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Kurzfassung

Spiele bieten einen natürlichen und fruchtbaren Ansatz für die Logik und schlagen eine
Brücke zwischen dem traditionellen semantischen und beweistheoretischen Ansatz. Die
vorliegende Arbeit soll diese Verbindung veranschaulichen. Hierzu wird eine Technik
untersucht, die semantische Spiele zu Beweisbarkeitsspielen und weiter zu analytischen
Kalkülen liftet. Das einfachste Beispiel für diese Technik ist das Liften von Hintikkas Spiel
für die klassische Aussagenlogik zu einer Version des Gentzen’schen Sequenzsystems
LK.

Wir wenden diese Technik auf die Modallogik an. Um einige konzeptuelle Probleme zu
überwinden, müssen wir uns auf die hybride Logik – eine Erweiterung der modalen
Logik – zurückgreifen. Deren Sprache erlaubt es uns, im Objektlevel explizit auf Welten
Bezug zu nehmen.

In unserer zweiten Fallstudie entwickeln wir ein semantisches Spiel für Choice Logik –
ein hybrides Framework für Wahrheit und Präferenzen. Dieses Spiel hat eine reichere
Domäne von Auszahlungswerten, die vom Beweisbarkeitsspiel und dem daraus resultie-
renden Kalkül übernommen wird. Dies führt zu einem gradbasierten Gültigkeitsbegriff
in der induzierten Logik.

Unter Verwendung der gesammelten Ideen entwickeln wir ein Framework für das Lif-
ting von allgemeinen semantischen Spielen. Dieses Framework umfasst alle bekannten
Fälle in dieser Literatur und dieser Arbeit.
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Abstract

Games offer a natural and fruitful approach to logic, bridging the traditional semantic
and proof-theoretic approach to logic. The present thesis aims to illustrate this connection
by investigating a technique of lifting semantic games to provability games and further
to analytic calculi. The simplest example of this technique is lifting Hintikka’s game for
classical propositional logic to a version of Gentzen’s sequent system LK.

We apply this technique to modal logic. To overcome some conceptual issues, we must
turn to hybrid logic – an extension of modal logic. The language allows us to refer to
worlds within the object language explicitly.

In our second case study, we develop a semantic game for choice logic – a framework
for jointly dealing with truth and preferences. This game has a richer domain of payoff
values, which is inherited by the provability game and the resulting calculus, giving a
degree-based notion of validity in the induced logic.

Using these ideas, we develop a lifting framework to conduct the lifting for general
semantic games. This framework encompasses all known cases in the literature and in
this thesis.
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CHAPTER 1
Introduction

Games in logic have a long and varied tradition (see, e.g., [41]). Building on the concepts
of rational behavior and strategic thinking, they are a powerful tool to bridge the gap
between intended and formal semantics. Games thus offer a conceptually more natural
approach to logic than the common paradigm of model-theoretic semantics and proof
systems. Furthermore, they present a starting point to extend logical reasoning to
scenarios with incomplete or imperfect information [45]. Nowadays, many different
types of games are employed in various subfields and application areas of logic [55, 1,
40, 42], however, two primary forms of logical games are still central: semantic games and
provability games.

Semantic games (or evaluation games) were developed by Jaako Hintikka [38] as an
alternative to the Tarskian-style truth definition. In the version for classical logic, every
instance of the game is played over a propositional formula F and an interpretation I
by two players, usually called I (or Me) and You. At each point in the game, one of the
players acts as the proponent (P), while the other acts as the opponent (O) of the current
formula. The set of actions at each stage is dictated by the main connective of the current
formula: if it is of the form F1 ∨ F2, then the player acting as P chooses whether the
game continues with F1 or with F2. Similarly, O chooses between continuing the game
with F1 or F2 at the formula F1 ∧ F2. If the current formula is ¬F , the game continues
with F and a role switch. When the game reaches a propositional variable, P wins (and
O loses) iff I |= p; otherwise, O wins (and P loses). This game adequately models truth
over I in the following sense: I have a winning strategy for the game starting with Me
as the proponent of the formula F and over the interpretation I iff I |= F .

In contrast to semantic games, provability games, as developed by Paul Lorenzen1 [43],
do not refer to truth in a particular model but to logical validity. The game is played

1We prefer to use the term provability games instead of the original dialogue games. In the next subsection,
we will argue that there is indeed a close connection between proofs and provability games.
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1. INTRODUCTION

by two players, I and You2, and consists of attacking assertions of formulas made by
the other player and defending against these attacks. The game starts by Me asserting
a given formula F . The involved formulas dictate the attacks and defenses available
to the players. Players take alternating turns, and the player who cannot move at their
turn loses the game, while the other wins. Intuitively, this game can be thought of as
an exam situation, where I am the student and You are the examiner [41] who asks Me
to prove a formula F . If it is of the form F1 ∨ F2, then You may ask Me to choose and
prove one of the two disjuncts. For formulas F1 ∧ F2, You can choose to ask Me to prove
either one of F1 and F2. The case for F1 → F2 is more intricate: Here, I can agree to
prove F2. But I can also turn the table and ask You to prove that F2 is consistent in the
first place3. Besides the rules connected to logical connectives, procedural rules dictate
the overall shape of the dialogue. For example, one rule states that I can only assert an
atomic formula after it was granted by You. Originally, dialogue games were meant to
characterize constructive reasoning. Indeed, I have a winning strategy for the game over
F iff F is valid intuitionstically. However, it was shown [21] that a slight change in the
procedural rules results in an adequate game for classical logic.

From the adequacy of both games, we immediately obtain the following consequence:
I have a winning strategy as the proponent of a fixed formula F in Hintikka’s game
over the interpretation I , for every I iff I have a winning strategy in Lorenzen’s classical
game over F . But can this link be made more instructive? In the broadest terms, the
central question of interest in this thesis is:

What are the connections between semantic games and provability games?

More concretely, can a provability game over F be seen as a way of simultaneously
playing all possible semantic games over F at once? Since every winning strategy for Me
in an adequate provability game serves as a token of validity, can every winning strategy
for Me in the provability game be represented as a derivation in a suitable related proof
system? And vice versa, does every derivation in this system represent a winning
strategy? Is every winning strategy for You in the provability game guided by a winning
strategy for You in the semantic game over some interpretation I? Finding results
concerning the last question promises to shed light on proof search and counter-model
extraction in the related proof system.

Answering these questions will be at the core of this thesis. The central idea for tackling
these issues is the lifting technique that allows us to lift semantic games to provability
games and further to useful proof systems.

2Originally, the two players are called Proponent and Opponent. For reasons that will become clear in
the next paragraph, it is worthwhile to think of the two players in the provability games as being the same
as in the semantic game.

3Note that in this interpretation the players have slightly asymmetric roles.
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1.1. Lifting Semantic Games to Provability Games and Analytic Calculi

1.1 Lifting Semantic Games to Provability Games and Analytic
Calculi

In this section, we will discuss the main ideas behind the lifting technique and how it
can help to answer the questions raised at the end of the previous section. The lifting
was first described in [18, 24] for Giles’ game for propositional Łukasiewicz logic [33, 34].
In [22, ?] it was applied for the truth-degree comparison game for Gödel logic.

To get a good grip on the main ideas, we will illustrate the technique using the example
of classical propositional logic and Hintikka’s game, lift it to a provability game, and
further to a version of Gentzen’s sequent calculus LK.

To this end, it is helpful to describe Hintikka’s game in more detail. Remember that
players can be either in the role of the proponent (P) or the proponent (O), and the
current role distribution and formula dictate the players’ moves at any moment of the
game. We codify the situation where the current formula is G, and I am currently in
the role of P (correspondingly You are O) in the game state P : G, and similarly for the
situation where I am the opponent as O : G. The rules of the game can now be described
as follows.

(P∨) At game states of the form P : G1 ∨ G2, I choose between the game states P : G1
and P : G2 to continue the game.

(O∨) At O : G1 ∨ G2, You choose between O : G1 and O : G2.

(P∧) At P : G1 ∧ G2, You choose between P : G1 and P : G2.

(O∧) At O : G1 ∧ G2, I choose between O : G1 and O : G2.

(P¬) At P : ¬G, the game continues with O : G.

(O¬) At O : ¬G, the game continues with P : G.

(Pp) At P : p, I win and You lose if I |= p. Otherwise, I lose and You win.

(Op) At O : p, I win and You lose if I ̸|= p. Otherwise, I lose and You win.

The game starts at the formula F with me in the role Q ∈ {P, O} and over the interpre-
tation I is denoted GCL

I (F ).

The vessel for lifting GCL to a provability game is the disjunctive game. Intuitively, the
disjunctive game DGCL(P : F ) can be thought of as Me and You playing all semantic
games GCL

I (P : F ) over all interpretations I simultaneously. Note that the rules of this
game do not depend on the structure of I but merely on F . Truth degrees are only
needed at the atomic level to determine who wins the particular run of the game. This
allows us to require players to play “blindly”, i.e., without explicit reference to a model

3



1. INTRODUCTION

I . Clearly, if I have a winning strategy in such a game, then I can win in GCL
I (P : F ), for

every I, making this strategy an adequate token of logical validity4.

However, a problem arises already in the simplest cases. Let us consider the example
of the disjunctive game starting at P : p ∨ ¬p. Clearly, I have a winning strategy in the
semantic game over every interpretation. However, there is no uniform way of making
a good choice in the first turn: No matter whether I choose P : p or P : ¬p, there are still
interpretations where You win the game eventually. To compensate for this, we allow
Myself to create “backup copies” and duplicate game states. Instead of making a choice
in the first turn, I duplicate the state and the game continues with the disjunctive state5

P : p ∨ ¬p
� P : p ∨ ¬p. Now I move to P : p in the first subgame and to P : ¬p in the

second. Note that this means that in the disjunctive game, I additionally take the role of
a scheduler, deciding which copy is to be played next. After a role switch in the second
subgame, the final state is P : p

� O : p.

The following winning condition reflects the fact that My strategy for the disjunctive
game DG(P : p ∨ ¬p) was successful: I win and You lose at an elementary disjunctive
state iff for every model there is one subgame, where I win the corresponding semantic
game. Here are the rules of the disjunctive game in detail:

(Dupl) If no game states in D are underlined and D is not terminal, I can duplicate an
h ∈ D and the game continues with D

�
h.

(Sched) If no game states in D = D′ �
h are underlined and D is not terminal, I can

underline a non-terminal h ∈ D and the game continues with D′ �
h.

(Move) If D = D′ �
h then the player who is to move in the semantic game GCL

I (g) at
the game state g, makes a legal move to the game state g′ and the game continues
with D

�
g′. For example, if g is P : G1 ∧ G2, then, according to (P∧), You chose a

k ∈ {1, 2} and the game continues with D
� P, i : Gk.

(Win) If D consists of game states involving propositional variables only, then I win iff I
win the semantic game in some g ∈ D, and You lose. Otherwise, You win, and I
lose.

Note that the rule (Move) imports the rules of the semantic game into the disjunctive
game. We point out that in the other chapters of this thesis, we have two kinds of
disjunctive games: a semantic game DGCL

I played over a fixed interpretation I (in this
game, the disjunctive state is winning for Me iff some contained game state is winning

4The intended use for the disjunctive game might suggest that conjunctive game might be a more suitable
name for this game. In choosing the name, we are inspired by [24], where the authors introduce disjunctive
strategies. These strategies are not strategies of any particular game but can be rather seen as disjunctions of
strategies of the semantic game. In our game-centered approach, we prefer to introduce a new game, where
strategies exactly correspond to the disjunctive strategies from [24].

5Formally, disjunctive states are multisets of game states of the semantic game.
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1.1. Lifting Semantic Games to Provability Games and Analytic Calculi

for Me over I), and the provability game, as presented above. This distinction makes the
involved proofs easier. For our purposes, it is sufficient to consider the disjunctive game
as a provability game.

It can be shown that the disjunctive game is adequate: I have a winning strategy σ in
DGCL(P : F ) iff I have winning strategies in all semantic games GCL

I (P : F ). Moreover,
this lifting answers all the questions we asked at the end of the last section positively.
For every model, a winning strategy GCL

I (P : F ) can be effectively extracted from σ.
Conversely, a countermodel I and a winning strategy for You for GCL

I (P : F ) can be
computed from Your winning strategy for DGCL(P : F ).

Furthermore, every winning strategy for Me in DGCL can be translated into a proof
in a weakening-free version of Gentzen’s LK (for simplicity, we refer to this system
as LK), as depicted in Table 1.1, and vice versa. To see this, note that there is a 1-1
correspondence between disjunctive states and sequents in LK. Every disjunctive state
of the form

O : F1
�

...
�

O : Fn

�
P : G1

�
...

�
P : Gm

is directly translated to the sequent

F1, ..., Fn ⇒ G1, ..., Gm.

Furthermore, the rules of LK can be modeled by strategies for Me in the disjunctive
game. The logical rules directly correspond to the rules of the underlying semantic game.
For example, the rule (L∨) corresponds to the rule (O∨), as branching in the proof tree
codes branching in My strategy, which in turn represents Your choice in the semantic
game. The rule (R1∨) represents Me choosing the left disjunct, while (R2∨) represents
Me choosing the right disjunct in the game rule (P∨). The contraction rules (Lc) and
(Rc) correspond to the duplication rule, (Dupl). The rule (Sched) is coded explicitly, by
the chosen rule of LK. Note that a disjunctive state consisting of game states involving
propositional variables only is winning for Me iff some variable p appears with both the
prefixes P and O. Hence, the axioms of LK exactly correspond to the the winning states
of the disjunctive game. Note that these axioms are variants of the usual axioms in LK
(of the forms F ⇒ F and ⊥ ⇒) and are broadly used in weakening-free systems, like
G3K in [53]. Although we require that all formulas in the axiom sequents consist of
propositional variables only, it can be easily shown that disjunctive states corresponding
to sequents Γ, p ⇒ p, ∆ can always be won by Me. On the proof-theoretic side, one
can show that proofs in systems like G3K can always be transformed to make use of
propositional axioms only.

Summing up, winning strategies can be seen as proofs in the system LK. Counter-model
extraction from winning strategies for You corresponds to counter-model extraction from
failed proof-search in LK.

Executing and modifying the described technique for different semantic games will be
one of the aims of this thesis.

5



1. INTRODUCTION

Table 1.1: Proof system LK.

Axioms

Γ, p ⇒ p, ∆ where Γ, ∆ consist of variables only

Structural Rules

Γ, F, F ⇒ ∆
(Lc)Γ, F ⇒ ∆

Γ ⇒ F, F, ∆
(Rc)Γ ⇒ ∆

Propositional rules

Γ, F ⇒ ∆ Γ, G ⇒ ∆
(L∨)

Γ, F ∨ G ⇒ ∆
Γ ⇒ F, ∆

(R1∨)
Γ ⇒ F ∨ G, ∆

Γ, F ⇒ ∆
(L1∧)

Γ, F ∧ G ⇒ ∆
Γ ⇒ G, ∆

(R2∨)
Γ ⇒ F ∨ G, ∆

Γ, G ⇒ ∆
(L2∧)

Γ, F ∧ G ⇒ ∆
Γ ⇒ F, ∆ Γ ⇒ G, ∆

(R∧)
Γ ⇒ F ∧ G, ∆

Γ ⇒ F, ∆
(L¬)

Γ, ¬F ⇒ ∆
Γ, F ⇒ ∆

(R¬)
Γ ⇒ ¬F, ∆

1.2 Aim of the thesis

We briefly discuss the main goals of this thesis. For a more detailed introduction to the
different topics, we forward the reader to the introduction sections of the corresponding
chapters. The aim of this thesis is twofold. First, we give a case study of the lifting
technique. In Chapter 3, we study the application to modal logic. The challenge, in this
case, is conceptual. In modal logic, the game trees of a modal extension of Hintikka’s
semantic game are not uniform for the underlying model. But this uniformity of game
trees is essential for the application of the lifting since it allows the players to play over
the model “blindly”, as discussed in the previous section. The solution is to turn to
hybrid logic, which allows us to refer to the model in the object language explicitly. This
extension allows for uniform game trees but comes at the cost of infinite branching, even
for finite models, making applying the lifting technique more challenging and forcing
us to expand the technique.

In Chapter 4, we consider choice logic, a multi-valued extension of classical logic by
preferences. Here, the richer domain of truth values is used to represent how well
a given formula is satisfied with respect to the expressed preferences. Consequently,
in the corresponding semantic game, the domain of payoff values is richer than the
usual win/lose. The induced notion of validity is also many-valued, thus posing a new
challenge for the lifting technique.

6



1.3. Publications underlying this thesis

The second aim is to consolidate the experience from the different case studies in
a general lifting framework. Developing such a general framework is the topic of
Chapter 5. This framework encompasses all cases in this thesis and the literature. We
will test this framework for the semantic game in [22].

1.3 Publications underlying this thesis

The focus of this thesis is in line with project P32684, funded by the Austrian Science
Fund (FWF). The material of this thesis relies on the following publications:

• Chapters 1 and 2 contain no original material.

• Chapter 3 is based on the single-author publications [27, 26].

• Chapter 4 is based on joint work with Michael Bernreiter [29, 31, 30]. In this project,
the author of this thesis was responsible for the game- and proof-theoretic results,
which are also included in this thesis. Michael Bernreiter contributed results on
complexity and his expertise in the area of preference handling in AI. He does not
plan to use the material of the above publications in his thesis.

• Chapter 5 consists of unpublished material from the author’s collected manuscripts
inspired by project meetings with colleagues and his advisor. As an illustration
of the general framework, we present an application of the lifting technique to
the truth-degree-comparison game for Gödel logic, similar to the shared publica-
tion [48]. Since the emphasis and presentation are different, there is no conflict
of interest with a chapter of Alexandra Pavlova’s thesis building on the same
publication.
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CHAPTER 2
Preliminaries

In this chapter, we provide the game-theoretic and logic background needed in this
thesis. We assume that the reader has a strong background in logic, hence we lay our
focus on the section on game theory. There is no original research in this chapter.

2.1 Games

In this section, we give a short introduction to some fundamental game-theoretic con-
cepts. For additional material, we refer the reader to [46], or similar introductory books.
Our running example in this section will be Hintikka’s game, which was already dis-
cussed in Chapter 1, and n-Treblecross, a degenerate version of the game Tic-Tac-Toe. In
n-Treblecross (n ≥ 3), the two players, I and You, take turns marking boxes aligned in a
row of length n. The game is slightly asymmetric, as I have to take the first turn. Unlike
Tic-Tac-Toe, both players mark with the same symbol, an ×. The first player to cause
three (or more) ×s in a row wins, and the other loses. A possible run of 4-Treblecross is
depicted below:

1 2 3 4

1 × 3 4

1 × 3 ×
1 × × ×

I mark 2

You mark 4

I mark 3 and win

Here, I start by marking Box 2. Then You mark Box 4, after which I mark Box 3, and win

9



2. PRELIMINARIES

the game since now three consecutive boxes are marked. If I would have marked Box 1
instead, then You could have won the game by marking Box 3.

In the simple example of n-Treblecross, we can already identify the characteristics
common to all games investigated in this thesis. Our games fall into the following
categories:

• Two-player games: there are two players, which we will always call Me and You.

• Games of perfect information: at each stage, every player is informed of all events
that have happened previously in the game.

• Games of complete information: there is common knowledge about the possible
moves and payoffs of all players; in our case, who wins and who loses at which
stages.

• Sequential games: there are no simultaneous moves of the players.

• Zero-sum games: players’ interests are strictly opposed: if I win, then You lose and
vice versa. In our case (in fact, in all games in this thesis), there are no draws.

• Determined games: exactly one of the two players has a winning strategy; we will
formally prove this for Treblecross later.

The formal framework below captures all these characteristics. This framework will be
used throughout the thesis. For the used notation for sequences, check the appendix.

Definition 2.1.1: Game

Let Stat be a set whose elements are called (game) states. A game over Stat is a
tuple (Hist, h∗, ℓ, ℘), where

• Hist is a subset of sequences over Stat, called histories [17] or runs.

• h∗ is a distinguished element of Hist called the initial history. Equipped
with ⊑, Hist is a partially ordered set with minimal element h∗. We require
that Hist is downwards-closeda and every increasing chain in Hist has a
supremum in Hist. Maximal elements of Hist are called terminal histories,
complete runs, or outcomes. We let Ter be the set of terminal histories of Hist.

• ℓ is a function from non-terminal histories to the set {I, Y }, called the labeling
function. If ℓ(h) = I , we say that h is labeled I , or an I-history, and similarly
for Y .

• The payoff function ℘ maps terminal histories to a linear order (Z, ⪯). Ele-
ments of Z are called values and ℘(h) is called the payoff of h.

aIn our context, this means that for h∗ ⊑ h1 ⊑ h2 and h2 ∈ H , we have h1 ∈ H .
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2.1. Games

In this thesis, Z is always partitioned into two sets, Z+ and Z−, where Z+ is upwards-
closed, Z− is downwards-closed, and a ≺ b for all a ∈ Z−, b ∈ Z+. Z+ is interpreted as
a winning range, and payoffs in Z+ are interpreted as winning for Me, while payoffs in
the losing range, Z−, are winning for You.

Example 2.1.2. The game Treblecross for a n-row, Tn, can be formalized as follows. The
initial history is the empty history ϵ. Game states are integers in {1, . . . , n}. The set
of histories, Histn, contains ϵ and all sequences h = ⟨h1, . . . , hn⟩ of different integers
in {1, . . . , n} such that ⟨h1, . . . , hn−1⟩ does not contain the three consecutive integers
i, i + 1, i + 2 for any i. In this thesis, we usually define the set of histories recursively.
For Tn, this definition would look as follows:

• The initial history is ϵ.

• Histn is the smallest set containing ϵ and closed under the following condition: if
h is contained, then h ⌣ i is contained if i /∈ range(h) and there is no j such that
{j, j + 1, j + 2} ⊆ range(h).

• Non-terminal histories of even length are labeled “I”, non-terminal histories of
odd length are labeled “Y”.

• The payoff function takes values in the domain Z = {−1, 1}, where −1◁1. Terminal
histories of even length have the value 1, and terminal histories of odd length have
the value −1. Here, the winning range is {1}, and the losing range is {−1}.

Example 2.1.3. We have discussed Hintikka’s game for classical propositional logic [39]
in Chapter 1. We now show how it can be represented in our game format. Let I be
an interpretation. Game states are of the form Q : F , where Q ∈ {P, O} and F is a
propositional formula. Let g be a game state. The evaluation game GCL

I (g) is defined as
follows:

• The initial history is ⟨g⟩.

• If h = h′ ⌣ Q : G is contained, and G is of the form

– G = G1 ∨ G2, then also h ⌣ Q : G1 and h ⌣ Q : G2 are contained,

– G = G1 ∧ G2, then also h ⌣ Q : G1 and h ⌣ Q : G2 are contained,

– G = G1 → G2, then also1. h ⌣ Q̄ : G1 and h ⌣ Q : G2 are contained,

– G = ¬G′, then also h ⌣ Q̄ : G′ is contained

• Non-terminal histories ending in the states of the following forms are labeled:

1If Q = P, then Q̄ = O, and if Q = O, then Q̄ = P.

11



2. PRELIMINARIES

labeled “I” labeled “Y”
P : G1 ∨ G2 O : G1 ∨ G2
O : G1 ∧ G2 P : G1 ∧ G2
P : G1 → G2 O : G1 → G2
P : ¬G′ O : ¬G′

• The payoff function takes values in the domain Z = {−1, 1}, where −1◁1. Terminal
histories ending P : a have payoff 1 iff I |= a and −1, otherwise. Terminal histories
ending O : a have payoff 1 iff I ̸|= a and −1, otherwise. Here, the winning range
is {1} and the losing range is {−1}.

We will often use the following equivalent definition of a game. Since H is downwards
closed, it naturally carries the structure of a tree rooted in the initial history sequence h∗.
Therefore, we can think of a game as a tree T whose nodes are labeled “I” or “Y”, telling
us which of the two players is to move at every non-terminal history. Outcomes are
associated with the leaves of the tree or infinite branches. As before, the payoff function
℘ maps terminal histories to a linear order.

Example 2.1.4. The game tree for 4-Treblecross is depicted in Figure 2.1. I move in all
nodes with an even distance to the root ∗, and You move in all other nodes. I win and
You lose in leaves with odd distance to the root, and vice versa in all other leaves.

2.1.1 Strategies

Another central notion is that of a strategy. We can think of a strategy for a player in
a game as a complete game plan, describing a specific action for every possible non-
terminal history in which that player is to move. In chess, a strategy for White is a
mapping σ from odd-length non-terminal histories h to game states g. We require that
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Figure 2.1: The game tree of 4-Treblecross
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σ(g) is obtained from h by a legal move by White, as given by the rules of chess. Here is
the formal definition:

Definition 2.1.5: Strategy

Let HI be the set of histories labeled “I”. A strategy σ for Me for the game G =
(H, h∗, ℓ, ℘) is a function from HI to H such that σ(h) = h ⌣ g, for some game
state g. ΣI denotes the set of strategies for Me. Similarly, we define HY , strategies
for You, and ΣY .

In our tree view of a game, a strategy for Me can be represented as a function mapping
each node labeled “I” to one of its children.

We often wish to investigate how a given strategy σ for Me performs against other
possible strategies by You. In the most general setting, we are interested in the possible
payoff values if I play according to σ. To answer this question, it is unnecessary to
know which actions σ prescribes in all possible scenarios. For example, in a game of
4-Treblecross, if σ tells Me to mark Box 1 in the first move, it is irrelevant which moves σ
prescribes in the history ⟨2, 3⟩. We can thus interpret a strategy σ for Me as a subtree of
the game tree satisfying the following conditions:

1. The root of T is in σ.

2. For every node of T that occurs in σ and is labeled “Y”, all of its children are in σ.

3. For every node of T that occurs in σ and is labeled “I”, precisely one of its children
is in σ.

Alternatively, σ can be seen as a result of the following process: start with the game tree
T and prune away all but one child of every node labeled “I”.

Example 2.1.6. The tree in Figure 2.2 depicts a strategy for Me in 4-Treblecross.
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Figure 2.2: Winning strtegy for Me in 4-Treblecross
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2.1.2 Outcomes

Let σ and µ be strategies for Me and You in a game G, respectively. If I play according to
σ and You play according to µ, then there is a unique predetermined terminal history
that the game will end in. We will call this history O(σ, µ), the outcome given by σ and
µ. We provide a formal definition of O(σ, µ) in terms of histories below. For now, let us
take the instructive viewpoint on games as trees and strategies as pruning of the game
tree, as described in the previous subsection. Then, the outcome given by σ and µ is a
maximal path through the game tree T constructed as follows: first, prune T according
to σ, leaving for every I-node all but one of its children. Then, do the same with µ,
leaving for every Y-node exactly one child. The result is a unique maximal path through
the game tree, O(σ, µ).

Example 2.1.7. Let σ be the strategy depicted in Figure 2.2 for Me in 4-Treblecross, and
let µ be a strategy for You prescribing You to move to 4 at the history h = ⟨2⟩, i.e.,
µ(h) = h ⌣ 4. To obtain O(σ, µ), we remove the 1- and 3-branches starting at 2 in σ.
Hence, the resulting unique outcome is ⟨2, 4, 3⟩. This is precisely the run discussed on
the first page of this chapter.

We now come to the formal definition of O(σ, µ) in terms of histories. As functions
from non-terminal histories to game states, σ and µ have disjoint domains, HI and HY .
Let idT er be the identity function on Ter, the set of terminal histories, i.e., idT er(h) = h.
Therefore, the union σ; µ := σ ∪ µ ∪ idT er is a well-defined function from H to H given
by

(σ; µ)(h) =

����
σ(h), if h ∈ HI ,

µ(h), if h ∈ HY ,

h, if h ∈ Ter

By definition of a strategy, both σ and µ are monotonically increasing functions on H
(ordered by the natural ordering of sequences, ⊑) and so is σ; µ. Since all chains in H
have a supremum, the following notion is well-defined:

Definition 2.1.8: Outcome given by strategies

Let σ and µ be strategies for Me and You in a game G = (H, h∗, ℓ, ℘). Then, the
outcome given by σ and µ is defineda as

O(σ, µ) = sup{(σ; µ)n(h∗) : n ∈ N},

where sup is with respect to the usual “is-an-initial-segment-of” ordering ⊑ on
sequences.

aFor a function f : R → R, fn(x) is the result of applying f to x exactly n times.

We compute the outcome given by σ and µ from Example 2.1.7:

(σ; µ)0(ϵ) = ϵ

14
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(σ; µ)1(ϵ) = (σ, µ)(ϵ) = σ(ϵ) = ⟨2⟩
(σ; µ)2(ϵ) = (σ; µ)((σ, µ)1(ϵ)) = µ(⟨2⟩) = ⟨2, 4⟩
(σ; µ)3(ϵ) = (σ, µ)((σ; µ)2(ϵ)) = σ(⟨2, 4⟩) = ⟨2, 4, 3⟩

Since the history ⟨2, 4, 3⟩ is terminal, (σ; µ)n(ϵ) = ⟨2, 4, 3⟩, for all n ≥ 3. Hence, O(σ, µ) =
⟨2, 4, 3⟩, which coincides with the outcome determined in the example.

2.1.3 Valuating Strategies and Games

As a first metric on how well strategies perform, we introduce the notion of a k-strategy.
Intuitively, a k-strategy for Me in a game G ensures that playing according to σ, My pay-
off is at least k irrespective of Your actions. Formally, let k ∈ Z, the complete linear order
of payoff values of the game G. Then σ is a k-strategy for Me if infσY ∈ΣY

(℘(σ, σY )) ⪰ k,
where we abbreviate ℘(O(σI , σY )) by ℘(σI , σY ). Similarly, a strategy µ for You is a
k-strategy if My payoff against µ is at most k, i.e., supσI∈ΣI

(℘(σI , µ)) ⪯ k.

In the tree representation of a strategy σ, the notion of a k-strategy is particularly intuitive:
the subtree σ is a k-strategy iff all leaves have payoff ⪰ k. For example, Figure 2.2 shows
a strategy for Me in 4-Treblecross where all leaves have payoff 1. Hence, the depicted
strategy is a 1-strategy, or, since it guarantees a win for Me, a winning strategy.

In the general setting, if Z is partitioned into a winning range Z+ and a losing range Z−,
as described below Definition 2.1.1, then every strategy σ for Me with infσY ∈ΣY

(℘(σ, σY )) ∈
Z+ is called a winning strategy for Me. Every strategy for You with supσI∈ΣI

(℘(σI , µ)) ∈
Z− is called a winning strategy for You. The strategy in Figure 2.2 is a 1-strategy, and
since 1 is in the winning range of this game, it is a winning strategy for Me. On the other
hand, one can show that You have a winning strategy in 6-Treblecross.

Example 2.1.9. In Hintikka’s game for classical propositional logic, I have a winning
strategy in GCL

I (P : F ) iff I |= F , see [39].

Definition 2.1.10: Maximin and Minimax values

Given a game G, with payoff function taking values in a complete linear order,
the maximin value is defined as

vI(G) = sup
σI∈ΣI

inf
σY ∈ΣY

℘(σI , σY ).

Any strategy witnessing the supremum (i.e. any vI(G)-strategy) is called a max-
imin strategy.
The minimax value is defined as

vY (G) = inf
σY ∈ΣY

sup
σI∈ΣI

℘(σI , σY ).
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Any strategy witnessing the infimum is called a minimax strategy. If vI(G) =
vY (G) we call this value the value of G and denote it by v(G). If the value of G
exists, we call this game determined.

Since I have a winning strategy in 4-Treblecross, the value of this game is 1. Similarly, the
value of 6-Treblecross is -1, since it can be shown that You have a winning strategy. Note
that, in general, not every game is determined. For example, there are games, where
neither I nor You have winning strategies. The important class of finite-valued games,
however, is determined. A game is called finite-valued if the pointwise image of Ter
under ℘ is a finite set, i.e., |℘(Ter)| < ∞. For example, n-Treblecross and every finite
game (games where the set of histories is finite) is finite-valued.

Theorem 2.1.11: Finite-valued games are determined

Finite-valued games are determined. Moreover, maximin and minimax strategies
exist in these games.

Proof. If G is finite-valued, then the infima and suprema in the definitions of vI and
vY are over finite sets and thus witnessed. Let σ∗

I and σ∗
Y be strategies such that vI =

infσY ∈ΣY
℘(σ∗

I , σY ) and vY = supσI∈ΣI
℘(σI , σ∗

Y ). Assume, towards a contradiction that
vY ≺ vI . But then

℘(σ∗
I , σ∗

Y ) ⪯ sup
σI∈ΣI

℘(σI , σ∗
Y ) = vY ≺ vI = inf

σY ∈ΣY

℘(σ∗
I , σY ) ⪯ ℘(σ∗

I , σ∗
Y ),

which is impossible. We thus have vI ⪯ vY . The converse inequality holds for all games
in general, see [46].

As an application of this theorem, we get that for every n ≥ 3, the finite-valued game
n-Treblecross is determined, i.e., exactly one of the players has a winning strategy. We
conclude this subsection with the following notion:

Definition 2.1.12: Strategic equivalence of games

Let G1 and G2 where the payoff functions take values in the same domain Z. We
call the games strategically equivalent and write G1 ∼= G2 iff they have the same
value.

Note that this notion is very general. Two games can be strategically equivalent even if
they do not share any of their structure. All that is required is that they have the same
game value. For example, I have 1-strategies in the games 3-Treblecross, 4-Treblecross,
and GCL{b}(F ) with F = ((a ∨ b) ∨ c) ∧ ¬(a ∨ d), making them strategically equivalent.
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2.1.4 Subgames

In this section, we recall the important notion of subgames and derive a useful lemma
that will be useful for later proofs.

Definition 2.1.13: Subgame

Let G = (H, h∗, ℓ, ℘) be a game and h a history. Then the game G@h =
(Hh, h, ℓh, ℘h), called the subgame of G starting at h, is defined as follows:

• The initial history is h.

• Hh is the set of histories in H extending h.

• ℓh is ℓ restricted to Hh

• ℘h is ℘ restricted to the terminal histories in Hh.

G′ is an immediate subgame of G if G′ = G@(h∗ ⌣ g) and h∗ ⌣ g ∈ H .

We easily see that Gh is again a game in terms of Definition 2.1.1. To motivate the
following lemma, let us say in a game G, it is My turn at the initial history h∗ , and let us
suppose I have a strategy σ guaranteeing a payoff of at least z in one of the immediate
subgames, G′, of G. Then I have a z-strategy in G, too: simply go to G′ in the first turn
and then play according to σ. Similarly, if initially it is Your turn and I have z-strategies
σi in all immediate subgames Gi of G, then I have a z-strategy for G. If You go to Gi in
the first turn, then I play according to σi and the outcome will have a payoff of at least z.
Let us prove these observations formally.

Lemma 2.1.14: Subgame-to-game

Let G be a game with initial history h∗ and let hi = h∗ ⌣ gi such that (hi)i∈I are
all the minimal histories extending h∗.

1. If ℓ(h∗) = I , then I have a z-strategy in G iff there is some j such that I have
a z-strategy in G@hj .

2. If ℓ(h∗) = Y , then I have a z-strategy in G iff for every i, I have a z-strategy
in G@hi.

A symmetric result holds for Your strategies.

Proof. Note that the histories H in G are precisely the histories in
�

i∈I Hhi
plus the

initial history h∗.

For 1, let σ be My z-strategy σ in G. Let σ(h∗) = hj , let µj be a strategy for You in G@hj

and let µ be an arbitrary strategy agreeing with µ on HY
hj

. Let σj be σ restricted to Hhj
.
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We have

℘hj
(σj , µj) = ℘hj

(O(σj , µj))
= ℘hj

(sup{(σj ; µj)n(hi) : n ∈ N})
= ℘(sup{(σ; µ)n(h∗) : n ∈ N})
= ℘(σ, µ) ⪰ z,

where the third equality follows from the fact (σ; µ)(h∗) = σ(h∗) = hj and the facts that
σ agrees with σj on HI

hj
and µ agrees with µj on HY

hj
. The inequality follows from the

assumption on σ. Since Your strategy µj was arbitrary, we get infµ∈ΣY
℘hj

(σj , µj) ⪰ z,
i.e., σj is a z-strategy for Me.

For the other direction, suppose I have a z-strategy σj in G@hj . Let σ be a strategy for
Me in G such that σ(h∗) = hj , σ agrees with σj on HI

hj
and is arbitrary everywhere else.

Let µ be a strategy for You in G and let µj be its restriction to HY
hj

. Similar to before, we
have

℘(σ, µ) = ℘(O(σ, µ))
= ℘(sup{(σ; µ)n(h∗) : n ∈ N})
= ℘hj

(sup{(σj ; µj)n(hj) : n ∈ N})
= ℘hj

(σj , µj) ⪰ z.

For 2, let σ be My z-strategy σ in G and fix the subgame hj . Let σj be σ restricted to HI
hj

.
Let µj be a strategy for You in G@hj and define µ such that µ(h∗) = hj , µ agrees with µj

on HY
hj

and is arbitrary everywhere else. Then

℘hj
(σj , µj) = ℘hj

(O(σ′, µ))
= ℘hj

(sup{(σ′; µ)n(hi) : n ∈ N})
= ℘(sup{(σ; µ)n(h∗) : n ∈ N})
= ℘(σ, µ) ⪰ z,

For the other direction, suppose I have a z-strategy σi for each G@hi. We set σ = �
i∈I σi,

i.e., σ agrees with every σi on HI
hi

. To show that σ is a z-strategy, note that all strategies
for You in G can be written as (h∗, hj) ∪ �

i∈I µi, where each µi is a strategy for You in
G@hi and hj is Your choice at the initial history. Let µ be such a strategy. We have

℘(σ, µ) = ℘(O(σ, µ))
= ℘(sup{(σ, µ)n(h∗) : n ∈ N})
= ℘hj

(sup{(σi, µi)n(hi) : n ∈ N})
= ℘hj

(σj , µ) ⪰ z,

where we used (σ; µ)(h∗) = µ(h∗) = hi and the facts that σ agrees with σj on HI
hj

and µ

agrees with µj on HY
hj

. The inequality follows from the assumption that σj is a z-strategy.
Since µ was arbitrary, we conclude that σ is a z-strategy.
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We point out that for finite games, this lemma justifies the backward-induction technique
for computing a game’s value. This technique works as follows: start with the tree
representation of a finite game G and label every leaf with its corresponding payoff.
Then, move to the nodes that have labeled successors. For each I-node, label this node
with the maximum of all of its connected leaves. For each Y-node, label it with the
minimum. Move one level higher and repeat the procedure. When the root is labeled,
the lemma guarantees that this label coincides with the value of the game.

2.2 Logics

We assume that the reader has a firm background in logic and, therefore, only point out
some conceptual differences between the standard logic literature and this thesis.

Most notably, we adopt multi-valued versions of the central logical concepts of truth,
validity, proof, and provability. We acknowledge that this approach has interesting
and far-reaching consequences in philosophy and logic. However, this discussion lies
beyond the scope of this thesis. Instead, we merely point out that this choice is a natural
consequence of the intuitive ideas underlying the games presented in Chapters 4 and
Chapters 5. For a detailed account, we refer the interested reader to [36, 37].

This multi-valued approach to logic stems from a degree-based notion of truth. A
degree-based semantics for a logic L is a a class of models, I, together with a mapping
where each I ∈ I is assigned a degree-function dI mapping to a linear order (Z, ⪯). The
value dI(F ) is interpreted as the truth degree of the formula F under the model I. This
induces a degree-based notion of validity: the validity degree of a formula F is defined as
d(F ) = infI∈I dI(F ), where we assume that this infimum always exists.

We will be concerned with logic games, i.e., games capturing the above degrees. On the
semantic side, a semantic game GL for a logic L is a collection of games where every pair
of formula F and model I get assigned a game GL

I(F ). Then GL is called adequate (with
respect to L) if the value of GL

I(F ) (see Definition 2.1.10) is dI(F ) for each I ∈ I, F ∈ L.
For example, Hintikka’s game is adequate with respect to classical logic, as discussed in
Examples 2.1.3 and 2.1.9.

On the validity side, a provability game DGL for a logic L is a collection of games where
every formula F gets assigned a game DGL(F ). Then DGL is called adequate if the value
of DGL

I(F ) is d(F ), for each F ∈ L. An example of an adequate game for classical logic
is a version of Lorenzen’s dialogue game [43, 21, ?].

One of the main themes of this thesis is the lifting of adequate semantic games to
adequate provability games.
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CHAPTER 3
Hybrid Logic

3.1 Introduction

In this chapter, we will apply the lifting technique to modal logic. Modal logic is an
extension of the language of propositional logic by the modality �. This simple yet
expressive language is used as a tool for formalizing different areas of logic investigation:
epistemology (�F is read as “(the agent) knows that F ”), deontic logic (�F stands for “it
is obligatory that F ”), temporal logics (�F means “F always holds”), and many others.

The usual semantics for modal logics are relational structures. A model is a tuple M =
(W, R, V), where W is a set, whose elements are called worlds. R is an accessibility relation
between worlds and V maps every propositional variable to the set of worlds where p is
true. Consequently, formulas are evaluated at a world w in a model M. Depending on the
area of investigation, worlds and the accessibility relation have different interpretations
in terms of knowledge states and epistemological indistinguishability, deontic states and
the betterness-relations, points in time and the is-in-the-future-relation, etc.

There is a straightforward extension of Hintikka’s game to modal logic. In addition to
the current roles of the players, the current formula F , we must also keep track of the
current world w in the model. In the world w, the rules for the connectives ∧, ∨, →, ¬
are as usual. For example, if F is of the form F1 ∨ F2, then the proponent chooses
Fi and the game continues with Fi in the same world w. The extension concerns the
treatment of the modal operator: if F = �G, then the opponent chooses a world v that
is R-accessible from w and the game continues with G at v. If there is no R-accessible
world, the proponent wins and the opponent loses. The game ends if a propositional
variable p is reached at a world u. The proponent wins and the opponent loses if p is
true at u, otherwise, the opponent wins and the proponent loses.

We see from the informal description of this semantic game that its game tree depends
not only on the syntax of the involved formula but also on the relational structure of
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P, w : �p

f

P, w : �p

P, v : p

[P, w : �p]Y

P, v : p P, u : p

Figure 3.1: Three game trees for �p.

the model. In Figure 3.1 we see three game trees over different models, but for the
same situation where I am the proponent of the formula �p at the world w. In the
underlying model of the first game tree, there are no R-accessible worlds and I win the
game immediately. In the second model, w has one R-accessible world, v, and I must be
prepared to defend p at v. In the third model, w has two R-successors, v and u, and You
may choose between them.

This new behavior is in stark contrast to the evaluation game for propositional logic
where semantic information is needed only in the final stage of the game to decide who
wins. This poses a conceptual problem for the lifting technique as described in Chapter 1.
Both our intuitions behind the resulting provability game – a simultaneous play over
all models, and a play of the evaluation game without explicit reference to a particular
model – require that the game tree of the evaluation game is uniform over all models.

We overcome this problem by turning to hybrid logic – an extension of modal logic that
allows for explicit reference to worlds and the accessibility relation within the object
language. The language contains an infinite collection of nominals i, j, . . . and a binary
relation symbol R. Nominals are used as names for worlds of the model, while the
formula R(i, j) is read as ”the world with name j is R-accessible from the world with
name j”.

It is worth noting that hybrid logic substantially increases the expressivity of the lan-
guage. It enables us to grasp many frame properties that are provably not expressible in
“orthodox” modal logic while keeping the same computational complexity1 [11]. Apart
from this, using nominals can be an advantage for modeling in temporal logic [8] as well
as in making the link between modal logic and description logics more explicit [12].

What is important for us here is that by using nominals, the rule for � in Hintikka’s
game can be reformulated in the following way: in the world with name i, if the current
formula is �G, then the opponent chooses a nominal j and the game continues at the world
with name j and with the formula R(i, j) → G. Note that the proponent can immediately
win the game over this formula if j is not R-accessible from i in the model: according to
the rule for “→”, they can choose to continue the game with R(i, j) and a role switch. As
the new opponent, they win the false atomic formula R(i, j). The important advantage
of the new rule is that the game tree is now independent of the accessibility relation R of
the underlying model, allowing us to apply the lifting technique.

1That is true in the basic hybrid logic. The logic containing quantification over nominal is known to be
undecidable.
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3.2. Basic notions in Hybrid Logic

The coherence of hybrid logic with games was first demonstrated by Patrick Blackburn,
who designed a Lorenzen-style [43] dialogue game for hybrid logic [10]. Sara Negri
presented the labeled proof-system G3K that resembles the semantics of modal logic
[47]. Our approach combines the best of two worlds: it supplements the clear semantic
motivation of G3K with an accessible game-theoretic viewpoint of Blackburn’s dialogue
game. Similar to G3K, a failed search for a winning strategy in the disjunctive game
directly gives rise to a countermodel. Although the number of players’ possible choices
may be infinite in the disjunctive game, we show that winning strategies can be repre-
sented as finitely branching trees. This representation allows us to interpret winning
strategies as derivations in a proof calculus, similar to other sequent systems for hybrid
logic [9, 13].

This chapter is structured as follows: Section 3.2 is a recap of hybrid logic. In Section 3.3,
we present the evaluation game and recall the central notion of a strategy. The disjunctive
game over a model is introduced in Section 3.4 and the general disjunctive game in
Section 3.5. This section also contains the main result. In Section 3.6, we use this result to
directly derive games that adequately model validity and entailment. Finally, we show
how winning strategies can be finitized and formulated as proofs in a sequent calculus
presented in Section 3.7.

3.2 Basic notions in Hybrid Logic

In this section, we recall some basic notions and results in hybrid logic. For more
information, the reader may wish to consult books like [11].

The language of hybrid modal logic is as follows: We start from two disjoint, countably
infinite sets N (set of nominals) and P (set of propositional variables). Nominals are
usually called “i, j, k, . . . ” propositional variables are called “p, q, . . . ”. Formulas F are
built according to the following grammar:

F ::= ⊥ | p | i | R(i, j) | F ∧ F | F ∨ F | F → F | ¬F | @iF | ∀i.F | �F | �F

Formulas of the form ⊥, p, i, and R(i, j) are called elementary. Intuitively, we can think of
the nominal i as the name of a particular world in a model. Hence, i is true in exactly one
world. The formula @iF stands for the fact that F is true in the world with the name i.
The relational claim R(i, j) says that the world with name j is accessible from the world
with name i. Though usually defined as @i�j, we include it as an elementary formula to
prevent circular definitions in the description of the game rules in the following sections.
∀i allows universal quantification over nominals. As is common practice, we require
that in the formula ∀i.F , the nominal i does not appear bound by another quantifier in
F . In other words, there is no occurrence of ∀i in F . Using this restriction, we can simply
define substitution F [i/j] as the result of replacing every occurrence of i in F by j.

We now define the semantics formally: A model M for hybrid modal logic is a tuple
(W, R, V, g), where
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3. HYBRID LOGIC

1. W is a non-empty set. Its elements are called worlds.

2. R ⊆ W × W is called accessibility relation. As usual, we write wRv instead of
(w, v) ∈ R. The set of accessible worlds from w is wR := {v ∈ W : wRv}.

3. V : P → P(W)2 is called valuation function.

4. g : N → W is called assignment. If g(i) = w, we say that i is a name of w, or simply
that w has a name. If g is surjective, i.e. every world has a name, we call M named.

The pair (W, R) is called a frame and M is said to be based on this frame. Truth of formulas
in the world w of W is defined recursively:

M, w |= ⊥ never,
M, w |= p, iff w ∈ V(p),
M, w |= i, iff g(i) = w,

M, w |= R(i, j), iff g(i)Rg(j),
M, w |= F ∧ G, iff M, w |= F and M, w |= G,

M, w |= F ∨ G, iff M, w |= F or M, w |= G,

M, w |= F → G, iff M, w ̸|= F or3M, w |= G,

M, w |= ¬F , iff M, w ̸|= F,

M, w |= @iF , iff M, g(i) |= F,

M, w |= ∀i.F , iff for all4j ∈ N, M, w |= F [i/j],
M, w |= �F , iff for all5v ∈ W, (w, v) /∈ R or M, v |= F,

M, w |= �F , iff for some v ∈ W, wRv and M, v |= F.

Example 3.2.1. We invite the reader to check that M, w1 |= �(j ∨ ¬�p), where M is as
depicted in Figure 3.2

We say that a formula F is true in the model M and write M |= F iff M, w |= F for
every world w. For a class of models M, we write |=M F and say that F is valid over
M iff for all M ∈ M, M |= F . We say that F is valid (we write |= F ) iff F is valid over
the class of all models. For a set of formulas T , we write M, w |= T iff M, w |= T for
every T ∈ T . We say that T (locally) entails F and write T |= F iff M, w |= T implies
M, w |= F , for every model M and world w. Similarly, we define T |=M F . We say that

2P(W) denotes the power set of W.
3This is equivalent to the usual “if M, w |= F , then M, w |= G".
4This is different from the definition in the literature but equivalent for the class of named models,

which will be used for the largest part of this chapter. We chose this formulation since it fits our game
format better.

5This is equivalent to the usual “For all v ∈ W, if wRv, then M, v |= F ". Our formulation is more easily
representable as a game rule.
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w1

pw2 = g(j)

w3

p w4

w5

Figure 3.2: Model with worlds w1, ..., w5. Arrows represent the accessibility relation. We
write p inside the circle representing a world w iff w ∈ V(p)

M is characterized by a set of formulas T iff M ∈ M ⇔ M |= T , for every model M. If
such a T exists, we say that M is characterizable.

For a frame (W, R), we say that G is valid over (W, R) and write (W, R) |= G iff M |=
G, for every model M based on (W, R). A set of formulas T is valid over (W, R) iff
(W, R) |= T for every T ∈ T . A class of frames F is characterized by a set of formulas
F iff (W, R) ∈ F ⇔ (W, R) |= F . In this paper, we will be interested in finite sets F
consisting of pure formulas, i.e., formulas not containing propositional variables where
every nominal is bound. In this case, one can show that M |= F iff M is based on a
frame from F. Therefore, we will from now on assume that characterizable for a class of
frames F means characterizable by such an F , and conveniently identify F with the class
of all models based on a frame from F (and use the |=F-notation accordingly).

For example, the class of irreflexive models is characterized by the formula ∀i.¬R(i, i).
The class of frames with two worlds is characterized by ¬∀i.∀j.¬∀k.(k = i ∨ k = j). We
point out that the expression of frame properties using the ∀-quantifier is an elegant
way of reducing questions of validity over classes of frames to questions of entailment.
However, including this quantifier in our language comes at a cost, as the validity
problem becomes undecidable in general. However, if we restrict the use of ∀ to instances
of many frame properties, the satisfiability problem is indeed decidable. We thus get
both the mentioned reduction and decidability.

The most important class for what follows is the class of named models N. The acces-
sibility relation in such named models is completely determined by the truth values
of the relational formulas. For these models, we can thus state the following semantic
facts about the modal operators without explicitly referring to the semantics of the
accessibility relation. Let w = g(i), then

M, w |= �F , iff for all j ∈ N, M, g(j) |= R(i, j) → F,

M, w |= �F , iff for some j ∈ N, M, g(j) |= R(i, j) ∧ F.

M |= F , iff for all i ∈ N, M, g(i) |= F.

As noted in the introduction to this chapter, this semantic fact will play an important role
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in defining the evaluation game in such a way that the lifting technique can be applied.
Furthermore, we will make use of the fact that questions of validity and entailment can
be reduced to named models:

Lemma 3.2.2: Lemma 2.7 in [13]

Let T be a finite set of formulas and F a characterizable class of frames. Then for
all F ,

T |=F F ⇐⇒ T |=F∩N F.

3.3 A Game for Truth

We are now ready to introduce the evaluation game for hybrid logic. We give both an
intuitive and formal definition and recall the notion of a (winning) strategy in Subse-
tion 3.3.1. The adequacy of the game is proved in Subsection 3.3.2, and Subsection 3.3.3
shows how to internalize nominals into the game.

As in the case for propositional logic, the evaluation game for hybrid logic is played over
a model M = (W, R, V, g) by two players, Me and You, who argue about the truth of a
formula F at a world w. At each stage of the game, one player acts as the proponent,
while the other acts as the opponent of the claim that a formula F is true at the world
w. We represent the situation where I am the proponent (and You are the opponent)
by the game state P, w : F , and the situation where I am the opponent (and You are the
proponent) by O, w : F . We add another kind of game state of the form P : F or O : F ,
representing the claim that F is true in the whole model. We call a game state elementary
if its involved formula is elementary. To get a firm understanding of the evaluation
game, we start with a semi-formal description. Let g be a game state. The game GHyb

M (g)
starts at the game state g and proceeds according to the following rules6:

(P∨) At game states of the form P, w : G1 ∨ G2, I choose between the game states
P, w : G1 and P, w : G2 to continue the game.

(O∨) At O, w : G1 ∨ G2, You choose between O, w : G1 and O, w : G2.

(P∧) At P, w : G1 ∧ G2, You choose between P, w : G1 or with P, w : G2.
(O∧) At O, w : G1 ∧ G2, I choose between O, w : G1 and O, w : G2.

(P→) At P, w : G1 → G2, I choose between O, w : G1 and P, w : G2.
(O→) At O, w : G1 → G2, You choose between P, w : G1 and O, w : G2.

(P¬) At P, w : ¬G, the game continues with O, w : G.
(O¬) At O, w : ¬G, the game continues with P, w : G.

6In Section 3.3.3, the rules for � and � are altered. The version from that section will be used for the
largest part of the chapter.
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(P@) At P, w : @iG, the game continues with O, g(i) : G.

(O@) At O, w : @iG, the game continues with O, g(i) : G.

(P∀) At P, w : ∀i.G, You choose a nominal j, and the game continues with P, w : G[i/j].
(O∀) At O, w : ∀i.G, I choose a nominal j, and the game continues with O, w : G[i/j].

(P�) At P, w : �G, I win if wR = ∅. Otherwise, You choose an R-successor v and the
game continues with P, v : G.

(O�) At O, w : �G, You win if wR = ∅. Otherwise, I choose an R-successor v and the
game continues with P, v : G.

(P�) At P, w : �G, You win if wR = ∅. Otherwise, I choose an R-successor v and the
game continues with P, v : G.

(O�) At O, w : �G, I win if wR = ∅. Otherwise, You choose an R-successor v and the
game continues with P, v : G.

(PU ) At P : G, You choose a world w and the game continues with P, w : G.

(OU ) At O : G, I choose a world w and the game continues with O, w : G.

(Pel) Let el be an elementary formula. I win and You lose at P, w : el iff M, w |= el.
Otherwise, You win and I lose.

(Oel) At O, w : el, I win and You lose iff M, w ̸|= el. Otherwise, You win and I lose.

Note the symmetry between the P- and O-versions of the rules. The last rule represents
the winning conditions of the game. Interestingly, also the rules for � and � contain
winning conditions, if the current world has no successors. We point out that the
condition does not depend on the whole history, but only on its final game state.

Example 3.3.1. Consider the model M in Figure 3.2 and the following run of the game
GHyb

M (P, w1 : �(j ∨ ¬�p)). First, You must choose a neighboring world. Since You know
that I can defend j at w2, let us say that You choose w3 and I must then defend j ∨ ¬�p
at w3. Clearly, I will choose the second disjunct. According to the rule of negation, a role
switch occurs: I am now the opponent and You the proponent of �p at w3. Hence, I must
choose a neighboring world and You must defend p there. As My choice is between the
p-world w4 and the non-p-world w5, I will choose w5 and win the game. This run of the
game is depicted in Figure 3.3

We now formally define the evaluation game in terms of Definition 2.1.1. Game states are
of the form Q : F , where Q ∈ {P, O} and F is a formula, or of the form Q, w : F where,
additionally, w is a world in a model M. The set of game states is denoted StatHyb

M .
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[P, w1 : �(j ∨ ¬�p)]Y

[P, w3 : (j ∨ ¬�p)]I

[P, w3 : ¬�p]I

[O, w3 : �p]I

[O, w5 : p]I

Figure 3.3: A run of the game GHyb
M (P, w1 : �(j ∨ ¬�p))

Definition 3.3.2: Evaluation game for hybrid logica

aFor the version of the game that is used for the most part of this chapter, see Section 3.3.3

Let M be a model and g a game state in StatHyb
M . The evaluation game GHyb

M (g) is
defined as follows:

• The initial history is ⟨g⟩.

• The set of histories HistHyb
g is the minimal set containing ⟨g⟩ and satisfying

the following conditions: if h = ⟨Q : G⟩ is contained, then so is h ⌣ Q, u : G,
for every world u. If h = h′ ⌣ Q, v : G is contained, and G is of the form

– G = G1 ∨ G2, then also h ⌣ Q, v : G1 and h ⌣ Q, v : G2 are contained,

– G = G1 ∧ G2, then also h ⌣ Q, v : G1 and h ⌣ Q, v : G2 are contained,

– G = G1 → G2, then also h ⌣ Q̄, v : G1 and h ⌣ Q, v : G2 are
containeda,

– G = ¬G′, then also h ⌣ Q̄, v : G′ is contained,

– G = @iG
′, then also h ⌣ Q, g(i) : G′ is contained,

– G = ∀i.G′, then also h ⌣ Q, v : G[i/j] is contained for all j ∈ N ,

– G = �G′, then also h ⌣ Q, u : G′ is contained, for all u ∈ vR,

– G = �G′, then also h ⌣ Q, u : G′ is contained, for all u ∈ vR.

• Non-terminal histories ending in the states of the following forms are labeled
as specified in the following table:
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labeled “I” labeled “Y”
O : G P : G
P : G1 ∨ G2 O : G1 ∨ G2
O : G1 ∧ G2 P : G1 ∧ G2
P : G1 → G2 O : G1 → G2
P : ¬G′ O : ¬G′

P : @iG
′ O : @iG

′

O : ∀i.G′ P : ∀i.G′

O : �G′ P : �G′

P : �G′ O : �G′

• The payoff function ℘M maps terminal histories to the domain {−1, 1},
where −1 ◁ 1. Terminal histories ending in the following states are mapped
to the following values:

mapped to 1 mapped to −1
P, w : el, if M, w |= el P, w : el, if M, w ̸|= el
O, w : el, if M, w ̸|= el O, w : el, if M, w |= el

P, w : �G′ O, w : �G′

O, w : �G′ P, w : �G′

If the payoff is 1, then I win and You lose. If it is −1, I lose and You win.

aIf Q = P, then Q̄ = O, and if Q = O, then Q̄ = P.

Let us convince ourselves that this description matches our intuitive understanding of
the game in terms of the rules given above: for example, if the current history h ends in
the game state g = P, v : G1 ∨ G2 (i.e. I am currently the Proponent of G1 ∨ G2 in v), then
h is labeled “I”. This means I can choose from the two minimal histories extending h,
namely h ⌣ P, v : G1 and h ⌣ P, v : G2 which will be the new current history. If h ends
in P, v : �G′ (i.e. I am currently the proponent of �G′ in v) and there are no successors
of v, then h is a terminal history with payoff 1, i.e. I win. Otherwise, h is labeled “Y”,
and the histories extending h are of the form h ⌣ P, u : G′, where u ranges over the
successors of v. This means, You pick such a u and the new history is h ⌣ P, u : G′. At
P, w : ¬G′ the labeling is inessential as there are no choices involved: the new history is
h ⌣ O : G′, i.e. the game automatically continues with a role switch. We again point out
that the order of moves, their availability, or who wins at a terminal state is determined
solely by the last state of the history.

Remember that it is useful to think of a game as a tree, see 3.6. In fact, we will use game
trees for illustrating all our examples.

Example 3.3.3 (3.3.1 continued). The game tree in Figure 3.4 represents all possible choices
of the two players at any point. The game states are labeled “I” or “Y”, depending on

29



3. HYBRID LOGIC

[P, w1 : �(j ∨ ¬�p)]Y

[P, w2 : (j ∨ ¬�p)]I

[P, w2 : j]I [P, w2 : ¬�p]I

[O, w2 : �p]Y

[P, w3 : (j ∨ ¬�p)]I

[P, w3 : j]Y [P, w3 : ¬�p]I

[O, w3 : �p]I

[O, w4 : p]Y [O, w5 : p]I

Figure 3.4: The game tree GHyb
M (P, w1 : �(j ∨ ¬�p)).

which player is to move. We also label every leaf with the player who wins the run
there. All leaves of that tree are elementary game states, except for O, w2 : �p, where I
immediately win the game because there are no successors of w2. The run of the game
from Example 3.3.1 can be found as a path through this tree.

Although not all possible runs of a game end in a winning state for Me, I can make
choices that will guarantee that the game will end in My victory. Generally, if I can
always enforce a given game to end in a winning state for Me, we say that I have a
winning strategy for that game. We will make this notion more formal in the following
subsection.

We now show that the corresponding game tree of the evaluation game is of finite height.
Intuitively this means that every run of the game lasts only finitely many rounds:

Proposition 3.3.4

Let g be a game state. All histories of GHyb
M (g) are finite.

Proof. We define the degree δ(F ) of a formula F to be 0 if F is elementary, δ(F ∗ G) =
max{δ(F ), δ(G)} + 1 for ∗ a logical connective and δ(△F ) = δ(△F ) + 1 for △ a modal
operator (that includes @), ¬, or ∀i. We extend δ to game states by setting δ(Q, w : F ) =
δ(F ) and δ(Q : F ) = δ(F ) + 1 for Q ∈ {P, O}. The proof now follows from the fact that
every move in the game strictly reduces the degree of the game state.

3.3.1 Winning Strategies

To precisely describe the scenario where I can enforce a winning outcome, we use
the notion of a winning strategy. Remember, that strategies for Me were already for-
mally defined in Definition 2.1.5 as functions mapping every I-history h to a history
h ⌣ g. Winning strategies were defined in Subsection 2.1.3. We, therefore, content
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[P, w1 : �(j ∨ ¬�p)]Y

[P, w2 : (j ∨ ¬�p)]I

[P, w2 : j]I

[P, w3 : (j ∨ ¬�p)]I

[P, w3 : ¬�p]I

[O, w3 : �p]I

[O, w5 : p]I

Figure 3.5: A winning strategy for GHyb
M (P, w1 : �(j ∨ ¬�p))

ourselves with recalling the description of a strategy as a subtree of the game tree and
an illuminating example.

A strategy σ for Me is a subtree of the game tree of GHyb
M (g) such that g is in σ and for

every game state g′ appearing in σ,

• if g′ is labeled “I”, then exactly one successor of g′ is in σ,

• if g′ is labeled “Y”, then all successors of g′ are in σ.

The strategy σ is called winning if all leaves in σ are winning for Me. (Winning) strategies
for You are defined symmetrically.

Example 3.3.5. Continuing the game from Example 3.3.3, we can now make precise our
observation that I can make choices such that the game will always end in winning
states for Me. A strategy for Me for GHyb

M (P, w1 : �(j ∨ ¬�p)) is depicted in Figure 3.5
as a subtree of the game tree in Figure 3.4. Note that all leaves are winning for Me (and
thus labeled “I”). Therefore, this strategy is a winning strategy for Me.

We will see another example of a game, where You have a winning strategy in Exam-
ple 3.3.10 at the end of the section.

Remark 3.3.6. Let h be a history of the evaluation game GHyb
M (g). We write GHyb

M (h) for
the subgame GHyb

M (g)@h, see Defininition 2.1.13. Let h = h′ ⌣ g′. Since the winning
conditions of the evaluation game depend only on the last game state in the history,
but not the entire history itself, we get that the games GHyb

M (h′ ⌣ g′) and GHyb
M (g′) are

strategically equivalent. Where it does not cause confusion, we will therefore often
identify these two games.
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3.3.2 Adequacy

This subsection is devoted to proving the adequacy of the evaluation game, i.e., that
the existence of winning strategies for Me and truth in a model coincide. We use the
following handy notation: we write M |= P, w : F if M, w |= F and M |= O, w : F
otherwise. Similarly, we write M |= P : F if M |= F and M |= O : F otherwise. The
central theorem is the following:

Theorem 3.3.7: Adequacy of the evaluation game

Let M be a model, and g a game state.

1. I have a winning strategy for GHyb
M (g) iff M |= g.

2. You have a winning strategy for GHyb
M (g) iff M ̸|= g.

As an immediate corollary, we obtain that the evaluation game is determined, which
means that exactly one of the players has a winning strategy7. To make the connection to
the model-theoretic semantics entirely clear, we spell out our abbreviations from above:

Corollary 3.3.8

I have a winning strategy for GHyb
M (P, w : F ) iff M, w |= F . I have a winning

strategy for GHyb
M (P : F ) iff M |= F .

Proof Theorem 3.3.7. We show both directions of 1 and 2 simultaneously by induction on
the degree of the game state, as in the proof of Proposition 3.3.4. Let us show some of
the cases. If g is of the form w : el, then everything follows from the winning conditions.

If g = P : G1 ∧ G2, then I have a winning strategy for GHyb
M (P, w : G1 ∧ G2) iff8 I have

winning strategies for both GHyb
M (P, w : G1) and GHyb

M (P, w : G2). By the induction
hypothesis, this is the case iff M, w |= G1 and M, w |= G2, which is equivalent to
M, w |= G1 ∧ G2 and M |= g.

In g = P, w : �G, You choose a successor v and the game continues at M, v : G.
Consequently, if I have a winning strategy for GHyb

M (P, w : �G), then I must have a
winning strategy for GHyb

M (P, v : G), for every R-successor v of w. By the inductive
hypothesis, this is the case iff M, v |= G for every v ∈ wR, which in turn is equivalent to
M, w |= �G and M |= g. Note that this covers the case, where w has no successors.

7This also follows from the fact that the game is finite-valued and Theorem 2.1.11
8This simple equivalence is actually justified by Lemma 2.1.14 and Remark 3.3.6. We will not mention

their further applications in this proof.
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In g = P, w : ¬G, the game continues with O, w : G. Thus, I have a winning strategy
in GHyb

M (P, w : ¬G) iff I have a winning strategy in GHyb
M (O, w : G). By the inductive

hypothesis, this is the case iff M |= O, w : G iff M, w ̸|= G iff M, w |= ¬G iff M |= g.

The other cases are similar.

3.3.3 Internalizing Nominals

We conclude this section with an important observation about the game for named
models. Remember that in a named model, every world w has a name i, i.e. g(i) = w.
Therefore, for Q ∈ {P, O}, it is unambiguous if we write Q, i : F for the game state
Q, w : F . We can thus safely alter the set of game states to the set StatHyb containing such
game states along game states of the form Q : F . Note that StatHyb is now independent
of the underlying model M. This, together with the fact that M |= R(i, j) iff g(i)Rg(j)
gives us the following equivalent formulations of the rules for �, � and U :

(P�) At P, i : �G, You choose a nominal j and the game continues with P, j : R(i, j) →
G.

(O�) At O, i : �G, I choose a nominal j and the game continues with P, j : R(i, j) → G.

(P�) At P, i : �G, I choose a nominal j and the game continues with P, j : R(i, j) ∧ G.
(O�) At O, i : �G, You choose a nominal j and the game continues with P, j : R(i, j)∧G.

(PU ) At P : G, You choose a nominal i and the game continues with P, i : G.
(OU ) At O : G, I choose a nominal i and the game continues with P, i : G.

For a proof later in this chapter we need an even more general case. Let N ′ ⊆ N be
such that every world in M has a name in N ′, i.e., g restricted to N ′ is surjective. In this
case, we say that M is N ′-named. We consider the game GHyb,N ′

M (g), where branching
over the nominals is restricted to N ′ in the above rules. In the formal description of
Definition 3.3.2 we change the definition of the histories to refer to nominals in N ′, not
worlds. Additionally, we have the following changes:

• If h = ⟨Q : G⟩ is contained, then so is h ⌣ Q, i : G for every nominal i ∈ N ′. If
h = h′ ⌣ Q, i : G is contained and G is of the form

– G = �G, then also h ⌣ Q, j : R(i, j) → G is contained, for all nominals j ∈ N ′,

– G = �G, then also h ⌣ Q, j : R(i, j) ∧ G is contained, for all nominals j ∈ N ′.

The rest of the definition is the same, except that we remove the payoff values at game
states involving boxed formulas. Now all terminal histories end in elementary game
states.
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3. HYBRID LOGIC

Proposition 3.3.9

Let M be N ′-named. For every g = Q, w : F let g′ be Q, i : F , for some i ∈ N ′

with g(i) = w. If g = Q : F , then g′ = g. Then the games GHyb
M (g) and GHyb,N ′

M (g′)
are strategically equivalent.

Proof. By induction on the degree of g. The interesting cases are for �, � and U . For
example, suppose I have a winning strategy in GHyb

M (P, w : �G) and let g(i) = w. In the
first round of GHyb,N ′

M (P, i : �G), You choose a nominal j ∈ N ′ and the game continues
with P, j : R(i, j) → G. If g(j) is not an R-successor of w, then I go to O, j : R(i, j) and
win the game. Otherwise, I go to P, j : G. By assumption, I have a winning strategy
in P, g(j) : G and thus in P, j : G, by the induction hypothesis. Since j was arbitrary, I
have a winning strategy for P, i : �G.

For the other direction, suppose I have a winning strategy for GHyb,N ′
M (P, i : �G). We

must show that for every R-successor v of w, I have a winning strategy in P, v : G. To
this end, let j ∈ N ′ be a name for v. Then by assumption, I have a winning strategy in
P, j : R(i, j) → G. Since O, j : R(i, j) is losing for Me, I must have a winning strategy in
P, j : G. The inductive hypothesis gives Me a winning strategy in P, v : G.

The other cases are similar.

In particular, for named models, Proposition 3.3.49, Theorem 3.3.7 remains valid. From
now on, unless explicitly noted otherwise, we assume that all models are named. Also,
we use only the modified game GHyb,N

M with branching over the nominal, refer to it
as the evaluation game, and write GHyb

M . This is justified by Lemma 3.2.2 and by the
proposition above. As discussed in the introduction, the advantage of the modified
game is that game trees are now uniform and semantic information from the model is
only needed at elementary states. Note, however, that the tree underlying the evaluation
game is now infinitely branching, in general. Let us consider another example where we
use the reformulated rules.

Example 3.3.10. Let M be the model in Figure 3.6. Because M is not transitive, we
expect You to have a winning strategy in the game GHyb

M (P, i : ��p → �p). A (compact
representation) of Your winning strategy is shown in Figure 3.7. If I go to P, i : �p in the
first turn, I will then choose a nominal l and the game continues at P, l : R(i, l) ∧ p. If
l ̸= k, then You should go to P, l : p, otherwise to P, k : R(i, k). In both cases, You win
the game.

A more direct way of saying that the model is a countermodel to transitivity is by making
use of the hybrid language: Clearly, R(i, j) ∧ R(j, k) → R(i, k) is false at the world g(i).

9For the modified rules, we need to change the definition of degree: δ(△F ) = max{1, δ(F )} + 1 for
modal operators △ to deal with the occurrence of R(i, j) in the successor state.
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3.4. The Disjunctive Game as a Semantic Game

w1 = g(i) w2 = g(j)

p

w3 = g(k)

Figure 3.6: A non-transitive model.

[P, i : ��p → �p]I

[O, i : ��p]Y

[O, j : R(i, j) ∧ �p]I

[O, j : R(i, j)]Y [O, j : �p]Y

[O, k : R(j, k) ∧ p]I

[O, k : R(j, k)]Y [O, k : p]Y

[P, i : �p]I

[P, l : R(i, l) ∧ p]Y

[P, l : p]Y
l ̸= k

[P, k : R(i, k)]Y

Figure 3.7: A winning strategy for You in the game GHyb
M (P, i : ��p → �p).

Therefore, You have a winning strategy for the game GHyb
M (P, i : R(i, j) ∧ R(j, k) →

R(i, k)).

3.4 The Disjunctive Game as a Semantic Game

This section describes the disjunctive game, an extension of the evaluation game, and
shows the connection between the two games. Similarly to the evaluation game, the
disjunctive game is played over a fixed model M. However, in every history h, I now
have an extra option: instead of moving according to the rules of the evaluation game, I
can decide to create a “backup-copy” of h and continue playing at the disjunctive game
state (or disjunctive state) h

�
h. If the game is unfavorable for Me in one copy, I can always

come back to have another shot at the other copy. Formally, disjunctive game states are
finite multisets of histories of the evaluation game. We prefer to write h1

�
...

�
hn for the

disjunctive game state {h1, ..., hn}, but keep the convenient notation h ∈ D if h belongs
to the multiset set D. We write D1

�
D2 for the multiset sum D1 + D2 and D

�
h for

D +{h}. A disjunctive state is called elementary if all its histories end in elementary game
states. My goal is to win at least one backup copy (hence the “disjunctive”). Therefore,
disjunctive states are winning for Me if they contain at least one winning history.

Note that due to the design of the game, runs of the game can now be infinite, as I can
duplicate histories infinitely often. All infinite runs will be considered winning for You.
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3. HYBRID LOGIC

Additionally, I take the role of a scheduler: in a disjunctive state D
�

h, I can point to the
history h, coded by underlining: D

�
h. Afterward, the corresponding player takes their

turn in the evaluation game. Say they move to g, then the new disjunctive game state is
D

�
h ⌣ g. Alternatively, I can decide to end the game. The winner is then determined

as described above.

We now give a semi-formal description of the disjunctive game. Let D be a disjunctive
state. Let Dter consist of the terminal histories of D. We say that D is terminal if
D = Dter, or if I have decided to end the game.

(End) If no histories in D are underlined, I can end the game and D becomes terminal.

(Dupl) If no histories in D are underlined and D is not terminal, I can duplicate an h ∈ D
and the game continues with D

�
h.

(Sched) If no histories in D = D′ �
h are underlined and D is not terminal, I can

underline a non-terminal h ∈ D and the game continues with D′ �
h.

(Move) If D = D′ �
h then the player who is to move in the evaluation game GHyb

M (h) at
the history h makes a legal move to the game state g and the game continues with
D

�
h ⌣ g. For example, if h ends in P, i : G1 ∧ G2, then You chose a k ∈ {1, 2}

and the game continues with D
�

h ⌣ P, i : Gk.

(Win) If D is terminal, then I win iff I win the evaluation game in some h ∈ Dter, and
You lose. Otherwise, You win and I lose.

Additionally, we require that if no history of D is underlined, I must move according to
(End), (Dupl), or (Sched). (Dupl) is referred to as the duplication rule and (Sched) as the
scheduling, or underlining rule.

Example 3.4.1. In Example 3.3.5, we have seen the evaluation game10 GHyb
M (P, w1 :

�(j ∨ ¬�p)), where I have a winning strategy. It, therefore, makes no sense for Me to use
the duplication rule in the corresponding disjunctive game DGHyb

M (P, w1 : �(j ∨ ¬�p)).
In Example 3.3.10, You have a winning strategy for GHyb

M (P, i : ��p → �p). In the
disjunctive game DGHyb

M (P, i : ��p → p), using the duplication rule only produces
backup copies of game states, where You have a winning strategy and therefore does not
help Me.

Finally, let us look at a case where the initial state consists of more than one history. With
the non-transitive model M from Example 3.3.10, consider the disjunctive game over
M starting at

O : ∀i.∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k))
�

P, i : ��p → �p

10We often write g instead of the history ⟨g⟩
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3.4. The Disjunctive Game as a Semantic Game

Since I have a winning strategy for the evaluation game starting in O, i : R(i, j) ∧
R(j, k) → R(i, k), I will win the disjunctive game, without having to schedule the other
game states. This illustrates the fact that for Me to win the disjunctive game, it is enough
to have a winning strategy for some game state in the disjunctive state. This fact is also
formally proved below. Furthermore, My winning strategy for this game can be seen as
a witness to the semantic fact

R(i, j) ∧ R(j, k) → R(i, k) |= @i(��p ⇒ �p).

A depiction of My winning strategy for this game can be found in Figure 3.8. For the
sake of readability, we only write the last game state in each history in disjunctive states.
Let D be the multiset containing the relational claims. Furthermore, we left applications
of the rule (Sched) and (End) implicit. Where marked, the strategy branches over all
nominals. This represents Your choice of nominal in the modal rule for the evaluation
game. The strategy starting from that choice is uniform in the chosen nominal. In the
state O, j : R(i, j) ∧ �p

� P, i : �p, I use the duplication rule, and go to O, j : R(i, j) in
one, and to O, j : �p in the other copy. We do not further mention the other applications
of this trick. H is an abbreviation for the disjunctive state O : T

� O, j : R(i, j) � O, k :
R(j, k). At the right leaf, H

� O, k : p
� P, k : p, I end the game and win. At the other

disjunctive state, the game tree continues in Figure 3.9. Here, K is O, k : p
� P, k : R(i, k).

I begin with an application of the rule (U) and three applications of (O∀) I win the game
in all leaves, which shows that the strategy is indeed winning. K1, K2 and K3 are K
with O, j : R(i, j), O, k : R(j, k), and P, k : R(i, k) removed, respectively.

This winning strategy may seem a bit overblown since it includes many non-essential
moves. For example, it was not necessary for Me to move into P, i : ��p → �p at all,
since I am unable to defend this state over the non-transitive model M. However, we
will see that this strategy contains the necessary information to win the disjunctive game
over all models. Indeed, the leaves are not only winning in the model game over the
model M but over every possible model. Therefore, this winning strategy can even be
seen as proof of the above semantic fact. Strategies like this will be the topic of the next
section.

We now give the full game-theoretic definition of the disjunctive game in terms of
Definition 2.1.1. If h is a history of the game GHyb

M (g), let us write GHyb
M (h) for the

subgame GHyb
M (g)@h, see Definition 2.1.13.

Definition 3.4.2: Disjunctive game as Semantic Game

Let M be a model. Disjunctive statesa are multisets of histories of the evaluation
game, where none or exactly one history is underlined, or the dummy state ∗.
Let D be a disjunctive state containing histories of the evaluation game. The
disjunctive game DGHyb

M (D) is defined as follows:

• The initial history is D.
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3. HYBRID LOGIC

• If h is a disjunctive history and no state in the disjunctive state H is under-
lined, and

– h = h′ ⌣ H
�

h, then h ⌣ ∗ is a disjunctive history. If additionally,
h is not terminal, then h ⌣ H

�
h

�
h and h ⌣ H

�
h are disjunctive

historiesb.

– h = h′ ⌣ H
�

h, then h ⌣ H
�(h ⌣ g) is a disjunctive history if h ⌣ g

is a history of the evaluation game GHyb
M (h).

• Non-terminal disjunctive histories ending in a disjunctive state H with no
underlined histories are labeled “I”. If H = H ′ �

h, then H is labeled the
same as h in the evaluation game GHyb

M (h).

• The payoff function maps terminal disjunctive histories to the domain
{−1, 1}, where −1 ≺ 1. Infinite terminal disjunctive histories are mapped to
-1. Terminal disjunctive histories ending in ⟨. . . , D, ∗⟩ are mapped to

– 1, if some h ∈ D is winning in the evaluation game GHyb
M (h). We say

that D is winning for Me and losing for You.

– −1, else. In this case, D is losing for Me and winning for You.

aTo make the distinction easier, we always refer to game states of the disjunctive game as
disjunctive states and histories of the disjunctive game as disjunctive histories.

bNote that there is implicit quantification over h.

Remark 3.4.3. (1) It follows from the definition that all terminal disjunctive histories end
in ∗.

(1) (Winning) strategies for the disjunctive game are well-defined in light of Defini-
tion 2.1.5 and can again be thought of as subtrees of the game tree. To distinguish from
the evaluation game, we will speak of disjunctive (winning) strategies.

(2) Due to infinite disjunctive states and the duplication rule, runs of the game can now
be infinite, resulting in a winning outcome for Me. However, our games retain a vital
property: By the Gale-Stewart Theorem [32], every instance of the disjunctive game is
determined, i.e. exactly one of the two players has a winning strategy. Note that this also
follows from the fact that the game is finite-valued and Theorem 2.1.11. A direct proof
follows from the two propositions below.

(3) In contrast to the evaluation game, the disjunctive game is not fully symmetric. This
is due to the duplication rule, the winning conditions, and My role as a scheduler, i.e.
the scheduling rule. At least the last asymmetry can be eliminated. In Chapter 5, we
discuss a general framework for the disjunctive game, where the scheduling is done
by a regulation function, which can be thought of as a third, non-strategic player. Under
certain conditions, the disjunctive game retains its nice properties which we discuss in
the present chapter.
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3.4. The Disjunctive Game as a Semantic Game

[O : T
� P, i : ��p → �p]I

�
O : T

� P, i : ��p → �p
� P, i : ��p → �p


I

�
O : T

� O, i : ��p
� P, i : ��p → �p


I

�
O : T

� O, i : ��p
� P, i : �p


Y

�
O : T

� O, j : R(i, j) ∧ �p
� P, i : �p


I

�
O : T

� O, j : R(i, j) � O, j : �p
� P, i : �p


Y

�
O : T

� O, j : R(i, j) � O, k : R(j, k) ∧ p
� P, i : �p


I

�
O : T

� O, j : R(i, j) � O, k : R(j, k) � O, k : p
� P, i : �p


I

�
H

� O, k : p
� P, k : R(i, k) ∧ p


Y

H
� O, k : p

� P, k : R(i, k) H
� O, k : p

� P, k : p

k ranges over N

j ranges over N

Figure 3.8: A winning strategy for the game DGHyb
M (O : T

� P, i : ��p → �p), where
T characterizes transitive frames.

We now compare the disjunctive game to the evaluation game from a strategic viewpoint.
Essentially, a winning disjunctive strategy for Me for the disjunctive game over a model
is nothing more but a disjunction of strategies for the evaluation game:

Proposition 3.4.4: My disjunctive strategy = disjunction of My strategies

I have a disjunctive winning strategy in DGHyb
M (D) iff I have a winning strategy

in GHyb
M (h) for some h ∈ D.

Proof. “⇒”: Let σ be a winning strategy for Me for DGHyb
M (D). By backward induction

39



3. HYBRID LOGIC

�
K

� O : ∀i.∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k))

I

�
K

� O, i : ∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k))

I

�
K

� O, i : ∀k. (R(i, j) ∧ R(j, k) → R(i, k))

I

�
K

� O, i : (R(i, j) ∧ R(j, k) → R(i, k))

I

�
K

� O, i : R(i, j) ∧ R(j, k) → R(i, k)

I

�
K

� O, i : R(i, j) ∧ R(j, k) → R(i, k)

I

�
K

� P, i : R(i, j) ∧ R(j, k)

Y

K1
� O, j : R(i, j) � P, i : R(i, j) K2

� O, k : R(j, k) � P, i : R(j, k)

K3
� P, k : R(i, k) � O, i : R(i, k)

Figure 3.9: Continuation of the strategy in Figure 3.8.

on the tree structure of σ we show11 that for every H ∈ σ there is h ∈ H such that I
have a winning strategy σH in GHyb

M (h). The proposition then follows for the case where
H = D.

By assumption, all leaves ∗ have a predecessor H such that there is some winning h ∈ H .
If H is not followed by ∗ and is labeled “Y”, then H is of the form H ′ �

h. The successors
of H are H

�
h′, where h′ are the successors of h in the evaluation game. By the inductive

hypothesis, there are winning strategies σH′ �
h′ for all h′. If for some h′, σH′ �

h′ is a

winning strategy for GHyb
M (k), where k ∈ H ′, then we can simply set σH = σH′ �

h′ .

Otherwise, every σH′ �
h′ is a winning strategy for GHyb

M (h′). Lemma 2.1.14 gives us a

winning strategy σH for GHyb
M (h).

If H is labeled “I” and is of the form H ′ �
h, and according to σ, I move to H ′ �

h
�

h,
then we simply set σH = σH

�
h

�
h and use the inductive hypothesis. We proceed

similarly if I move to H
�

h. Finally if H = H ′ �
h and I move to H ′ �

h′, the inductive
hypothesis gives us a winning strategy for σH′ �

h′ for some k ∈ H ′ �
h′. If k ∈ H ′, we

set σH = σH′ �
h′ and are done. If k = h′, we use Lemma 2.1.14 to obtain a winning

strategy for GHyb
M (h).

11Since infinite runs are winning for You, this tree is necessarily of finite height.
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3.4. The Disjunctive Game as a Semantic Game

“⇐”: Suppose, I have a winning strategy σ for GHyb
M (h) for some h ∈ D. The idea is

as follows. Since I can win the evaluation game starting at h, I can win the disjunctive
game by only ever playing on h and not touching the other histories in D. By induction
on the tree structure of σ, we define a strategy µ for Me with the following property: (*)
every disjunctive state appearing in µ is of the form H

�
k, where k is a history in σ12.

The base case follows from the assumption.

If the current disjunctive state is H
�

k with k as required, and there are no game states
underlined in H , then underline k and (*) follows immediately from the inductive
hypothesis. If the current disjunctive state is H

�
k and k is labeled “Y”, then You

proceed to some H
�

k ⌣ g. Since k is labeled “Y”, σ contains all immediate successors
of k, hence k ⌣ g must be a history in σ. If k is labeled “I”, then I move to H

�
σ(k).

Clearly (*) holds for σ(k). Eventually, the game reaches a state H
�

k, where k is a leaf of
σ, and thus winning for Me. I, therefore, end the game and win.

If D consists of a single history h, then the proposition gives the strategic equivalence of
the games GHyb

M (h) and DGHyb
M (h). This shows that the clear differentiation between the

evaluation and the disjunctive game is somewhat artificial. If anything, the disjunctive
game played over a model should be itself considered a semantic game, as defined in
Chapter 1.

We introduced the disjunctive game over a model for two reasons. First, the previous
proposition shows that a strategy in the disjunctive game can really be thought of as a
disjunction of strategies for the evaluation game, thus giving a strong motivation and
intuition, which is useful later on. Second, in the next section, we will see a version of
the disjunctive game played over all models simultaneously. Having formulated the
disjunctive game makes the formulation, and especially the proofs, much easier

We conclude this section with another characterization of the disjunctive game in terms of
Your winning strategies. It shows that a disjunctive strategy for You is really a conjunction
of Your strategies in the evaluation game.

Proposition 3.4.5: Your disjunctive strategy = conjunction of Your strategies

You have a winning strategy in DGHyb
M (D) iff You have winning strategies in

GHyb
M (h) for all h ∈ D.

This fact follows immediately from the determinacy of the game and Proposition 3.4.4.
However, there is also a direct constructive proof:

Proof of Proposition 3.4.5. “⇒”: Let µ be a disjunctive winning strategy for You in the
game DGHyb

M (D) and let D = D′ �
h. The idea is that You can use µ to win the run of

the game where I only ever schedule h and its successors. The behavior of µ contains

12Actually: a path through the tree structure of σ
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all the necessary information to define a strategy µ′ for You in the evaluation game
GHyb

M (h). For a history k = ⟨k1, . . . kn⟩ of the evaluation game labeled “Y”, let disj(k) be
the disjunctive history

D′ �
⟨k1⟩, D′ �

⟨k1⟩, . . . , D′ �
⟨k1, . . . , kn⟩, D′ �

⟨k1, . . . , kn⟩.

If k is labeled “Y”, then disj(k) is mapped to some disj(g) ⌣ D′ �(k ⌣ g) under µ.
Consequently, we define µ′(k) = k ⌣ g.

Let σ be a strategy for Me in GHyb
M (h). We have to show that You win against σ by playing

µ′. To this end, we consider the run of the disjunctive game starting at D where You play
µ and I play according to the following strategy: let k = (σ; µ′)n(h) for some n. If the
current disjunctive state is D′ �

k, then I underline k. If disj(k) is labeled “I”, then I go to
D′ �

σ(k). If disj(k) is labeled “Y”, and You play according to µ, then the next disjunctive
state is D′ �

µ′(k). Eventually, the game reaches the disjunctive state D′ �(σ; µ′)m(h),
where (σ; µ′)m(h) = O(σ, µ′) is terminal. Since µ is winning for You, this disjunctive state
cannot be winning for Me. Thus, O(σ, µ′) is winning for You. Since σ was arbitrary, µ′ is
winning.

“⇐”: For every h ∈ D, let µh be a winning strategy for You in GHyb
M (h). Your strategy

µ in DGHyb
M (D) is as follows: in a disjunctive state H

�
k labeled “Y”, k is a history in

GHyb
M (h), for some h. Hence, I can use µh and go to H

�
σh(k). Playing this way ensures

that all game states contained in every resulting disjunctive state consist of histories of
the σhs, against any opposing strategy from Me. By assumption, every such history that
is also terminal is winning for You. Hence, the game cannot end in a winning disjunctive
state for Me, which shows that µ is winning for You.

3.5 The Disjunctive Game as a Provability Game

In this section, we lift the disjunctive game to a provability game and prove the adequacy
of the resulting game. Intuitively, the new game DGHyb(D) can be interpreted as the
scenario where the players of the evaluation game DGHyb

M (D) forgot – or have not been
informed – about the structure of the model M. The goal of both players is to come up
with strategies that guarantee them a win, independent of what the model M looks like.

Note that this “playing over a model blindly” is only possible because of the fact that
the game trees of the disjunctive game DGHyb

M (D) are the same, independent of M. The
only place where M comes into play is at the winning conditions. It is exactly these
winning conditions that we need to alter to capture our intuition of My strategy being
winning over all models:

(Win) Let D be terminal. I win and You lose the game if, for every model M, I win the
game GHyb

M (D). Otherwise You win and I lose.
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3.5. The Disjunctive Game as a Provability Game

Note that this uniformity was achieved essentially by our change of the rules (RU ), (R�),
and (R�), i.e. the use of the hybrid language.

Example 3.5.1. In Example 3.4.1, we saw a winning strategy for Me for the game
DGHyb

M (O : T
� P, i : ��p → �p), where T was ∀i.∀j∀k. (R(i, j) ∧ R(j, k) → R(i, k)). It

is also a winning strategy in DGHyb(O : T
� P, i : ��p → �p): in the depicted strategy,

the leaves are O, j : R(i, j) �
. . .

� P, i : R(i, j), O, k : R(j, k) �
. . .

� P, i : R(j, k) and
O, k : p

�
. . .

� P, k : p which are indeed winning for Me in all models.

In the formal definition of the game it is also enough to change the payoff function:

Definition 3.5.2: Disjunctive Game as Provability Game

The game DGHyb(D) is the same as the game DGHyb
M (D) in Definition 3.4.2,

except for the payoff function:

• Terminal disjunctive histories h ending in ⟨. . . D, ∗⟩ are mapped to

– 1, if for every model M, h is winning in DGHyb
M (D).

– −1, otherwise.

Intuitively, a winning strategy for DGHyb(D) should contain the information how to
win DGHyb

M (D) for every model M. Indeed, this is true for My winning strategies:

Theorem 3.5.3: Adequacy, ltr

If σ is a disjunctive winning strategy for Me in DGHyb(D), then σ is also a dis-
junctive winning strategy for Me in DGHyb

M (D) for every model M.

Proof. The two games are identical, except maybe for the payoffs. Thus, I can use σ to
play in DGHyb

M (D). By assumption, every outcome resulting from playing σ is winning
DGHyb(D), and hence in DGHyb

M (D).

On the level of existence, the contraposition of the theorem is “If You have a winning strat-
egy in DGHyb

M (D) for one model M, then You have a winning strategy in DGHyb(D)”.
Using a similar proof, however, one can show the following constructive result:

Theorem 3.5.4: Adequacy, ltr (You-version)

If σ is a disjunctive winning strategy for You in DGHyb
M (D) for one model M, then

it is also a disjunctive winning strategy for You in DGHyb(D).

To complete the adequacy result, we want to show that Your winning strategy in
DGHyb(D) gives rise to a model M and a winning strategy for You in DGHyb

M (D).
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Theorem 3.5.5: Adequacy, rtl (You-version)

If You have a winning strategy in DGHyb(D), then there is a model M such that
You have a winning strategy in DGHyb

M (D).

The proof will be the subject of the following subsection. It uses techniques from [9] and
[47]. Note that the proof is slightly easier compared to [26] and [28], since we do not care
about regulations here, as the scheduling is done by Me. We will derive some general
results on the disjunctive game and regulations in Chapter 5.

My best way to play

We will now describe a strategy σ for Me for the game DGHyb(D0). This strategy is – in
a way – the optimal way to play the disjunctive game. Intuitively σ exploits all of My
possible choices without sacrificing My winning chances.

Let us fix an enumeration of pairs (h, g) of histories h and game states g of the evaluation
game such that every pair appears in this enumeration infinitely often13. Let us denote
by #(h, g) the number of the pair (h, g) under this enumeration. Throughout the game,
let us keep track of the number of execution steps n of σ. At D0, n = 0. The strategy σ is
as follows:

1. If in the current disjunctive state D, Dter is winning, I end the game.

2. Otherwise, let n = #(h, g). If D = D′ �
h, and h is labeled

a) “Y” (otherwise, skip), then underline h and You make Your move.

b) “I” and h ⌣ g is a history of the evaluation game (otherwise, skip), then
duplicate h, schedule a copy of h, and go to h ⌣ g in that copy, i.e., the new
disjunctive state is D′ �

h
�

h ⌣ g.

Increase n by 1, go to 1.

To put it into words: until the game reaches a winning disjunctive state, My strategy
is to play in a way such that I always duplicate a state, then play by exhausting all
possible moves in that state. The only fact from this construction that we need is the
following: Let h be the outcome in DGHyb(D0) resulting from You playing according to
Your winning strategy and Me playing My best way σ. We say that a history h appears
along h, and write h ∈ h if it occurs in a disjunctive state in h. We say that h disappears, if
h ∈ hn and for some m > n, h /∈ hm. We have the lemma:

13Both the set of histories and the set of game states are countably infinite, i.e. we can enumerate
both. Interpreting natural numbers as coordinates in a table, we count them diagonally, which gives us an
enumeration of pairs of natural numbers. Finally, the sequence 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . is an enumeration
of the set of natural numbers where every number appears infinitely often.

44



3.5. The Disjunctive Game as a Provability Game

Lemma 3.5.6

Let h be as above. Then:

1. Let h ∈ h be a non-terminal history labeled “Y” in the evaluation game.
Then at least one immediate successor of h appears along h.

2. Let h ∈ h be a non-terminal history labeled “I” in the evaluation game. Then
all immediate successors of h appear along h.

Proof. First, note that since You play according to Your winning strategy, h is not a
terminal winning disjunctive history for Me. This means Case 1 in the definition of σ is
never reached.

1. Suppose h appeared in h at stage n ≥ 0 in the above construction. Since every
pair appears in the enumeration infinitely often, there is some minimal m ≥ n
such that m = #(h, g), for some g. At step m in the execution of σ against Your
winning strategy, the current disjunctive state is of the form D′ �

h. According to
σ, I underline h and You move to some successor h′, according to Your winning
strategy. This means the new game state is of the form D′ �

h′, hence h′ is the
successor of h appearing along h.

2. As before, suppose h appeared in h at stage n ≥ 0. Now we additionally assume
that h = h′ ⌣ g and fix an arbitrary g′ such that h ⌣ g′ is a history of the evaluation
game. By the properties of #, there is a minimal m ≥ n such that m = #(h, g′).
Since I always first duplicate histories labeled “I”, before I make a move into them,
h does not disappear. Hence, at step m in the execution of σ, the current disjunctive
state is of the form D′ �

h. According to σ, I duplicate h and go to h ⌣ g′ in one
copy, i.e. the new disjunctive state is D′ �

h
�(h ⌣ g′), which shows that h ⌣ g′

appears along h.

We can now show that h gives rise to a model Mh with the property that You have a
winning strategy for every h appearing along h. In particular, this gives You a winning
strategy for DGHyb

Mh
(D0) by Proposition 3.4.5. We will need the following notions in a

later section, hence we give the definition a bit more general than is needed here.

Definition 3.5.7: Model defined by elementary game states

Let E be a set of elementary game states. We define the relation i ∼E j between
two nominals i and j iff O, i : j or O, j : i appear in E . Let ≈E be the symmetric,
reflexive and transitive closure of ∼E . We write [i] for the equivalence class of i.
Let ME be the following named model:
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• Worlds W: Equivalence classes of nominals,

• Accessibility relation RE : We have [i]RE [j] iff for some i′ ∈ [i], j′ ∈ [j], k ∈ N ,
the state O, k : R(i′, j′) is in E .

• Valuation function VE : [i] ∈ VE(p) iff for some i′ ∈ [i], the state O, i′ : p is in
E .

• Assignment gE : gE(i) = [i], for all i ∈ N .

We are interested in the case where E is the set of all elementary game states appearing
as final game states of terminal histories in h and write Mh instead of ME . Let us look at
a simple example. We consider the game DGHyb(O : ∀k.R(k, k) � O, i∗ : j∗ � O, i∗ : p).
My best way to play is to keep moving into O : ∀k.R(k, k) by choosing a nominal. This
procedure never leads to an elementary winning disjunctive state for Me, but results in
the infinite outcome h, containing all game states of the form O, k′ : R(k, k). The model
Mh looks as follows: Its worlds are the equivalence classes [i], where [i] = [j] if and only
if i and j are equal or if one is i∗ and the other j∗. For every world [k], we have [k]Rh[k],
i.e. the model is reflexive. The valuation function satisfies [i∗] ∈ Vh(p).

Lemma 3.5.8

Let Mh be the model ME from the above definition, where E is the set of all
elementary game states appearing along h. If h appears along h, then You have a
winning strategy for GHyb

Mh
(h).

Proof. We prove this lemma by induction on the degree of the last game state g of h. The
elementary cases where g is of the form O, i : el follow directly from the definition of Mh.
Assume, g = P, i : p appears along h, but Mh, [i] |= p. The latter implies that for some
j ∈ [i], O, j : p appears along h. Since the elementary states of h are cumulative, there is
a disjunctive state D in h containing the three states P, i : p, O, j : p and one of O, i : j or
O, j : i. Clearly, there is no model M satisfying M, g(i) ̸|= p, M, g(j) |= p and g(i) = g(j)
at the same time. Thus, I would have won the game at D, a contradiction to the fact
that h resulted from You playing Your winning strategy. The cases for P, k : R(i, j) and
P, i : j are similar.

For the inductive step, let h ∈ h be non-terminal with h = h′ ⌣ g and label “Y”. By
Lemma 3.5.6, some successor h ⌣ g′ of h appears along h. By inductive hypothesis,
there is a winning You for GHyb

Mh
(h ⌣ g′). Thus, You have a winning strategy in GHyb

Mh
(h),

by Lemma 2.1.14.

If h is non-terminal with h = h′ ⌣ g and label “I”, then, by Lemma 3.5.6, all immediate
successors h ⌣ g′ of h appear along h. For each h ⌣ g′ there is a winning strategy for You
in GHyb

Mh
(h ⌣ g′). Thus, You have a winning strategy in GHyb

Mh
(h), by Lemma 2.1.14.
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Proof of Theorem 3.5.5. Suppose, You have a winning strategy for the game DGHyb(D).
Let You play according to this strategy and Me according to the strategy σ from above.
Let h be the corresponding outcome of the game and Mh the model form Definition 3.5.7.
By Lemma 3.5.8, You have a winning strategy for GHyb

Mh
(h) for all h ∈ D. Therefore, by

Proposition 3.4.5, You have a winning strategy for DGHyb
Mh

(D).

3.6 Games for Hybrid Logic

In this section, we use our results so far to present several games for hybrid logic in
terms of the disjunctive game from the previous subsection. For each game, we state the
corresponding adequacy result. Remember that we assume that all models are named.

1. A game for validity: Let G be a formula.

I have a winning strategy in DGHyb(P : G) ⇐⇒ G is valid.

2. A game for entailment: Let T be a finite set of formulas and set Di(T ) = {O, i :
T | T ∈ T }. Let E(T , G) be the following game: In the first round, You choose a
nominal i. The game then continues with DGHyb(Di(T ) � P, i : G).

I have a winning strategy in E(T , G) ⇐⇒ T |= G.

3. A game for global consequence: We say that T globally entails G and write T |=g G
iff for every model M |= T implies M |= G. Let Dg(T ) = {O : T | T ∈ T }.

I have a winning strategy in DGHyb(Dg(T )
�

P : G) ⇐⇒ T |=g G.

4. A game for validity over frames: Let F be a class of frames characterized by the
finite set of formulas F .

I have a winning strategy in DGHyb(Dg(F)
�

P : G) ⇐⇒ |=F G.

5. A game for entailment over frames: Let EF(F , T , G) be the following game:
In the first round, You choose a nominal i. The game then continues with the
disjunctive game DGHyb(Dg(F) �

Di(T ) � P, i : F )

I have a winning strategy in EF(F , T , F ) ⇐⇒ T |=F F.

The proofs readily follow from the previous results. For example, let us consider the
game for entailment. Suppose, I have a winning strategy in E(T , F ). Let M be a model
and w a world, and let i be a name of w. By assumption, I have a winning strategy in
DGHyb(Di(T ) � P, i : F ), since You may choose i in the first round. By Theorem 3.5.3,
I have a winning strategy in DGHyb

M (Di(T ) � P, i : F ). By Proposition 3.4.4, I have a
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winning strategy in GHyb
M (P, i : F ) or in GHyb

M (O, i : T ) for some T ∈ T . In the first case,
M, g(i) |= F and in the second case M, g(i) ̸|= T , both by Theorem 3.3.7. If, on the other
hand, You have a winning strategy in E(T , F ), then for some i, You must have a winning
strategy in DGHyb(Di(T ) � P, i : F ). Hence, by Theorem 3.5.4 and Proposition 3.4.4,
there is a model M such thatYou have winning strategies in GHyb

M (P, i : F ) and in all
GHyb

M (O, i : T ) where T ∈ T . By Theorem 3.3.7, M, g(i) |= T and M, g(i) ̸|= F .

Example 3.6.1. The singleton set F = {∀i.∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k)) characterizes
the class of transitive frames. My winning strategy in the game DGHyb(Dg(F) � P :
��p → �p) is to first schedule P : ��p → �p. You answer with some nominal i and
the game continues as depicted in Figures 3.8 and 3.9. This winning strategy can be
seen as a proof that ��p → �p is valid over transitive frames. In fact, we will develop a
sequent-style proof system representing My winning strategies in the next section.

3.7 From Strategies to Proofs

As we see in Example 3.6.1, winning strategies for Me in the probability version of
the disjunctive game can be seen as proofs of statements of validity, or entailment. In
this section, we will make these observations formal by introducing a sequent calculus
DSHyb (disjunctive strategies), where proofs exactly correspond to My winning strategies
in the disjunctive game (hence the name).

First, we will demonstrate that winning strategies, although by definition infinite, can
be finitized. To show that DSHyb is a useful proof system it is also necessary to prove
that checking whether elementary disjunctive states are winning for Me is tractable. This
is done in Subsection 3.7.3. DSHyb itself is introduced in Subsection 3.7.2 and some
connections to existing systems are drawn in Subsection 3.7.4.

3.7.1 Your optimal choices

In this section, we want to modify the disjunctive game so that it becomes finitely branch-
ing in “Y”-nodes. This alteration will help us conveniently formulate the disjunctive
game as a calculus. Infinite branching occurs only in the case of the rules (RU ), (R�),
(R∀), and (R�), where branching is parametrized by the nominals. We will show that in
these situations, there is an optimal choice for You, so I can expect You to play according
to this choice.

First, we need to define substitutions formally. For a sequence x, let xn denote its n-th
element. Let F be a formula and a and b two sequences of nominals of the same length,
where every nominal occurs only once in each sequence. We define F [a/b] as the formula
obtained by simultaneously substituting for every number n all occurrences of an in F
with bn. For example, let a = ⟨i, j⟩, b = ⟨k, l⟩ and F = @i(k ∨ j). Then F [a/b] = @k(k ∨ l).
Note that a substitution also happened in the index of the @-operator. As another
example let a = ⟨i1, i2, ...⟩ and b = ⟨i2, i3, ...⟩. Then i1[a/b] = i2, because substitution
happens simultaneously. We need to extend the notion of substitution to game states:
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for a game state g = Q, i : F of the evaluation game and two sequences of nominals a, b,
we define the substitution g[a/b] as Q, i[a/b] : F [a/b]. Similarly, we extend this definition
to histories, strategies, and disjunctive states.

Proposition 3.7.1: Your optimal choice

Let j be nominal not occurring in D or F and different from i. Then:

1. You have a winning strategy in DGHyb(D � P : F ) iff You have a winning
strategy in DGHyb(D � P, j : F ).

2. You have a winning strategy in DGHyb(D � P, i : �F ) iff You have a winning
strategy in DGHyb(D � P, j : R(i, j) → F ).

3. You have a winning strategy in DGHyb(D � O, i : �F ) iff You have a win-
ning strategy in DGHyb(D � P, j : R(i, j) ∧ F ).

4. You have a winning strategy in DGHyb(D � P, i : ∀k.F ) iff You have a
winning strategy in DGHyb(D � P, i : F [k/j]).

This result implies that My winning strategies in the disjunctive game can be finitely
represented: in every disjunctive state whose children branch over the nominals, it
is enough to consider a single child only, given by a nominal j not appearing in that
disjunctive state. The following result shows that the same can be achieved for the
games for entailment and entailment over frames, where You choose a nominal in the
first round:

Proposition 3.7.2

Let i be a nominal not occurring in T or F . Then:

1. You have a winning strategy in E(T , F ) iff You have a winning strategy for
DGHyb(Di(T ) � P, i : F ).

2. You have a winning strategy in EF(F , T , F ) iff You have a winning strategy
for DGHyb(Dg(F) �

Di(T ) � P, i : F ).

Example 3.7.3. In Example 3.6.1, we discussed the disjunctive game DGHyb(O : T
� P :

��p → �p), where T was ∀i.∀j∀k. (R(i, j) ∧ R(j, k) → R(i, k)). The choices of i (in the
game’s first move starting in P : ��p → �p), j and k are optimal for You in Figure 3.8.
Therefore, this finite tree should be accepted as a winning strategy for the infinitely
branching game DGHyb(O : T

� P : ��p → �p), even without the labels “i/j branches
over N”.

The rest of the subsection is devoted to proving Proposition 3.7.1. The proof is rather
technical and split up into a series of smaller lemmas.
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Lemma 3.7.4

Let M1 = (W, R, V, g1) and M2 = (W, R, V, g2) be named and g2(i[b/a]) = g1(i)
for all nominals i. Then for all game states g, GHyb

M1
(g) ∼= GHyb

M2
(g[b/a]).

Proof. By the assumption, g2 is surjective, even if restricted to N [b/a] = {i[b/a] : i ∈ N}.
By Proposition 3.3.9 it is therefore enough to prove GHyb

M1
(g) ∼= GHyb,N [b/a]

M2
(g[b/a]). As

usual, we show the claim by induction on the degree of g.

If g is elementary and of the form P, i : j then it is winning for Me over M1 if and only if
g1(i) = g1(j). By assumption, this is equivalent to g2(i[b/a]) = g2(i[b/a]), which means
that O, i[b/a] : j[b/a] is winning for Me over M2. The other elementary cases are similar.

As an example of a simple induction step, we consider P, i : G1 ∨ G2. By Lemma 2.1.14,
if I have a winning strategy in that game state over M1 then there is some k ∈ {1, 2}
such that I have a winning strategy in P, i : Gk. By the inductive hypothesis, I have
a winning strategy in P, i[b/a] : Gk[b/a] over M2, and hence, by Lemma 2.1.14, in
(P, i : G1 ∨ G2)[b/a]. The other direction is similar. For the rest of the proof, we do not
mention the application of Lemma 2.1.14 again.

The most interesting induction step is for the modal rules, so let us consider P, i : �G.
Suppose, I have a winning strategy in GHyb

M1
(P, i : �G). Then, for every nominal j, I

have a winning strategy in GHyb
M1

(P, j : R(i, j) → G). By the inductive hypothesis, I

have a winning strategy in GHyb,N [b/a]
M2

(P, j[b/a] : R(i[b/a], j[b/a]) → G[b/a]). In other

words, I have a winning strategy in GHyb,N [b/a]
M2

(P, k : R(i[b/a], k) → G[b/a]), for every
k ∈ N [b/a]. Since branching in this game is restricted over N [b/a], we conclude that I
have a winning strategy in GHyb,N [b/a]

M2
((P, i : �G)[b/a]). The other direction, as well as

the other cases of induction steps, are similar.

Lemma 3.7.5

If g(k) = g(l), then GHyb
M (g) ∼= GHyb

M (g[k/l]).

Proof. We show that g(i[k/l]) = g(i) for all nominals i. If i ̸= k, then g(i[k/l]) = g(i).
If i = k, then by the assumption, g(i[k/l]) = g(l) = g(k) = g(i). The statement of the
lemma follows from this fact and Lemma 3.7.4.

For a model M, and two sequences of nominals a, b, let M[a/b] be the same as M, except
for the denotation function: g[a/b](i) = g(i[a/b]).
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Lemma 3.7.6

Let M be named and a, b two sequences of nominals with range(a) ⊆ range(b).
Then M[a/b] is N [b/a]-named. Furthermore, GHyb

M (g) ∼= GHyb
M[a/b](g[b/a]).

Proof. We prove that g[a/b] is surjective when restricted to N [b/a] = {i[b/a] : i ∈ N}. Let
w be a world and i its name under g. If i /∈ range(b), then i /∈ range(b) and we have

i[b/a][a/b] = i[a/b] = i.

If i ∈ b, then i = bm for some m. Then

i[b/a][a/b] = bm[b/a][a/b] = am[a/b] = bm = i.

This shows that g[a/b](i[b/a]) = g(i[b/a][a/b]) = g(i), i.e. w has a name in N [b/a] under
g[a/b]. This identity together with Lemma 3.7.4 also implies the strategic equivalence of
the game GHyb

M (g) and G(M[a/b], g[b/a]).

We are now ready to prove Proposition 3.7.1.

Proof of Proposition 3.7.1. We will show 2. The direction from right to left is clear, so
let us assume You have a winning strategy in DGHyb(D � P, i : �F ) with j as in the
assumption. By Theorem 3.5.5 and Proposition 3.4.5, there is a named model M such
that You have winning strategies for GHyb

M (g) for all g ∈ D and for P, i : �F . The latter
implies that You have a winning strategy for GHyb

M (P, k : R(i, k) → F ) for some nominal
k.

Let j1, j2, ... be a sequence of nominals not occurring in D or F and different from k, j,
and i. Let a = ⟨j, j1, j2, ...⟩ and b = ⟨k, j, j1, j2, ...⟩. We have that range(a) ⊆ range(b),
therefore Lemma 3.7.6 applies. We have the following chain of equivalences:

GHyb
M (P, k : R(i, k) → F )

∼= GHyb
M[a/b](P, k[b/a] : R(i[b/a], k[b/a]) → F [b/a]) by Lemma 3.7.6

= GHyb
M[a/b](P, j : R(i, j) → F [k/j]) by conditions on i, j, k

= GHyb
M[a/b](P, j[k/j] : R(i[k/j], j[k/j]) → F [k/j])

∼= GHyb
M[a/b](P, j : R(i, k) → F ) by Lemma 3.7.5

and g[a/b](j) = g[a/b](k)

By this equivalence and the assumption, You have a winning strategy for P, j : R(i, j) →
F over M[a/b].

Similarly, we obtain a winning strategy for You for g ∈ D by using the equivalence

GHyb
M (g) ∼= GHyb

M[a/b](g[b/a]) ∼= GHyb
M[a/b](g[k/j]) ∼= GHyb

M[a/b](g),
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the same lemmas as before and the fact that no nominals from a appear in g.

Putting all things together, You have a winning strategy in DGHyb
M[a,b](D

� P, i : R(i, j) →
F ), by Proposition 3.4.5. By Theorem 3.5.5, You have a winning strategy in the disjunctive
game DGHyb

M[a,b](D
� P, i : R(i, j) → F ).

3.7.2 The proof system DSHyb

We are now ready to formulate the sequent calculus DSHyb (Figure 3.1). We say that a
string i : F consisting of a hybrid logic formula F and a nominal i is a labeled formula.
We call an object Γ ⇒ ∆, where Γ and ∆ are multisets of formulas and labeled formulas,
a sequent. A disjunctive state D can be rewritten as a sequent Γ ⇒ ∆ where

Γ = {F : ⟨. . . , O : F ⟩ ∈ D} + {i, F : ⟨. . . , O, i : F ⟩ ∈ D},

∆ = {F : ⟨. . . , P : F ⟩ ∈ D} + {i : F : ⟨. . . , P, i : F ⟩ ∈ D}.

i,e., Γ comprises all (labeled) formulas that are final states of a history in D and have
the prefix O and ∆ comprises all such formulas with the prefix P in D. For example,
the disjunctive game state ⟨. . . , O, i : �p⟩ �⟨. . . , P : p⟩ becomes the sequent i : �p ⇒ p.
Hence, we omit writing down entire histories in disjunctive game states, as in the
examples in the previous sections. This is justified by the fact that the winnability
of a history of the evaluation game depends on its last game state only. Given this
correspondence, we will use the notation for disjunctive game states and sequents
interchangeably.

Table 3.1: The proof system DSHyb. In the rules (R�), (L�), (R∀), and (RU ), the
nominal j is a nominal not occurring in the lower sequent and different from i. This

condition corresponds to Your optimal choice.

Axioms

Γ ⇒ ∆, if it is winning
this means for every model M there is some elementary g ∈ Γ ⇒ ∆ such that M |= g

Structural Rules

Γ, i : F, i : F ⇒ ∆
(Lc)Γ, i : F ⇒ ∆

Γ ⇒ i : F, i : F, ∆
(Rc)Γ ⇒ i : F, ∆

Propositional rules

Γ, i : F ⇒ ∆ Γ, i : G ⇒ ∆
(L∨)

Γ, i : F ∨ G ⇒ ∆
Γ ⇒ i : F, ∆

(R1∨)
Γ ⇒ i : F ∨ G, ∆

Γ, i : F ⇒ ∆
(L1∧)

Γ, i : F ∧ G ⇒ ∆
Γ ⇒ i : G, ∆

(R2∨)
Γ ⇒ i : F ∨ G, ∆
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Γ, i : G ⇒ ∆
(L2∧)

Γ, i : F ∧ G ⇒ ∆
Γ ⇒ i : F, ∆ Γ ⇒ i : G, ∆

(R∧)
Γ ⇒ i : F ∧ G, ∆

Γ ⇒ i : F, ∆ Γ, i : G ⇒ ∆
(L→)

Γ, i : F → G ⇒ ∆
Γ, i : F ⇒ ∆

(R1→)
Γ ⇒ i : F → G, ∆

Γ ⇒, i : F, ∆
(L¬)

Γ, i : ¬F ⇒ ∆
Γ ⇒ i : G, ∆

(R2→)
Γ ⇒ i : F → G, ∆

Γ, i : F ⇒ ∆
(R¬)

Γ ⇒ i : ¬F, ∆

Modal rules

Γ, i : F ⇒ ∆
(LU )

Γ, F ⇒ ∆
Γ ⇒ i : F, ∆

(RU )
Γ ⇒ F, ∆

Γ, j : R(i, j) → F ⇒ ∆
(L�)

Γ, i : �F ⇒ ∆
Γ ⇒ j : R(i, j) → F, ∆

(R�)
Γ ⇒ i : �F, ∆

Γ, j : R(i, j) ∧ F ⇒ ∆
(L�)

Γ, i : �F ⇒ ∆
Γ ⇒ j : R(i, j) ∧ F, ∆

(R�)
Γ ⇒ i : �F, ∆

Γ, j : F ⇒ ∆
(L@)

Γ, i : @jF ⇒ ∆
Γ ⇒ j : F, ∆

(R@)
Γ ⇒ i : @jF, ∆

Quantifier rules

Γ, i : F ⇒ ∆
(LU )

Γ, F ⇒ ∆
Γ ⇒ i : F, ∆

(RU )
Γ ⇒ F, ∆

Γ, i : F [k/j] ⇒ ∆
(L∀)

Γ, i : ∀k.F ⇒ ∆
Γ ⇒ i : F [k/j], ∆

(R∀)
Γ ⇒ i : ∀k.F, ∆

Apart from this encoding of disjunctive states as sequents and the traditional bottom-up
notation of proof trees, proofs in DSHyb exactly correspond to My winning strategies
in the disjunctive game: the user of the proof system takes the role of Me, scheduling
game states and choosing moves in “I”-states. Branching in the proof tree corresponds
to branching in the winning strategy, i.e., Your possible moves. Infinite branching is
modified according to the discussion in the previous subsection. Duplication in the game
takes the form of left and right contraction rules. The axioms are exactly the (encoding
of) winning14 disjunctive states. Using this correspondence we immediately get the

14We say that Γ ⇒ ∆ is winning if for its corresponding disjunctive game state D the disjunctive history
⟨. . . , D, ∗⟩ is winning for Me. In other words: at D, I can end the game and win.
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fact that the disjunctive game is adequate with respect to the calculus, as well as the
following reformulations of the results in Section 3.6:

Theorem 3.7.7: proofs = winning strategies

Γ ⇒ ∆ is provable in DSHyb iff I have a winning strategy in DGHyb(Γ ⇒ ∆).

Corollary 3.7.8

Let F be a formula, and F a class of frames characterized by F . Then

1. ⊢DSHyb F iff F is valid,

2. {i : T | T ∈ T } ⊢DSHyb i : F iff T |= F ,

3. T ⊢DSHyb F iff T |=g F ,

4. F ⊢DSHyb F iff |=F F ,

5. F + {i : T | T ∈ T } ⊢DSHyb i : F iff T |=F F .

In 2 and 5, i is a nominal not occurring in F , T , or F .

Here, we write Γ ⊢DSHyb ∆ iff Γ ⇒ ∆ is provable in DSHyb.

The calculus DSHyb takes a familiar form: The rules for the logical connectives are the
(labeled) versions of the usual propositional rules of a sequent calculus for classical
logic. The modal operator rules come in the form of their first-order translations. Apart
from the axioms, DSHyb can therefore be seen as a fragment of the usual sequent system
for first-order logic. In turn, DSHyb is an extension of the sequent calculus G3K [47]
to hybrid logic. Similarly to G3K, a failed proof search in DSHyb directly gives rise
to a countermodel. This follows from our proof of Theorem 3.5.5, where the explicit
countermodel Mh was constructed. We will investigate the connections to other calculi
in Subsection 3.7.4.

Example 3.7.9. Let F characterize the set of transitive frames, i.e., F consists of the single
formula ∀i.∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k)). Let us write Γ ⇒F ∆ for Γ ∪ F ⇒ ∆. We
show that the following rule scheme for transitivity is admissible in DSHyb:

Γ ⇒F R(i, j), ∆ Γ ⇒F R(j, k), ∆ Γ, ,R(i, k) ⇒F ∆
(trans)

Γ ⇒F ∆

The following derivation resembles My winning strategy in Figure 3.9.
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Γ ⇒F R(i, j), ∆ Γ ⇒F R(j, k), ∆
(R∧)

Γ ⇒F R(i, j) ∧ R(j, k), ∆ Γ, R(i, k) ⇒F ∆
(L→)

Γ, R(i, j) ∧ R(j, k) → R(i, k) ⇒F ∆
(L∀) × 3

Γ, ∀i.∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k)) ⇒F ∆
(Lc)

Γ ⇒F ∆

In the step at the bottom, we apply (Lc) to ∀i.∀j.∀k. (R(i, j) ∧ R(j, k) → R(i, k)) ∈ F .
Also, note that we avoid writing the label of relational atoms and propositional formulas
built from relational atoms since the truth of these formulas does not depend on the
particular world they are evaluated in.

This example shows that we can use the game-theoretic approach to formulate structural
rules for classes of frames that are characterizable in the hybrid language. We could
therefore reformulate our proof system with these structural rules in place of a set of
formulas characterizing a frame condition (to show that DSHyb + (trans) derives the
transitivity-axioms, we can use invertibility of the logical rules), similar to G3K [47].
The rule for transitivity there is easily seen to be derivable using (trans), and (trans) is
admissible in G3K plus the transitivity rule.

Example 3.7.10. We show how to derive ⇒F ��p → �p in DSHyb, with ⇒F as in the
previous example. The following proof is just a rewriting of My winning strategy in the
game DGHyb(Dg(F) � P : ��p → �p) from Example 3.6.1. In all derivations, we omit
writing down the label of relational formulas:

R(i, j), R(j, k), k : p ⇒F R(i, k) R(i, j), R(j, k), k : p ⇒F k : p
(L∧)

R(i, j), R(j, k), k : p ⇒F k : R(i, k) ∧ p
(R�)

R(i, j), R(j, k), k : p ⇒F i : �p
(L∧) × 2, (Rc) × 2

R(i, j), k : R(j, k) ∧ p ⇒F i : �p
(L�)

R(i, j), j : �p ⇒F i : �p
(L∧) × 2, (Rc) × 2

j : R(i, j) ∧ �p ⇒F i : �p
(L�)

i : ��p ⇒F i : �p
(R→) × 2, (Rc) × 2⇒F i : ��p ⇒F �p
(RU )⇒F ��p ⇒F �p

The proof at the left topmost sequent continues with an application of the (trans)-rule
from Example 3.7.9 with Γ = {R(i, j), R(j, k), k : p} and ∆ = {R(i, k)}.

3.7.3 Checkability of Initial Sequents is tractable

To establish DSHyb as a suitable proof system, we must demonstrate that we can ef-
fectively check whether given elementary sequents are indeed winning, i.e. initial
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sequents15. As an upper limit, checking elementary sequents must be easier than check-
ing validity in hybrid logic, which is known to be PSPACE-complete. In fact, checking
elementary sequents turns out to be in P:

Proposition 3.7.11: Checking axioms is in P

Checking whether a disjunctive state D is winning for Me is in P.

The proof of this proposition is the topic of the remaining subsection.

Definition 3.7.12: Homomorphism of models

Let M = (WM, RM, VM, gM) and N = (WN , RN , VN , gN ) be two models. We
call a function f : WM → WN a homomorphism and write f : M → N iff

1. (gM(i)) = gN (i), for all nominals i,

2. wRMv implies (w)RN (v), for all worlds w, v,

3. w ∈ VM(p) implies (w) ∈ VN (p) for all worlds w and variables p.

Let E be a set of elementary game states. We call a model M an E-countermodel if
all states of E are winning for You in the evaluation game over M. The following
proposition shows that the model ME (see Definition 3.5.7) is, in a way, the most general
E-countermodel.

Proposition 3.7.13: ME is the least countermodel

Let N be an E-countermodel. Then there is a (unique) homomorphism : ME → N .
In this case, ME is an E-countermodel, too.

Proof. The only way to define such a homomorphism is by setting ([i]) = gN (i). To
check that this function is well-defined, we observe that i ≈E j implies gN (i) = gN (j):
Let i ∼E j, then either O, i : j or O, j : i appears in E . Since N is an E-countermodel,
gN (i) = gN (j). The claim for ≈E follows by transitivity, reflexivity and symmetry of
equality.

To see that is a homomorphism, let [i]RE [j]. This means, for some i′ ≈ i and j′ ≈ j and
some nominal k, O, k : R(i, j) is in E . Since N is an E-countermodel, gN (i′)RN gN (j′). By
the above observation, gN (i)RN gN (j). Showing that [i] ∈ VE(p) implies gN (i) ∈ VN (p)
is similar.

It follows that ME is an E-countermodel: by construction, all states in E of the form
O, i : F are labeled “Y” in the evaluation game over ME . If P, i : j is in E , then

15Alternatively, one could restrict initial sequents to trivial instances and extend the proof system by
structural rules, cf. Section 3.7.4
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gN (i) ̸= gN (j), since N is an E-countermodel. This implies [i] ̸= [j] and hence P, i : j

is labeled “Y” in ME . If P, k : R(i, j) is in E , then gN (i)✚✚RN gN (j) and therefore [i]✚✚RE [j].
The case for P, i : p is similar.

Proof of Proposition 3.7.11. Equivalently, we can check whether there is a countermodel of
H , the elementary part of D. If there is a countermodel of H , then by Proposition 3.7.13,
MH is already a countermodel. Thus, it suffices to construct MH and check whether the
P-part of H is false there since the O-part is false by construction. Although the model
MH is infinite, it can be finitely represented using the O-part of H :

• For every nominal i, create an equivalence class (list) containing only i.

• For every O, i : j ∈ H , merge the equivalence classes of i and j.

• For every O, k : R(i, j) ∈ H , draw an R-arrow from [i] to [j].

• For every O, i : p ∈ H , mark [i] with the label p.

Constructing this representation takes polynomial time. Checking whether the P-part of
H is winning for You in the evaluation game over MH can be done in polynomial time,
too:

• For every P, i : j ∈ H , check that j /∈ [i].

• For every P, k : R(i, j) ∈ H , check that there is no R-arrow from [i] to [j].

• For every P, i : p ∈ H , check that [i] does not have the label p.

The disjunctive state D is winning iff this check is negative.

3.7.4 Connections to existing calculi

Our calculus DSHyb16 is closely related to several existing sequent systems in the lit-
erature, like Negri’s labeled system for orthodox modal logic [47]. In [9], Blackburn
reformulates his tableau system for hybrid logic as a sequent calculus, and in [13],
Braüner does the same with his natural deduction system. In this section, we investigate
the connections to the latter system GH (see Figure 3.2), as it is the most similar to DSHyb.
Most of the discussion, however, also applies to the other systems. We will argue that
DSHyb and GH are essentially equivalent. The differences are:

16In this subsection, we consider DSHyb minus the rules (RU ) and (LU ).

57



3. HYBRID LOGIC

Table 3.2: The proof system GH. In the rules (R�) and (R∀), the nominal j must not
occur in the lower sequent, in the rule (Nom1), F must be a propositional variable or a

nominal.

Axioms

Γ, i : F ⇒ i : F, ∆ Γ, i : ⊥ ⇒ ∆

Propositional rules

Γ, i : F, i : G ⇒ ∆
(L∧)

Γ, i : F ∧ G ⇒ ∆
Γ ⇒ i : F, ∆ Γ ⇒ i : G, ∆

(R∧)
Γ ⇒ i : F ∧ G, ∆

Γ ⇒ i : F, ∆ Γ, i : G ⇒ ∆
(L→)

Γ, i : F → G ⇒ ∆
Γ, i : F ⇒ i : G, ∆

(R→)
Γ ⇒ i : F → G, ∆

Modal rules

Γ ⇒ i : �j, ∆ Γ, j : F ⇒ ∆
(L�)

Γ, i : �F ⇒ ∆
Γ, i : �j ⇒ j : F, ∆

(R�)
Γ ⇒ i : �F, ∆

Γ, j : F ⇒ ∆
(L@)

Γ, i : @jF ⇒ ∆
Γ ⇒ j : F, ∆

(R@)
Γ ⇒ i : @jF, ∆

Quantifier rules

Γ, i : F [j/k] ⇒ ∆
(L∀)

Γ, i : ∀k.F ⇒ ∆
Γ ⇒ i : F [j/k], ∆

(R∀)
Γ ⇒ i : ∀k.F, ∆

Rules for nominals

Γ, i : i ⇒ ∆
(Ref)

Γ ⇒ ∆
Γ ⇒ i : j, ∆ Γ ⇒ i : F, ∆

(Nom1)
Γ ⇒ j : F, ∆

Γ ⇒ i : k, ∆ Γ ⇒ i : �j, ∆ Γ, k : �j ⇒ ∆
(Nom2)

Γ ⇒ ∆

• In the original system GH in [13], formulas are not labeled but instead prefixed
by the @-operator. As this is clearly equivalent, we rephrased the system for the
convenience of comparison.

• In GH, sequents Γ ⇒ ∆ consist of finite sets Γ and ∆, rather than multisets in
DSHyb. Consequently, while we make use of contraction rules in DSHyb, they are
“built-in” to GH.
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• In GH, the connectives ∨, ¬,� are treated as defined. In DSHyb, relational claims
R(i, j) are treated as elementary, in GH relational claims are written as complex
formulas @i�j.

• The propositional rules of GH are derivable in DSHyb. The propositional rules of
DSHyb can be shown to be admissible in GH using the admissibility of weakening.

• Replacing “R(i, j)” with “@i�j”, the modal rules of GH are derivable in DSHyb.
Writing “@i�j” instead of “R(i, j)”, the modal rules of DSHyb can be shown to be
admissible in GH using the invertibility of the propositional rules.

• Axioms are more complex in DSHyb: There, we allow all winning sequents as
axioms. In GH, there are only “trivial” axioms, but also extra rules (Ref), (Nom1),
and (Nom2).

The last point is perhaps the most interesting one: By completeness of GH, all the initial
sequents in DSHyb can be derived in GH from trivial axioms by using the rules (Ref),
(Nom1), (Nom2) and the diamond rules restricted to instances where F is a nominal or
a propositional variable. Putting things together, we have the following correspondence:

Proposition 3.7.14: DSHyb and GH are equivalent.

1. Let Γ and ∆ be finite multisets of labeled formulas. Then ⊢DSHyb Γ ⇒ ∆ im-
plies ⊢GH Γ′ ⇒ ∆′, where Γ′ and ∆′ is the support of Γ and ∆, respectively,
and every subformula R(i, j) is replaced by @i�j.

2. Let Γ and ∆ be finite sets of labeled formulas. Then ⊢GH Γ ⇒ ∆ implies
⊢DSHyb Γ′ ⇒ ∆′, where Γ′ and ∆′ are obtained from Γ and ∆ by replacing
every subformula @i�j by R(i, j) and every labeled formula i : �j by
j : R(i, j).

In particular, this correspondence implies that every proof in GH can be structured
as follows: Starting from the root, apply only propositional rules and modal rules to
complex formulas until all leaves are elementary. This is essentially a proof in DSHyb.
Then, apply nominal and restricted diamond rules to arrive at trivial axioms.

It must be noted that, in principle, nominal rules can be included in the disjunctive
game. For example, the rule corresponding to (Nom1) would look as follows: if in
the current disjunctive state D

� P, j : F , it is My turn, we can allow Me to choose a
nominal i and then You choose whether to continue the game with D

� P, i : j or with
D

� P, i : F . However, we chose not to include these rules, as they seem to lack a clear
motivation in terms of the evaluation game. Another way to reformulate the disjunctive
game with trivial initial sequents would be to include nominal axioms in Γ, for example,
∀i.∀j. (@ij → @ji), ∀i.∀j.∀k. (R(i, j) ∧ @ik → R(k, j)), etc.
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3.8 Conclusion and Future Work

In this chapter, we investigated the possibility of lifting a version of Hintikka’s evaluation
game for modal logic. The challenge in this endeavor is that the syntax of modal logic
does not represent an essential part of its semantics. This fact is also reflected in the
evaluation game. Consequently, games over the same formula, but different models,
may have game trees of different shapes. This makes the lifting technique inapplicable.

We overcame this problem by turning to hybrid logic – an extension of modal logic that
makes it possible to represent worlds and the accessibility relation of the underlying
model within the syntax. A version of the evaluation game for hybrid logic has uniform
game trees, but this comes at the price of infinite branching, even if one restricts attention
to evaluation over finite models.

On the game-theoretic side, this makes the adequacy proofs for the resulting provability
game more complex. Additionally, scheduling is more important in the infinite case – a
fact that we explore in Chapter 5, where we give a class of scheduling functions (called
regulations there) that enable the adequacy of the disjunctive provability game.

Concerning the proof theory, we showed that infinite branching in the rules for modali-
ties can be eliminated by considering Your optimal choices only. These moves correspond
to an eigenvariable condition, as known from similar first-order systems. In the resulting
sequent calculus, proofs are nothing but notational variants of My winning strategies in
the disjunctive game. By construction, this system is cut-free.

A few words must be said about the design choices in this chapter. For many possible
applications of our technique in the realm of modal logic, the full expressiveness of
the hybrid language used in this chapter is perhaps a little overblown. After all, the
satisfiability problem of hybrid logic using @ and ∀ is undecidable. In these cases, it can
be desirable to restrict the use of ∀ to instances of formulas characterizing certain frame
properties. The reason why we chose this highly general approach is that it gives, in one
sweep, robust proof systems for many scenarios.

Another possible design would be to include frame properties as explicit rules of the
disjunctive game and hence the proof system. These rules can be directly derived
from the standard game rules applied to the characterizing formulas. For instance, the
characterizing formula for reflexivity ∀i.R(i, i) results in the rule

Γ, R(i, i) ⇒ ∆
Γ ⇒ ∆

Another possibility to obtain an adequate provability game over a class of models M is
to evaluate elementary disjunctive states over models in M only. That is, the disjunctive
state D is winning for Me iff for all models M ∈ M there is some h ∈ D such that I
win in GHyb(h). While this would result in a sound and complete proof system, the
complexity of checking validity of initial sequents is unclear. It would be an exciting
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research question to characterize the classes of models for which checking initial sequents
remains tractable.

Another interesting exercise would be to study the simplest modal logic to which our
ideas can be applied. We conjecture that one can a) restrict nominals to occur only in
relational formulas R(i, j), and b) restrict relational formulas to never occur in the scope
of any logical connective, modal operator, or quantifier, without running into technical
or conceptual problems. Indeed, the semantic game can be adjusted to cover these
restrictions in a straightforward way. Thus, the simplest ”liftable” modal logic is indeed
the simplest normal modal logic K.

Going in the other direction, the obvious first candidate for extending the language, the
first candidate is first-order hybrid logic. Its well-behaved proof theory [14] indicates
that the provability game could be extended to cover this case as well.

Various semantic games for fuzzy logics are known, like Giles’s game for Łukasiewicz
logic [33, 24], and truth-degree comparison for Gödel-logics [22, 23]. These evaluation
games could be combined with the game for hybrid logic to capture the corresponding
fuzzy modal logics. Furthermore, the techniques for managing infinite branching could
possibly be applied to develop a game-theoretic approach to the proof theory for first-
order fuzzy logics.
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CHAPTER 4
Choice Logics

4.1 Introduction

Preferences are a key research area in artificial intelligence, and thus, many prefer-
ence formalisms have been described in the literature [49]. An interesting example is
Qualitative Choice Logic (QCL) [15], which extends classical propositional logic by the
connective #»× called ordered disjunction. The choice formula F

#»×G states that F or G
should be satisfied, but satisfying F is preferable to satisfying only G. This allows us to
express soft constraints (preferences) and hard constraints (truth) in a single language.

For example, say we want to formalize our choice of ice cream flavors: we definitely
want apricot (a). Moreover, we want either banana (b) or caramel (c), but preferably
banana. This can easily be expressed in QCL via the choice formula a ∧ (b #»×c). This
formula has three models in QCL, namely M1 = {a, b, c}, M2 = {a, b}, and M3 = {a, c}.
QCL-semantics then ranks these models via so-called satisfaction degrees. The lower
this degree, the more preferable the model. In this case, M1 and M2 are assigned a
degree of 1, and M3 is assigned a degree of 2, i.e., M1 and M2 are the preferred models
of this formula.

In the literature, QCL has been studied with regard to possible applications [51], compu-
tational properties [7], and proof systems [6].

Not all aspects of QCL are uncontroversial. Although the degree semantics coincide with
classical Tarskian semantics when restricted to formulas without #»×, it cannot be seen
as a “classical” extension of classical logic, i.e., an extension where negation behaves
as in classical logic. For example, the degree of a choice formula F is not equal to
that of its double negation ¬¬F , as all information about preferences is erased by ¬.
This issue has been addressed by Prioritized QCL (PQCL) [5], which defines ordered
disjunction the same way as QCL but changes the meaning of the classical connectives,
including negation. While PQCL solves QCL’s problem with double negation, it, in
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turn, introduces other controversial behavior, e.g., a formula F and its negation ¬F can
be satisfied by the same interpretation. No alternative semantics for QCL is known to us
that addresses both of these issues simultaneously.

To tackle these issues, we develop a novel game semantics for the language of QCL. In
this extension of Hintikka’s game, we capture not only truth but also preferences by
introducing more fine-grained payoffs and giving a game-theoretic interpretation of
ordered disjunction. Intuitively, the rule for dealing with the choice connective #»× is as
follows: in F

#»×G, the current proponent chooses whether to continue the game with F
or with G, but that player prefers F . What is essential for the classicality of negation is
that we treat negation as dual negation, [54], i.e., at ¬F , the game continues with a role
switch.

We show that the value of the resulting game can be characterized via functional degree-
based semantics, similar to QCL. In turn, the degree function of QCL can be adequately
recaptured in our game by interpreting negation not only as a role switch. To model
the aforementioned asymmetries in our evaluation game, we additionally erase all
preferences at ¬F .

Game-theoretically speaking, the validity of a formula F can be characterized as the
existence of winning strategies for the evaluation games starting at F over all possible
interpretations. Equivalently, the degree of validity of F is the least value of these
evaluation games. Analogously, we define the degree validity of F as the least value of the
evaluation game starting in F over all possible interpretations. Hence, in the resulting
logic GCL (game-induced choice logic), the notion of validity is degree-based rather
than binary.

To capture this degree of validity, we lift the new semantic game to a provability game,
using the technique of the disjunctive game. The novelty of this approach is that both the
evaluation game as well as the disjunctive game allow for payoff values different from
the usual win/lose. So far, even the semantic games for multi-valued logics [24, 22, 50]
were designed with binary outcomes.

In accordance with the technique, proofs in the resulting (labeled) sequent calculus
represent (encodings of) winning strategies for Me in the disjunctive game. However, in
the case of GCL, proofs come in degrees that represent the degree of the encoded winning
strategy. In a version of this system, ODSGCL, with invertible rules, the represented
strategies are automatically optimal. Hence, positive degrees of proofs represent proofs
of validity, while negative degrees represent refutations of a formula. We show that
preferred models can be extracted from proofs in ODSGCL.

This chapter is structured as follows: in Section 3.2, we recall some basic definitions and
facts about QCL, and discuss some of the behavior concerning negations mentioned
above. In Section 4.3, we design our evaluation game for the language of QCL and
demonstrate that it is a more suitable classical extension of classical logic by the choice
connective #»×. We provide an adequate alternative degree semantics and show that QCL
can be captured in this game using a suitable translation of formulas. The lifting is
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done in two steps in Sections 4.4 and 4.5 and Section 4.6 gives the interpretation of My
strategies as proofs with degrees in a sequent system.

4.2 Preliminaries

In this section, we recall the language and semantics of QCL and discuss some of its
behavior concerning negations. From the issues raised in this discussion, we formulate
desiderata for a more suitable choice logic.

QCL [15] is the most prominent choice logic which adds ordered disjunction ( #»×) to
classical propositional logic. The language of choice logic is as follows. We have a
countably infinite set of propositional variables usually denoted “a, b, . . . ". Choice
formulas F are built according to the following grammar:

F ::= ⊥ | a | ¬F | F ∧ F | F ∨ F | F
#»×F

In this chapter, we say that F is a propositional formula if it has no occurrences of #»×.

The semantics of QCL is based on two functions, namely optionality and satisfaction
degree. The satisfaction degree of a formula can be either a positive integer or −1 and is
used to rank interpretations1 using the order ⊴. This order is the inverse of the natural
ordering on Z+ and −1 ◁ k, for all k ∈ Z+, i.e. we have −1 ◁ · · · ◁ 3 ◁ 2 ◁ 1. The optionality
of a formula represents the maximum finite satisfaction degree this formula can obtain
(as we will see in Lemma 4.2.4) and is used to penalize interpretations that do not satisfy
the preferred option F in an ordered disjunct F

#»×G.

Definition 4.2.1: Optionality

The optionality of choice formulas is defined recursively as follows:

opt(x) = 1 for every propositional variable x,

opt(¬F ) = 1,

opt(F ∧ G) = max(opt(F ), opt(G)),
opt(F ∨ G) = max(opt(F ), opt(G)),
opt(F #»×G) = opt(F ) + opt(G).

Here, max is relative to the natural ordering on the integers.

1We use −1 instead of ∞ which is common in the literature. We do this in order to make the presentation
easier when comparing our semantic approach to QCL.
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Definition 4.2.2: Degree under an interpretation

An interpretation I is a set of propositional variables. The satisfaction degree of
choice formulas is defined recursively as follows:

degI(a) =
�

1 if x ∈ I,

−1 if x /∈ I,

degI(¬F ) =
�

1 if degI(F ) = −1,

−1 if degI(F ) ∈ Z+,

degI(F ∧ G) = min⊴(degI(F ), degI(G)),
degI(F ∨ G) = max⊴(degI(F ), degI(G)),

degI(F #»×G) =

����
degI(F ) if degI(F ) ∈ Z+.

opt(F ) + degI(G) if degI(F ) = −1 and degI(G) ∈ Z+,

−1 otherwise.

If degI(F ) = k we say that I satisfies F to a degree of k. If degI(F ) ∈ Z+ we say that I
classically satisfies F , or that I is a model of F and write I |= F . Note that the question
of satisfiability in QCL reduces to classical propositional logic: let F be a choice formula
and F ∗ be F with all #»×s replaced by ∨s. Then I |= F in QCL iff I |= F ∗ in classical logic.

Example 4.2.3. An illuminating example is the formula F = G1
#»×G2

#»× · · · #»×Gn, where
the Gi are propositional formulas, i.e., they do not contain the choice connective #»×. Let
I be an interpretation. If I |= G1, then degI(F ) = 1. If I ̸|= G1, but I |= G2, then
degI(F ) = 2. In general, degI(F ) is the least i such that I |= Gi and −1 if there is no
such i.

To fully understand QCL semantics, we must take note that satisfaction degrees are
bounded by optionality, as intended:

Lemma 4.2.4: (from [15]) Degree bounded by optionality

For all choice formulas F and all interpretations I, degI(F ) ⊵ opt(F ) or
degI(F ) = −1.

Indeed, inspecting Definition 4.2.1 in view of Lemma 4.2.4 shows how optionality is used
to penalize non-satisfaction: given F

#»×G, if some interpretation I classically satisfies F ,
i.e., degI(F ) ∈ Z+, we get degI(F #»×G) = degI(F ) ⊵ opt(F ); if I does not classically
satisfy F , i.e., degI(F ) = −1, we get degI(F #»×G) = opt(F ) + degI(G) ◁ opt(F ).

We now define the central notion of preferred models and then give a small example of
QCL semantics in action.
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Definition 4.2.5: Preferred model

Let F be a choice formula. I is a preferred model of F iff degI(F ) ∈ Z+ and
degI(F ) ⊵ degJ (F ) for all other interpretations J .

Example 4.2.6. The choice formula F = (a ∧ b) #»×a
#»×b expresses that satisfying both a and

b is preferable to satisfying only a, which in turn is preferable to satisfying only b. First,
observe that opt(F ) = 3. Moreover, deg∅(F ) = −1, deg{b}(F ) = 3, deg{a}(F ) = 2, and
deg{a,b}(F ) = 1. Thus, {a, b} is a preferred model of F .

Now consider F ′ = ((a ∧ b) #»×a
#»×b) ∧ ¬(a ∧ b), which is similar to F , but with the

additional information that a and b can not be jointly satisfied. Again, deg∅(F ′) = −1,
deg{b}(F ′) = 3, and deg{a}(F ′) = 2. However, deg{a,b}(F ′) = −1, i.e., {a, b} does not
satisfy F ′. Since it is not possible to satisfy F ′ to a degree of 1, {a} is a preferred model
of F ′.

Note that ordered disjunction is associative under QCL-semantics, which means that
we can simply write A1

#»×A2
#»× . . .

#»×An to express that we must satisfy at least one of
A1, . . . , An, and that we prefer Ai to Aj for i < j. Formally, this is expressed by the
following lemma:

Lemma 4.2.7: (from [15]): Ordered disjunction is associative

Let F , G, and H be choice formulas. Then (F #»×(G #»×H)) and ((F #»×G) #»×H) have
the same optionality and the same satisfaction degree under all interpretations.

As mentioned in the introduction, an alternative semantics for QCL has been proposed
in the form of PQCL [5]. Specifically, PQCL changes the semantics for the classical
connectives (¬, ∨, ∧), but defines ordered disjunction ( #»×) in the same way as QCL. For
our purposes, it is not necessary to formally define PQCL. Rather, it suffices to note
that, in PQCL, negation propagates to the atom level, meaning that ¬(F ∧ G) is simply
assigned the satisfaction degree of ¬F ∨¬G, ¬(F ∨G) is assigned the degree of ¬F ∧¬G,
and ¬(F #»×G) is assigned the degree of ¬F

#»×¬G.

4.2.1 Comments on Negation in QCL and PQCL

While choice logics are a useful formalism to express both soft constraints (preferences)
and hard constraints (truth) in a single language, existing semantics (such as QCL and
PQCL) are not entirely uncontroversial. Table 4.1 shows how negation acts on ordered
disjunction in both systems: negation in QCL erases preferences, while in PQCL it is
possible to satisfy a formula and its negation at the same time ({a} and {b} classically
satisfy both a

#»×b and ¬a
#»×¬b). Moreover, in PQCL, the satisfaction degree of ¬F does

not only depend on the degree and optionality of F ({a} and {a, b} satisfy a
#»×b to degree

1, but {a} satisfies ¬a
#»×¬b to degree 2 while {a, b} does not satisfy ¬a

#»×¬b at all).
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Table 4.1: Truth table showing the satisfaction degrees of ¬(a #»×b) in QCL (equivalent to
¬a ∧ ¬b) and PQCL (equivalent to ¬a

#»×¬b).

I a
#»×b ¬a ∧ ¬b ¬a

#»×¬b

∅ −1 1 1
{b} 2 −1 1
{a} 1 −1 2

{a, b} 1 −1 −1

In Section 4.3, we will make use of game-theoretic negation to define alternative seman-
tics for the language of QCL. Our goal there is to define a negation that acts both on
hard constraints as in QCL and soft constraints as in PQCL. Specifically, we will ensure
that

1. the satisfaction degree of ¬F depends only on the degree of F ,

2. formulas and their negation can not be classically satisfied by the same interpreta-
tion,

3. formulas are equivalent to their double negation,

4. De Morgan’s laws hold.

It must be noted that QCL and PQCL are not the only semantics for propositional
logic extended with ordered disjunction. Another example is the work by Maly and
Woltran [44], where the semantics “directly” induces a partial order among interpreta-
tions (instead of using satisfaction degrees). However, negation is handled in the same
way as in QCL, i.e., all information about preferences is lost and formulas can have
different degrees than their double negations.

4.3 A Semantic Game for Choice Logic

In this section, we define our evaluation game for the language of QCL. In this game, the
payoffs represent how well a formula is satisfied with respect to both hard constraints
(truth) as well as soft constraints (preferences). We recall the central notion of a strategy in
Section 4.3.1. Validity in the resulting logic, GCL, is degree-based as well. We introduce
this logic in Section 4.3.2 and demonstrate that it satisfies the requirements specified in
Section 4.2.1. We give a QCL-style degree semantics for GCL in Section 4.3.3 and prove
its adequacy. Finally, in Section 4.3.4, we formally prove that our evaluation game is a
refinement of Hintikka’s game. Moreover, an evaluation game for QCL can be obtained
under a suitable translation of formulas.

We start by giving an informal account of the evaluation game2 GGCL
I (g).

2The resulting logic is called GCL (game-induced choice logic), see Subsection 4.3.2, which explains the
superscript.
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The game is played by two players, Me and You, play the game over a fixed interpretation
I. Both players can be in the role of the proponent (P) or the opponent (O) of a given
choice formula F . We encode the situation where I am the proponent of F , and You
are the opponent as by the game state P : F , and similarly with O : F for the opposite
situation. Let g be a game state. The game GGCL

I (g) starts at g. It proceeds according to
the rules below. The rules for the classical connectives are just as in Hintikka’s game for
classical logic.

(P∨) At game states of the form P : G1 ∨ G2, I choose between the game states P : G1
and P : G2 to continue the game.

(O∨) At O : G1 ∨ G2, You choose between O : G1 and O : G2.

(P∧) At P : G1 ∧ G2, You choose between P : G1 and P : G2.

(O∧) At O : G1 ∧ G2, I choose between O : G1 and O : G2.

(P¬) At P : ¬G, the game continues with O : G.

(O¬) At O : ¬G, the game continues with P : G.

The new ingredient is the interpretation of the choice connective #»×. Remember that
G1

#»×G2 encodes not only a hard constraint (at least one of G1, G2 has to be true), but
also a soft constraint, or preference: it is preferable that G1 is true. We encode this by an
explicit preference relation ≪. This relation represents My preferences over outcomes:

(P #»×) At game states of the form P : G1
#»×G2, I choose between P : G1 and P : G2 to

continue the game. All outcomes of the P : G1-subgame are in ≫-relation to all
outcomes of the P : G2-subgame.

(O #»×) At O : G1
#»×G2, You choose between O : G1 and O : G2. All outcomes of the

P : G1-subgame are in ≪-relation to all outcomes of the P : G2-subgame.

Note that the rule (O #»×) is in complete symmetry to the rule (P #»×). By its design, the
current proponent always prefers outcomes of the G1-game over outcomes in the G2-
game.

Finally, a sensible payoff must respect both truth (winning conditions) and preferences
(the relation ≪). Our payoff values are in the domain Z := (Z\{0},⊴). The ordering ⊴ is
the inverse ordering on Z+ and on Z−; for a ∈ Z+, b ∈ Z− we set b◁a, i.e. −1◁−2◁. . . 2◁1.
The domain Z is depicted in Figure 4.1. For each outcome o, let π≪(o) be the longest
≪-chain starting in o, i.e., pairwise different outcomes o1, . . . , on such that o = o1 ≪
· · · ≪ on. Let |π≪(o)| = n denote its length. We call game states of the form Q : a
where a is a propositional variable elementary. For elementary game states, let us write
I |= P : a if I |= a and I |= O : a if I ̸|= a.
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Figure 4.1: The domain of payoffs for GGCL.

�
P : ((a #»×b) #»×c) ∧ ¬(a #»×d)


Y

�
P : (a #»×b) #»×c


I

�
P : a

#»×b

I

[P : b]

Figure 4.2: A run of the game GGCL
I .

(Pa) Let a be a propositional variable. I win and You lose at P : a iff I |= a. Otherwise,
You win and I lose. If I win, then the payoff is |π≪(P : a)|. If I lose, the payoff is3

−|π≫(P : a)|.
(Oa) At O : a, I win and You lose iff I ̸|= a. Otherwise, You win and I lose. The payoff is

as above.

The game can be thus seen as a refinement of Hintikka’s game. Indeed, let F ∗ be F
with all #»×s replaced by ∨s. Then I have a winning strategy for GGCL

I (P : F ) iff I have
a winning strategy for F ∗ in Hintikka’s game over I. We prove this result formally
in Section 4.3.4. Furthermore, the payoff respects the relation ≪: if o1 ≪ o2 and both
are winning (or both are losing) for Me, then the outcome at o1 is strictly less than the
outcome at o2.

Example 4.3.1. Let F = ((a #»×b) #»×c) ∧ ¬(a #»×d) and I = {b}. Let us consider the game
starting at P : F . If You go to P : ((a #»×b) #»×c), then I can go to P : a

#»×b, and then to the
winning outcome P : b. Since P : a ≪ P : b, I receive a payoff of 2. This run of the game
is depicted in Figure 4.2.

We now formally define the evaluation game in terms of Definition 2.1.1. Game states
are of the form Q : F , where Q ∈ {P, O} and F is a choice formula. The set of all game
states is denoted StatGCL.

3Notice the flipped ≪-sign.
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Definition 4.3.2: Evaluation game for QCL

Let I be an interpretation and g a game state in StatGCL. The evaluation game
GGCL

I (g) is defined as follows:

• The initial history is ⟨g⟩.

• The set of histories HistGCL
g is the minimal set containing ⟨g⟩ and satisfying

the following conditions: if h = h′ ⌣ Q : G is contained, and G is of the
form

– G = G1 ∨ G2, then also h ⌣ Q : G1 and h ⌣ Q : G2 are contained,

– G = G1 ∧ G2, then also h ⌣ Q : G1 and h ⌣ Q : G2 are contained,

– G = G1
#»×G2, then also h ⌣ Q : G1 and h ⌣ Q : G2 are contained,

– G = ¬G′, then also h ⌣ Q̄ : G′ is containeda.

• Non-terminal histories ending in states of the following forms are labeled:

labeled “I” labeled “Y”
P : G1 ∨ G2 O : G1 ∨ G2
O : G1 ∧ G2 P : G1 ∧ G2
P : G1

#»×G2 O : G1
#»×G2

P : ¬G′ O : ¬G′

• The payoff function δI takes values in the domain Z described above. The
preference relation ≪ is formally defined as follows:

h1 ⌣ P : G1
#»×G2 ⌣ P : G1 ⌣ h2 ≫ h1 ⌣ P : G1

#»×G2 ⌣ P : G2 ⌣ h′
2,

and

h1 ⌣ O : G1
#»×G2 ⌣ O : G1 ⌣ h2 ≪ h1 ⌣ O : G1

#»×G2 ⌣ O : G2 ⌣ h′
2.

For a history h, let π≪(h) be theb longest ≪-path starting in h and simi-
larly for π≫(h), and let |π≪(h)| and |π≫(h)| denote their lengths. Terminal
histories h ending in Q : a are mapped to the following values:

δI(h) =
�

|π≪(h)| if I |= Q : a,

−|π≫(h)| if I ̸|= Q : a.

If the payoff is in Z+, then I win and You lose. If it is in Z−, I lose, and You
win.

aIf Q = P, then Q̄ = O, and if Q = O, then Q̄ = P.
bTo be pedantic, it should be “a” longest path, i.e., some path with maximal length.

71



4. CHOICE LOGICS

Here is how to read this formal description. The final state g of a history h is the current
game state. The other states are the game states leading up to g. If, for example, g is
of the form P : G1 ∧ G2, it is labeled “Y”. That means, You choose from the minimal
histories extending h, i.e., h ⌣ P : G1 and h ⌣ P : G2. If g = P : G1

#»×G2, then I choose
between h ⌣ P : G1 and h ⌣ P : G2.

Eventually, the game reaches a final history h, where h is a game state Q : a. Now,
the preference relation ≪ comes into play. If h is of the form h1 ⌣ P : G1

#»×G2 ⌣ P :
G2 ⌣ h′

2, then at some point during the game I decided to go to P : G2, which is in
conflict with My explicit preference expressed by #»×. Consequently, all histories of the
form h1 ⌣ P : G1

#»×G2 ⌣ P : G1 ⌣ h2 are in ≫-relation to h. Note that I will only
make this decision if I cannot win the game if I go to P : G1. If I win at h, then My
payoff is |π≪(h)|. Intuitively, that means that I win, but there is a chain of |π≪(h)|-many
outcomes that I would have preferred over the given one. If I lose then My payoff is
−|π≫(h)|. Even though You win, there is a chain of |π≫(h)|-many outcomes that You
would have preferred over h.

Example 4.3.3. As in Example 4.3.1, consider the formula F = ((a #»×b) #»×c) ∧ ¬(a #»×d). The
game tree, where I am initially the Proponent can be found in Figure 4.3. The order on
outcomes is P : c ≪ P : b ≪ P : a and O : a ≪ O : d. Or, to be precise, for the terminal
histories

h1 = ⟨P : ((a #»×b) #»×c) ∧ ¬(a #»×d), P : (a #»×b) #»×c, P : a
#»×b, P : a⟩,

h2 = ⟨P : ((a #»×b) #»×c) ∧ ¬(a #»×d), P : (a #»×b) #»×c, P : a
#»×b, P : b⟩,

h3 = ⟨P : ((a #»×b) #»×c) ∧ ¬(a #»×d), P : (a #»×b) #»×c, P : c⟩,
h4 = ⟨P : ((a #»×b) #»×c) ∧ ¬(a #»×d), P : ¬(a #»×d), O : a

#»×d, O : a⟩,
h5 = ⟨P : ((a #»×b) #»×c) ∧ ¬(a #»×d), P : ¬(a #»×d), O : a

#»×d, O : d⟩,

we have h3 ≪ h2 ≪ h1 and h4 ≪ h5. For the valuation I = {b}, the winning outcomes
are P : b, O : a, and O : d (or: h2, h4, and h5), and the payoffs are −1, 2, −3 at P : c, P : b,
P : a (or: h3, h2, h1), respectively, and 2, 1 at O : a, O : d (or: h4, h5), respectively.

Although the domain of payoffs is infinite, we can show that the payoff function assumes
only finitely many values for every instance of the game GGCL

I (g). By Theorem 2.1.11,
this proves that the game GGCL

I (g) is determined.

Lemma 4.3.4: GGCL is finite valued

Let I be an interpretation and g a game state. The game GGCL
I (g) is finite-valued.

Proof. For every choice formula F , we define the number rank(F ), the rank of F , recur-
sively: rank(a) = 1, for propositional variables, rank(F1◦F2) = max{rank(F1), rank(F2)}
for ◦ ∈ {∨, ∧,

#»×}, and rank(¬G) = rank(G) + 1. We extend the function to game states
by setting rank(Q : F ) = rank(F ) for Q ∈ {P, O}.
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�
P : ((a #»×b) #»×c) ∧ ¬(a #»×d)


Y

�
P : (a #»×b) #»×c


I

�
P : a

#»×b

I

[P : a] [P : b]

[P : c]

�
P : ¬(a #»×d)


Y

�
O : a

#»×d

Y

[O : a] [O : d]

Figure 4.3: A game tree for GGCL.

Since every history has at most 2 immediate successors, and the length of each history is
bounded by rank(g), we conclude that there are at most 2rank(g)-many terminal histories
in GGCL

I (g). Hence, the game is finite-valued.

4.3.1 Strategies

Strategies, k-strategies, winning strategies, and the value of the game were formally
defined in Chapter 2. Here, we remind the reader of how to think of strategies as a
subtree of the game tree: Every strategy σ for Me is represented by a subtree of the
game tree that results from pruning all but one successor from I-nodes and leaving all
successors of Y-nodes intact. The strategy σ is a k-strategy if all leaves of this subtree
have payoff ⊵ k, and winning if all leaves are winning, i.e., have a payoff in Z+.

Example 4.3.5. In Example 4.3.3, we saw the game tree of F = ((a #»×b) #»×c) ∧ ¬(a #»×d) over
the interpretation I = {b}. If You go to the left subgame in the root, then I can enforce
the game to end in a P : b, resulting in a payoff of 2. This run of the game was discussed
in Example 4.3.1. In fact, I have a 2-strategy for this game: if You go to the right, then
You have the choice between the outcomes O : a with payoff 1 and O : d with payoff
2. Note that in this case, You will always choose O : d. This shows that the value of
the game is 2. The corresponding strategy for Me is depicted in Figure 4.4. In terms of
strategies as mappings of histories, let h = ⟨P : F, P : (a #»×b) #»×c⟩. Any strategy σ for Me
with σ(h) = h ⌣ P : a

#»×b and σ(h ⌣ P : a
#»×b) = h ⌣ P : a

#»×b ⌣ P : b is a −2 strategy.

Example 4.3.6. Let us consider the game over F and {b} as in the previous example, but
now the game starts with Me in the role of the opponent. The game tree is the same as in
Figure 4.3, but all Ps and Os are swapped, which means swapped labels and mirrored
≪-relations, too. To be explicit, the order on outcomes is O : a ≪ O : b ≪ O : c and
P : a ≫ P : d. This game has value −2: if I go to the left at the root, then You go to O : b,
giving Me a payoff of −2. If I to go to the right I can reach the outcome of P : a with the
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�
P : ((a #»×b) #»×c) ∧ ¬(a #»×d)
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Figure 4.4: A 2-strategy for Me over I = {b}.

same payoff of −2. Hence, if we swap Ps and Os and labels in Figure 4.4, then this tree
represents the corresponding −2-strategy for You.

4.3.2 The logic GCL and its negation

Usually, in a semantic view of a logic, validity of a formula F is defined as truth of F in
all interpretations. In our context of graded truth, however, we can refine this notion to
graded validity. Thus, we define the degree (of validity) of F to be the least possible value
of F in all evaluation games:

v(F ) = min
I

vI(F ),

where vI(F ) is an abbreviation for v(GGCL
I (P : F ).

In Sections 4.4 and Section 4.5, we give a fully game-theoretic characterization of this
degree. For now, let us check that our new logic satisfies the requirements formulated in
Subsection 4.2.1. To this end, define F ≡ G iff vI(F ) = vI(G). In the below proposition,
Point 1 shows that the value of ¬F depends only on the value of F , 2 shows that either
F , or its negation (but not both) is winning, and 3 shows that every formula is equivalent
to its double negation. Finally, 4 and 5 show that De Morgan’s laws hold for GCL, and 6
shows associativity.

Proposition 4.3.7: ¬-requirements, De Morgan, associativity

The following holds:

1. vI(F )=vJ (F ) ⇐⇒ vI(¬F )=vJ (¬F )

2. vI(F ) ∈ Z+ ⇐⇒ vI(¬F ) ∈ Z−

3. F ≡ ¬¬F
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4. ¬(F ∧ G) ≡ ¬F ∨ ¬G

5. ¬(F ∨ G) ≡ ¬F ∧ ¬G

6. ((F ◦ G) ◦ H) ≡ (F ◦ (G ◦ H)) for ◦ ∈ {∧, ∨,
#»×}

For the proof of the proposition we need the following lemma:

Lemma 4.3.8: role switch = negated value

v(GGCL
I (P : F )) = −v(GGCL

I (O : F )).

Proof. We fix I and F . For every history h in v(GGCL
I (O : F )), let h′ be the history with

all Ps and Os swapped. We write vP(h) and vO(h′) for the values of the subgames
GGCL

I (P : F ))@h and GGCL
I (O : F ))@h′, respectively, and prove the claim by induction

on h. The case for the initial history ⟨P : F ⟩ shows the claim.

Let h be terminal and end in Q : a. Note that in GGCL
I (O : F )), all Ps and O are

swapped. Hence, if h is winning, i.e., I |= Q : a, then, since I ̸|= Q̄ : a, h′ is losing. We
have

−vO(h) = |πO
≫(h′)| = |πP

≪(h)| = vP(h),

where we write πO≫ for the longest ≫-path in GGCL
I (O : F ) and πP≪ for the longest

≪-path in GGCL
I (P : F ). The case where h is losing is symmetric.

Let h be labeled “I”. We first show vO(h) ⊴ −vP(h′). By Lemma 2.1.14, there is some
l = h ⌣ g such that I have a vP(h)-strategy in the subgame starting at l, which means
vP(l) ⊵ vP(h). By the inductive hypothesis, vO(l′) = −vP(l), hence You have a −vP(l)-
strategy in the l′-subgame. By Lemma 2.1.14, You have a −vP(l)-strategy GGCL

I (O :
F )@h′, hence vO(h′) ⊴ −vP(l). Since −vP(l) ⊴ −vP(h), we have vO(h′) ⊴ −vP(h).

For the other inequality, we use Lemma 2.1.14 showing that for all l = h ⌣ g, You have
a vP(h)-strategy in the subgame starting at l, hence vP(l) ⊴ vP(h). By the inductive
hypothesis, vO(l′) = −vP(l), hence I have −vO(l′)-strategy in every such l′-subgame.
Since vO(l′) = −vP(l) ⊵ −vP(h), I have a −vP(h)-strategy in GGCL

I (O : P )@h′ by
Lemma 2.1.14. Therefore, vO(h′) ⊵ −vP(h).

The inductive step where h is labeled “Y” is symmetric.

Proof of Proposition 4.3.7. 1 and 2 follow directly from Lemma 4.3.8, as vI(¬F ) = −vI(F ).
The other points are simple game equivalences: For example, the game starting at
P : ¬(F ∧ G) automatically proceeds to O : F ∧ G, where I choose between O : F and
O : G. In the game starting at ¬F ∨ ¬G, I chose between continuing the game with
P : ¬F and hence O : F , or with P : ¬G and hence O : G. Histories in both games are
thus in a 1-1 correspondence, which shows their strategical equivalence.
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4.3.3 A degree semantics for GCL

We now extract a novel degree-based semantics for the language of GCL from our game
GGCL, as usual in choice logics. The definition of degree depends on the following
syntactic notion of optionality:

Definition 4.3.9: Optionality

The optionality of choice formulas is defined recursively as follows:

optG(x) = 1 for every propositional variable x,

optG(¬F ) = optG(F ),
optG(F ∧ G) = max(optG(F ), optG(G)),
optG(F ∨ G) = max(optG(F ), optG(G)),
optG(F #»×G) = optG(F ) + optG(G).

The difference to QCL is that negation does not trivialize optionality. Optionality is used
in the recursive definition of degrees in the case of the choice connective #»×:

Definition 4.3.10: Degree under an interpretation

The satisfaction degree of choice formulas is defined recursively as follows:

degG
I (a) =

�
1 if x ∈ I,

−1 if x /∈ I,

degG
I (¬F ) = − degG

I (F )
degG

I (F ∧ G) = min⊴(degG
I (F ), degG

I (G)),
degG

I (F ∨ G) = max⊴(degI(F ), degG
I (G)),

degG
I (F #»×G) =

����
degG

I (F ) if degG
I (F ) ∈ Z+

optG(F ) + degG
I (G) if degG

I (F ) ∈ Z− and degG
I (G) ∈ Z+,

degG
I (F ) − optG(G) otherwise

Analogously to QCL, I is a preferred model of F iff degG
I (F ) ∈ Z+ and degG

J (F ) ⊴
degG

I (F ) for all J .

An interesting fact about our game semantics is that the notion of optionality, which
must be defined a-priori in degree-based semantics, arises naturally in our game.
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Lemma 4.3.11: opt captures π≪

For every game state g, let

|π≪(g)| = max{|π≪(h)| : h is a terminal history in GGCL
I (g)}.

Then |π≪(Q : F )| = optG(F ) for both Q = P, O. The same equality holds for π≫.

Proof. First note that the definition of |π≪(g)| does not depend on I. The lemma is
proved by induction on F . If g = Q : a, then the relation ≪ is trivial and optG(a) = 1.

If g = Q : F1 ∨ F2, then all histories in GGCL
I (g) can be written as g ⌣ hi, where

hi is a history in GGCL
I (Q : Fi) for some i = 1, 2. As for the ≪-relation in GGCL

I (g),
we have that h ≪ k iff hi ≪ ki, i.e., both histories go to the same subgame in the
first move and the resulting histories are in ≪-relation. Thus, a longest ≪-path in
GGCL

I (g) is either g ⌣ h1
1 ≪ . . . ≪ g ⌣ hn

1 , where h1
1 ≪ · · · ≪ hn

1 is π≪(Q : F1),
or g ⌣ h1

2 ≪ . . . ≪ g ⌣ hm
2 , where h1

2 ≪ · · · ≪ hm
2 is π≪(Q : F2), whichever is

the longest. Thus, |π≪(g)| = max{n, m} = max{|π≪(Q : F1)|, |π≪(Q : F2)|}. By the
inductive hypothesis, this is equal to max{optG(F1)|, optG(F2)|} = optG(F1 ∨ F2). The
case Q : F1 ∧ F2 is similar.

Let g = P : ¬G. By the inductive hypothesis, the longest path in GGCL
I (O : G) has

length |π≪(O : G)| = optG(G). For every ≪-path h1 ≪ . . . ≪ hn, the path g ⌣ h1 ≪
. . . ≪ g ⌣ hn is a ≪-path in GGCL

I (P : ¬G), and vice versa. Hence, |π≪(P : ¬G)| =
optG(G) = optG(¬G).

The most interesting case is for g = Q : F1
#»×F2. As before, we write the terminal histories

h in this game as g ⌣ hi, where hi is a terminal history in GGCL
I (Q : Fi) for some i = 1, 2.

The difference is that now we have g ⌣ h1 ≫ g ⌣ h2 if Q = P. In this case, the longest
≪-path in GGCL

I (g) is

π≪(g) = g ⌣ h1
2 ≪ . . . ≪ g ⌣ hm

2 ≪ g ⌣ h1
1 ≪ . . . ≪ g ⌣ hn

1 ,

where h1
2 ≪ · · · ≪ hm

2 is π≪(P : F2) and h1
1 ≪ · · · ≪ hn

1 is π≪(P : F1). Hence,
|π≪(g)| = |π≪(P : F1)| + |π≪(P : F2)| = optG(F1) + optG(F2) = optG(F1

#»×F2). In the
case Q = O, we have g ⌣ h1 ≪ g ⌣ h2 and we can again connect the two paths.

Lemma 4.3.12

Let h be a history of GGCL
I (g) ending in the game state g′. Then

v(GGCL
I (h)) =

�
v(GGCL

I (g′)) + |π≪(h)| − 1, if v(GGCL
I (g′)) ∈ Z+,

v(GGCL
I (g′)) − |π≫(h)| + 1, if v(GGCL

I (g′)) ∈ Z−.
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Proof. We show the first case where I can win GGCL
I (g′). Let ≪g′ be the relation ≪ in

that game. We notice that (1) for every pair of histories h′ ≪g′ h′′ we have that h ⌣ h′ ≪
h ⌣ h′′. Furthermore, (2) for every k with h ≪ k and every history h′ in GGCL

I (g′), we
have h ⌣ h′ ≪ k. This instructs us how to construct a maximal ≪-path starting in h′:
take π≪g′ (h′), i.e., a maximal ≪g′-path starting in h′: h′ = h′

1 ≪g′ · · · ≪g′ h′
n, and with

π≪(h), i.e. a maximal ≪-path starting in h: h = h1 ≪ h2 ≪ · · · ≪ hm. Then the path

h ⌣ h′
1 ≪ · · · ≪ h ⌣ h′

n ≪ h2 ≪ · · · ≪ hm,

is a maximal ≪-path starting at h ⌣ h′ and has length |π≪g′ (h′)| + |π≪(h)| − 1. If

h′ is a terminal history, this translates to payoffs: δI(h ⌣ h′) = δg′
I (h′) + |π≪(h)| + 1,

where δg′
I denotes the payoff function in GGCL

I (g′). If h′ is the result of Me playing My
winning minimax-strategy and You playing Your maximin-strategy in GGCL

I (g′), we
obtain v(GGCL

I (h)) = v(GGCL
I (g′)) + |π≪(h)| + 1, as desired.

Theorem 4.3.13: Value = degree

For every choice formula F , the value of GGCL
I (P : F ) is degG

I (F ). The value of
GGCL

I (O : F ) is −degG
I (F ).

Proof. Let us fix I and write v(g) for the value of GGCL
I (g) and v(h) for the value of

GGCL
I (g)@h, where h is a history starting in g. We only need to show that v(P : F ) =

degG
I (F ), as the other claim v(O : F ) = − degG

I (F ) follows from Lemma 4.3.8. The proof
proceeds by induction on F .

For the base case F = a, the game consists of the initial history ⟨Q : a⟩ only. The longest
≪-path, therefore, has length 1. Consequently, v(Q : a) = 1 if I |= Q : a and vQ:a = −1,
otherwise.

In the first round of the game starting at P : F1 ∨ F2, I choose between P : F1 and P : F2.
To compute the values of these subgames with respect to the games starting at the P : Fi,
let hi = ⟨P : F1 ∨ P : F2, P : Fi⟩, for i = 1, 2. Using Lemma 4.3.12, we have

v(hi) =
�

v(P : Fi) + |π≪(hi)| − 1, if v(P : Fi) ∈ Z+,

v(P : Fi) − |π≫(hi)| + 1, if v(P : Fi) ∈ Z−.

Since |π≪(hi)| = |π≫(hi)| = 1, we get v(hi) = v(P : Fi). My best strategy is to move to
the subgame with maximal value (Lemma 2.1.14), hence:

v(P : F1 ∨ F2) = max⊴{v(h1), v(h2)}
= max⊴{v(P : F1), v(P : F2)}
= max⊴{degG

I (F1), degG
I (F2)}

= degG
I (F1 ∨ F2),
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where we used the inductive hypothesis in Step 3.

At P : F1 ∧ P : F2, You choose between P : F1 and P : F2. As before, we have
v(hi) = v(P : Fi) for i = 1, 2. Since You seek to minimize My payoff, Your best strategy is
to move to the subgame with minimal value, hence:

v(P : F1 ∧ F2) = min⊴{v(h1), v(h2)}
= min⊴{v(P : F1), v(P : F2)}
= min⊴{degG

I (F1), degG
I (F2)}

= degG
I (F1 ∧ F2).

At P : ¬G, the game continues at O : G, hence v(P : ¬G) = v(O : G). By the second
claim and the inductive hypothesis, this equals −v(O : G) = − degG

I (F ) = degG
I (¬G).

Finally, we consider P : F1
#»×F2. Again, I choose between P : F1 and P : F2, but this

time, the values of these subgames do not coincide with those of the games starting at
P : Fi. As before, we apply Lemma 4.3.12 with hi = ⟨P : F1

#»×F2, P : Fi⟩:

v(hi) =
�

v(P : Fi) + |π≪(hi)| − 1, if v(P : Fi) ∈ Z+,

v(P : Fi) − |π≫(hi)| + 1, if v(P : Fi) ∈ Z−.

For h1, we have |π≪(h1)| = 1, and |π≫(h1)| = opt(F2) + 1, by Lemma 4.3.11, since
all outcomes of the subgame starting at h1 are in ≫-relation with all outcomes of the
h2-subgame. Therefore, v(h1) = v(P : F1) if v(P : F1) ∈ Z+, and v(P : F1) − opt(F2),
otherwise. A similar computation shows that v(h2) = v(P : F2) + opt(F2) if v(P : F2) ∈
Z+, and v(P : F2), otherwise. Since I seek to maximize My payoff (to be explicit: I prefer
winning over losing and satisfying as many ≪-preferences as possible) I move to P : F1
if v(P : F1) ∈ Z+, to P : F2 if v(P : F1) ∈ Z− and v(P : F2) ∈ Z+, and to P : F1 if
v(P : F1) ∈ Z− and v(P : F2) ∈ Z−.

v(P : F1
#»×F2) =

����
v(P : F1) if v(P : F1) ∈ Z+,

v(P : F2) + opt(F1) if v(P : F1) ∈ Z− and v(P : F2) ∈ Z+,

v(P : F1) − opt(F2) if v(P : F1) ∈ Z− and v(P : F2) ∈ Z−,

and using the inductive hypothesis,

v(P : F1
#»×F2) =

����
degG

I (F1) if degG
I (F1) ∈ Z+,

degG
I (F2) + opt(F1) if degG

I (F1) ∈ Z− and degG
I (F2) ∈ Z+,

degG
I (F1) − opt(F2) if degG

I (F1) ∈ Z− and degG
I (F2) ∈ Z−,

which is equal to degG
I (F1

#»×F2).

As a corollary, we get a degree-based characterization of the degree of validity of a
formula introduced in Section 4.3.2.
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Corollary 4.3.14: Degree of validity, degree version

Let F be a choice formula. Then

v(F ) = min
I

degG
I (F ).

4.3.4 Capturing CL and QCL

This subsection aims at clarifying the connections of our game semantics with classical
logic and QCL. To this end, we formally prove that GGCL is a refinement of Hintikka’s
game. We adjust our game semantics to provide an adequate game model for QCL, too.
The resulting semantic game, GQCL, illustrates the the asymmetric behavior of negation,
as discussed in Section 4.2.1, in a game-theoretic way.

GGCL as a refinement of Hintikka’s game

We start with the following recursive translation of choice formulas F :

a∗ = a

(F ∧ G)∗ = F ∗ ∧ G∗

(F ∨ G)∗ = F ∗ ∨ G∗

(F #»×G)∗ = F ∗ ∨ G∗

(¬F )∗ = ¬F ∗

The ∗-translation of a choice formula F gives the “classical content” of F by removing
all soft constraints, as every #»× is replaced by ∨. Hence, preferences do not matter in the
evaluation game over F ∗, and payoffs are restricted to −1 (full dissatisfaction) and 1
(full satisfaction). We start by showing that the winning strategies in GGCL correspond
to winning strategies in Hintikka’s game. To this end, we extend the translation to game
states by setting (Q : F )∗ = Q : F ∗ for Q ∈ {P, O}.

Theorem 4.3.15

Let F be a choice formula. Then I have a winning strategy in GGCL
I (Q : F ) iff I

have a winning strategy in GCL
I (Q : F ∗).

Proof. By induction on F , we show that degG
I (F ) ∈ Z+ iff I |= F ∗. By Theorem 4.3.13

the left side of the equivalence is itself equivalent to Me having a winning strategy in
GGCL

I (Q : F ), and, by the adequacy for GCL (Example 2.1.9), the right side is equivalent
to Me having a winning strategy in GCL

I ((Q : F )∗), giving us the claim.

If F is a variable, the value of degG
I (a) = 1 iff a = a∗ is true under I.
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If F = F1 ◦ F2, for ◦ ∈ {∨,
#»×}, then degG

I (F1 ◦ F2) ∈ Z+ iff for some i, degG
I (Fi) ∈ Z+. By

the inductive hypothesis, this is the case iff I |= F ∗
i for some i, with is equivalent to I

satisfying F ∗
1 ◦ F ∗

2 = F ∗.

If F = F1 ∧ F2, then degG
I (F1 ∧ F2) ∈ Z+ iff both degG

I (F1), degG
I (F2) ∈ Z+. By the

inductive hypothesis, this is equivalent to I |= F ∗
1 and I |= F ∗

2 , which in turn is
equivalent to I satisfying F ∗

1 ∧ F ∗
2 = F ∗.

As an immediate consequence, we get that the evaluation game for GCL, when played
over a propositional formula, agrees with Hintikka’s game for classical propositional
logic:

Corollary 4.3.16

Let Q ∈ {P, O}, then for every propositional formula F ,

v(GGCL(Q : F )) = v(GCL(Q : F ))

Proof. The first equality follows by Theorem 4.3.16 by the facts that GGCL
I (Q : F ∗) has

value 1, or −1, and F ∗ = F , if F is propositional.

A Game for QCL

We now describe an adequate game for QCL. Intuitively, the asymmetries of negation
discussed in Section 4.2.1 translate into the following asymmetric rule for negation:

(P¬) At P : ¬G, the game automatically continues with O : G, and all preferences are
erased.

This means, that if the game starts at a game state P : F , and comes to a a negation,
O : ¬G, roles are switched and from this point on, the game is a win/lose game only.
Additionally, if the game starts at O : F , then it is a win/lose game from the very start.

Note that by interpreting negation via this rule, some of the behavior of negation
mentioned in Section 4.2.1 becomes immediately clear. For example, the games P : F
and P : ¬¬F are equivalent, when it comes to who wins and who loses, since the second
game continues at P : F , after two role switches. However, now all preferences are lost
which could influence the induced payoff.

Formally, the most elegant way to prove that the new semantics is adequate for QCL is
to use our game for GCL to model preferences and truth and model the asymmetries
present in QCL by a suitable translation of formulas. This translation is recursively
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defined as follows4:

a▽ = a

(F ∧ G)▽ = F ▽ ∧ G▽

(F ∨ G)▽ = F ▽ ∨ G▽

(F #»×G)▽ = F ▽ #»×G▽

(¬F )▽ = ¬F ∗

The ▽-translation aims at capturing QCL by removing all preferences from negated
formulas but keeping unnegated preferences intact. We extend this translation to game
states by setting (P : F )▽ = P : F ▽, (O : F )▽ = O : F ∗.

Theorem 4.3.17: GGCL+▽ characterizes deg

For every choice formula F , I have a winning strategy in GGCL(P : F ▽) iff
degI(F ) ∈ Z+. In this case,

v(GGCL
I (P : F ▽)) = degI(F ).

You have a winning strategy in GGCL
I (P : F ▽) iff degI(F ) = −1.

The theorem implies that the following game GQCL
I (P : F ) over an interpretation I

and a choice formula F is adequate5. The game proceeds as GGCL
I (P : F ▽), except for

the payoffs: if the payoff in GGCL
I (P : F ▽) is k ∈ Z+, then GQCL

I (P : F ) has the same
payoff. If the payoff in GGCL

I (P : F ▽) is in Z−, then the payoff in GQCL
I (P : F ) is −1.

From the theorem, we immediately get the adequacy of this game:

Corollary 4.3.18: Adequacy of GQCL
I

Let F be a choice formula and I an interpretation. Then

v(GQCL
I (P : F )) = degI(F ).

We prove Theorem 4.3.17 by using the degree-based semantics from the previous sub-
section. We need the following lemma:

Lemma 4.3.19

For all choice formulas F , opt(F ) = optG(F ▽).

4The use of the symbol “▽” is inspired by Baaz’s projection modality for Gödel logic[2]. The degree of
▽-translated formulas behaves similarly to that operator, as demonstrated in Theorem 4.3.17.

5We do not deal with this game again, hence we skip a fully formal definition.
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Proof. By a straightforward induction on F . If F is a variable, or of the form F1 ∨ F2,
F1 ∨ F2, or F1

#»×F2, then opt and optG are defined the same. If F = ¬G, then optG(F ▽) =
optG(G∗) = 1, using the fact that optG gives 1 for all propositional formulas.

Proof of Theorem 4.3.17. By induction on F , we show degG
I (F ▽) = degI(F ), if degI(F ) ∈

Z+, and degG
I (F ▽) ∈ Z− iff degI(F ) = −1. Theorem 4.3.13 then gives the game-theoretic

characterization.

If F = a, then degG
I (a▽) = degG

I (a) = degI(a).

If F = F1 ∨ F2, then degI(F1 ∨ F2) ∈ Z+ iff for some i, degI(Fi) ∈ Z+. By the inductive
hypothesis, this is the case iff degG

I (Fi) ∈ Z+, which is equivalent to degG
I (F1 ∨ F2) ∈ Z+.

In this case,

degI(F1 ∨ F2) = max⊴{degI(F1), degI(F2)}
= max⊴{degG

I (F1), degG
I (F2)} = degG

I (F1 ∨ F2),

where we applied the inductive hypothesis to those Fi with degI(Fi) ∈ Z+.

If F = ¬G, then degI(¬G) = 1 iff (1) degI(G) = −1, and degI(¬G) = −1 iff (2)
degI(G) ∈ Z+. In Case 1, degG

I (G▽) ∈ Z−, by the inductive hypothesis. Hence,

degG
I ((¬G)▽) = degG

I (¬G∗) = − degG
I (G∗) = 1,

where the last equality follows from Theorems 4.3.13 and 4.3.15, and Corollary 4.3.16:
degG

I (G▽) ∈ Z− iff You have a winning strategy in GCL
I ((P : G▽)∗) = GCL

I (P : G∗).
In this case, the values of GGCL(P : G∗) and GCL(P : G∗) are both −1, which implies
degG

I (G∗) = −1. Case 2 is similar.

If F = F1
#»×F2 and degI(F1

#»×F2) = −1, then both F1 and F2 have degree −1. By
the inductive hypothesis, degG

I (F ▽
i ) ∈ Z− for i = 1, 2. But then degG

I ((F1
#»×F2)▽) =

degG
I (F ▽

1
#»×F ▽

2 ) ∈ Z−. If deg(F1
#»×F2) ∈ Z+, then at least one of F1 and F2 have a degree

in Z+. If degI(F1) ∈ Z+, then, by the inductive hypothesis, degG
I (F ▽

1 ) = degI(F1).
Hence, degG

I (F ▽
1

#»×F ▽
2 ) = degG

I (F ▽
1 ) = degI(F1) = degI(F1

#»×F2. Otherwise, degI(F2) ∈
Z+, and equals degG

I (F ▽
2 ). Hence, using Lemma 4.3.19, degG

I (F ▽
1

#»×F ▽
2 ) = degG

I (F ▽
2 ) +

optG(F ▽
1 ) = degI(F2) + opt(F1) = degI(F1

#»×F2).

4.4 The Disjunctive Game as Semantic Game

As in Chapter 3, we start the lifting of the evaluation game to a provability game by
extending it to the disjunctive game over an evaluation I.

In the new game, I have an extra option: instead of moving according to the rules of the
evaluation game, I can decide to create a “backup-copy” of h and continue playing at
the disjunctive game state (or disjunctive state) h

�
h. If the game is unfavorable for Me

in one copy, I can always come back to have another shot at the other copy. Formally,
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disjunctive game states are finite multisets of histories of the evaluation game. We prefer
to write h1

�
...

�
hn for the disjunctive game state {h1, ..., hn}, but keep the convenient

notation h ∈ D if h belongs to the multiset set D. We write D1
�

D2 for the multiset sum
D1 + D2 and D

�
h for D + {h}. A disjunctive state is called elementary if all its histories

end in elementary game states.

My goal is to win at least one backup copy. The game states of this game can be thus
read as disjunctions, and are therefore called disjunctive game states6, (hence the name of
the game). The sign “

�
”, can also be read as maximum: the payoff at D is the maximum

of the payoff of its terminal histories.

Note that due to the design of the game, runs of the game can now be infinite. (I can
duplicate histories infinitely often). All infinite runs will be considered winning for You.

Additionally, I take the rule of a scheduler who decides which copy is played upon next7.
At the disjunctive state D

�
h, I can point to the history h, coded by underlining: D

�
h.

Afterward, the corresponding player takes their turn in the evaluation game. Say they
move to g, then the new disjunctive game state is D

�
h ⌣ g. Alternatively, I can decide

to end the game. The winner is then determined as described above.

We now give a semi-formal description of the disjunctive game. Let D be a disjunctive
state. Let Dter consist of the terminal histories of D. We say that D is terminal if
D = Dter, or if I have decided to end the game.

(End) If no histories in D are underlined, I can end the game, and D becomes terminal.

(Dupl) If no histories in D are underlined and D is not terminal, I can duplicate an h ∈ D
and the game continues with D

�
h.

(Sched) If no histories in D = D′ �
h are underlined and D is not terminal, I can

underline a non-terminal h ∈ D and the game continues with D′ �
h.

(Move) If D = D′ �
h, then the player who is to move in the evaluation game GGCL

I (h)
at the history h makes a legal move to the game state g and the game continues
with D

�
h ⌣ g. For example, if h ends in P : G1 ∧ G2, then You chose a k ∈ {1, 2},

and the game continues with D
�

h ⌣ P : Gk.

(Pay) If D is terminal, then the payoff is the maximum of all the payoffs of the histories
in D. In particular, I win iff I win the evaluation game in some h ∈ Dter, and You
lose. Otherwise, You win, and I lose.

6To avoid confusion, we always refer to game states of the disjunctive game DGGCL as “disjunctive
(game) states”. “(Game) states” is reserved for the semantic game GGCL.

7We could be more general here and give the task of scheduling to You, or even a non-strategic player,
or so-called regulation function. In terms of game values, all of these variants are equivalent – a result that
holds for all finite games. In order to keep the presentation here more streamlined we will discuss the topic
of regulations in full generality in Chapter 5
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4.4. The Disjunctive Game as Semantic Game

Additionally, we require that if no history of D is underlined, I must move according to
(End), (Dupl) or (Sched). (Dupl) is referred to as the duplication rule and (Sched) as the
scheduling, or underlining rule.

We point out the similarities of this game to the disjunctive game for hybrid logic.
The rules (End), (Dupl) or (Sched) are exactly as in DGHyb. The difference lies in the
payoffs: while payoffs in DGHyb are restricted to −1, 1, we now have a richer domain.
Furthermore, the game for GCL does not have infinite branching. Note, however, that
these differences are imports of the respective evaluation games, and are not introduced
at the level of the disjunctive game. We will formally investigate the result of lifting a
general semantic game to a disjunctive game in Chapter 5. Another difference is that
we do not consider infinite disjunctive states here. For hybrid logic, we needed infinite
disjunctive states to model frame properties that should hold at every nominal.

Example 4.4.1. Let F be ((a #»×b) #»×c)∧¬(a #»×b), and I = {b}, as in Example 4.3.6 . Remember,
in the evaluation game starting in O : F the prefrence on outcomes was O : a ≪ O :
b ≪ O : c and P : a ≫ P : d. Figure 4.5 shows a compact representation of a strategy
for Me for the game DGGCL

I (O : F ), where we write the last game state of every history,
instead of entire histories. For example, the game state O : a in the leftmost leaf stands
for the history

⟨O : F, O : (a #»×b) #»×c, O : a
#»×b, O : a⟩.

Underlining moves are clear from the context and are therefore, hidden. First, I duplicate
O : F and move to P : ((a #»×b) #»×c) in one copy and to O : ¬(a #»×d) in the other. The latter
is immediately converted to P : a

#»×d, for which I repeat the strategy of duplicating and
moving into both options. Finally, I point to O : (a #»×b) #»×c, where it is Your turn. All Your
possible choices are shown in the strategy. The payoffs are

δI(O : a
�

P : a
�

P : d) = max{δI(O : a), δI(P : a), δI(P : d)}
= max{3, −2, −1} = 3,

δI(O : b
�

P : a
�

P : d) = max{δI(O : b), δI(P : a), δI(P : d)}
= max{−2, −2, −1} = −2,

δI(O : c
�

P : a
�

P : d) = max{δI(O : c), δI(P : a), δI(P : d)}
= max{1, −2, −2} = 1.

Given these payoffs, You prefer the second outcome, giving Me a payoff of −2. Hence,
the depicted strategy is a −2-strategy. We note two things. First, I cannot do better by
playing another strategy. If the outcomes do not contain game states resulting from
O : (a #»×b) #»×c, then their pay-offs are the same or even less. Hence, we can conclude that
the value of the game is −2. Although in this example, the strategy of first duplicating,
then exploiting all possible moves produces many unnecessary moves, it is – in a way
– optimal for Me. We will see in the following sections that this strategy is, in fact a
−2-strategy over all interpretations I.
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�
O : ((a #»×b) #»×c) ∧ ¬(a #»×d)


I

�
O : ((a #»×b) #»×c) ∧ ¬(a #»×d) � O : ((a #»×b) #»×c) ∧ ¬(a #»×d)


I

�
O : ((a #»×b) #»×c) � O : ((a #»×b) #»×c) ∧ ¬(a #»×d)


I

�
O : ((a #»×b) #»×c) � O : ¬(a #»×d)


Y

�
O : ((a #»×b) #»×c) � P : (a #»×d)


I

�
O : ((a #»×b) #»×c) � P : (a #»×d) � P : (a #»×d)


I

�
O : ((a #»×b) #»×c) � P : a

� P : (a #»×d)

I

�
O : ((a #»×b) #»×c) � P : a

� P : d

Y

�
O : a

#»×b
� P : a

� P : d

Y

[O : a
� P : a

� P : d] [O : b
� P : a

� P : d]

[O : c
� P : a

� P : d]

Figure 4.5: A compact representation of the strategy for Me for an instance of DGGCL
I

We now come to the formal definition of the disjunctive game for GCL.

Definition 4.4.2: Disjunctive game as Semantic Game

Let I be an interpretation. Disjunctive statesa are multisets of histories of the
evaluation game, where none or exactly one history is underlined or the dummy
state ∗. Let D be a disjunctive state consisting of histories of the evaluation game.
The disjunctive game DGGCL

I (D) is defined as follows:

• The initial history is ⟨D⟩.

• If h is a disjunctive history and no state in the disjunctive state H is under-
lined, and

– h = h′ ⌣ H
�

h, then h ⌣ ∗ is a disjunctive history. If, additionally,
h is not terminal, then h ⌣ H

�
h

�
h and h ⌣ H

�
h are disjunctive
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4.4. The Disjunctive Game as Semantic Game

historiesb.

– h = h′ ⌣ H
�

h, then h ⌣ H
�(h ⌣ g) is a disjunctive history if h ⌣ g

is a history of the evaluation game GGCL
I (h).

• Non-terminal disjunctive histories ending in a disjunctive state H with no
underlined histories are labeled “I”. If H = H ′ �

h, then H is labeled the
same as h in the evaluation game GGCL

I (h).

• As for the evaluation game, the payoff function δI maps terminal disjunctive
histories to the domain Z. Terminal disjunctive histories ending in ⟨. . . , H, ∗⟩
are mapped to

δI(⟨. . . , H, ∗⟩) = max
h∈H

δI(h).

aTo make the distinction easier, we always refer to game states of the disjunctive game as
disjunctive states and histories of the disjunctive game as disjunctive histories.

bNote that there is implicit quantification over h.

Remark 4.4.3. (1) It follows from the definition that all terminal disjunctive histories end
in ∗.

(2) Winning strategies and k-strategies for the disjunctive game are well-defined in light
of Definition 2.1.5 and can again be considered subtrees of the game tree. We will speak
of disjunctive (winning) strategies to distinguish from the evaluation game.

(3) Due to the duplication rule, runs of the game can now be infinite, resulting in a
winning outcome for Me. Even though the game is infinite, the payoff values for every
instance DGGCL

I (D) is restricted to finitely many values. This follows from Lemma 4.3.4.
By Theorem 2.1.11, this implies that for some k, both I and You have k-strategies. A
direct proof follows from the two propositions below.

(4) In contrast to the evaluation game, the disjunctive game is not fully symmetric. This
is due to the duplication rule, the winning conditions, and My role as a scheduler, i.e.
the scheduling rule. At least the last asymmetry can be eliminated. In Chapter 5, we
discuss a general framework for the disjunctive game, where the scheduling is done
by a regulation function, which can be thought of as a third, non-strategic player. Under
certain conditions, the disjunctive game retains its nice properties that we discuss in the
present chapter.

We now compare the disjunctive game to the evaluation game from a strategic viewpoint.
Essentially, a disjunctive k-strategy for Me in the game over a model is nothing more but
a disjunction of strategies for the evaluation game:
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Proposition 4.4.4: My disjunctive strategy = disjunction of My strategies

I have a disjunctive k-strategy in DGGCL
I (D) iff I have a k-strategy in GGCL

I (h)
for some h ∈ D.

Proof. “⇒”: Let σ be a disjunctive k-strategy for Me in DGGCL
I (D). The case for k = −1

is trivial. If k ▷ −1, then, by definition, all terminal histories in σ are finite. In this case,
we can use backward induction on the tree structure of σ to show that for every H ∈ σ
there is h ∈ H such that I have a winning strategy σH in GGCL

I (h). The proposition then
follows for the case where H = D.

By assumption, all leaves ∗ have a predecessor H such that there is some h ∈ H with
payoff ⊵ k. If H is not followed by ∗ and is labeled “Y”, then H is of the form H ′ �

h. The
successors of H are H

�
h′, where h′ are the successors of h in the evaluation game. By

the inductive hypothesis, there are k-strategies σH′ �
h′ for all h′. If for some h′, σH′ �

h′ is
a k-strategy for GGCL

I (l), where l ∈ H ′, then we can simply set σH = σH′ �
h′ . Otherwise,

every σH′ �
h′ is a k-strategy for GGCL

I (h′). Lemma 2.1.14 gives us a k-strategy σH for
GGCL

I (h).

If H is labeled “I” and is of the form H ′ �
h, and according to σ, I move to H ′ �

h
�

h,
then we simply set σH = σH

�
h

�
h and use the inductive hypothesis. We proceed

similarly if I move to H
�

h. Finally if H = H ′ �
h and I move to H ′ �

h′, the inductive
hypothesis gives us a k-strategy for σH′ �

h′ for some l ∈ H ′ �
h′. If l ∈ H ′, we set

σH = σH′ �
h′ and are done. If l = h′, we use Lemma 2.1.14 to obtain a k-strategy for

GGCL
I (h).

“⇐”: Suppose, I have a k-strategy σ for GGCL
I (h) for some h ∈ D. The idea is as follows.

I can enforce a payoff of ⊵ k in the disjunctive game by only ever playing on h and not
touching the other histories in D. By induction on the tree structure of σ, we define a
disjunctive strategy µ for Me with the following property: (*) every disjunctive state
appearing in µ is of the form H

�
l, where l is a history in σ8. The base case follows from

the assumption.

If the current disjunctive state is H
�

l with l as required, and there are no game states
underlined in H , then underline l and (*) follows immediately from the inductive
hypothesis. If the current disjunctive state is H

�
l and l is labeled “Y”, then You proceed

to some H
�

l ⌣ g. Since l is labeled “Y”, σ contains all immediate successors of l, hence
l ⌣ g must be a history in σ. If l is labeled “I”, then I move to H

�
σ(l). Clearly (*) holds

for σ(l). Eventually, the game reaches a state H
�

l, where l is a leaf of σ, and thus has
payoff ⊵ k. I, therefore, end the game and receive a payoff of at least k.

As an immediate consequence, we have that the degree of the disjunctive game is the

8Actually: a path through the tree structure of σ
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4.4. The Disjunctive Game as Semantic Game

maximum of the degrees of the histories in D. In particular, if D consists of a single
history h, then the proposition gives the strategic equivalence of the games GGCL

I (h) and
DGGCL

I (h). Hence, the disjunctive game played over a model should be itself considered
a semantic game, as defined in Chapter 1.

Corollary 4.4.5: My disjunctive strategy = Maximum of My strategies

Let D be a disjunctive state, then

v(DGGCL
I (D)) = max

h∈D
v(GGCL

I (h)).

Proof. Let vl and vr denote the two sides of the equality. By the proposition, I have vl-
strategy for some of the GGCL

I (h). Hence, vl ⊴ vr. On the other hand, vr is the maximal
value of the GGCL

I (h). By the proposition, vl ⊵ vr.

We introduced the disjunctive game over a model for two reasons. First, the previous
proposition shows that a strategy in the disjunctive game can be thought of as a disjunc-
tion, or maximum, of strategies for the evaluation game, thus giving a solid motivation
and intuition, which is useful later on. Second, in the next section, we will see a ver-
sion of the disjunctive game played over all models simultaneously. Formulating the
disjunctive game makes the formulation, especially the proofs, much more accessible.

As in the previous chapter, we give a constructive proof of the following classically
equivalent formulation of Proposition 4.4.4 in terms of Your strategies:

Proposition 4.4.6: Your disjunctive strategy = conjunction of Your strategies

You have a disjunctive k-strategy in DGGCL
I (D) iff You have k-strategies in

GGCL
I (h) for all h ∈ D.

Proof of Proposition 3.4.5. “⇒”: Let µ be a disjunctive k-strategy for You in DGGCL
I (D)

and let D = D′ �
h. The idea is that You can use µ to enforce a payoff of ⊵ k in the

run of the game where I only ever schedule h and its successors. The behavior of µ
contains all the necessary information to define a strategy µ′ for You in the evaluation
game GGCL

I (h). For a history l = ⟨l1, . . . ln⟩ of the evaluation game labeled “Y”, let disj(l)
be the disjunctive history

D′ �
⟨l1⟩, D′ �

⟨l1⟩, . . . , D′ �
⟨l1, . . . , ln⟩, D′ �

⟨l1, . . . , ln⟩.

If k is labeled “Y”, then disj(l) is mapped to some disj(g) ⌣ D′ �(l ⌣ g) under µ.
Consequently, we define µ′(l) = l ⌣ g.

Let σ′ be a strategy for Me in GGCL
I (h). We have to show that the payoff of playing σ′ is

⊴ k. To this end, we consider the run of the disjunctive game starting at D where You
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play µ and I play according to the following strategy σ: let l = (σ′; µ′)n(h) for some n.
If the current disjunctive state is D′ �

l, then I underline l. If disj(l) is labeled “I”, then
I go to D′ �

σ(l). For all other disjunctive states, the strategy is arbitrary. We compute
the outcome of DGGCL

I (D) where I play this strategy against Your µ. By induction on
n, we show that (σ, µ)n(D) = disj((σ′, µ′)(h)). The case for n = 0 follows by definition.
If disj(l) is labeled “Y”, and You play according to µ, then the next disjunctive state is
D′ �

µ′(l). Eventually, the game reaches the disjunctive state D′ �(σ; µ′)m(h), where
(σ; µ′)m(h) = O(σ, µ′) is terminal. Since µ is a k-strategy for You, this disjunctive state
cannot have a payoff of more than k. Thus, the payoff at O(σ, µ′) is ⊴ k. Since σ was
arbitrary, µ′ is a k-strategy.

“⇐”: For every h ∈ D, let µh be a k-strategy for You in GGCL
I (h). Your strategy µ

in DGGCL
I (D) is as follows: in a disjunctive state H

�
l labeled “Y”, l is a history in

GGCL
I (h), for some h. Hence, You can use µh and go to H

�
σh(l). Playing this way

ensures that all histories contained in every resulting disjunctive state consist of histories
of the σhs against any opposing strategy from Me. By assumption, every such history
that is also terminal has payoff ⊴ k. Hence, the game can only end in disjunctive states
with a payoff of at most k, which shows that µ is a k-strategy for Me.

4.5 The Disjunctive Game as Provability Game

In this section, we lift the disjunctive game to a provability game and prove the adequacy
of the resulting game.

Intuitively, the new game DGGCL(D) can be interpreted as the scenario where the
players of the evaluation game DGGCL

I (D) forgot – or have not been informed – about
the structure of the interpretation I. Both players’ goal is to develop strategies that
guarantee them a win, independent of what the interpretation I looks like.

Note that this “playing over a model blindly” is only possible because the game trees of
the disjunctive game DGGCL

I (D) are the uniform9 in I. The only place where I comes
into play is at the winning conditions. It is precisely these winning conditions that we
need to alter to capture our intuition of My strategy being winning over all models:

(Pay) Let D be terminal. The payoff at D is the minimal payoff δI(D) of DGGCL
I , where

I ranges over all interpretations. In particular, I win and You lose the game if, for
every interpretation I, I win the game GGCL

I (D). Otherwise You win, and I lose.

Example 4.5.1. We continue Example 4.4.1, but now we consider the same game played
over all models, i.e., DGGCL(O : F ), with F = ((a #»×b) #»×c) ∧ ¬(a #»×b). Figure 4.5 shows a
compact representation of My disjunctive strategy. The new payoffs are

δ(O : a
�

P : a
�

P : d) = min
I

max{δI(O : a), δI(P : a), δI(P : d)}
9By this we mean that the game trees (or: set of histories) for the games DGGCL

I (D) and DGGCL
J (D)

are the same, for any two interpretations I and J
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= max{δ∅(O : a), δ∅(P : a), δ∅(P : d)} = max{3, −2, −1} = 3,

δ(O : b
�

P : a
�

P : d) = min
I

max{δI(O : b), δI(P : a), δI(P : d)}
= max{δ{b}(O : b), δ{b}(P : a), δ{b}(P : d)} = max{−2, −2, −1} = −2,

δ(O : c
�

P : a
�

P : d) = min
I

max{δI(O : c), δI(P : a), δI(P : d)}
= max{δ{c}(O : c), δ{c}(P : a), δ{c}(P : d)} = max{−3, −2, −1} = −3.

Given these payoffs, You prefer the second outcome, giving Me a payoff of −2. As in the
previous example, we conclude that the value of the game is indeed −2.

In the formal definition of the game, it is also enough to change the payoff function:

Definition 4.5.2: Disjunctive Game as Provability Game

The game DGGCL(D) is the same as the game DGGCL
I (D) in Definition 4.4.2,

except for the payoff function:

• Terminal disjunctive histories h ending in ⟨. . . D, ∗⟩ are mapped to

δ(⟨. . . D, ∗⟩) = min⊴{δI(D) : I is an interpretation}.

The remainder of this section is devoted to proving the following central theorem:

Theorem 4.5.3

I have a disjunctive k-strategy in DGGCL(D) iff I have disjunctive k-strategies
for DGGCL

I (D), for all interpretations I. You have a disjunctive k-strategy in
DGGCL(D) iff You have a disjunctive k-strategy for DGGCL

I (D), for some I.

As a corollary, we get the adequacy of the disjunctive game with respect to the degree-
based semantics introduced in Section 4.3.2. Remember, that the degree of validity of
F was defined as the least value of the games GGCL

I (P : F ) where I ranges over all
interpretations, or equivalently, the minimal possible value of degG

I (F ).

Corollary 4.5.4: DGGCL characterizes degree of validity

Let F be a choice formula. Then

v(F ) = v(DGGCL(P : F )).

Adequacy

For a disjunctive history h we say that a history h appears in h, and write h ∈ h, if for
some i, hi = D and h ∈ D.
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Lemma 4.5.5

Let h be a finite terminal history of the game DGGCL(D) such that for every
history g in h labeled “I”, all of its immediate successors appear in h, too. Let k be
the payoff of h. Then there is an interpretation I such that You have a k-strategy
for GGCL

I (h), for each h ∈ D.

Proof. Let k be the payoff of h. By definition, there is some interpretation I such that
δI(h) ⊴ k. Let us fix h0 ∈ D. We define a strategy µ for You in GGCL

I (h0) as follows. Let
h be a successor of h0 labeled “Y” and appearing in h. Since h is terminal, there is some
D

�
h in h. By the rules of the disjunctive game, its immediate successor is D

�
h′, where

h′ is an immediate successor of h in GGCL
I (h0). We can therefore set µ(h) = h′. For all

other states, we let µ be arbitrary. We sow that µ is a k-strategy for You.

To this end, let σ be a strategy for Me in GGCL
I (h0). We show by induction on n that

(σ; µ)n(h0) appears in h. The base case n = 0 is clear. For the inductive step, suppose,
we have shown the claim for n, i.e., h = (σ; µ)n(h0) appears in h. If h is labeled “I”, then
by the assumption, all immediate successors of h appear in h, in particular, σ(h), hence
(σ; µ)n+1(h0) = σ(h) appears in h. If h is labeled “Y”, then everything follows from the
definition of µ.

Let n be such that h∗ = (σ; µ)n(h0) is terminal. Since δI(h∗) ⊴ δI(h) ⊴ k, and σ was
arbitrary, we conclude that µ is a k-strategy for You in GGCL

I (h0).

Proof of Theorem 4.5.3. We prove the left-to-right directions (ltr) of both statements. The
right-to-left directions (rtl) then follow easily: for example, suppose, for every I, I have
a k-strategy in DGGCL

I (D). Let l ◁ k be maximal. Then You do not have an l-strategy in
DGGCL

I (D). By ltr of Statement 2, You do not have an l-strategy for DGGCL(D). Since
You cannot enforce the payoff to be below k, I have a k-strategy. The rtl of the other
statement is similar.

Ltr of Statement 1: Let σ be a disjunctive k-strategy for Me in DGGCL(D) and fix I0. Since
the games DGGCL(D) and DGGCL

I0 (D) are identical, except maybe for the payoffs, I can
use σ to play in the latter game. Let µ be a disjunctive strategy for You in DGGCL

I0 (D).
Then

δI(σ, µ) ⊵ min
I

δI(σ, µ) = δ(σ, µ) ⊵ k.

Since µ was arbitrary, σ is a k-strategy.

Ltr of Statement 2: Let µ be a disjunctive k-strategy for You in DGGCL(D). Let h be the
terminal run resulting from You playing µ and Me playing according to the following
strategy: if the current disjunctive state is D′, I underline an arbitrary h ∈ D′. If h
is an I-history and has only one immediate successor h′, I go to that successor in the
corresponding copy. If h has two successors h1 and h2, I first duplicate h, then go to h1
in the first and to h2 in the second copy. By the assumption, δ(h) ⊴ k. By construction,
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h contains all the immediate successors of every I-history appearing in h. We apply
Lemma 4.5.5 to obtain an interpretation I and k-strategies for You in GGCL

I (h), for each
h ∈ D.

Corollary 4.5.6

The values of the games DGGCL(P : F ) and DGGCL(O : F ) are given by
degG

I (F ) = minI degG
I (F ) and − maxI degG

I (F ), respectively.

Proof. For each interpretation I, let vI be the value of DGGCL
I (D). It follows from

the theorem that the value of DGGCL(D) is minI vI . Thus, by Corollary 4.4.5 and
Theorem 4.3.13, the values of DGGCL(P : F ) and DGGCL(O : F ) are minI degG

I (F ) and
minI − degG

I (F )) = − maxI degG
I (F ), respectively.

Corollary 4.5.7

Let I be a preferred model of F and let k be the value of DGGCL(O : F ). Then
k = − degG

I (F ) and a preferred model of F can be extracted from Your k-strategy
for DGGCL(O : F ).

Proof. The first statement immediately follows from Corollary 4.5.6. Let µ be Your k-
strategy in DGGCL(O : F ). Since there is an interpretation making F true, k must be
negative and thus winning for You. By the proof of Theorem 4.5.3, all the information
for a preferred model is contained in the outcome of the run of the game, where I play
according to the strategy sketched in that proof and You play according to µ. Let h be the
resulting terminal history which is necessarily winning for You. We, therefore, set Ih =
{a | O : a ∈ h} and obtain a k-strategy for You for DGGCL

Ih (O : F ). Let v be the value of
that game. We have that v ⊴ k, by the existence of Your k-strategy and v ⊵ k, since by
Theorem 4.3.13 and Corollaries 4.4.5 and 4.5.6, v = − degG

Ih(F ) ⊵ − maxI degG
I (F ) = k.

This shows degG
Ih(F ) = maxI degG

I (F ), i.e., Ih is a preferred model of F .

4.6 From Strategies to Proofs

In this section, we study the proof-theoretic content of the provability game by reinter-
preting strategies as proofs in three suitable labeled sequent calculi.

As in Chapter 3, the idea is to encode disjunctive states D by the sequent

{F | h = ⟨. . . , O : F ⟩ ∈ D} ⇒ {F | h = ⟨. . . , P : F ⟩ ∈ D}.

In contrast to Chapter 3, the value of a history of the evaluation game now depends not
solely on its final game state, but additionally on the preference relation ≪. In light of
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Lemma 4.3.12, however, it suffices to keep track of the last state of a history h and the
numbers |π≪(h)| and |π≫(h)|. Hence, we code a disjunctive state D as a labeled sequent

{k
lF | h = ⟨. . . , O : F ⟩ ∈ D} ⇒ {k

lF | h = ⟨. . . , P : F ⟩ ∈ D},

where l = |π≪(h)| and k = |π≫(h)|.
By Lemma 4.3.12 and Theorem 4.3.13, the degree of a history h = ⟨. . . , O : F ⟩ is
− degG

I (F ) + l − 1 if degG
I (F ) ∈ Z−, and − degG

I (F ) − k + 1 if Z+. Similarly, the degree
of a history h = ⟨. . . , P : F ⟩ is degG

I (F ) + l − 1 if degG
I (F ) ∈ Z+, and degG

I (F ) − k + 1 if
degG

I (F ) ∈ Z−. Thus, we assign degrees to labeled sequents Γ ⇒ ∆ as follows: for each
interpretation I,

if k
lF ∈ ∆, we set degG

I (k
lF ) =

�
l + degG

I (F ) − 1, if degG
I (F ) ∈ Z+,

−k + degG
I (F ) + 1, if degG

I (F ) ∈ Z−,

if k
lF ∈ Γ, we set degG

I (k
lF ) =

�
l − degG

I (F ) − 1 if degG
I (F ) ∈ Z−,

−k − degG
I (F ) + 1 if degG

I (F ) ∈ Z+.

We then set
degG(Γ ⇒ ∆) = min

I
max

k
lF ∈Γ∪∆

degG
I (k

lF ).

In the simplest case, degG(⇒ 1
1F ) coincides with degG(F ). We now have all ingredients

to present our proof systems.

The first proof system, DSGCL (disjunctive strategies) in Figure 4.3, is closer to the
game-theoretic view. Proofs are (bottom-up) representations of My strategies for the
disjunctive game. Branching corresponds to Your choices in the disjunctive game which
must be kept intact in this encoding of My strategy. The contraction rules represent
applications of the duplication rule in the disjunctive game, whereas the propositional
and choice rules represent the rules of the underlying evaluation game. Note that only
the choice rules increase the parameters k and l in accordance with Lemma 4.3.12 and
the above definitions.

What is unusual is that all sequents are allowed as initial sequents. A proof where
the elementary part Γel ⇒ ∆el of all initial sequents Γ ⇒ ∆ has degree ⊵ k, therefore,
represents a k-strategy for Me. Hence, in this case, we speak of a k-proof. Note that in
accordance with a k-strategy, k-proofs are not per se optimal: they merely witness that
the degree of the proved sequent is at least k. In particular, every k-proof is also an
l-proof, if k ⊵ l.

Table 4.3: Proof systems DSGCL and DSGCL
k .

Initial Sequents for GS

Γ ⇒ ∆ has degree degG(Γel ⇒ ∆el)
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4.6. From Strategies to Proofs

Axioms for Sk

Γ ⇒ ∆, if degG(Γel ⇒ ∆el) ⊵ k,

Structural Rules

Γ, k
lF, k

lF ⇒ ∆
(Lc)

Γ, k
lF ⇒ ∆

Γ ⇒ k
lF, k

lF, ∆
(Rc)

Γ ⇒ k
lF, ∆

Propositional rules

Γ, k
lF ⇒ ∆ Γ, k

lG ⇒ ∆
(L∨)

Γ, k
l(F ∨ G) ⇒ ∆

Γ ⇒ k
lF, ∆

(R1∨)
Γ ⇒ k

l(F ∨ G), ∆

Γ, k
lF ⇒ ∆

(L1∧)
Γ, k

l(F ∧ G) ⇒ ∆

Γ ⇒ k
lG, ∆

(R2∨)
Γ ⇒ k

l(F ∨ G), ∆

Γ, k
lG ⇒ ∆

(L2∧)
Γ, k

l(F ∧ G) ⇒ ∆

Γ ⇒ k
lF, ∆ Γ ⇒ k

lG, ∆
(R∧)

Γ ⇒ k
l(F ∧ G), ∆

Γ ⇒ k
lF, ∆

(L¬)
Γ, k

l¬F ⇒ ∆

Γ, k
lF ⇒ ∆

(R¬)
Γ ⇒ k

l¬F, ∆

Choice rules

Γ, k
l+opt(G)F ⇒ ∆ Γ,

k+opt(F )
lG ⇒ ∆

(L #»×)
Γ, k

l(F
#»×G) ⇒ ∆

Γ ⇒ k+opt(G)
lF, ∆

(R1
#»×)

Γ ⇒ k
l(F

#»×G), ∆

Γ ⇒ k
l+opt(G)G, ∆

(R2
#»×)

Γ ⇒ k
l(F

#»×G), ∆

The second proof system is a proof-theoretically more orthodox system. In fact, it is
actually a family of proof systems: for each k ∈ Z, the system DSGCL

k is defined in
Table 4.3. These proof systems share all the rules with DSGCL, but initial sequents are
valid iff their elementary part has degree at least k. Such initial sequents are axioms in
the usual sense.

The conceptual difference between the two approaches is as follows: in DSGCL, the
value k can be computed from the initial sequents. In the second approach, k is guessed
(implicitly, by picking the proof system DSGCL

k , for a concrete k).
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1
3a ⇒ 2

1a, 1
2d 2

2b ⇒ 2
1a, 1

2d
(L #»× )

2
1(a #»×b) ⇒ 2

1a, 1
2d 3

1c ⇒ 2
1a, 1

2d
(L #»× )

1
1((a #»×b) #»×c) ⇒ 2

1a, 1
2d

(R2
#»× )

1
1((a #»×b) #»×c) ⇒ 2

1a,
1
1(a #»×d)

(R1
#»× )

1
1((a #»×b) #»×c) ⇒ 1

1(a #»×d), 1
1(a #»×d)

(RC)
1
1((a #»×b) #»×c) ⇒ 1

1(a #»×d)
(L¬)

1
1((a #»×b) #»×c), 1

1(¬(a #»×d)) ⇒
(L∧)

1
1((a #»×b) #»×c), 1

1(((a #»×b) #»×c) ∧ ¬(a #»×d)) ⇒
(L∧)

1
1(((a #»×b) #»×c) ∧ ¬(a #»×d)), 1

1(((a #»×b) #»×c) ∧ ¬(a #»×d)) ⇒
(LC)

1
1(((a #»×b) #»×c) ∧ ¬(a #»×d)) ⇒

Figure 4.6: A −2-proof in DSGCL.

Example 4.6.1. Figure 4.6 shows a derivation of ((a #»×b) #»×c) ∧ ¬(a #»×d) ⇒ in DSGCL. Essen-
tially, it is My strategy from Example 4.4.1 bottom-up. The degrees of the initial sequents
are:

degG(3
1a ⇒ 1

2a, 2
1d) = degG

{a}(3
1a ⇒ 1

2a, 2
1d) = 2,

degG(2
2b ⇒ 1

2a, 2
1d) = degG

{b}(2
2b ⇒ 1

2a, 2
1d) = −2,

degG(1
3c ⇒ 1

2a, 2
1d) = degG

{c}(1
3c ⇒ 1

2a, 2
1d) = −3.

Therefore, the derivation is a −2-proof and thus a proof in DSGCL
−2 .

It follows directly from the translation of My strategies into proofs:

Theorem 4.6.2

The following are equivalent:

1. I have a k-strategy for DGGCL(O : F1
�

...
� O : Fn

� P : G1
�

...
� P : Gm).

2. degG(1
1F 1, ..., 1

1F n ⇒ 1
1G1, ..., 1

1Gm) ⊵ k.

3. There is a k-proof of 1
1F 1, ..., 1

1F n ⇒ 1
1G1, ..., 1

1Gm in DSGCL.

4. There is a proof of 1
1F 1, ..., 1

1F n ⇒ 1
1G1, ..., 1

1Gm in DSGCL
k .
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Corollary 4.6.3

Let k ∈ Z−. Then there is a k-proof of 1
1F ⇒ in DSGCL iff there is a proof of 1

1F ⇒
in DSGCL

k iff the degree of F in a preferred model is at most −k.

My strategy in Example 4.4.1 is not only a −2-strategy but also a minmax-strategy for Me.
This implies that I cannot do better than −2, i.e. the value of the game is −2. How does
this translate into the proof-theoretic interpretation of Example 4.6.1? There, the minmax-
strategy takes the form of invertibility of rule applications: rule applications S′/S and
(S1, S2)/S are called invertible iff degG(S′) = degG(S) and min{degG(S1), degG(S2)} =
degG(S). In Example 4.6.1 only invertible rule applications are used.

In Table 4.4 we give a calculus ODSGCL (optimal disjunctive strategies) which is equiva-
lent to DSGCL but has only invertible rules, i.e. all rule applications are invertible. The
contraction rules are admissible in this system. The motivation behind this calculus
is the same as in My optimal strategy from the adequacy proof of DGGCL: in every
I-state, I first duplicate and then exhaustively take all the available options. Every
proof produced in this system corresponds to an optimal strategy and has, therefore, an
optimal degree. The below results follow directly from the invertibility of the rules:

Table 4.4: The proof system ODSGCL for GCL with invertible rules.

Initial Sequents

Γ ⇒ ∆ has degree degG(Γel ⇒ ∆el)

Propositional rules

Γ, k
lF ⇒ ∆ Γ, k

lG ⇒ ∆
(L∨)

Γ, k
l(F ∨ G) ⇒ ∆

Γ ⇒ k
lF, k

lG, ∆
(R∨)

Γ ⇒ k
l(F ∨ G), ∆

Γ, k
lF, k

lG, ⇒ ∆
(L∧)

Γ, k
l(F ∧ G) ⇒ ∆

Γ ⇒ k
lF, ∆ Γ ⇒ k

lG, ∆
(R∧)

Γ ⇒ k
l(F ∧ G), ∆

Γ ⇒ k
lF, ∆

(L¬)
Γ, k

l¬F ⇒ ∆

Γ, k
lF ⇒ ∆

(R¬)
Γ ⇒ k

l¬F, ∆

Choice rules

Γ, k
l+opt(G)F ⇒ ∆ Γ,

k+opt(F )
lG ⇒ ∆

(L #»×)
Γ, k

l(F
#»×G) ⇒ ∆

Γ ⇒ k+opt(G)
lF, k

l+opt(F )G, ∆
(R #»×)

Γ ⇒ k
l(F

#»×G), ∆
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1
3a ⇒ 2

1a, 1
2d 2

2b ⇒ 2
1a, 1

2d
(L #»× )

2
1(a #»×b) ⇒ 2

1a, 1
2d 3

1c ⇒ 2
1a, 1

2d
(L #»× )

1
1((a #»×b) #»×c) ⇒ 2

1a, 1
2d

(R #»× )
1
1((a #»×b) #»×c) ⇒ 1

1(a #»×d)
(L¬)

1
1((a #»×b) #»×c), 1

1¬(a #»×d) ⇒
(L∧)

1
1(((a #»×b) #»×c) ∧ ¬(a #»×d)) ⇒

Figure 4.7: A proof in ODSGCL.

Proposition 4.6.4

Every ODSGCL-proof of a sequent S has degree degG(S).

Corollary 4.6.5

Let k = degG(1
1F ⇒) ∈ Z−. Then the degree of F in a preferred model is equal to

−k. Furthermore, a preferred model of F can be extracted from every ODSGCL-
proof of 1

1F ⇒.

Example 4.6.6. Figure 4.7 shows a ODSGCL-proof of 1
1((a #»×b) #»×c) ∧ ¬(a #»×d) ⇒. The proof

is essentially a compact representation of the proof in Figure 4.6, and has therefore
degree −2. We conclude that in a preferred model, ((a #»×b) #»×c) ∧ ¬(a #»×d) has degree
2. Furthermore, we can extract the preferred model {b} from the position where the
degG-function is minimal on the initial sequents, as computed in Example 4.6.1.

We note that the following degree version of the cut rule does not hold. The existence
of k-strategies for D

� P : F and D
� O : F does not imply that a k-strategy for D

exists. For example, the values of O : ⊤ � O : ⊥ #»×⊤ and O : ⊤ � P : ⊥ #»×⊤ are −2 and 2,
respectively. But the value of the “conclusion” of the cut, O : ⊤, has value −1.

What is more, there is no function computing the value of the conclusion of cut from
the values of the premises. To see this, note that the values of O : ⊥ #»×⊤ � O : ⊥ #»×⊤ and
O : ⊥ #»×⊤ � P : ⊥ #»×⊤ are −2 and 2 respectively, as in the above example. However, in
contrast to the above example, the conclusion of this cut, O : ⊥ #»×⊤, has value −2.

Lastly, we demonstrate that DSGCL and DSGCL
k are useful systems, i.e. that computing

the degree of elementary sequents is easier than the degree of general sequents.
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Proposition 4.6.7

Deciding whether degG(Γ ⇒ ∆) ⊵ k is coNP-hard in general. If Γ ⇒ ∆ is
elementary, then degG(Γ ⇒ ∆) can be computed in polynomial time.

Proof. coNP-hardness of deciding degG(Γ ⇒ ∆) ⊵ k follows by coNP-hardness of the
validity problem in classical logic: if F is a classical formula, then it holds that degG(⇒
1
1F ) ∈ Z+ if and only if F is valid (true under all interpretations).

We now show that degG(Γ ⇒ ∆) can be computed in polynomial time if Γ ⇒ ∆ is
elementary. We apply the following helpful fact: setting a variable x to true or false
does not influence the degree ascribed to formulas not containing x. We start with the
empty interpretation I = ∅. Now, go through every variable x occurring in Γ ⇒ ∆.
Consider Γx ⇒ ∆x where l

kx ∈ Γx iff l
kx ∈ Γ and l

kx ∈ ∆x iff l
kx ∈ ∆. If we have

degG
{x}(Γx ⇒ ∆x) ◁ degG

∅ (Γx ⇒ ∆x), then let I = I ∪ {x}, otherwise leave I unchanged.
In other words, since Γ ⇒ ∆ is elementary, we can choose the “better” option for
any variable x without side effects. Thus, this procedure gives us the minimal I for
Γ ⇒ ∆.

4.7 Conclusion and Future Work

QCL is a multi-valued logic designed for representing both hard constraints (truth) and
soft constraints (preferences). It extends classical logic with the ordered disjunction #»×.
Intuitively, the proposition F

#»×G stands for “F or G should be satisfied, but preferably
F ”. In this chapter, we gave a new evaluation game, GGCL, for the language of QCL. In
this refinement of Hintikka’s game for classical logic, the proponent of F

#»×G chooses
between continuing the game with F or with G, but that player prefers F . All other
rules remain the same as in Hintikka’s game. In particular, negation is interpreted as a
role switch: at ¬F , the game continues with F and reversed roles. We showed that this
natural reinterpretation of the choice connective gives a new semantics that solves some
conceptual issues regarding the “classical” behavior of negation present in QCL. For
example, the formula ¬¬F is equivalent to F in our evaluation game but not necessarily
in QCL.

Notably, our preference modeling is accomplished by refining the two values of Hin-
tikka’s game (win/lose) with a richer structure of winning and losing payoffs. To our
knowledge, GGCL is thus the first evaluation game for multi-valued logic where the
payoff values directly correspond to the truth degrees. So far, these games internalized
multiple truth values by comparing (combined) truth values [24, 23, 23], or introducing
multiple players [4]. It would be interesting to see which logics or formalisms, especially
from AI applications, can be modeled using multi-valued evaluation games. Further-
more, we conjecture that our evaluation game can be easily extended to the first-order
level.
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The induced notion of validity in the resulting logic GCL is degree-based, too: the
degree of validity of F , v(F ) is the least game value of all evaluation games starting
at F over every interpretation. We show that the disjunctive game adequately models
this degree. Strategies in the disjunctive game can be reinterpreted as proofs in three
labeled sequent calculi: DSGCL, which is closest to the game-theoretic view, and proofs
directly correspond to strategies and are thus graded, DSGCL

k which is a more orthodox
proof system, but a “degree-profile” must be guessed similar to [6], and ODSGCL, where
proofs correspond to optimal strategies and preferred models (interpretations with
maximal degrees) can be directly extracted from a corresponding proof.

As for future work, it would be interesting to design a natural game model of the central
notion of preferred model entailment: T ⊢pref F if F is true in every preferred model of T .
Depending on how a preferred model of a set T is interpreted (in the literature, often
a lexicographic order is used [16]), this might require us to compute an overall payoff
from subgames where payoffs have different formats (for instance the usual ordering on
Z vs lexicographic). This would provide a game-theoretic approach to preferred model
entailment, complementing the proof-theoretic analysis in [6].

A few future research directions are inspired by common topics in game theory. For
instance, it would be interesting to investigate settings where the player’s preferences
are not strictly opposed. This also opens up the direction to multiple-player frameworks.
In this light, different solution methods, like elimination of dominated strategies and
Nash equilibria might be relevant.

Finally, one should be open to a new approach that deals jointly with truth and pref-
erences. After all, the intuitive reading of #»× does not presuppose that all models are
necessarily totally ordered by preferences. Nevertheless, all approaches discussed in this
chapter – QCL, PQCL, and GCL – force values in a linear domain. However, we point
out that allowing incomparable models implies the necessity of a non-linear degree
domain and, thus, possibly, a departure from game theory.
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CHAPTER 5
A General Framework

5.1 Introduction

In the previous chapters, we applied the lifting technique to two semantic games, GHyb

and GGCL. Although the games are fairly distinct and arise from different semantic
motivations, we can observe several similarities regarding the corresponding lifting
steps. For example, the definition of the disjunctive game was almost identical (except
for the payoff, which is non-binary in the case of GCL). Still, in both cases, the value
associated with a disjunctive state is the maximum of the values of its contained histories.
The provability games, too, are defined similarly. The adequacy proofs follow the same
pattern of considering an optimal strategy for Me. Proofs in the resulting analytic calculi
are interpreted as notational variants of My strategies.

This begs the question if there is a general mechanism for lifting semantic games to
analytic calculi. In this chapter, we aim to answer this question. To this end, we give
a suitable definition of a semantic game – a term that has been used informally, so far.
This definition is general enough to capture the different features of the semantic games
presented in this thesis, like non-binary payoff values and infinite branching. At the
same time, it is specific enough to capture the similarities crucial for applying a general
form of the lifting technique and executing the adequacy results, like the uniformity of
game trees. We obtain adequacy proofs following the same pattern as in the previous
chapters. Along the way, we identify the conditions for a general semantic game for the
lifting technique to work.

Another abstraction from the previous chapters is the new role of turn distribution.
Remember, in the disjunctive game, game states are of the form

D = h1
�

. . .
�

hn,

where the hi are histories of the underlying semantic game. If the current disjunctive
state is D, I choose an i, and the player who moves in the semantic game at hi, moves to
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some hi ⌣ g. This means that the scheduling role falls to Me, creating some asymmetry
in the disjunctive game. In the present chapter, we give the role of scheduling to a
regulation function ρ, a concept first employed in [?]. This regulation can be seen as
a non-strategic actor, who, at each disjunctive state D, schedules an h ∈ D, where the
corresponding player has to move. Interestingly, adequacy fails if ρ is ill-behaved.

We give special attention to the important class of finite games. For these games, optimal
strategies for Me yield a calculus with finitely branching invertible rules. To demonstrate
that our framework and general lifting technique work not only for the two semantic
games presented in this thesis, we conduct a case study and investigate the truth-degree
comparison game for Gödel logic. We apply the general framework to this semantic game
and obtain a sequent-of-relations-style calculus.

The chapter is structured as follows: We define semantic games in Section 5.2. In
Section 5.3, we introduce the general disjunctive game, and in Section 5.4 the general
provability game and prove the adequacy theorems. The last part of the lifting is done
in Section 5.5, where we obtain the resulting general calculus. We focus on finite games
in Section 5.6 and draw some conclusions and sketch some future work in Section 5.7.

5.2 The Semantic Game

In this section, we give a general definition of a semantic game and demonstrate that
this definition captures the games in the previous chapters. We introduce the notion of a
complete semantic game which will be necessary for the adequacy proofs.

Definition 5.2.1: Semantic Game

A semantic game G is a tuple (Stat, Hist, ℓ, P) such that

• Stat is a set whose elements are called game states,

• Hist consists of (finite or infinite) sequences of game states. Hist is partially
ordered by ⊑. We require that Hist is downwards closed with respect
to ⊑ and contains ⟨g⟩, for every g ∈ Stat. We write Histg for the set of
histories extending ⟨g⟩. Furthermore, Hist is closed under ascending ⊑-
chains. Maximal elements in Hist are called terminal. The set of terminal
histories is denoted Ter.

• ℓ : (Hist \ Ter) → {I, Y } is a labeling function.

• ℘ : Ter → Z for every ℘ ∈ P . Here, (Z,⊴) is a linear order with a least
element, −1. The function ℘ is called a payoff function.

If ℘ ∈ P and g ∈ Stat, we write G℘(g) for the game (Histg, ⟨g⟩, ℓ, ℘).

Note that G℘(g) forms a game in the sense of Definition 2.1.1. A semantic game is of

102



5.2. The Semantic Game

finite height if all histories are finite sequences. It is finite if Histg is finite for every game
state g.

Example 5.2.2. The semantic game GHyb of Chapter 3 fits the above framework. Fol-
lowing Definition 3.3.2 and the discussion in Section 3.3.3, let FHyb denote the set of
formulas of hybrid logic. Then the set of game states StatHyb contains all elements of
the form Q : F and Q, i : F , where Q ∈ {P, O}, i is a nominal, and F ∈ FHyb. The set
of histories HistHyb is

�
g∈StatHyb HistHyb

g , where HistHyb
g was defined in Definition 3.3.2.

PHyb is the set of the ℘Ms, where M ranges over all models. The payoff function ℘M
as well as the labeling function ℓ were defined in 3.3.2. Note that it is crucial that we
consider the reformulated version of the game from Section 3.3.3: in our definition of
a semantic game, we require the games GHyb

℘M (g) and GHyb
℘N (g) to have the same set of

histories, even if M ̸= N . However, this is not the case in the presence of the original
rules for the modal operators. An example of this dependence on the underlying model
can be seen in Figure 3.1.

Example 5.2.3. As another example, take the semantic game GGCL from Chapter 4. Let
FGCL be the set of choice formulas, then StatGCL contains all elements of the form Q : F ,
where Q ∈ {P, O} and F ∈ FGCL. The labeling is as in Definition 4.3.2, and the set of
histories is HistGCL is

�
g∈StatGCL HistGCL

g . The set of payoff functions, PGCL, consists
of all δI , where I ranges over all interpretations. Each δI takes values in the domain
−1 ◁ −2 ◁ · · · ◁ 2 ◁ 1.

As usual, if h ∈ Histg, we write G℘(h) instead of G℘(g)@h; see Definition 2.1.13. G is
determined if the game G℘(h) is determined for every ℘ ∈ P and history h, i.e., it has a
value (Definition 2.1.10). A set D of histories is compact if it has a finite base, i.e., there
are histories h1, . . . , hn such that for every h ∈ D, h ⊒ hi for some i.

We will require our semantic games to have the following useful property:

Definition 5.2.4: Complete Semantic Game

The semantic game G is complete if, for every compact D consisting of terminal
histories, every P ⊆ �

℘∈P{℘(h) : h ∈ D} has a minimum and a maximum.

For example, complete semantic games are always determined:

Proposition 5.2.5: Complete semantic games are determined

Every complete semantic game is determined.

Proof. Fix a payoff function ℘ and a history h. Let Σh
I denote the set of My strate-

gies restricted to histories extending h. Similarly, we define Σh
Y . Fix σI ∈ Σh

I . Then
{O(σI , σY ) : σY ∈ Σh

Y } has base {h} and is thus compact. By completeness, the set

S(σI
Y ) = {℘(σI , σY ) : σY ∈ Σh

Y }
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has a minimum, let us denote it by v(σI). Similarly, the set

{v(σI) : σY ∈ Σh
I }

has a maximum, v. Putting things together, we proved that

v = max
σI∈Σh

I

v(σI)

= max
σI∈Σh

I

min
σY ∈Σh

Y

℘(σI , σY )

Hence, the sup/inf in the definition of the maximin value (2.1.10) are max/min. We are
thus in the situation of the proof of Theorem 2.1.11, where the fact that the sups and infs
were witnessed was enough to show that v is the value of the game.

Example 5.2.6. The game GHyb is finite-valued and thus complete.

Example 5.2.7. In finite games, like GCL, there are only finitely many histories extending
a given history h. Hence, the existence of a finite base for a compact set of histories D
actually implies that D is finite. Remember that in GCL the payoff function δI for a
terminal history h ending in the game state Q : a takes the value |π≪(h)| if I |= Q : a,
and −|π≫(h)|, otherwise. Hence, the set

�
I δI(h) has a cardinality of at most 2. This

shows that | �
I{δI(h) : h ∈ D}| ≤ 2|D| is finite, for every compact (and thus finite) D.

Every subset of this finite set must have a minimum and a maximum, therefore, GGCL

is complete.

5.3 The Disjunctive Game as Semantic Game

As in Section 3.4 and 4.4 we now lift the semantic game to the disjunctive game, which
in turn can be seen as a semantic game. The difference to the previous chapter I am now
relieved from my duty as the scheduler. Instead, we wish to investigate a more general
case where the scheduling is done by a predefined regulation function.

For the rest of the chapter, let us fix a semantic game G = (Stat, Hist, ℓ, P) of finite
height. As in the previous chapters, the main ingredient in lifting the semantic game
to the disjunctive game is My option to create backup copies: in a history h, instead of
moving according to the rules of the semantic game, I can decide to create a “backup-
copy” of h and continue playing at the disjunctive game state (or disjunctive state) h

�
h.

Game states of the disjunctive game are thus multisets of histories of the semantic
game D = {h1, . . . , hn}. Due to our intuition behind a disjunctive state as a disjunction,
or maximum, we prefer to write h1

�
. . .

�
hn for D. As before, we keep the multiset

theoretic notation h ∈ D if h = hi for some i and write D
�

h for the multiset sum
D + {h}. D is called elementary if it consists of terminal histories.

Following the intuition of a disjunctive state as the maximum of its histories, the payoff
at an elementary disjunctive state is δ℘(D) = maxh∈D ℘(h).
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The new ingredient is the regulation function ρ. Intuitively, ρ picks for every current
disjunctive state D a non-terminal history h ∈ D which is to be played on next. If the
current disjunctive state is D = H

�
h, we like to write H

�
h, if ρ selects h. We denote

the disjunctive game over the payoff function ℘ and under the regulation ρ by DGρ
℘(D).

It must be noted that the behavior of ρ is known to both players in advance.

In the style of the previous chapters, let us give a semi-formal description of the rules of
the disjunctive game DGρ

℘(D). As mentioned above, we highlight the history selected
by ρ by underlining.

(Dupl) If the current disjunctive state is D = D′ �
h, and h is labeled “I”, then I can

duplicate h, and the game continues with D′ �
h

�
h.

(Move) If the current disjunctive state is D = D′ �
h then the player who is to move in

the semantic game G at the history h can make a legal move to the game state g
and the game continues with D

�
h ⌣ g.

(Pay) If D is elementary, then the payoff is the maximum of all the payoffs of the histories
in D, i.e., δ℘(D) = maxh∈D ℘(D). Infinite disjunctive histories are assigned a payoff
of −1.

Additionally, we require that in D = D′ �
h if h is labeled “I”, then I have to move

according to (Dupl) or (Move). If h is labeled “Y”, then You have to move according to
(Move).

Note that this description is shorter than the corresponding descriptions for the games
for Hyb and GCL. The reason is that here we do not require the rule (Sched), since
scheduling is now done by ρ. Also, the rule (End) is redundant. Instead, we require that
all histories in the current disjunctive state are played until the end.

Example 5.3.1. In the games DGHyb
M and DGGCL

I , I am the scheduler. However, these
games fit into our framework by interpreting them as DGHyb,ρ

℘M , and DGGCL,ρ
℘I , respec-

tively. Here, ρ can be taken as any regulation acting according to My interests. We will
see later that – under certain conditions – it can be assumed that the regulation always
behaves this way. Regulation independence is the topic of Section 5.6.

We now come to the formal description of DGρ
℘. The set of game states of the disjunctive

game is

DStat =
�

g1
�

. . .
�

gn | g1, . . . , gn ∈ Hist
�

.

For a disjunctive state D, let Dter contain the terminal histories of D, i.e., D = {g ∈
D : g ∈ Hist \ Ter}. D is called terminal if it consists of terminal histories, D = Dter.
A regulation ρ is a function mapping finite sequences of disjunctive states ending in a
non-terminal disjunctive state to non-terminal histories of the semantic game G such
that ρ(⟨. . . , D⟩) ∈ D \ Dter.
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Definition 5.3.2: Disjunctive game as Semantic Game

Let ρ be a regulation and D ∈ DStat. The disjunctive game DGρ
℘(D) is defined as

follows:

• The initial history is ⟨D⟩.

• The set of disjunctive histories, DHistρ is the smallest set containing ⟨D⟩ and
closed under the following conditions: If h = h′ ⌣ H

�
h is a disjunctive

history with ρ(h) = h the sequence h ⌣ H
�(h ⌣ g) is a disjunctive history

if h ⌣ g ∈ Hist. If h is labeled “I”, then also h ⌣ H
�

h
�

h is a disjunctive
history.

• Non-terminal disjunctive histories h are labeled ℓ(ρ(h)), the same as ρ(h) in
the semantic game.

• As for the semantic game, the payoff function δ℘ maps terminal disjunctive
histories to the domain Z. Terminal disjunctive histories ending in ⟨. . . , H⟩
are mapped to

δ℘(⟨. . . , H⟩) = δ℘(H) = max
h∈H

δ℘(h).

Infinite terminal histories are mapped to −1.

Note that for a fixed ρ, DGρ = (DStat, DHistρ, ℓ ◦ ρ, {δ℘ : ℘ ∈ P}) is a semantic game in
terms of Definition 5.2.1, albeit not one of finite height. Strategies and related notions
were already defined in Chapter 2. To avoid confusion, we will talk of disjunctive strategies
when referring to the disjunctive game, and strategies when referring to the underlying
semantic game. We now show that the disjunctive game inherits completeness from the
semantic game.

Proposition 5.3.3: disjunctive game is complete

If G is complete, then the semantic game DG is complete, too.

Proof. Let ∆ be a compact set of terminal histories, Q = �
℘∈P{δ℘(h) : h ∈ ∆}, and

P ⊆ Q. Let us show that P has a minimum. If some h ∈ ∆ is infinite, then min P = −1.
Otherwise, let all histories in ∆ be finite. For every disjunctive history h ∈ ∆ ending in
the disjunctive state D, let hD ∈ D be such that ℘(hD) = δ℘(D). Let h1, . . . , hn be a base
of ∆, then

�
i=1,...,n last(hi) is a base of {hlast(h) : h ∈ ∆}. Thus, every subset of

�
℘∈P

{℘(hlast(h)) : h ∈ ∆} = Q

has a minimum, in particular, P .
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This implies that the disjunctive game is determined. The below results are the general-
izations of Propositions 3.4.4 and 4.4.4 showing that My disjunctive strategy can be seen
as a disjunction (or maximum) of My strategies for the semantic game. The proof closely
follows that of the corresponding propositions in the earlier chapters. In particular, this
proposition provides a characterization of the value of the disjunctive game in terms of
the value of the underlying semantic game, see Corollary 5.3.6 below.

Proposition 5.3.4: My disjunctive strategy = disjunction of My strategies

I have a disjunctive k-strategy in DGρ
℘(D) iff I have a k-strategy in G℘(h) for

some h ∈ D.

Proof. “⇒”: Let σ be a disjunctive k-strategy for Me in DGρ
℘(D). The case for k = −1 is

trivial. If k ▷ −1, then, by definition, all terminal histories in σ are finite. In this case, we
can use backward induction on the tree structure of σ to show that for every H ∈ σ there
is h ∈ H such that I have a winning strategy σH in G℘(h). The proposition then follows
for the case where H = D.

By assumption, all leaves for all leaves H there is some h ∈ H with payoff ⊵ k. If
H is non-elementary labeled “Y”, then H is of the form H ′ �

h. The successors of H
are H

�
h′, where h′ are the successors of h in the evaluation game. By the inductive

hypothesis, there are k-strategies σH′ �
h′ for all h′. If for some h′, σH′ �

h′ is a k-strategy
for G℘(l), where l ∈ H ′, then we can simply set σH = σH′ �

h′ . Otherwise, every σH′ �
h′

is a k-strategy for G℘(h′). Lemma 2.1.14 gives us a k-strategy σH for G℘(h).

If H is labeled “I” and is of the form H ′ �
h, and according to σ, I move to H ′ �

h
�

h, then
we simply set σH = σH

�
h

�
h and use the inductive hypothesis. Finally if H = H ′ �

h

and I move to H ′ �
h′, the inductive hypothesis gives us a k-strategy for σH′ �

h′ for some
l ∈ H ′ �

h′. If l ∈ H ′, we set σH = σH′ �
h′ and are done. If l = h′, we use Lemma 2.1.14

to obtain a k-strategy for G℘(h).

“⇐”: Suppose, I have a k-strategy σ for G℘(h) for some h ∈ D. The idea is as follows:
by playing σ on h and making arbitrary moves on all other histories of D, the game
will terminate with a payoff at least as good as σ’s. By induction on the tree structure
of σ, we define a disjunctive strategy µ for Me with the following property: (*) every
disjunctive state appearing in µ is of the form H

�
l, where l is a history in σ1. The base

case follows from the assumption.

If the current disjunctive state is H
�

l where l appears in σ and is labeled “Y”, then You
proceed to some H

�
l ⌣ g. Since l is labeled “Y”, σ contains all immediate successors

of l; hence l ⌣ g must be a history in σ. If l is labeled “I”, then I move to H
�

σ(l).
Clearly, (*) holds for σ(l). If (*) holds for H

�
l and l does not appear in σ, then it holds

for H
�

l ⌣ g for every g. Thus, if l is labeled “I” it suffices for Me to make an arbitrary

1Actually: a path through the tree structure of σ
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move. Eventually, the game reaches a state H
�

l, where l is a leaf of σ, thus has payoff
⊵ k. Therefore, My payoff in the disjunctive game is at least k.

The equivalent You-formulation of Proposition 5.3.4 also admits a constructive proof.

Proposition 5.3.5: Your disjunctive strategy = conjunction of Your strategies

You have a disjunctive k-strategy in DGρ
℘(D) iff You have k-strategies in G℘(h)

for all h ∈ D.

Proof. “⇒”: Let µ be a disjunctive k-strategy for You in DGρ
℘(D �

h). We recursively
define a strategy µ′ for You in G℘(h). Assume µ′ has been defined for histories labeled
“Y” up to a length of n. Let Me play in DGρ

℘(D �
h) by never using the duplication rule.

This ensures that at some point, the current disjunctive state is D′ �
h′, where h′ ⊒ h is

either terminal or has a length of n and is labeled “Y”. In the latter case, according to µ,
You move to some D′ �(h′ ⌣ g). Correspondingly, we define µ′(h′) = h′ ⌣ g.

We now show that µ′ is indeed a k-strategy. Let σ′ be a strategy for Me in G℘(h) and
let σ be the following strategy for Me in DGρ

℘(D �
h): if the current state is H

�
h′ with

h′ ⊒ h and ρ(H �
h′) ∈ H , I make an arbitrary move but do not use the duplication

rule. If ρ(H �
h′) = h′, I move to H

�
σ′(h). If I play according to this strategy and

You play µ, a simple induction shows that the current disjunctive state is always of
the form H

�(σ′; µ′)n(h), for some n. Since I do not use the duplication rule, the game
ends after finitely many rounds in some disjunctive state D′ �

O(σ′, µ′). By assumption,
℘(O(σ′, µ′)) ⊴ δ℘(H �

O(σ′, µ′)) ⊴ k.

“⇐”: For every h ∈ D, let µh be a k-strategy for You in G℘(h). Your strategy µ in DGρ
℘(D)

is as follows: in a disjunctive state H
�

l labeled “Y”, l is a history in G℘(h), for some h.
Hence, I can use µh and go to H

�
σh(l). Playing this way ensures that all game states

contained in every resulting disjunctive state consist of histories of the σhs, against any
opposing strategy from Me. By assumption, every such history that is also terminal is
winning for You. Hence, the game cannot end in a terminal disjunctive state with payoff
▷k, which shows that µ is a k-strategy for You.

If G is clear from context, let us write v℘(h) for v(G℘(h)), the value of the game G℘(h),
and similarly vρ

℘(D) for v(DGρ
℘(D)). We sum up the results of this section:

Corollary 5.3.6: Value of the disjunctive game

Let G be a complete semantic game. Then vρ
℘(D) = maxh∈D v℘(h).

In particular, this shows that disjunctive game DGρ
℘ is fully regulation-independent: the

value of the game does not depend on the underlying regulation ρ. This means we can
always consider regulations that act in My interest or even give the task of scheduling
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to Me, just as in the previous chapters. We will see in the next section that regulation-
independence fails at the level of DGρ as a provability game.

5.4 The Disjunctive Game as Provability Game

In analogy to the previous chapters, as well as model-theoretic semantics, the following
definition gives the sensible notion of a game-induced validity degree:

degG(D) = min
℘∈P

max
h∈D

v℘(h).

In this section, we are interested in lifting DG (and by extension, G) to a game charac-
terizing this degree. First, we must show that degG is well-defined, i.e., that the min is
taken at some ℘.

Lemma 5.4.1: degG is well-defined

We have inf℘∈P maxh∈D v℘(h) = min℘∈P maxh∈D v℘(h), for every complete G,
regulation ρ, and disjunctive state D.

Proof. By Corollary 5.3.6, we have vρ
℘(D) = maxh∈D v℘(h). Hence, it suffices to show

that the set {vρ
℘(D) : ℘ ∈ P} has a minimum. By Propositions 5.3.3 and 5.2.5, the game

DGρ
℘(D) is determined. For every ℘, let h℘ be the maximin-outcome of DGρ(D), that

means vρ
℘(D) = δ℘(h℘). Since DGρ is complete, the set P = {δ℘(h℘) : ℘ ∈ P} has a

minimum. The claim now follows since min P = min{vρ
℘(D) : ℘ ∈ P}.

We now define the provability game DGρ. Unlike the disjunctive game in the previous
section, this game is not played over a fixed payoff function ℘, but can rather be seen as
a simultaneous play over all payoff functions. Accordingly, the rules of the game DGρ

are exactly like for DGρ
℘, except for the payoff:

(Pay) If D is elementary, then the payoff δ(D) is the minimal payoff δ℘(D) of DGρ
℘,

where ℘ ranges over all payoff functions, i.e., δ(D) = min℘∈P δ℘(D). Infinite
disjunctive histories are assigned a payoff of −1.

We make the same changes in the formal definition of DGρ:

Definition 5.4.2: Disjunctive Game as Provability Game

The game DGρ(D) is the same as the game DGρ
℘(D) in Definition 5.3.2, except

for the payoff function:

• Terminal disjunctive histories h ending in ⟨. . . H⟩ are mapped to

δ(⟨. . . , H⟩) = min⊴{δ℘(⟨. . . H⟩) : ℘ ∈ P}
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Infinite terminal histories are mapped to −1.

It follows directly from the completeness of DGρ
℘ that δ is well-defined. Note that strictly

speaking, for a fixed regulation ρ, the provability game DGρ = (DStat, DHist, ℓ ◦ ρ, {δ})
is a semantic game in terms of Definition 5.2.1. However, given that there is only one
payoff function in this semantic game, we prefer to speak of it as a provability game
instead. This also makes the distinction to the game of the previous subsection easier:
whenever we use the term disjunctive game we mean the game of Section 5.3, provability
game refers to the game introduced in the current section.

As in the previous sections, the determinacy of the provability game follows from its
completeness and Proposition 5.2.5.

Proposition 5.4.3

If the disjunctive game is complete, then so is the provability game.

Proof. Let ∆ be a compact set of disjunctive terminal histories and P ⊆ {δ(h) : h ∈ ∆}.
Let us show that P has a maximum. If ∆ contains an infinite history, then min P = −1.
Otherwise, let all histories in ∆ be finite. Since the semantic game DG is complete, for
each terminal h, δ(h) = min℘∈P δ℘(h), so let ℘h be such that δ℘h

(h) = δ(h). But then

P ⊆ {δ℘h
(h) : h ∈ ∆}} ⊆

�
℘∈P

{δ℘(h) : h ∈ ∆},

and hence must have a maximum, by completeness of DG.

We are now ready to prove the adequacy of the provability game. The left-to-right
direction is easy and is stated and proved below. The right-to-left direction is harder and
will require another assumption on the semantic game and the regulation. This direction
is the subject of the following subsection.

Theorem 5.4.4: Adequacy, ltr, I-formulation

Let G be of finite height. If I have a k-strategy in DGρ(D), then I have k-strategies
in DGρ

℘(D) for every ℘ ∈ P .

Proof. The two games are identical, except maybe for the payoffs. Thus, I can use σ to
play in DGρ

℘(D). By assumption, every outcome resulting from playing σ has payoff
⊵ k in DGρ(D), and hence in DGρ

℘(D).

A similar argument shows:
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Theorem 5.4.5: Adequacy, ltr, You-formulation

Let G be of finite height. If You have a k-strategy in DGρ
℘(D), for some ℘ ∈ P ,

then You have a k-strategy in DGρ(D).

My best way to play

We start this subsection by identifying a property of the regulation ρ that is necessary
in order for DGρ to adequately model the degree of validity defined at the beginning
of this section. To this end, we give an example of an ill-behaved regulation causing
adequacy to fail.

Example 5.4.6. Let us consider the game DGHyb,ρ(D), where2 D = P : p
� O : p. Re-

member that according to the rules of GHyb, in the game state P : p is: You choose one of
countably infinite many nominals, say i, and the game ends in P, i : p. Over the model
M = (W, R, V, g), I win and You lose in this state if g(i) ∈ V(p). In O : p, I choose a
nominal i and the game ends in O, i : p. I win and You lose if g(i) /∈ V(p). Note that
over every model M, I can win the game DGHyb,ρ

M (D), independent of the regulation
ρ: if there is a nominal i with g(i) /∈ V(p), I go to that nominal in O : p. Otherwise, any
move You make in P : p results in a win for Me. Note that the order of moves, i.e., the
regulation ρ is irrelevant here. Hence, degGHyb(D) = 1.

Let us turn to the provability game: if the regulation ρ is fair, it picks the left state in
D: P : p

� O : p, You pick some i, and the game continues at P, i : p
� O : p. I go to

P, i : p
� O, i : p, which is winning over every model. Hence, the value of the provability

game with this regulation is 1 and adequately captures degGHyb(D).

Now, let us consider a “nasty” regulation picking O : p, whenever possible. If, at
P : p

� O : p, I pick some i, then the game continues at P : p
� O, i : p. You pick some

j ≠ i and the game ends at P, j : p
� O, i : p, which is winning for You since there are

models falsifying both g(j) ∈ V(p) and g(i) /∈ V(p). The situation does not get better
if I apply the duplication rule finitely many times. In this case, the game arrives at a
disjunctive state of the form

P : p
�

O, i1 : p
�

. . .
�

O, in : p,

which You easily win by choosing a nominal different from i1, . . . , in. Of course, if I
apply the duplication rule infinitely often, I lose this infinite run by definition. With this
unfair regulation, the value of the provability game is −1 and adequacy fails.

This example demonstrates that the “nasty” behavior of the regulation ρ must be pre-
vented in order to guarantee adequacy. A fair regulation ρ picks eventually every history
in a disjunctive state, independent of the behavior of the players. The regulation in

2In GHyb, the value of a history depends only on its last game state. Hence, we omit writing down the
whole history in a disjunctive state.
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the above example is not fair, since it picks P : p only if O : p does not occur in the
disjunctive state.

In fact, we need a more refined notion. Let σ be a strategy for Me in DGρ(D). The
regulation ρ is called fair for σ, if for all non-terminal histories h, and disjunctive histories
h, whenever h ∈ last(h) then for all strategies µ for You with h ⊑ O(σ, µ), there is some
h′ with h ⊑ h′ ⊑ O(σ, µ) and ρ(h′) = h. In other words, ρ is fair for σ, if at every current
disjunctive state D

�
h, if h is non-terminal, then, no matter how You play, there is a

point where h is selected by ρ if I play according to σ. If this holds even if I do not
play according to σ we simply say that ρ is fair: the regulation ρ is called fair if for
every non-terminal history h and disjunctive history h, whenever h ∈ last(h) then for all
strategies σ for Me and µ for You with h � O(σ, µ) there is some h′ with h ⊑ h′ ⊑ O(σ, µ).
This corresponds to the intuitive notion of “fair” discussed above.

We will now describe a strategy σ for Me for the game DGHyb(D0). This strategy is – in
a way – the optimal way to play the disjunctive game. Intuitively σ exploits all of My
possible choices without sacrificing My winning chances.

We say that a history h appears along a disjunctive history h and write h ∈ h if it occurs in
a disjunctive state in h. Let us fix an enumeration of game states of the semantic game
such that every game state g appears in this enumeration infinitely often. Let us denote
by #g the number of g under this enumeration. For every disjunctive history h and
non-terminal history h, let Nh(h) = {#g : h ⌣ g /∈ h} be the set of numbers of histories
extending h and not appearing along h. The strategy σk is as follows:

If the current non-terminal history h ends in D = D′ �
h, the history h is labeled “I”, and

1. |Nh(h)| ≥ 1, and δ(Dter) ⊴ k,

a) if |Nh(h)| ≥ 2 and h /∈ D′, then I duplicate h, i.e. the game continues at
D′ �

h
�

h.
b) otherwise, I move to D′ �

h ⌣ g, where #g = min Nh(h).

2. Otherwise, move to an arbitrary D′ �
h ⌣ g.

Lemma 5.4.7

Let ρ be fair for σk and let h be the outcome of DGρ(D) given by Me playing σk

and You playing some strategy µ such that δ(h) ⊴ k, Then δ(hter
i ) ⊴ k for every

i ≤ length(h), and for every h appearing along h, if

1. ℓ(h) = Y , there is at least one immediate successor of h appearing along h,

2. ℓ(h) = I , all immediate successors of h appear along h.

Proof. Suppose that there is some i with k ◁ δ(hter
i ). By definition of σk, I do not use the

duplication rule after hi. Since the semantic game is of finite height, the run terminates
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at some hj with j ≥ i. We have that hter
i ⊆ hj and thus δ℘(hter

i ) ⊴ δ℘(hj), for every ℘ ∈ P .
Minimizing over ℘, k ◁ δ(hter

i ) ⊴ δ(hj) = δ(h), which is a contradiction.

For 1, let h appear along h. It suffices to note that, since ρ is fair, there is some hn = H
�

h.
According to µ, You move to some H

�
h ⌣ g, i.e., the history h ⌣ g appears along h.

For every n, let h−n denote the initial segment of h up to hn. To prove 2, assume towards
a contradiction, that h ∈ h but there are immediate h-successors not appearing along h,
i.e., |Nh(h)| ≠ 0. Let #g = min Nh(h). By assumption, there is some number n such that
h ⌣ g′ appears along h−n for all game states g′ with #g′ < #g. Since ρ is fair, we may
even assume that hn = H

�
h. If |Nh−n(h)| = 1, or h ∈ D, then, according to σk, I move

to hn+1 = H
�

h ⌣ g, since #g = min Nh−n(h). This contradicts the fact that h ⌣ g does
not appear along h. Hence, |Nh−n(h)| ≥ 2, and h /∈ D. According to σk, I duplicate h,
and the game continues with H

�
h

�
h. Since ρ is fair, there is some minimal m > n

such that hm = H ′ �
h, i.e. h is scheduled again. Note that |Nh−m(h)| ≥ 2. Since g has

the minimal number of all game states g′ with h ⌣ g′ /∈ h−m, by the construction of
σk, I move to H ′ �

h ⌣ g. But then we have the same contradiction as before, which
concludes the proof.

Following the idea of proofs of the corresponding theorems in Chapter 3 and 4, we
now want to extract from h a payoff function ℘ and k-strategies for You for every G℘(h),
where h appears along h. However, at this point, our framework is too general to
accomplish this.

Example 5.4.8. Consider the game DGHyb,ρ(O : p), but over the class of models excluding
M∗ with g(i) ∈ V(p), for all nominals i. Then My strategy σ−1 is to repeatedly use the
duplication rule and move to a new O, i : p. For example, after n turns the current
disjunctive state will look like.

O : p
�

O, i1 : p
�

. . .
�

O, in : p

We always have δ(Dter) = −1, since there are, for every n, models Mn with g(ij) ∈ V(p)
for every j = 1, ..., n. However, there is no model M making all O, i : p winning for You
for every i.

The example demonstrates that we need to add another requirement for the set of payoff
function P . This property is easiest stated in terms of a sort of continuity of the function
δ.

Definition 5.4.9: δ is continuous

We call δ continuous if the following holds: for every k, every compact D, if
δ(D′) ⊴ k for every finite D′ ⊆ D, then δ(D) ⊴ k.

The existence of the required ℘ (or M∗ in the example) then follows by completeness, as
shown in the proof of the following lemma.
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game state assoc. with game state assoc. with
P, i : p ¬Vp(i) O, i : p Vp(i)
P, i : j ¬(i = j) O, i : j i = j
P, i : R(j, k) ¬R(j, k) O, i : R(j, k) R(j, k)

Table 5.1: How to show δ is continuous in GHyb.

Example 5.4.10. Let D be a set (does not need to be compact) consisting of elementary
game states of the semantic game for hybrid logic, i.e., of states of the form Q, i : p,
Q, i : j, or Q, i : R(j, k), where Q ∈ {P, O}, with δ(D′) ⊴ −1, for every finite D′ ⊆ D.
This means that for every such D′, there is a model MD′ such that every g ∈ D′ is
winning for You over this model. We must find a M∗ making all of D winning for You.
This is a simple application of the compactness theorem for classical first-order logic
with equality.

We consider the following first-order theory of classical logic with equality. In our
language, we include for every nominal i a corresponding constant (which, for simplicity
we also name) i, for every propositional variable p of hybrid logic a unary predicate Vp

and a binary relational symbol R. Note that every model of this first-order language
directly corresponds to a model of hybrid logic.

To every game state in D associate a formula of first-order logic as shown in Table 5.1.
Let T be a set containing all these formulas. Let TD be the set of all associated formulas.
Then for every finite T ′ ⊆ TD has a model satisfying all of T ′. By the compactness
theorem, there is a model of all TD, which can be easily translated to a model of hybrid
logic making all of D wining for You.

Example 5.4.11. In finite games, “compact” means “finite”, hence for finite semantic
games like GGCL, δ is always continuous.

Lemma 5.4.12

Let δ be continuous, G complete, and let h be as above. Then there is some ℘ ∈ P
such that You have a k-strategy in G℘(h), for every h appearing along h.

Proof. Where defined, let Di consist of the terminal histories in the disjunctive state hi

(otherwise, let Di = ∅). Then D = �
i∈ω Di is compact. By Lemma 5.4.7, δ(D′) ⊴ k, for

all finite D′ ⊆ D. Hence δ(D) ⊴ k, By continuity of δ. Using the completeness of G, we
define

1. For each ℘, let ℘(h℘) = max{℘(h) : h ∈ D},

2. ℘∗(h℘∗) = min{℘(h℘) : ℘ ∈ P}.
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The latter is well-defined because of the set inclusion

{℘(h℘) : ℘ ∈ P} ⊆
�

℘∈P
{℘(h) : h ∈ D}.

With this ℘∗, we now show the claim by bottom-up induction on h. If h is terminal, then
it appears in D. We have

k ⊵ δ(D) = inf
℘∈P

sup
h∈D

℘(h) = inf
℘∈P

℘(h℘) = ℘∗(h℘∗) ⊵ ℘∗(h),

which shows that the payoff at h is at most k.

If h appears along h and is labeled “Y”, then, by Lemma 5.4.7, there is some immediate
successor h′ of h appears along h. By the inductive hypothesis, You have a k-strategy in
G℘∗(h′). By Lemma 2.1.14, You have a k-strategy in G℘∗(h).

If h appears along h and is labeled “I”, then by Lemma 5.4.7, all immediate successors
h′ of h appear along h, too. By the inductive hypothesis, You have a k-strategy for
every G℘∗(h′). By Lemma 2.1.14, You can combine these strategies to a k-strategy in
G℘∗(h).

We now have all the ingredients to prove the missing directions of the adequacy theo-
rems:

Theorem 5.4.13: Adequacy, rtl, You-formulation

Let G be a complete semantic game of finite height with δ continuous, and let ρ
be fair. If You have a k-strategy in DGρ(D), then there is some ℘ ∈ P such that
You have a k-strategy in DGρ

℘(D).

Proof. Let h be the outcome of the game given by Me playing My best way, σk, as
described above, and You playing Your k-strategy. By assumption, the payoff, δ(h), is
at most k. Hence, h satisfies the requirements of Lemma 5.4.12, which shows that there
must be some ℘ ∈ P such that You have k-strategies in G℘(h), for every h appearing
along h. In particular, You have k-strategies in G℘(h), for all h ∈ D. By Proposition 5.3.5,
You have a winning strategy in DGρ

℘(D).

Theorem 5.4.14: Adequacy, rtl, I-formulation

Let G be a complete semantic game of finite height with δ continuous, and let ρ
be fair. Then I have a k-strategy in DGρ(D) if I have k-strategies in DGρ

℘(D) for
every ℘ ∈ P .

Proof. By Propositions 5.3.3 and 5.4.3, the provability game DG is complete and, by
Proposition 5.2.5, determined. Suppose I have no k-strategy in DGρ(D). Then, by the
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determinacy of DG, You must have an l-strategy for some l ◁ k. By Theorem 5.4.13, You
have an l-strategy in some DGρ

℘(D). We conclude that I cannot have a k-strategy in this
game.

Let us write vρ(D) for v(DGρ(D)). We sum up our results in this section:

Corollary 5.4.15

Let G be a complete semantic game of finite height and ρ fair. Then vρ(D) =
degG(D).

Proof. We have vρ(D) = min℘∈P vρ
℘(D). By Theorem 5.4.13, vρ(D) ⊴ min℘∈P vρ

℘(D), and
by Theorem 5.4.14, vρ(D) ⊵ min℘∈P vρ

℘(D).

Remark 5.4.16. Our results imply that fair regulations lead to optimal game values for
Me. To see this, let ρ1 and ρ2 be regulations and let ρ2 be fair. Let k = vρ2(D). By the
corollary, there is some ℘ such that You have a k-strategy in G℘(h), for all h ∈ D. By
Proposition 5.3.5, You have a k-strategy in DGρ1

℘ (D), and, by Theorem 5.4.5, You have a
k-strategy in DGρ1(D). This shows vρ1(D) ⊴ k.

Example 5.4.17. As demonstrated in the previous examples of this chapter, the semantic
games GHyb and GGCL are complete and their respective δs are continuous. Hence, we
immediately obtain generalizations of the adequacy theorems (3.5.3,3.5.5,4.5.3) of the
provability games in Chapters 3 and 4, where scheduling is done by a fair regulation
function instead of Me.

5.5 From Semantic Games to Proofs

In this section, we extract a sequent-style proof system from the provability game. As
in Chapter 4, proofs in this system come in degrees, representing the degree of validity,
degG, defined in the previous section.

Proofs in the calculus in Table 5.2 represent strategies for Me in the provability game
DGρ. The semantic rule (Ih)g represents the possible choices for Me at the I-history
h. Branching in the proof arises due to (Y h) and corresponds with branching in the
strategies for Me at Y-histories h, according to Your available moves at h. In general, there
are infinitely many options for You, hence proofs can be infinitely branching. In some
cases, this infinite branching can be reduced, if there is a finite set of optimal choices for
You, see Section 3.7.1.

The contraction rule (C) represents duplication, and the degree at elementary disjunctive
states coincides with the payoff function δ. Proofs of D where all initial sequents have
a value ⊵ k are called k-proofs. If a k-proof of D exists, we write ⊢k

DS D. In contrast to
the previous chapters, a k-proof in DS represents not only a k-strategy for Me, but also
(implicitly, through the choice of rule application) a regulation ρ. Hence, the existence of
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5.6. Finite Games and Regulation-independence

a k-proof implies that there is a regulation ρ and a k-strategy for Me in the game DGρ(D).
By Theorem 5.4.4, this implies degG(D) ⊵ k. On the other hand, Theorem 5.4.14 tells
us that degG(D) ⊵ k implies that there is3 a regulation ρ and a k-strategy for Me in
DGρ(D), and hence a k-proof of D. We have just proved:

Table 5.2: The proof system DS. In the rule (Ih)g, h is labeled “I” and h ⌣ g is a
successor of h. In the rule (Y h), h is labeled “Y” and h ⌣ g1, h ⌣ g2, ... are all the

immediate successors of h.

Initial sequents

D, where D is terminal and has degree δ(D)

Structural Rule

D
�

h
�

h
(C)

D
�

h

Semantic rules

D
�(h ⌣ g)

(Ih)g
D

�
h

D
�(h ⌣ g1) D

�(h ⌣ g2) . . .
(Y h)

D
�

h

Theorem 5.5.1: Completeness of DS

Let G be a complete semantic of finite height game with δ continuous. Then

⊢k
DS D ⇐⇒ degG(D) ⊵ k.

We conclude this section with a remark on scheduling by a regulation instead of schedul-
ing done by Me. Remark 5.4.16 implies that fair regulations favor Me and enable Me
to enforce a value of degG(D) in DGρ(D). Hence, if we want our provability game to
be adequate (that is, if we want the value of DGρ(D) to be degG(D)), we might as well
give the task of scheduling to Me, since it is in My best interest to schedule fairly.

Returning the task of scheduling to Me also restores the interpretation of the user of the
proof system as playing the provability game on behalf of Me (or rather: planning a
strategy for Me) in the provability game.

5.6 Finite Games and Regulation-independence

In this section, we discuss the important class of finite semantic games and show that
these games are regulation independent, i.e., the value of the game DGρ(D) is degG(D),
even if ρ is not fair. We use that G is finitely branching to introduce a version of

3The theorem says “for every”. Since there are always fair regulations, this implies “there are”.
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the calculus from the previous section where proofs of D automatically have degree
degG(D). We conclude the section with a case study for truth-degree comparison games
for Gödel-logic.

Theorem 5.6.1: Finite games are adequate and regulation-independent

Let G be a finite and complete semantic game. Then for every disjunctive state D
and every regulation ρ,

vρ(D) = degG(D).

For the proof of this theorem, we inspect the proof of Theorem 5.4.13 and find that
fairness of ρ is only ever needed in the proof of Lemma 5.4.7, where fairness of ρ for σk

is sufficient. Additionally, the requirement for δ to be continuous is always fulfilled for
finite semantic games. Hence, to prove the theorem, it is enough to prove the following
lemma:

Lemma 5.6.2

If G is a finite game, then every regulation ρ is fair for My best k-strategy σk.

Proof. Let h be a history of DGρ(D), h ∈ last(h) non-terminal, and µ a strategy for You
such that h ⊑ O(σk, µ). We show that t = O(σk, µ) is necessarily finite. The claim follows
since finite terminal disjunctive histories can only end in disjunctive states containing
exclusively terminal histories. Hence, at some point, the game must have continued at
the non-terminal h.

Let h be a non-terminal I-history h ∈ t, and let g1, . . . , gn be game states such that
#g1 < · · · < #gn and {h ⌣ gj : j = 1, . . . n} are all immediate successors of h. We prove
the following claim (∗): for every j, if the duplication rule has been applied to h at least
j + 1-times in an initial segment of t, then the successors h ⌣ g1, . . . , h ⌣ gj appear in
this segment, too.

Suppose we have shown the claim for all i < j, and the duplication rule was applied
to h at least j + 1-many times. By the inductive hypothesis, the immediate successors
h ⌣ g1, . . . , h ⌣ gj−1 appear along an initial segment of t. If h ⌣ gj appears there, too,
we are done. Otherwise, let k1 and k2 be such that the duplication rule is applied to h
at tk1 for the jth and at tk2 for the j + 1st time. Thus, tk1 = H1

�
h, tk1+1 = H1

�
h

�
h,

tk2 = H2
�

h and h /∈ H1 ∪ H2. According to σk, the duplication rule is never applied
to h if there is more than one copy of h in the current disjunctive state. Hence, there
must be some k with k1 < k < k2 such that tk = H

�
h. According to σk, at tk, I move to

h ⌣ gj .

We can now show that t is finite. Towards a contradiction, suppose t is infinite. If
the duplication rule is used only finitely many times, then from some point on, the
duplication rule is never used. Hence, the disjunctive game terminates after finitely
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many rounds. But since t is infinite and there are only finitely many histories extending
a history from g, there must be some history h to which the duplication rule is applied
infinitely often. Let n be the number of immediate h-successors, and let Di = H

�
h be

the disjunctive state where the duplication rule is applied to h for the n + 2nd time. By
the claim, all immediate successors appear in k = ⟨D0, . . . , Di⟩. But the precondition to
this duplication in the definition of σk is that |Nk(h)| ≥ 2, which is a contradiction.

5.6.1 Invertible Calculi

The proof system ODS in Table 5.3 produces proofs that resemble My optimal strategies,
as described for the proof of Theorem 5.4.13. According to this strategy, at I-states h I
use the duplication rule until all immediate successors h ⌣ g1,...,h ⌣ gn of h appear in
the current disjunctive state. An example of (a version) of this proof system is ODSGCL

in Table 4.4.

Table 5.3: The proof system ODS. In the rule (Ih), h is labeled “I” and h ⌣ g1,...,h ⌣ gn

are all successors of h. In the rule (Y h), h is labeled “Y” and h ⌣ g1, ..., h ⌣ gm are all
the immediate successors of h.

Initial sequents

D, where D is terminal and has degree δ(D)

Semantic rules

D
�(h ⌣ g1) �

. . .
�(h ⌣ gn)

(Ih)
D

�
h

D
�(h ⌣ g1) . . . D

�(h ⌣ gm)
(Y h)

D
�

h

In proof-theoretic terms, all rules of the calculus are invertible. This means that for a rule

D1 ... Dn

D

we have degG(D) = mini=1,...,n degG(Di).

Theorem 5.6.3: ODS produces optimal proofs

Every proof of D in ODS has the degree degG(D).

Proof. We show that the rules of ODS are invertible. We start with (I). Let D =
{k1, . . . , km} and let h be an I-history with immediate successors h ⌣ g1,...,h ⌣ gn. Fix a
payoff function ℘. Then

v℘


D

�
h


= max{v℘(k1), . . . , v℘(km), v℘(h)} (Corollary 5.3.6)
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= max{v℘(k1), . . . , v℘(km), max
i=1,...n

v℘(h ⌣ gi)} (Lemma 2.1.14)

= max{v℘(k1), . . . , v℘(km), v℘(h ⌣ g1), . . . , v℘(h ⌣ gn)}
= v℘


D

�
(h ⌣ g1)

�
. . .

�
(h ⌣ gn)


(Corollary 5.3.6)

Taking the minimum over ℘ on both sides, we get

degG

D

�
h


= degG


D

�
(h ⌣ g1)

�
. . .

�
(h ⌣ gn)


.

For (Y ), let D and h be as before, only that now h is a Y-history.

v℘


D

�
h


= max{v℘(k1), . . . , v℘(km), v℘(h)} (Corollary 5.3.6)

= max{v℘(k1), . . . , v℘(km), min
i=1,...n

v℘(h ⌣ gi)} (Lemma 2.1.14)

= min
i=1,...,n

max{v℘(k1), . . . , v℘(km), v℘(h ⌣ gi)} (De Morgan)

= min
i=1,...,n

v℘


D

�
(h ⌣ gi)


(Corollary 5.3.6)

Taking the minimum over ℘ on both sides (the two minima on the right commute),

degG

D

�
h


= min

i=1,...,n
degG


D

�
(h ⌣ gi)


,

which concludes the proof.

5.6.2 Case Study: Gödel logic

In this section, we apply the general lifting technique for a semantic game for Gödel logic,
developed in [25, 22, ?], called the truth-degree comparison game GG. The presentation
in this section slightly differs from these papers, where the disjunctive game is used only
metaphorically, and the central notion used to lift the game to an analytic calculus is that
of a disjunctive strategy. In particular, regulations on the level of the disjunctive game,
as well as regulation independence play no role there. The motivation for discussing
this game is to illustrate the general lifting framework developed in this chapter. Hence,
the presentation in this section is often kept semi-formal and makes no claims to be
complete. A much more thorough analysis of the game and the resulting calculus,
including extensions with the projection operator ∆, involutive negations, and truth
constants, as well as connections to other calculi can be found in the mentioned papers.

Next to Łukasiewicz and Product logic, Gödel logic G [3, 35, 19, 52] is one of the three
prominent fuzzy logics aimed at formalizing reasoning under vagueness. Following
this paradigm, under an interpretation I, formulas in G can take values in the real unit
interval [0, 1], where 0 stands for falsity, 1 for truth, and the other values for intermediate
degrees for truth. Interestingly, G can also be seen as an extension of intuitionistic logic
with the linearity axiom (A → B) ∨ (B → A), giving it an additional semantics in terms
of linear Kripke models.
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Its language is built according to the following grammar:

F ::= ⊥ | ⊤ | a | F ∧ F | F ∨ F | F → F

Negation is expressible via implication via ¬F = F → ⊥. An interpretation I is a function
mapping propositional variables to the real unit interval [0, 1]. The function I extends to
compound formulas as follows:

I(⊥) = 0,

I(⊤) = 1,

I(F ∧ G) = min{I(F ), I(G)},

I(F ∨ G) = max{I(F ), I(G)},

I(F → G) =
�

1 if I(A) ≤ I(B)
I(B) otherwise.

Here, min and max are with respect to the usual ordering on the real numbers. A formula
F is valid in G if I(F ) = 1 for every interpretation I.

Game states of the semantic game GG are of the form F ≺ G, F ≺ G, F ≺ G, for
≺∈ {<, ≤}, or4 (F ≤ G, H < I). The game is played between Me and You over a fixed
interpretation I . Intuitively, at F ≤ G, I am the proponent, and You are the opponent5 of
the claim I(F ) ≤ I(G).

(Sched) At game states of the form6 F ≺ G, I choose whether to continue the game
with F ≺ G or with F ≺ G.

(∧ ≺) At F1 ∧ F2 ≺ G, I choose whether to continue the game with F1 ≺ G or with
F2 ≺ G.

(≺ ∧) At F ≺ G1 ∧ G2, You choose between F ≺ G1 and F ≺ G2.

(∨ ≺) At F1 ∨ F2 ≺ G, You choose whether to continue the game with F1 ≺ G or with
F2 ≺ G.

(≺ ∨) At F ≺ G1 ∨ G2, I choose between F ≺ G1 and F ≺ G2.

(→≤) At F1 → F2 ≤ G, I choose between

(1) continuing with ⊤ ≤ G, or

(2) with (F2 < F1, F2 ≤ G), where You choose whether the game continues with
F2 < F1 or with F2 ≤ G.

4Game states of this form do not occur in the original formulation of the game, but we need them in
order for the game to meet our game-format.

5In the original game, the players are called Proponent and Opponent.
6In the original game, scheduling is done by a regulation function picking one of the two sides of

the inequality. We choose to give the task of scheduling to Me, to prevent confusion when it comes to
scheduling on the level of the disjunctive game DGG. At this level, scheduling will be done by a regulation
function, as discussed in the previous sections.
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�
p ∧ (p → q) ≤ p ∧ q


I

�
p ≤ p ∧ q


Y

[p ≤ p] [p ≤ q]

�
p → q ≤ p ∧ q


I

�
⊤ ≤ p ∧ q


Y

[⊤ ≤ p] [⊤ ≤ q]

[(F2 < F1, F2 ≤ G)]Y

�
q ≤ p ∧ q


Y

[q ≤ p] [q ≤ q]

[q < p]

Figure 5.1: The game tree in GG
I (p ∧ (p → q) ≤ p ∧ q)

(≤→) At F ≤ G1 → G2, I choose between G1 ≤ G2 and F ≤ G2.

(→<) At F1 → F2 < G, You choose whether to continue the game with F2 < F1 or with
F2 < G.

(<→) At F < G1 → G2, I choose between

(1) continuing with F < G2,

(2) or with (F < ⊤, G1 ≤ G2), where You choose whether to continue the game
with G1 ≤ G2, or with F < ⊤.

(Win) At a ≺ b, I win and You lose iff I(a) ≺ I(b). Otherwise, You win and I lose.

Example 5.6.4. Let us consider the game state p ∧ (p → q) ≤ p ∧ q the game tree7

for GG starting at this state is depicted in Figure 5.1. For an interpretation I with
I(q) < I(p) < 1, say I(q) = 0, I(p) = 0.5, the winning states are p ≤ p, q < p, q ≤ p,
and q ≤ q. A winning strategy for Me is to go to p → q ≤ p ∧ q in the first and to
(F2 < F1, F2 ≤ G) in the second move. This strategy is depicted in Figure 5.2.

Theorem 5.6.5: [22], Adequacy of GG

I have a winning strategy in GG
I (F ≺ G) iff I(F ) ≺ I(G).

Using the general adequacy results of this chapter, we immediately obtain the adequacy
theorem and regulation independence of the induced disjunctive game.

7Actually, this is not the full game tree, but only a fragment with particular scheduling moves for Me.
We will see that this scheduling can be extended to a winning strategy for Me.
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�
p ∧ (p → q) ≤ p ∧ q


I

�
p → q ≤ p ∧ q


I

[(F2 < F1, F2 ≤ G)]Y

�
q ≤ p ∧ q


Y

[q ≤ p] [q ≤ q]

[q < p]

Figure 5.2: A winning strategy for Me in GG
I (p ∧ (p → q) ≤ p ∧ q) with I(q) < I(p)

Theorem 5.6.6: Adequacy of DGG

For any ρ, I have a winning strategy in DGG,ρ(⊤ ≤ F ) iff F is valid in G.

Proof. The semantic game GG is finite, and so is the domain of payoff values. Hence, GG

is complete, and we can apply Theorem 5.6.1 and Theorem 5.6.5 to obtain the desired
equivalence.

Finally, let us come to the resulting proof systems. The calculus DSG in Figure 5.4 is
exactly the calculus DS from Figure 5.2 instantiated to the game GG, except in the rule
(→≤)2, we omit writing the game state (F2 < F1, F2 ≤ G) and immediately involve the
following choice of You. Similarly, in (<→), we omit writing (F < ⊤, G1 ≤ G2). The
resulting calculus has no rules for these game states, which is unproblematic, as we are
primarily interested in proofs of the validity of formulas F , represented by the game
state ⊤ ≤ F . An example of a proof can be found in Figure 5.3.

Table 5.4: The proof system DSG.

Axioms

D terminal and winning

Structural Rule

D
�

F ≺ G
�

F ≺ G
(C)

D
�

F ≺ G
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Propositional rules

D
�

F1 ≺ G
(∧ ≺)1

D
�

F1 ∧ F2 ≺ G

D
�

F2 ≺ G
(∧ ≺)2

D
�

F1 ∧ F2 ≺ G

D
�

F ≺ G1 D
�

F ≺ G2 (≺ ∧)
D

�
F ≺ G1 ∧ G2

D
�

F2 ≺ G D
�

F1 ≺ G
(∨ ≺)

D
�

F1 ∨ F2 ≺ G

D
�

F ≺ G1 (≺ ∨)1
D

�
F ≺ G1 ∨ G2

D
�

F ≺ G2 (≺ ∨)2
D

�
F ≺ G1 ∨ G2

D
� ⊤ ≤ G

(→≤)1
D

�
F1 → F2 ≤ G

D
�

F2 < F1 D
�

F2 ≤ G
(→≤)2

D
�

F1 → F2 ≤ G

D
�

G1 ≤ G2 (≤→)1
D

�
F ≤ G1 → G2

D
�

F < G2 (≤→)2
D

�
F ≤ G1 → G2

D
�

F2 < F1 D
�

F2 < G
(→<)

D
�

F1 → F2 < G

D
�

F < G2 (<→)1
D

�
F < G1 → G2

D
�

G1 ≤ G2 D
�

F < ⊤
(<→)2

D
�

F < G1 → G2

The calculus ODSG in Figure 5.5 is the calculus presented in [22]. In our case, it arises
as an instantiation of ODS in Figure 5.3 and corresponds to My optimal strategy in
the provability game. According to this strategy, for every I-history8 h, I first duplicate
h and then exhaustively go to all possible immediate successors of h. The rule (→≤)
arises from this idea and the rules (→≤)1 and (→≤)2 of the semantic game, as shown in
Figure 5.5. Figure 5.6 shows an example of a failed proof in ODSG. The initial sequent

⊤ ≤ p
�

p ≤ ⊥
�

⊤ ≤ ⊥

is falsified by any interpretation I with I(A) < 1, and 0 < I(p), for example, I(p) = 0.5,
which, by invertibility of the rules, gives us a countermodel of p ∨ ¬p. [22] provides
an effective algorithm computing interpretations falsifying any given losing state, thus,
countermodels of the original formula.

Table 5.5: The proof system ODSG.

Axioms

D terminal and winning

8As in Chapter 3, it suffices to keep track of the last state of the current history, since the winning
condition solely depends on this state.
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p ≤ p
�

q ≤ p p ≤ q
�

q < p
(≤ ∧)

p ≤ p ∧ q
�

q < p p ≤ p ∧ q
�

q ≤ p ∧ q
(→≤)2

p ≤ p ∧ q
�

p → q ≤ p ∧ q
(∧ ≤)2

p ≤ p ∧ q
�

p ∧ (p → q) ≤ p ∧ q
(∧ ≤)1

p ∧ (p → q) ≤ p ∧ q
�

p ∧ (p → q) ≤ p ∧ q
(C)

p ∧ (p → q) ≤ p ∧ q
(≤→)1⊤ ≤ (p ∧ (p → q)) → (p ∧ q)

Figure 5.3: Proof of p ∧ (p → q) → (p ∧ q) in DSG. The proof continues in Figure 5.4

Propositional rules

D
�

F1 ≺ G
�

F2 ≺ G
(∧ ≺)

D
�

F1 ∧ F2 ≺ G

D
�

F ≺ G1 D
�

F ≺ G2 (≺ ∧)
D

�
F ≺ G1 ∧ G2

D
�

F2 ≺ G D
�

F1 ≺ G
(∨ ≺)

D
�

F1 ∨ F2 ≺ G

D
�

F ≺ G1
�

F ≺ G2 (≺ ∨)
D

�
F ≺ G1 ∨ G2

D
�

G1 ≤ G2
�

F ≤ G2 (≤→)
D

�
F ≤ G1 → G2

D
�

F2 < F1 D
�

F2 < G
(→<)

D
�

F1 → F2 < G

D
� ⊤ ≤ G

�
F2 < F1 D

� ⊤ ≤ G
�

F2 ≤ G
(→≤)

D
�

F1 → F2 ≤ G

D
�

F < G2
�

G1 ≤ G2 D
�

F < G2
�

F < ⊤
(<→)

D
�

F < G1 → G2

The following theorem immediately follows from the corresponding results in this
chapter:

p ≤ p
�

q ≤ p p ≤ p
�

q ≤ q
(≤ ∧)

p ≤ p
�

q ≤ p ∧ q

p ≤ q
�

p ≤ p p ≤ q
�

q ≤ q
(≤ ∧)

p ≤ q
�

q ≤ p ∧ q
(≤ ∧)

p ≤ p ∧ q
�

q ≤ p ∧ q

Figure 5.4: Proof of p ≤ p ∧ q
�

q ≤ p ∧ q in DSG
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D
� ⊤ ≤ G

�
F2 < F1 D

� ⊤ ≤ G
�

F2 ≤ G
(→≤)2

D
� ⊤ ≤ G

�(F2 < F1, F2 ≤ G)
(→≤)1

D
� ⊤ ≤ G

�
F1 → F2 ≤ G

(C)
D

�
F1 → F2 ≤ G

Figure 5.5: How to derive the rule (→≤)

⊤ ≤ p
�

p ≤ ⊥ � ⊤ ≤ ⊥
(≤→)⊤ ≤ p

�
p → ⊥

(≤ ∨)
⊤ ≤ p ∨ (p → ⊥)

Figure 5.6: A failed proof of A ∨ ¬A in ODSG.

Theorem 5.6.7: Completeness of DSG and ODSG

Let F be a formula and ρ a regulation. The following are equivalent:

1. F is valid in Gödel logic

2. I have a winning strategy in DGG,ρ(⊤ ≤ F ).

3. There is a proof of ⊤ ≤ F in DSG.

4. There is a proof of ⊤ ≤ F in ODSG

5.7 Conclusion and Future Work

In this chapter, we gave a general framework for lifting semantic games to provability
games and further to analytic calculi. We demonstrated that this framework indeed cov-
ers the cases of hybrid logic and choice logic. Furthermore, we applied this framework
to another semantic game, the truth-degree-comparison game for Gödel logic.

For infinitely branching games, the resulting calculus is infinitely branching, too. How-
ever, we have seen that in practice, infinite branching can be reduced: in Chapter 3, we
showed that every infinite choice of You can be reduced to a single optimal choice. Hence,
in My strategies I do not need to care about all of Your choices, and can consider Your
optimal choice instead. Applying the idea to the resulting calculus leads to a version
with finitely branching rules. It would be interesting to identify conditions for this
finitization, or optimization, of Your choices.

We admit that our general framework may not be suitable for all present and future
semantic games. In particular, some aspects of our definitions may be too general, while
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others may be too restrictive. As a candidate for the first, we mention a property that
seems central in semantic games. Namely, that game states are essentially formulas of
a logic, and the rules of the game are dictated by the shape of the formula. While it is
remarkable that the lifting to provability games and analytic calculi does not make use
of this strong structural property, it seems promising to investigate which results are
obtainable if we manage to grasp this property in a general framework for semantic
games.

On the other front of conditions that are a good candidate to be relaxed, we mention our
requirement for all histories of the semantic game to be of finite height. In the semantic
game in [20] for hybrid logic with fixed points, infinite runs are allowed and are not, per
se, losing for Me. We believe that the disjunctive game can be straightforwardly adjusted
to cover these infinite runs. The payoff of an outcome is then simply the maximal payoff
of all of the terminal runs it contains (finite or infinite). We expect the resulting proofs to
be easier than for the current framework where infinite runs of the disjunctive game are
trivially won by You since we do not need to care about termination in My strategies.
The presentation in the mentioned paper is mostly game-theoretic, too, and results in
a cyclic proof system. However, we conjecture that it proceeds like the (generalized)
lifting technique.

Another possible generalization is the number of players. Recently, semantic games with
more than two players were recently introduced [4] for several non-classical logics. The
different players represent payoff values in a non-linear domain. It would be interesting
to see whether the lifting technique can be extended to cover these cases. In particular,
this may suggest how to deal with the restriction of the linear domain of payoff values,
as imposed by game theory.
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APPENDIX A
Basic Notions from Mathematics

A.1 Orders

A pair S = (S, ⪯) where S is a set and ⪯⊆ S × S is a binary relation is called a preorder if
it satisfies for every a, b, c ∈ S:

1. Reflexivity: a ⪯ a

2. Antisymmetry: if a ⪯ b and b ⪯ a then a = b

3. Transitivity: if a ⪯ b and b ⪯ c, then a ⪯ c

S is a total order if additionally, it satisfies for all a, b ∈ S;

4. Totality: a ⪯ b or b ⪯ a.

A subset A of S is bounded from above (below) if there is an upper (lower) bound, i.e., some
b ∈ S such that a ⪯ b, for all a ∈ A (b ⪯ a, for all a ∈ A). S is called complete if every
subset A that is bounded from above has a least upper bound, sup A. If S is complete,
and A is bounded from below, then there is a greatest lower bound, inf A, of A.

A.2 Sequences

Let S be a set. A sequence over S is a partial function h from N = {0, 1, 2, . . .}, the set of
natural numbers, to S whose domain is downwards-closed with respect to the usual
ordering on N. The image of h is denoted range(h). Instead of h(i), we prefer to write hi,
if i is in the domain of h. We write length(h) for the maximal number in the domain of h,
and last(h) for hlength(h).
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For two sequences h and k, we say that h is an initial segment of k and write h ⊑ k if
hi = ki for all i in the domain of h. If H is a set of sequences over S, then it is partially
ordered by ⊑.

For two sequences h, k, where h is a finite and non-empty sequence, then their concatena-
tion h ⌣ k, is the following sequence:

(h ⌣ k)i =
�

hi, if i ≤ length(h),
ki−length(h)−1, if i > length(h)

If k = ⟨s⟩ we write h ⌣ s for h ⌣ k. We call h ⌣ s an immediate successor of h.

A.3 Multisets

A multiset is a pair M = (A, m), where A is a set, called the support of M , and m is a
function from M to N+, the set of positive natural numbers. Intuitively, A states which
elements occur in M and the function m determines how often each element occurs
there.

We need the following operation on multisets: for M1 = (A1, m1) and M2 = (A2, m2)
let the sum M1 + M2 be the multiset (A1 ∪ A2, m) with m(x) = m1(x) + m2(x), for all
x ∈ A1 ∪ A2. By a slight abuse of notation, we often write M1 ∪ M2 for A1 ∪ A2.
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