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Abstract
We study the problem of reducing the variance of Monte Carlo estimators through
performing suitable changes of the sampling measure computed by feedforward neu-
ral networks. To this end, building on the concept of vector stochastic integration, we
characterise the Cameron–Martin spaces of a large class of Gaussian measures in-
duced by vector-valued continuous local martingales with deterministic covariation.
We prove that feedforward neural networks enjoy, up to an isometry, the universal ap-
proximation property in these topological spaces. We then prove that sampling mea-
sures generated by feedforward neural networks can approximate the optimal sam-
pling measure arbitrarily well. We conclude with a comprehensive numerical study
pricing path-dependent European options for asset price models that incorporate fac-
tors such as changing business activity, knock-out barriers, dynamic correlations and
high-dimensional baskets.
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1 Introduction

Monte Carlo methods are amongst the most essential tools for the numerical valuation
of financial derivatives. Classical asset pricing theory often calls for the computation
of expectations of the form

EP[F(X)] =
∫

�

F
(
X(ω)

)
P(dω),

where F is a payoff functional, X is an asset price process solving a stochastic differ-
ential equation (SDE) of the form dXt = a(X) dCt + b(X) dMt for t ∈ [0, T ] with
a finite time horizon T > 0 for some potentially path-dependent coefficients a, b, a
process C of locally finite variation, and a local martingale M , and P is a probabil-
ity measure on a measurable space (�,F). By averaging the payoffs over randomly
sampled trajectories of X, one can estimate the price in many cases where no analytic
solution for EP[F(X)] is available.

The variance of the Monte Carlo estimator is inversely proportional to the number
of trajectories simulated and proportional to the variance of the option payoff. The
square root of this variance is referred to as the standard error and, in principle, it can
be made as small as needed by simulating a sufficiently high number of trajectories.
However, given limitations on computational time, the error can still be too large
to be acceptable, especially for further calculations of option price derivatives (the
so-called Greeks) required for hedging and risk management.

The usage of variance reduction methods can drastically reduce this error. There
are many different methods to reduce the variance of Monte Carlo estimators, one
of which is importance sampling. This method is based on changing the sampling
measure from which the trajectories are generated from P to some equivalent measure
Ph, thereby overweighting important scenarios to increase the numerical efficiency of
the estimates. Due to Girsanov’s theorem, this corresponds to adding a drift h ∈ H

to the process M , where H denotes a prescribed space of functions or processes from
which the drift adjustment is chosen. One then writes

EP[F(X)] = EPh
[F(X)Z−1

h ],
where Zh denotes a Radon–Nikodým density of Ph with respect to P which also de-
pends on the time horizon T . Instead of simulating realisations of F(X) with respect
to P, one then simulates realisations of F(X)Z−1

h with respect to Ph and chooses
h ∈ H such that the variance of F(X)Z−1

h is minimised.
While this method usually requires a lot of specific knowledge about the model

at hand, it has the potential to drastically reduce the variance of the corresponding
Monte Carlo estimator. In other words, importance sampling is a powerful method
that involves the complex optimisation problem of choosing an appropriate sampling
measure which minimises the variance of the Monte Carlo estimators.

Neural networks provide an algorithmically generated class of functions which,
on the one hand, enjoy the universal approximation property in many different topo-
logical spaces, meaning that they are dense in these spaces, and, on the other hand,
can be trained in a numerically efficient way. Having recently entered the realm of
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mathematical finance, neural networks are successfully used e.g. for model calibra-
tion, hedging and pricing. This paper develops a method that uses feedforward neural
networks to perform importance sampling for complex stochastic models, which ap-
plies in particular to the valuation of path-dependent derivatives. By optimising over
drifts from a dense subspace H(D) ⊆ H generated by a set D of feedforward neural
networks, we obtain a tractable problem where the usage of feedforward neural net-
works can be theoretically justified, and where the optimisation can be carried out in
a numerically efficient way.

1.1 Outline of the paper and main results

In Sect. 2, we characterise tractable spaces H from which the drift adjustments
may be chosen, and study their analytic properties. Whenever M is a vector-valued
continuous local martingale with deterministic covariation, it induces a Gaussian
measure, to which one can assign a Hilbert space H , the Cameron–Martin
space. Due to the multivariate nature of our study, we recall in Lemma 2.10 some
concepts which originate from the theory of stochastic integration with respect to
vector-valued semimartingales. A detailed characterisation of the corresponding
Cameron–Martin space H that is induced by M is provided in Proposition 2.18,
where the general formulation allows us to specifically incorporate intricate and
in particular time-inhomogeneous covariance patterns for M into our models.
Theorem 2.24 then yields the essential approximation result that characterises dense
subspaces H(D) of H which are generated by prescribed sets of functions D in
an abstract and general setting, and in particular applies to sets D of feedforward
neural networks as a special case.

In Sect. 3, we focus our attention on feedforward neural networks, where we dis-
tinguish between neural networks of deep, narrow and shallow kind. Propositions 3.4
and 3.5 yield two approximation results which provide a theoretical justification for
considering sets D that consist of feedforward neural networks. Example 3.7 then
shows in a classical setting that the set H(D) which is generated by a set D of feed-
forward neural networks has an explicit and tractable characterisation. As a direct
consequence of Theorem 2.24, Sect. 3.1 then discusses a result which in particu-
lar implies that every smooth function can, up to an isometry, be approximated by
feedforward neural networks arbitrarily well with respect to Hölder-type topologies,
which are stronger than the topology of uniform convergence.

Section 4 contains a detailed study of the importance sampling problem, where we
aim to minimise the variance of F(X)Z−1

h with respect to Ph by approximating the
optimal drift h with a feedforward neural network. Theorem 4.6 proves that the func-
tional V : H → R+ which needs to be minimised is, under suitable generic assump-
tions, continuous and admitting a minimiser h∗ ∈ H , which can be approximated,
up to an isometry, arbitrarily well by feedforward neural networks. Here, we not
only prove convergence to the optimal drift h∗, but also show that the corresponding
Radon–Nikodým densities converge to Zh∗ . To this end, we prove that feedforward
neural networks induce equivalent probability measures whose densities with respect
to the original measure converge in Lp-spaces; see Lemma 4.5. Moreover, Sect. 4.1
contains a discussion of a classical importance sampling approach that utilises results
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from the theory of large deviations, where we show that feedforward neural networks
can be employed to solve the corresponding variational problem which appears in
this approach. Let us note that while the results from Sects. 2 and 3 are applied to
importance sampling in Sect. 4, they are also of independent interest.

Section 5 contains a comprehensive numerical study pricing path-dependent Eu-
ropean options for asset price models that incorporate factors such as changing busi-
ness activity, knock-out barriers, dynamic correlations and high-dimensional bas-
kets. To conclude, we summarise our findings and give an outlook on future work
in Sect. 6. The Appendix contains a brief glimpse at the theory of Gaussian measures
and collects the proofs of all results.

1.2 Related literature

The line of research which eventually led up to the present work originates from
Glasserman et al. [21]. The authors study the problem of pricing path-dependent op-
tions by using techniques from the theory of large deviations to perform a change
of sampling measure that reduces the standard error of the Monte Carlo estimator.
Moreover, they use stratified sampling in order to further improve their simulations.

The main motivation for this work was provided by Guasoni and Robertson [24].
As in [21], the authors employ methods from the theory of large deviations to obtain a
variational problem whose solution yields an asymptotically optimal drift adjustment.
The main difference to the present work is that we do not pass to a small noise limit.
However, as it turns out, our method also complements the method presented in [24];
see Sect. 4.1 for further details.

An extension of the methods used in [24] to the study of importance sampling
for stochastic volatility models has been provided in Robertson [50]. Note that our
method applies to these types of models as well; see Example 4.2 in Sect. 4 and
Sect. 5, where we provide simulation results for several stochastic volatility models.

Another interesting contribution is by dos Reis et al. [48] who study impor-
tance sampling for McKean–Vlasov SDEs. Similarly as in [24, 50], methods from
the theory of large deviations yield an asymptotically optimal drift adjustment, and
the authors discuss two different methods for the simulation of the solution to the
McKean–Vlasov SDE under a change of measure.

The idea to use methods from the theory of stochastic approximation for the pur-
pose of importance sampling has been studied extensively in Lemaire and Pagès [35].
This paper heavily influenced Sect. 4; especially the proof of Theorem 4.6 relies par-
tially on a straightforward extension of the proof of [35, Proposition 4]. Let us also
note that while the setting of [35, Sect. 3] could be extended to our setting below,
it might be of particular interest to understand how the algorithm proposed in [35,
Theorem 4] could be adapted to the setting of Sect. 4 below in order to yield conver-
gence of the stochastic gradient descent algorithm when training feedforward neural
networks.

Finally, one very original contribution that studies measure changes which are in-
duced by neural networks for the purpose of Monte Carlo simulations is Müller et
al. [44]. The authors also study importance sampling and apply their results to light-
transport simulations. The main difference to [44] is that our method applies to the



Importance sampling for option pricing with neural networks

pricing of financial derivatives in a mathematically more natural way by using meth-
ods from the theory of stochastic calculus. Here, we focus on neural networks that
are of feedforward type. For more details on the studied neural network architectures
and related literature, see Sect. 3.

Notation Unless stated otherwise, we endow R
d for each d ∈ N with the corre-

sponding Euclidean norm | · |; Id denotes the identity matrix in R
d×d , and we write

R+ = R+ ∪ {+∞}. Given two vectors x, y of the same dimension, x � y denotes
their Hadamard (i.e., coordinatewise) product and 〈x, y〉 their inner (scalar) product.
If � is a matrix, �� is its transpose. For x ∈ R

d+ and p > 0, we understand xp to
hold componentwise and write

√
x if p = 1/2. We also convene that inf∅ = ∞. For

each continuous linear operator A between normed spaces, ‖A‖op denotes its oper-
ator norm. If E1, E2 are two metric spaces and D is a subset of E1, we say that D

is dense in E2 up to an isometry if there exists an isometry J : E1 → E2 such that
J (D) is dense in E2. If H is a Hilbert space, the notation H ∗ ∼= H indicates that
we identify H ∗ with H via the isometric isomorphism given by the Fréchet–Riesz
representation theorem.

Given a topological space (S, T ), we denote by S∗ and S′ the topological and
algebraic dual spaces, respectively, and write BS for the Borel σ -algebra on S. For
F ∈ T , we denote by F ◦ and F the interior and closure of F , respectively. Whenever
ν is a Borel measure on S, we say that f : S → R

d is locally ν-essentially bounded
if (ν-)ess supx∈K |f (x)| < ∞ for each compact K ⊆ S. For an interval [0, T ], the
space C0([0, T ];Rd) consists of all Rd -valued continuous functions on [0, T ] that
vanish at the origin.

For a measurable space (S,S), we denote by L0(S;Rd) the space of Rd -valued
S-measurable functions on S. If μ is a measure on S and f ∈ L0(S) = L0(S;R), we
denote by f · μ the Lebesgue integral of f with respect to μ, provided it exists. For
p > 0, we further denote by Lp(μ) the space of equivalence classes of p-integrable
functions from L0(S). The law of a random variable Z is denoted by L(Z). If M is
an R

d -valued semimartingale and H ∈ L(M), we denote by H • M the stochastic
integral of H with respect to M . We denote by N (m,�) the normal distribution
with expected value m ∈ R

d and covariance matrix � ∈ R
d×d . Finally, we denote

for each p ≥ 1 by Hp the Banach space of continuous Lp-integrable martingales
M = (Mt)t∈[0,T ], where the dependency on the underlying filtered probability space
is implicit.

2 Universal approximation in Cameron–Martin space

In this section, we study a tractable space H whose elements will be used to adjust
the drift of M for the purpose of importance sampling in Sects. 4 and 5 below. More-
over, we identify dense linear subspaces of H and obtain an explicit characterisation
of the Cameron–Martin spaces of a large class of Gaussian measures, which is of
independent interest. For details about Gaussian measures, we refer to Appendix A.

Let (�,F ,F,P) with F = (Ft )t∈[0,T ] denote a filtered probability space such that
F is right-continuous and F0 contains all P-nullsets of F . As index set for the time
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parameter, we consider [0, T ] with a finite time horizon T > 0. Without loss of gen-
erality, we may assume that FT = F . We denote by λ the restriction of the Lebesgue–
Borel measure to [0, T ] and fix two dimensions d, n ∈ N. Let M = (Mt)t∈[0,T ] be
an R

d -valued continuous local martingale with M0 = 0. Unless stated otherwise, we
assume all stochastic processes to be F-adapted.

Let us start with a classical example that highlights the main concepts which are
of importance in this section, before extending the study to a more general setting.

Example 2.1 Let (E,H, γ ) denote the classical Wiener space; this means that we
take E = C0([0, T ];Rd), H = {h(t) = (1[0,t]fh) · λ, t ∈ [0, T ] : fh ∈ L2(λ;Rd)}
is the space of R

d -valued absolutely continuous functions on [0, T ] that admit a
square-integrable density with respect to λ, and γ is the classical Wiener measure on
E, which is the Borel probability measure on E induced by an R

d -valued standard
Brownian motion B = (Bt )t∈[0,T ].

One can show that with the inner product 〈g, h〉H = 〈fg, fh〉L2(λ;Rd ), the space
(H, 〈 · , · 〉H ) is a real separable Hilbert space continuously embedded into E as a
dense linear subspace. The operator J : L2(λ;Rd)→ H, fh �→ h( · ) = (1[0, · ]fh) · λ
is a linear isometry by construction and thus continuous. Whenever D is a dense
linear subspace of L2(λ;Rd), it follows that J (D) is a dense linear subspace of H

and thus densely embedded into E. In other words, J (D) = H and J (D) = E,
where the closure of J (D) is taken in H and E, respectively.

Section 2 is dedicated to a refined study of the identity J (D) = H in a generalised
setting. To this end, let us state an assumption which allows us to study the process M

as a Gaussian process and simplifies the proofs of Sect. 4. Moreover, it leads to a
natural candidate for the space H of drift adjustments, which consists of deterministic
functions (see Definition 2.13 below).

Assumption 2.2 The covariation process [M] is up to indistinguishability determin-
istic, and tr([M])T > 0 outside a P-nullset.

In what follows, we disregard the evanescent set and P-nullset on which the two
conditions from Assumption 2.2 are violated and consider equalities between sto-
chastic processes and (in)equalities between random variables to hold up to indistin-
guishability and P-almost surely, respectively.

Definition 2.3 The quadratic variation process C := tr([M]), being increasing and of
finite variation, induces a finite Lebesgue–Stieltjes measure on ([0, T ],B[0,T ]), which
we denote by μ.

Remark 2.4 Due to (the proof of) Lévy’s characterisation theorem, the increments
Mt − Ms are independent of Fs with L(Mt − Ms) = N (0, [M]t − [M]s) for all
s < t in [0, T ]. Therefore M is a centered Gaussian process, and Kallenberg [30,
Theorem 11.5] shows that M is an F-Markov process. Moreover, M is a martin-
gale because E[Mt −Ms |Fs] = E[Mt −Ms] = 0 for s < t in [0, T ]. Note that
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Cov(Mt ,Ms) = [M]s∧t for s, t ∈ [0, T ] since, assuming without loss of generality
that s < t ,

Cov(Mt ,Ms) = E[MtM
�
s ] = E[(Mt −Ms)M

�
s ] + Cov(Ms,Ms) = [M]s .

Remark 2.5 Assumption 2.2 implies that μ([0, T ]) > 0.
We write μ = μa + μs for the Lebesgue decomposition of μ with respect to λ

into an absolutely continuous measure μa = fλ · λ and a singular measure μs, where
fλ denotes a Radon–Nikodým density of μa with respect to λ, and both μa and μs
are finite measures. Note that μ has no atoms since [M] and therefore also C are
continuous.

We now proceed in line with Cohen and Elliott [12, Sect. 12.5]. The covariation
process [Mi,Mj ], being continuous and of finite variation, induces a finite signed
and atomless measure μi,j on ([0, T ],B[0,T ]) for all i, j ∈ {1, 2, . . . , d}. It follows
from the Kunita–Watanabe inequality for Lebesgue–Stieltjes integrals that the total
variation measure |μi,j | is absolutely continuous with respect to μ. Hence an appli-
cation of the Radon–Nikodým theorem for signed measures (cf. [12, Sect. 1.7.14])
yields the existence of a real-valued density dμi,j /dμ =: πi,j ∈ L1(μ) as μi,j is
finite.

We collect (πi,j )i,j=1,...,d into a measurable function π that assumes by the
symmetry of [M] values in the space of symmetric matrices in R

d×d , and we write

[M]t = (π • C)t = (1[0,t]π) · μ, t ∈ [0, T ], (2.1)

where the notation is to be understood componentwise. Let (ηk)k∈N be dense in R
d .

For each k ∈ N, set Ak = {s ∈ [0, T ] : η�k π(s)ηk ≥ 0} and moreover A =⋂
k∈N Ak .

Note that A = {s ∈ [0, T ] : η�π(s)η ≥ 0,∀η ∈ R
d} and

∫ t

0
η�k π(s)ηkμ(ds) = (

(η�k πηk) • C
)
t
= [η�k M]t ≥ 0, k ∈ N, t ∈ [0, T ],

which implies that each Ac
k is a μ-nullset, and therefore so is Ac as the countable

union of all sets Ac
k . We conclude that π is positive semidefinite μ-almost every-

where. Note that we could, in the spirit of Cherny and Shiryaev [8, Sect. 3] and
without loss of generality, replace π by π̃ = π1A and thus assume that π is posi-
tive semidefinite for each t ∈ [0, T ]. For the purpose of this paper, this step is not
necessary though.

Remark 2.6 The decomposition of [M] into a matrix-valued function π and an in-
creasing process C is not unique. For example, take C̃ = ∑d

i=1 ηi[Mi], where
η ∈ R

d is chosen such that ηi > 0 for all i ∈ {1, 2, . . . , d}. More generally, take
C̃ = ∑d

i=1 fi • [Mi] with fi : [0, T ] → R+ \ {0} in L1(μi,i) for i ∈ {1, 2, . . . , d}.
In both cases, the corresponding function π̃ is then constructed as in Remark 2.5 and
in general differs from π . Lemma 2.10(e) below shows that the non-uniqueness of
(π, C) is not a problem though.

Example 2.7 If π ≡ Id and μ = λ, then M is by Lévy’s characterisation an R
d -valued

standard Brownian motion.
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Example 2.8 An example of relevance for practitioners is the multivariate Heston
model which we now briefly describe.

Let d = 2n for some n ∈ N. We consider a dynamic diffusion matrix given by
[0, T ] � t �→ �(t) ∈ R

d×d , a vector of appreciation rates r ∈ R
n, an n-dimensional

vector of positive mean-reversion levels m and an (n× n)-dimensional diagonal ma-
trix � with positive entries representing mean-reversion speeds. To avoid degeneracy,
we assume that for each k ∈ {1, 2, . . . , n} and t ∈ [0, T ], (�k,·(t))� is not the zero
vector. Let Mt = �(t)Bt , where B denotes a standard Brownian motion with val-
ues in R

d . Note that [M]t = Cov(Mt ,Mt) =
∫ t

0 �(s)��(s) ds for each t ∈ [0, T ].
Hence in view of Remark 2.5, we may choose μ = λ and π(t) = �(t)��(t).

Fix two n-dimensional initial value vectors s, v with positive entries. For simplic-
ity, we write M(1) = (M1,M2, . . . ,Mn)� and M(2) = (Mn+1,Mn+2, . . . ,M2n)�
so that M = (M(1),M(2))�. Let X = (S, V )� and let the asset price follow the
SDE dSt = (r � St ) dt + (St � √Vt) � dM

(1)
t with S0 ≡ s. The n-dimensional

instantaneous variance process V follows the Cox–Ingersoll–Ross (CIR)-type SDE
dVt = �(m − Vt ) dt + √Vt � dM

(2)
t with V0 ≡ v. Here we see that asset price

models whose dynamics are driven by multivariate Brownian motions with dynamic
variance–covariance matrices fall within the scope of our setting. More generally, one
could think of replacing (Bt ) by a time-changed Brownian motion (Bf (t)) for a given
deterministic time-change f .

In Sect. 5, we study special cases of this model, with either a time-change to model
changing levels of business activity, or a dynamic correlation structure.

Example 2.9 Set T = 1 and let B be a standard R
d -valued (G,P)-Brownian mo-

tion, where G = (Gt )t∈[0,T ] denotes a filtration of F . Let f : [0, T ] → [0, T ]
be either Cantor’s ternary function or Minkowski’s question-mark function, and let
� ∈ R

d×d be a diffusion matrix. Recall that Cantor’s ternary function is contin-
uous, monotonically increasing, has derivative zero on a set of Lebesgue measure
one, but is not absolutely continuous. Likewise, Minkowski’s question-mark function
(see Salem [52, Sect. 4]) has the same properties, while being even strictly increas-
ing. Set Mt := �Bf (t) for t ∈ [0, T ] and note that M is an R

d -valued continuous
(F,P)-martingale with M0 = 0 and [M]t = f (t)��� for t ∈ [0, T ], where the
filtration F = (Ft )t∈[0,T ] is given by Ft = Gf (t) for t ∈ [0, T ]. The correspond-
ing Lebesgue–Stieltjes measure μ is singular with respect to λ, and tr([M]) is in-
creasing when f is Cantor’s ternary function, and even strictly increasing when f is
Minkowski’s question-mark function. See [52] for further examples of functions f

that can be used for constructions of this kind.

Based on the pair (π, μ), we define a weighted L2-space, which we denote by �2,
which is a generalisation of the space L2(λ;Rd) in the context of Example 2.1,
and we recall some elementary properties. In Sect. 4 where we study importance
sampling, functions f from �2 are used to construct equivalent measures via the
Doléans–Dade exponential E(f • M). As we argue in Sect. 3, feedforward neural
networks are dense in �2 under suitable assumptions, which due to Theorem 4.6
provides a theoretical justification for using feedforward neural networks in order
to calibrate an optimal sampling measure that minimises the variance of the Monte
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Carlo estimators in Sects. 4 and 5. The definition of the space �2 is inspired by the
concept of vector stochastic integration; see Jacod [28, Chap. IV] for further details
and generalisations.

Lemma 2.10 Let �2 denote the set of all f ∈ L0(B[0,T ];Rd) with

‖f ‖�2 :=
( ∫ T

0
f�(s)π(s)f (s)μ(ds)

)1/2

< ∞,

where we identify f, g ∈ �2 if (f − g)�π(f − g) = 0 μ-almost everywhere and
write f ∼ g in this case. We further set 〈f, g〉�2 := ∫ T

0 f�(s)π(s)g(s)μ(ds) for
f, g ∈ �2. Then:

(a) (�2, 〈 · , · 〉�2) is a real separable Hilbert space.
(b) To each F ∈ (�2)∗, there corresponds a unique function g ∈ �2 such that

F(f ) =
∫ T

0
g�(s)π(s)f (s)μ(ds), f ∈ �2,

and ‖F‖op = ‖g‖�2 . Therefore (�2)∗ is isometrically isomorphic to �2.
(c) We denote by �2,0 the set of all f ∈ L0(B[0,T ];Rd) that satisfy fi ∈ L2(μi,i)

for each i ∈ {1, 2, . . . , d}, where we identify functions in the same manner as
above. Then:

1) (�2,0, 〈 · , · 〉�2) is a separable inner product space with �2,0 ⊆ �2.
2) �2,0 is dense in �2; hence �2 is the completion of �2,0 with respect to ‖ · ‖�2 .
(d) (C([0, T ];Rd), ‖ · ‖∞) is continuously embedded into (�2,0, ‖ · ‖�2) as a

dense linear subspace, where ‖f ‖∞ := supt∈[0,T ] |f (t)| for f ∈ C([0, T ];Rd).
(e) �2 and �2,0 do not depend on the specific choice of (π, μ) that satisfy (2.1).

Example 2.11 According to [28, Lemme 4.30] and the discussion thereafter, a suffi-
cient condition for �2,0 = �2 to hold is that there exists a constant c > 0 such that∑d

i=1 πi,if
2
i ≤ cf�πf holds μ-almost everywhere for all f ∈ �2. Examples where

this applies are when π is a diagonal or uniformly strictly elliptic matrix, where the
latter condition means that there is a constant c > 0 with c|η|2 ≤ η�πη for all
η ∈ R

d .

Example 2.12 Let us state one example, which is a deterministic version of Cohen
and Elliott [12, Example 12.5.1], where �2,0 �= �2. To this end, let B denote a
real-valued standard Brownian motion. Set M = (B,−B)� and note that M is an
R

2-valued continuous martingale with covariation

[M]t =
(

t −t

−t t

)
, hence π ≡

(
1 −1
−1 1

)
,

where we choose μ = λ. Then π is positive semidefinite since η�πη = (η1 − η2)
2

for each η ∈ R
2, and this is zero precisely when η1 = η2 and positive otherwise.

Let f : [0, T ] → R be measurable and such that f /∈ L2(λ). Consider the function
g: [0, T ] → R

2 given by g = (f, f )�. By construction, we then have g /∈ �2,0, but
since ‖g‖�2 = 0, we have g ∈ �2.
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For f ∈ �2, we have f ∈ L2(M) in the sense of vector stochastic integra-
tion (see also Lemma B.2 below). Since [f • M]T = ‖f ‖2

�2 is deterministic and
finite, Novikov’s criterion shows that Z = E(f • M) is a strictly positive martin-
gale. Girsanov’s theorem shows that under the measure Q with dQ/dP = ZT on
FT , the finite-variation part in the semimartingale decomposition of M is given by
[f •M,M] = h, where h(t) = (1[0,t]πf ) · μ for t ∈ [0, T ]. These considerations
motivate the following definition.

Definition 2.13 We denote by H the set of all h: [0, T ] → R
d with the representation

h(t) = J (fh)(t) :=
∫ t

0
π(s)fh(s)μ(ds), t ∈ [0, T ], (2.2)

for some fh ∈ �2, where the integral in (2.2) is to be understood componentwise as
a Lebesgue–Stieltjes integral.

As Proposition 2.18 below will show, when endowed with an appropriate inner
product, H becomes the Cameron–Martin space of the Gaussian measure γM which
is induced by M on C0([0, T ];Rd). To the best of our knowledge, there exists no
explicit characterisation of the Cameron–Martin space of γM at the present level of
generality in the literature so far, as one usually assumes M to be a Brownian motion,
which is a special case of our setting (see Example 2.7).

Example 2.14 In the context of Example 2.7, H coincides with the set of absolutely
continuous functions whose densities are square-integrable with respect to λ.

Remark 2.15 The Cameron–Martin space of a fractional Brownian motion is not con-
tained in our framework, except for the special case of a Brownian motion. The
matrix-valued function π is not to be confused with the square-integrable but sin-
gular kernel which appears in integral representations of the fractional Brownian mo-
tion and more generally Volterra-type Gaussian processes. However, our framework
can be extended to multivariate versions of these processes with representations of
the form M̃t =

∫ T

0 k(t, s) dMs , where k denotes an R
d×d -valued kernel function, for

which, under suitable assumptions on k, the corresponding Cameron–Martin space
consists of functions of the form

h̃(t) =
∫ T

0
k(t, s)π(s)fh(s)μ(ds), t ∈ [0, T ],

for some fh ∈ �2. This formulation gives rise to the study of refined versions of mul-
tivariate Volterra-type Gaussian processes as well as multivariate fractional stochas-
tic volatility models, as one can now distinguish more explicitly between time-in-
homogeneous volatility patterns which are induced by μ (or, equivalently, by the
quadratic variation C), the dependency structure of the components of M which is
modelled by the function π , and the path irregularities of M̃ which are induced by
the matrix-valued kernel k.
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Remark 2.16 Equation (2.2) suggests a generalisation, where the functions fh assume
values in a (possibly infinite-dimensional) Hilbert space H̃ and π assumes μ-almost
everywhere values in the set of positive semidefinite operators on H̃ . In this case, the
integral in (2.2) is to be understood as a Lebesgue–Stieltjes–Bochner integral.

Example 2.17 Let w: [0, T ] → [1,∞) be a function in L1(λ;R) that is nonde-
creasing, set � = Id and define the measure μ through μ(A) = ∫

A
w(s)λ(ds) for

A ∈ B[0,T ]. In line with Example 2.9, we can then construct a process M by means of
the increasing and continuous function f : [0, T ] → R+ given by f (t) := μ([0, t])
for t ∈ [0, T ]. In the context of Definition 2.13, the corresponding space H then
has similarities to the forward curve space Hw (cf. Filipović [15, Chap. 5]) used in
interest rate modelling.

Since elements from H will be precisely those which we consider for the drift
adjustment of M in Sects. 4 and 5, we need to collect some useful properties needed
later on (in particular for Theorem 2.24). The following proposition collects these
properties and further deepens the connections to the process M . As it turns out,
when endowed with a suitable inner product, H is not only the isometric image
of the space �2 whose definition was inspired by the representation (2.1) of [M],
but also the Cameron–Martin space of the Gaussian measure γM induced by M on
C0([0, T ];Rd).

Proposition 2.18 Consider the mapping 〈 · , · 〉H given by 〈g, h〉H := 〈fg, fh〉�2 for
g, h ∈ H . Then:

(a) The integral in (2.2) is well defined for all fh ∈ �2 and t ∈ [0, T ].
(b) (H, 〈 · , · 〉H ) is a real separable Hilbert space.
(c) J : �2 → H is a linear isometry and (H 0, 〈 · , · 〉H ) is an inner product space

whose completion is (H, 〈 · , · 〉H ), where we set H 0 := J (�2,0) ⊆ H .
(d) To each F ∈ H ∗, there corresponds a unique function gF ∈ H such that

F(h) = 〈gF , h〉H =
∫ T

0
f�gF

(s)π(s)fh(s)μ(ds), h ∈ H,

and ‖F‖op = ‖gF ‖H . Therefore H ∗ is isometrically isomorphic to H .
(e) H is the Cameron–Martin space of the centered Gaussian measure γM that is

induced by M on E = C0([0, T ];Rd).

Remark 2.19 Unless H = E, where the closure is taken in E, the measure γM is
degenerate (see Remark A.3). The identity H = E holds in some special cases, e.g.
if μ = λ and π ≡ Id , where the proof builds on the fact that continuous functions
can be uniformly approximated by piecewise linear functions.

For the purpose of the next result, we introduce the function I : E → R+ by

I (g) =
⎧⎨
⎩

1
2

∫ T

0 f�g (s)π(s)fg(s)μ(ds) for g ∈ H ,

∞, otherwise.
(2.3)
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Example 2.20 In the context of Example 2.8, π takes the form π(t) = �(t)��(t). On
the other hand, in the context of Example 2.9, the measure μ could be the Lebesgue–
Stieltjes measure that is induced by Cantor’s ternary function and thus singular with
respect to λ. The setting typically discussed in the literature, where M is a standard
Brownian motion, does not encompass either of these examples.

In Sect. 4.1, we discuss an importance sampling method that uses methods from
the theory of large deviations. To this end, one needs to understand the asymptotic
behaviour of the scaled process

√
εM as ε ↘ 0. If M is a Brownian motion, the

corresponding result is referred to as Schilder’s theorem (cf. Bogachev [5, Corol-
lary 4.9.3]). As a consequence of Propositions 2.18(e) and A.7, we obtain the fol-
lowing result, whose novelty is the explicit characterisation of the function I (also
referred to as rate function) in (2.3) at the present level of generality.

Proposition 2.21 In the context of Proposition 2.18(e), we have for each F ∈ BE that

− inf
g∈F ◦

I (g) ≤ lim inf
ε↘0

ε logP[√εM ∈ F ]

≤ lim sup
ε↘0

ε logP[√εM ∈ F ] ≤ − inf
g∈F

I (g),

where the function I : E → R+ is specified in (2.3).

For notational convenience, we introduce the following condition.

Standing Assumption 2.22 Henceforth we denote by D a dense subset of �2.

Example 2.23 We have already encountered two admissible candidates for the set D,
namely �2,0 and C([0, T ];Rd); see Lemma 2.10(c) and 2.10(d).

The following theorem helps us to identify dense subsets and subspaces of H and
shows how these relate to the topological support (see Remark A.3 in Appendix A)
of the measure γM which we encountered in Proposition 2.18.

Theorem 2.24 Let H(D) denote the set of all h ∈ H with fh ∈ D. Then:
(a) H(D) is a dense subset of H which is separable when endowed with the

subspace topology.
(b) If D is also a linear subspace of �2, then:
1) (H(D), 〈 · , · 〉H ) is an inner product space, whose completion is H .
2) There exists a countable orthonormal basis of H which consist of elements

from H(D).
(c) In the context of Proposition 2.18(e), the topological support of γM coincides

with H(D), where the closure is taken in E. In other words,

γM

(
C0([0, T ];Rd) \H(D)

) = P
[
M ∈ C0([0, T ];Rd) \H(D)

] = 0.

Hence outside of a P-nullset, paths of M can be uniformly approximated by sequences
from H(D).
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In Sect. 3, we discuss classes of feedforward neural networks that are also dense
subsets of �2, thereby satisfying the Standing Assumption 2.22. Together with The-
orem 2.24, this shows that we can approximate any element from H , up to the isom-
etry J , by feedforward neural networks. This is essential for Sects. 4 and 5, where
we approximate with feedforward neural networks the drift adjustment of M which
minimises the variance of the Monte Carlo estimator.

3 Approximation capabilities of feedforward neural networks

In this section, we study feedforward neural networks as elements of the space �2

and show how they generate, under suitable assumptions on the activation function,
dense subspaces of H , thereby providing a first theoretical justification for approxi-
mating the optimal drift adjustment with feedforward neural networks when studying
importance sampling in Sects. 4 and 5 below.

We know from Lemma 2.10(d) that C([0, T ];Rd) is continuously embedded into
�2,0 as a dense linear subspace. Moreover, Lemma 2.10(c) shows that �2,0 is dense
in �2. Consequently, every dense linear subspace D of C([0, T ];Rd) is densely em-
bedded into �2, thereby satisfying the Standing Assumption 2.22, in which case
H(D) is dense in H by Theorem 2.24(a). For this reason, we first focus our attention
on finding dense linear subspaces of C([0, T ];Rd) in Proposition 3.4, before relaxing
the continuity assumption in Proposition 3.5 below.

Neural networks are one particular class of functions of interest to us. On the
one hand, it satisfies the required density in C([0, T ];Rd) and, on the other hand, it
gives rise to efficient numerical optimisation procedures which have led to fascinating
results in the domain of financial and actuarial mathematics in recent years. When
studying neural networks, the property of a set of them to be dense in a topological
space is referred to as the universal approximation property (UAP); cf. Kratsios [34,
Definition 2]. Theorems which establish denseness of sets of neural networks in a
topological space are referred to as universal approximation theorems (UATs).

There are many different neural network architectures for which the UAP has
been shown to hold in various topological spaces (cf. Cybenko [13], Funahashi [18],
Hornik [26], Hornik et al. [27], Kidger and Lyons [32], Leshno et al. [36], Liao et
al. [38], Mhaskar and Micchelli [43], Park and Sandberg [45, 46], Pinkus [47] and
Zhang et al. [55]). For ease of presentation, we discuss the class of feedforward
neural networks, also called multilayer perceptrons or multilayer feedforward neu-
ral networks. Note that our discussion is limited to architectures that yield UATs
in C([0, T ];Rd) and �2 (see also Sect. 3.1 for a UAT with respect to Hölder-
norms). There are many architectures for which the UAP has been established in
other topological spaces, but which we do not discuss in this paper.

Definition 3.1 Given k, ℓ ∈ N and ψ : R → R, we denote by NN d
k,ℓ(ψ) the set

of feedforward neural networks with one neuron in the input layer, d neurons with
identity activation function in the output layer, k hidden layers, and at most ℓ hidden
nodes with ψ as activation function in each hidden layer (cf. Kidger and Lyons [32,
Definition 3.1]).
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Remark 3.2 The set NN d
k,ℓ(ψ) consists of all functions of the form

t �→ Wk+1 ◦ Fk ◦ · · · ◦ F1(t), where k ∈ N, W1: R → R
ℓ, Wk+1: Rℓ → R

d and
W2, . . . ,Wk: Rℓ → R

ℓ are affine functions and Fi = ψ ◦ Wi for i = 1, 2, . . . , k,
where the activation function ψ is applied componentwise.

If the number of nodes in the hidden layers can be arbitrarily large, we write
NN d

k,∞(ψ). Likewise, we write NN d
∞,ℓ(ψ) if the number of hidden layers can be

arbitrarily large. Finally, the notation

NN d∞,∞(ψ) =
⋃
k∈N

NN d
k,∞(ψ) =

⋃
ℓ∈N

NN d
∞,ℓ(ψ)

is to be understood in an analogous way. For the purpose of Example 3.7 below, we
also introduce the following notation: If A is a finite set of functions f : R → R,
then NN d

k,ℓ(A) denotes the set of feedforward neural networks where the hidden
nodes are endowed with any of the functions from A. As a special case, we then have
NN d

k,ℓ(A) = NN d
k,ℓ(ψ) for A = {ψ}.

Functions in NN d
1,∞(ψ) are called shallow feedforward neural networks, while

functions in NN d∞,∞(ψ) are generally referred to as deep feedforward neural net-
works. The set NN d

∞,ℓ(ψ) ⊆ NN d∞,∞(ψ) of deep narrow networks, where ℓ ∈ N

is fixed, is also of special interest (cf. Kidger and Lyons [32]).
In the context of Definition 3.1, the function ψ is sometimes also called squash-

ing function, sigmoid function or ridge activation function. Different terms have been
chosen based on the properties of ψ , which in general differ based on which topo-
logical spaces we are studying the UAP in. For the sake of simplicity, we call ψ

an activation function throughout this paper, and impose properties on ψ wher-
ever needed. In view of Lemma 2.10(d), we are particularly interested in the UAP in
C([0, T ];Rd). At this point, however, we need to discuss a technicality first.

For a Borel measure ν on [0, T ] and f, g ∈ C([0, T ];Rd), we write f ∼ν g if
f = g outside a ν-nullset. Because ∼ν is an equivalence relation on C([0, T ];Rd),
we can therefore consider the quotient space Cν([0, T ];Rd) of C([0, T ];Rd) un-
der ∼ν , on which the ν-essential supremum ‖ · ‖L∞([0,T ],ν) is a norm, making
(Cν([0, T ];Rd), ‖ · ‖L∞([0,T ],ν)) a normed vector space. Then a small modification
of Lemma 2.10(d) shows that Cν([0, T ];Rd) is continuously embedded into �2,0 as
a dense linear subspace, provided that μ is absolutely continuous with respect to ν.

Let us collect classical versions of the universal approximation theorem which
are concerned with the (almost everywhere) uniform approximation of continuous
functions (cf. [26, 32, 36]), as we refer to them in the proofs of the subsequent results.

Theorem 3.3 Given ψ : R→ R, consider the following assumptions:
1) ψ is continuous, bounded and nonconstant.
2) ψ is continuous and nonaffine, and there exists a point x ∈ R at which ψ is

continuously differentiable with ψ ′(x) �= 0.
3) ψ is locally λ-essentially bounded. Moreover, ψ is λ-almost everywhere not an

algebraic polynomial, and the set of points of discontinuity of ψ is a λ-nullset.
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Then:
(a) If 1) holds, then NN d

1,∞(ψ) is dense in (C([0, T ];Rd), ‖ · ‖∞).

(b) If 2) holds, then NN d
∞,d+3(ψ) is dense in (C([0, T ];Rd), ‖ · ‖∞).

(c) If 3) holds, then NN d
1,∞(ψ) is dense in (Cλ([0, T ];Rd), ‖ · ‖L∞([0,T ],ν)).

The following two results yield dense subsets of �2 which consist of feedforward
neural networks. We can therefore consider these sets as admissible for the set D in
the context of the Standing Assumption 2.22. Consequently, due to Theorem 2.24
and under suitable assumptions on ψ , feedforward neural networks are, up to the
isometry J , dense in H .

Proposition 3.4 below is a consequence of Theorem 3.3 and Lemma 2.10(d). For
simplicity, we only formulate it for NN d

1,∞(ψ), where the case for NN d
∞,d+3(ψ)

can be argued analogously. Since NN d
1,∞(ψ) is a subset of NN d

k,∞(ψ) for every

k ∈ N, Propositions 3.4 and 3.5 below hold for NN d
k,∞(ψ), k ∈ N, too.

Proposition 3.4 In the context of Theorem 3.3, assume either that Condition 1) holds,
or that Condition 3) holds and μ is absolutely continuous with respect to λ. Then
NN d

1,∞(ψ) is a dense linear subspace of �2,0.

By looking at the proof of Proposition 3.4 (which is presented in Appendix B),
it becomes clear that we cannot impose Assumption 3) from Theorem 3.3 if μ is
not absolutely continuous with respect to λ. This is relevant in particular for Exam-
ple 2.9, where we need to impose either Assumption 1) or 2) from Theorem 3.3.
Moreover, assuming ψ to be (λ-almost everywhere) continuous is also rather restric-
tive, given that functions in �2 need not be continuous. By arguing along the lines of
Cybenko [13] and Hornik [26], we can actually drop the continuity assumption on ψ

at the cost of requiring boundedness, which is not required in Assumptions 2) and 3)
from Theorem 3.3.

Proposition 3.5 If ψ is bounded, measurable and nonconstant, then NN d
1,∞(ψ) is a

dense linear subspace of �2,0.

For notational simplicity, let us assume that the activation function ψ satisfies
sufficient conditions such that either Proposition 3.4 or 3.5 is applicable.

Standing Assumption 3.6 Henceforth we assume one of the following:
(i) Condition 1) from Theorem 3.3 holds so that ψ is continuous.
(ii) The assumptions from Proposition 3.5 hold so that ψ is bounded, but not

necessarily continuous.
(iii) μ is absolutely continuous with respect to λ and Condition 3) from Theo-

rem 3.3 holds so that ψ is λ-almost everywhere continuous.

Example 3.7 Fix d = 1 as well as μ = λ. Note that in this case, we have π ≡ 1. Set
D = NN 1

1,∞(ψ) = span{[0, T ] � t �→ ψ(αt + η) : α, η ∈ R}, where ψ = tanh.
Since every f ∈ D is continuous and thus bounded on [0, T ], we may replace the
Lebesgue by the Riemann integral.
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If α = 0 and η ∈ R, then
∫ t

0 ψ(η) ds = ψ(η)t for t ∈ [0, T ]. On the other hand, if
α �= 0 and η ∈ R, then by substitution,

∫ t

0
ψ(αs + η) ds = 1

α

(
ψ̃(αt + η)− ψ̃(η)

)
, t ∈ [0, T ],

where ψ̃( · ) = log cosh( · ). Similarly, if ψ is the standard sigmoid (logistic) function,
the same applies with ψ̃( · ) = log(1+exp( · )), which is also called softplus function.
To sum up, we see that

H(D) = span{id : [0, T ] � t �→ t,NN 1
1,∞(ψ̃)} = NN 1

1,∞({id, ψ̃}).
Provided that ψ is Riemann-integrable, Example 3.7 shows that compared to the

set D = NN 1
1,∞(ψ), the set H(D) can be obtained by modifying the activation func-

tion and adding the identity function into the set of admissible activation functions.
This can be helpful when optimising over functions in H(D), because one avoids
having to implement integral operations. What is more, functions in H(D) enjoy the
property of being absolutely continuous, provided that μ is absolutely continuous
with respect to λ, while this is not always the case for functions from NN 1

1,∞(ψ),
e.g. if ψ is not continuous.

Note that we formulated Propositions 3.4 and 3.5 for shallow feedforward neural
networks. However, as already mentioned above, they hold for the set of deep neural
networks, too. For a discussion on the topic of depth versus width, see for example Lu
et al. [41] and Ronen and Ohad [51].

3.1 Interlude: universal approximation in a Hölder-norm

In Theorem 3.3, we cited classical versions of the universal approximation theorem
which are concerned with (almost everywhere) uniform approximation of continu-
ous functions. Note that this is in essence a topological statement, and we may seek
for refined approximation results that hold with respect to stricter topologies. Nat-
ural candidate topologies with respect to which we may seek to derive a universal
approximation theorem are Hölder-type topologies.

Given α ∈ (0, 1), we denote by Eα = Cα
0 ([0, T ];Rd) ⊆ C0([0, T ];Rd) the

vector space of Rd -valued, α-Hölder-continuous functions on [0, T ] that are zero at
the origin. The space Eα is also referred to as α-Hölder space. We endow this space
with the topology which is induced by the norm

Eα � f �→ ‖f ‖α := sup
s,t∈[0,T ]
0<t−s≤1

|f (t)− f (s)|
(t − s)α

.

The Kolmogorov–Chentsov continuity theorem shows that all paths of Rd -valued
standard Brownian motion are α-Hölder-continuous for every α ∈ (0, 1/2); hence it
would be desirable to use Eα as the space on which to consider the restriction of the
classical Wiener measure (see Example 2.1 and Definition A.1). Although (Eα, ‖·‖α)

is indeed a real Banach space, it does not contain a countable dense subset and is thus
not separable (cf. Friz and Victoir [17, Theorem 5.25]).
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We need to pass to the little α-Hölder space, i.e., the subspace Eα,0 of all f ∈ Eα

that satisfy |f (t) − f (s)| = o(|t − s|α) as |t − s| ↘ 0. Then (Eα,0, ‖ · ‖α) is a
real Banach space. The space Eα,0 is also referred to as the space of α-Hölder paths
with vanishing Hölder oscillation (cf. Friz and Hairer [16, Exercise 2.12]). Note that
Eα,0 has a very useful characterisation: It is the closure of C∞0 ([0, T ];Rd), the vector
space of Rd -valued smooth functions on [0, T ] that are zero at the origin, where the
closure is taken with respect to the topology induced by ‖ · ‖α . Moreover, we have
the inclusion Eβ ⊆ Eα,0 for all 0 < α < β < 1.

In the context of Gaussian measures and large deviations theory, the space Eα,0 has
been studied in great detail; cf. Andresen et al. [1], Baldi et al. [3] and Ciesielski [9].
In particular, the following important property has been shown in [1] to hold: If we fix
π = Id and μ = λ, then H is continuously embedded into Eα,0 for each α ∈ (0, 1/2),
and there exists a countable family of functions in H (the Faber–Schauder system)
that constitutes a Schauder basis of (Eα,0, ‖ · ‖α). While on the one hand this implies
the separability of Eα,0, more importantly, we see that H is not only continuously,
but also densely embedded into Eα,0. In conjunction with Theorem 2.24 and as a
direct consequence of this observation, we obtain the following result.

Proposition 3.8 Fix μ = λ, π = Id and α, β ∈ (0, 1/2) with α < β. Then in
the context of Propositions 3.4 and 3.5, for each f ∈ Eα,0, there exists a sequence
(fn)n∈N in NN d

1,∞(ψ) such that

lim
n→∞‖f − J (fn)‖α = 0.

In particular, every smooth function f ∈ C∞0 ([0, T ];Rd) ⊂ Eα,0 and every
β-Hölder-continuous function f ∈ Eβ ⊆ Eα,0 can be approximated, up to the linear
isometry J (see Definition 2.13), by sequences from NN d

1,∞(ψ) with respect to ‖·‖α .

Let us conclude this subsection with several remarks. First note that based on
Ciesielski et al. [10], Proposition 3.8 should extend to certain Besov–Orlicz-type
norms, which induce stricter topologies than the Hölder-norms. Moreover, it should
be possible to relax the assumption μ = λ by considering a modified Hölder-norm
with denominator μ((s, t])α instead of (t − s)α . Finally, note that the universal ap-
proximation property of neural networks in topological spaces with topologies that
are stricter than that induced by the uniform norm have already been studied in the
literature. See e.g. Gühring et al. [25] who study the UAP in Sobolev spaces.

4 Importance sampling with feedforward neural networks

Having studied the tractable space H of drift adjustments which coincides with the
Cameron–Martin space of the Gaussian measure γM , and having proved that feed-
forward neural networks are, up to the isometry J , dense in H by combining The-
orem 2.24 and Propositions 3.4 and 3.5, we now turn our attention to importance
sampling. To this end, we first write down the basic setting. In Sect. 4.1, we then
study how our method complements a classical approach which employs ideas from
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large deviations theory, before finally studying the full problem in Sect. 4.2. Most
notably, Theorem 4.6 below provides a theoretical justification for our simulations in
Sect. 5; see also Remark 4.7.

Let C denote the vector space of Rn-valued, continuous and F-adapted processes.
Let a: � × [0, T ] × C → R

n and b: � × [0, T ] × C → R
n×d be non-anticipative

coefficients (cf. Cohen and Elliott [12, Definition 16.0.3]) with the property that the
stochastic differential equation

dXt = at (X) dCt + bt (X) dMt, t ∈ [0, T ], (4.1)

with X0 ≡ x ∈ R
n admits a unique weak solution. For ease of notation, we write

at (X), bt (X) instead of a(ω, t, X), b(ω, t, X) and interpret (4.1) to hold component-
wise, i.e., Xi

t = xi+(a(X)i •C)t+(b(X)i,· •M)t for i ∈ {1, 2, . . . , n} and t ∈ [0, T ].
Let F be a real-valued random functional on �×C([0, T ];Rn) with the property

that the mapping � � ω �→ F(ω,X(ω)) is FT -measurable. For simplicity, we write
F( · , X) = F(X) and call F(X) a random payoff. We are interested in obtaining a
Monte Carlo estimate of its expectation under P,

EP[F(X)] =
∫

�

F
(
ω,X(ω)

)
P(dω), (4.2)

provided that (4.2) is well defined in R.

Remark 4.1 If EP[F(X)] is to denote an option price, then we should require P to
be a risk-neutral measure. However, the results in this section do not require P to be
risk-neutral. Actually, we do not need to assume EP[F(X)] to be an option price as
long as X follows the SDE (4.1) and F(X) is FT -measurable.

Example 4.2 The SDE (4.1) can model the evolution of asset prices within stochastic
volatility models. Thus our method complements Robertson [50] who uses methods
from the theory of large deviations to derive asymptotically optimal drift adjustments
(see Sect. 4.1, where we discuss asymptotic optimality in the context of Guasoni
and Robertson [24]) for pricing stochastic volatility models, very much in the spirit
of [24].

Let (Xi)i∈N denote a sequence of independent copies of solutions to (4.1). By
the strong law of large numbers, the sample means Zk = ∑k

i=1 F(Xi)/k converge
P-almost surely to m = EP[F(X)]. Moreover, if F(X1) has a finite variance σ 2 > 0,
then according to the central limit theorem, as k →∞, the law of

√
k(Zk −m) con-

verges weakly to N (0, σ 2). We therefore see that Zk −m is approximately normally
distributed with mean zero and standard deviation σ/

√
k. In practice, the standard

error σ/
√

k can be large when the random payoff F(X) has a high variance, even for
large sample sizes k, which calls for the application of variance reduction methods.

Remark 4.3 For each f ∈ �2, we have that f • M is a real-valued continuous
local martingale with [f • M]t =

∫ t

0 f�(s)π(s)f (s)μ(ds) for t ∈ [0, T ]. As a
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consequence, similarly as in Remark 2.4, f •M is a Gaussian F-Markov process with

L
(
(f •M)t − (f •M)s

) = N
(

0,

∫ t

s

f�(u)π(u)f (u)μ(du)

)

for s < t in [0, T ], which shows how one can simulate increments of f • M ,
provided that the integrals

∫ t

s
f�(u)π(u)f (u)μ(du) can be explicitly computed.

Recall that for any real-valued continuous semimartingale Y , the Doléans–Dade
exponential E(Y ) is the strictly positive continuous semimartingale that is, up to
indistinguishability, the unique solution to the stochastic integral equation

E(Y ) = exp (Y0)+
∫ ·

0
E(Y )s dYs

and is given by E(Y ) = exp (Y − [Y ]/2). A direct computation also gives
E(Y )−1 = E(−Y + [Y ]).

For each h ∈ H , the process N = fh • M is a Gaussian process whose quadratic
variation [N ] is deterministic. Therefore NT has all exponential moments, E(N)T is
in Lp for every finite p, and an application of Novikov’s criterion shows that E(N) is
uniformly integrable. By a change of measure, (4.2) can now be rewritten as

EP[F(X)] = EPh

[
F(X)

(
E(fh •M)T

)−1]
, (4.3)

where Ph is defined by dPh = E(fh • M)T dP on FT . If we denote the modified
random payoff by Fh(X) := F(X)(E(fh • M)T )−1, then the P-expectation of F(X)

and the Ph-expectation of Fh(X) are identical. If F(X) has a finite second moment
with respect to P, the variance of Fh(X) under Ph is given by

EPh
[F 2

h (X)] − EPh
[Fh(X)]2 = EP

[
F 2(X)

(
E(fh •M)T

)−1]− EP[F(X)]2. (4.4)

Therefore we can compute (4.3) under the measure Ph and try to find h ∈ H such
that (4.4) is minimised. Note that the second term on the right-hand side of (4.4) does
not depend on h; so we focus on minimising the first term, which for each h ∈ H is
given by

V (h) := EP

[
F 2(X)

(
E(fh •M)T

)−1] = EP

[
F 2(X) exp

(− (fh •M)T + ‖h‖2
H /2

)]
.

To sum up, our problem reads

min
h∈H

V (h), (4.5)

provided that a minimiser of V exists; see Theorem 4.6 for sufficient conditions.

4.1 Approximating the asymptotically optimal sampling measure

Before we turn our attention to solving (4.5), we first discuss the classical approach
presented in Guasoni and Robertson [24] that uses methods from the theory of large
deviations, and show how our method complements it. Note that the setting of [24]
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is a special case of the setting of Sect. 4. To see this, set d = 1, let M be a standard
Brownian motion and F the augmented natural filtration of M (which satisfies the
usual hypotheses). Set X = M and assume that the payoff F : C0([0, T ];R)→ R+
is continuous, where C0([0, T ];R) has the topology of uniform convergence.

In [24], the authors argue that (4.5) is in general intractable. Rather than solving
(4.5), they consider for each h ∈ H the small-noise limit

L(h)

:= lim sup
ε↘0

ε logEP

[
exp

(
1

ε

(
2F̃ (

√
εM)− (

(
√

εfh) •M
)
T
+ ‖h‖

2
H

2

))]
, (4.6)

where F̃ := log F . The limit (4.6) corresponds to approximating V (h) ≈ exp(L(h)).
Assume that F̃ : C0([0, T ];R) → R ∪ {−∞} is continuous. Moreover, as-

sume that there exist constants K1,K2 > 0 as well as α ∈ (0, 2) such that
F̃ (x) ≤ K1+K2‖x‖α∞ for each x ∈ C0([0, T ];R). As [24, Theorem 3.6] shows, one
can invoke a version of Varadhan’s integral lemma to rewrite (4.6) as a variational
problem, provided that h is an element of Hbv, the space of all h ∈ H such that
fh ∈ �2 = L2(λ) is of bounded variation, and aim to solve minh∈Hbv L(h), provided
that a minimiser exists.

For the proof of the central result in [24, Theorem 3.6], the following functional is
important: For c > 0 and h ∈ H , let F̃h,c : H � g �→ 2F̃ (g)− c‖g + h‖2

H + ‖h‖2
H .

By [24, Lemma 7.1], there exists a maximiser gh,c ∈ H of F̃h,c. Together with
Proposition 3.4, we then obtain

Proposition 4.4 Assume that ψ : R→ R is continuously differentiable, bounded and
nonconstant, and set D = NN 1

1,∞(ψ). Then H(D) ⊆ Hbv, and for each c > 0 and
h ∈ H , there exists a sequence (hn)n∈N in H(D) such that

lim
n→∞ F̃h,c(hn) = F̃h,c(gh,c) = max

g∈H

(
2F̃ (g)− c‖g + h‖2

H + ‖h‖2
H

)
.

According to [24, Theorem 3.6] and the discussion thereafter, the strategy for
finding a minimiser of L is as follows: Find a maximiser gh,1 to F̃h,1 for h ≡ 0.
Check whether gh,1 is actually an element of Hbv, and if this is the case, then gh,1
minimises L provided that L(gh,1) = F̃h,1(gh,1) holds true. Since the evaluation
of L at gh,1 involves having to find a maximiser of F̃gh,1,1/2, checking whether
L(gh,1) = F̃h,1(gh,1) might only be feasible by a numerical approximation which
introduces an error. However, if one could establish said identity, then gh,1 would be
a minimiser of L, in which case we say that gh,1 is asymptotically optimal.

Let us assume that there exists a maximiser gh,1 to F̃h,1 for h ≡ 0 that is indeed
asymptotically optimal. In view of Proposition 4.4, we can then approximate gh,1 by a
sequence (hn)n∈N from H(NN 1

1,∞(ψ)) such that F̃h,1(hn) converges to F̃h,1(gh,1).
Theorem 4.6(b) below then implies that V (hn) converges to V (gh,1). To sum up,
rather than trying to find a minimiser of V , one might instead study

max
g∈H

F̃h,1(g) = max
g∈H

(
2F̃ (g)− ‖g‖2

H

)
(4.7)

and solve the modified problem (4.7) with feedforward neural networks.
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4.2 Approximating the optimal sampling measure

In what follows, we consider the full problem (4.5) and propose to solve it with
feedforward neural networks. Moreover, Theorem 4.6(d) and Remark 4.7 provide a
theoretical justification for employing the tractable class of shallow feedforward neu-
ral networks for this optimisation problem. The numerical simulations in Sect. 5 will
demonstrate that we obtain indeed substantial reductions in the variance of the Monte
Carlo estimators for several multivariate asset price processes and path-dependent
payoff functionals.

In the following result, we consider a nonlinear operator which maps elements
from the Cameron–Martin space to probability densities. This result is essential as
it implies in Theorem 4.6 below that the optimal sampling measure can be approxi-
mated by measures which are generated by feedforward neural networks.

Lemma 4.5 The operator Ap : H � h �→ (E(fh •M)T )−1 ∈ Lp(P) is continuous for
each p ∈ [1,∞). Moreover, Ap is not quasi-bounded, meaning that

lim sup
‖h‖H→∞

‖Ap(h)‖Lp(P)

‖h‖H = ∞.

Finally, we formulate Theorem 4.6. The proof (presented in Appendix B) comple-
ments Lemaire and Pagès [35, Proposition 4] and not only shows under rather weak
assumptions that the functional V does indeed admit a minimiser. Theorem 4.6(d)
applied to a dense subset D of �2 which consists of feedforward neural networks
also provides the theoretical justification for the simulations in Sect. 5; see also
Remark 4.7 below.

Theorem 4.6 Assume that P[F 2(X) > 0] > 0 and that there exists some ε > 0 such
that F(X) ∈ L2+ε(P). Then:

(a) V is R+-valued.
(b) V is continuous.
(c) There exists a minimiser of V , i.e.,

arg min
h∈H

V (h) = {g ∈ H : V (g) ≤ V (h),∀h ∈ H } �= ∅.

(d) There exists a sequence (hn)n∈N in H(D) such that

lim
n→∞V (hn) = min

h∈H
V (h).

Remark 4.7 In the context of Theorem 4.6(d), we may seek to find a minimiser of V

by performing measure changes induced by Doléans–Dade exponentials of the form
E(f • M), where f ∈ NN d

1,∞(ψ). In Sect. 5, we pursue this approach for several
different asset price models, achieving substantial reductions in the variance of the
corresponding Monte Carlo estimators.
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Remark 4.8 Theorem 4.6(d) shows that neural-network-induced changes of the sam-
pling measure can approximate the optimal sampling measure arbitrarily well in the
sense that the second moment of the modified payoff under the optimal measure can
be approximated up to an arbitrarily small ε > 0. However, the proof is not con-
structive; it does not deliver a recipe how to actually obtain such a sequence (hn) of
neural-network-induced elements from the Cameron–Martin space that converges to
the optimum. In Sect. 5 below, we use stochastic gradient descent to train our neural
networks. This procedure builds on the method of stochastic approximation, which
was pioneered in 1951 by Robbins and Monro [49]. Stochastic approximation for
importance sampling for option pricing in continuous-time models has been studied
by Lemaire and Pagès [35]. We refer to [35, Sect. 3] for details on how to construct
convergent sequences of functions based on the method of stochastic approximation.

Remark 4.9 Let us assume that the SDE (4.1) depends on a set of parameters α ∈ R
m

for some m ∈ N. Fix i ∈ {1, 2, . . . , m} and further assume that we can exchange
the order of differentiation and integration, i.e., ∂

∂αi
EP[F(X)] = EP[ ∂

∂αi
F (X)]. If

we want to jointly reduce the standard error of the Monte Carlo estimators of the
expected random payoff and of its sensitivity with respect to αi , we could modify the
definition of V to

Ṽ (h) = EP

[(
w1F

2(X)+ w2

( ∂

∂αi

F (X)
)2

)(
E(fh •M)T

)−1
]
, h ∈ H,

where w1, w2 ∈ (0, 1) are weights that sum up to 1. If there exists some ε > 0 with
w1F

2(X)+w2(
∂

∂αi
F (X))2 ∈ L1+ε(P) and P[w1F

2(X)+w2(
∂

∂αi
F (X))2 > 0] > 0,

then Theorem 4.6 applies correspondingly. Analogous considerations hold for higher-
order sensitivities as well as for the joint reduction of standard errors for more than
one sensitivity. We refer the reader to Glasserman [20, Sect. 7.2] for details on the
computation of pathwise derivatives for some classical models and payoffs.

5 Numerical study

In this section, we provide a range of carefully chosen numerical examples to show-
case the various strengths of our method. Additionally, we compare our approach to
other methods that have been proposed in the literature. All computational tasks were
performed using Python, leveraging the Keras deep learning API for the construc-
tion and training of our neural networks. All codes that were used for the simulations
are available on Github; see https://github.com/aarandjel/importance-sampling-with-
feedforward-neural-networks.

Let us provide a brief overview of the examples appearing in the subsequent sub-
sections. In Sect. 5.2, we explore a time-change instance that deviates from the con-
ventional assumption of μ = λ to better represent phases of changing business activ-
ity. Section 5.3 considers a knock-out option and discusses the occurrence of multiple
rare events. Moving on to Sect. 5.4, we examine a stochastic volatility model with an
imposed dynamic correlation structure, which directly influences the norm on the

https://github.com/aarandjel/importance-sampling-with-feedforward-neural-networks
https://github.com/aarandjel/importance-sampling-with-feedforward-neural-networks
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Cameron–Martin space. Lastly, in Sect. 5.5, we investigate the feasibility of utilising
neural networks for importance sampling in a high-dimensional model. In all our ex-
amples, we consider arithmetic Asian (basket) call options with strike K and basket
weights w as the chosen payoffs, i.e.,

F(X) =
(

1

T

∫ T

0
〈w,Xt 〉 dt −K

)+
,

while Sect. 5.3 additionally incorporates knock-out barriers for further analysis.
To establish a solid basis for comparison, we have selected the methodologies

proposed by Glasserman et al. [21], Guasoni and Robertson [24], Capriotti [7],
Arouna [2], Su and Fu [54] as well as Jourdain and Lelong [35]. To underscore the
versatility of our approach in handling more general models than those presented
in the literature, we initially present results for the models discussed in the previ-
ous paragraph. Subsequently, we report results from simulations performed for the
models studied in the literature mentioned above.

To train a feedforward neural network, our approach is as follows. First, we sim-
ulate N trajectories Xi , i = 1, . . . , N , of the asset price using the Euler–Maruyama
method, based on a pre-defined time-grid. Then we decide on a set NN d

k,ℓ(ψ) from
which we seek to identify the optimal function by selecting the number of hidden
layers k, the number of hidden nodes ℓ and the activation function ψ . The output
dimension d of the neural networks aligns with the dimension of the process M . We
approximate V by computing an average over the N trajectories,

V (θ) = 1

N

N∑
i=1

F 2(Xi) exp
(− (fθ •Mi)T + ‖fθ‖2

�2/2
)
, (5.1)

where θ represents the vector encompassing all trainable parameters of the neural
network fθ and all quantities on the right-hand side of (5.1) are appropriately discre-
tised. We therefore consider V as a function of the finite parameter vector θ and aim
to find the optimal θ∗ and thus the optimal element fθ∗ from NN d

k,ℓ(ψ).
To achieve this, we employ stochastic gradient descent, a technique originally pi-

oneered by Robbins and Monro [49]. Specifically, we adopt the mini-batch variant
of this method, which replaces the mean over all N trajectories with means over
smaller sub-batches. Starting from an initial guess, the parameter vector θ is then it-
eratively updated with a scaled version of the gradient of V over those sub-batches,
i.e., θm+1 = θm − γm∇batchV (θm) with learning rate γm and ∇batchV denoting the
gradient of V over one specific batch. Upon completing a full iteration through all
batches, we consider the neural network to have completed one epoch of training. For
each subsequent epoch, the trajectories contained in the individual batches can then
be randomly shuffled around, and the parameter θ is updated until a stopping criterion
is reached. One notable advantage of neural networks lies in their ability to efficiently
compute gradients through the back-propagation method. Additionally, we utilise a
popular modified version of this training routine known as Adam (cf. Kingma and
Ba [33]), which incorporates the first and second moments of the gradient estimates
to enhance performance.
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In all our subsequent examples, we train the neural networks using 100 batches,
each consisting of 1024 trajectories. For validation purposes, we employ an additional
100 batches, also comprising 1024 trajectories, and stop the training process when
the loss V (θ) ceases to reduce on the validation set. The results presented in the fol-
lowing tables are derived from simulations performed on separate test datasets, each
containing 105 trajectories. Throughout the training, validation and testing phases,
we maintain a fixed learning rate of 10−3 for the stochastic gradient descent, and we
fix the time horizon to T = 1 to consider the time interval [0, 1]. Unless otherwise
specified, we utilise a step size of �t = 1/250. However, in Sect. 5.5, we deviate
from this convention. We employ a step size corresponding to �t = d/104 during
the training and validation process, where d denotes the dimension of the asset price
process. For example, when d = 200, then �t = 1/50. This adjustment is only im-
plemented for dimensions ranging from d = 100 to d = 1000, while the step size
always remains �t = 1/100 for the testing dataset, as well as for the training and
validation datasets in case d < 100. In all simulations described below, we train shal-
low feedforward neural networks with a single hidden layer, using ψ(x) = tanh(x)

as activation function. The number of hidden nodes used for the various examples
is reported beneath the tables. The tables below present results for different choices
of model parameters, presenting mean estimates, standard errors, relative standard
errors as a percentage of the mean and variance ratios. The variance ratios were ob-
tained by comparing the variance of the mean estimate from both a Monte Carlo and
a Monte Carlo with importance sampling run, dividing the former by the estimate of
the latter.

5.1 Stratified sampling with feedforward neural networks

In addition to importance sampling, stratified sampling is a widely used variance re-
duction method. Stratified sampling involves constraining the fraction of trajectories
sampled from specific subsets of the sample space. To implement this method effec-
tively, suitable subsets of the sample space need to be chosen, covering the entire
sample space, along with the desired fractions of the overall sample falling within
each subset. It is important to note that stratification typically generates dependent
sequences of random variables, which affects the calculation of the standard error
and variance of the Monte Carlo estimator. For further information on this approach,
we refer to Glasserman [20, Sect. 4.3].

In Glasserman et al. [21], the authors investigate importance sampling and strat-
ification techniques for pricing path-dependent options. Similarly to Guasoni and
Robertson [24], they employ large deviations techniques to determine asymptoti-
cally optimal drift adjustments in a discrete-time framework. In order to overcome
the computational effort that might be required to perform optimal stratification, the
authors of [24] propose utilising the drift identified for importance sampling to per-
form further stratification. In the following examples, we augment our results based
on importance sampling with the stratified sampling approach.

More precisely, let us consider the estimation of E[F(X)]. Having discretised the
time interval into m points, assume that F(X) can be expressed as a function of Z,
with Z being an m-dimensional vector of independent standard normal variables.
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If f denotes the optimal element from the Cameron–Martin space, sampled at ti
as a vector and appropriately rescaled so that adjusting the drift of M corresponds
to adding f to Z in the discrete-time case, we want to sample Z conditionally on
〈f,Z〉 ∈ Ai , where Ai denotes a stratum (a subset of the sample space). In our
case, Ai is chosen to correspond to the interval between the (i − 1)/N - and the
i/N -quantile of the standard normal distribution, where N denotes the number of
strata. We maintain an equal number of replications for each stratum. For further
details on simulating Z conditionally on 〈f,Z〉 ∈ Ai , we refer to [21, Sect. 4].

In Sects. 5.2–5.4, we extend our analysis beyond importance sampling by addi-
tionally using the trained neural networks to implement stratified sampling. By com-
bining these two techniques, we demonstrate the significant potential for further vari-
ance reduction. It is crucial to emphasise that using the optimal importance sam-
pling drift for stratification may not always result in optimal stratification in general.
Furthermore, it is worth noting that the setting of [21] is in discrete time. There is
ample scope to explore optimal stratified sampling in continuous time using neural
networks.

5.2 Changing business activity

Methods typically employed for importance sampling based on continuous stochas-
tic processes for asset prices often assume that the dynamics of the asset price are
governed by an SDE driven by a Brownian motion. Here, we aim to deviate from
the conventional framework where μ = λ and explore an example involving a time-
changed Brownian motion. It is important to note that in this case, the time-change
directly affects the definition of the Cameron–Martin norm through the Lebesgue–
Stieltjes measure μ. The use of a deterministic time-change can be interpreted as a
means of modelling periods characterised by varying business activity, thus incorpo-
rating effects such as seasonality. See Li et al. [37] for an example where this has
been done.

Consider the asset X governed by the dynamics dXt = rXt d[M]t + σXt dMt ,
where X0 = x and Mt = BCt for B representing a standard Brownian motion.
Motivated by [37], we make the assumption that Ct =

∫ t

0 ν(s) ds, where the activity
rate function ν takes the form

ν(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1+ κ(s − 0.2)/0.1, s ∈ [0.2, 0.3),

1+ κ(0.4− s)/0.1, s ∈ [0.3, 0.4),

1+ 2κ(s − 0.6)/0.1, s ∈ [0.6, 0.7),

1+ 2κ(0.8− s)/0.1, s ∈ [0.7, 0.8),

1, else,

where κ denotes the level of business activity. Moreover, we normalise ν such that
C1 =

∫ 1
0 ν(s) ds = 1. In this case, μ is absolutely continuous with respect to λ with

Radon–Nikodým density ν, and [M] = C.
Figure 1 illustrates a representative trajectory of X under the assumption of an

activity rate function modelled by κ = 10. The trajectory exhibits two distinct phases
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Fig. 1 Typical sample path for the model described above with κ = 10, along with the corresponding
activity rate function ν. Other model parameters are X0 = 50, r = 0.05 and σ = 0.25

Table 1 Variance ratios for different levels κ of business activity

Parameter Importance sampling (IS) IS and stratification

κ Mean Std. err. Var. ratio Mean Std. err. Var. ratio

0 5.945 0.019 (0.32%) 129 5.9337 0.0018 (0.03%) 14,525

1 4.675 0.015 (0.32%) 154 4.6672 0.0023 (0.05%) 6,714

2 3.987 0.013 (0.33%) 167 3.9860 0.0026 (0.07%) 4,191

5 3.053 0.010 (0.33%) 207 3.0495 0.0016 (0.05%) 8,139

10 2.5286 0.0086 (0.34%) 235 2.5304 0.0016 (0.06%) 7,110

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported. Number
of hidden nodes is 2. Other model parameters are X0 = 50, r = 0.05, σ = 0.25 and K = 70.

characterised by heightened volatility, which can be interpreted as periods of in-
creased business activity. Table 1 presents results obtained for various values of κ .
Note that the special case κ = 0 corresponds to the classical Black–Scholes model.

From Table 1, it is evident that both importance sampling and the combined ap-
proach of importance and stratified sampling exhibit substantial variance reduction
across all values of κ . Notably, the combination of importance and stratified sam-
pling demonstrates a remarkable enhancement in variance reduction compared to
using importance sampling alone.

In Guasoni and Robertson [24], the authors study asymptotically optimal impor-
tance sampling in continuous time following a large deviations approach. Table 2
of [24] presents variance ratios for an arithmetic Asian call option within a Black–
Scholes model across various values of volatility (σ ) and strike (K). We refer to [24,
Sect. 5] for details about the model and the selected parameters. We replicated [24,
Table 2] using neural networks to induce optimal measure changes and subsequently
compared the obtained variance ratios. On average, employing neural networks re-
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sulted in a 20% increase in the variance ratio. For instance, when considering a
volatility of 30% and a strike of 70, the authors of [24] report a variance ratio of
56 while our method yielded a variance ratio of 67.

Capriotti [7] studies importance sampling based on a least-squares optimisation
procedure. Table 6 of [7] presents variance ratios for various combinations of σ

and K , specifically for an arithmetic Asian call option within a Black–Scholes model.
Additionally, the table includes variance ratios obtained using an adaptive Robbins–
Monro procedure as proposed in Arouna [2] for the same set of model parameters.
We replicated [7, Table 6] using our method and compared the resulting variance ra-
tios. As it turns out, our method yields average variance ratios that are 10% and 95%
higher than the values reported by [7] and [2], respectively.

Finally, [7, Table 7] provides the results for a partial average Asian call option as
previously investigated in Su and Fu [54]. For detailed definitions of the models and
parameters utilised in the simulations, we refer to [7, Sect. 5]. We implemented this
particular model using our method. On average, our approach yielded variance ratios
that were 10% and 50% higher than the values reported by [7] and [54], respectively.

5.3 Multiple rare events

In Glasserman and Wang [22], the authors emphasise that rare events often consist of
unions of meaningful events that represent different ways in which the rare event can
occur. In this context, we aim to examine an example where the rare event is formed
by the intersection of two rare events. We also discuss the case of the union of rare
events later on. An illustrative example is provided by knock-out call options, which
exhibit a classical scenario where the payoff is discontinuous with respect to the asset
price trajectory. In this case, two potentially rare events can arise: (1) the arithmetic
average X̄t =

∫ t

0 〈w,Xs〉 ds must be above the strike at the terminal time, and (2) the
option must not be knocked out.

Consider an asset price X that follows a classical Black–Scholes model, charac-
terised by the SDE dXt = rXt dt+σXt dBt with an initial value of X0 = x, where B

denotes a Brownian motion. In contrast to Sect. 5.2, we introduce knock-out barriers
L,U that satisfy 0 < L < X0 < K < U . The option is considered knocked out if the
arithmetic average X̄t breaches either of the two barriers at any given point in time
before or at maturity. In our example, there is a delicate balance which needs to be
achieved between giving the asset a positive drift such that X̄1 > K with sufficiently
high probability, and making sure that the option is not knocked out.

In Fig. 2, we provide a graphical representation of the learning process of the
neural network. On a fixed dataset, we calculate the probability of the arithmetic
average ending up above the strike K , the probability of it remaining between the
knock-out barriers at all times, as well as the variance ratio after each epoch that
the neural network was trained. Table 2 provides a comprehensive overview of the
variance ratios corresponding to different values of strikes K and upper knock-out
barriers U .

Figure 2 highlights an interesting observation: increasing the variance ratio does
not simply result from an indiscriminate rise in the probabilities of both rare events
occurring. Instead, it becomes evident that a delicate balance between the occurrence
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Fig. 2 A graphical representation of the learning process of the neural network

Table 2 Variance ratios for different values of strike K , volatility σ and upper knock-out barrier U

Parameters Importance sampling (IS) IS and stratification

K σ U Mean Std. err. Var. ratio Mean Std. err. Var. ratio

60 0.2 70 0.763 0.013 (1.70%) 7 0.779 0.012 (1.54%) 7

80 12.605 0.067 (0.53%) 10 12.588 0.049 (0.39%) 18

90 22.607 0.078 (0.35%) 18 22.673 0.032 (0.14%) 112

0.3 70 0.1826 0.0082 (4.49%) 3 0.1816 0.0080 (4.41%) 3

80 13.65 0.12 (0.88%) 4 13.60 0.11 (0.81%) 4

90 42.86 0.22 (0.51%) 5 42.89 0.16 (0.37%) 9

70 0.2 80 0.000775 0.000041 (5.29%) 356 0.000760 0.000041 (5.39%) 357

90 0.1917 0.0018 (0.94%) 144 0.1921 0.0016 (0.83%) 189

100 0.6473 0.0035 (0.54%) 203 0.6449 0.0021 (0.33%) 537

0.3 80 0.00070 0.00014 (20%) 36 0.00068 0.00014 (20.59%) 37

90 0.724 0.011 (1.52%) 17 0.733 0.010 (1.36%) 18

100 4.513 0.034 (0.75%) 18 4.507 0.029 (0.64%) 25

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported. Number
of hidden nodes is 2. Other model parameters are X0 = 50, r = 0.05 and L = 40.

of both rare events is crucial to increase the variance ratio. As demonstrated in Fig. 2,
neural networks exhibit the capability to learn and navigate this balancing act. Table 2
shows again that the neural-network-induced change of measure is able to reduce the
variance to varying degrees. We note that compared to the example of Sect. 5.2,
adding stratification does not yield such a dramatic increase in variance ratio, but the
improvement is still notable in most cases.

The model in this subsection has also been explored in Glasserman et al. [21],
where [21, Table 5.2] reports variance ratios for different values of σ,K and the
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knock-out barrier U (setting the lower knock-out barrier L to zero). In contrast to our
model, the knock-out occurs if the asset price breaches the knock-out barrier U at the
terminal time, i.e., if X1 > U . We replicated their model using our methodology and
compared the achieved variance ratios. Our method on average achieved 20% higher
variance ratios for the case of importance sampling without stratification. However,
when incorporating stratified sampling, our method on average achieved variance
ratios that were 10% lower compared to those reported in [21, Table 5.2]. Note that
the setting of [21] is in discrete time, and that the authors consider asymptotically
optimal drift adjustments. These findings suggest that there might be ample scope to
further investigate optimal neural-network-induced stratification for continuous-time
models.

Let us now revisit the method proposed by Capriotti [7]. In [7, Sect. 5], there is
an example of a European straddle with payoff F(X) = (X1 − K)+ + (K − X1)

+.
Capriotti [7] argues that in this case, the optimal sampling density would need to be
bi-modal, a property that cannot be effectively captured by a normal distribution. As
we attempted to implement this example, it became evident that the neural network
struggled to determine the appropriate drift direction. This particular instance high-
lights the challenges associated with relying solely on drift adjustments for variance
reduction. It serves as an example where the rare event can be characterised as the
union of two events, shedding light on the limitations of such an approach.

5.4 Dynamic correlation

The generality of our paper builds on the decomposition [M] = ∫
π(s)μ(ds). While

Sect. 5.2 deviates from the conventional Brownian setting where μ = λ, we also
present an example that diverges from the typical scenario examined in the existing
literature where π ≡ id, representing the identity matrix. To this end, we consider a
Heston model with a dynamic variance–covariance matrix.

We assume that the price process X follows the dynamics given by the SDE
dXt = rXt dt + √VtXt dBt . The instantaneous variance V follows CIR-type dy-
namics described by dVt = κ(θ − Vt) dt + ξ

√
Vt dWt . Here, B and W are correlated

Brownian motions related through d[B,W ]t = ρ(t) dt , where the correlation func-
tion takes the form ρ(t) = ρ̄ + ρ̄A sin(2πf t). In other words, we deviate from the
constant correlations regime by means of the multiple of a sine wave with amplitude
A and frequency f . We present the results for various combinations of amplitude and
frequency choices in Table 3.

5.5 Basket option

So far, we have presented results in scenarios with low dimensions. However,
the multidimensional formulation of our setting suggests investigating whether we
can achieve satisfactory levels of variance reduction for higher-dimensional mod-
els. Inspired by Jourdain and Lelong [29], we study a multidimensional Black–
Scholes model.

Consider the d-dimensional asset price X governed by the SDE

dXt = r �Xt dt +Xt � dMt,
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Table 3 Variance ratios for different values of amplitude A and frequency f

Parameters Importance sampling (IS) IS and stratification

A f Mean Std. err. Var. ratio Mean Std. err. Var. ratio

0 0 2.2145 0.0085 (0.38%) 171 2.2308 0.0063 (0.28%) 311

0.2 1 1.9378 0.0076 (0.39%) 178 1.9517 0.0058 (0.30%) 304

2 2.0807 0.0082 (0.39%) 171 2.0938 0.0062 (0.30%) 297

4 2.1498 0.0085 (0.40%) 165 2.1651 0.0065 (0.30%) 283

0.5 1 1.5544 0.0062 (0.40%) 203 1.5666 0.0048 (0.31%) 338

2 1.8926 0.0077 (0.41%) 173 1.9037 0.0059 (0.31%) 289

4 2.0553 0.0081 (0.38%) 168 2.0691 0.0062 (0.30%) 289

1 1 1.0147 0.0041 (0.39%) 268 1.0239 0.0032 (0.31%) 443

2 1.6117 0.0064 (0.40%) 202 1.6230 0.0047 (0.29%) 369

4 1.9048 0.0078 (0.41%) 165 1.9160 0.0060 (0.31%) 277

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported. Number
of hidden nodes is 5. Other model parameters are X0 = 50, r = 0.05, V0 = 0.04, κ = 2, θ = 0.09,
ξ = 0.2, ρ̄ = −0.5 and K = 70.

where M = �B represents a d-dimensional standard Brownian motion B with
variance–covariance matrix ���. We sample the initial value X0 of X uniformly
from the range of 10 to 200. Moreover, we sample the vector r of appreciation rates
and the vector σ of volatilities uniformly between 1% and 9% as well as 10% and
30%, respectively. The weight vector w is then computed as wi = ri/σ

2
i and further

normalised to sum to 1.
To define the matrix ���, it is necessary to specify the correlation matrix. In

order to ensure a valid correlation matrix that remains positive definite even in high
dimensions, we adopt the approach proposed by Davies and Higham [14]. First, we
sample a d-dimensional vector y uniformly between 0 and 1. We then rescale the vec-
tor y so that the sum of its elements equals the dimension d . The algorithm proposed
in [14] then generates a valid correlation matrix, whose eigenvalues correspond to the
values in the rescaled vector y. Finally, we still need to specify the strike. To this end,
we sample 104 observations of the arithmetic average X̄ at maturity and then choose
the strike K to approximately be above the 90th percentile of the distribution of X̄1.
Note that the choice of K is highly dependent on the previously sampled parameters.

Table 4 presents variance ratios obtained for various dimensions d ranging from
d = 10 up to d = 1000. Moreover, we also compared our method to the approach
presented in [29]. In their study, the authors considered the 40-dimensional case, and
all volatilities, appreciation rates and weights were chosen uniformly across all assets
in the basket. We refer to [29, Sect. 3] for further details about the model as well as
the model parameters in [29, Table 1]. As it turns out, our method achieves variance
ratios that are on average comparable to those reported by [29]. It is important to note
that the strikes which were chosen are relatively close to the initial value. In previous
examples, we can observe that the obtained variance ratios tend to grow as the strike
is increased. In contrast to [29], we present in Table 4 results for dimension up to
d = 1000, which we believe is a distinctive aspect worth highlighting.
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Table 4 Variance ratios for different dimensions d

Parameters Importance sampling

d K Mean Std. err. Var. ratio P[F(X) > 0] Q[F(X) > 0]

10 88 3.7557 0.0118 (0.31%) 62 3.24% 70.83%

20 115 1.3252 0.0049 (0.37%) 124 1.22% 65.42%

50 126 6.4457 0.0189 (2.93%) 28 6.96% 72.36%

100 106 1.6995 0.0056 (0.33%) 54 3.36% 70.69%

200 112 2.1373 0.0067 (0.31%) 36 5.17% 72.04%

500 110 1.1352 0.0042 (0.37%) 30 4.46% 74.99%

1000 110 2.327 0.011 (0.47%) 6 10.87% 84.72%

Note: Option prices and standard errors are quoted in cents. Only significant digits are reported. Number
of hidden nodes corresponds to the dimension d. Also P[F(X) > 0] represents the proportion of tra-
jectories in the test dataset where the payoff is positive, without incorporating a drift adjustment, while
Q[F(X) > 0] denotes the proportion of trajectories in the test dataset where the payoff is positive under
the drift adjustment.

6 Conclusions

In this paper, we presented a method that uses feedforward neural networks for the
purpose of reducing the variance of Monte Carlo estimators. To this end, we studied
the class of Gaussian measures which are induced by vector-valued continuous local
martingales with deterministic covariation. Building on the theory of vector stochas-
tic calculus, we identified the Cameron–Martin spaces of those measures and proved
universal approximation theorems that establish, up to an isometry, topological den-
sity of feedforward neural networks in these spaces. We then applied our results to a
classical importance sampling approach which seeks an optimal drift adjustment of
the processes which are driving the asset prices. Finally, we presented the results of
a numerical study which clearly indicate the potential of this approach.

We remark that our approach comes with several challenges. In principle, one
needs to train separate feedforward networks for different models and model param-
eters. In view of Remark 4.9, one could train a feedforward network to minimise
a weighted average standard error over several models or model parameters. Com-
plex, high-dimensional models might call for the use of complex neural network
architectures in order to achieve a sufficient variance reduction, which might lead
to a considerable computational effort for training the feedforward networks. On the
other hand, the competing approaches in Guasoni and Robertson [24] and Robert-
son [50] involve having to solve a potentially complex, high-dimensional variational
problem, whose solution might involve a numerical procedure which might induce a
considerable computational effort, too. Finally, while Theorem 4.6 and the simula-
tions of Sect. 5 show that one can obtain a sufficient variance reduction with shallow
feedforward networks, the model-dependent choice of optimal architecture has not
been discussed at all, which highlights the potential for a further improvement of this
method.
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6.1 Outlook on further research

Throughout this paper, we assumed the process M to be a continuous local martin-
gale with deterministic covariation, so that it is a Gaussian process and induces a
Gaussian measure on path space. Clearly, there are Gaussian processes which cannot
be local martingales, e.g. fractional Brownian motion with Hurst index �= 1/2. In line
with Remark 2.15, Sect. 2 can be extended to the study of multivariate Volterra-type
Gaussian processes of the form M̃t =

∫ T

0 k(t, s) dMs with a matrix-valued kernel k.
While Sect. 4 makes use of the semimartingale property of M by applying Girsanov’s
theorem and studying convergence of stochastic exponentials, the Cameron–Martin
theorem (see Theorem A.5) can still be applied to the Gaussian measure that is in-
duced by M̃ on path space. These considerations in particular motivate the study of a
refined class of multivariate (fractional) stochastic volatility models, their small-time
asymptotics as well as importance sampling methods for the numerical valuation of
derivatives for these models, which is subject to a follow-up work.

In Sect. 4, we required F(X) to be FT -measurable and Lp-integrable for some
p > 2. However, the properties that we imposed on the process X were rather weak.
In particular, Theorem 4.6 only considered F(X) as a random variable, where we
used the SDE for X only when performing a measure change and applying Girsanov’s
theorem in order to understand the semimartingale decomposition of X under a new
sampling measure. Therefore, the methods from Sect. 4 should extend to the case
where X is the solution to a McKean–Vlasov SDE, provided that we understand
how the dynamics of the process change under a change of measure. We leave it
to a follow-up work to combine our methods with ideas from dos Reis et al. [48],
which should lead to a tractable importance sampling framework for the valuation
of derivatives on solutions to McKean–Vlasov SDEs under weaker assumptions than
those imposed in [48].

The setting of this paper naturally applies to the valuation of European options and
asset price processes with continuous paths. More generally, reducing the standard
error of Monte Carlo estimators with neural networks when pricing American options
based on the popular algorithm proposed by Longstaff and Schwartz (cf. Clément et
al. [11] and Longstaff and Schwartz [40]) and models with jumps, very much in the
spirit of Genin and Tankov [19] as well as Kawai [31], provides another interesting
challenge that is reserved for follow-up work.

Finally, the measure changes we studied in Sect. 4 were induced by density pro-
cesses of the form E(f • M), where f ∈ �2 is a deterministic function. The reason
why we did not consider the more general class of processes U ∈ L2(M) for which
E(U •M) is a martingale is twofold. While the proof of Theorem 4.6 would become
more involved, one would need to use neural network architectures which are more
complex than the ones discussed in Sect. 3. For this reason, we argue that the prob-
lem of considering deterministic functions f ∈ �2 provides a tractable, numerically
efficient method to reduce the variance in Monte Carlo simulations, and leave the
extension to processes U ∈ L2(M) and their approximation with neural networks for
future work.
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Appendix A: Gaussian measures

In this appendix, we collect for the readers’ convenience some classical definitions
and results about Gaussian measures. Let (E, ‖ · ‖E) denote a real separable Banach
space, γ a Borel probability measure on E and M = (Mt)t∈[0,T ] an R

d -valued pro-
cess on a probability space (�,F ,P). Given h ∈ E, we further denote by γh the
measure on E induced by the translation E � x �→ x + h.

Definition A.1 The measure γ is called Gaussian if each f ∈ E∗ induces a Gaussian
distribution on (R,BR). The process M = (Mt)t∈[0,T ] is called Gaussian if (Mti )

n
i=1

is jointly Gaussian for each n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T .

A Gaussian measure γ is centered if each f ∈ E∗ induces a centered Gaussian
distribution. Similarly, a Gaussian process M = (Mt)t∈[0,T ] is centered if (Mti )

n
i=1

is jointly centered Gaussian for each n ∈ N and 0 ≤ t1 < t2 < · · · < tn ≤ T . Since
Sect. 2 only considers centered Gaussian processes and measures, we restrict from
now on to this special case.

In the context of Definition A.1, we have the natural embedding j : E∗ → E∗γ ,
where E∗γ denotes the reproducing kernel Hilbert space of γ , which is defined as the

closure of E∗ in L2(γ ). We further define the covariance operator of γ by the map

Rγ : E∗ → (E∗)′, f �→
(

g �→
∫

E

f (x)g(x)γ (dx)

)
,

and implicitly consider its extension to E∗γ , i.e., Rγ : E∗γ → (E∗)′.
Given f ∈ E∗γ , note that Rγ (f ): E∗ → R is a linear operator. If we endow

E∗ with the Mackey topology, then Bogachev [5, Lemma 3.2.1] shows that Rγ (f )

is continuous. Mackey’s theorem (cf. [5, Theorem A 1.1]) yields the existence of
xf ∈ E such that Rγ (f )(g) = g(xf ) for each g ∈ E∗. We then also denote by Rγ

the map E∗γ � f �→ xf .

Definition A.2 Given a centered Gaussian measure γ on E, the Cameron–Martin
space H(γ ) of γ is defined as the range of Rγ in E, i.e., H(γ ) := Rγ (E∗γ ) ⊆ E. We
equip H(γ ) with the inner product

〈h, k〉H(γ ) := 〈ĥ, k̂〉L2(γ ) =
∫

E

ĥ(x)k̂(x)γ (dx), h, k ∈ H(γ ),

where h = Rγ (ĥ) and k = Rγ (k̂) for some ĥ, k̂ ∈ E∗γ .

The space (H(γ ), 〈 · , · 〉H(γ )) is a real separable Hilbert space that is contin-
uously embedded into E (cf. [5, Proposition 2.4.6 and Theorem 3.2.7]). More-
over, [5, Theorem 2.4.7] shows that H(γ ) is of γ -measure zero whenever E∗γ is
infinite-dimensional.

Remark A.3 Given a centered Gaussian measure γ on E, the topological support of γ

is defined as the smallest closed subset S ⊆ E with γ (E\S) = 0. It is given by H(γ ),
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where the closure is taken in E (cf. [5, Theorem 3.6.1]). We call γ nondegenerate if
H(γ ) = E or, equivalently, if H(γ ) is densely embedded into E. If H(γ ) is a strict
subspace of E, then we call γ degenerate.

Remark A.4 If γ and γ̃ are two centered Gaussian measures on E with H(γ ) = H(γ̃ )

and ‖ · ‖H(γ ) = ‖ · ‖H(γ̃ ), then γ and γ̃ coincide (cf. [5, Corollary 3.2.6]). More-
over, if E is continuously and linearly embedded into another real separable Ba-
nach space Ẽ with embedding i and induced Gaussian measure ν = γ ◦ i−1, then
Ẽ ⊇ H(ν) = i(H(γ )) (cf. [5, Lemma 3.2.2]).

The Cameron–Martin space has another useful characterisation, which is stated in
the following theorem (cf. [5, Theorem 2.4.5] and [6, Theorem 1]).

Theorem A.5 Given a centered Gaussian measure γ on E and h ∈ E, the mea-
sures γ and γh are equivalent precisely when h ∈ H(γ ), and singular otherwise. In
particular,

H(γ ) = Rγ (E∗γ ) = {h ∈ E : γh ≈ γ }.

Whenever γ is Gaussian, the measure γh is Gaussian for each h ∈ E (cf. [5,
Lemma 2.2.2]). Consequently, Theorem A.5 characterises a set of Gaussian mea-
sures which are equivalent to γ . The following theorem (cf. [5, Theorem 2.7.2]) is
another central result, which in particular implies that γh and γ are singular whenever
h ∈ E \H(γ ).

Theorem A.6 Any two Gaussian measures on E are either equivalent or mutually
singular.

In order to quantify the (exponential) decline of the probability of certain tail
events, the following result is often useful (cf. [5, Corollary 4.9.3]).

Proposition A.7 Let γ be a centered Gaussian measure on E and for ε > 0, denote
by γε the pushforward measure of γ under the map E � f �→ √

εf . Then (γε)ε>0

satisfies the large deviation principle with rate function Iγ : E → R+, where

Iγ (f ) =
{

1
2‖f ‖2

H(γ ) for f ∈ H(γ ),

∞, otherwise.

In other words, for each F ∈ BE ,

− inf
f∈F ◦

Iγ (f ) ≤ lim inf
ε↘0

ε log γε(F ) ≤ lim sup
ε↘0

ε log γε(F ) ≤ − inf
f∈F

Iγ (f ).

Before we finish this section, we state a result that allows us in many cases to
obtain a tractable representation of (H(γ ), 〈 · , · 〉H(γ )) (cf. [5, Sect. 3.3]).
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Theorem A.8 Given a centered Gaussian measure γ on E, assume that there exist a
Hilbert space H̃ and a continuous linear operator J : H̃ → E such that Rγ admits
the factorisation Rγ = J ◦ J ∗, where J ∗: E∗ → H̃ ∗ ∼= H̃ denotes the adjoint of J .
Then H(γ ) coincides with J (H̃ ). If J is moreover injective, then

〈f, g〉H(γ ) = 〈J−1(f ), J−1(g)〉
H̃

, f, g ∈ H(γ ).

Appendix B: Proofs

Proof of Lemma 2.10 (a) The proof of Cherny and Shiryaev [8, Lemma 3.2] reveals
that ‖ · ‖�2 satisfies the triangle inequality, which shows that �2 is a real vector
space. In order to see that 〈 · , · 〉�2 is an inner product on �2, note that by con-
struction, 〈 · , · 〉�2 is symmetric and linear in both arguments, and recall that π is
positive semidefinite μ-almost everywhere, hence f�πf ≥ 0 μ-almost everywhere
and therefore

∫ T

0 f�(s)π(s)f (s)μ(ds) ≥ 0 for each measurable f : [0, T ] → R
d . If

〈f, f 〉�2 = 0 for some f ∈ �2, then f�πf = 0 μ-almost everywhere, hence f ∼ 0,
which implies that 〈 · , · 〉�2 is positive definite.

Completeness of (�2, �2), where �2 denotes the translation invariant metric in-
duced by ‖ · ‖�2 , follows from Jacod [28, Lemme 4.29], and separability can be
argued by adapting the proof of [4, Theorem 19.2]. We conclude that (�2, 〈 · , · 〉�2)

is a real separable Hilbert space.
(b) This is a direct consequence of the Fréchet–Riesz representation theorem since

we know by Lemma 2.10(a) that �2 is a Hilbert space.
(c) �2,0 is clearly a real vector space. Given f ∈ �2,0 and i, j ∈ {1, 2, . . . , d}, a

version of the Kunita–Watanabe inequality for Lebesgue–Stieltjes integrals gives

(∣∣∣∣
∫ T

0
fi(s)fj (s)μi,j (ds)

∣∣∣∣
)2

≤
( ∫ T

0
|fi(s)fj (s)||μi,j |(ds)

)2

≤
∫ T

0
f 2

i (s)μi,i (ds)

∫ T

0
f 2

j (s)μj,j (ds) <∞, (B.1)

hence �2,0 ⊆ �2, and (�2,0, 〈 · , · 〉�2) is therefore an inner product space.
The fact that �2,0 is dense in �2 has been shown in [28, Lemme 4.29], which

also implies the separability of �2,0. From Lemma 2.10(a), we further know that
(�2, 〈 · , · 〉�2) is a Hilbert space and in particular complete.

(d) The continuity of the embedding follows from (B.1) and (B.4) below.
The remaining assertion follows from a multivariate version of Kallenberg [30,
Lemma 1.37].

(e) Let (π̃ , μ̃) be another pair that satisfies the representation (2.1) and take
f ∈ �2,0. Then dμi,j /dμ = πi,j as well as dμi,j /dμ̃ = π̃i,j for i, j ∈ {1, 2, . . . , d}.
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Hence (B.1) gives

∫ T

0
f�(s)π(s)f (s)μ(ds) =

d∑
i,j=1

∫ T

0
fi(s)fj (s)μi,j (ds)

=
∫ T

0
f�(s)π̃(s)f (s)μ̃(ds),

which extends to all f ∈ �2 using the density of �2,0 in �2, and we see that ‖ · ‖�2

does not depend on the specific choice of (π, μ) satisfying (2.1). Moreover, for mea-
surable f, g: [0, T ] → R

d , (f − g)�π(f − g) = 0 μ-almost everywhere holds pre-
cisely when ‖f −g‖�2 = 0 which is equivalent to (f − g)�π̃(f − g) = 0 μ̃-almost
everywhere. �

Proof of Proposition 2.18 (a) By a variant of the Cauchy–Schwarz inequality, for
h ∈ H , i ∈ {1, 2, . . . , d} and t ∈ [0, T ], it holds that

∫ t

0

∣∣∣∣
d∑

j=1

πi,j (s)fh,j (s)

∣∣∣∣μ(ds) ≤ √
μi,i([0, t])‖fh‖�2 ≤

√
μ([0, T ])‖h‖H , (B.2)

which shows that the integral in (2.2) is well defined.
(b) H is clearly a real vector space and 〈 · , · 〉H is symmetric and linear in both

arguments. To show that 〈 · , · 〉H is positive definite, note that 〈h, h〉H = ‖fh‖2
�2 ≥ 0

for each h ∈ H . If h ∈ H satisfies 〈h, h〉H = 0, then f�h πfh = 0 μ-almost every-
where, hence fh ∼ 0. An application of (B.2) shows that (πfh)i = 0 μ-almost
everywhere for i ∈ {1, 2, . . . , d}, hence h = 0. Thus (H, 〈 · , · 〉H ) is an inner
product space.

We obtain a norm ‖·‖H on H by setting ‖h‖H := √〈h, h〉H and thus also a metric
�H on H by setting �H (f, g) := ‖f −g‖H . In order to see that (H, �H ) is complete,
let (hn)n∈N be a Cauchy sequence in H . Then (fhn)n∈N is a Cauchy sequence in �2.
From Lemma 2.10(a), we know that �2 is complete. Consequently, there exists some
f ∈ �2 such that fhn → f in �2. If we set h = J (f ), then h ∈ H and hn → h in H .

Finally, to see that is separable, note first that �2 is separable by Lemma 2.10(a).
But then H is separable as well, because a countable dense subset of H is given
by {h ∈ H : fh ∈ B}, where B is a countable dense subset of �2.

(c) By construction, J : �2 → H is a linear isometry. Since �2,0 is a linear
subspace of �2 by Lemma 2.10(c), we see that (H 0, 〈 · , · 〉H ) is an inner product
subspace of H . If (hn)n∈N is a Cauchy sequence in H 0, then (fhn)n∈N is a Cauchy
sequence in �2,0. By Lemma 2.10(c), there exists an f ∈ �2 such that fhn → f

as n→∞. Denoting h = J (f ) ∈ H , it follows that hn → h in H as n→∞.
(d) This is a direct consequence of the Fréchet–Riesz representation theorem

since we know by part (b) that H is a Hilbert space.

Remark B.1 For the proof of Proposition 2.18(e), we use a multivariate version of the
Riesz–Markov–Kakutani representation theorem: Every F ∈ (C([0, T ];Rd))∗ can
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be identified with an R
d -valued function ν = (ν1, ν2, . . . , νd)� on B[0,T ], where

every entry is a signed Borel measure of finite total variation, such that

F(f ) =
d∑

j=1

∫ T

0
fj (s)νj (ds) =:

∫ T

0
f�(s)ν(ds), f ∈ C([0, T ];Rd).

For f : [0, T ] → R
n×d with (fi,·)� ∈ C([0, T ];Rd) for i ∈ {1, 2, . . . , n}, we write

∫ T

0
f (s)ν(ds) =

( ∫ T

0
f1,·(s)ν(ds), . . . ,

∫ T

0
fn,·(s)ν(ds)

)�
.

For generalisations to infinite-dimensional domains and image spaces, see for in-
stance Gowurin [23] and Singer [53].

(e) We argue in line with Lifshits [39, Example 4.4] and use Theorem A.8. First
we note that every h ∈ H is continuous and satisfies h(0) = 0; hence H ⊆ E. Let
us consider J as a linear operator J : �2 → E, which is continuous due to (B.2). In
the context of Remark B.1, E∗ is given as a quotient space, where we identify those
ν ∈ (C([0, T ];Rd))∗ that annihilate E.

For f ∼ σ and g ∼ ν in E∗,

Rγ (f )(g)

=
∫

E

f (x)g(x)γM(dx) = E[f (M)g(M)] = E

[ ∫ T

0
M�

s σ (ds)

∫ T

0
M�

s ν(ds)

]

=
d∑

i,j=1

∫ T

0

∫ T

0
E[Mi

sM
j
t ]σi(ds)νj (dt) =

d∑
i,j=1

∫ T

0

∫ T

0
[M]i,js∧t σi(ds)νj (dt)

=
d∑

j=1

∫ T

0

d∑
i=1

∫ T

0
[M]i,js∧t σi(ds)νj (dt) =

d∑
j=1

∫ T

0

( ∫ T

0
[M]s∧t σ (ds)

)
j

νj (dt)

=
∫ T

0

( ∫ T

0
[M]s∧t σ (ds)

)�
ν(dt) =

(
g,

∫ T

0
[M]s∧·σ(ds)

)
.

We can therefore identify Rγ (f ) with
∫ T

0 [M]s∧·σ(ds).
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Next, let us find the adjoint J ∗ of J . Given f ∈ �2 and g ∼ ν in E∗, we have

g
(
J (f )

) =
d∑

i=1

∫ T

0
Ji(f )(t)νi(dt) =

d∑
i=1

∫ T

0

∫ t

0
πi,·(s)f (s)μ(ds)νi(dt)

=
d∑

i=1

∫ T

0

∫ T

0
1[0,t](s)πi,·(s)f (s)μ(ds)νi(dt)

=
d∑

i=1

∫ T

0

∫ T

0
1[0,t](s)νi(dt)πi,·(s)f (s)μ(ds)

=
d∑

i=1

∫ T

0
νi([s, T ])πi,·(s)f (s)μ(ds)

=
∫ T

0
ν([s, T ])�π(s)f (s)μ(ds) = 〈ν([·, T ]), f 〉�2 .

So J ∗: E∗ → (�2)∗ ∼= �2 is given by g ∼ ν �→ ([0, T ] � s �→ ν([s, T ])).
Finally, the covariance operator admits for g ∼ ν in E∗ the factorisation

Rγ (g)i(t) =
∫ T

0
[M]i,·s∧t ν(ds) =

d∑
j=1

∫ T

0
[M]i,js∧t νj (ds)

=
d∑

j=1

∫ T

0

∫ s∧t

0
πi,j (w)μ(dw)νj (ds)

=
d∑

j=1

∫ T

0
πi,j (w)

∫ T

0
1[0,s∧t](w)νj (ds)μ(dw)

=
d∑

j=1

∫ t

0
πi,j (w)νj ([w, T ])μ(dw)

=
∫ t

0
πi,·(w)ν([w, T ])μ(dw)

=
∫ t

0
πi,·(w)J ∗(g)(w)μ(dw) = (J ◦ J ∗)(g)i(t),

where i ∈ {1, 2, . . . , d} and t ∈ [0, T ].
Let us show that J is injective. Let f1, f2 ∈ �2 be such that J (f1) = J (f2), i.e.,

‖J (f1)− J (f2)‖∞ = 0, which implies in particular for g = f1 − f2 that

∫
A

π(s)g(s)μ(ds) = 0 ∈ R
d (B.3)
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for all A ∈ B[0,T ] of the form A = (s, t] for s < t in [0, T ]. Since the half-
open intervals generate B[0,T ], Dynkin’s theorem shows that (B.3) extends to all
A ∈ B[0,T ].

We now show that g ∼ 0, i.e., g�πg = 0 μ-almost everywhere. If this were
not the case, then we would have, without loss of generality, μ({g�πg > 0}) > 0.
We claim that {g�πg > 0} ⊆ {πg �= 0}. To see this, pick s ∈ [0, T ] such
that g�(s)π(s)g(s) > 0 and assume that π(s)g(s) = 0. In other words, for each
i ∈ {1, 2, . . . , d}, we should have

∑d
j=1 πi,j (s)gj (s) = 0. But this cannot be the

case, since we then should have

0 < g�(s)π(s)g(s) =
d∑

i=1

gi(s)

( d∑
j=1

πi,j (s)gj (s)

)
= 0.

Now μ({g�πg > 0}) > 0 implies that μ({πg �= 0}) > 0. Because we clearly have
{πg �= 0} = ⋃d

i=1{(πg)i �= 0}, there is i ∈ {1, 2, . . . , d} with μ({(πg)i �= 0}) > 0.
Without loss of generality, we may assume that μ({(πg)i > 0}) > 0. Note that the
set A = {(πg)i > 0} can be written as

A =
⋃
n∈N

{
(πg)i ≥ 1

n

}
=

⋃
n∈N

(
(πg)i

)−1
([1

n
,∞

))
,

where every An := ((πg)i)
−1([ 1

n
,∞)) is B[0,T ]-measurable, and thus so is A. Now

μ(A) > 0 implies μ(An) > 0 for some n ∈ N, hence n
∫
An

(πg)i(s)μ(ds) ≥ μ(An),
which yields a contradiction to (B.3). We may therefore conclude that
f1 − f2 = g ∼ 0 in �2, which shows that the operator J : �2 → E is injective.
Theorem A.8 now implies that the Cameron–Martin space of γM is given by
J (�2) = H . �

Proof of Theorem 2.24 That H(D) is a dense subset of H follows from the Standing
Assumption 2.22 and the definition of the norm on H induced by the inner product
〈 · , · 〉H . Being a dense subset of a separable metric space implies the remaining
assertion of part (a).

If D is also a linear subspace of �2, then H(D) is clearly an inner product space,
whose completion is H by part (a). We now follow a standard argument, a version
of which can be found e.g. in Mercer [42, Proposition 1]. Since H(D) is dense in
H by part (a) and H is separable due to Proposition 2.18(b), there exists a countable
subset of H(D) that is also dense in H . Upon applying the Gram–Schmidt process to
this subset, one obtains a countable set of orthonormal vectors in H(D) whose linear
span is dense in H .

We know from Proposition 2.18(e) that H is the Cameron–Martin space of γM .
By standard theory for Gaussian measures, we know that the topological support of
γM then coincides with H , where the closure is taken in E (see Remark A.3). But
since H(D) is dense in H by part (a), and the canonical injection from H to E is
continuous by [5, Proposition 2.4.6], we have H = H(D), which yields part (c). �
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Proof of Proposition 3.4 For the purpose of the proof, we denote by ‖ · ‖∞;[0,T ] either
the supremum or the λ-essential supremum over [0, T ], depending on which of the
two conditions in the statement of Proposition 3.4 holds.

The affine functions R � x �→ αx+η with α, η ∈ R are continuous over [0, T ] and
therefore bounded. Since ψ is (locally λ-essentially) bounded, each f ∈ NN d

1,∞(ψ)

is (λ-essentially) bounded; hence

∫ T

0
f 2

i (s)μi,i(ds) ≤ ‖fi‖2
∞;[0,T ]

∫ T

0
πi,i(s)μ(ds) <∞ (B.4)

for each i ∈ {1, 2, . . . , d}. Note that in (B.4), we implicitly used the fact that μ is
absolutely continuous with respect to λ in the case of Condition 3) from Theorem 3.3
since in this case each, f ∈ NN d

1,∞(ψ) is μ-essentially bounded. We conclude that

NN d
1,∞(ψ) is a linear subspace of �2,0.

For f ∈ �2,0, let ε > 0. For each η ∈ R
d and s ∈ [0, T ], we have the inequality

η�π(s)η ≤ |η|2 tr(π(s)) (cf. Cherny and Shiryaev [8, Sect. 3]). By Lemma 2.10(d),
C([0, T ];Rd) is dense in �2,0; hence there exists some fε ∈ C([0, T ];Rd) such that
‖f − fε‖�2 < ε/2. By Theorem 3.3, there exists some g ∈ NN d

1,∞(ψ) such that
‖fε − g‖∞;[0,T ] < ε/(2

√‖ tr(π)‖L1(μ)), hence

‖f − g‖�2 ≤ ‖f − fε‖�2 + ‖fε − g‖�2

< ε/2+ ‖fε − g‖∞;[0,T ]
√
‖ tr(π)‖L1(μ) < ε,

which concludes our proof. �

Proof of Proposition 3.5 Since ψ is bounded, one can show precisely as in the proof
of Proposition 3.4 that NN d

1,∞(ψ) is a linear subspace of �2,0. If NN d
1,∞(ψ)

were not dense in �2,0, there would exist by the geometric version of the Hahn–
Banach theorem a functional F ∈ (�2,0)∗ such that F �≡ 0 and F(f ) = 0 for each
f ∈ NN d

1,∞(ψ). Let N denote the subspace of all G ∈ (�2)∗ that annihilate �2,0,

i.e., for which G(f ) = 0 for each f ∈ �2,0 holds. The space (�2,0)∗ can then be
identified with the quotient space (�2)∗/N .

From Lemma 2.10(b), we know that there exists a function g ∈ �2 such that
F(f ) = ∫ T

0 f�(s)π(s)g(s)μ(ds) for each f ∈ �2,0. The linearity of the Lebesgue–
Stieltjes integral gives

F(f ) =
d∑

i=1

∫ T

0
fi(s)

d∑
j=1

πi,j (s)gj (s)μ(ds) = 0, f ∈ NN d
1,∞(ψ), (B.5)

and by a variant of the Cauchy–Schwarz inequality (cf. [8, Lemma 4.17]), for each
i ∈ {1, 2, . . . , d} and A ∈ B[0,T ], it holds that

∫
A

∣∣∣∣
d∑

j=1

πi,j (s)gj (s)

∣∣∣∣μ(ds) ≤ √
μi,i(A)‖g‖�2 ≤

√
μ(A)‖g‖�2 .
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Hence νi(A) := ∫
A

∑d
j=1 πi,j (s)gj (s)μ(ds) defines a signed Borel measure on

[0, T ] that is of finite total variation.
Exactly as in Cybenko [13] and Hornik [26], we arrive at the question whether

there exists a signed Borel measure ν �= 0 on [0, T ] of finite total variation such
that

∫ T

0 ψ(αx + η)ν(dx) = 0 holds for all α, η ∈ R. As we know from [13, Lemma
1], this is not the case if ψ is bounded, measurable and sigmoidal (meaning that
ψ(t) → 0 as t → −∞ and ψ(t) → 1 as t → ∞), and [26, Theorem 5] then
generalised this finding to show that this is not the case if ψ is bounded, measur-
able and nonconstant. In other words, (B.5) implies that F ≡ 0, which yields a
contradiction. �

Proof of Proposition 4.4 Since each f ∈ D is a linear combination of compositions
of ψ and affine functions, both of which are continuously differentiable, if follows
that f is continuously differentiable, hence of bounded variation, which shows that
H(D) is a subspace of Hbv.

By Proposition 3.4, there exists a sequence (hn)n∈N in H(D) that converges to
gh,c in H . From the proof of Theorem 2.24(c), we know that the canonical injection
from H to C0([0, T ];R) is continuous, which implies that (hn)n∈N converges to gh,c

in C0([0, T ];R). Since F̃ : C0([0, T ];R)→ R∪{−∞} is assumed to be continuous,
it follows that F̃ (hn) converges to F̃ (gh,c). Moreover, since ‖ · ‖H : H → R+ is
Lipschitz-continuous, we can conclude that F̃h,c(hn) converges to F̃h,c(gh,c). �

The following result follows from standard arguments. Recall that for h ∈ H , we
denote by fh the function in �2 with h(t) = J (fh(t) for t ∈ [0, T ]; see (2.2).

Lemma B.2 For all h ∈ H and p ∈ [1,∞), we have fh ∈ Lp(M), which implies that
fh • M ∈ Hp. Moreover, if (hn)n∈N denotes a sequence that converges to h in H ,
then fhn

•M → fh •M in Hp for each p ∈ [1,∞).

Proof Since fh is deterministic, it is predictable when viewed as a stochastic process.
Moreover, since

‖fh‖Lp(M) = E
[[fh •M]p/2

T

]1/p = E
[(

(f�h πfh) • C
)p/2
T

]1/p = ‖h‖H <∞, (B.6)

we have fh ∈ Lp(M), and an application of the Burkholder–Davis–Gundy (BDG)
inequality implies that fh • M ∈ Hp. Keeping in mind (B.6), an application of the
BDG inequality then yields the existence of a positive constant cp such that

‖(fhn − fh) •M‖Hp ≤ cp‖hn − h‖H ,

where the right-hand side converges to zero as n→∞. �

Proof of Lemma 4.5 Given h ∈ H , let (hn)n∈N be a sequence that converges to h in H .
Set Ap : H � h �→ (E(fh •M)−1)T and let Yn = Ap(hn) for n ∈ N, and Y = Ap(h).
By Lemma B.2, we have fhn

•M → fh •M in H1, hence (fhn
•M)T → (fh •M)T

in L1(P) and thus also in probability. By the reverse triangle inequality, we have
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‖hn‖H → ‖h‖H as n→∞, and in particular, the sequence (‖hn‖H )n∈N is bounded.
In consequence, Yn converges to Y in probability.

For each n ∈ N and p ∈ [1,∞),

E[Yp
n ] = E

[
exp

(− p(fhn
•M)T − p2‖hn‖2

H /2
)]

exp
(
(p + p2)‖hn‖2

H /2
)

= E[Zn
T ] exp

(
(p + p2)‖hn‖2

H /2
)
, (B.7)

where Zn := E(−p(fhn
• M)) is by Novikov’s criterion a martingale. Thus we have

E[Zn
T ] = E[Zn

0 ] = 1, and so the sequence (Yn)n∈N is bounded in Lp(P). This shows
that for any p ∈ [1,∞), the sequence (|Yn − Y |p)n∈N is uniformly integrable and
hence converges to 0 in L1(P), which further implies that Yn converges to Y in Lp(P).
Finally, (B.7) shows that ‖Ap(h)‖Lp(P) = exp((1+ p)‖h‖2

H /2), hence

lim sup
‖h‖H→∞

‖Ap(h)‖Lp(P)

‖h‖H = lim‖h‖H→∞
exp

(
(1+ p)‖h‖2

H /2
)

‖h‖H = ∞,

which yields the remaining assertion. �

Proof of Theorem 4.6 As in the proof of Lemaire and Pagès [35, Proposition 4],
Hölder’s inequality yields for p = (2+ ε)/2 and q = (2+ ε)/ε that

V (h) = EP

[
F 2(X) exp

(− (fh •M)T + ‖h‖2
H /2

)]

≤ EP[|F(X)|2+ε]1/p
EP

[
exp

(− q(fh •M)T + q‖h‖2
H /2

)]1/q

= EP[|F(X)|2+ε]1/p
EP

[
E
(− q(fh •M)

)
T

]1/q exp
(
(1+ q)‖h‖2

H /2
)

= EP[|F(X)|2+ε]1/p exp
(
(1+ q)‖h‖2

H /2
)
, h ∈ H,

where the last equality follows because E(−q(fh •M)) is a martingale so that

EP

[
E
(− q(fh •M)

)
T

] = EP

[
E
(− q(fh •M)

)
0

] = 1.

This shows that V is R+-valued.
Next, let us show that V is convex. To this end, pick η ∈ (0, 1) and g, h ∈ H

such that g �= h. By the triangle inequality and positive homogeneity, we have the
inequality ‖ηg+ (1−η)h‖H ≤ η‖g‖H + (1−η)‖h‖H . By the linearity of the vector
stochastic integral and the convexity of R � x �→ x2, we thus have

−
((

ηfg + (1− η)fh

)
•M

)
T
+ ‖ηg + (1− η)h‖2

H /2

≤ η
(− (fg •M)T + ‖g‖2

H /2
)+ (1− η)

(− (fh •M)T + ‖h‖2
H /2

)
.

Together with the convexity and monotonicity of R � x �→ exp x, this shows that V

is convex.
Given h ∈ H , let (hn)n∈N be a sequence that converges to h in H . Due

to Lemma 4.5, Zn := Aq(hn) converges to Z := Aq(h) in Lq(P). Note that
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F 2(X) ∈ Lp(P) by assumption. By Riesz’s representation theorem, the topologi-
cal dual of Lq(P) is isometrically isomorphic to Lp(P), where the isomorphism is
given by

Lp(P) � g �→
(

Lq(P) � f �→
∫

�

g(ω)f (ω)P(dω)

)
.

Hence the map Lq(P) � Y �→ E[F 2(X)Y ] ∈ R is continuous, which yields

lim
n→∞V (hn) = lim

n→∞E[F 2(X)Zn] = E[F 2(X)Z] = V (h).

Since H is in particular a metric space, continuity of V is equivalent to sequential
continuity, which shows (b).

In order to prove existence of a minimiser of V , we borrow some tools from convex
optimisation. First, we show that V is proper, meaning that {h ∈ H : V (h) < ∞} �= ∅
and V (h) > −∞ for all h ∈ H . The latter condition is clearly satisfied as V is
nonnegative. For h ≡ 0, we further have V (h) = E[F 2(X)] < ∞, which implies the
former condition (which also follows from part (a)). Moreover, since V is continuous
as argued above, it is in particular lower semicontinuous.

Let us show that V is coercive, i.e., that V (h) → ∞ as ‖h‖H → ∞. Since
we assume that P[F 2(X) > 0] > 0, there exists a constant δ > 0 such that
P[F 2(X) ≥ δ] > 0. An application of the reverse Hölder inequality along the lines
of the proof of [35, Proposition 4] yields the inequality

V (h) ≥ δP[F 2(X) ≥ δ]3 exp (‖h‖2
H /4), h ∈ H,

which shows that V is coercive. Consequently, Zălinescu [56, Proposition 2.5.6]
shows that arg minh∈H V (h) is a convex set. Moreover, because H as a Hilbert space
is reflexive, [56, Theorem 2.5.1] shows that arg minh∈H V (h) is not empty, which
shows (c).

For δ > 0, choose hδ ∈ H such that V (hδ) < minh∈H V (h) + δ. By Theo-
rem 2.24(a), there exists a sequence (hn)n∈N in H(D) that converges to hδ in H .
By part (b), we then obtain limn→∞ V (hn) = V (hδ) < minh∈H V (h) + δ. A
diagonalisation argument yields (d). �

Acknowledgements We should like to thank Martin Schweizer for valuable feedback on our manuscript.

Funding Open access funding provided by TU Wien (TUW).

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/
4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A. Arandjelović et al.
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