
N
s
Y
a

b

A

K
E
M
C
M
H
A

1

i
a
b
t
a

e
i
‘
Q
s
f
t
m

h
R

J. Mech. Phys. Solids 193 (2024) 105854 

A
0
(

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

onlinear dynamics of a flexible rod partially sliding in a rigid
leeve under the action of gravity and configurational force
ury Vetyukov a,∗,1, Alexander Humer b,1, Alois Steindl a,1

Institute of Mechanics and Mechatronics, Technische Universitat Wien, Getreidemarkt 9, Vienna, 1060, Austria
Institute of Technical Mechanics, Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria

R T I C L E I N F O

eywords:
lastic rod
oving boundary
onfigurational force
ixed Eulerian–Lagrangian description
amiltonian mechanics
diabatic invariants

A B S T R A C T

We investigate various methods of analyzing systems with moving boundaries, using as an
example a flexible rod sliding in an ideal frictionless sleeve in the field of gravity. Special
attention is paid to the configurational force acting on the rod at the sleeve opening and thus
determining the rod’s dynamics. The non-material kinematic description used in simulations
is based on the re-parametrization of the Lagrangian arc length coordinate. The variational
formulation uses the energy expressions written for the entire rod, comprising the free segment
and the one inside the sleeve. A novel finite element scheme is efficient for highly flexible
rods, which may undergo complete ejection. A simplified two degrees of freedom model, which
accelerates simulations, shows a good agreement as the bending stiffness increases. An analytical
study using Hamiltonian mechanics exploits the separation of variables into fast oscillations and
slow axial motion. The adiabatic invariant approach leads to approximate closed-form solutions
for the slow dynamics and yields the maximum injection depth of the rod into the sleeve.

. Introduction

A growing body of literature is devoted to the mechanics of flexible rods, partially sliding in a rigid sleeve. The conventional
dealization implies the rod particles to be moving only along the axial direction when inside the sleeve, while kinematic constraints
re released as soon as the particle leaves the sleeve and transitions into a free segment. This continued exchange of particles
etween the two qualitatively different domains, i.e., the free segment and the one within the sleeve, results into various non-
rivial mechanical phenomena, both in dynamics and in quasi-statics. Such processes feature moving discontinuities, thus requiring
thorough treatment of basic principles of mechanics as well as novel numerical and analytical methods for mathematical modeling.

It is often reasonable to assume the axial motion of the rod within the sleeve to be kinematically imposed, such that the particles
nter or leave the free segment with a given time rate. This will be the case, e.g., in reeving or hoisting systems, when a cable
s released from a roller with constant angular velocity (Escalona et al., 2018; Kaczmarczyk and Ostachowicz, 2003). The classic
‘sliding spaghetti’’ problem, when the vibrations of a beam increase as it is getting ‘‘sucked’’ into a sleeve, was investigated by Vu-
uoc and Li (1995), Humer et al. (2020), Boyer et al. (2022), the reverse ‘‘spaghetti problem’’ by Mansfield and Simmonds (1987);

ee also (Steinbrecher et al., 2017) for a validation against a more computationally expensive solution of a contact problem with a
inite gap between the rod and the walls of the sleeve. As shown in Vetyukov (2021), the frictional contact may cause a non-trivial
ransient dynamics of such an axially transported beam even when inertia is neglected, i.e. in the quasi-statics; see also a review on
echanics of axially moving structures, Scheidl and Vetyukov (2023).
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If the axial motion in the sleeve is not prescribed kinematically but rather results from the interaction with the free segment,
he sliding-rod problem becomes even more challenging. The energy release rate for a rod sliding within an ideal sleeve and with
eformed free part proves the existence of a force in outward direction, which pushes the rod out of the sleeve. This force (which
e call configurational) equals the energy density of bending of the rod at the opening of the sleeve (thus being proportional to

he square of the bending moment), see Bigoni et al. (2022). An interpretation on the level of Newtonian mechanics requires the
imiting transition in the contact problem for the more realistic setting of a small but non-vanishing gap between the rod and the
leeve (Bigoni et al., 2015). This force is, for example, responsible for the sliding of a flexible rod out of a horizontal frictionless
hannel as soon as the free part of the rod bends due to gravity. The terms ‘‘Eshelby-like’’ or ‘‘material’’ force are also in use and
eflect the relation to the problems of crack growth and motion of dislocations in solid fracture mechanics, for which the apparatus
f analytical mechanics with generalized coordinates and work done by conjugate forces was proven to be advantageous (Kienzler
nd Herrmann, 2000). The notion of configurational forces explains interesting phenomena in structural mechanics such as the
xperimentally validated functioning of an elastica arm scale (Bosi et al., 2014); we also refer to the comprehensive treatise
y O’Reilly (2017), the general discussion of configurational mechanics by Steinmann (2008), as well as the relevant problem
ormulations and interesting analysis in Singh and Hanna (2017). A thorough investigation of the phenomenon of the configurational
orce from the perspective of a 2D continuum model of the rod has recently been presented by Dal Corso et al. (2024).

Among various appearances of configurational forces in structural dynamics, we focus on the dancing rod problem, introduced
y Armanini, Dal Corso, Misseroni, and Bigoni (2019); see also a recent extension in Koutsogiannakis et al. (2023). A flexible rod,
artially inserted into an inclined rigid sleeve with no or little friction exhibits rich motion in the presence of gravity, during which
njection turns into ejection and vice versa. The dynamic process can even end up in the full ejection of the rod. The experimental
bservation is supported by an analytical model based on the principles of Newtonian mechanics, simplified by the assumption that
he entire mass of the moving rod is concentrated at its tip, thus resulting in a model with two degrees of freedom. Recently, Han
2022), Han and Bauchau (2023) numerically addressed a similar problem for a rod with distributed mass. They formulated the
quations of motion in variational form for the free and for the constrained segments separately, thus treating two open systems
ith additional interaction terms at the boundary between them, see also Irschik and Holl (2002) for the discussion of the flux

erms in the analytical mechanics of deformable bodies. Neglecting friction, Han and Bauchau validated their computations against
he dynamic simulation of the contact problem using Abaqus and obtained a very good matching.

In the first part of the present paper, we develop a particularly simple mathematical model that treats the entire dancing rod
s a whole body with a moving boundary between the two segments, thus avoiding the burden of dealing with open systems.
sing a solution-dependent coordinate transformation for the free segment of the rod, we parametrize its deformed shape using a
on-material finite element approximation in the spirit of the mixed Eulerian–Lagrangian kinematic description (Pechstein and
erstmayr, 2013; Humer, 2013; Humer et al., 2020; Vetyukov, 2018; Scheidl and Vetyukov, 2023). In addition to the nodal
nknowns, degrees of freedom include the axial displacement of the rod inside the sleeve. We assume a flexible and thin rod
o be inextensible and unshearable, which requires the approximation of the deformed centerline in the free segment to be
mooth (Vetyukov, 2012). Deriving the kinetic energy, strain energy and gravity potential by adding up the contributions from
he free segment and the one within the sleeve, we write down Lagrange equations of motion of the second kind, which can be
ntegrated over time. Numerical simulations are successfully validated against Han and Bauchau (2023). Although the model does not
equire the expression for the configurational force to be explicit, it is taken into account by the formalism of analytical mechanics
nd can be evaluated at the stage of post-processing — just like the reactions of ideal constraints.

The vibration amplitude in the free segment gets smaller and the frequency grows as we increase the bending stiffness of the rod.
ocusing on this case, in the second part of the paper we derive an analytical solution of the equations of motion for a simplified
odel with just two degrees of freedom. The first degree of freedom describes the axial motion of the rod, while the second represents

he transverse vibration of its free segment. The single-term Ritz approximation of the transverse bending makes use of either the first
ibration mode or the static deflection of a cantilever under distributed load as the shape function. A nonlinear system of equations
f motion results from relatively simple energy expressions and can be easily integrated numerically. Assuming the axial motion of
he rod to be significantly slower than the transverse oscillations, it was possible to treat the equations analytically using the theory
f adiabatic invariants for Hamiltonian systems (Arnol’d, 1963). The perturbation method provides a relation for the vibration
mplitude and its frequency, determined by the axial motion, allowing to derive a closed-form expression for the maximum depth
f injection of the rod into the sleeve for given initial conditions. Analytical conclusions are in a good correspondence with the
esults of finite element simulations.

. Mathematical model of the dancing rod

.1. Problem statement

The mechanical system featuring plane motion of a flexible elastic rod partially sliding in a rigid sleeve is shown in Fig. 1. The
xis of the sleeve 𝑥 is inclined relative to gravity 𝑔 by the angle 𝛼. The total length of the rod is 𝓁; it is inextensible and unshearable;

its bending rigidity is 𝑎 and the mass per unit length is 𝜌. The length of the free part of the rod outside the sleeve 𝜂(𝑡) is a function
of time. We assume an ideal contact model: that the segment of the rod within the sleeve of the length 𝓁 − 𝜂 is always straight and
undeformed. The contact is frictionless, which means that the mechanical system is conservative. The concentrated contact force
at the tip of the sleeve, whose axial component is the configurational force 𝑁 , is also assumed to be frictionless. In Newtonian

mechanics, this can be explained by the orthogonality of the concentrated contact force to the slightly deformed centerline of the

2 
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Fig. 1. Flexible rod sliding in a sleeve in the field of gravity; material coordinate 𝑠 and normalized coordinate in the flexible segment 𝜎.

rod (Bigoni et al., 2015), and thus should be classified as a reaction force of an ideal constraint, whose virtual work vanishes at
all times. Although the force 𝑁 is work conjugate to the length of the free segment 𝜂, the actual work is done by gravity. This is
imilar to the case of a mass, sliding on an inclined surface: the normal reaction of the surface performs no work, but its horizontal
omponent is work conjugate to the horizontal motion of the mass.

.2. Kinematic description

In the Lagrangian (material) kinematic description, the position vector of a rod’s particle is a function of the material coordinate
(which is the arc length at all times and is counted from the end of the rod inside the sleeve) and time:

𝒙 = 𝑥𝒆𝑥 + 𝑦𝒆𝑦 = 𝒙(𝑠, 𝑡). (1)

his description is clearly inefficient for our actual needs because the material particles move between the constrained and
ree segments. An attempt to simulate the problem using conventional Lagrangian finite elements would result into numerically
nduced oscillations because of the necessity to apply kinematic constraints on parts of the elements, which can hardly be resolved
fficiently (Steinbrecher et al., 2017; Oborin et al., 2018).

A change of variables in the spirit of mixed Eulerian–Lagrangian approach (Scheidl and Vetyukov, 2023) helps avoiding these
umerical difficulties. We parametrize the deformation of the free segment of the rod by a normalized coordinate 𝜎, which changes
rom 0 at the tip of the sleeve to 1 at the free (outside) end of the rod. This is somewhat similar to the notion of the mesh coordinate
sed by Han and Bauchau (2023). The linear mapping between this normalized non-material coordinate and the Lagrangian material
oordinate is easy to establish for a given value of the length of the free segment:

𝑠 = 𝓁 − 𝜂 + 𝜂𝜎, 𝜎 = 1 − 𝓁 − 𝑠
𝜂

. (2)

Note that

𝑠|𝜎=0 = 𝓁 − 𝜂, 𝑠|𝜎=1 = 𝓁 (3)

are the current material boundaries of the free segment. The motion of the mechanical system is fully defined by the time-dependent
parametrization of the free segment

𝒙 = 𝒙(𝜎, 𝑡), 0 ≤ 𝜎 ≤ 1 (4)

and by the time evolution of a configurational parameter 𝜂(𝑡). The parametrization needs to satisfy kinematic boundary conditions
𝑥|𝜎=0 = 0, 𝑦|𝜎=0 = 0, 𝜕𝜎𝑦|𝜎=0 = 0, (5)

3 
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in which we introduced a partial derivative operator

𝜕𝜎 ≡ 𝜕
𝜕𝜎

. (6)

In what follows, the inextensibility condition

|𝜕𝑠𝒙| = 1 (7)

is imposed using the penalty approach in the following.

2.3. Energy expressions

Obtaining the equations of motion of a conservative system using the Lagrangian formalism requires expressions of the kinetic
and the potential energies. The constrained segment is undeformed, and the total strain energy of the rod is to be obtained by the
integration over the free part:

𝑈 = ∫

𝓁

𝓁−𝜂

1
2
(𝑎𝜅2 + 𝑏𝜀2) d𝑠 = ∫

1

0

1
2
(𝑎𝜅2 + 𝑏𝜀2)𝜂 d𝜎. (8)

We transformed the integral to new coordinates with the Jacobian 𝜕𝜎𝑠 = 𝜂, see Eq. (2). By the transformation, we obtain an integral
over a fixed domain, which is the main benefit of the non-material coordinate. The first term in parentheses is the bending energy
density with the square of the curvature of the rod 𝜅 easily computed as

𝜅2 = 𝜕2𝑠𝒙 ⋅ 𝜕
2
𝑠𝒙 = (𝜕2𝑠𝑥)

2 + (𝜕2𝑠𝑦)
2. (9)

Indeed, 𝜕𝑠𝒙 is a unit tangent vector because 𝑠 remains the arc length coordinate according to the inextensibility condition. Therefore,
he second derivative 𝜕2𝑠𝒙 is a unit normal multiplied by the curvature. The second term in brackets in Eq. (8) corresponds to the
nergy density induced by extension, where Green’s axial strain

𝜀 = 1
2
(𝜕𝑠𝒙 ⋅ 𝜕𝑠𝒙 − 1) (10)

is used. Choosing a high value of the parameter 𝑏, we effectively penalize the axial extensibility, which, of course, requires a
sufficiently fine spatial discretization so the approximation is compatible with this constraint. The expressions for 𝜅 and 𝜀 contain
derivatives with respect to the material coordinate, which we rewrite in terms of the normalized coordinate:

𝜕𝑠𝒙 = 𝜕𝜎𝒙 𝜕𝑠𝜎 = 1
𝜂
𝜕𝜎𝒙, 𝜕2𝑠𝒙 = 1

𝜂2
𝜕2𝜎𝒙. (11)

The total kinetic energy of the rod

𝑇 = ∫

1

0

1
2
𝜌𝒙̇ ⋅ 𝒙̇ 𝜂 d𝜎 + 1

2
𝜌(𝓁 − 𝜂)𝜂̇2 (12)

comprises the kinetic energy of the free segment (the first term with the integral) and the kinetic energy of the constrained part
with a variable length inside the sleeve. It is convenient to decompose the material velocity of a particle in the free segment into a
local time derivative and a convective term according to

𝒙̇ = 𝜕𝑡𝒙(𝜎(𝑠, 𝑡), 𝑡)|𝑠=const = 𝜕𝑡𝒙|𝜎=const + 𝜎̇ 𝜕𝜎𝒙, (13)

while the time derivative of the normalized coordinate for a given material particle follows from the vanishing material time
derivative of 𝑠 in Eq. (2):

𝑠̇ = 0 ⇒ − 𝜂̇ + 𝜂̇𝜎 + 𝜂𝜎̇ = 0 ⇒ 𝜎̇ =
(1 − 𝜎)𝜂̇

𝜂
. (14)

It remains to express the total potential of the gravity force, which again comprises contributions from both the free and the
onstrained segments:

𝑊 = ∫

1

0
𝜌𝑔(𝑥 cos 𝛼 + 𝑦 sin 𝛼)𝜂 d𝜎 − 1

2
𝜌𝑔 cos 𝛼 (𝓁 − 𝜂)2; (15)

the height of the center of gravity of the part within the sleeve equals −cos 𝛼 (𝓁 − 𝜂)∕2, and its mass is 𝜌(𝓁 − 𝜂).

3. Equations of motion of a non-material finite element model

To numerically study the dynamics of a dancing rod, we discretize the deformation of the free segment by means of 𝐶1-continuous
finite elements in the spirit of Vetyukov (2012). The cubic Hermitian approximation provides the necessary degree of inter-element
continuity and a rapid convergence rate, which is also beneficial in view of the inextensibility constraint.

We divide the non-material domain 0 ≤ 𝜎 ≤ 1 into 𝑛 finite elements. Nodes 𝜎𝑖 = 𝑖∕𝑛 are not bound to specific material particles.
As opposed to the nodes, material particles travel across the finite element mesh. Components of the position vector 𝒙 and its
𝑖

4 
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derivative (𝜕𝜎𝒙)𝑖 constitute four scalar degrees of freedom of each node. The position of a point on an element between nodes 𝑖 and
𝑖 + 1 reads

𝒙element (𝜎) = 𝑆1(𝜎)𝒙𝑖 + 𝑆2(𝜎)(𝜕𝜎𝒙)𝑖 + 𝑆3(𝜎)𝒙𝑖+1 + 𝑆4(𝜎)(𝜕𝜎𝒙)𝑖+1 (16)

with 𝑆𝑖, 𝑖 = 1,… , 4, being the cubic shape functions guaranteeing 𝐶1 inter-element continuity, i.e., that the deformed centerline
remains smooth. The specific implementation relies on a referential element and a local coordinate, which allows us to use the same
shape functions for all elements. According to the boundary conditions Eq. (5), we demand

𝑥0 = 0, 𝑦0 = 0, (𝜕𝜎𝑦)0 = 0. (17)

The remaining 4(𝑛 + 1) − 3 + 1 = 4𝑛 + 2 time-dependent generalized coordinates, which uniquely describe the configuration of the
rod, are assembled into a column matrix

q =
[

(𝜕𝜎𝑥)0, 𝑥1, 𝑦1, (𝜕𝜎𝑥)1, (𝜕𝜎𝑦)1,… , 𝑥𝑛, 𝑦𝑛, (𝜕𝜎𝑥)𝑛, (𝜕𝜎𝑦)𝑛, 𝜂
]𝑇 . (18)

Note that the length of the free segment 𝜂 belongs to the solution-dependent variables along with the nodal unknowns.
The approximation is able to accurately satisfy the inextensibility constraint with a relatively small number of elements:

numerical experiments discussed below demonstrate that even for 𝑛 = 8 the values of 𝜀 are very small. While we expect 𝜀 → 0
for 𝑛 → ∞ and 𝑏 → ∞, too high values for the penalty stiffness 𝑏 render the equations of motion ill-conditioned such that numerical
solutions fail. Moreover, when penalizing 𝜀, we introduce high frequency longitudinal vibration modes, which persist in the solution
as the system is conservative. We gain numerical efficiency by letting these vibrations to quickly damp out using a dissipation
function

𝑅 = ∫

1

0

1
2
𝛿𝜀̇2𝜂 d𝜎 (19)

with the damping parameter 𝛿. For small 𝜀, the energy dissipation is low and the effect of the dissipation function on the transverse
ending oscillations is negligible. Choosing an appropriate small value of 𝛿, we greatly reduce axial oscillations in the dynamic

process and allow larger time steps in the adaptive time integration routine, thus accelerating the solver and reducing the memory
consumption.2

The contributions of each finite element to integrals in Eqs. (8), (12), (15), (19) are computed using the 3-point Gaussian
quadrature rule, which matches the approximation order. Assembling the contributions of all 𝑛 finite elements, we obtain symbolic
expressions for 𝑈 (q), 𝑇 (q, q̇), 𝑊 (q) and 𝑅(q, q̇), which finally results into 4𝑛 + 2 Lagrangian equations of motion

d
d𝑡

(

𝜕𝑇
𝜕q̇

)

− 𝜕𝑇
𝜕q

= − 𝜕𝑈
𝜕q

− 𝜕𝑊
𝜕q

− 𝜕𝑅
𝜕q̇

(20)

written for nodal unknowns and 𝜂.

4. Results of finite element simulations

The following numerical example demonstrates the application of the numerical model and is meant to show that the rod’s
dynamic behavior qualitatively depends on the slenderness ratio 𝓁∕ℎ. For this purpose, we first consider a ‘‘thin’’ rod with a
slenderness 𝓁∕ℎ = 2000; subsequently, the slenderness of the rod is reduced to 𝓁∕ℎ = 500. To contrast the first case, such rod
is referred to as ‘‘thick’’ in what follows. This naming convention is justified by the observation that the dynamics of the thin rod
is highly irregular and the transient process eventually ends up in a full ejection of the rod from the sleeve. The transient behavior
of the thick rod is more regular due to the different time scales of the axial motion and transverse vibrations, which makes it also
accessible to the analytical approach by means of the methods of nonlinear dynamics as demonstrated further in Section 6.

4.1. Thin and flexible rod

We begin simulations by considering a very flexible steel rod with a small thickness ℎ: half a millimeter thickness over one meter
length implies that the inertia dominates over the elastic resistance. The initially straight rod is inserted by 30% of its length into
the sleeve inclined by 45◦:

𝓁 = 1, ℎ = 0.5 ⋅ 10−3, 𝐸 = 2.1 ⋅ 1011, 𝑎 = 𝐸ℎ4∕12, 𝑏 = 𝐸ℎ2,
𝜌 = 7800ℎ2, 𝛼 = 𝜋∕4, 𝛿 = 10, 𝜂(0) = 0.7𝓁,

(21)

SI base units are used throughout the paper. The penalty stiffness 𝑏 is chosen equal to the physical tension stiffness of the rod, as
the considered slenderness ratio clearly guarantees negligible tensile strain in the absence of a particularly high axial loading. The
chosen value of 𝛿 is small enough to not visibly affect the solution and is sufficiently large to increase the speed of time integration
considerably.

2 Wolfram Mathematica framework was applied for the symbolic derivation of equations of motion and their integration in time, see https://www.wolfram.

om/mathematica/. The Wolfram Mathematica notebook with the simulation code is provided online as supplementary material to the present manuscript.
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Fig. 2. Time histories of the length of the free part 𝜂 and transverse tip deflection 𝑦𝑛 for a thin rod, computed with different number of finite elements 𝑛; 𝜂 = 1
corresponds to the full ejection.

Table 1
Maximum axial strain in dependence on the number of finite elements.
𝑛 4 8 16 32

max 𝜀 2.8 ⋅ 10−4 1.0 ⋅ 10−4 2.3 ⋅ 10−5 6 ⋅ 10−6

The computed time histories of the configurational parameter 𝜂(𝑡) and the transverse tip deflection 𝑦𝑛(𝑡) are depicted in Fig. 2 for
our different levels of finite element discretization. Despite highly irregular solutions, mesh convergence can be observed: solutions
ith 16 and 32 finite elements remain very close until 𝑡 ≈ 2, while the solution with just 4 finite elements ‘‘goes its own way’’
lready at 𝑡 ≈ 0.5. In three out of four time histories, the dynamic process ends in full ejection 𝜂 = 1 with subsequent free flying
f the rod. Actually, the computation for 𝑛 = 16 also ends in the full ejection, but at a later time 𝑡 = 6.27. At the time instants of
ull ejection, deflections 𝑦𝑛 are large and the free segment is strongly bent: as the energy is conserved, there is no elevation of the
enter of mass of the rod beyond the initial state — the rod slides out with the help of its high flexibility. A better impression of
he dynamic process is conveyed by the animation, provided in the supplementary material. It would require an extensive series of
umerical experiments to estimate the minimum initial length of the free segment 𝜂(0), at which full ejection is still possible.

For the computed dynamic solutions, we evaluate how the maximum axial strain 𝜀 in the entire model depends on the
iscretization level. Data provided in Table 1 shows that the strain is indeed quickly getting negligible as the mesh is refined.

We conclude the discussion of the general validity of the developed simulation tool by mentioning that we also applied it to solve
slightly modified problem suggested by Han and Bauchau (2023): the sleeve is vertically aligned with the gravity and vibrations are
xcited by a transversely acting force at the tip of the rod. The obtained time histories of the tip deflections and velocity components
ere visually indistinguishable from the results in Han and Bauchau (2023). The latter result was also supported by a comparison

o a full contact simulation using Abaqus, which indirectly validates present simulations.

.2. Thick rod

Now we address a more realistic case of a less flexible rod with two millimeters thickness: ℎ = 2 ⋅ 10−3, all other parameters

emain the same as in Eq. (21). Simulation results, presented in Fig. 3, allow us to make the following observations.

6 
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Fig. 3. Time histories of the length of the free part 𝜂 and transverse tip deflection 𝑦𝑛 for a thick rod, computed with different number of finite elements 𝑛.

• The process gets quasi-periodic: the rod moves up and down with periodicity clearly visible in 𝜂(𝑡).
• The amplitude of transverse vibrations 𝑦𝑛 gets generally small compared to a characteristic scale of the axial motion.
• Two time scales determine the solution: 𝜂(𝑡) changes slowly in time, while the transverse vibrations are fast.
• The amplitude and the period of transverse oscillations become much smaller when the free part of the rod gets shorter, i.e. at

small 𝜂(𝑡). The increase in the vibration frequency quite is dramatic: the period of oscillations changes by the factor of 100 or
more.

• Solutions with 4 and 8 finite elements are indistinguishable in terms of the axial motion 𝜂(𝑡); the transverse oscillations
demonstrate minor phase shift, which is not crucial for the overall dynamics.

uring the motion, the rod periodically reaches the highest position 𝜂max, which is very close to 𝜂(0), and the lowest position 𝜂min.
his observation raises the natural question, whether it is possible to determine the dynamics of the axial motion 𝜂(𝑡) and the
aximum injection depth max(𝓁 − 𝜂) = 𝓁 − 𝜂min semi-analytically, preferably in closed form. The positive answer will be given in

ection 6.

.3. Configurational force

We conclude the discussion of finite element solutions for a thick rod by presenting the time history of the 𝑥 component of the
cceleration of the center of mass of the rod in Fig. 4. The current coordinate of the center of mass 𝑥c.o.m. is computed analogously to

in Eq. (15) by setting 𝜌𝑔 = 1∕𝓁 and 𝛼 = 0, and the acceleration 𝑥̈c.o.m. follows after double numerical differentiation with respect
o time. Besides the three narrow zones with small 𝜂 and high frequency oscillations, the acceleration varies slightly around the value
𝑔 cos 𝛼 ≈ −6.93, which would correspond to the free falling of a rigid rod into the channel. The peaks reflect the rapid acceleration
f the rod upwards because of the configurational force dominating over gravity when 𝜂 is getting small. Second Newton’s law
llows computing the acceleration according to the formula

𝜌𝓁𝑥̈c.o.m. = −𝜌𝑔𝓁 cos 𝛼 +𝑁,

𝑁 = 1𝑎𝜅2|
| +

(22)

2 |

𝜎=0
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Fig. 4. Time history of the axial component of the acceleration of the center of mass of the rod for the model with 𝑛 = 4 finite elements, plotted for the entire
time domain and in the first time window of rapid acceleration. The reference acceleration value −𝑔 cos 𝛼 is depicted red..

with the configurational force 𝑁 being equal to the strain energy density at the tip of the sleeve (Bigoni et al., 2022; Han and
Bauchau, 2023); all other contact forces act in transverse direction. The plot of Eq. (22)1 over time is visually indistinguishable
from Fig. 4, which substantiates the consistency of the model.

5. Simplified two degree of freedom model

5.1. Basic assumptions and approximations

In this section, we develop and analyze a semi-analytical model based on two assumptions, the validity of which is supported
by finite element analysis of the dynamics of the thicker rod.

• The overall bending deformation remains small, thus the strain energy of the free segment may be computed according to the
geometrically linear beam theory.

• The first vibration mode dominates the solution.

This justifies the Ritz approximation for the deformed centerline of the free segment in terms of just two generalized coordinates:

𝒙(𝜎, 𝑡) = 𝜂(𝑡)𝜎𝒆𝑥 + 𝛾(𝑡)𝑤(𝜎)𝒆𝑦. (23)

Here, the length of the free segment 𝜂(𝑡) determines the axial motion, while the second generalized coordinate 𝛾(𝑡) is the magnitude
of the bending deformation. The shape function 𝑤(𝜎) needs to be close to the first vibration mode. One possibility is to use the
deformed shape of a cantilever under distributed load:

𝜕4𝜎𝑤 = const, 𝑤(0) = 𝜕𝜎𝑤(0) = 0, 𝜕2𝜎𝑤(1) = 𝜕3𝜎𝑤(1) = 0 ⇒ 𝑤 = 𝑤static =
1
3 (𝜎

4 − 4𝜎3 + 6𝜎2). (24)

This static shape function is normalized by its value at the end: 𝑤(1) = 1, and is close to the exact vibration mode 𝑤dynamic(𝜎)
following from the eigenvalue problem

𝜕4𝑤 = 𝜆4𝑤, 𝑤(0) = 𝜕 𝑤(0) = 0, 𝜕2𝑤(1) = 𝜕3𝑤(1) = 0 (25)
𝜎 𝜎 𝜎 𝜎
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with the first eigenvalue 𝜆 ≈ 1.8751; once again 𝑤dynamic(1) = 1. Both shape functions are used for comparison in the simulations,
hile the derivations below are presented only for the static one 𝑤 = 𝑤static for the sake of simplicity.

.2. Energy expressions and equations of motion

The energy expressions, discussed in Section 2.3, may now be computed analytically. The axial strain vanishes because of the
eometric linearity, and the bending strain simplifies to

𝜅 = 𝛾 𝜕2𝜎𝑤∕𝜂2. (26)

he strain energy becomes

𝑈 = 1
2
𝑎𝜂 ∫

1

0
𝜅2 d𝜎 =

𝑎𝛾2

2𝜂3 ∫

1

0

1
9
(12𝜎2 − 24𝜎 + 12)2 d𝜎 =

8𝑎𝛾2

5𝜂3
. (27)

he material velocity of a particle Eq. (13) follows as

𝒙̇ = 𝜂̇𝒆𝑥 +
(

𝛾̇𝑤 + 1 − 𝜎
𝜂

𝛾𝜂̇ 𝜕𝜎𝑤
)

𝒆𝑦, (28)

nd, after integration and substitution 𝑤 = 𝑤static, the kinetic energy Eq. (12) is

𝑇 =
𝜌
810

(

104𝛾̇(𝜂𝛾)̇+
5(16𝛾2 + 81𝓁𝜂)𝜂̇2

𝜂

)

. (29)

After dropping the constant term, the gravity potential Eq. (15) becomes

𝑊 = 𝜌𝑔𝓁𝜂 cos 𝛼 + 2
5
𝜌𝑔𝜂𝛾 sin 𝛼. (30)

We omit the dissipation function: there is no axial strain any more. The Lagrange equations of motion of the second kind Eq. (20)
assume a highly nonlinear form

52𝜌𝜂4𝛾𝛾̈ + 5𝜌𝜂3(16𝛾2 + 81𝓁𝜂)𝜂̈ + 2𝜌𝛾𝜂3(81𝑔𝜂 sin 𝛼 + 80𝛾̇ 𝜂̇) − 8𝛾2(243𝑎 + 5𝜌𝜂2𝜂̇2) + 405𝜌𝑔𝓁𝜂4 cos 𝛼 = 0,

52𝜌𝜂4𝛾̈ + 26𝜌𝛾𝜂3𝜂̈ + 𝜌𝜂3(81𝑔𝜂 sin 𝛼 + 52𝛾̇ 𝜂̇) + 8𝛾(81𝑎 − 5𝜌𝜂2𝜂̇2) = 0.
(31)

he structure of the equations remains the same with the dynamic shape function 𝑤 = 𝑤dynamic. The numerical coefficients, though,
are different.

5.3. Static equilibrium and configurational force

Prior to integrating the two degrees of freedom equations of motion over time, we investigate static equilibria. Equating the
generalized force for 𝛾 to zero, we find

𝑄𝛾 = −
𝜕(𝑈 +𝑊 )

𝜕𝛾
= 0 ⇒ 𝛾 = −

𝜌𝑔𝜂4 sin 𝛼
8𝑎

. (32)

Now, we substitute this solution in the generalized force for 𝜂:

𝑄𝜂 = −
𝜕(𝑈 +𝑊 )

𝜕𝜂
= −𝜌𝑔𝓁 cos 𝛼 +𝑁, 𝑁 =

𝜌2𝑔2𝜂4 sin2 𝛼
8𝑎

. (33)

The 𝑥 component of the gravity and the configurational force 𝑁 contribute to 𝑄𝜂 , see the first equality in Eq. (22) for comparison.
The static equilibrium is possible when the equation 𝑄𝜂 = 0 has a solution for 𝜂 smaller than 𝓁. Interestingly, the determinant of
the matrix of second derivatives of 𝑈 +𝑊 with respect to 𝜂 and 𝛾 at static equilibrium equals −8𝜌2𝑔2 sin2 𝛼 and is always negative,
which implies instability.

Substituting 𝛾 from Eq. (32) into the expression for the curvature, Eq. (26), we observe that the second equality in Eq. (22)
is satisfied identically: 𝑁 equals the strain energy density of the rod at the tip of the sleeve. While seeming rather natural, this
property of the model is a consequence of the specific choice of the shape function 𝑤static(𝜎), which exactly reproduces small static
deformations under gravitational loading. Thus, choosing 𝑤 = 𝑤dynamic and repeating the computations, we arrive at 𝑁 being greater
than 𝑎𝜅2∕2|𝜎=0+ exactly by the factor 1.25. Despite the close proximity of the two shape functions, the solution for the equilibrium
length of the free part then differs by a factor 1.251∕4 ≈ 1.057 from the exact solution.

5.4. Time integration of the equations of motion

Results of time integration of equations of motion Eq. (31) for the thick rod (parameter set as in Eq. (21) but with ℎ = 2 ⋅ 10−3,
𝛾(0) = 0, 𝛾̇(0) = 0) are presented in Fig. 5 in comparison to the finite element solution with the coarse mesh 𝑛 = 4. All solutions
match well in terms of the axial motion 𝜂(𝑡). The transverse vibration 𝛾(𝑡) corresponds to 𝑦𝑛(𝑡), although the phase difference is
quickly getting accumulated because of the nonlinear interaction with higher vibrations modes, which are present in the solution
to a small extent due to the initial conditions. The vibration amplitude and frequency as well as the axial motion are accurately

captured by the simplified model. Models with the static and with the dynamic shape function remain at the same level of accuracy.
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Fig. 5. Time histories of the length of the free part 𝜂 and the transverse tip deflection 𝛾 for the thick rod, computed using the coarse finite element model and
using the two degrees of freedom model with static and dynamic shape functions.

Fig. 6. Time histories of the configurational force for the two degrees of freedom simulation of the thick rod with 𝑤 = 𝑤static, obtained using the Newton’s
second law Eq. (22)1 and according to the constitutive relation Eq. (22)2.

he time integration of the two degrees of freedom model is accomplished by Wolfram Mathematica ca. 1000 times quicker than
hat for the finite element model with 4 elements.

Similar to Section 4.3, we conclude the numerical investigation of the two degrees of freedom model by evaluating the
onfigurational force in two ways according to the two expressions in Eq. (22). The respective time histories of 𝑁 are depicted

in Fig. 6 for a short time interval around the instant of maximum injection. The curve denoted as ‘‘second Newton’s law’’ features
the dynamic equation (22)1 with 𝜂̈ substituted instead of 𝑥̈c.o.m.. The other curve, ‘‘constitutive relation’’, is obtained by computing 𝑁
using the curvature at the tip of the sleeve 𝜅|𝜎=0+ = 4𝛾∕𝜂2 according to Eq. (22)2. The two time histories exactly scale by the factor
1.25. The reason is again the choice of the shape function: switching to 𝑤 , we would have obtained visually indistinguishable
dynamic
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plots without any correction factor — and very close to the ‘‘second Newton’s law’’ curve in Fig. 6. Clearly, one of the shape functions
is more appropriate for the static analysis as in Section 5.3, while the other one fits the dynamic analysis. Interestingly, even the
relative errors in both cases are identical. This inconsistency in the computation of the configurational force has, however, little
impact on the simulated dynamics of the system itself.

6. Analytical investigation of the two degrees of freedom model

As mentioned previously, the two degrees of freedom of the simplified model behave differently from each other. On the one
and, 𝜂(𝑡) changes slowly, and the time scale of the axial motion is determined by the free falling of the rod into the inclined sleeve

under gravity. On the other hand, 𝛾(𝑡) is a quick vibration process, whose small amplitude and high frequency are determined by
the actual length of the free segment. This is a good starting point for treating the nonlinear problem analytically with the following
aims:

• To estimate how the instantaneous mean value, vibration amplitude, and frequency of the transverse vibrations 𝛾(𝑡) depend
on 𝜂(𝑡).

• To obtain a closed-form estimate for the minimum value of the length of the free segment 𝜂min = min 𝜂(𝑡) and the maximum
injection depth 𝓁 − 𝜂min during the quasi-periodic process.

• To derive a single differential equation for the axial motion 𝜂(𝑡), i.e., to eliminate 𝛾.

e will elaborate on these results using the theory of adiabatic invariants, established in the field of nonlinear dynamics (Arnol’d,
963); see also Zelenyi et al. (2013) for the application of such methods to physics of charged particles. Although normalized
ariables are often used in nonlinear dynamics, we found it beneficial to keep the description in terms of physical dimensional
uantities to retain the connection to the numerical experiments, presented above. The analytical derivations are performed under
he assumption of a high bending stiffness 𝑎 and a small bending deformation 𝛾. The accuracy of these approximate results will
hus depend on the thickness of the rod, which has a direct influence on the ratio of the time scales and the amplitudes of the two
inds of motion. We proceed with the description of the system in terms of the Hamilton function, which is the starting point of
he analysis.

.1. Generalized momenta and series expansion of the Hamiltonian

The dynamics of the conservative system at hand is fully determined by the total potential 𝑉 (𝜂, 𝛾) = 𝑈 +𝑊 , Eqs. (27), (30), and
y the kinetic energy 𝑇 , Eq. (29), which has a quadratic form

𝑇 = 1
2
q̇𝑇M(q)q̇ (34)

with q = [𝜂, 𝛾]𝑇 and the mass matrix

M = 𝜌
⎡

⎢

⎢

⎣

𝓁 + 16𝛾2
81𝜂

52
405 𝛾

52
405 𝛾

104
405 𝜂

⎤

⎥

⎥

⎦

. (35)

The conjugate generalized momenta follow as

p =
[

𝑝𝜂
𝑝𝛾

]

= 𝜕𝑇
𝜕q̇

= Mq̇; q̇ = M−1p. (36)

he Hamilton function is the Legendre transformation of the Lagrange function 𝑇 − 𝑉 with respect to q̇ and results into

𝐻(q, p) = 1
2
p𝑇M−1(q)p + 𝑉 (q). (37)

The Hamiltonian 𝐻 numerically equals the total energy 𝑇 + 𝑉 and thus represents the first integral of the equations of motion.
At high bending stiffness, both 𝛾 and 𝑝𝛾 will be asymptotically smaller than 𝜂 and 𝑝𝜂 . Considering the asymptotic procedure

as a tool for obtaining a closed-form approximate solution rather than as the principal aim of the investigation, we avoid non-
dimensionalizing the equations and extracting a dimensionless parameter combination. Instead, we introduce a formal small
parameter 𝜆 by replacing 𝛾 → 𝜆𝛾 and 𝑝𝛾 → 𝜆𝑝𝛾 in Eq. (37) and write the Hamiltonian in form of series expansion

𝐻 = 𝐻0 + 𝜆𝐻1 + 𝜆2𝐻2 + 𝑂(𝜆3) (38)

with the contributions of different orders of magnitude:

𝐻0 =
𝑝2𝜂
2𝜌𝓁

+ 𝜌𝑔𝓁𝜂 cos 𝛼,

𝐻1 =
2
5
𝜌𝑔𝜂𝛾 sin 𝛼,

𝐻 = 1Γ𝑇AΓ.

(39)
2 2
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Fig. 7. Elliptic trajectory in the phase space of fast variables; the area of the ellipse remains approximately constant during the dynamic process.

The second-order term is a quadratic form of coordinates in the phase space of fast variables Γ = [𝛾, 𝑝𝛾 ]𝑇 with a symmetric matrix

A =
⎡

⎢

⎢

⎣

16𝑎
5𝜂3 −

2𝑝2𝜂
15𝜌𝓁2𝜂 − 𝑝𝜂

2𝜌𝓁𝜂

− 𝑝𝜂
2𝜌𝓁𝜂

405
104𝜌𝜂

⎤

⎥

⎥

⎦

. (40)

In the following, we set 𝜆 = 1 implying that the respective terms in the series expansion Eq. (38) keep their orders of magnitude.

.2. Adiabatic invariant approach

Keeping just the principal term 𝐻0 in the series expansion Eq. (38), we clearly arrive at a rigid rod falling into a sleeve. The
interesting effects are contained in 𝐻1 and 𝐻2. The prerequisites for the treatment by means of the theory of adiabatic invariants
are satisfied, see Arnol’d (1963), chapter 2, section 3: we consider 𝜂(𝑡) and 𝑝𝜂(𝑡) as slowly varying parameters in order to determine
he properties of the fast dynamic process of transverse vibrations. For fixed 𝜂, 𝑝𝜂 , the phase trajectory Γ(𝑡) is an ellipse in the first
pproximation, i.e., a level curve 𝐻 = const, see the illustration in Fig. 7. The basic idea of the approach is that, although the shape
f the ellipse changes in the process of the slow motion 𝜂(𝑡), 𝑝𝜂(𝑡), its area remains approximately constant retaining its initial value.
e denote this area by 2𝜋𝐼 , in which 𝐼 is called adiabatic invariant.
The center of the elliptic trajectory Γ𝑒 = [𝛾𝑒, 𝑝𝛾𝑒]𝑇 minimizes the Hamiltonian and follows from a linear system of equations:

Γ𝑒 = argmin𝐻 ⇒
𝜕(𝐻1+𝐻2)

𝜕Γ
|

|

|Γ=Γ𝑒
= AΓ𝑒 +

[

2∕5𝜌𝑔𝜂 sin 𝛼
0

]

= 0 ⇒

Γ𝑒 = −
𝑔 sin 𝛼

𝛥

[

81∕52
𝑝𝜂∕(5𝓁)

]

, 𝛥 = det A =
2(81𝑎𝜌𝓁2 − 5𝑝2𝜂𝜂

2)

13𝜌2𝓁2𝜂4
,

(41)

where we introduced the determinant 𝛥 of the matrix A. The ellipse itself is determined by the constant value of a quadratic form

𝐹 = 1
2
(Γ − Γ𝑒)𝑇A(Γ − Γ𝑒) = ℎ0 (42)

with the energy level of transverse oscillations

ℎ0 = 𝐻|𝑡=0 −𝐻|Γ=Γ𝑒 , 𝐻|𝑡=0 = 𝐻0|𝑝𝜂=0,𝜂=𝜂0 = 𝜌𝑔𝓁𝜂0 cos 𝛼. (43)

The specific expression for ℎ0 is complicated and is irrelevant for the final result. Now, we are in the position to determine the
instantaneous amplitude of transverse vibrations 𝛾̃ from the additional condition that, at maximum transverse deflection, the tangent
to the elliptical trajectory Eq. (42) is parallel to the coordinate axis 𝑝𝛾 , see Fig. 7:

𝛾̃ = max 𝛾 − 𝛾𝑒,
𝜕𝛾
𝜕𝑝𝛾

|

|

|

|

|𝛾=𝛾𝑒+𝛾̃ , 𝑝𝛾=𝑝𝛾𝑒+𝑝̃𝛾

= 0 (44)

n which 𝑝̃𝛾 is the vertical distance between the touching point of the vertical tangent and the center of the ellipse. Vertical tangent
eans that the vertical component of the gradient of the quadratic form at the left hand side of Eq. (42) vanishes:

𝜕𝐹
𝜕𝑝𝛾

= 0 ⇒ 𝐴12𝛾̃ + 𝐴22𝑝̃𝛾 = 0 ⇒ 𝑝̃𝛾 = −𝐴12∕𝐴22. (45)

ubstituting this expression into Eq. (42), we find the vibration amplitude:

(𝐴 − 2𝐴2 ∕𝐴 + 𝐴 (−𝐴 ∕𝐴 )2)𝛾̃2 = 2ℎ ⇒ 𝛾̃ =
√

2𝐴 ℎ ∕𝛥. (46)
11 12 22 22 12 22 0 22 0
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Numerical experiments show that the obtained approximation indeed corresponds well to the exact process 𝛾(𝑡): plotting 𝛾𝑒 ± 𝛾̃ in
ig. 9, we obtain upper and lower envelopes, accurately outlining the extremes. The obtained result, however, is of little practical
se because of the complexity of the expression of ℎ0. Therefore, we make a further step and compute the area of the ellipse which,
n the principal coordinates 𝑥1, 𝑥2, fulfills the equation

𝜎1𝑥
2
1 + 𝜎2𝑥

2
2 = 2ℎ0; (47)

here, 𝜎1,2 are the eigenvalues of the matrix A. Clearly, the semi-axes of the ellipse are equal to
√

2ℎ0∕𝜎1 and
√

2ℎ0∕𝜎2, and the
known formula for the area of an ellipse results into

2𝜋𝐼 = 𝜋
√

2ℎ0∕𝜎1
√

2ℎ0∕𝜎2 = 2𝜋ℎ0∕
√

𝛥 (48)

because 𝜎1𝜎2 = 𝛥. Substituting ℎ0 = 𝐼
√

𝛥 in Eq. (46), we find the amplitude as

𝛾̃ =
√

2𝐴22𝐼∕
√

𝛥 (49)

with 𝐼 being the adiabatic invariant, whose value is approximately known from the initial conditions:

𝐼 ≈ 𝐼0 = 𝐼|𝑡=0 = ℎ0∕
√

𝛥||
|𝜂=𝜂0 , 𝑝𝜂=0

=

√

13𝜌5𝑔2𝜂70 sin
2 𝛼

360
√

2𝑎3
. (50)

We substitute this approximation in Eq. (49) and use a further simplification that is fully supported by the results of numerical
experiments: in the numerator of the expression for the determinant 𝛥 in Eq. (41)2, we neglect the term 5𝑝2𝜂𝜂

2 in comparison to
81𝑎𝜌𝓁2, because the bending stiffness is high and the order of smallness of the slow dynamic term remains the same. These two
assumptions produce a simple approximation of the vibration amplitude in dependence on the length of the free segment:

𝛾̃ ≈ 𝛾̂ =
𝜌𝑔
8𝑎

√

𝜂70𝜂 sin 𝛼. (51)

Using the simplified expression for 𝛥 in Eq. (41)2, we find another approximation for the instantaneous mean deflection of the end
of the rod, which corresponds to the static solution for a beam under distributed weight:

𝛾𝑒 ≈ 𝛾̂𝑒 = −
𝜌𝑔𝜂4 sin 𝛼

8𝑎
. (52)

Now that we know the envelopes for 𝛾(𝑡), we seek to find an estimate for the time-varying vibration frequency. The simplest way
s just to use the second equation of motion Eq. (31)2 (as this equation corresponds to the generalized coordinate 𝛾). With 𝜂̇ = 0

and 𝜂̈ = 0 the differential equation simplifies to

52𝜌𝜂4𝛾̈ + 648𝑎𝛾 + 81𝜌𝑔𝜂4 sin 𝛼 = 0. (53)

The static solution corresponds to the already obtained expression Eq. (52), and the coefficients at 𝛾 and 𝛾̈ produce an estimate for
he instantaneous frequency

𝜔 =
√

2𝑎
13𝜌

9
𝜂2

. (54)

This explains the drastic growth of the vibration frequency when the free segment is getting shorter. As we will see in the following,
the approximation

𝛾(𝑡) ≈ 𝛾̂𝑒 + 𝛾̂ cos 𝜏, 𝜏̇ = 𝜔, 𝜏(0) = 0 (55)

with the time integration of the phase 𝜏(𝑡) provides an accurate match with results obtained by numerical integration. In summary,
we emphasize that, although estimates for 𝛾̂𝑒 and 𝜔 are accessible by simple methods, the adiabatic invariant approach is required
to obtain the amplitude 𝛾̂.

6.3. Maximum injection depth and dynamics of slow axial motion

Now that we established a relation between the transverse vibrations and the axial motion, we are in the position to analytically
investigate the properties of the latter. The quasi-periodicity of the slow axial motion is the known theoretical result (Arnol’d, 1963).
The balance of energy provides the simplest option to conclude on the maximum injection depth. The total mechanical energy of
the conservative system remains at the initial value, computed above in Eq. (43) as 𝐻|𝑡=0. In accordance with Eqs. (51), (52), in
the state of maximum injection, we have

𝜂 = 𝜂min, 𝜂̇ = 0, 𝛾̃ =
𝜌𝑔
8𝑎

√

𝜂70𝜂min sin 𝛼, 𝛾𝑒 = 0. (56)

ndeed, we observe 𝜂min ≪ 𝜂0 in numerical simulations, such that the fourth power of 𝜂min is very small in Eq. (52): the action

f gravity on the transverse bending becomes negligible. We approximate the total mechanical energy at the instant of maximum

13 
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injection as the gravity potential related to the axial motion plus the amplitude of the strain energy Eq. (27) due to the transverse
vibration:

𝐸max.injection = 𝑊 |𝜂=𝜂min ,𝛾=0 + 𝑈 |𝜂=𝜂min ,𝛾=𝛾̃ = 𝜌𝑔𝓁𝜂min cos 𝛼 +
𝜌2𝑔2𝜂70 sin

2 𝛼

40𝑎𝜂2min

. (57)

The condition 𝐸max.injection = 𝐻|𝑡=0 provides a cubic equation

40𝑎𝓁(𝜂0 − 𝜂min)𝜂2min cos 𝛼 − 𝜌𝑔𝜂70 sin
2 𝛼 = 0. (58)

Among the three roots of the equation, one approximately equals 𝜂0 (because the initial state also satisfies conditions Eq. (56) only
approximately), another is negative, and the third root is the actual minimum length of the free part. If we neglect 𝜂min in comparison
to 𝜂0 in the parentheses of the first term of the equation, a simple analytical expression follows:

𝜂min =

√

𝜌𝑔𝜂30 sin 𝛼

2
√

10𝑎𝓁 cos 𝛼
. (59)

We now aim at deriving a single differential equation for the slow axial motion 𝜂(𝑡), and we achieve this goal using a
traightforward averaging procedure. Using computer algebra, we perform the following mathematical transformations:

1. We substitute the approximation for 𝛾(𝑡) Eq. (55) into the first equation of motion in Eq. (31)1, taking into account the known
estimate for the time derivative of the phase 𝜏(𝑡).

2. All terms containing sin 𝜏, cos 𝜏 or their products/powers are averaged over the period 0 ≤ 𝜏 < 2𝜋, thus keeping only 𝜂 and
its time derivatives in the equation.

3. We simplify the equation, dividing it by the large bending stiffness 𝑎 and neglecting the terms of order 𝑎−1 and smaller.

he obtained equation for the slow dynamics reads

40𝑎𝓁(𝜂̈ + 𝑔 cos 𝛼) − 𝜌𝑔2(2𝜂70𝜂
−3 + 5𝜂4) sin2 𝛼 = 0. (60)

lternatively, we may use the apparatus of analytical mechanics to reach this goal. Exactly the same equation of motion results
fter the following steps:

1. The ‘‘slow’’ Hamiltonian is computed as 𝐻slow = 𝐻|Γ=Γ𝑒 + 𝐼0
√

𝛥, in which we used an approximate expression for ℎ0, see
Eqs. (43) and (50).

2. We keep just the terms of orders 𝑎1 and 𝑎0 in 𝐻slow to simplify the expression.
3. System of equations 𝑝̇𝜂 = −𝜕𝐻slow∕𝜕𝜂, 𝜂̇ = 𝜕𝐻slow∕𝜕𝑝𝜂 is transformed to a single second-order differential equation by

excluding 𝑝𝜂 .

Besides the possibility of efficient time integration, Eq. (60) provides an alternative way to get the value of 𝜂min. Writing it as
𝜂̈ = 𝑓 (𝜂)∕2, multiplying by 2𝜂̇ and integrating over time we find

𝜂̇2 = ∫

𝜂

𝜂0
𝑓 (𝜂̃) d𝜂̃ ⇒ ∫

𝜂min

𝜂0
𝑓 (𝜂) d𝜂 (61)

ecause the velocity vanishes in the state of maximum injection. Evaluating the integral, we arrive at an equation for 𝜂min, which
lightly differs from Eq. (58): in the second term instead of 𝜂70 we now have 𝜂70 − 𝜂7min, which has practically no influence on the root
f the equation because of the smallness of 𝜂min.

Another practical result following from Eq. (60) is the acceleration and the average configurational force, reached in the state of
aximum injection. Substituting 𝜂 = 𝜂min in the form of Eq. (59), solving for 𝜂̈ and neglecting the small term of order 𝑎−3, we find an

xpression for 𝜂̈max. Substituting this expression in Newton’s second law, we compute the maximum of the average configurational
orce:

𝑁̄max = 𝜌𝓁𝜂̈max + 𝜌𝑔𝓁 cos 𝛼 =
4
√

10𝜌𝑔𝓁3𝑎 cos3 𝛼
𝜂20 sin 𝛼

. (62)

6.4. Numerical validation of the theoretical results

The theoretical findings of the previous subsection are compared against the results of the time integration as in Section 5.4. We
begin with validating the cornerstone of the analytical study, namely the invariance of the area of the ellipse in the phase space
of fast variables 2𝜋𝐼 according to Eq. (48) on the solutions of the equations of motion. In Fig. 8, we plot the ratio of the changing
diabatic invariant 𝐼 to its initial value Eq. (50), based on the numerically obtained time histories 𝜂(𝑡), 𝛾(𝑡). Although the value of
is not exactly conserved, it keeps oscillating in the vicinity of the initial value. Higher oscillations occur when the injection is

mall, as the time scale of the transverse vibration process is getting comparable to the time period of the axial motion. Moreover,
t growing rod thickness ℎ the oscillations are clearly getting smaller, which confirms the asymptotic accuracy of the adiabatic
nvariance for increasing bending stiffness 𝑎.
14 
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Fig. 8. Relative change of the area of the elliptic trajectory in the phase space of fast variables Eq. (48) in comparison to the initial value, based on Eq. (50).

Table 2
Minimum length of the free part 𝜂min after the initial injection in dependence on the rod thickness
ℎ: analytical approximation in comparison to the numerical results with different models.
Thickness Analyt. Eq. (59) Slow dyn. Eq. (60) 2 d.o.f. Eq. (31) F.e. 𝑛 = 4

1 ⋅ 10−3 0.095312 0.103227 0.132680 0.135763
2 ⋅ 10−3 0.047656 0.049434 0.055653 0.057314
4 ⋅ 10−3 0.023828 0.024252 0.024858 0.025512
8 ⋅ 10−3 0.011914 0.012018 0.012087 0.012372

Motivated by this result, we proceed to comparing the approximation of the transverse vibration process 𝛾(𝑡) to the results of the
ime integration in Fig. 9. We used the time history of 𝜂(𝑡) from the full system of equations of motion for the sake of evaluation of
qs. (52)–(55). The quality of the approximation is good for the thick rod and is getting even better at growing ℎ.

Finally, we proceed to the validation of the analytical results concerning the slow axial motion 𝜂(𝑡). In Table 2, we present the
alues of the minimum length of the free part 𝜂min in dependence on the rod thickness ℎ.

To validate simple analytical formula Eq. (59), we use results of time integration of the simplified equation of the slow dynamics
q. (60), of the equations of motion of the two degree of freedom system Eq. (31) as well as of the finite element model with 4
lements. Post-processing the numerical results, we seek the minimum of 𝜂(𝑡) after the initial phase of injection at 𝑡 ≈ 0.4. The
resented data confirms the increasing accuracy of the analytical approximation at growing bending stiffness. We also see that the
redictions, made from the single differential equation (60) match well the results of time integration of the full two degrees of
reedom model, which is additionally confirmed by the time histories of 𝜂(𝑡) in Fig. 10. We conclude the investigation by evaluating
he highest mean configurational force Eq. (62). Substituting the parameter values for the thick rod with ℎ = 2 ⋅ 10−3, we obtain
̄max = 6.35. This value corresponds well to the running average of the force, computed according to the constitutive relation
q. (22)2 in Fig. 6.

. Conclusions

The present investigation of the dynamics of a flexible rod sliding in an ideal frictionless sleeve in the field of gravity is
ased on methods ranging from a non-material finite element scheme to the analytical treatment in the framework of Hamiltonian
echanics and the adiabatic invariant approach. The finite element model is suitable for large oscillations, which is essential for

ery flexible rods. In this case, the motion becomes highly irregular, injections alternates with ejections, and even complete ejection
s possible. For less flexible rods, the semi-analytical two degrees of freedom model produces accurate results for small vibrations.
he subsequent analytical investigation provides closed-form estimates for characteristic values of the dynamic process such as the
aximum injection depth of the rod before the configurational force turns injection into ejection. Further studies of the problem at
and could focus on the influence of friction and the flexibility of the sleeve, which is necessary for practically relevant formulations
uch as concentric tube robots used in medicine.
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Fig. 9. Transverse vibrations 𝛾(𝑡) resulting from the integration of the equation of motion for two values of the rod thickness ℎ in comparison to the approximation
Eq. (55) as well as upper and lower envelopes 𝛾̂𝑒 ± 𝛾̂.

Fig. 10. Axial motion 𝜂(𝑡), computed according to the exact equations for the 2 d.o.f. model and the approximate equation for the slow dynamics Eq. (60) for
two values of the thickness of the rod.
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