordering x1 > . . . > xl into log(n)
parts and, for each part, inspect the relevant 2log(n) = n interpretations. Formally, for
every 1 ≤ i ≤ log(n), let Xi = {x(i−1)·log(n)+1, . . . , xi·log(n)} and let J i

k ⊆ Xi be the k-th
largest interpretation with respect to the ordering x(i−1)·log(n)+1 > · · · > xi·log(n). We
then construct the formula

ϕ(J i
k) =


 �
x∈J i

k

x
�

∧

 �

x∈{Xi\J i
k

}
¬x

�
.

Then, for every 1 ≤ i ≤ log(n), we construct

Ai = ϕ(J i
1) #»× · · · #»×ϕ(J i

2log(n)).

Note that, for any interpretation I ⊆ {x1, . . . , xn}, degL(I, Ai) = k iff I is the lexi-
cographically k-th largest interpretation with respect to the ordering x(i−1)·log(n)+1 >
· · · > xi·log(n). Moreover, observe that |ϕ(J i

k)| ∈ O(log(n)) and that therefore |Ai| ∈
O(log(n) · 2log(n)) = O(log(n) · n). Now, for every 1 ≤ i ≤ log(n), we construct

Bi = ⊥ #»× · · · #»×⊥ #»×Ai,

where ⊥ appears (log(n) − i) · 2log(n) times before Ai. Observe that |Bi| is polynomial
in |Ai| since |Bi| ∈ O(log(n) · 2log(n) + |Ai|) = O(log(n) · n + |Ai|). Lastly, we construct
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n − log(n) − 1 formulas Cj such that degL(J , Cj) = 1 for all interpretations J . We can
now define our L-theory

T = {F, B1, . . . , Blog(n), C1, . . . , Cn−log(n)−1}.

Observe that T contains exactly n formulas. Moreover, Blog(n) can be satisfied to a
degree between 1 and 2log(n), Blog(n)−1 to a degree between 2log(n) + 1 and 2 · 2log(n),
and so on until finally B1 can be satisfied to a degree between (log(n) − 1) · 2log(n) + 1
and log(n) · 2log(n). The formulas Cj are always satisfied to a degree of 1 and therefore
do not influence the log-lexicographically preferred models of T . Furthermore, the
lexicographically largest model I of F with respect to the ordering x1 > · · · > xl satisfies
B1 optimally among the models of F , and is therefore preferred in T to all models of
F that are lexicographically smaller regarding x1 > · · · > xlog(n). I also satisfies B2
optimally among those models of F that satisfy B1 optimally. By extension, we can
conclude that an interpretation J is a lexicographically maximal model of F with respect
to x1 > · · · > xl if and only if J ∈ Prf log

L (T ).

Lastly, we examine inclusion-based semantics. Here, we cannot show ΔP
2 -membership in

general. Indeed, as it turns out L-Entailment[inc] is ΠP
2 -complete for all studied choice

logic except PL.

Proposition 5.23. L-Entailment[inc] is in ΠP
2 and coNP-hard for every tractable

choice logic L.

Proof. Note that coNP-hardness follows from the fact that the problem is coNP-hard
already for L = PL. Regarding ΠP

2 -membership, it is straightforward to see that the
complementary problem of L-Entailment[inc] is in ΣP

2 : given a theory T = {A1, . . . , An}
and a classical formula F , we guess an interpretation I and, in coNP, check whether
I ∈ Prf inc

L (T ) and I *|= F .

To show ΠP
2 -completeness for specific choice logics, we can make use of an already

existing translation from propositional circumscription (McCarthy 1980) to QCL (Brewka,
Benferhat, and Berre 2004, Proposition 10). In fact, this existing translation starts
from prioritized circumscription. Our construction, however, considers unprioritized
circumscription and is therefore slightly simpler. Note that entailment for propositional
circumscription is known to be ΠP

2 -complete (Eiter and Gottlob 1993).

Definition 5.24. Let T be a classical propositional theory, F a classical formula, and
(P ; R) a circumscription policy, where P are atoms to be minimized, and R are fixed
atoms with P ∩ R = ∅. A model I of T is (P ; R)-minimal for T if there is no other model
J of T such that I ∩ R = J ∩ R and J ∩ P ⊂ I ∩ P .

CircEntailment is the decision problem where, given a a classical theory T , a classical
formula F , and a circumscription policy (P ; R), we ask whether F is true in all (P ; R)-
minimal models of T .
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Table 5.1: Complexity of choice logic theories (σ ∈ {mm, lex , inc, log}).

Tract. PL QCL/CCL LCL

L-PMChecking[σ] in coNP in P coNP-c coNP-c
L-Entailment[mm] coNP-h/in ΔP

2 coNP-c ΘP
2 -c ΔP

2 -c
L-Entailment[log] coNP-h/in ΔP

2 coNP-c ΔP
2 [O(log2 n)]-c ΔP

2 -c
L-Entailment[lex ] coNP-h/in ΔP

2 coNP-c ΔP
2 -c ΔP

2 -c
L-Entailment[inc] coNP-h/in ΠP

2 coNP-c ΠP
2 -c ΠP

2 -c

Proposition 5.25. L-Entailment[inc] is ΠP
2 -complete for L ∈ {QCL, CCL, LCL}.

Proof. Membership for each L ∈ {QCL, CCL, LCL} follows from Proposition 5.23. We
now show hardness for L = QCL. Consider an arbitrary instance (T, F, (P ; R)) of
CircEntailment. Let

T � = T ∪ {¬p
#»×p | p ∈ P} ∪ {r

#»×¬r, ¬r
#»×r | r ∈ R}.

It remains to show that F is true in all (P ; R)-minimal models of T if and only if F is
true in all Prf inc

L (T �). We show this by proving that I is a (P ; R)-minimal models of T
if and only if I ∈ Prf inc

L (T �).

Assume I is a (P ; R)-minimal model of T . Then definitely I ∈ ModQCL(T �), since all
formulas in T � \ T are always satisfied, either to a degree of 1 or 2. Let J be any other
model of T �. For any r ∈ R, if r ∈ I but r *∈ J , then I and J are incomparable
with respect to the inc-semantics since degQCL(I, r

#»×¬r) = 1, degQCL(J , r
#»×¬r) = 2,

degQCL(I, ¬r
#»×r) = 2, and degQCL(J , ¬r

#»×r) = 1. Likewise if r /∈ I but r ∈ J . Thus,
assume r ∈ I ⇐⇒ r ∈ J for all r ∈ R. Then I ∩ P ⊆ J ∩ P , since I is (P ; R)-minimal.
Therefore, for all p ∈ P , degQCL(I, ¬p

#»×p) ≤ degQCL(J , ¬p
#»×p). We can conclude that

I ∈ Prf inc
QCL(T �).

Assume I is not a (P ; R)-minimal model of T . If T is not satisfiable, then neither
is T �, and we are done. If T is satisfiable, then there must be an interpretation J
with J ∩ R = I ∩ R and J ∩ P ⊂ I ∩ P . By the same argument as above, for all
p ∈ P , degQCL(J , ¬p

#»×p) ≤ degQCL(I, ¬p
#»×p). Furthermore, for at least one q ∈ P ,

degQCL(J , ¬q
#»×q) < degQCL(I, ¬q

#»×q). Thus, I *∈ Prf inc
QCL(T �).

Table 5.1 summarizes our complexity results for choice logic theories. Maybe the most
interesting point here is that in entailment for QCL and CCL the complexity rises when
going from minmax to (log-)lexicographic semantics. However, for LCL, all three problems
are equally hard. Thus, the additional expressiveness of the (log-)lexicographic semantics
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makes entailment harder for choice logics with polynomially bounded optionality. For
inclusion-based semantics we see an additional jump in complexity to ΠP

2 -completeness
for all considered choice logics (except PL). We observe that there are two ways in
which the complexity of L-Entailment[σ] is determined: on the one hand by the choice
logic (e.g. QCL vs. LCL), and on the other hand by the preferred model semantics (e.g.
minmax vs. lexicographic vs. inclusion-based). Furthermore, with L-Entailment[log]
(L ∈ {QCL, CCL}) we introduced fairly natural ΔP

2 [O(log2 n)]-complete problems.9

5.4 Sequent Calculi
In this section we propose the first sound and complete calculus for preferred model
entailment in choice logics. We first introduce a calculus for QCL and the minmax,
lexicographic, and inclusion-based preferred model semantics. We then show how this
calculus can be adapted for CCL and LCL.

Although preferred model entailment in choice logics is related to other forms of non-
monotonic entailment for which proof calculi have been developed (Bonatti and Olivetti
2002; Geibinger and Tompits 2020), choice logics are different from other non-monotonic
logics in the way non-monotonicity is introduced. Specifically, the non-standard part
of our logics are the choice connectives, such as ordered disjunction, which are fully
embedded in the logical language. This has to be kept in mind when designing our calculus.
Indeed, our calculi for choice logics will differ from most other calculi for non-monotonic
logics: our calculi do not use non-standard inference rules as in default logic (Reiter 1980),
modal operators expressing consistency or belief as in autoepistemic logic (Moore 1985),
or predicates whose extensions are minimized as in circumscription (McCarthy 1980).
However, one method that can also be applied to choice logics is the use of a refutation
calculus (also known as rejection or antisequent calculus) axiomatising invalid formulas,
i.e., non-theorems (Bonatti 1993; Lukasiewicz 1951; Słupecki, Bryll, and Wybraniec-
Skardowska 1971; Tiomkin 1988). Specifically, by combining a refutation calculus with
an appropriate sequent calculus, elegant proof systems for the central non-monotonic
formalisms such as default logic, autoepistemic logic, circumscription, and paraconsistent
logics were obtained (Bonatti and Olivetti 2002; Geibinger and Tompits 2020).

Another aspect of choice logics semantics we must account for are satisfaction degrees
and their similarity to many-valued logics. There are several kinds of sequent calculus
systems for many-valued logics, where the representation as a hypersequent calculus
(Avron 1996; Geibinger and Tompits 2020) plays a prominent role. However, there are
crucial differences between choice logics and many-valued logics in the usual sense. Firstly,
choice logic interpretations are classical, i.e., they set propositional variables to either true
or false. Secondly, non-classical satisfaction degrees only arise when choice connectives,
e.g. ordered disjunction in QCL, occur in a formula. Thirdly, when applying a choice
connective ◦ to two formulas A and B, the degree of A ◦ B does not only depend on the

9We consider L-Entailment[log] to be at least as natural as the ΘP
2 -complete LogLexMaxSat and

certainly more natural than Log2LexMaxSat.
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degrees of A and B, but also on their optionality. Therefore, techniques used in proof
systems for conventional many-valued logics cannot be applied directly to choice logics.

In (Governatori and Rotolo 2006) a sequent calculus based system for reasoning with
contrary-to-duty obligations was introduced, where a non-classical connective was defined
to capture the notion of reparational obligation, which is in force only when a violation
of a norm occurs. This is related to the ordered disjunction in QCL, however, based
on the intended use in (Governatori and Rotolo 2006) the system was defined only for
the occurrence of the new connective on the right side of the sequent sign. We aim for
a proof system for reasoning with choice logic operators, and to deduce formulas from
choice logic formulas. Thus, we need a calculus with left and right inference rules.

To obtain such a calculus we combine the idea of a refutation calculus with methods
developed for multi-valued logics. First, in Subsection 5.4.1 we develop a (monotonic)
sequent calculus for reasoning about satisfaction degrees in QCL, using a labeled calculus,
a method developed for (finite) many-valued logics (Baaz, Lahav, and Zamansky 2013;
Carnielli 1987; Kaminski and Francez 2021). Secondly, in Subsection 5.4.2 we define a
labeled refutation calculus for reasoning about invalidity in terms of satisfaction degrees
in QCL. Finally, also in Subsection 5.4.2, we introduce a new, non-monotonic inference
rule that joins the two previously introduced labeled calculi to obtain a sequent calculus
for preferred model entailment in QCL. In Subsection 5.4.3 we show how the calculi for
QCL can be adapted for CCL and LCL.

5.4.1 The Sequent Calculus L[QCL]
Towards the development of a calculus for preferred model entailment, we first propose a
labeled calculus for reasoning about the satisfaction degrees of QCL formulas in sequent
format and prove its soundness and completeness. An advantage of the sequent calculus
format is the possibility to have symmetrical left and right rules for all connectives, in
particular for the choice connectives. This is in contrast to the representation of ordered
disjunction in the calculus for deontic logic (Governatori and Rotolo 2006), in which only
right-hand side rules are considered.

As the calculus will be concerned with satisfaction degrees rather than preferred models,
entailment will be defined in terms of satisfaction degrees. To this end, the formulas
occurring in the sequents of the calculus will be labeled.

Definition 5.26 (labeled QCL-formulas). Let A be a QCL-formula and k ∈ N, then
(A)k is a labeled QCL-formula. The labeled QCL-formula (A)k is satisfied by those
interpretations that satisfy A to a degree of k.

Instead of labeling formulas with degree ∞ we will use the negated formula, i.e., instead
of (A)∞ we will use (¬A)1. Observe that (A)k for optL(A) > k can never have a model.
We will deal with such formulas by replacing them with (⊥)1. For classical formulas, we
may write A for (A)1.
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Definition 5.27 (labeled QCL-sequents). Let (A1)k1 , . . . , (Am)km and
(B1)l1 , . . . , (Bn)ln be labeled QCL-formulas. Then

(A1)k1 , . . . , (Am)km 3 (B1)l1 , . . . , (Bn)ln

is a labeled QCL-sequent.
(A1)k1 , . . . , (Am)km 3 (B1)l1 , . . . , (Bn)ln is valid if and only if every interpretation that
satisfies all labeled QCL-formulas (A1)k1 , . . . , (Am)km to the degree specified by the
label also satisfies at least one labeled QCL-formula out of (B1)l1 , . . . , (Bn)ln to the
degree specified by the label.

In contrast to preferred model entailment, the entailment in terms of satisfaction degrees,
as defined above, is monotonic.

Frequently we will write (A)<k as shorthand for the sequence of labeled QCL-formulas

(A)1, . . . , (A)k−1

and (A)>k for the sequence of labeled QCL-formulas

(A)k+1, . . . , (A)optQCL(A), (¬A)1.

Moreover, �Γ, (A)i 3 Δ�i<k will denote the sequence of labeled QCL-sequents

Γ, (A)1 3 Δ . . . Γ, (A)k−1 3 Δ.

Analogously, �Γ, (A)i 3 Δ�i>k will denote the sequence of labeled QCL-sequents

Γ, (A)k+1 3 Δ . . . Γ, (A)optQCL(A) 3 Δ Γ, (¬A)1 3 Δ.

Below we define the sequent calculus L[QCL] over labeled QCL-sequents. In addition to
introducing inference rules for the choice connective #»× we have to modify the inference
rules for conjunction and disjunction of propositional LK. We first state the calculus,
and then explain the intuition behind the rules.

Definition 5.28 (L[QCL]). The axioms of L[QCL] are labeled QCL-sequents Γ 3 Δ
such that ⊥ ∈ Γ or such that p ∈ Γ and p ∈ Δ for some atom p. The inference rules
are given below. Whenever a labeled QCL-formula (F )k appears in the conclusion of an
inference rule (except for the dol- and dor-rules) it holds that k ≤ optL(F ).
The rules for the classical connectives are

Γ 3 (cp(A))1, Δ ¬lΓ, (¬A)1 3 Δ
Γ, (cp(A))1 3 Δ ¬r
Γ 3 (¬A)1, Δ

Γ, (A)k 3 (B)<k, Δ Γ, (B)k 3 (A)<k, Δ ∨lΓ, (A ∨ B)k 3 Δ
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�Γ, (A)i 3 Δ�i<k �Γ, (B)i 3 Δ�i<k Γ 3 (A)k, (B)k, Δ ∨rΓ 3 (A ∨ B)k, Δ

Γ, (A)k 3 (B)>k, Δ Γ, (B)k 3 (A)>k, Δ ∧lΓ, (A ∧ B)k 3 Δ

�Γ, (A)i 3 Δ�i>k �Γ, (B)i 3 Δ�i>k Γ 3 (A)k, (B)k, Δ ∧rΓ 3 (A ∧ B)k, Δ
The rules for ordered disjunction are:

Γ, (A)k 3 Δ #»×l1Γ, (A #»×B)k 3 Δ
Γ, (B)l, (¬A)1 3 Δ #»×l2Γ, (A #»×B)optQCL(A)+l 3 Δ

Γ 3 (A)k, Δ #»×r1Γ 3 (A #»×B)k, Δ
Γ 3 (¬A)1, Δ Γ 3 (B)l, Δ #»×r2Γ 3 (A #»×B)optQCL(A)+l, Δ

where k ≤ optL(A) and l ≤ optL(B).
The degree overflow rules10 are:

Γ, ⊥ 3 Δ
dolΓ, (A)optQCL(A)+k 3 Δ

Γ 3 Δ dorΓ 3 (A)optQCL(A)+k, Δ

where k ∈ N.

The rules for negation are analogous to propositional LK. Note that we replace A by
its classical counterpart cp(A) (cf. Definition 2.37). This reflects the fact that negation
in choice logics erases all information about preferences, and that we therefore are only
interested in the classical satisfaction of A.

The idea behind the ∨-left rule is that a model M of the labeled QCL-formula (A)k is
only a model of the labeled QCL-formula (A ∨ B)k if there is no l < k s.t. M is a model
of (B)l. Therefore, every model of (A ∨ B)k is a model of Δ if and only if

• every model of (A)k is a model of Δ or of some (B)l with l < k,

• every model of (B)k is a model of Δ or of some (A)l with l < k.

Essentially, the same idea works for ∧-left but with l > k. For the ∨-right rule, in order
for every model of Γ to be a model of (A ∨ B)k, every model of Γ must either be a model
of (A)k or of (B)k and no model of Γ can be a model of (A)l for l < k, i.e., Γ, (A)l 3 ⊥.
Similarly for ∧-right.

10dol/dor stands for degree overflow left/right.
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Observe that, in case we are dealing with classical formulas only, the modified inference
rules for ∧ and ∨ are equivalent to the inference rules for ∧ and ∨ of propositional LK
without structural rules (Troelstra and Schwichtenberg 2000, Section 3.5). Consider the
∨-left rule in L[QCL]: if A and B are classical, and k = 1, the rule equals the ∨-left rule
of propositional LK, as (A)<1 is empty. Similarly, the ∨-right rule in L[QCL] equals
the ∨-right rule in propositional LK, because �Γ, (A)i 3 Δ�i<1 is empty. Moreover, as
(A)>1 = ¬A for a classical formula A, the ∧-left rule of L[QCL] is equivalent to the ∧-left
rule of propositional LK if A and B are classical formulas and k = 1 (but splits the
proof-tree unnecessarily). Analogously for ∧-right, as �Γ, (A)i 3 Δ�i>1 equals Γ, ¬A 3 Δ
if A is classical. Therefore, this is equivalent to the ∧-right rule of propositional LK
if A and B are classical formulas and k = 1 (but adds an unnecessary third condition
Γ 3 A, B, Δ).

The rules for ordered disjunction follow straightforwardly from QCL-semantics. If A
#»×B

is satisfied to a degree k ≤ optQCL(A), then we know that A must be satisfied to a degree
of k. If A

#»×B is satisfied to a finite degree higher than optQCL(A), then we know that B
is satisfied but A is not.

The intuition behind the degree overflow rules dol and dor is that we sometimes need to
fix sequences in which a labeled QCL-formula F is assigned a label k with optQCL(F ) <
k < ∞. This can happen after applying the rules for conjunction/disjunction. For
instance, consider the ∧l-rule: as the premise we have Γ, (A ∧ B)k 3 Δ with k ≤
optQCL(A∧B). Recall that the optionality of this conjunct is defined as optQCL(A∧B) =
max(optQCL(F ), optQCL(G)). Thus, it may be the case that, for example, optQCL(A) < k.
The ∧l rule, however, will introduce the premise Γ, (A)k 3 (B)>k, Δ. Since (A)k can
never be satisfied, as optQCL(A) < k < ∞, we have to apply the dol-rule which replaces
(A)k by ⊥.

We now provide some examples for valid derivations in L[QCL] before showing soundness
and completeness.

Example 5.29. The following is an L[QCL]-proof of a valid sequent.11

b ∨ c, ¬a, b 3 a ∧ b, a ∧ c, b #»×l2
b ∨ c, (a #»×b)2 3 a ∧ b, a ∧ c, b ¬r

(a #»×b)2 3 ¬(b #»×c), a ∧ b, a ∧ c, b

...
a ∨ b, ¬b, c 3 a ∧ b, a ∧ c, b #»×l2

a ∨ b, (b #»×c)2 3 a ∧ b, a ∧ c, b ¬r
(b #»×c)2 3 ¬(a #»×b), a ∧ b, a ∧ c, b ∧l

((a #»×b) ∧ (b #»×c))2 3 a ∧ b, a ∧ c, b ¬l¬(a ∧ b), ((a #»×b) ∧ (b #»×c))2 3 a ∧ c, b

11Note that, once we reach sequents containing only classical formulas, we do not continue the proof.
However, it can be verified that the classical sequents on the left and right branch are provable in this case.
Moreover, given a labeled QCL-formula (A)1 with a label of 1, the label is often omitted for readability.
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Example 5.30. The following end-sequent is similar to the end-sequent of Example 5.29,
but with the exception that (a #»×b)∧(b #»×c) is assigned a label of 1. However, ((a #»×b)∧(b #»×c))1
is unsatisfiable in view of ¬(a ∧ b).

...
b ∨ c, a 3 ¬b, a ∧ b, ⊥

...
b ∨ c, a 3 c, a ∧ b, ⊥ #»×r2

b ∨ c, a 3 (b #»×c)2, a ∧ b, ⊥
#»×l1

b ∨ c, (a #»×b)1 3 (b #»×c)2, a ∧ b, ⊥ ¬r
(a #»×b)1 3 (b #»×c)2, ¬(b #»×c), a ∧ b, ⊥ (ϕ) ∧l

((a #»×b) ∧ (b #»×c))1 3 a ∧ b, ⊥ ¬l¬(a ∧ b), ((a #»×b) ∧ (b #»×c))1 3 ⊥

where ϕ is

...
a ∨ b, b 3 ¬a, a ∧ b, ⊥ a ∨ b, b 3 b, a ∧ b, ⊥ #»×r2

a ∨ b, b 3 (a #»×b)2, a ∧ b, ⊥
#»×l1

a ∨ b, (b #»×c)1 3 (a #»×b)2, a ∧ b, ⊥ ¬r
(b #»×c)1 3 (a #»×b)2, ¬(a #»×b), a ∧ b, ⊥

Example 5.31. The following proof shows how the ∧r-rule can introduce more than
three premises.

a, b 3 a ¬l
a, b, ¬a 3

a, b, c 3 b ¬l
a, b, c, ¬b 3 #»×l2

a, b, (b #»×c)2 3

a, b 3 b, c ∨r
a, b 3 b ∨ c ¬l

a, b, ¬(b #»×c) 3 a, b 3 a, (b #»×c)1 ∧r
a, b 3 (a ∧ (b #»×c))1

Theorem 5.32. L[QCL] is sound and complete.

Proof (Soundness). We have to prove that all rules of L[QCL] are sound.

• For the axioms this is clearly the case.

• (¬r) and (¬l): follows from the fact that degQCL(I, F ) < ∞ ⇐⇒ I |= cp(F ) for
all QCL-formulas F (see Proposition 2.38).

• (∨l): Assume that the conclusion of the rule is not valid, i.e., there is a model M of
Γ and (A ∨ B)k that is not a model of Δ. Then, M satisfies either A or B to degree
k and neither to a degree smaller than k. Assume M satisfies A to a degree of k,
the other case is symmetric. Then M is a model of Γ and (A)k but, by assumption,
neither of Δ nor of (B)j for j < k. Hence, at least one of the premises is not valid.
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• (∧l): Analogous to the proof for (∨l): assume that the conclusion of the rule is not
valid, i.e., that there is a model M of Γ and (A ∧ B)k that is not a model of Δ.
Then, M satisfies either A or B to degree k and neither to a degree higher than k.
Assume M satisfies A to a degree of k, the other case is symmetric. Then M is a
model of Γ and (A)k but, by assumption, neither of Δ nor of (¬B)1 or (B)j for
any j > k. Hence, at least one of the premises is not valid.

• (∨r): Assume there is a model M of Γ that is not a model of Δ or of (A ∨ B)k.
There are two possible cases why M is not a model of (A ∨ B)k:

1. M satisfies neither A nor B to degree k. But in this case the premise
Γ 3 (A)k, (B)k, Δ is not valid as M is also not a model of Δ by assumption.

2. M satisfies either A or B to a degree smaller than k. Assume that M satisfies
A to degree j < k (the other case is symmetric). Then the premise Γ, (A)j 3 Δ
is not valid. Indeed, M is a model of Γ and (A)j but not of Δ.

• (∧r): Analogous to the proof for (∨r): assume that the conclusion of the rule is
not valid, i.e. there is a model M of Γ that is not a model of Δ or of (A ∧ B)k.
There are two possible cases why M is not a model of (A ∧ B)k:

1. M satisfies neither A nor B to degree k. However, then the premise Γ 3
(A)k, (B)k, Δ is not valid as M is also not a model of Δ by assumption.

2. M satisfies either A or B to a degree j higher than k. By symmetry, it suffices
to consider the case that M satisfies A to a degree j higher than k. Then
either k < j ≤ optQCL(A) or j = ∞. If k < j ≤ optQCL(A) the premise
Γ, (A)j 3 Δ is not valid. If k = ∞ the premise Γ, (¬A)1 3 Δ is not valid.

• ( #»×l1) and ( #»×r1): follows from the fact that (A)k has the same models as (A #»×B)k

for k ≤ optL(A).

• ( #»×l2): Assume the conclusion of the rule is not valid and let M be the model
witnessing this. Then M is a model of (A #»×B)optQCL(A)+l. By definition, M satisfies
B to degree l and is not a model of A. However, then it is also a model of Γ, (B)l

and (¬A)1, which means that the premise is not valid.

• ( #»×r2). Assume that both premises are valid, i.e., every model of Γ is either a model
of Δ or of (¬A)1 and (B)l with l ≤ optL(B). Now, by definition, any model that
is not a model of A (and hence a model of (¬A)1) and of (B)l satisfies A

#»×B to
degree optQCL(A) + l. Therefore, every model of Γ is either a model of Δ or of
(A #»×B)optQCL(A)+l, which means that the conclusion of the rule is valid.

• (dol): Γ, ⊥ has no models, i.e., the premise Γ, ⊥ 3 Δ is valid. Indeed, the sequent
Γ, ⊥ 3 Δ is an axiom in our system. Crucially, the sequent Γ, (A)optQCL(A)+k has no
models as well since A cannot be satisfied to a degree m with optL(A) < m < ∞.

• (dor) is clearly sound.
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Proof (Completeness). To prove completeness, we observe that for any sequent, we can
decompose every formula into atomic and hence classical formulas by applying the rules
of L[QCL]. Moreover, we observe that if all formulas are classical and labeled with 1,
then all inference rules reduce to the inference rules of the classical propositional calculus
without structural rules (Troelstra and Schwichtenberg 2000, Section 3.5), which is known
to be complete. Therefore, we know that a sequent containing only classical formulas is
valid if and only if it is provable. It remains to show that the rules of L[QCL] preserve
validity when read “upwards”.

• (dol): Assume that a sequent of the form Γ, (A)optQCL(A)+k 3 Δ with k ∈ N is valid.
Since Γ, ⊥ has no models, Γ, ⊥ 3 Δ is valid.

• (dor): Assume that a sequent Γ 3 (A)optQCL(A)+k, Δ is valid. (A)optQCL(A)+k cannot
be satisfied, i.e., Γ 3 Δ is valid.

• (¬r) and (¬l): Assume that a sequent of the form Γ 3 (¬A)1, Δ is valid. Then
every model of Γ is either a model of (¬A)1 or of Δ. In other words, every model of
Γ that is not a model of (¬A)1 (i.e., is model of cp(A)) is a model of Δ. Therefore,
every interpretation that is a model of both Γ and cp(A) must be a model of Δ. It
follows that Γ, cp(A) 3 Δ is valid. Similarly for Γ, (¬A)1 3 Δ.

• (∨l) and (∧l): Assume that a sequent of the form Γ, (A∨B)k 3 Δ is valid, with k ≤
optL(A ∨ B). We claim that then both Γ, (A)k 3 (B)<k, Δ and Γ, (B)k 3 (A)<k, Δ
are valid. Assume to the contrary that Γ, (A)k 3 (B)<k, Δ is not valid (the other
case is symmetric). Then, there is a model M of Γ and (A)k that is neither a model
of (B)<k nor of Δ. But then M is also a model of Γ and (A ∨ B)k, but not of Δ,
which contradicts the assumption that Γ, (A ∨ B)k 3 Δ is valid. Therefore, both
Γ, (A)k 3 (B)<k, Δ and Γ, (B)k 3 (A)<k, Δ are valid. Similarly for a sequent of the
form Γ, (A ∧ B)k 3 Δ.

• (∨r) and (∧r): Assume that a sequent of the form Γ 3 (A ∨ B)k, Δ is valid, with
k ≤ optL(A ∨ B). We claim that then for all i < k the sequents Γ, (A)i 3 Δ and
Γ, (B)i 3 Δ and Γ 3 (A)k, (B)k, Δ are valid. Assume by contradiction that there
is an i < k s.t. Γ, (A)i 3 Δ is not valid. Then, there is a model M of Γ and (A)i

that is not a model of Δ. However, then M is a model of Γ but neither of Δ nor of
(A ∨ B)k (as M satisfies A ∨ B to degree i *= k), which contradicts our assumption
that Γ 3 (A ∨ B)k, Δ is valid. The case that there is an i < k s.t. Γ, (B)i 3 Δ
is not valid is symmetric. Finally, we assume that Γ 3 (A)k, (B)k, Δ is not valid.
Then, there is a model M of Γ that is not a model of (A)k, (B)k or Δ. Thus,
M is model of Γ but neither of Δ nor of (A ∨ B)k, contradicting our assumption.
Therefore, all sequents listed above must be valid. Similarly for a sequent of the
form Γ 3 (A ∧ B)k, Δ.

• ( #»×l1) and ( #»×r1): Assume a sequent of the form Γ, (A #»×B)k 3 Δ with k ≤ optQCL(A)
is valid. Then Γ, (A)k 3 Δ is also valid since (A #»×B)k and (A)k have the same
models if k ≤ optQCL(A). Analogously for sequents of the form Γ 3 (A #»×B)k, Δ.
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• ( #»×l2): Assume a sequent of the form Γ, (A #»×B)optQCL(A)+l 3 Δ is valid, with
l ≤ optL(B). We claim that the sequent Γ, (B)l, ¬A 3 Δ is then also valid. Indeed,
if M is a model of Γ, (B)l and ¬A, then it is also a model of Γ and (A #»×B)optQCL(A)+l.
Hence, by assumption, M must be a model of Δ.

• ( #»×r2): Assume that a sequent of the form Γ 3 (A #»×B)optQCL(A)+l, Δ is valid, with
l ≤ optL(B). We claim that then also the sequents Γ 3 ¬A, Δ and Γ 3 (B)l, Δ are
valid. Assume by contradiction that the first sequent is not valid. This means that
there is a model M of Γ that is not a model of neither ¬A nor of Δ. However, then
M is a model of A and therefore satisfies A

#»×B to a degree smaller than optQCL(A).
This contradicts our assumption that Γ 3 (A #»×B)optQCL(A)+l, Δ is valid. Assume
now that the second sequent is not valid, i.e., that there is a model M of Γ that is
neither a model of (B)l nor of Δ. Then, M cannot be a model of (A #»×B)optQCL(A)+l

and we again have a contradiction to the assumption.

A cut rule has not been introduced for L[QCL] so far. However, it is easy to see that
L[QCL] is cut-admissible.

Γ 3 (A)k, Δ Γ�, (A)k 3 Δ�
cutΓ, Γ� 3 Δ, Δ�

Proposition 5.33. The cut-rule is sound.

Proof. Assume Γ 3 (A)k, Δ and Γ�, (A)k 3 Δ� are valid. Let M be some model of Γ, Γ�.
M must satisfy some formula in (A)k, Δ. If M satisfies (A)k then M satisfies both Γ�

and (A)k and thus also some formula in Δ�. In any case, M satisfies some formula in
Δ, Δ�.

We do not prove an effective cut-elimination theorem in the sense of Gentzen, i.e. by
providing an algorithm for the elimination of cut inferences in a derivation. But since we
do not use a cut rule when proving the completeness of L[QCL] (cf. Theorem 5.32), we
obtain a cut-elimination theorem for free.

Another aspect of our calculus that should be mentioned is that, although L[QCL] is
cut-free, we do not have the subformula property. This is especially obvious when looking
at the rules for negation, where we use the classical counterpart cp(A) of QCL-formulas.
For example, ¬(a #»×b) in the conclusion of the ¬-left rule becomes cp(a #»×b) = a ∨ b in the
premise.

Moreover, note that we introduced no structural rules (i.e., weakening or contraction) in
L[QCL], as they are not needed for the completeness of the calculus. It is easy to see,
however, that weakening and contraction are sound in this setting. Thus, if desired, one
could extend L[QCL] with the following rules:
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Γ 3 Δ
wlΓ, (A)k 3 Δ

Γ 3 Δ wr
Γ 3 (A)k, Δ

Γ, (A)k, (A)k 3 Δ
clΓ, (A)k 3 Δ

Γ 3 (A)k, (A)k, Δ
cr

Γ 3 (A)k, Δ

Towards Preferred Model Entailment While we believe that L[QCL] is interesting
in its own right, the question of how this calculus can be used to obtain a calculus for
preferred model entailment arises. Essentially, an inference rule has to be added that
allows for the transition from standard to preferred model inferences. As a first approach
we consider theories Γ ∪ {A} with Γ consisting only of classical formulas and A being
a QCL-formula. In this simple case, preferred models of Γ ∪ {A} are those models of
Γ ∪ {A} that satisfy A to the smallest possible degree. We call the resulting calculus
L[QCL]naive

|∼ .

Definition 5.34 (L[QCL]naive
|∼ ). The labeled sequent calculus L[QCL]naive

|∼ is L[QCL]
extended by the inference rule

�Γ, (A)i 3 ⊥�i<k Γ, (A)k 3 Δ |∼naiveΓ, A |∼lex
QCL Δ

Intuitively, the inference rule |∼naive states that, if there are no interpretations that
satisfy Γ while also satisfying A to a degree lower than k, and if Δ follows from all models
of Γ, (A)k, then Δ is entailed by the preferred models of Γ ∪ {A}. However, it can be
shown that L[QCL]naive

|∼ is unsound.

Proposition 5.35. L[QCL]naive
|∼ is unsound.

Proof. Consider the invalid entailment ¬a, a
#»×b |∼lex

QCL a, which is derivable in L[QCL]naive
|∼

as follows:

¬a, a 3 a #»×l1¬a, (a #»×b)1 3 a |∼naive¬a, a
#»×b |∼lex

QCL a

Thus, an extension of L[QCL] by |∼naive does not yield the desired calculus, not even in
this restricted setting where we consider only a single non-classical formula A. What is
missing is an assertion that Γ, (A)k is satisfiable. Unfortunately, this cannot be formulated
in L[QCL]. A way of addressing this problem is to make use of a refutation calculus, as
has been done for other non-monotonic logics (Bonatti and Olivetti 2002).
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5.4.2 A Calculus for Preferred Model Entailment
To obtain a calculus for preferred model entailment, we first need to introduce a refutation
calculus, which we call L[QCL]−. In the literature, such a rejection method for first-order
logic with equality was first introduced by Tiomkin (1988) and proved complete w.r.t.
finite model theory. The refutation calculus L[QCL]− used in this work is based on a
simpler rejection method for propositional logic defined by Bonatti and Olivetti (2002).
Using L[QCL]−, we prove that (A)k is satisfiable by deriving the antisequent (A)k � ⊥.

Definition 5.36 (labeled QCL-antisequents). Γ � Δ is a labeled QCL-antisequent if
and only if Γ 3 Δ is a labeled QCL-sequent. Γ � Δ is valid if and only if Γ 3 Δ is
not valid, i.e., if at least one model that satisfies all labeled QCL-formulas in Γ to
the degree specified by the label satisfies no labeled QCL- formula in Δ to the degree
specified by the label.

The rules for L[QCL]− can be derived from the rules of L[QCL]. For example, consider
the antisequent Γ, (A∨B)k � Δ. To show that this antisequent is valid, we must show that
the corresponding sequent Γ, (A ∨ B)k 3 Δ is not valid. This in turn means that we must
show that at least one of the two premises Γ, (A)k 3 (B)<k, Δ and Γ, (B)k 3 (A)<k, Δ
introduced by the ∨l-rule are not valid. In other words, we must show that either
the antisequent Γ, (A)k � (B)<k, Δ or the antisequent Γ, (B)k � (A)<k, Δ is valid. We
therefore introduce two rules:

Γ, (A)k � (B)<k, Δ
� ∨l1Γ, (A ∨ B)k � Δ

Γ, (B)k � (A)<k, Δ
� ∨l2Γ, (A ∨ B)k � Δ

Which one of these two rules should be applied must be guessed, i.e., we trade the
branching of L[QCL] for non-determinism.

The rules for other connectives are derived similarly. Binary rules are translated into
two rules; one inference rule per premise. (∨r) in L[QCL] has an unbounded number of
premises, but due to the rules’ structure it can be translated into three inference rules.
Similarly for (∧r), but we need to introduce two extra rules for the case that either A or
B is not satisfied.

Regarding the degree overflow rules we introduce a right-hand side rule, but no left-hand
side rule. The reason for this is that the antisequent Γ, (A)optQCL(A)+k � Δ is always
invalid, i.e., a left-hand side degree overflow rule could never be used in the derivation of
a valid antisequent.

The axioms of L[QCL]− are antisequents Γ � Δ in which Γ and Δ consist only of atoms,
no atom p occurs both in Γ and Δ, and ⊥ *∈ Γ. The reason for this is that Γ � Δ is valid
if and only if the corresponding sequent Γ 3 Δ is not valid, which is the case only if Γ
and Δ are disjoint sets of atoms and ⊥ *∈ Γ (cf. Definition 5.28).

Definition 5.37 (L[QCL]−). The axioms of L[QCL]− are labeled QCL-antisequents of
the form Γ � Δ, where Γ and Δ are disjoint sets of atoms and ⊥ *∈ Γ. The inference
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rules of L[QCL]− are given below. Whenever a labeled QCL-formula (F )k appears in the
conclusion of an inference rule (except for the � dor-rule) it holds that k ≤ optL(F ).
The rules for the classical connectives are:

Γ, (cp(A))1 � Δ
� ¬rΓ � (¬A)1, Δ

Γ � (cp(A))1, Δ
� ¬lΓ, (¬A)1 � Δ

Γ, (A)k � (B)<k, Δ
� ∨l1Γ, (A ∨ B)k � Δ

Γ, (B)k � (A)<k, Δ
� ∨l2Γ, (A ∨ B)k � Δ

Γ, (A)i � Δ
� ∨r1Γ � (A ∨ B)k, Δ

Γ, (B)i � Δ
� ∨r2Γ � (A ∨ B)k, Δ

where i < k;

Γ � (A)k, (B)k, Δ
� ∨r3Γ � (A ∨ B)k, Δ

Γ, (A)k � (B)>k, Δ
� ∧l1Γ, (A ∧ B)k � Δ

Γ, (B)k � (A)>k, Δ
� ∧l2Γ, (A ∧ B)k � Δ

Γ, (A)i � Δ
� ∧r1Γ � (A ∧ B)k, Δ

Γ, (¬A)1 � Δ
� ∧r2Γ � (A ∧ B)k, Δ

where k < i ≤ optQCL(A);

Γ, (B)i � Δ
� ∧r3Γ � (A ∧ B)k, Δ

Γ, (¬B)1 � Δ
� ∧r4Γ � (A ∧ B)k, Δ

where k < i ≤ optQCL(B);

Γ � (A)k, (B)k, Δ
� ∧r5Γ � (A ∧ B)k, Δ

The rules for ordered disjunction are:

Γ, (A)k � Δ
� #»×l1Γ, (A #»×B)k � Δ

Γ, (B)l, (¬A)1 � Δ
� #»×l2Γ, (A #»×B)optQCL(A)+l � Δ

Γ � (A)k, Δ
� #»×r1Γ � (A #»×B)k, Δ

Γ � (¬A)1, Δ
� #»×r2Γ � (A #»×B)optQCL(A)+l, Δ

Γ � (B)l, Δ
� #»×r3Γ � (A #»×B)optQCL(A)+l, Δ
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where k ≤ optL(A) and l ≤ optL(B).
The degree overflow rule is:

Γ � Δ � dorΓ � (A)optQCL(A)+k, Δ
where k ∈ N.

As already mentioned, instead of branching over several premises it must be guessed
non-deterministicly which rule to apply next in L[QCL]−, e.g., whether to apply ∧l1
or ∧l2. As a result, the proofs found in L[QCL]− are polynomial in size. Moreover, in
the proof of an antisequent Γ � Δ the axiom we encounter directly witnesses a counter
example for the corresponding sequent Γ 3 Δ. These differences between L[QCL]− and
L[QCL] reflect the duality between validity and satisfiability in classical logic.

Example 5.38. The following derivation is related to Example 5.29 and shows that
¬(a ∧ b), ((a #»×b) ∧ (b #»×c))2 is satisfiable.

a, a, c � b, b, ⊥
� ¬l

a, c, ¬b � b, ⊥
� ∧r4a, c � a ∧ b, b, ⊥
� ¬l

a, c, ¬b � a ∧ b, ⊥
� ∨l1(a ∨ b), c, ¬b � a ∧ b, ⊥
� #»×l2(a ∨ b), (b #»×c)2 � a ∧ b, ⊥
� ¬r

(b #»×c)2 � ¬(a #»×b), a ∧ b, ⊥
� ∧l2((a #»×b) ∧ (b #»×c))2 � a ∧ b, ⊥
� ¬l¬(a ∧ b), ((a #»×b) ∧ (b #»×c))2 � ⊥

The interpretation {a, c} witnesses the axiom a, a, c � b, b, ⊥ and also the final antisequent
¬(a ∧ b), ((a #»×b) ∧ (b #»×c))2 � ⊥.

Theorem 5.39. L[QCL]− is sound and complete.

Proof (Soundness). It is easy to see that, for each rule, the same model witnessing the
validity of the premise also witnesses the validity of the conclusion. We exemplify this on
hand of the � ∨l1-rule: assume Γ, (A)k � (B)<k, Δ is valid. Then there exists a model
M of Γ, (A)k. which does not satisfy B to a degree lower than k, and does not satisfy
any formula in Δ. Thus, M satisfies Γ, (A ∨ B)k and hence Γ, (A ∨ B)k � Δ is valid.

Proof (Completeness). Analogously to L[QCL], in L[QCL]− we can decompose the for-
mulas of any antisequent into atomic formulas by applying the rules of L[QCL]−. Thus,
it again suffices to show that the rules of L[QCL]− preserve validity when read “upwards”.
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Assume Γ � Δ is valid, i.e. Γ 3 Δ is not valid. There must be a rule in L[QCL] for
which Γ 3 Δ is the conclusion. This rule cannot be the dol-rule, since both the premise
and conclusion of this rule are always valid. By the soundness of L[QCL], the fact that
Γ 3 Δ is not valid implies that at least one of the premises Γ∗ 3 Δ∗ of the rule is not
valid. However, then Γ∗ � Δ∗ is valid. Now, by the construction of L[QCL]−, there is a
rule that allows us to derive Γ � Δ from Γ∗ � Δ∗.

Observe that we have not introduced a cut rule for L[QCL]−. Indeed, a counterpart of
the cut rule would not be sound. One possibility is to introduce a contrapositive of cut
as described in (Bonatti and Olivetti 2002).

Γ � Δ Γ, (A)k 3 Δ
cut2Γ � (A)k, Δ

Proposition 5.40. The cut2-rule is sound.

Proof. Assume Γ � Δ and Γ, (A)k 3 Δ are valid. Then there is a model M of Γ that
does not satisfy any formula in Δ. This further means that M does not satisfy (A)k,
otherwise Γ, (A)k 3 Δ would not be valid. Thus, Γ � (A)k, Δ is valid.

It is easy to see that, as in L[QCL], contraction is also sound in L[QCL]−. In contrast to
L[QCL], however, weakening is not sound in L[QCL]−. With left weakening we could,
e.g., derive a, b � b (which is not valid) from a � b (which is valid). Likewise, with right
weakening we could derive a � a, b from a � b.

We are now ready to combine L[QCL] and L[QCL]− by defining an inference rule that
allows us to go from labeled QCL-sequents to non-monotonic inferences. We first consider
preferred model entailment under minmax semantics (recall Definitions 5.1, 5.5).

Definition 5.41 (L[QCL]mm
|∼ ). The axioms of L[QCL]mm

|∼ are either labeled QCL-sequents
of the form (p)1 3 (p)1 with p being an atom, or labeled QCL-antisequents of the form
Γ � Δ, where Γ and Δ are disjoint sets of atoms and ⊥ *∈ Γ. The inference rules of
L[QCL]mm

|∼ are the inference rules of L[QCL] and L[QCL]−, extended by

�Γ, (A1 ∧ · · · ∧ An)i 3 ⊥�i<k Γ, (A1 ∧ · · · ∧ An)k � ⊥ Γ, (A1 ∧ · · · ∧ An)k 3 Δ |∼mmΓ, A1, . . . , An |∼mm
QCL Δ

and

Γ, cp(A1), . . . , cp(An) 3 ⊥ |∼unsatΓ, A1, . . . , An |∼mm
QCL Δ

where Γ consists only of classical formulas and every Aj with 1 ≤ j ≤ n is a QCL-formula.
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Observe that the premises of the new rules |∼mm and |∼unsat are QCL-sequents and
QCL-antisequents, while the conclusion is a |∼mm sequent. Consequently, any proof in
L[QCL]mm

|∼ can contain only one application of the new rules, in the very last step of the
proof. The |∼mm-rule makes use of the fact that, under minmax semantics, a QCL-theory
T = {A1, . . . , An} is semantically equivalent to A1 ∧ · · · ∧ An. The rule can be explained
as follows: first, an optimal degree k is guessed. The premises �Γ, (A1 ∧· · ·∧An)i 3 ⊥�i<k

along with Γ, (A1 ∧ · · · ∧ An)k � ⊥ ensure that models satisfying A1 ∧ · · · ∧ An to a degree
of k are preferred, while the premise Γ, (A1 ∧ · · · ∧ An)k 3 Δ ensures that Δ is entailed
by those preferred models. The rule |∼unsat is needed in case a theory is classically
unsatisfiable.

Example 5.42. The valid entailment ¬(a ∧ b), (a #»×b), (b #»×c) |∼mm
QCL a ∧ c, b is provable

in L[QCL]mm
|∼ by choosing k = 2. Let Γ = ¬(a ∧ b) and Δ = a ∧ c, b.

(ϕ1)
(ϕ2)

Γ, ((a #»×b) ∧ (b #»×c))2 � ⊥
(ϕ3)

Γ, ((a #»×b) ∧ (b #»×c))2 3 Δ |∼mmΓ, (a #»×b), (b #»×c) |∼mm
QCL Δ

where (ϕ1) is the derivation

...
Γ, b ∨ c, a, 3 ¬b, ⊥

...
Γ, b ∨ c, a 3 c, ⊥ #»×r2Γ, b ∨ c, a 3 (b #»×c)2, ⊥

#»×l1Γ, b ∨ c, (a #»×b)1 3 (b #»×c)2, ⊥ ¬r
Γ, (a #»×b)1 3 (b #»×c)2, ¬(b #»×c), ⊥

...
Γ, a ∨ b, b 3 (a #»×b)2, ⊥

#»×l1Γ, a ∨ b, (b #»×c)1 3 (a #»×b)2, ⊥ ¬r
Γ, (b #»×c)1 3 (a #»×b)2, ¬(a #»×b), ⊥ ∧l

Γ, ((a #»×b) ∧ (b #»×c))1 3 ⊥

Note that (ϕ2) is the L[QCL]−-proof from Example 5.38 and (ϕ3) is the L[QCL]-proof
from Example 5.29.

Theorem 5.43. L[QCL]mm
|∼ is sound and complete.

Proof (Soundness). Consider first the |∼mm-rule and assume that all premises are deriv-
able. By the soundness of L[QCL] and L[QCL]− they are also valid. From the first set
of premises �Γ, (A1 ∧ · · · ∧ An)i 3 ⊥�i<k we can conclude that if there is some model M
of Γ that satisfies A1 ∧ · · · ∧ An to a degree of k, then M ∈ Prf mm

QCL(Γ ∪ {A1, . . . , Ak}).
The premise Γ, (A1 ∧ · · · ∧ An)k � ⊥ ensures that there is such a model M . By the last
premise Γ, (A1 ∧ · · · ∧ An)k 3 Δ, we can conclude that all models of Γ ∪ {A1, . . . , Ak}
that are equally as preferred as M , i.e., all M � ∈ Prf mm

QCL(Γ ∪ {A1, . . . , Ak}), satisfy at
least one formula in Δ. Therefore, Γ, A1, . . . , Ak |∼mm

QCL Δ is valid.
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Now consider the |∼unsat-rule and assume that Γ, cp(A1), . . . , cp(Ak) 3 ⊥ is derivable
and therefore valid. Then Γ ∪ cp(A1), . . . , cp(Ak) has no models. Since in general we
have degQCL(I, F ) < ∞ ⇐⇒ I |= cp(F ), also Γ ∪ {A1, . . . , Ak} has no models and thus
no preferred models. Then Γ, A1, . . . , Ak |∼mm

QCL Δ is valid.

Proof (Completeness). Assume that Γ, A1, . . . , Ak |∼mm
QCL Δ is valid. If Γ ∪ {A1, . . . , Ak}

is unsatisfiable then Γ, cp(A1), . . . , cp(Ak) 3 ⊥ is valid, i.e., we can apply the |∼unsat-rule.

Now consider the case that Γ∪{A1, . . . , Ak} is satisfiable and assume that some preferred
model M of Γ ∪ {A1, . . . , Ak} satisfies A1 ∧ · · · ∧ An to a degree of k. Then, we claim
that all premises of the rule are valid and, by the completeness of L[QCL] and L[QCL]−,
also derivable.

Assume by contradiction that one of the premises is not valid. First, consider the case
that Γ, (A1 ∧ · · · ∧ An)i 3 ⊥ is not valid for some i < k. Then there is a model M � of Γ
that satisfies A1 ∧ · · · ∧ An to a degree of i < k. However, this contradicts the assumption
that M is a preferred model of Γ ∪ {A1, . . . , Ak}.

Next, assume that Γ, (A1∧· · ·∧An)k � ⊥ is not valid. However, M satisfies (A1∧· · ·∧An)k

and does not satisfy ⊥. Contradiction.

Finally, we assume that Γ, (A1 ∧ · · · ∧ An)k 3 Δ is not valid. Then, there is a model M � of
Γ that satisfies A1 ∧ · · · ∧ An to a degree of k but does not satisfy any formula in Δ. But
M � is a preferred model of Γ ∪ {A1, . . . , Ak}, which contradicts Γ, A1, . . . , Ak |∼mm

QCL Δ
being valid.

To obtain a calculus for preferred model entailment under lexicographic semantics, we
adapt the |∼mm-rule of L[QCL]mm

|∼ .

Definition 5.44 (L[QCL]lex
|∼ ). Let ≤l be the order on vectors in Nk defined by

• ;v <l ;w if there is some n ∈ N such that ;v has more entries of value n and for all
1 ≤ m < n both vectors have the same number of entries of value m.

• ;v =l ;w if, for all n ∈ N, ;v and ;w have the same number of entries of value n.

The axioms and inference rules of L[QCL]lex
|∼ are the same as those of L[QCL]mm

|∼ , except
that |∼mm is replaced by

�Γ, (A1)w1 , . . . , (Ak)wk
3 ⊥�*w<l*v Γ, (A1)v1 , . . . , (Ak)vk

� ⊥ �Γ, (A1)w1 , . . . , (Ak)wk
3 Δ�*w=l*v |∼lexΓ, A1, . . . , Ak |∼lex

QCL Δ

where ;v, ;w ∈ Nk, Γ consists only of classical formulas and every Aj with 1 ≤ j ≤ k is a
QCL-formula.
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Instead of guessing the degree of preferred models as in L[QCL]mm
|∼ , we now guess a

“degree-profile” (in form of the vector ;v) of at least one preferred model of Γ∪{A1, . . . , Ak}.
The rule |∼lex can be explained as follows: The premises shown in the left branch confirm
that our guess is indeed optimal, i.e., that Γ, (A1)w1 , . . . , (Ak)wk

cannot be satisfied if ;w
is better than ;v with respect to the lex-semantics. The center premise ensures that our
degree-profile is satisfiable. The right premise ensures that all preferred models, meaning
all models with a degree profile ;w as good as ;v with respect to the lex-semantics, satisfy
at least one formula in Δ. Note that, as for L[QCL]mm

|∼ , any proof in L[QCL]lex
|∼ can

contain only one application of the new rules, in the very last step of the proof. Let us
provide a small example before showing soundness and completeness of L[QCL]lex

|∼ .

Example 5.45. Consider the valid entailment ¬(a ∧ b), (a #»×b), (b #»×c) |∼lex
QCL a ∧ c, b

similar to Example 5.42. Let Γ = ¬(a ∧ b) and Δ = a ∧ c, b. Therefore, we can also write
the entailment as Γ, (a #»×b), (b #»×c) |∼lex

QCL Δ. Note that it is not possible to satisfy all
labeled QCL-formulas on the left to a degree of 1. Rather, it is optimal to either satisfy
Γ, (a #»×b)1, (b #»×c)2 or, alternatively, Γ, (a #»×b)2, (b #»×c)1. We choose ;v = (1, 2). Observe that
;w = (1, 1) is the only vector ;w such that ;w <l ;v. Moreover, (1, 2) =l ;v and (2, 1) =l ;v.

Thus, we get

...
Γ, (a #»×b)1, (b #»×c)1 3 ⊥

...
Γ, (a #»×b)1, (b #»×c)2 � ⊥

...
Γ, (a #»×b)1, (b #»×c)2 3 Δ ∗ |∼lexΓ, (a #»×b), (b #»×c) |∼lex

QCL Δ

where ∗ is

...
Γ, (a #»×b)2, (b #»×c)1 3 Δ

It can be verified that indeed all branches are provable, but we do not show this explicitly
here.

Theorem 5.46. L[QCL]lex
|∼ is sound and complete.

Proof (Soundness). Consider the |∼lex -rule and assume that all premises are derivable. By
the soundness of L[QCL] and L[QCL]− they are also valid. From the first set of premises
�Γ, (A1)w1 , . . . , (Ak)wk

3 ⊥�*w<l*v we can conclude that if there is some model M of Γ
that satisfies Ai to a degree of vi for all 1 ≤ i ≤ k, then M ∈ Prf lex

QCL(Γ ∪ {A1, . . . , Ak}).
The premise Γ, (A1)v1 , . . . , (Ak)vk

� ⊥ ensures that there is such a model M . By the last
set of premises �Γ, (A1)w1 , . . . , (Ak)wk

3 Δ�*w=l*v we can conclude that all models of Γ ∪
{A1, . . . , Ak} that are equally as preferred as M , i.e., all M � ∈ Prf lex

QCL(Γ ∪ {A1, . . . , Ak}),
satisfy at least one formula in Δ. Therefore, Γ, A1, . . . , Ak |∼lex

QCL Δ is valid.
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Proof (Completeness). Assume that Γ, A1, . . . , Ak |∼lex
QCL Δ is valid. If Γ ∪ {A1, . . . , Ak}

is unsatisfiable then Γ, cp(A1), . . . , cp(Ak) 3 ⊥ is valid, i.e., we can apply the |∼unsat-rule.
Now consider the case that Γ∪{A1, . . . , Ak} is satisfiable and assume that some preferred
model M of Γ ∪ {A1, . . . , Ak} satisfies Ai to a degree of vi for all 1 ≤ i ≤ k. Then, we
claim that all premises of the rule are valid and, by the completeness of L[QCL] and
L[QCL]−, also derivable.

Assume by contradiction that one of the premises is not valid. First, consider the case
that Γ, (A1)w1 , . . . , (Ak)wk

3 ⊥ is not valid for some ;w <l ;v. Then there is a model M �

of Γ that satisfies Ai to a degree of wi for all 1 ≤ i ≤ k. However, this contradicts the
assumption that M is a preferred model of Γ ∪ {A1, . . . , Ak}.

Next, assume that Γ, (A1)v1 , . . . , (Ak)vk
� ⊥ is not valid. However, M satisfies all formulas

in Γ, (A1)v1 , . . . , (Ak)vk
and does not satisfy ⊥. Contradiction.

Finally, we assume that Γ, (A1)w1 , . . . , (Ak)wk
3 Δ is not valid for some ;w =l ;v. Then,

there is a model M � of Γ that satisfies Ai to a degree of wi for all 1 ≤ i ≤ k but does
not satisfy any formula in Δ. But M � is a preferred model of Γ ∪ {A1, . . . , Ak}, which
contradicts Γ, A1, . . . , Ak |∼lex

QCL Δ being valid.

Finally, a calculus for the inclusion-based approach of preferred model entailment can
be obtained by simply adapting the way in which vectors over Nk are compared (cf.
Definition 5.44).

Definition 5.47 (L[QCL]inc
|∼ ). The calculus L[QCL]inc

|∼ is defined analogously to L[QCL]lex
|∼

(cf. Definition 5.44) except that the order ≤l is replaced by the order ≤i:

• ;v <i ;w if there is some n ∈ N such that every entry in ;w with value n also has
value n in ;v, there is an entry in ;v with value n that has a value higher than n in
;w, and for all 1 ≤ m < n both vectors have exactly the same entries with value m.

• ;v =i ;w if ;v *<i ;w and ;w *<i ;v.

Soundness and completeness of L[QCL]inc
|∼ are analogous to that of L[QCL]lex

|∼ (cf. Theo-
rem 5.46). Note that we did not define a calculus for the log-lexicographic semantics (cf.
Definition 5.3). Such a calculus could be defined by adapting the ordering <l used in
the |∼lex -rule of L[QCL]lex

|∼ (cf. Definition 5.44), but we do not consider this here.

5.4.3 Beyond QCL
We will now demonstrate that the calculi for QCL introduced in the previous sections
can easily be adapted for other choice logics. Indeed, to introduce a labeled calculus
for some choice logic L other than QCL it suffices to replace the #»×-rules in L[QCL] by
appropriate rules for the choice connectives of L. The rules for the classical connectives
in L[QCL] can be retained. Moreover, note that the inference rules for preferred model
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entailment (i.e., the rules |∼mm , |∼lex , |∼inc, |∼unsat from Definitions 5.41, 5.44, 5.47) do
not depend on any specific choice logic. Thus, once labeled calculi are developed for L,
the calculi for preferred model entailment follow immediately.

Calculi for CCL

First, we introduce L[CCL] by defining rules for the choice connective #»� of CCL. Recall
that A

#»�B expresses that, if possible, both A and B should be satisfied, but if this is not
possible then satisfying only A is also acceptable (cf. Section 2.4).

Definition 5.48. L[CCL] is L[QCL], except that the #»×-rules are replaced by the following
#»�-rules:

Γ, (A)1, (B)k 3 Δ #»�l1Γ, (A #»�B)k 3 Δ
Γ, (A)1, (¬B)1 3 Δ #»�l2Γ, (A #»�B)optCCL(B)+1 3 Δ

Γ, (A)l 3 Δ #»�l3Γ, (A #»�B)optCCL(B)+l 3 Δ

Γ 3 (A)1, Δ Γ 3 (B)k, Δ #»�r1Γ 3 (A #»�B)k, Δ
Γ 3 (A)1, Δ Γ 3 (¬B)1, Δ #»�r2Γ 3 (A #»�B)optCCL(B)+1, Δ

Γ 3 (A)l, Δ #»�r3Γ 3 (A #»�B)optCCL(B)+l, Δ

where k ≤ optCCL(B) and 1 < l ≤ optCCL(A).

The #»�l1-rule takes care of the case in which A is optimally satisfied, and B is satisfied to
some degree. In #»�l2 and #»�l3 the label m of (A #»�B)m is higher than the optionality of B.
If m = optCCL(B) + 1 we know that B cannot be satisfied, and hence we need to apply
#»�l2. If m = optCCL(B) + l with l > 1 then, by the semantics of CCL (cf. Definition 2.33),
it must be that A is satisfied to a degree of l, regardless of whether B is satisfied or not.

Example 5.49. The following is a small L[CCL]-proof of a valid sequent, showcasing
the application of the #»�l2- and #»�l3-rules.

...
Γ, (a)1, (¬b)1 3 a ∧ ¬b

#»�l2Γ, (a #»�b)2 3 a ∧ ¬b
#»�l3((a #»�b) #»�c)3 3 a ∧ ¬b

Theorem 5.50. L[CCL] is sound and complete.
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Proof (Soundness). We consider the newly introduced rules.

• For #»�l1, #»�l2, and #»�l3 this follows directly from the definition of CCL.

• ( #»�r1). Assume both premises are valid, i.e., every model of Γ is a model of Δ or of
(A)1 and (B)k with k ≤ optCCL(B). By definition, any model that satisfies (A)1
and (B)k satisfies A

#»�B to degree k. Thus, every model of Γ is a model of Δ or of
(A #»�B)k, which means the conclusion of the rule is valid.

• ( #»�r2). Assume both premises are valid, i.e., every model of Γ is a model of Δ or of
(A)1 and (¬B)1. By definition, any model that satisfies (A)1 and does not satisfy
B (and hence satisfies (¬B)1) satisfies A

#»�B to degree optCCL(B) + 1.

• ( #»�r3). Assume the premise is valid, i.e., every model of Γ is a model of Δ or of (A)l

with 1 < l ≤ optCCL(A). By definition, any model that satisfies (A)l, regardless of
what degree this model ascribes to B, satisfies A

#»�B to degree optCCL(B) + l.

Proof (Completeness). We adapt the completeness proof of L[QCL] (cf. Theorem 5.32).

• Assume that a sequent of the form Γ, (A #»�B)k 3 Δ is valid, with k ≤ optCCL(B). All
models that satisfy (A #»�B)k must satisfy A to a degree of 1 and B to a degree of k.
Thus, Γ, (A)1, (B)k 3 Δ is valid. Similarly for the cases Γ, (A #»�B)optCCL(B)+1 3 Δ
and Γ, (A #»�B)optCCL(B)+l 3 Δ with 1 < l ≤ optCCL(A).

• Assume that a sequent of the form Γ 3 (A #»�B)k, Δ is valid, with k ≤ optCCL(B).
We claim that then Γ 3 (A)1, Δ and Γ 3 (B)k, Δ are valid. Assume, for the
sake of a contradiction, that the first sequent is not valid. This means that
there is a model M of Γ that is neither a model of (A)1 nor of Δ. However,
then M satisfies A

#»�B to a degree higher than optCCL(B). This contradicts the
assumption that Γ 3 (A #»�B)k, Δ is valid. Assume now that the second sequent
is not valid, i.e., that there is a model M of Γ that is neither a model of (B)k

nor of Δ. Then M cannot be a model of (A #»�B)k, contradicting the assumption.
Similarly for the cases Γ 3 (A #»�B)optCCL(B)+1, Δ and Γ 3 (A #»�B)optCCL(B)+l, Δ with
1 < l ≤ optCCL(A).

We do not define the refutation calculus L[CCL]− here, but the necessary rules for #»� can
be inferred from the #»�-rules of L[CCL] in a similar way to how L[QCL]− was derived
from L[QCL]: if a rule contains only a single premise then it suffices to replace the
3-symbol with the �-symbol; if a rule contains two premises then we introduce two rules
in L[CCL]−, one for each premise. Once L[CCL] and L[CCL]− are established, calculi
for preferred model entailment follow immediately.
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Calculi for LCL

Our methods can also be adapted for LCL in which A #»� B expresses that it is best
to satisfy A and B, second best to satisfy only A, third best to satisfy only B, and
unacceptable to satisfy neither (cf. Section 2.4).

Definition 5.51. L[LCL] is L[QCL], except that the #»×-rules are replaced by the following
#»� -rules:

Γ, (A)k, (B)l 3 Δ
#»� l1Γ, (A #»� B)(k−1)·optLCL(B)+l 3 Δ

Γ, (A)k, (¬B)1 3 Δ
#»� l2Γ, (A #»� B)optLCL(A)·optLCL(B)+k 3 Δ

Γ, (¬A)1, (B)l 3 Δ
#»� l3Γ, (A #»� B)optLCL(A)·optLCL(B)+optLCL(A)+l 3 Δ

Γ 3 (A)k, Δ Γ 3 (B)l, Δ
#»� r1Γ 3 (A #»� B)(k−1)·optLCL(B)+l, Δ

Γ 3 (A)k, Δ Γ 3 (¬B)1, Δ
#»� r2Γ 3 (A #»� B)optLCL(A)·optLCL(B)+k, Δ

Γ 3 (¬A)1, Δ Γ 3 (B)l, Δ
#»� r3Γ 3 (A #»� B)optLCL(A)·optLCL(B)+optLCL(A)+l, Δ

where k ≤ optLCL(A) and l ≤ optLCL(B).

The labels used in the above rules might appear quite involved. However, finding the
correct rule to apply given a labeled LCL-formula (A #»� B)m is actually a straightfor-
ward task: the values for optLCL(A) and optLCL(B) can be computed according to
Definition 2.35. If m ≤ optLCL(A) · optLCL(B) then the #»� l1-rule must be applied. If
optLCL(A) · optLCL(B) < m ≤ optLCL(A) · optLCL(B) + optLCL(A) then the #»� l2-rule
must be applied. If optLCL(A) · optLCL(B) + optLCL(A) < m ≤ optLCL(A) · optLCL(B) +
optLCL(A) + optLCL(B) then the #»� l3-rule must be applied.

Example 5.52. The following is a small L[LCL]-proof of a valid sequent. Since we have
a label of 2 in the end-sequent, and since optLCL(a ∨ b) = optLCL(b ∨ c) = 1, we know
that the #»� l2-rule must be applied.
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...
a ∨ b 3 b ∨ c, a ∧ ¬b ¬l

a ∨ b, ¬(b ∨ c) 3 a ∧ ¬b
#»� l2((a ∨ b) #»� (b ∨ c))2 3 a ∧ ¬b

Theorem 5.53. L[LCL] is sound and complete.

Proof (Soundness). We consider the newly introduced rules.

• For #»� l1, #»� l2, and #»� l3 this follows directly from the definition of LCL.

• ( #»� r1). Assume both premises are valid, i.e., every model of Γ is a model of Δ or of
(A)k and (B)l with k ≤ optLCL(A) and l ≤ optLCL(B). By definition, any model
that satisfies (A)k and (B)l satisfies A #»� B to degree (k − 1) · optLCL(B) + l. Thus,
every model of Γ is a model of Δ or of (A #»� B)(k−1)·optLCL(B)+l, which means the
conclusion of the rule is valid.

• ( #»� r2). Assume both premises are valid, i.e., every model of Γ is a model of Δ or
of (A)k and (¬B)1 with k ≤ optLCL(A). By definition, any model that satisfies
(A)k and does not satisfy B (and hence satisfies (¬B)1) satisfies A #»� B to degree
optLCL(A) · optLCL(B) + k.

• ( #»� r3). Analogous to ( #»� r2).

Proof (Completeness). We adapt the completeness proof of L[QCL] (cf. Theorem 5.32).

• Assume that a sequent of the form Γ, (A #»� B)m 3 Δ is valid, with m = (k − 1) ·
optLCL(B) + l such that k ≤ optLCL(A) and l ≤ optLCL(B). Now assume some
model satisfies Γ, (A)k, and (B)l. Then M satisfies Γ and (A #»� B)m, and, since
Γ, (A #»� B)m 3 Δ is valid, M also satisfies Δ. Thus, Γ, (A)k, (B)l 3 Δ is valid.
The proofs for sequents of the form Γ, (A #»� B)optLCL(A)·optLCL(B)+k 3 Δ as well as
Γ, (A #»� B)optLCL(A)·optLCL(B)+optLCL(A)+l 3 Δ are analogous.

• Assume that a sequent of the form Γ 3 (A #»� B)m, Δ is valid, with m = (k − 1) ·
optLCL(B) + l such that k ≤ optLCL(A) and l ≤ optLCL(B). We claim that then
Γ 3 (A)k, Δ and Γ 3 (B)l, Δ are valid. Assume, for the sake of a contradiction,
that the first sequent is not valid. This means that there is a model M of Γ that is
neither a model of (A)k nor of Δ. Following Definition 2.35, M must satisfy A #»� B
to some degree other than m. This contradicts the assumption that Γ 3 (A #»� B)m, Δ
is valid. Assume now that the second sequent is not valid, i.e., that there is a model
M of Γ that is neither a model of (B)l nor of Δ. Again, this means that M satisfies
A #»� B to some degree other than m, and this would contradict our assumption that
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5. Preferred Model Entailment in Choice Logics

Γ 3 (A #»� B)m, Δ is valid. Thus, both Γ 3 (A)k, Δ and Γ 3 (B)k, Δ are valid and
Γ 3 (A #»� B)m, Δ is provable.
The proofs for sequents of the form Γ 3 (A #»� B)optLCL(A)·optLCL(B)+k, Δ and Γ 3
(A #»� B)optLCL(A)·optLCL(B)+optLCL(A)+l, Δ are analogous.

As with CCL, the refutation calculus L[LCL]− can be obtained from L[LCL] by modifying
the #»� -rules accordingly. Calculi for preferred model entailment follow immediately.

Multiple Choice Connectives

Lastly, we want to point out that, according to the choice logic framework (cf. Subsec-
tion 2.4.1), choice logics can make use of more than one choice connective. Indeed, a
combination of QCL and CCL into the so-called QCCL has been suggested in the master
thesis of the author (Bernreiter 2020). QCCL is simply the choice logic with choice
connectives CQCCL = { #»×,

#»�}, with the optionality and satisfaction degree of #»× (resp. #»�)
defined in the same way as in QCL (resp. CCL). A calculus for QCCL can be obtained
simply by adding both the rules for #»× and #»�. We demonstrate this with a small example.

Example 5.54. The following is a proof of a valid sequent in QCCL. We use lexicographic
entailment, but one could also use the minmax or inclusion-based approaches instead.
Since the formulas (a #»�b) and (b #»×c) are jointly satisfiable to a degree of 1 we can guess the
optimal degree-profile (a #»�b)1, (b #»×c)1. Thus, we only have two branches in the |∼lex-rule.

a, b, b � ⊥
� #»×l1

a, b, (b #»×c)1 � ⊥
� #»�l1(a #»�b)1, (b #»×c)1 � ⊥

...
a, b, b 3 a ∧ b #»×l1

a, b, (b #»×c)1 3 a ∧ b
#»�l1(a #»�b)1, (b #»×c)1 3 a ∧ b |∼lex(a #»�b), (b #»×c) |∼lex

QCCL a ∧ b

5.5 Conclusion
In this chapter, we studied preferred model entailment in choice logics with respect to
semantic, computational, and proof-theoretic properties.

Regarding semantic properties, we investigated the principles of cautious monotonicity,
cumulative transitivity, and rational monotonicity laid out by Kraus, Lehmann, and
Magidor (1990). We showed that preferred model entailment satisfies cautious mono-
tonicity and cumulative transitivity for all choice logics and all preferred model semantics,
assuming we are dealing with finite theories. Moreover, under all considered preferred
model semantics except for the inclusion-based semantics, rational monotonicity is also
satisfied for all choice logics.
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5.5. Conclusion

As for computational properties, we showed that checking if an interpretation is a
preferred model is coNP-complete for choice logics in which more than two satisfaction
degrees are obtainable. The complexity of preferred model entailment depends both on
the choice logic and on the preferred model semantics considered (cf. Table 5.1). For QCL
and CCL, entailment is ΘP

2 -complete under minmax semantics, ΔP
2 [O(log2 n)]-complete

under log-lexicographic semantics, and ΔP
2 -complete under lexicographic semantics. For

LCL, entailment is ΔP
2 -complete for all of these three semantics. Entailment under the

inclusion-based semantics is ΠP
2 -complete for QCL, CCL, and LCL.

Lastly, we introduced a sound and complete sequent calculus for preferred model entail-
ment in QCL. This non-monotonic calculus is built on two calculi: a monotonic labeled
sequent calculus and a corresponding refutation calculus. Our systems are modular and
can easily be adapted. Calculi for other choice logics can be obtained by introducing
suitable rules for the choice connectives of the new logic, as exemplified with our calculi
for CCL and LCL. Moreover, non-monotonic calculi for alternative preferred model
semantics can be obtained by adapting the inference rule which transitions from preferred
model entailment to the labeled calculi (e.g. the |∼mm , |∼lex or |∼inc-rule).

An interesting avenue for future work is to examine alternative semantics for languages
using ordered disjunction or other choice connectives, and see whether our methods can
be adapted to those approaches. We now give a brief overview over relevant work in this
direction. In Prioritized QCL (PQCL) and QCL+ (Benferhat and Sedki 2008) ordered
disjunction is defined in the same way as in QCL, but the classical connectives are given
new semantics. As pointed out in previous work (Bernreiter, Maly, and Woltran 2021),
both PQCL and QCL+ can be captured by the choice logic framework as fragments by
allowing negations only in front of atoms. Another interesting paper is that of Maly
and Woltran (2018), in which the concept of satisfaction degrees is abandoned and
the semantics rather ‘directly’ induces a partial order over models. The most recent
reinterpretation of QCL that we are aware of is an approach (Freiman and Bernreiter
2023a,b) using game theoretic semantics, with a special focus on providing an alternative
negation for the language of QCL. Note that (Freiman and Bernreiter 2023b) also features
a proof calculi for this reinterpretation, although these calculi do not allow to decide
preferred model entailment. A logic similar to LCL was proposed by Charalambidis et al.
(2021). In contrast to LCL, their lexicographic logic uses lists of truth values to rank
interpretations rather than satisfaction degrees. In the world of logic programming, recent
works (Charalambidis, Nomikos, and Rondogiannis 2022; Charalambidis, Rondogiannis,
and Troumpoukis 2021) have suggested a new semantics for logic programs with ordered
disjunction (LPODs) (Brewka, Niemelä, and Syrjänen 2004). While the original semantics
of LPODs uses satisfaction degrees as in QCL, the new approach uses a four-valued logic.

Specifically regarding our proof calculi, a possibility for future work is to study their proof
complexity and how this complexity might depend on which choice logic or preferred
model semantics is considered. Moreover, developing a calculus for LPODs might prove
to be interesting since they contain two sources of non-monotonicity (logic programming
itself as well as ordered disjunction).
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Another possible direction for the further study of choice logics is to investigate the con-
nection to conditional knowledge bases (Kraus, Lehmann, and Magidor 1990; Lehmann
and Magidor 1992) in more detail. Our complexity results for choice logics (cf. Sec-
tion 5.3) together with the known complexity of conditional knowledge bases (Eiter and
Lukasiewicz 2000) suggest that polynomial time transformations from choice logic theories
to conditional knowledge bases and vice versa are possible. How exactly such translations
would look like is not immediately clear, however, and should be investigated. Related
to this point is the notion of syntax splitting (Parikh 1999), where unrelated parts of a
knowledge base can be split up and evaluated independently. Syntax splitting has recently
been examined for conditional knowledge bases (Heyninck et al. 2023; Kern-Isberner,
Beierle, and Brewka 2020), and studying whether similar ideas can be used for choice
logics may provide interesting results.

Lastly, to facilitate practical applications, it will be useful to design and implement
efficient algorithms for preferred model entailment. To the best of our knowledge, this
has not been done yet. The only implementation of choice logics we are aware of is
an encoding in Answer Set Programming (Bernreiter, Maly, and Woltran 2020), which,
however, only concerns itself with single choice logic formulas, not with preferred model
entailment.
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CHAPTER 6
From Choice Logics

to Abstract Argumentation

In this chapter, we examine the connection between choice logics and abstract argumen-
tation, and show that they are more closely related than previously known. To this end,
we use SETAFs—argumentation frameworks with sets of attacking arguments (Nielsen
and Parsons 2006). SETAFs have been in the focus of researchers recently as a more
flexible and expressive formalism than standard Dung-style AFs (Dvořák, Fandinno,
and Woltran 2019), with intuitive connections to structured argumentation and other
related formalisms (König, Rapberger, and Ulbricht 2022), while preserving many desired
properties of standard AFs (Dvořák et al. 2024; Flouris and Bikakis 2019).

Despite the differences between choice logics and abstract argumentation, a first con-
nection between them has been established by a translation (Sedki 2015) from PQCL-
theories12 (Benferhat and Sedki 2008) to Value-based AFs (VAFs) (Atkinson and Bench-
Capon 2021). While this translation is a valuable first step in connecting choice logics
and argumentation, it leaves some issues unaddressed. Firstly, the translation is not
syntactic, as each interpretation relevant to a formula is translated into an argument.
This implies that the translation is also not polynomial in size. Secondly, only the
lexicographic preferred model semantics is considered, while other methods such as the
inclusion- or minmax-based approaches are not studied. Thirdly, the translation relies
on a redefinition of VAF-semantics which is not commonly used elsewhere.

Contributions. We address the challenges discussed above by providing two purely
syntactic and polynomial-size translations from QCL-theories to SETAFs. Depending
on the translation, either the inclusion-based or the minmax preferred models of the

12PQCL redefines the semantics of the classical connectives, but defines ordered disjunction in the
same way as QCL.
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original QCL-theory are in direct correspondence to the semi-stable extensions of the
constructed SETAF. Moreover, we do not rely on any redefinition of standard SETAF
notions. Our work shows that abstract argumentation is well-suited to directly capture
formalisms in which hard- and soft-constraints are jointly represented. Moreover, using
our translation, preferred model entailment in QCL can be decided using existing solvers
for SETAFs (Dvořák, Greßler, and Woltran 2018). Choice logics thus join many other
logic-based formalisms that have been studied with respect to their connection to formal
argumentation (Bienvenu and Bourgaux 2020; Bochman 2018; Cyras and Toni 2016;
Falappa et al. 2011; Modgil and Prakken 2014; Skiba and Thimm 2022; Wyner, Bench-
Capon, and Dunne 2013).

Publications. This chapter is based on the paper (Bernreiter and König 2023). Newly
added in this version are additional examples and full proofs for all results.

Outline. In Section 6.1 we formally define SETAFs. In Section 6.2 we show how
SETAFs can be used to encode single choice logic formulas. We then build upon this
encoding in Section 6.3 to capture preferred model entailment under the minmax and
inclusion-based preferred model semantics. We conclude in Section 6.4.

Required preliminaries. Before reading this chapter, it is recommended to read
Section 2.1 (propositional logic), Section 2.2 (computational complexity), Subsection 2.3.1
(abstract argumentation), Section 2.4 (choice logics), and Section 5.1 (formal definition
of preferred model entailment).

6.1 Argumentation Frameworks with Collective Attacks
Nielsen and Parsons (2006) introduced Argumentation Frameworks with collective attacks
(SETAFs), a generalization of standard AFs (see Section 2.3.1) where arguments cannot
only be attacked by a single argument but also by sets of arguments.13

Definition 6.1 (SETAF). A SETAF is a pair SF = (Arg, Att) where Arg is a set of
arguments and Att ⊆(2Arg \ {∅})×Arg is the attack relation.

SETAFs SF = (Arg, Att), where for all (T, h) ∈ Att it holds that |T | = 1, amount to
(standard Dung) AFs. We usually write (t, h) to denote the set-attack ({t}, h). For SF1 =
(Arg1, Att1), SF2 = (Arg2, Att2) we define the union SF1∪SF2 as (Arg1∪Arg2, Att1∪Att2).
If there is an attack (T, h)∈Att with T ⊆S ⊆Arg and h∈S� ⊆Arg, we write S '→Att S�

(or simply S '→ S�).

13Note that, in this chapter, we denote the set of arguments in a framework by Arg instead of A and
the set of attacks in a framework by Att instead of R, since upper case letters such as A, B, L, R will be
used to denote choice logic formulas.
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a

b

c

d

Figure 6.1: Example SETAF. Collective attacks are colored.

SETAF semantics are defined largely analogously to standard AF semantics. In this
work, we make use of conflict-free (cf ), admissible (adm), stable (stb), and semi-stable
(sem) semantics for SETAFs (Flouris and Bikakis 2019).

Definition 6.2 (SETAF Semantics). Let SF = (Arg, Att) be a SETAF and E ⊆ Arg.
E is conflict-free in SF, written as E ∈ cf (SF), if E *'→ E. An argument a ∈ Arg is
defended in SF by a set S ⊆ Arg if S '→ B for each B ⊆ Arg such that B '→ {a}.
A set T ⊆ Arg is defended in SF by S if each a ∈ T is defended in SF by S.
E⊕

SF = E ∪ {a ∈ Arg | E '→ a} is called the range of E (in SF). Let S ∈ cf (SF). Then

• S ∈ adm(SF) iff S defends itself in SF;

• S ∈ stb(SF) iff S '→ {a} for all a ∈ Arg \ S;

• S ∈ sem(SF) iff S ∈ adm(SF) and there is no T ∈ adm(SF) such that T ⊕ ⊃ S⊕.

Example 6.3. Figure 6.1 shows the SETAF SF = (Arg, Att) with

Arg = {a, b, c, d}
Att = {(a, b), (b, d), (d, b), (d, d), ({b, c}, a), ({b, d}, c)}.

It can be confirmed that

cf (SF) = {∅, {a}, {b}, {c}, {a, c}, {b, c}},

adm(SF) = {∅, {a}, {c}, {a, c}, {b, c}},

stb(SF) = sem(SF) = {{b, c}}.

If SF is clear from the context, we will simply write E⊕ instead of E⊕
SF to denote the

range of E in SF .

The reasoning task for SETAFs that is of relevance in this chapter is that of skeptical
acceptance for semi-stable semantics, which is defined analogously to the case of standard
AFs (see Definition 2.8): a ∈ Arg is skeptically accepted in SF = (Arg, Att) w.r.t. semi-
stable semantics iff a ∈ S for every S ∈ sem(SF). Specifically, we are interested in a
variant of skeptical acceptance where an argument a is also accepted if sem(SF) = {∅}.

Moreover, we will make use of the fact that in SETAFs, analogously to standard AFs,
stb(SF) *= ∅ implies stb(SF) = sem(SF). This is easy to see, since if there is a stable
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¬ϕ1 ¬ϕ∞

ϕ1 ϕ2 ϕ∞

(a) Negation

(A ∧ B)1 (A ∧ B)2 (A ∧ B)∞

A1 A∞ B1 B2 B∞

(b) Conjunction

(A ∨ B)1 (A ∨ B)2 (A ∨ B)∞

A1 A∞ B1 B2 B∞

(c) Disjunction

(A #»×B)1 (A #»×B)2 (A #»×B)∞

A1 A∞ B1 B∞

(d) Ordered Disjunction

Figure 6.2: QCL-connectives encoded as SETAFs.

extension E ∈ stb(SF) for SF = (Arg, Att), then E⊕ = Arg and therefore we must have
E�⊕ = Arg for all semi-stable extensions E� ∈ sem(SF).

6.2 Encoding QCL-formulas
We aim to capture QCL-theories via SETAFs such that the preferred models of the
initial theory correspond to the extensions of the constructed framework. As a first
step, we encode single QCL-formulas to obtain a correspondence between the satisfaction
degree ascribed to a formula by an interpretation and the (semi-)stable extensions of the
target SETAF. This intermediate step is needed to deal with the monotonic nature of
satisfaction degrees, upon which the non-monotonic notion of preferred models is built.
Note that a similar intermediate step is utilized in the sequent calculus for QCL presented
in Section 5.4, where the calculus for preferred model entailment is built on a labeled
monotonic calculus.

The following notation will be used from now on: By var(ϕ) we denote the set of
variables occurring in a QCL-formula ϕ, while sf (ϕ) denotes the set of all subformulas
of ϕ. By pdeg(ϕ) = {1, . . . , optQCL(ϕ)} ∪ {∞} we denote the set of possible satisfaction
degrees that ϕ may assume. Likewise, for a QCL-theory T = {ϕ1, . . . , ϕt} we let
pdeg(T ) = {1, . . . , max(optQCL(ϕ1), . . . , optQCL(ϕt))} ∪ {∞}. Note that optQCL(¬ϕ) = 1
and thus pdeg(¬ϕ) = {1, ∞} for every QCL-formula ϕ. This reflects the fact that negation
in QCL acts only on truth, but not on preferences (cf. Definition 2.29).
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Intuitively, our encoding works as follows: given a QCL-formula ϕ, we will add arguments
ψk for each subformula ψ ∈ sf (ϕ) and each degree k ∈ pdeg(ψ). Every ψk will attack all
other ψ� with ' *= k to ensure that only one of ψ1, . . . , ψoptQCL(ψ), ψ∞ can be accepted.
Moreover, we add attacks between each ψk and the immediate subformulas of ψ according
to the degree-semantics of QCL. This will ensure that ψk is accepted in a (semi-)stable
extension E iff ψ is satisfied to a degree of k in the interpretation I corresponding to
E. For instance, if ψ = (a #»×b) is satisfied to a degree of 2 by I (i.e., I |=QCL

2 ψ), then
the argument (a #»×b)2 will be accepted in the corresponding extension E, but (a #»×b)1 and
(a #»×b)∞ will be defeated. We now formally specify our translation. Figure 6.2 depicts
the encoding for each of the four connectives.

Definition 6.4. Let ϕ be a QCL-formula. We define the corresponding SETAF
SFϕ = (Argϕ, Attϕ) with arguments

Argϕ = {ψo | ψ ∈ sf (ϕ), o ∈ pdeg(ϕ)}
Attϕ =


 
ψ∈sf (ϕ)

Att∗
ψ

�
∪ {(ψo, ψp) | ψ ∈ sf (ϕ), o *= p}

where Att∗
ψ depends on the immediate subformulas of ψ. For a ∈ U we have Att∗

a = ∅.
Otherwise, we have

Att∗
¬L = {(L∞, ¬L∞)} ∪ {(L�, ¬L1) | ' *= ∞};

Att∗
(L∧R) = {({L�, Rr}, (L∧R)d) | d>max(', r)} ∪

{(L�, (L ∧ R)d) | ' > d} ∪ {(Rr, (L ∧ R)d) | r > d};
Att∗

(L∨R) = {({L�, Rr}, (L∨R)d) | d<min(', r)} ∪
{(L�, (L ∨ R)d) | ' < d} ∪ {(Rr, (L ∨ R)d) | r < d};

Att∗
(L #»×R) = {(L�, (L #»×R)d) | ' *= ∞, ' *= d} ∪

{({L∞, Rr}, (L #»×R)d) | r *=∞, d *=r+optQCL(L)} ∪
{({L∞, R∞}, (L #»×R)d) | d *= ∞}.

Example 6.5. Let ϕ = (a #»×b) ∧ ¬c. The SETAF SFϕ corresponding to ϕ is depicted in
Figure 6.3. Now consider the interpretation I = {b}. Note that, in Figure 6.3, arguments
ψk corresponding to a subformula ψ ∈ sf (ϕ) are highlighted iff degQCL(I, ψ) = k. Also
note that these arguments correspond to a stable extension in SFϕ.

The construction specified in Definition 6.4 is purely syntactic, since optQCL(ϕ), and
therefore pdeg(ϕ), can be computed based solely on the structure of ϕ (cf. Definition 2.28).
Moreover, the construction is polynomial, since optQCL(ϕ) is bounded by the number of
#»×-occurrences in ϕ. Thus, SFϕ contains O(optQCL(ϕ) · |sf (ϕ)|) arguments. Furthermore,
attacks in SFϕ never have more than two joint attackers, hence, |Attϕ| is polynomial in
|Argϕ|.
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a1 a∞ b1 b∞ c1 c∞

(a #»×b)1 (a #»×b)2 (a #»×b)∞ ¬c1 ¬c∞

((a #»×b) ∧ ¬c)1 ((a #»×b) ∧ ¬c)2 ((a #»×b) ∧ ¬c)∞

Figure 6.3: The QCL-formula (a #»×b) ∧ ¬c from Example 6.5 encoded as a SETAF.

We now establish the semantic correspondence between a QCL-formula ϕ and the SETAF
SFϕ. We write I ∼= E for an interpretation I and an extension E if I corresponds to the
choice of arguments in E i.e., a1 ∈ E iff a ∈ I and a∞ ∈ E iff a *∈ I. Likewise, for a set
M ⊆ 2U of interpretations and a set σ(SF) of extensions we write M ∼= σ(SF) iff for
every I ∈ M there is exactly one E ∈ σ(SF) such tat I ∼= E, and for every E� ∈ σ(SF)
there is exactly one I � ∈ M such that I � ∼= E�.

Lemma 6.6. Let ϕ be a QCL-formula and SFϕ its corresponding SETAF. If I ∼= E for
I ⊆ var(ϕ) and E ∈ stb(SFϕ) then for all ψ ∈ sf (ϕ) we have I |=QCL

k ψ iff ψk ∈ E.

Proof. Let ϕ be a QCL-formula and SFϕ = (Argϕ, Attϕ) its corresponding SETAF (cf.
Definition 6.4). Consider I ⊆ var(ϕ) and E ∈ stb(SFϕ) such that I ∼= E. We proceed
by structural induction.

Induction base: by definition, it holds that if I ∼= E then I |=QCL
1 a iff a1 ∈ E and

I |=QCL∞ a iff a∞ ∈ E.

Induction step: as the induction hypothesis (I.H.), assume that for L ∈ sf (ϕ) we have
I |=QCL

� L, L� ∈ E, but Lk *∈ E for all k ∈ pdeg(L)\{'}. Likewise, for R ∈ sf (ϕ) we have
I |=QCL

r R, Rr ∈ E, but Rk *∈ E for all k ∈ pdeg(R) \ {r}. We consider each connective.

• ¬L: there are two possible cases.

– ' < ∞. Then I |=QCL∞ ¬L. By the I.H. we have L� ∈ E. By construction,
there is no conflict between L� and ¬L∞, but there is one between L� and ¬L1,
i.e., ¬L1 *∈ E. Observe that ¬L∞ is only attacked by L∞ and ¬L1, both of
which are defeated by E. Thus, for E to be stable, it must be that ¬L∞ ∈ E.

– ' = ∞. Then I |=QCL
1 ¬L. By the I.H. we have L∞ ∈ E. By construction,

there is no conflict between L∞ and ¬L1, but there is one between L∞ and
¬L∞, i.e, ¬L∞ *∈ E. Observe that ¬L1 is only attacked by arguments Lk with
k *= ∞ and ¬L∞, all of which are defeated by E. Thus, for E to be stable, it
must be that ¬L1 ∈ E.
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• (L ∧ R): then I |=QCL
d (L ∧ R) with d = max(', r). By construction, there is no

conflict between the arguments L�, Rr, and (L∧R)d. Now consider e ∈ pdeg((L∧R))
such that e *= d. Clearly, I *|=QCL

e (L ∧ R). There are two cases:

– e > d = max(', r). Then, by construction, ({L�, Rr}, (L ∧ R)e) ∈ Attϕ. Since
E ∈ cf (SFϕ), it must be that (L ∧ R)e *∈ E.

– e < d = max(', r). Then, either ' > e or r > e. Assume ' > e (the case that
r > e is analogous). Then, by construction, (L�, (L ∧ R)e) ∈ Attϕ, i.e., it must
be that (L ∧ R)e *∈ E.

Moreover, (L ∧ R)d is defended against the attacks from arguments Lx with x *= '
and Ry with y *= r, as these arguments are counter-attacked by either L� or Rr.
Thus, for E to be stable, it must be that (L ∧ R)d ∈ E.

• (L ∨ R): then I |=QCL
d (L ∧ R) with d = min(', r). By construction, there is no

conflict between the arguments L�, Rr, and (L∨R)d. Now consider e ∈ pdeg((L∨R))
such that e *= d. Clearly, I *|=QCL

e (L ∨ R). There are two cases:

– e < d = min(', r). Then, by construction, ({L�, Rr}, (L ∨ R)e) ∈ Attϕ. Since
E ∈ cf (SFϕ), it must be that (L ∨ R)e *∈ E.

– e > d = min(', r). Then, either ' < e or r < e. Assume ' < e (the case that
r < e is analogous). Then, by construction, (L�, (L ∨ R)e) ∈ Attϕ, i.e., it must
be that (L ∨ R)e *∈ E.

Moreover, (L ∨ R)d is defended against the attacks from arguments Lx with x *= '
and Ry with y *= r, as these arguments are counter-attacked by either L� or Rr.
Thus, for E to be stable, it must be that (L ∨ R)d ∈ E.

• (L #»×R): we must distinguish the following cases:

– ' < ∞. Then I |=QCL
� (L #»×R). By construction, there is no conflict between

the arguments L�, Rr, and (L #»×R)�. However, for all e ∈ pdeg((L #»×R)) with
e *= ' we have (L�, (L #»×R)e) ∈ Attϕ, i.e., (L #»×R)e *∈ E. Thus, for E to be
stable, it must be that (L #»×R)� ∈ E.

– ' = ∞ and r < ∞. Then I |=QCL
d ((L #»×R)) with d = optQCL(L) + r. By

construction, there is no conflict between the arguments L∞, Rr, and (L #»×R)d.
However, for all e ∈ pdeg((L #»×R)) with e *= d we have ({L∞, Rr}, (L #»×R)e) ∈
Attϕ, i.e., (L #»×R)e *∈ E. Thus, for E to be stable, it must be that (L #»×R)d ∈ E.

– ' = ∞ and r = ∞. Then I |=QCL∞ (L #»×R). By construction, there is no
conflict between the arguments L∞, R∞, and (L #»×R)∞. However, for all
e ∈ pdeg((L #»×R)) with e *= ∞ we have ({L∞, R∞}, (L #»×R)e) ∈ Attϕ, i.e.,
(L #»×R)e *∈ E. Thus, for E to be stable, it must be that (L #»×R)∞ ∈ E.

As a result of the above lemma, each interpretation relevant to a formula ϕ corresponds
to exactly one stable extension in SFϕ, and vice versa.
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a1 a∞ b1 b∞ c1 c∞

...

ϕ1
T ϕ2

T
ϕ∞

T

ϕ1
T ϕ2

T
ϕ∞

T

Figure 6.4: The QCL-theory from Example 6.9 encoded as a SETAF (minmax semantics).

Proposition 6.7. 2var(ϕ) ∼= stb(SFϕ) = sem(SFϕ).

Proof. Let ϕ be a QCL-formula and SFϕ = (Argϕ, Attϕ) its corresponding SETAF,
as constructed in Definition 6.4. We first show that 2var(ϕ) ∼= stb(SFϕ). For any
E ∈ stb(SFϕ) there is exactly one I such that I ∼= E, since, by construction and the
fact that E is stable, for each a ∈ var(ϕ) we must have either a1 ∈ E or a∞ ∈ E.
Now consider any I ∈ 2var(ϕ). Let E = {ψk | ψ ∈ sf (ϕ), I |=QCL

k ψ}. Clearly, I ∼= E.
Moreover, by construction we have that E ∈ cf (SFϕ) and that every ψk ∈ E attacks
every ψ� with ' *= k. This further implies that E ∈ stb(SFϕ). Indeed, if E� ∈ stb(SFϕ)
and I ∼= E� then, by Lemma 6.6, E� = E. Finally, by the fact that 2var(ϕ) *= ∅ it follows
that stb(SFϕ) *= ∅, which in turn yields stb(SFϕ) = sem(SFϕ).

Note that we can also capture only the models of a formula ϕ, instead of all interpretations
relevant for ϕ, by adding the attack (ϕ∞, ϕ∞) to SFϕ: if ϕ is (classically) unsatisfiable,
then we will have no stable extensions.

6.3 Capturing Preferred Models
We now extend our construction for QCL-formulas from Section 6.2 to also capture
QCL-theories and their preferred models. This then further allows us to decide the
problem of preferred model entailment via the constructed framework.

First, we consider preferred models w.r.t. the minmax (mm) semantics (cf. Definition 5.1),
where a theory T = {ϕ1, . . . , ϕt} is semantically equivalent to the formula ϕT =(ϕ1∧(· · ·∧
ϕt)). The key idea is the following: we first construct the SETAF SFϕT corresponding
to ϕT (cf. Definition 6.4). Then, for each argument ϕk

T we introduce a self-attacking
argument ϕk

T . Each ϕk
T is attacked by every ϕ�

T such that ' ≤ k. As a result, if we
consider two admissible sets E, E� such that ϕ�

T ∈ E, ϕk
T ∈ E�, and ' < k, then the range

E⊕ of E is a superset of the range E�⊕ of E� w.r.t. to the arguments ϕm
T , m ∈ pdeg(ϕT ).

This then means that the semi-stable extensions of the constructed framework correspond
to the minmax preferred models of the initial theory. Finally, we add attacks from
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ϕ∞
T to all variable-arguments a1, a∞ where a ∈ var(ϕT ). This ensures that, if T is not

classically satisfiable, the only semi-stable extension of SFmm
T is ∅. We now provide this

construction formally.

Definition 6.8. Let T = {ϕ1, . . . , ϕt} be a QCL-theory. Let ϕT = (ϕ1 ∧ (· · · ∧ ϕt)),
and let SFϕT = (ArgϕT

, AttϕT ) be the SETAF corresponding to ϕT . We define SFmm
T =

(Argmm
T , Attmm

T ) as follows:

Argmm
T = ArgϕT

∪ {ϕo
T | o ∈ pdeg(ϕT )}

Attmm
T = AttϕT ∪ {(ϕ∞

T , ϕ∞
T )}

∪ {(ϕo
T , ϕo

T ) | o ∈ pdeg(ϕT )}
∪ {(ϕ∞

T , a1), (ϕ∞
T , a∞) | a ∈ var(ϕT )}

∪ {(ϕo
T , ϕp

T ) | o, p ∈ pdeg(ϕi), o ≤ p}.

Example 6.9. Let T = {(a #»×c), (b #»×c), ¬(a∧b)}. Then ϕT = ((a #»×c)∧ ((b #»×c)∧¬(a∧b)))
with pdeg(ϕT ) = {1, 2, ∞}. SFmm

T is depicted in Figure 6.4. Arguments ψk corresponding
to non-atomic subformulas ψ of ϕT are not depicted for the sake of succinctness.

There is a direct semantic correspondence between the initial theory T and the constructed
framework SFmm

T , namely, each preferred model of T corresponds to exactly one semi-
stable extension of SFmm

T , and vice versa.

Proposition 6.10. Prf mm
QCL(T ) ∼= sem(SFmm

T ) \ {∅}.

Proof. Let T be a QCL-theory, and consider SFϕT = (ArgϕT
, AttϕT ) and SFmm

T =
(Argmm

T , Attmm
T ) constructed according to Definition 6.8.

“⊆”: Let I ∈ Prf mm
QCL(T ). Let E be the corresponding set of arguments, i.e., E = {ψd ∈

ArgϕT
| ψ ∈ sf (ϕT ), I |=QCL

d ψ}. By Proposition 6.7 we know that E ∈ stb(SFϕT ) and
thus every argument in ArgϕT

is either in E or attacked by E. Since I is a classical model
of T we have ϕk

T ∈ E for some k ∈ pdeg(ϕT ) \ {∞}. Moreover, E ∈ adm(SFmm
T ) since for

every a ∈ var(ϕT ), the arguments a1, a∞ are defended against the attacks from ϕ∞
T in E.

We want to show that there is no other admissible set E� in SFmm
T such that E�⊕ ⊃ E⊕.

Towards a contradiction assume such an E� exists. Then ArgϕT
⊆ E�⊕. In fact, since

the only way to achieve this is to have either a1 ∈ E� or a∞ ∈ E� for each a ∈ var(T ),
we also have E� ∩ ArgϕT

∈ stb(SFϕT ). As a consequence of Proposition 6.7 this means
that E� accepts different arguments that correspond to the atoms in T—let I � be the
corresponding model, i.e., I � ∼= E�. Clearly I � is a classical model of T , as otherwise ϕ∞

T

is not attacked by E�, which contradicts the assumption that E�⊕ ⊃ E⊕. By construction,
the only arguments in Argmm

T not contained in E⊕ are ϕ1
T , . . . , ϕk−1

T , where k is such
that I |=QCL

k ϕT . Thus, ϕ�
T ∈ E�⊕ for some ' < k. Since ϕ�

T is self-attacking this means
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there must be some m ≤ ' such that ϕm
T ∈ E�. But then, by Lemma 6.6 applied to SFϕT ,

I � |=QCL
m ϕT which means that I *∈ Prf mm

QCL(T ). Contradiction.

“⊇”: Assume E ∈ sem(SFmm
T ) \ {∅}. Let I be the corresponding model of T , i.e., I ∼= E.

Towards a contradiction, assume I *∈ Prf mm
QCL(T ). Then there are two cases:

1. T is classically satisfiable. Then, since I *∈ Prf mm
QCL(T ), there is an interpretation

I � such that degQCL(I �, ϕT ) < degQCL(I, ϕT ). Let E� = {ψd ∈ Argmm
T | ψ ∈

sf (ϕT ), I � |=QCL
d ψ}. By Proposition 6.7 and Lemma 6.6 we know that E� ∈

stb(SFϕT ). Indeed, by the same reasoning as in the “⊆”-case, E� ∈ adm(SFmm
T )

and E�⊕ ⊃ E⊕. Contradiction to E ∈ sem(SFmm
T ).

2. T is classically unsatisfiable. We show that then adm(SFmm
T ) = {∅}, which con-

tradicts E ∈ sem(SFmm
T ) \ {∅}. Towards a contradiction, assume that there is

some E� ∈ adm(SFmm
T ) such that E� *= ∅. Thus, ψd ∈ E� for some ψ such that

one of the following is true: ψ = a with a ∈ var(ϕ); ψ = ¬L; ψ = (L ◦ R) with
◦ ∈ {∧, ∨,

#»×}. If ψ *= a for a ∈ var(ϕ) then ψd must be defended against the
attacks from its immediate subformulas L and R. But L and R must in turn also
be defended, and so on. We can conclude that there is at least some a ∈ var(ϕT )
such that a1 ∈ E� or a∞ ∈ E�. Note that a1 and a∞ are attacked by ϕ∞

T . Since
E� ∈ adm(SFmm

T ), it must be that ϕk
T ∈ E� for some k < ∞. But this means by

the same reasoning as above that I � |=QCL
k ϕT for the interpretation I � such that

I � ∼= E�. This contradicts T being classically unsatisfiable.

We now turn our attention to the inclusion-based (inc) preferred model semantics (cf.
Definition 5.1). In essence, we can build upon the tools established so far and use the same
gadget as in the case of minmax semantics to minimize satisfaction degrees. However,
this gadget is now constructed for every ϕ ∈ T , i.e., we add ϕk for each ϕ ∈ T and each
k ∈ pdeg(ϕ).

Definition 6.11. Let T = {ϕ1, . . . , ϕt} be a QCL-theory and SF1 =
(Arg1, Att1), . . . ,SF t = (Argt, Attt) the SETAFs corresponding to ϕ1, . . . ,ϕt. Let
SF inc

T =(Arginc
T ,Attinc

T ) s.t.:

Arginc
T =


 
1≤i≤t

Argi

�
∪ {ϕo

i | ϕi ∈ T, o ∈ pdeg(ϕi)}

Attinc
T =


 
1≤i≤t

Atti

�
∪ {(ϕ∞

i , ϕ∞
i ) | ϕi ∈ T}

∪ {(ϕo
i , ϕo

i ) | ϕi ∈ T, o ∈ pdeg(ϕi)}
∪ {(ϕ∞

i , a1), (ϕ∞
i , a∞) | ϕi ∈ T, a ∈ var(ϕi)}

∪ {(ϕo
i , ϕp

i ) | ϕi ∈ T, o ∈ pdeg(ϕi), o ≤ p}.
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ϕ1
1 ϕ2

1 ϕ∞
1

ϕ1
1 ϕ2

1 ϕ∞
1

...

ϕ1
2 ϕ2

2 ϕ∞
2

ϕ1
2 ϕ2

2 ϕ∞
2

ϕ1
3 ϕ∞

3

ϕ1
3 ϕ∞

3

Figure 6.5: The QCL-theory from Example 6.12 encoded as a SETAF (inclusion-based
semantics).

Example 6.12. Let T = {ϕ1, ϕ2, ϕ3} with ϕ1 = (a #»×c), ϕ2 = (b #»×c), and ϕ3 = ¬(a ∧ b).
To obtain SF inc

T we construct a minimization gadget for each ϕi ∈ T , as depicted in
Figure 6.5. For succinctness, we omit arguments corresponding to subformulas of each
ϕi ∈ T .

Analogously to Proposition 6.10, every preferred model of some QCL-theory T corresponds
to exactly one semi-stable extension of SF inc

T , and vice versa.

Proposition 6.13. Prf inc
QCL(T ) ∼= sem(SF inc

T ) \ {∅}.

Proof. Let T = {ϕ1, . . . , ϕt} be a QCL-theory, and consider SF1 = (Arg1, Att1), . . . , SF t =
(Argt, Attt) and SF inc

T = (Arginc
T , Attinc

T ) constructed according to Definition 6.11.

“⊆”: Let I ∈ Prf inc
QCL(T ). Let E be the corresponding set of arguments, i.e., E = {ψd ∈

Arginc
T | ψ ∈ sf (T ), I |=QCL

d ψ}14. By Proposition 6.7 and Lemma 6.6 we know that
E ∩ Argt ∈ stb(SF t). Since I is a classical model of T , for each ϕi ∈ T there is some
k ∈ pdeg(ϕi) \ {∞} such that ϕk

i ∈ E. Thus, for every variable a, the arguments a1, a∞

are defended against ϕ∞
i in E. Thus, E ∈ adm(SF inc

T ). We want to show that there
is no other admissible set E� in SF inc

T such that E�⊕ ⊃ E⊕. Towards a contradiction
assume such an E� exists. As a consequence of Proposition 6.7 this means that E� accepts
different arguments that correspond to the atoms in T—let I � be the corresponding
model, i.e., I � ∼= E�. Clearly I � is a classical model of T , as otherwise one of the self-
attacking arguments ϕ∞

i would not be be attacked (contradicting the assumption that
E�⊕ ⊃ E⊕). Let ϕy

j be an argument that is attacked by E� but not by E. Clearly, we have
ϕz

j ∈ E⊕ ∩E�⊕ for some z > y. Let z be the lowest such number. This means I |=QCL
z ϕj ,

but I � |=QCL
y ϕj . However, since for all ϕi with i *= j we also have I |=QCL

m ϕi and
I � |=QCL

n ϕi with n ≤ m by the same line of reasoning, this means that I *∈ Prf inc
QCL(T ).

Contradiction.

“⊇”: Assume E ∈ sem(SF inc
T ) \ {∅}. Let I be the corresponding model of T , i.e., I ∼= E.

Towards a contradiction, assume I *∈ Prf inc
QCL(T ). Then there are two cases:

14We define for a QCL-theory T the set of subformulas as sf (T ) =
�

ϕ∈T
sf (ϕ).
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1. T is classically satisfiable. Then there must be some interpretation I � that is more
preferable than I, i.e., for all ϕi it holds that I |=QCL

m ϕi and I � |=QCL
n ϕi with n ≤ m

and n < m for at least one i. Let E� = {ψd ∈ Arginc
T | ψ ∈ sf (T ), I � |=QCL

d ψ}. By
Proposition 6.7 and Lemma 6.6 we know that E� ∈ stb(SF i) for each 1 ≤ i ≤ t.
It follows that E� ∈ adm(SF inc

T ). Moreover, E� attacks more arguments than E,
because the argument ϕn

i where I |=QCL
m ϕi and J |=QCL

n ϕi with n < m is attacked
by E�, but not by E. This contradicts E ∈ sem(SF inc

T ) \ {∅}.

2. T is classically unsatisfiable. Note that each ϕ∞
i attacks the variable-arguments

a1, a∞. Thus, by the same line of reasoning as in the proof of Proposition 6.10,
adm(SF inc

T ) = {∅}. This contradicts E ∈ sem(SF inc
T ) \ {∅}.

We have established a semantic correspondence between the preferred models of QCL-
theories (under both mm and inc semantics) and the semi-stable extensions of SETAFs.
These results can now further be used to decide preferred model entailment T |∼π

QCL ϕ
(cf. Definition 5.5). To this end, we combine the frameworks SFπ

T for the theory T and
SFϕ for the entailed (classical) formula ϕ.

Theorem 6.14. Let T be a QCL-theory and π ∈ {mm, inc}. Then T |∼π
QCL ϕ iff

ϕ1 ∈ S for all S ∈ sem(SFπ
T ∪ SFϕ) \ {∅}.

Proof. Let T be a QCL-theory, ϕ a classical formula, and let SFπ
T = (Argπ

T , Attπ
T ) and

SFϕ = (Argϕ, Attϕ) be the SETAFs constructed from T (cf. Definition 6.8 if π = mm,
Definition 6.11 if π = inc) and ϕ (cf. Definition 6.4) respectively.

Assume T |∼π
QCL ϕ. Let E ∈ sem(SFπ

T ∪ SFϕ) and let I be the interpretation such that
I ∼= E. By Proposition 6.7 and Lemma 6.6, E ∩ Argϕ ∈ stb(SFϕ). Moreover, note that
E ∩Argπ

T ∈ sem(SFπ
T ) and therefore, by Proposition 6.10 (if π = mm) or Proposition 6.13

(if π = inc), also I ∈ Prf π
QCL(T ). Then, since T |∼π

QCL ϕ, we have I |=QCL
1 ϕ. By

Lemma 6.6 this further implies ϕ1 ∈ E ∩ Argϕ, i.e., ϕ1 ∈ E.

Assume T *|∼ π
QCLϕ. Then there is some I ∈ Prf π

QCL(T ) such that I *|=QCL
1 ϕ. Let

E = {ψk ∈ Argπ
T ∪Argϕ | I |=QCL

k ψ}. Clearly I ∼= E. By Lemma 6.6, ϕ1 *∈ E. Moreover,
by Proposition 6.7 along with Proposition 6.10 (if π = mm) or Proposition 6.13 (if
π = inc) we can conclude that E ∈ sem(SFπ

T ∪ SFϕ).

The above result allows us to apply fast SAT- or ASP-based argumentation solvers
to reason on QCL-theories efficiently. See (Dvořák, Greßler, and Woltran 2018) for a
SETAF-specific solver. For a more general overview of argumentation solvers, see (Lagniez
et al. 2021). Recently, SETAFs have been investigated with focus on efficient algo-
rithms (Dvořák, König, and Woltran 2021, 2022a,b). While QCL has been encoded in
ASP (Bernreiter, Maly, and Woltran 2020), to the best of our knowledge there are no
implementations for preferred model entailment.
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Regarding computational complexity, deciding whether an argument is contained in all
semi-stable extensions (as needed in Theorem 6.14) is ΠP

2 -complete for SETAFs (Dvořák,
Greßler, and Woltran 2018). As we know from Section 5.3, deciding T |∼π

QCL ϕ is
ΠP

2 -complete for π = inc and ΘP
2 -complete for π = mm (cf. Table 5.1). Thus, when

capturing T |∼π
QCL ϕ, there is a complexity gap for π = mm but not for π = inc. Note

that all discussed problems are on the second level of the polynomial hierarchy.

6.4 Conclusion
We successfully mapped Qualitative Choice Logic (QCL) theories to argumentation
frameworks with collective attacks (SETAFs). The preferred models of the initial QCL-
theory directly correspond to the semi-stable extensions of the constructed SETAF,
which further allows us to decide preferred model entailment. We considered both the
inclusion-based and the minmax preferred model semantics (cf. Section 5.1). Unlike the
translation (Sedki 2015) from PQCL-theories to Value-based AFs, our construction is
purely syntactic and polynomial in size and runtime.

Our results show that the connection between choice logics and argumentation is closer
than previously known. Indeed, we find that SETAFs are well-suited for capturing
languages such as QCL, where soft and hard constraints are jointly represented. Moreover,
we demonstrated that semi-stable semantics are a useful tool that can handle degree-
minimization in a straightforward way.

Observe that every SETAF can be translated into an equivalent Dung-style AF with
only polynomial overhead (Polberg 2017). However, this requires the introduction of
additional arguments. Thus, the usage of SETAFs allows us to capture QCL-formulas
more directly, with each argument ψk corresponding to a subformula ψ ∈ sf (ϕ).

Regarding future work, we plan to find a syntactic and polynomial translation from
QCL-theories to SETAFs that respects the lexicographically preferred models of the
initial theory (Brewka, Benferhat, and Berre 2004). A difficulty here is that this approach
relies on counting how many formulas are satisfied to a certain degree. From a complexity
theoretical standpoint, however, such a translation must exist, since preferred model
entailment under the lexicographic approach is ΔP

2 -complete (see Section 5.3) while
skeptical acceptance of semi-stable semantics is ΠP

2 -complete.

Finally, our work can be extended to formalisms related to QCL. This of course includes
other choice logics featured in this thesis such as Conjunctive Choice Logic (Boudjelida
and Benferhat 2016) or Lexicographic Choice Logic (Bernreiter 2020), both of which
replace the ordered disjunction of QCL with alternative choice connectives. Note that
our construction is in large parts independent of ordered disjunction, i.e., a similar
construction may be possible for other choice logics. A more distantly related system is
the recently introduced Lexicographic Logic (Charalambidis et al. 2021) which uses lists
of truth values rather than satisfaction degrees.
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CHAPTER 7
Conclusion

In this thesis, we investigated the notion of integrated preferences in Knowledge Repre-
sentation and Reasoning (KR), where information about preferences (soft-constraints)
and truth (hard-constraints) is represented and/or resolved together instead of separately.
Specifically, we examined two different KR-formalisms which belong to the paradigm of
integrated preferences, namely choice logics and abstract argumentation with preferences.
In choice logics, non-classical choice connectives such as ordered disjunction enable
us to jointly represent hard- and soft-constraints. In argumentation, we made use of
four preference reductions from the literature that modify the attack relation based on
preferences between arguments, i.e., hard- and soft-constraints are jointly resolved.

By studying the syntactic, semantic, and computational properties of choice logics and
abstract argumentation with preferences, we gained new insights into the close interplay
between hard- and soft-constraints present in formalisms featuring integrated preferences.
We found that the impact of preference reductions in abstract argumentation depends
greatly on which reduction is used, while the properties of preferred model entailment in
choice logics depend on which preferred model semantics is considered. For instance, the
introduction of preferences can lead to desirable semantic properties being lost in some
cases (e.g. I-maximality in the case of argumentation and rational monotonicity in the
case of choice logics), but these properties can still be guaranteed if a suitable preference
reduction or preferred model semantics is selected. Similarly, we found that, in both
logic and argumentation, integrated preferences can cause a mild increase in complexity
(usually by one level in the polynomial hierarchy) depending on how preferences are
handled. Therefore, our results show that the exact method of resolving preferences has
to be chosen with care, and they allow for informed decisions when designing systems
based on choice logics or abstract argumentation with preferences.
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7.1 Summary
Let us summarize our contributions in detail, starting with our results on argumentation
(Subsection 7.1.1), followed by our study of choice logics (Subsection 7.1.2), and concluded
by the translation from choice logics theories to abstract argumentation (Subsection 7.1.3).

7.1.1 Abstract Argumentation with Preferences
The notion of preference reductions has been studied before when applied to Abstract
Argumentation Frameworks (AFs) (Dung 1995), resulting in Preference-based AFs
(PAFs) (Amgoud and Cayrol 1998; Kaci et al. 2021). We built upon and extended
this study by investigating the effect of the four preference reductions in two settings:

• In Chapter 3 we introduced and studied Conditional PAFs (CPAFs), a formalism
capable of representing and reasoning with conditional preferences.

• In Chapter 4 we investigated the impact of preferences in Claim-augmented AFs
(CAFs) by introducing and examining Preference-based CAFs (PCAFs).

Regarding the syntactic impact of the four preference reductions, we showed that resolving
preferences on the crucial class of well-formed CAFs (wfCAFs) results in four new CAF-
classes (one for each preference reduction) that lie inbetween wfCAFs and general CAFs.
We characterized these classes and studied their relationship to each other (cf. Figure 4.3).
Crucially, this syntactic analysis indicated that the impact of preferences on wfCAFs is
not arbitrary, and therefore gave rise to the natural question of whether the new CAF
classes retain the beneficial semantic and computational properties of wfCAFs or not.

As for semantic properties, we studied the principle of I-maximality for both CPAFs (cf.
Section 3.1) and PCAFs (cf. Figure 4.6). For CPAFs we showed that the global naive
and global preferred semantics preserve I-maximality under all four preference reductions.
This is similar to PCAFs, where I-maximality is preserved under the hybrid naive and
hybrid preferred semantics, where subset-maximization is handled on the claim-level
rather than the argument level. On the other hand, for CPAFs, stable semantics as
well as the local naive semantics preserve I-maximality under Reduction 2–4, but not
under Reduction 1. For the local preferred semantics, I-maximality does not hold for any
of the four preference reductions. In contrast, for PCAFs, only Reduction 3 preserves
I-maximality for any semantics other than hybrid naive and hybrid preferred, namely for
the inherited preferred semantics, both variants of semi-stable semantics, and all variants
of stable semantics.

Furthermore, we investigated CPAFs with respect to ten semantic principles for preference-
based argumentation laid out by Kaci et al. (2021). We showed that most principles that
are satisfied by a semantics for PAFs are also satisfied by the corresponding semantics on
CPAFs (cf. Table 3.1). In particular, complete and stable semantics under Reduction 3
satisfy most of the ten principles. There are differences to the case of PAFs (cf. Table 2.2),
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however, with complete semantics under Reduction 3 not satisfying P5∗ (extension
growth), or grounded semantics no longer satisfying many principles since CPAFs do not
always have a unique grounded extension. Moreover, P 8∗ (preference-based immunity) is
no longer satisfied by any semantics except the global preferred semantics.

For PCAFs, in addition to I-maximality, we also examined the relationship between the
various semantics (cf. Figure 4.6). Unlike on wfCAFs, the various variants of stable
semantics do not coincide under Reduction 1. Under Reductions 2 and 4 however, they do
coincide, with the only exception being stb-cf 2

hyb which does not coincide with stb-adm2
hyb

or stb2
inh . Under Reduction 3, on the other hand, the various variants of stable semantics

and the two variants of preferred semantics (inherited and hybrid) coincide.

Regarding computational properties, we studied the complexity of CPAFs (cf. Table 3.2)
and PCAFs (cf. Table 4.1) under all four preference reductions. For CPAFs, the complexity
of credulous (resp. skeptical) acceptance under local naive semantics using Reduction 1
(naive1

cp) is NP-complete (resp. coNP-complete), while the corresponding problem for
AFs/PAFs is in P (cf. Table 2.1). Under global naive semantics using Reduction 1,
verification is now coNP-complete (instead of in P) which causes skeptical acceptance to
become ΠP

2 -complete. For both variants of naive semantics, the complexity rises under
Reduction 1, but not under Reduction 2–4. In contrast, for grounded semantics we see a
rise in complexity for all preference reductions, with credulous and skeptical acceptance
now being coNP-complete instead of in P. A similar rise in complexity by one level in
the polynomial hierarchy was observed for complete semantics (skeptical acceptance)
and local preferred semantics (credulous acceptance). For PCAFs, the complexity of
verification rises for Reduction 1 by one level in the polynomial hierarchy when compared
to wfCAFs. Under Reductions 2–4, the complexity remains on the same level as for
wfCAFs, except for complete semantics where the problem is NP-complete (instead of
in P) under Reductions 2 and 4. Similarly to global naive semantics for CPAFs, under
Reduction 1, skeptical acceptance of hybrid naive semantics for PCAFs is ΠP

2 -complete.

Overall, we can conclude that Reduction 3, the most conservative of the four preference
reductions, preserves semantic properties in more cases and features a lower complexity
when compared to the other preference reductions. Reductions 2 and 4 constitute a
middle ground, preserving some semantic properties and featuring a lower complexity at
least on PCAFs. Reduction 1 on the other hand preserves only few semantic properties
and leads to a higher complexity in more cases than the other reductions.

Lastly, we compared CPAFs to important related formalisms in detail (cf. Section 3.4).
We found that CPAFs can naturally capture Value-based AFs (Atkinson and Bench-Capon
2021), and that CPAFs exhibit crucial differences to Extended AFs (Modgil 2009) when it
comes to how preferences are interpreted, with our CPAFs being designed specifically with
conditional preferences in mind. Moreover, we discussed the recently introduced lifting-
based CPAFs of Alfano et al. (2023), which are similar to our reduction-based CPAFs, but
belong to the paradigm of separated preferences rather than integrated preferences, and
exhibit significant differences when it comes to semantic and computational properties.
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7.1.2 Choice Logics
In Chapter 5 we comprehensively studied preferred model entailment in choice logics with
regards to logical, computational, and proof-theoretic properties. We considered large
classes of choice logics, and moreover put a special focus on Qualitative Choice Logic
(QCL) (Brewka, Benferhat, and Berre 2004), Conjunctive Choice Logic (CCL) (Boudjelida
and Benferhat 2016), and Lexicographic Choice Logic (LCL) (Bernreiter 2020). Moreover,
we investigated several preferred model semantics, namely the inclusion-based and
lexicographic approaches from the literature (Brewka, Benferhat, and Berre 2004) as well
as the newly introduced minmax and log-lexicographic approaches.

Regarding logical properties, we first showed that preferred model entailment is non-
monotonic for all considered preferred model semantics and all choice logics in which more
than two satisfaction degrees are obtainable (cf. Proposition 5.7). We then investigated
preferred model entailment with regards to key principles for non-monotonic entail-
ment laid out by Kraus, Lehmann, and Magidor (1990), namely cautious monotonicity,
cumulative transitivity, and rational monotonicity (cf. Section 5.2). Our results show
that cautious monotonicity and cumulative transitivity are satisfied for all choice logics
and all considered preferred model semantics. Rational monotonicity is satisfied for all
choice logics and all considered preferred model semantics, except for the inclusion-based
approach.

As for computational properties, we found that both the choice logic and the preferred
model semantics have an impact on the complexity of preferred model entailment (cf.
Table 5.1). Specifically, for QCL and CCL, preferred model entailment is ΘP

2 -complete
under the minmax semantics, ΔP

2 [O(log2 n)]-complete under the log-lexicographic se-
mantics, ΔP

2 -complete under the lexicographic semantics, and ΠP
2 -complete under the

inclusion-based semantics. For LCL, however, preferred model entailment is ΔP
2 -complete

under the minmax, log-lexicographic, and lexicographic semantics, and ΠP
2 -complete un-

der the inclusion-based semantics. Moreover, we investigated the complexity of checking
whether a given interpretation is a preferred model of a choice logic theory, and found
that this problem is coNP-complete for all considered preferred model semantics and all
choice logics in which more than two satisfaction degrees are obtainable.

Finally, we introduced sequent calculi for preferred model entailment and proved that
they are sound and complete (cf. Section 5.4). Specifically, we described how calculi for
QCL, CCL, and LCL under the minmax, lexicographic, and inclusion-based semantics
can be obtained. Every one of these calculi is in turn based on a labeled monotonic
calculus, a labeled refutation calculus, and a rule for preferred model entailment that
makes use of the two labeled calculi in its premises. In addition, while the labeled calculi
are sound and complete without a cut-rule, we show that cut (resp. cut2) is admissible
in the labeled monotonic calculus (resp. the labeled refutation calculus).

In summary, we found that preferred model entailment satisfies many important proper-
ties typically associated with non-monotonic entailment: firstly, crucial logical properties
hold for most preferred model semantics; secondly, while we do see a rise in complexity

160



7.2. Future Work

compared to classical entailment, all problems remain on the second level of the polyno-
mial hierarchy and are not harder than entailment in other prominent non-monotonic
logics (Eiter and Gottlob 1993; Eiter and Lukasiewicz 2000); lastly, preferred model
entailment in choice logics can be decided syntactically using our proof systems.

7.1.3 From Choice Logics to Abstract Argumentation
In Chapter 6 we studied the connection between choice logics and abstract argumenta-
tion by translating QCL-theories to Argumentation Frameworks with collective attacks
(SETAFs) (Nielsen and Parsons 2006). As a first step, we encoded single QCL-formulas
into SETAFs and showed that there is a correspondence between the interpretations rele-
vant to the initial formula and the stable (and semi-stable) extensions of the constructed
SETAF. We built upon this encoding for single QCL-formulas to translate QCL-theories,
both under the minmax and inclusion-based preferred model semantics, to SETAFs.
We then showed that the initial QCL-theory is in semantic correspondence with the
constructed SETAF, and that we can decide preferred model entailment in QCL via our
translation by deciding skeptical acceptance for semi-stable semantics on the constructed
SETAF.

Note that the encoding of single QCL-formulas as a stepping stone to an encoding of
QCL-theories is similar to the approach we used in our sequent calculus for choice logics,
where single formulas are encoded via the labeled calculi upon which the calculi for
preferred model entailment are built.

7.2 Future Work
In this section, we highlight some challenges and avenues for future work when it comes
to argumentation with preferences, choice logics, and integrated preferences in KR.15

In abstract argumentation, a possibility for future work is to apply the notion of prefer-
ence reductions to other generalizations of standard AFs. For instance, Preference-based
SETAFs have been considered before as a tool to capture prioritized knowledge bases (Bi-
envenu and Bourgaux 2020), but, to the best of our knowledge, they have not been
studied in detail yet. A further interesting option to this end are Bipolar AFs (Amgoud
et al. 2008) where both attack and support relations are present. Another possibility for
future work in argumentation with preferences lies in the connection between abstract
and structured formalisms. Concerning conditional preferences, it would be valuable to
explore the connection between our CPAFs and the work by Dung, Thang, and Son (2019),
in which conditional preferences are considered in structured argumentation. Regarding
claim-centric argumentation, we plan to investigate in more detail how PCAFs are related
to structured formalisms such as ABA+ (Cyras and Toni 2016) or ASPIC (Modgil and
Prakken 2013) where preference reductions are also used.

15Note that future work specific to each chapter is contained at the end of the respective chapter.
Specifically, we refer to Section 3.5, Section 4.5, Section 5.5, and Section 6.4.
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In choice logics, an interesting avenue for future work is to design and implement efficient
algorithms for preferred model entailment to facilitate practical applications. Another
promising possibility for future work is to further study related logics that are, however, not
part of the choice logic framework as defined in (Bernreiter 2020). Two such formalisms are
Prioritized QCL (PQCL) and QCL+ (Benferhat and Sedki 2008), although they both can
be captured by the choice logic framework as fragments (Bernreiter, Maly, and Woltran
2021). We also mention the alternative semantics for the language of QCL described by
Maly and Woltran (2018), the game-theoretic approach to ordered disjunction of Freiman
and Bernreiter (2023a,b), and the lexicographic logic of Charalambidis et al. (2021).

Regarding the connection between choice logics and abstract argumentation, an immediate
open question is how QCL-theories under the lexicographic preferred model semantics
can be translated to SETAFs or other argumentation formalisms. Moreover, translations
for CCL and LCL have not been defined yet, although adapting the existing translation
for QCL should be straightforward.

From a broader perspective, there are also possibilities for future work when it comes to
integrated preferences in KR in general. Indeed, the term integrated preferences has not
been established before and was coined in this thesis. One avenue for future work in this
context is to explicitly investigate the different subparadigms of integrated preferences
we have seen: in choice logics, hard- and soft-constraints are jointly represented, whereas
in argumentation using preference reductions hard- and soft-constraints are only jointly
resolved. It would be valuable to investigate the relationship between these different
kinds of integrated preferences more deeply by, for example, finding a connection between
choice logics and argumentation that makes use of preference reductions in a natural way.
Recall that for our translation from QCL-theories to SETAFs we used no preferences
on the argumentation side. Indeed, it is not clear to us how to do so in this case in a
meaningful way. More general possibilities for future work are to identify other existing
formalisms that feature integrated preferences, to define entirely new systems that make
use of integrated preferences in a natural way, and to methodically compare formalisms
using integrated preferences with formalisms using separated preferences.

Lastly, there are also possibilities for future work when it comes to applying formalisms
with integrated preferences to other fields of study. For instance, the fact that our CPAFs
are capable of capturing Value-based AFs suggests that they can be used for normative
reasoning, and a deeper investigation of this connection may prove fruitful. Moreover,
formal argumentation can be used to provide explanations in various settings (Cyras
et al. 2021; Vassiliades, Bassiliades, and Patkos 2021), and studying how choice logics
and abstract argumentation with preferences can be used as tools for explainable AI may
provide interesting results.
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Appendix

Additional Proofs for Section 4.2
Lemma A.1. Let F = (A, R, cl) be a CAF. F ∈ R2-CAF iff there are no arguments
a, a�, b, b� in F with cl(a) = cl(a�) and cl(b) = cl(b�) such that (a, b) ∈ wfp(F), (b, a) *∈ R,
(a�, b) ∈ R, and either (b, a�) ∈ R or ((a�, b�) *∈ R and (b�, a�) *∈ R).

Proof. “ =⇒ ”: By contrapositive. Suppose that there are a, a�, b, b� ∈ A with cl(a�) =
cl(a) and cl(b�) = cl(b) such that (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R, and either
(b, a�) ∈ R or ((a�, b�) *∈ R and (b�, a�) *∈ R). Towards a contradiction, assume that
F ∈ R2-CAF. Then there must be a PCAF P = (A, R�, cl, �) such that R2(P) = F .
Reduction 2 cannot completely remove conflicts between arguments. Since there is no
conflict between a and b insemantic-properties F there can be no conflict in P either, i.e.,
(a, b) *∈ R� and (b, a) *∈ R�. Therefore, since the underlying CAF (A, R�, cl) of P must
be well-formed, (a�, b) *∈ R�. Since (a�, b) ∈ R it must be that (b, a�) ∈ R� and a� � b.
Then (b, a�) *∈ R2(P). Furthermore, by the well-formedness of (A, R�, cl), we have that
(b�, a�) ∈ R� and therefore either (a�, b�) ∈ R2(P) or (b�, a�) ∈ R2(P). Contradiction to
R2(P) = F .

“ ⇐= ”: Our underlying assumption is that there are no arguments a, a�, b, b� in F
with cl(a) = cl(a�) and cl(b) = cl(b�) such that (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R,
and either (b, a�) ∈ R or ((a�, b�) *∈ R and (b�, a�) *∈ R). We will construct a PCAF
P = (A, R��, cl, �) such that R2(P) = F .

But first, as an intermediate step, we construct the CAF F � = (A, R�, cl). We say that
(b, a) is forced in F if (a, b) ∈ R and if there is an argument a� with cl(a�) = cl(a)
such that (a�, b) *∈ R and (b, a�) *∈ R. Observe that if (b, a) is forced in F , then
(a, b) cannot be forced in F by our underlying assumption. Furthermore, if (b, a) is
forced in F , then (b, a) *∈ R, again by our underlying assumption. We construct
R� = (R ∪ {(b, a) | (b, a) is forced in F}) \ {(a, b) | (b, a) is forced in F}. Note that
(a, b) ∈ wfp(F �) implies (b, a) ∈ R� for all arguments a, b: towards a contradiction,
assume otherwise. Then there is some (a, b) ∈ wfp(F �) such that (b, a) *∈ R�. Then
(a, b) *∈ R and (b, a) *∈ R by construction of R�. Furthermore, since (a, b) ∈ wfp(F �),
there must be some a� with cl(a�) = cl(a) and (a�, b) ∈ R�. It cannot be that (a�, b) ∈ R,
otherwise (b, a�) would be forced in F and (a�, b) *∈ R�. Thus, (b, a�) ∈ R and (a�, b)
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was added to R� because it is forced in F . But this is only possible if there is some
b� with cl(b�) = cl(b) and (a�, b�) *∈ R and (b�, a�) *∈ R. This contradicts our underlying
assumption: (b�, a�) ∈ wfp(F), (a�, b�) *∈ R, (b, a�) ∈ R, (a, b) *∈ R, and (b, a) *∈ R.

Now we construct R�� = R� ∪ {(a, b) | (a, b) ∈ wfp(F �)}. Furthermore, b � a ⇐⇒ (a, b) ∈
R�� \ R. This gives us P = (A, R��, cl, �). The underlying CAF of P is well-formed since
wfp((A, R��, cl)) = ∅ by construction. Moreover, � is asymmetric since if (a, b) ∈ R�� and
(b, a) ∈ R�� then, by construction of R� and R��, either (a, b) ∈ R or (b, a) ∈ R. Lastly, we
show that R2(P) = F : if (a, b) ∈ R�� \ R, then we defined b � a and thus (a, b) *∈ R2(P).
If (a, b) ∈ R \ R��, then (b, a) was forced in F , i.e., (b, a) *∈ R but (b, a) ∈ R� and therefore
also (b, a) ∈ R��. Thus, we define a � b which means that (a, b) ∈ R2(P).

Lemma A.2. Let F = (A, R, cl) be a CAF. F ∈ R3-CAF iff (a, b) ∈ wfp(F) implies
(b, a) ∈ R.

Proof. “ =⇒ ”: By contrapositive. Suppose there is (a, b) ∈ wfp(F) such that (b, a) *∈ R.
Towards a contradiction, assume F ∈ R3-CAF. Then there is a PCAF P = (A, R�, cl, �)
such that R3(P) = F . Since Reduction 3 can only delete but not introduce attacks,
and since (A, R�, cl) must be well-formed, (a, b) ∈ R�. However, Reduction 3 cannot
completely remove conflicts between arguments, i.e., either (a, b) ∈ R3(P) or (b, a) ∈
R3(P). Contradiction.

“ ⇐= ”: Suppose (a, b) ∈ wfp(F) implies (b, a) ∈ R. Then R3(P) = F for the PCAF P =
(A, R�, cl, �) with R� = R ∪ {(a, b) | (a, b) ∈ wfp(F)} as well as a � b ⇐⇒ (b, a) ∈ R� \ R.
(A, R�, cl) is well-formed since wfp((A, R�, cl)) = ∅. Furthermore, � is asymmetric by
construction.

Lemma A.3. Let F = (A, R, cl) be a CAF. F ∈ R4-CAF iff there are no arguments
a, a�, b, b� in F with cl(a) = cl(a�) and cl(b) = cl(b�) such that (a, b) ∈ wfp(F), (b, a) *∈ R,
(a�, b) ∈ R, and either (b, a�) *∈ R or ((a�, b�) *∈ R and (b�, a�) *∈ R).

Proof. Similar to the proof of Lemma A.1:

“ =⇒ ”: By contrapositive. Suppose that there are a, a�, b, b� ∈ A with cl(a�) = cl(a) and
cl(b�) = cl(b) such that (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R, and either (b, a�) *∈ R or
((a�, b�) *∈ R and (b�, a�) *∈ R). Towards a contradiction, assume that F ∈ R4-CAF. Then
there must be a PCAF P = (A, R�, cl, �) such that R4(P) = F . Reduction 4 cannot
completely remove conflicts between arguments. Since there is no conflict between a and
b in F there can be no conflict in P either, i.e., (a, b) *∈ R� and (b, a) *∈ R�. Therefore,
since the underlying CAF of P must be well-formed, (a�, b) *∈ R�. The only way to
obtain (a�, b) ∈ R from (a�, b) *∈ R� via Reduction 4 is to have (b, a�) ∈ R� and a� � b.
Then (b, a�) ∈ R4(P). Furthermore, by the well-formedness of (A, R�, cl), we have that
(b�, a�) ∈ R� and therefore either (a�, b�) ∈ R4(P) or (b�, a�) ∈ R4(P). Contradiction to
R4(P) = F .

178



“ ⇐= ”: Our underlying assumption is that there are no arguments a, a�, b, b� in F
with cl(a) = cl(a�) and cl(b) = cl(b�) such that (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R,
and either (b, a�) *∈ R or ((a�, b�) *∈ R and (b�, a�) *∈ R). We will construct a PCAF
P = (A, R��, cl, �) such that R4(P) = F .
But first, as an intermediate step, we construct the CAF F � = (A, R�, cl). We say
that (b, a) is forced in F if (a, b) ∈ R, (b, a) ∈ R, and if there is an argument a� with
cl(a�) = cl(a) such that (a�, b) *∈ R and (b, a�) *∈ R. Observe that if (b, a) is forced
in F , then (a, b) cannot be forced in F by our underlying assumption. We construct
R� = R \ {(a, b) | (b, a) is forced in F}. Note that (a, b) ∈ wfp(F �) implies (b, a) ∈ R�

for all arguments a, b: towards a contradiction, assume otherwise. Then there is some
(a, b) ∈ wfp(F �) such that (b, a) *∈ R�. Then (a, b) *∈ R and (b, a) *∈ R by construction
of R�. Furthermore, there must be some a� with cl(a�) = cl(a) and (a�, b) ∈ R�. It
cannot be that (a�, b) ∈ R and (b, a�) ∈ R, otherwise (b, a�) would be forced in F and
(a�, b) *∈ R�. Thus, (a�, b) ∈ R and (b, a�) *∈ R by construction of F �. But this contradicts
our underlying assumption: (a, b) ∈ wfp(F), (b, a) *∈ R, (a�, b) ∈ R, and (b, a�) *∈ R.
Now we construct R�� = R� ∪ {(a, b) | (a, b) ∈ wfp(F �)}. Furthermore, b � a ⇐⇒ (a, b) ∈
R�� \ R or (b, a) ∈ R \ R��. This gives us, P = (A, R��, cl, �). The underlying CAF of P is
well-formed since wfp((A, R��, cl)) = ∅ by construction. Moreover, � is asymmetric: if
b � a, there are two cases.

1. (a, b) ∈ R�� \R. Clearly, (a, b) *∈ R\R��. Moreover, (a, b) ∈ R�� \R implies (b, a) ∈ R
since we did not add attacks to R�� if there was no conflict between these attacks in
R. Thus, (b, a) *∈ R�� \ R. We can conclude a *� b.

2. (b, a) ∈ R\R��. Clearly, (b, a) *∈ R��\R. Moreover, (b, a) ∈ R\R�� implies (a, b) ∈ R��,
since we never completely removed conflicts when constructing R�� from R. Thus,
(a, b) *∈ R \ R��. We can conclude a *� b.

Lastly, we show that R4(P) = F : if (a, b) ∈ R�� \ R, then we defined b � a. As above,
(a, b) ∈ R�� \ R implies (b, a) ∈ R. The only possible reason for why we added (a, b) to
R�� is because (a, b) ∈ wfp(F �). As previously discussed, this means that (b, a) ∈ R� and
therefore also (b, a) ∈ R��. Thus, (a, b) *∈ R4(P). If (a, b) ∈ R \ R��, then a � b. As above,
this implies (b, a) ∈ R��, and therefore (a, b) ∈ R4(P).

Additional Proofs for Section 4.4
Lemma A.4. VerPCAF

σi
µ

is ΣP
2 -hard for σi

µ ∈ {stg1
inh , stg1

hyb}, even if we restrict ourselves
to PCAFs with transitive preference relations.

Proof. We provide a reduction from QBF2
∀ to the complementary problem. Let Φ =

∀Y ∃Zϕ be an instance of QBF2
∀, where ϕ is given by a set Ω of clauses over atoms

X = Y ∪ Z. We construct the CAF F = (A, Att, cl) with underlying AF F = (A, R) and
a set of claims C:
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Figure A.1: Reduction of the QBF2
∀ instance Φ = ∀y1, y2∃z1, z2ϕ with ϕ given by clauses

ω1 = {y1, ¬y2, z1}, ω2 = {¬y1, ¬z1, z2}, ω3 = {y2, z1, ¬z2} to an instance of VerPCAF
stg1

inh
.

• A = {ϕ}∪Ω∪X ∪X ∪Ya ∪Y a ∪Yb ∪Y b, where X = {x | x ∈ X}, Ya = {ay | y ∈ Y },
Y a = {ay | y ∈ Y }, Yb = {by | y ∈ Y }, Y b = {by | y ∈ Y };

• Att = {(x, x), (x, x) | x ∈ X} ∪ {(ω, ω), (ϕ, ω) | ω ∈ Ω} ∪
{(x, ω) | x ∈ ω, ω ∈ Ω} ∪ {(x, ω) | ¬x ∈ ω, ω ∈ Ω} ∪
{(av, av), (v, av) | v ∈ Y ∪ Y } ∪ {(z, ϕ), (z, ϕ) | z ∈ Z};

• cl(bv) = v for bv ∈ Yb ∪ Y b and cl(v) = v else;

• C = Y ∪ Y ∪ {ϕ}.

Figure A.1 illustrates the above construction. Note that F ∈ R1-CAFtr since all paths in
wfp(F) = {(bv, v) | v ∈ Y ∪ Y } are of length 1 (only arguments in Yb ∪ Y b have outgoing
edges in wfp(F)). It remains to verify the correctness of the reduction, i.e., we will show
that Φ is valid iff C /∈ σµ(F). The proof proceeds similar as the proof of Proposition 4.33.

“ =⇒ ”: Assume Φ is valid. Consider any S ⊆ A such that S ∈ cf (F ) and cl(S) = C.
Then S ⊆ Y ∪ Y ∪ Yb ∪ Y b ∪ {ϕ}. Let Y � = S ∩ Y . Since Φ is valid, there is Z � ⊆ Z
such that M = Y � ∪ Z � is a model of ϕ. Let T = M ∪ {x | x ∈ X \ M} ∪ Yb ∪ Y b.
Note that T ∈ cf (F ) by construction. Moreover, S \ {ϕ} ⊆ T . Since for each z ∈ Z
we have either z ∈ T or z ∈ T , and since (z, ϕ), (z, ϕ) ∈ R, we have ϕ ∈ T +

F (resp.
ϕ ∈ T ∗

F ). Since M |= ϕ, all clause-arguments ω ∈ Ω are attacked by T and we have
{ϕ}+

F = Ω ⊆ T +
F (resp. {ϕ}∗

F = Ω ⊆ T ∗
F ). We can conclude that S ∪ S+

F ⊂ T ∪ T +
F (resp.

cl(S) ∪ S∗
F ⊂ cl(T ) ∪ T ∗

F ), i.e., C *∈ stginh(F) (resp. C *∈ stghyb(F)).
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“ ⇐= ”: Assume C /∈ stginh(F) (resp. C /∈ stghyb(F)) and consider an arbitrary subset
Y � ⊆ Y . We must show that there is Z � ⊆ Z such that Y � ∪ Z � |= ϕ. Let S = Y � ∪ {y |
y ∈ Y \ Y �} ∪ Y ∗ ∪ Y

∗ ∪ {ϕ}. Observe that cl(S) = C and that S ∈ cf (F ). By
C /∈ stginh(F) (resp. C /∈ stghyb(F)) there is some T ∈ cf (F ) with S ∪ S+

F ⊂ T ∪ T +
F

(resp. cl(S) ∪ S∗
F ⊂ cl(T ) ∪ T ∗

F ).

In particular, we have Y � ∪ {y | y ∈ Y \ Y �} ⊆ T since each av ∈ S+
F (resp. av ∈ S∗

F )
with v ∈ Y ∪ Y has precisely one non-self-attacking attacker (namely the argument v).
Moreover, we can assume that T contains each argument v ∈ Yb ∪ Y b since each such v
is unattacked and does not attack any other argument. Thus, T ⊇ S \ {ϕ}.

Furthermore, ϕ /∈ T since S ∈ naive(F ) (note that ϕ attacks each z, z with z ∈ Z
as well as every clause-argument ω ∈ Ω and thus cannot be extended any further).
Therefore, it must be that ϕ ∈ T +

F (resp. ϕ ∈ T ∗
F ). Also, we have that T attacks each

clause-argument ω ∈ Ω since Ω ⊆ S+
F (resp. Ω ⊆ S∗

F ), and since each clause-argument
ω ∈ Ω is self-attacking.

Now, let Z � = Z ∩T . We show that M = Y � ∪Z � is a model of ϕ. Consider some arbitrary
clause ω ∈ Ω. Then there is some argument v ∈ T such that (v, ω) ∈ Att. As outlined
above, v *= ϕ since ϕ is not contained in T . Consequently, we have v ∈ X ∪ X. In case
v ∈ X we have v ∈ M ∩ ω, in case v ∈ X we have ¬v ∈ ω and v /∈ M by definition of
Att. In every case, the clause ω is satisfied by M . As ω was chosen arbitrary it follows
that M |= ϕ. We can conclude that Φ is valid.

Lemma A.5. VerPCAF
σi

µ
is DP-hard for σi

µ = naive1
hyb, even if we restrict ourselves to

PCAFs with transitive preference relations.

Proof. Before showing DP-hardness, we show NP- and coNP-hardness separately:

Let (P, C) be an instance of VerPCAF
cf 1

inh
, i.e., P = (A, R, cl, �) is a PCAF and C ⊆ cl(A)

is the claim-set to be verified for conflict-freeness. Recall that VerPCAF
cf 1

inh
is NP-complete,

even when restricted to transitive preferences (see Proposition 4.31).

• First, we construct a PCAF P � = (A�, R�, cl �, ��) with A� = {x | x ∈ A, cl(x) ∈ C} as
well as R� = {(x, y) | x, y ∈ A�, (x, y) ∈ R}, cl �(x) = cl(x) for all x ∈ A�, and x �� y
iff x � y and x, y ∈ A�. Observe that (A�, R�, cl �) is still well-formed. Furthermore,
if � is transitive, then so is ��. It is easy to see that C ∈ cf inh(R1(P)) iff
C ∈ cf inh(R1(P �)). Since C = cl(A�), C ∈ cf inh(R1(P)) iff C ∈ naivehyb(R1(P �)).

• Second, we construct another PCAF P �� = (A��, R��, cl ��, ���). Without loss of
generality, we can assume C *= ∅. We fix an arbitrary claim c ∈ C and for each claim
d ∈ C \{c} introduce a fresh argument zd. Let Z be the set of those fresh arguments.
Then A�� = A� ∪ Z, R�� = R� ∪ {(x, zd) | cl(x) = c, zd ∈ Z} ∪ {(zd, y) | zd ∈ Z, y ∈
A�, there exists x ∈ A� with cl(x) = d such that (x, y) ∈ R�}, cl ��(x) = cl �(x) for
all x ∈ A�, cl ��(zd) = d for all zd ∈ Z, and x ��� y iff x �� y. (A��, R��, cl ��) is
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Figure A.2: R2(P) from the proof of Lemma A.6, with ϕ given by clauses ω1 = {x, y},
ω2 = {¬x, ¬y}. Gray/thick attacks have been reversed by Reduction 2.

well-formed by construction, and ��� can still be assumed to be transitive. Now
we show that C *∈ cf inh(R1(P)) iff C \ {c} ∈ naivehyb(R1(P ��)): (1) assume C ∈
cf inh(R1(P)). Then also C ∈ cf inh(R1(P ��)) and thus C \ {c} *∈ naivehyb(R1(P ��)).
(2) assume C *∈ cf inh(R1(P)). Then also C *∈ cf inh(R1(P ��)) since all arguments x
with cl(x) = c are in conflict with the fresh arguments zd. But because the fresh
arguments zd do not attack each other, C \ {c} ∈ cf inh(R1(P ��)). Since C = cl(A��),
C \ {c} ∈ naivehyb(R1(P ��)).

The construction of P � shows NP-hardness, and the construction of P �� shows coNP-
hardness. Now we show DP-hardness: let (ϕ1, ϕ2) be an arbitrary instance of SAT-UNSAT,
with ϕ1 and ϕ2 sharing no variables. We can construct instances (P1 = (A1, R1, cl1, �1
), C1) and (P2 = (A2, R2, cl2, �2), C2) of VerPCAF

naive1
hyb

such that ϕ1 is satisfiable iff C1 ∈
naivehyb(R1(P1)) and ϕ2 is unsatisfiable iff C2 ∈ naivehyb(R1(P2)). Note that we can
assume P1 and P2 to be disjoint, i.e., they share no arguments and claims. Let P =
(A1 ∪ A2, R1 ∪ R2, cl1 ∪ cl2, �1 ∪ �2) be the combination of P1 and P2. Observe that
C1 ∪ C2 ∈ naivehyb(R1(P)) iff C1 ∈ naivehyb(R1(P1)) and C2 ∈ naivehyb(R1(P2)). Thus,
(ϕ1, ϕ2) is a yes-instance of SAT-UNSAT iff C1 ∪ C2 ∈ naivehyb(R1(P)).

Lemma A.6. VerPCAF
σi

µ
is NP-hard for σi

µ = com2
inh, even if we restrict ourselves to

PCAFs with transitive preference relations.

Proof. Let ϕ be an arbitrary instance of 3-SAT given as a set Ω of clauses over variables
X and let X = {x | x ∈ X}. We construct a PCAF P = (A, Att, cl, �) as well as a set of
claims C:
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• A = {ϕ}∪Ω∪X ∪X ∪{ax | x ∈ X ∪X}∪{bx | x ∈ X}∪{dj
x | x ∈ X ∪X, 1 ≤ j ≤ 3};

• Att = {(ω, ϕ) | ω ∈ Ω} ∪ {(ω, ω) | ω ∈ Ω} ∪
{(ω, x) | x ∈ ω, ω ∈ Ω} ∪ {(ω, x) | ¬x ∈ ω, ω ∈ Ω} ∪
{(d1

x, x), (d1
x, d2

x), (d3
x, d2

x), (d3
x, x), (ax, x) | x ∈ X ∪ X} ∪

{(ax, bx), (ax, bx) | x ∈ X};

• cl(x) = cl(x) = cl(d2
x) = cl(d2

x) = x for x ∈ X, cl(v) = v else;

• x � ω, x � d1
x, x � ax, d2

x � d3
x for all x ∈ X ∪ X and all ω ∈ Ω;

• C = X ∪ {ϕ}.

Figure A.2 illustrates the above construction. It remains to show that ϕ is satisfiable if
and only if C ∈ cominh(R2(P)).

Assume ϕ is satisfiable. Then there is an interpretation I such that I |= ϕ. Let
S = {x, d2

x | x ∈ X, x ∈ I} ∪ {x, d2
x | x ∈ X, x *∈ I} ∪ {ϕ}. Clearly, cl(S) = C.

Furthermore, S defends ϕ in R2(P) since each clause is satisfied by I, and thus each
clause argument ωj is attacked by some x (or x) in S. For each variable x, if x ∈ S, then
x defends d2

x and d2
x defends x. Moreover, if x ∈ S, then x *∈ S and none of x, ax, bx, or

dj
x with 1 ≤ j ≤ 3 is defended by S. Analogously for the case that x ∈ S. Thus, S is

admissible, and contains all arguments it defends, i.e., S ∈ com(R2(P)).

Assume C ∈ cominh(R2(P)). Then there is S ⊆ A such that cl(S) = C and S ∈
com(R2(P)). For each x ∈ X, at least one of x, x, d2

x, d2
x must be contained in S. In

fact, if x ∈ S, then also d2
x ∈ S and vice versa. Analogous for x and d2

x. However, it
cannot be that x ∈ S and x ∈ S, otherwise bx would be defended by S and we would
have cl(S) *= C. Thus, for each x ∈ X, there is either x ∈ S or x ∈ S, but not both.
Furthermore, S defends ϕ, i.e., S attacks all clause arguments ωj . Therefore, I |= ϕ for
I = X ∩ S.
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