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Kurzfassung

In dieser Arbeit präsentieren und diskutieren wir den ersten Solver für die Parquet-
Gleichungen (den wir ParquetIR.jl nennen), der auf der kürzlich entwickelten interme-
diate representation (IR) Basis basiert und in der Programmiersprache Julia geschrieben
ist. Zwei-Teilchen-Größen werden in einer sparsamen Darstellung gespeichert, was eine
erhebliche Reduktion der Speicher- und Rechenzeitanforderungen ermöglicht. Der Solver
verwendet als Eingabe (eine Näherung der) irreduziblen Wechselwirkungsfunktion und die
nicht-wechselwirkende Einteilchen-Green-Funktion. Anschließend wird ein hochmoderner
Fixpunkt-Solver eingesetzt, um eine numerische Lösung der Parquet-Gleichungen zu fin-
den. Dies liefert die volle Wechselwirkungsfunktion, die Einteilchen-Green-Funktion und
die Selbstenergie. Wir diskutieren den theoretischen Hintergrund der Parquet-Gleichungen,
die Implementierungsdetails des Solvers und wenden ihn auf das Hubbard-Atom sowie auf
das 4×4 Hubbard-Modell auf einem quadratischen Gitter an. Dabei zeigen wir Vergleiche
mit einem traditionellen Ansatz. Die Ergebnisse stimmen gut mit den Referenzdaten
überein und demonstrieren das Potenzial von ParquetIR.jl, größere Systeme zu
behandeln.

iii





Abstract

In this thesis, we present and discuss the first solver for the parquet equations (which we
call ParquetIR.jl) based on the recently developed intermediate representation (IR)
basis and written in the Julia programming language. Two-particle quantities are stored
in a sparse representation enabling a significant reduction in memory and computation
time requirements. The solver takes as input (an approximation of) the irreducible vertex
and the non-interacting one-particle Green’s function. It then employs a state-of-the-art
fixed-point solver to find a numerical solution to the parquet equations. This yields
the full vertex, the one-particle Green’s function, and the self-energy. We discuss the
theoretical background of the parquet equations and the implementation details of the
solver and apply it to the Hubbard atom and the 4 × 4 Hubbard model on a square
lattice; and show comparisons with a traditional approach. The results exhibit good
agreement with the benchmark data and demonstrate the potential of ParquetIR.jl
to tackle larger systems.
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CHAPTER 1
Introduction

In condensed matter physics, an area of great interest is the electronic behavior of
solids. The relevant systems are ones comprising many interacting quantum particles,
which makes them hard to grasp. Exciting phenomena like strong response to external
perturbations, giant magnetoresistance, metal-to-insulator transitions and superconduc-
tivity are all emergent properties of these systems. Fortunately, a wealth of theory and
techniques has been developed to tackle the problems inherent in large quantum systems.
Our specific focus will lie on two-particle vertices, which are crucial for – among other
things – scattering processes, which in turn are crucial for the understanding of transport
properties in solids, like electrical conductivity.

The fundamental object of interest in this regard will be the generalization of the
one-particle propagator, the two-particle Green’s function. While one-particle response
functions are routinely calculated using techniques like the dynamical mean-field theory
(DMFT) [1], the two-particle Green’s function is a much more challenging object. The
time and memory required to compute it scale poorly with inverse temperature β = 1/T
and number of orbitals considered. To remedy this, static approximations with only the
zero frequency component [2, 3, 4] or reduced frequency dependence [5, 6, 7, 8, 9, 10] are
often used. Fully dynamical calculations (usually two-particle extensions of DMFT [11,
12, 13, 14, 15, 16, 17]) however quickly hit a wall, and are to date only possible at high
temperature and for a few orbitals. Additionally, two-particle calculations tend to boast
a high dynamic range, i.e. feature energies ranging over many orders of magnitude [18].
This already rules out many approximate methods. With many interesting parameter
regions thus inaccessible, a solution is desirable and only possible through a paradigm
shift, e.g. by using domain-specific modeling to compress data.

The basic formalism we choose is the elegant parquet method [19, 20], devised
already in the 1960s. It revolves around solving a set of diagrammatic equations, the
so-called parquet equations, named for the decorative style of flooring. They are a set
of exact relations between one- and two-particle quantities that arise from a couple of
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1. Introduction

diagrammatic-topological arguments. Since their introduction, they have been standing as
a formidable challenge, requiring extensive computing resources even at small resolutions,
prohibiting potentially interesting applications.

In the present work, we develop an entirely new parquet solver called ParquetIR.jl
in the Julia programming language [21]. We apply the solver to a test case of the Hubbard
atom, where the exact solution is known [22] and to the 4 × 4 Hubbard model on a square
lattice as first test examples.

1.1 Outline
We begin in chapter 2 by briefly defining the physical model – the Hubbard model – that
we will endeavor to solve before introducing the parquet equations, closely following our
main reference, Julian Mangott’s excellent 2022 master’s thesis [23]. Here, we will only
roughly sketch out the derivations and refer the reader to the original work for details
about the calculations.

In the main part, chapter 3, we describe the implementation of the aforementioned
equations. In this context, we showcase the two main aspects that are original to our
software. Firstly, we directly exploit the problem’s fixed-point structure, applying a state-
of-the-art fixed-point solver to the parquet equations, improving convergence. Secondly,
we use a sparse representation of the two-particle Green’s function developed by Hiroshi
Shinaoka and Markus Wallerberger [24], which allows us to compress the data and reduce
the calculational requirements.

In chapter 4, we present the output of our solver, including performance scaling analysis
and comparison to a benchmark reference implementation. Finally, we summarize our
results and give an outlook on possible future research directions in chapter 5.
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CHAPTER 2
Definitions

2.1 Model
2.1.1 Hubbard model
The model we will consider in the following is the Hubbard model [25], an approximate
model for electrons in a solid. The solid is approximated as consisting of a grid of sites
– corresponding to orbitals around atoms – each of which provides “space” for up to
two electrons, one spin-up and one spin-down. In addition to having a kinetic energy,
each electron is subject to the Coulomb force of strength Ui, pushing it away from its
current site i in case there is a second electron at the site. This idea is formalized in the
Hamiltonian

H = −t
�

⟨ij⟩,σ


c†

i,σcj,σ + h.c.


+ U
�

i

ni↑ni↓ (2.1)

where niσ = c†
iσciσ is the spin-density operator for spin σ on site i.

U

t

Figure 2.1: The 2-
dimensional Hubbard model
on a square lattice.

The first sum is to be performed over all pairs ⟨ij⟩ of
sites i and j as well as both spin orientations σ ∈ {↑, ↓}, and
the second sum is to be performed over all sites i. The first
term, describing the hopping from one site to another, is
parametrized by the hopping integral t.

The second term is the Coulomb interaction between two
electrons at the same site, i.e. any site with both “electron
slots” filled adds Ui to the energy.

We will also assume time-translation symmetry as well
as SU(2) symmetry in our equations.
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2. Definitions

2.1.2 Green’s functions
A useful tool in the description of many-electron systems is the system’s one-particle
Green’s function (or propagator) G(12) which describes the probability amplitude of a
particle propagating from state (i2, σ2) at imaginary time τ2 to state (i1, σ1) at imaginary
time τ1

G(12) = −
�
T c(1)c†(2)

�
. (2.2)

Here we adopt the notation from [23], wherein tuples (iα, σα, τα) of site, spin and imaginary
time are represented by a single index α ∈ Z, using the definition

c(α) = eταHciα,σαe−ταH . (2.3)

An object of pivotal importance for our work is a generalization of this, the two-particle
Green’s function

G(1234) =
�
T c(1)c†(2)c(3)c†(4)

�
. (2.4)

It is the probability amplitude for two electrons starting in the (loosely speaking) states
2 and 4 and ending up in states 1 and 3.

In terms of Feynman diagrams, the two-particle Green’s function is the sum of all
diagrams with four external lines. If we take only the connected diagrams and truncate
the external lines, we obtain the so-called full two-particle vertex F . This is a key object,
because we will be able to write down a number of diagrammatic equations in order to
compute the Green’s functions, our ultimate objective.

2.1.3 Self-energy
With the non-interacting Hamiltonian H01, we define the non-interacting Green’s function
by

G0(12) = −
�
T c(1)c†(2)

�
0

, (2.5)

where ⟨ · ⟩0 ≡ 1
Z0

tr(e−βH0 · ) and Z0 = tr(e−βH0) is the partition function.

Together with the bare interaction vertex

U(1234) = U
�
ijkl

δ(τ1 − τ2)δ(τ2 − τ3)δ(τ3 − τ4)δi1iδi2kδi3jδi4l (2.6)

the non-interacting Green’s function forms the basic building blocks from which all other
objects in our diagrammatic formalism are assembled, c.f. fig. 2.2. The full Green’s
function then is the sum of all connected diagrams. These constituent diagrams may be
classified according to whether they are 1-particle irreducible (1PI). Here a diagram is
said to be 1PI if there is no internal line whose removal would result in two disconnected

1In our case, H0 = −t
�

⟨ij⟩,σ

�
c†

i,σcj,σ + h.c.
�
.
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2.2. Parquet equations

diagram parts. The sum of all 1PI diagrams with both external lines amputated is called
self-energy Σ.

If we now reconstruct the full Green’s function from these parts, we get the Dyson
equation

G(12) = G0(12) + G0(13)Σ(34)G(42), (2.7)

where summation over the repeated variables (3 and 4) is implied. Multiplying from the
left by G−1

0 and from the right by G−1 yields the alternative form (which is the one we
will use in our implementation later)

G =

G−1

0 − Σ
−1

. (2.8)

2.2 Parquet equations
The term parquet equations is used to denote a set of exact equations that are simultane-
ously satisfied by the two-particle vertex F , the one-particle Green’s function G and the
three additionally introduced irreducible vertices in one scattering channel (particle-hole
Γph, transversal particle-hole Γph, and particle-particle Γpp) and the fully irreducible
(not reducible in any of the channels) vertex Λ (for a detailed introduction see e.g. [26]).
The parquet equations are an unbiased generalization of the Dyson equation to the
two-particle case and their representation in terms of Feynman diagrams is shown in
fig. 2.2. The two particle Green’s function can be represented as a function of Matsubara
frequencies and momenta via the Fourier transform

Gijlm
σ1...σ4(τ1, τ2, τ3, τ4) =

�
k1,k2,k3,k4

Gk1k2k3k4
σ1...σ4 e−ik1ri−ik2rj−ik3rl−ik4rme−iν1τ1−iν2τ2−iν3τ3−iν4τ4

(2.9)
where we use a compact combined momentum and frequency notation k = (k, ν) and also
include all 1/(βN) prefactors connected with momentum and frequency in the definition
of the � symbol, i.e. �

k := 1
βN

�
k,ν . Momentum and energy conservation means that

only three of the four momentum-frequency arguments are independent. Taking energy
and momentum conservation into account, usually one parametrizes the four arguments
by three momenta (k, k′, q) and frequencies (ν, ν ′, ω), the first two being fermionic and
the third bosonic.

In the following we assume SU(2) symmetry which means that only two spin combina-
tions need to be considered: σ1σ2σ3σ4 =↑↑↓↓ which we will call ↑↓ for short following [23]
and ↑↑↑↑, abbreviated ↑↑. Another abbreviation we will need is ↑↓ which stands for ↑↓↓↑.

The full two-particle vertex F kk′q
σσ′ , diagrammatically the sum of all connected two-

particle diagrams with external lines amputated, is then defined in the so-called particle-
hole notation [27] (we will later also introduce the particle-particle notation) through

Gkk′q
σσ′ = GkGk′

δq0 − GkGk+qδkk′δσσ′ − GkGk+qF kk′q
σσ′ Gk′

Gk′+q, (2.10)

5



2. Definitions

Schwinger-Dyson

Figure 2.2: Diagrams illustrating the parquet equations. Lines correspond to one-particle
Green’s functions G and bold dots correspond to bare-interaction vertices U .

where for the one-particle Green’s function Gk we dropped the spin index, since in the
SU(2) symmetric case it is spin-diagonal and equal for both spins. It is useful to use
so-called spin-diagonal notation for vertices. For vertices in the particle-hole notation we
define the following linear combinations:

Xd := Xph
↑↑ + Xph

↑↓ (2.11a)

Xm := Xph
↑↑ − Xph

↑↓ (2.11b)

with X being either F , the irreducible vertex Γ or Λ, or the reducible vertex Φ (which
we will define in the following).

The full set of parquet equations includes:

• Bethe-Salpeter equation (BSE) in the particle-hole (ph) channel (the BSE in the
particle-hole transverse (ph) channel is related through a transformation of the
momenta and frequencies)

• BSE in the particle-particle (pp) channel

• Parquet equation adding contributions from all scattering channels

• Schwinger-Dyson equation (SDE), relating the self-energy Σ to the full vertex F

• Dyson equation yielding the full one-particle Green’s function from the self-energy

6



2.2. Parquet equations

2.2.1 Bethe-Salpeter equation
A propagator-reducible diagram is one that may be cut into two diagrams by cutting two
internal one-particle Green’s function lines. Depending on which external lines remain
connected, we count the diagram as belonging to one of three channels:

• ph (particle-hole)

• ph (particle-hole transverse)

• pp (particle-particle)

For each channel r ∈ {ph, ph, pp}, the sum of all diagrams reducible in that channel shall
be called Φr; the sum of the irreducible diagrams is called Γr. In this way we obtain a
decomposition of the full vertex into these two classes

F = Γr + Φr. (2.12)

Furthermore, every reducible diagram can be written as the connection of an irre-
ducible diagram with the full vertex:

Φph(1234) = Γph(1256)G(67)G(85)F (7834) (2.13a)

Φph(1234) = −Γph(1654)G(67)G(85)F (7238) (2.13b)
Φpp(1234) = 1

2 Γpp(1536)G(67)G(58)F (7284) (2.13c)

Where again repeated variables, i.e. 5, 6, 7 and 8, are implicitly summed over as in
eq. (2.7).

So, taking these facts together, in the particle-hole channel we can write the Bethe-
Salpeter equation (BSE)

F kk′q
d/m = Γkk′q

d/m +
�
k1

F kk1q
d/m Gk1Gk1+q Γk1k′q

d/m (2.14)

The ph channel corresponds to the first line of diagrams in fig. 2.2 and to eq. (2.14).

The other two channels – ph and pp – are similarly displayed in the figure. Analogously
to eq. (2.11a) we define a singlet and a triplet channel for particle-particle diagrams

Xs := Xpp
↑↓ + Xpp

↑↓ (2.15a)

Xt := Xpp
↑↓ − Xpp

↑↓ (2.15b)

that give rise to 4 additional BSEs, 1 in the singlet and 3 in the triplet channel (so these
names are not all that creative), but the 3 triplet BSEs are degenerate.

The BSE equations in the particle-hole and transversal particle-hole channels are not
independent and Γph can be obtained from Γph using the crossing symmetry [27]. This
leaves only four BSEs that need to be accounted for.

7



2. Definitions

2.2.2 Parquet equation

In the previous subsection we defined three kinds of reducible vertices, depending on
which corners of the vertices stay connected by the one-particle Green’s functions when
cutting two Green’s function lines. One can show that a vertex reducible in one channel is
irreducible in the two other channels [20, 26]. This allows for a unique classification of all
diagrams contained in F with respect to their two-particle reducibility: A given diagram
is either reducible in one of the three channels (contained in Φph, Φph, or Φpp) or fully
irreducible. The sum of these fully irreducible diagrams is called the fully irreducible
vertex Λ. The full vertex is thus given by the parquet equation

F = Λ + Φph + Φph + Φpp. (2.16)

In order to get concrete relations between the respective spin components, as well as to
make use of crossing symmetry, we need to rewrite the above parquet equation in d/m
and s/t components.

We also introduce “channel-native” vertex conventions [23] by

F (1234) = F ph(12 | 34) = F ph(14 | 32) = F pp(13 | 24) (2.17)

which will allow us to unify the Bethe-Salpeter equations from eq. (2.13) to

Φr(12 | 34) = Γr(12 | 56)Xr
0(56 | 78)F r(78 | 34) (2.18)

with channel-wise bare susceptibilities

Xph
0 (12 | 34) = G(23)G(41) (2.19a)

Xph
0 (12 | 34) = −G(23)G(41) (2.19b)

Xpp
0 (12 | 34) = 1

2G(23)G(14). (2.19c)

This way we obtain channel-wise parquet-equations

F ph(12 | 34) = Λph(12 | 34) + Φph(12 | 34) + Φph(14 | 32) + Φpp(13 | 24) (2.20a)

F ph(12 | 34) = Λph(12 | 34) + Φph(14 | 32) + Φph(12 | 34) + Φpp(13 | 42) (2.20b)

F pp(12 | 34) = Λpp(12 | 34) + Φph(13 | 24) + Φph(14 | 23) + Φpp(12 | 34) (2.20c)

with frequency permutations.

8



2.2. Parquet equations

Taking into account the symmetries (time-translation and SU(2)) we get [23]

F kk′q
d = Λkk′q

d + Φkk′q
d − 1

2Φk(k+q)(k′−k)
d − 3

2Φk(k+q)(k′−k)
m

+ 3
2Φkk′(q+k+k′)

t + 1
2Φkk′(q+k+k′)

s (2.21a)

F kk′q
m = Λkk′q

m + Φkk′q
m − 1

2Φk(k+q)(k′−k)
d + 1

2Φk(k+q)(k′−k)
m

+ 1
2Φkk′(q+k+k′)

t − 1
2Φkk′(q+k+k′)

s (2.21b)

F kk′q
s = Λkk′q

s + Φkk′q
s + 1

2Φkk′(q−k−k′)
d − 3

2Φkk′(q−k−k′)
m

+ 1
2Φk(q−k′)(k′−k)

d − 3
2Φk(q−k′)(k′−k)

m (2.21c)

F kk′q
t = Λkk′q

t + Φkk′q
t + 1

2Φkk′(q−k−k′)
d + 1

2Φkk′(q−k−k′)
m

− 1
2Φk(q−k′)(k′−k)

d − 1
2Φk(q−k′)(k′−k)

m (2.21d)

The shifted indices seen here are a consequence of us representing the vertices in channel-
native conventions. This enables the Bethe-Salpeter equation to have the same form in
all channels but makes it necessary to convert between the conventions in the parquet
equation.

2.2.3 Schwinger-Dyson equation
Finally, the Schwinger-Dyson equation (SDE) gives us a way of computing the self-energy
Σ from the full vertex F and the one-particle Green’s function G (c.f. fig. 2.2)

Σk = −



k′
UG(k′)eik′0− − 1

2




k′q

UG(k + q)G(k′)G(k′ + q)F ph,k′kq. (2.22)

Finally, the Dyson equation was already given in eq. (2.7)

2.2.4 Convergence and Uniqueness
With the so-called fully irreducible vertex Λ as input and some initial guess for the Γ’s
these equations can be iteratively solved to get the solution of a many-body problem (e.g.
the Hubbard model). It is tempting to think that with an exactly known irreducible
vertex Λ one could always reach the correct solution in this way, provided the chosen
iterative scheme converges. However, depending on the model being solved there exist
multiple solutions of the parquet equations. For example, in the Hubbard atom (i.e.
the Hubbard model with t = 0) around and above the first so-called divergence line at
βU ≈ 3.6, the parquet method converges to a non-physical solution. It stands to reason
that this phenomenon is not limited to the Hubbard atom, but for the parameters we
tested the Hubbard model does not exhibit it. Ameliorating this with more sophisticated
initialization of the vertices could be a viable route to explore.
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CHAPTER 3
Methods

Having given an overview over the quantities and equations involved, we would like to
direct the reader’s attention to our proposed method for obtaining a solution.

3.1 Fixed-point structure
We introduce the following functions which are essentially given by eq. (2.21), eq. (2.14)
and eq. (2.22):

parquet(Φ) := Λ + Φph + Φph + Φpp (3.1a)�BSE(F, Γ, G) := FGGΓ (3.1b)�SDE(F, G) := UG(0−) − UGGFG. (3.1c)

The first two are decorated with a tilde because we need to introduce as helper the Dyson
equation

Dyson(Σ) :=

G−1

0 − Σ
−1

(3.2)

before we are able to write them in a more convenient form

BSE(F, Φ, Σ) := �BSE(F, F − Φ, Dyson(Σ)) (3.3a)
SDE(F, Σ) := �SDE(F, Dyson(Σ)). (3.3b)

Then the diagrammatic equations may be written as

F = parquet(Φ) (3.4a)
Φ = BSE(F, Φ, Σ) (3.4b)
Σ = SDE(F, Σ). (3.4c)

11



3. Methods

3.1.1 Traditional method

In previous works (e.g. [23]), solving them has been done mostly via the so-called parquet
method (algorithm 1).

Algorithm 1 Parquet method
Λ ← some approximation
G0 ← exact expression
F (0), Φ(0), Σ(0) ← Λ, 0, 0
Γ(0) ← F (0) − Φ(0)

G(0) ← G0
i ← 0
while F (i), Σ(i) not converged do

i ← i + 1
Φ(i) ← �BSE


F (i−1), Γ(i−1), G(i−1)


F (i) ← parquet(Φ(i−1)) using Λ
Γ(i) ← F (i) − Φ(i)

Σ(i) ← �SDE

F (i), G(i−1)


G(i) ← Dyson(Σ(i)) using G0

3.1.2 Proposed method

This works well enough, but what we propose instead is trying to exploit the structure
more: Simultaneously solving eqs. (3.4a) to (3.4c) constitutes a fixed point problem as
sketched out in algorithm 21. Hence, we should be able to benefit from existing research
into algorithms for solving such problems.

For choosing an initial point for the fixed-point search, we stick with the traditional
approach of using the leading order terms in the quantities’ respective U -perturbation
expansions. It remains to be investigated how sensitive the results are to this choice of
initialization.

Regarding initialization, the stated choices are straightforward to implement and
empirically lead to correct solutions in the tested cases, but as discussed above might
warrant deeper investigation.

For solving the so-constructed fixed-point problem, we choose the Anderson accelera-
tion algorithm [29] given in algorithm 3 with m = 5, which accelerates convergence [30]
compared to naive fixed-point iteration. The specific implementation was utilized is the
one from SIAMFANLEquations.jl [31] with minor tweaks for more verbose conver-

1There also may exist an interesting parallel to the multiloop FRG approach of [28].
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3.1. Fixed-point structure

Algorithm 2 Proposed method
Λ ← some approximation
G0 ← exact expression
Finit, Φinit, Σinit ← Λ, 0, 0
xinit ← flatten and concatenate Finit, Φinit, Σinit
function DiagrammaticEquations(x)

F, Φ, Σ ← unpack x

F ′ ← parquet(Φ) using Λ
Φ′ ← BSE(F, Φ, Σ) using G0
Σ′ ← SDE(F, Σ) using G0
x′ ← flatten and concatenate F ′, Φ′, Σ′

return x′

find fixed point of DiagrammaticEquations starting from xinit

Algorithm 3 Anderson acceleration
Given a function f : Rn → Rn we want to find a fixed point x∗ = f(x∗) of, an initial
guess x0 ∈ Rn and an integer parameter m ≥ 1, define the residual g(x) = f(x) − x.
x1 ← f(x0)
for i = 1, 2, 3, . . . do

mi ← min(m, i)
G ←


g(xi−mi) . . . g(xi)


α ← arg minα∈A ∥Gα∥2 where A =

�
(α0, . . . , αmi) ∈ Rmi+1 | �mi

k=0 αk = 1
�

xi+1 ←
mi�

k=0
αkf(xi−mi+k)

gence data logging during iteration as well as an adapted convergence criterion, described
below.

Figure 3.1 shows a comparison of the convergence histories of the two methods in a
typical parameter configuration and clearly demonstrates the superiority of the proposed
method in terms of convergence speed. Both methods compute the same functions for
each iteration, but the proposed method incurs some additional overhead for whatever
the fixed-point solver does internally. Depending on the solver used, compared to the cost
of computing the parquet equations, in almost all cases the overhead will be negligible.

Termination condition

The iteration is terminated in case the current residuum ∥xi − f(xi)∥ exceeds the one
from nstagnation iterations ago. This condition reliably detects convergence, with increased
nstagnation trading precision (stopping as early as possible) for robustness (low likelihood

13



3. Methods

Iteration i
0 10 20 30

‖f(x i)−
x i‖/‖ x i‖

10−6

10−4

10−2
Parquet methodProposed method

Figure 3.1: Comparison of convergence histories between algorithm 1 and algorithm 2 for the
Hubbard model on 4 × 4 points with U = 1, β = 1.2 and basis cutoff ε = 10−3. Here, Anderson
acceleration is used and f denotes DiagrammaticEquations as defined in algorithm 2.

of false positive stopping). An exemplary convergence history is shown in fig. 4.1 below
(with termination condition deactivated).

3.2 Representation of quantities

One of the first things to think about when implementing anything related to the parquet
method is how to suitably represent the quantities involved. As we have seen, one-particle
objects carry two indices, e.g. Σν

k, and two-particle objects carry six indices, e.g. Γνν′ω
kk′q . So

especially the two-particle objects require lots of memory (and, by extension, computation
time), which we will try to keep to a minimum.

3.2.1 Momentum indices

Concerning the momenta k, they are sampled from a regular grid covering the Brillouin
zone (BZ). In d dimensions and for the hypercube lattice – to which we will restrict
ourselves here – the Brillouin zone is given by BZd = [0, 2π)d2,3. We take k ∈ Kn :=
(0 : 2π/n : 2π − 2π/n)d, giving a grid of nd points4 [32].

2Here we have set the lattice constant a to unity, effectively fixing a system of units.
3To be precise, the Brillouin zone is actually BZd = T d ≡ S1 × . . . × S1, the d-dimensional torus,

manifestly incorporating all physical functions’ periodicity.
4The syntax (a : b : c) denotes a range of evenly spaced (with step b) values between a and c, or more

precisely {x | a ≤ x ≤ c and x = a + nb with n ∈ Z}.
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3.2. Representation of quantities

The hypercube lattice satisfies a particular group of symmetries, the d-dimensional
hyperoctahedral group Bd. Considered as a matrix group5, this is the group of all
orthogonal d × d-matrices with integer entries, i.e.

Bd =
�

o ∈ Zd×d | o⊺o = I
�

. (3.5)

Any “physically relevant” function of one or more momentum argument(s) f(k, k′, k′′, . . .)
must therefore be invariant under an appropriate group action, i.e. obey

f(k, k′, k′′, . . .) = f(ok, ok′, ok′′, . . .) ∀o ∈ Bd, (3.6)

yielding an opportunity for storing it in compressed form.

For example a unary function of momentum f(k) is fully defined by specifying its
values on Bd’s quotient BZd/Bd, the set of all orbits6 under the group action. This set is
usually referred to as the irreducible Brillouin zone (IBZ) [33] and is isomorphic to a set
consisting of a single, arbitrarily chosen representative for each orbit, for example

IBZd ∼ {k ∈ BZd | kd ≤ kd−1 ≤ . . . ≤ k1 ≤ π}. (3.7)

In the following we will use the actual IBZ (the set of orbits) and the so-defined set
of representatives interchangeably, keeping in mind that they are not the same thing,
strictly speaking. The IBZ’s volume is |IBZd| = |BZd|/|Bd| = |BZd|/(2dd!), so in 2
dimensions we obtain a compression by a factor of up to7 8. We call the discretized IBZ
Qn := Kn ∩ IBZd.

The other case appearing in our application are functions of three momentum ar-
guments, often denoted f(k, k′, q′). Here, our implementation actually does not fully
exhaust the potential for compression8 but instead reduces only the third argument to
the IBZ. The resulting momentum grid is shown in fig. 3.2.

Momentum integrals

Approximating momentum integrals is fairly straightforward and has surprisingly agree-
able properties. To approximate I(f) :=

�
BZd

f(k) dk we use the operator

In(f) := (2π)d

nd

�
ki∈Kn

f(ki). (3.8)

5To illustrate, we have B2 =
�

( 1 0
0 1 ), ( −1 0

0 1 ),
�

1 0
0 −1

�
,
� −1 0

0 −1
�
, ( 0 1

1 0 ), ( 0 −1
1 0 ),

�
0 1

−1 0
�
,
� 0 −1

−1 0
��

.
6A note on terminology: Given a group G that is acting on a set X, the orbit of an element x ∈ X is

the set of all elements of X reachable from x. It is denoted by Gx = {gx | g ∈ G} ⊆ X. This notion then
allows us to “divide out” the group: The group action’s quotient X/G is the set of all orbits.

7Only “up to” because for the discretized domain the reduction is lower, depending on n. For instance,
in the example shown in fig. 3.2, n = 6, the compression factor is 62/10 = 3.6.

8This is however straightforwardly possible by storing the function only on BZd
3/Bd and should be

explored.
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kx

0 2𝜋
k y 0

2𝜋 k and k'

kx

0 2𝜋

q

Figure 3.2: The distribution of momentum sampling points on the Brillouin zone in the case of
a 6 × 6 grid. The BZ and the IBZ are highlighted in red.

In practice, we will want to compute integrals on the IBZ alone, for which weight factors
according to each point’s multiplicity will be required, see below for more. Computing
useful bounds on the error |I − In| turns out to be quite involved, principally depending
on f ’s smoothness. For example, if f is analytic, convergence is geometric [34], many
classes of non-periodic rougher functions are covered in [35].

IBZ-reduced momentum integrals Concerning integrals over IBZ-reduced mo-
mentum indices, e.g. the bosonic index in 2-particle quantities, we need to know the
multiplicity mq of each point q, which is the number of points in the entire BZ it is
equivalent to9, i.e.

mq := |{k ∈ BZd | ∃o ∈ Bd, ok = q}| = |Bdq|. (3.9)

We then modify eq. (3.8) to weigh each term by mqi and get

IIBZd
n (f) := (2π)d

nd

�
qi∈Qn

mqif(qi). (3.10)

Multiple momentum arguments integrals The case of multiple momentum argu-
ments requires special consideration. Let f be a function of two momentum arguments
and compress it as previously discussed, i.e. store the second argument only on IBZ
points to get fred(k, q) where k ∈ BZd and q ∈ IBZd. Then, to approximate the integral
over the second argument I(f)(k) :=

�
BZd

f(k, k′) dk′ we use

In(f)(k) = (2π)d

nd

�
k′

i∈Kn

f(k, k′
i) = (2π)d

nd

�
k′

i∈Kn

fred(oik, oik
′
i), (3.11)

where oi ∈ Bd is any transformation such that oik
′
i ∈ IBZd (here IBZd is to be interpreted

as the set arbitrarily chosen as representatives). Depending on k′
i, there may be multiple

9This is also called the length of the orbit of q under Bd.
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3.2. Representation of quantities

choices of oi (all of which are valid), reflecting a not-yet-exploited potential for further
compressing the vertices. This potential could be realized by properly reducing BZd

3 by
Bd.

3.2.2 Frequency indices
As for the Matsubara frequencies, here the situation is more interesting. A first, natural
optimization is only storing vertices on frequencies (ν, ν ′, ω) with ω ≥ 0, enabled by the
property

Gνν′ω
kk′q =


G

(−ν)(−ν′)(−ω)
kk′q

∗
, (3.12)

which holds as long as H is real. Traditionally, a dense box of frequencies is used, incurring
undesirable memory and runtime scaling. Recent developments allow us to significantly
improve on this. Using the intermediate representation developed by Shinaoka et al.
in [24] and implemented in [36] enables a much reduced, sparse sampling set. For example,
in setting up for the U = 1t, βt = 5 Hubbard model problem at ε = 10−3 precision, we
construct a sparse sampling set of only 2545 frequencies, visualized in fig. 3.3, whereas
for example a 64 × 64 × 64 traditional frequency box10 already means 262144 frequencies,
over 2 orders of magnitude more!

3.2.3 Intermediate representation
Originally published in [24], there is a compression method based on an intermediate
representation for the objects we are interested in and that are fundamental to the present
work. We will here present a short version of the more comprehensive treatment provided
in [37]. To match the original source [37], in this section we will use a slightly modified
notation for Matsubara frequencies, writing iν instead of ν to emphasize the imaginary
nature.

Two-point quantities

The fermionic (α = F) respectively bosonic (α = B) Green’s function on Matsubara
frequencies Gα(iω) is related to the spectral function in real frequency ρα(ω) by

Gα(iω) =

 +ωmax

−ωmax
dω′ Kα(iω, ω′)ρα(ω′) (3.13)

with kernels KF(iω, ω) = 1
iω−ω′ and KB(iω, ω) = ω′

iω−ω′ . Here, ωmax denotes the band-
width, i.e. we assume that ρα’s support is contained in [−ωmax, ωmax] Analogous to a
matrix’ singular value decomposition, there is a singular value expansion for this kernel

Kα(iω, ω) =
∞�

l=0
Uα

l (iω)Sα
l V α

l (ω) (3.14)

10As used in the reference computation presented below.
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𝜈´ [𝜋/𝛽]
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𝛽U = 1 𝛽U = 2 𝛽U = 3
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𝜈´ [𝜋/𝛽]

𝜔[𝜋/𝛽]
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0
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−50 0 50 −50 0 50
Figure 3.3: The (ν, ν′, ω) frequency sampling points on which all two-particle quantities are
represented. These points are generated for bandwidth 4U and tolerance ε = 10−3. At lower
temperatures more frequencies are needed.
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3.2. Representation of quantities

that, inserted into eq. (3.13) yields a representation

Gα(iω) =
∞�

l=0
Uα

l (iω)Gα
l (3.15)

of the Green’s function with coefficients

Gα
l = Sα

l


 +ωmax

−ωmax
dω′ V α

l (ω′)ρα(ω′). (3.16)

We may now choose a cutoff ε for the singular values to get a compressed, approximate
representation of G using L coefficients, such that SL/S0 < ε. Although this compression
is lossy, it is optimally compact [36].

To compute the coefficients from G(iω), we sample at a number of sampling frequencies
Wα = {iωα

1 , iωα
2 , . . . , iωα

L}, (3.17)
chosen close to the sign changes of Uα

L (iω), and perform a least-squares fit

{Gα
l } = arg min

{Gα
l

}

�
iω∈Wα

�����Gα(iω) −
L−1�
l=0

Uα
l (iω)Gα

l

�����
2

. (3.18)

The set of sampling frequencies Wα is symmetric about zero, i.e. Wα = −Wα.

Four-point quantities

For the representation of four-point quantities we define
U3

ll′m((iν, iν ′, iω)) ≡ UF
l (iν)UF

l′ (iν ′)UB
l (iω), (3.19)

whose naive usage in generalizing eq. (3.15) turns out to be invalid [38, 39], instead
requiring an overcomplete representation

G(iν1, . . . , iν4) ≈
12�

r=1

L−1�
l,l′,m=0

U3
ll′m(Tr(iν1, . . . , iν4))Gr,ll′m. (3.20)

The Tr are a family of 12 frequency translation functions given by
Tr = C→3 ◦ Pr, (3.21)

i.e. composing conversion to four-frequency notation
C→3(ν1, . . . , ν4) = (ν1, −ν4, ν1 + ν2) (3.22)

with a permutation as defined in table 3.1.
This yields a sampling set of

W =
12�

r=1
T −1

r


WF × WF × WB


. (3.23)

Associated with this construction is yet again a requested tolerance ε that is used for
truncating the constituent fermionic and bosonic singular value expansions, i.e.

SF
L/SF

0 < ε and SB
L /SB

0 < ε. (3.24)
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r Pr

Cycle notation Image of string 1234
1 () 1234
2 (3, 4) 1243
3 (2, 3) 1324
4 (2, 3, 4) 1342
5 (2, 4, 3) 1423
6 (2, 4) 1432
7 (1, 2) 2134
8 (1, 2)(3, 4) 2143
9 (1, 2, 3) 2314

10 (1, 2, 4, 3) 2413
11 (1, 3, 2) 3124
12 (1, 3) 3214

Table 3.1: The permutations used in constructing the two-particle overcomplete basis [39].

Sparse frequency set closed under frequency permutations The so-constructed
set W has the useful property of being closed under any permutation of the four frequencies.
That is, for any permutation P ∈ S4 (with S4 the symmetric group of degree 4, i.e. the
group of all permutations on a set of size four) and any element ν ∈ W , Pν ∈ W , as we
will now show.

For brevity, we introduce the notation

W4 = C→4

WF × WF × WB


, (3.25)

where C→4 ◦C→3 = identity, i.e. C→4(ν, ν ′, ω) = (ν, −ν +ω, ν ′ −ω, −ν ′), so that eq. (3.23)
may be written

W =
12�

r=1
P −1

r (W4). (3.26)

The set W4 is invariant under the permutations (1234 �→ 1234) ≡ () (trivially) and
(1234 �→ 4321) ≡ (1, 4)(2, 3), as can be seen by exchanging ν ↔ −ν ′ and ω ↔ −ω in
eq. (3.22), and W = −W (see above).

Now, consider any ν ∈ W; there is at least one r with an associated ν0 ∈ W4 such
that ν = P −1

r ν0. If we now pick any P ∈ S4, we can write

Pν = P

P −1

r ν0


= P ′ν0 (3.27)
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3.3. Parquet equation

with some other permutation P ′ = P ◦ P −1
r ∈ S4. Thus, the following holds:

P ′ν0 ∈ W ⇐⇒ ∃r′ such that P ′ν0 ∈ P −1
r′ (W4) (3.28a)

⇐⇒ ∃r′ such that ν0 ∈ P ′−1

P −1

r′ (W4)


(3.28b)

⇐= ∃r′ such that P ′−1

P −1

r′ (W4)


= W4 (3.28c)

⇐⇒ ∃r′ such that P ′−1 ◦ P −1
r′ = () or (1, 4)(2, 3) (3.28d)

⇐⇒ ∃r′ such that Pr′ = P ′ or (1, 4)(2, 3) ◦ P ′ (3.28e)

To summarize, as long as, for any given permutation P ∈ S4, our set {Pr} ⊆ S4
contains either P or (1, 4)(2, 3) ◦ P , the sampling frequencies W are closed with respect
to all permutations. Our chosen {Pr} satisfies this property; it is in fact one of the
212 = 4096 minimal subsets of S4 to do so.

3.3 Parquet equation
The implementation of the parquet equation eq. (2.21) is fairly straightforward. Its
most prominent feature are the frequency/momentum shifts it necessitates. These shifts
present a considerable problem in the usual treatment of the parquet equation. For
example, [23] deals with this problem of shifted frequencies exceeding the frequency box
as follows:

Due to crossing symmetry applied to ph-vertices in order to convert them
to ph-notation, the second fermionic frequency argument is shifted as ν ′ →
(ν+ω) and values can exceed the frequency box. multi-orbital-parquet
overcomes this problem by using Kernel functions which employ the scan-edge
method [25, p. 7]: if ν + ω exceeds the box, we approximate Φν(ν+ω)(ν′−ν) ≈
Φνν̃(ν′−ν) by taking the nearest value at the edge, i.e. ν̃ = ν−NF /2 or ν̃ =
νNF /2−1, as Φνν′ω is asymptotically constant along ν ′ for fixed ν and ω. Note
that for vertices with bosonic frequencies outside the box no approximation
with Kernel functions is provided, they are set to 0.

An unexpected, but all the more welcome, consequence of representing the vertices
including Φ on the sparse frequency set introduced in section 3.2.3 is that the frequency
shifts in the parquet equation by construction always result in another point in the sparse
set. To see this, note that the frequency shifts in three-frequency convention are the
result of frequency permutations in (full) four-frequency notation eq. (2.20) and thus the
above result concerning the invariance of our frequency sampling set under permutation
applies. We hence do not incur any approximation error and our parquet equation’s
implementation is exact up to floating point errors.

Of course, we need to consider how to correctly implement the momentum shifts in
the parquet equation. For every occurrence of Φk̃k̃′q̃ on the right-hand side k̃, k̃′ and q̃
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are the sum or difference of momenta and as such might be outside the BZ. Therefore,
all momenta are mapped back to the BZ to yield k, k′ and q. In general the bosonic
momentum q which we have restricted to the IBZ might still be outside the IBZ. By
construction, there is a unique o ∈ Bd such that oq ∈ IBZ, and thus

Φk̃k̃′q̃ = Φkk′q = Φ(ok)(ok′)(oq). (3.29)

The final thing we need to be careful about is negative bosonic frequencies: For the
case ω < 0 in Φνν′ω, eq. (3.12) comes to bear, and we use

Φνν′ω =

Φ(−ν)(−ν′)(−ω)

∗
. (3.30)

3.4 Bethe-Salpeter equation
The Bethe-Salpeter equation eq. (2.14) revolves around a frequency sum, posing significant
challenges.

3.4.1 Separating off the backgrounds
In practice, the sum needs to be truncated

∞�
ν1=−∞

→
νmax�

ν1=−νmax

, (3.31)

where the addends decay quadratically

Γνν1ω
kk1qX0

ν1ω
k1qF ν1ν′ω

k1k′q = O

ν−2

1


, (3.32)

incurring an error decaying linearly in νmax, requiring the evaluation of large frequency
sets and in turn slowing down further what is already the bottleneck of the entire program.

To improve on this situation, we make a key simplifying assumption which is not
strictly valid, but works as a rough approximation, namely that

Γrνν1ω
kk1q = U r + O


ν−1

1


, (3.33a)

and F rνν1ω
kk1q = U r + O


ν−1

1


, (3.33b)

which allows us to compute the background part of the sum analytically11. To see how
this fails to hold, refer to fig. 4.12: It clearly shows the vertex featuring diagonal lines
which do not decay. Removing the need for this optimization would be a top priority for
future work.

11By Ur we mean the bare vertex in a particular channel r, whereas U is the parameter in the
Hamiltonian. It is given by Ud = U , Um = −U , U s = 2U and U t = 0.
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3.4. Bethe-Salpeter equation

Nevertheless, we rewrite the sum to

k1

�
ν1


Γνν1ω

kk1qF ν1ν′ω
k1k′q − U2


X0

ν1ω
k1q +



k1

�
ν1

U2X0
ν1ω
k1q (3.34)

and focus on the second part, the Lindhard bubble

Brω
q :=



k1

�
ν1

U rX0
rν1ω

k1qU r, (3.35)

first.

For the sake of completeness we produce here the calculation for the case r ∈ ph.

Bphω
q =



k1

�
ν1

UphX0
phν1ω

k1qUph

= Uph2



k1

�
ν1


−Gν1

k1
Gν1+ω

k1+q


= Uph2



k1

�
ν1


−


 β

0
dτ e−iν1τ Ĝk1(τ)


 β

0
dτ ′ e−i(ν1+ω)τ ′

Ĝk1+q(τ ′)


= −Uph2



k1


 β

0
dτ


 β

0
dτ ′ Ĝk1(τ)e−iωτ ′

Ĝk1+q(τ ′)
�
ν1

e−iν1(τ+τ ′)

= −Uph2



k1


 β

0
dτ


 β

0
dτ ′ Ĝk1(τ)e−iωτ ′

Ĝk1+q(τ ′)β
�
n∈Z

(−1)nδ(τ + τ ′ − nβ)

= −Uph2



k1


 β

0
dτ Ĝk1(τ)e−iω(β−τ)Ĝk1+q(β − τ)β(−1)

= βUph2



k1


 β

0
dτ eiωτ Ĝk1(τ)Ĝk1+q(β − τ)

So we have computed the Fourier transformed bubble

	Bph
q(τ) = βUph2



k1

Ĝk1(β − τ)Ĝk1+q(τ), (3.36)

at which point the intermediate representation makes a surprise appearance; We only
need to compute 	Bph

q at a few τ sampling locations, fit the result to a 1-particle basis
and expand at the needed bosonic frequencies ω as detailed in section 3.2.3. This allows
us to calculate the bubble without truncating the original Matsubara sum or expensively
approximating the Fourier transform. The only error we make comes from truncating
the basis, the cutoff for which we can choose to machine precision as these one-particle
computations are negligible from a runtime cost viewpoint regardless.

With this done, only the first term of eq. (3.34) remains. Because we have subtracted
the backgrounds of F and Γ, the addend is now O


ν−3

1


and the sum will converge

quadratically. This new sum we do indeed just truncate to the frequencies from −νmax to
νmax but are able to choose a much smaller cutoff νmax, which currently must be given as
input to the algorithm, thanks to calculating the background’s contribution separately.
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3.4.2 Summation frequencies
Having somewhat mitigated the convergence issue, we turn our attention to a second
problem. Because we know the BSE’s input vertices – Γ and F – only at some frequencies,
the sparse sampling set, we cannot straightforwardly evaluate the (truncated) Matsubara
sum.

To compute Φrνν′ω
kk′q at one point in frequency space, we need to know Γrνν1ω

kk1q and
F rν1ν′ω

k1k′q for all ν1 ∈ (−νmax : 2π/β : νmax), which we do not, as this exceeds the sparse
sampling set. So the only option we have is to fit the entire vertices Γ and F to a
2-particle basis and expand at the much larger sets indicated prior to performing the
summation.

This single step – more precisely, the expansion substep – actually turns out to be the
bottleneck for the implementation of the entire algorithm. Several rounds of optimizations
– including prefactorizing the fit matrix, parallelizing the expansion operator at significant
memory cost and mostly eliminating allocations – were not able to change this fact.

There is the possibility of computing a set of weights to enable carrying out the BSE
sum on the sparse sampling set directly [37], which we forwent as there remain questions
about the error this method incurs that remain to be answered.

3.5 Schwinger-Dyson equation
Our implementation of the Schwinger-Dyson equation actually utilizes many of the already
mentioned techniques, so we will not discuss them here in detail. One low-hanging fruit
is the optimized computing of the Schwinger-Dyson equation: We only compute the
self-energy on positive Matsubara frequencies and then use

Σk(ν) = [Σk(−ν)]∗. (3.37)

Also, analogously to our treatment of the Bethe-Salpeter equation in section 3.4.1 we
can substantially improve the SDE’s numerical properties by subtracting from F its
frequency-constant diagram U , and computing the two resulting terms separately.
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CHAPTER 4
Results

We would now like to discuss and analyze the results of the presented method. All results
have been generated with Julia 1.10.0-rc1 using following packages:

• SparseIR.jl 1.0.15

• OvercompleteIR.jl (unreleased)

• StaticArrays.jl 1.7.0

• LowRankApprox.jl 0.5.4

Additionally, as briefly stated above, we employ the Anderson acceleration implementation
from [31] for solving the fixed-point problem. We opted to copy the source code into
our project, allowing us to make minor customizations – such as more verbose iteration
logging or custom termination criteria – that are not suitable for upstream contribution,
rather than depending on the original package. For the purposes of this chapter, the
function f is shorthand for DiagrammaticEquations defined in algorithm 2.

Any norm used in the following is the Euclidean one taken over all respective frequency
and momentum sampling points.

4.1 Convergence properties
In order to gain some measure of confidence in the discussed method, we analyze its
convergence properties.
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4. Results

4.1.1 Single-run convergence
First we investigate the convergence history of solving two models,

• Hubbard atom with U = 1t and β = 5/t and

• 2d Hubbard model with U = 1t and β = 5/t on 4 × 4 k-points,

both solved with BSE sum cutoff νmax = 20 and overcomplete basis cutoff ε = 10−3, as
defined in eq. (3.24). The fixed-point residuum is displayed in fig. 4.1.

Iteration k
50 100 150

‖x k− f(x
k)‖/‖x*

‖

10−15
10−12
10−9
10−6
10−3
100 2d Hubbard modelHubbard atom

Figure 4.1: The fixed-point solver’s typical convergence history, displayed as residua over the
course of the entire solution process for two models. xk is the discussed, kth iteration state vector
which comprises the flattened and concatenated vertices F , Φ and Σ. x∗ denotes f ’s (empirical)
fixed-point. The dashed line indicates double precision machine epsilon 2−52.

It exhibits quite favorable properties: the convergence rate is exponential, followed
by a stable noise floor below machine precision εMP = 2−52. This of course does not
constitute proof that the method converges at all points in the parameter region, but all
tested parameters work well and did not give reason for concern.

4.1.2 Convergence with tolerance and Matsubara sum cutoff
It is now imperative to check for convergence with decreasing tolerance ε (c.f. section 3.2.3)
and increasing Matsubara cutoff νmax (eq. (3.31)). For this purpose we first investigate
the atomic limit, where an analytic solution is available [22] to compare to.
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4.1. Convergence properties

Basis cutoff 𝜀10−3 10−2 10−1

‖X(𝜀)−
X exact

‖/‖X exact
‖

10−3

10−2

10−1

100
Linear basis size L8 7 6 5 4 3 2

Vertex X
FΦΣ

Figure 4.2: Atomic limit: Error in the three vertices X(ε, νmax) – with X ∈ {F, Φ, Σ}. As
benchmark reference we take the analytic solutions Xexact from [22]. The vertices are approximate
fixed-point solutions to the half-filled Hubbard atom with U = 1.2 and β = 2.3. Here, ε is varied
and νmax = 199 is set for all computations.

For fixed νmax (fig. 4.2) we see polynomial convergence somewhat faster than O�
ε−1�

before hitting a floor around 10−3, with the exact limiting value depending on the specific
vertex we look at.

Fixing ε, we see a somewhat surprising scaling behavior: in fig. 4.3 the self-energy Σ
hits an error floor sooner than the four-point vertices F and Φ. This seems to indicate a
systematic error somewhere in our approach, and we strongly suspect the U2-correction
eq. (3.33a) as likely culprit.
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4. Results

BSE sum cutoff 𝜈max [𝜋/𝛽]40 80 120 160 200

‖X(𝜈 max)
−X exact‖

/‖X exact‖

10−3

10−2

Vertex X
FΦΣ

Figure 4.3: Atomic limit: Same as fig. 4.2, but νmax is varied and ε ≈ 3.4 × 10−4 is set for all
computations.

Regarding the Hubbard model on 4 × 4 momentum points, the solution resulting
from the smallest ε and largest νmax will be the most accurate one, so we take it as the
reference solution to compare the others to. The results are then shown as a function of
ε in fig. 4.4 with fixed νmax and as a function of ε in fig. 4.5 with fixed ε.

In this case, there is no apparent error floor which makes sense considering the
reference we compare to is bound to be “systematically similar” to the result evaluated.
Scaling-wise, in fig. 4.4 we again observe slightly-better-than-O(ε) polynomial behavior1,
while fig. 4.5 exhibits super-polynomial scaling regarding the frequency cutoff νmax.

1For example, decreasing the basis cutoff by a factor ∼ 225 from the rightmost to the leftmost data
point, the error in Φ – which scaled the worst out of the three vertices – decreased by a factor of ∼ 545.
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4.1. Convergence properties

Basis cutoff 𝜀10−3 10−2 10−1

‖X(𝜀)−
X best‖/‖X

best‖

10−4

10−3

10−2

10−1
Linear basis size L9 8 7 6 5 4

Vertex X
FΦΣ

Figure 4.4: Hubbard model: Error in the three vertices X(ε, νmax) – with X ∈ {F, Φ, Σ}. As
benchmark reference we take Xbest ≡ X(3.4 × 10−4, 199π/β). The vertices are approximate
fixed-point solutions to the half-filled Hubbard model with U = 1t and β = 5/t on 4 × 4 k-points.
Here, ε is varied and νmax = 199 is set for all computations.

BSE sum cutoff 𝜈max [𝜋/𝛽]40 80 120 160 200

‖X(𝜈 max)
−X best‖/

‖X best‖

10−4

10−3

10−2
Vertex X

FΦΣ

Figure 4.5: Same as fig. 4.4, but now νmax is varied and ε ≈ 3.4 × 10−4 is fixed for all
computations.
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4. Results

4.2 Benchmarks
To evaluate our code’s performance, we conduct a series of benchmarks of representative
workloads. First we investigate the two precision parameters’ ε and νmax effect on runtime,
visualized in fig. 4.6.

Basis cutoff 𝜀10−3 10−2 10−1

Runtim
esingle

com puta
tionoff

[s]

0

50

100
Linear basis size L9 8 7 6 5 4𝜈max [𝜋/𝛽]1999199

Figure 4.6: Time (in seconds) a single evaluation of f requires as a function of linear basis size
L (top x-axis) and basis cutoff ε (bottom x-axis). For each point, 10 measurements were made
and the minimum estimator taken [40]. The dashed lines indicate an O(log(ε)νmax) model The
times were measured running on 12 threads on an AMD Ryzen 9 7900X 12-Core Processor. The
system considered is the half-filled Hubbard model with U = 1t and β = 5/t on 4 × 4 k-points.

The time a single evaluation of f takes can be well approximated (R2 ≈ 0.917) by
an O(log(ε)νmax) model. One could have expected ∼ O


log(ε)5


scaling here, which is

roughly the behavior of the sparse sampling set’s size.

Next, we would like to know how our actual problem parameters, chiefly temperature
β−1 and resolution in k-space, influence performance. In addition to runtime, we measure
the code’s memory footprint during problem setup, which is when the bulk of allocation
happens. The measurements, displayed in fig. 4.7, are “missing” some points, because for
these problem sizes, the available memory on the benchmarking machine (128 GB) was
insufficient. This issue could be mitigated by using fewer threads, but this would come
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4.2. Benchmarks

Timeun
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101
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allocate
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100
101
102

k-points1 × 12 × 23 × 34 × 45 × 56 × 6

Figure 4.7: Time and space requirements of solving systems with decreasing temperature β−1

and increasing k resolution, with fixed interaction U = 1t. The times were measured running on
12 threads on an AMD Ryzen 9 7900X 12-Core Processor with 128 GB of memory. In all cases,
ε = 2−9 and νmax = 59 π/β. Note the abscissa’s logarithmic scaling.
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4. Results

at the cost of speed. Furthermore, the resulting measurements would not be comparable
to those shown here. Hence, we have chosen not to include them.

This benchmark indicates high costs both in time and space for increasing momentum
space resolution. We also see here a feature that is particular to the way we perform
symmetry reduction in momentum space: When going up a step from an “odd × odd”
resolution there is a bigger jump in required computing resources than in stepping up
from “even × even”. Going back to fig. 3.2 elucidates this: even resolutions result in a
higher number of points situated right on the boundary of the irreducible Brillouin zone
which will be included in our symmetry-reduced bosonic momentum sampling set.

The scaling with β is more favorable in comparison.

4.3 Comparison with reference data
To verify the implementation’s correctness, we compare to reference data computed
by Anna Kauch with the MBE (Multi Boson Exchange) parquet solver [41, 42]. This
yet unpublished box implementation boasts good (single boson exchange) treatment of
asymptotics and, like the present work, computes one- and two-particle propagators.

For this comparison, we choose the half-filled Hubbard model at U = 1t, βt ∈
{2, 3, 4, 5} on 4 × 4 k-points on the square lattice with t′ = 0. We then computed results
at those same parameters using the discussed implementation with basis cutoff ε = 10−3

and BSE sum cutoff νmax = 199 π/β and present a comparison of the channel-reducible
vertex Γ and of the self-energy Σ in figs. 4.8 to 4.11. Because there is a lot of data
contained in Γrνν′ω

kk′q , we need to make some choices in presenting the results. Here we
choose k = (π, 0), k′ = (0, π/2), q = (π/2, π/2) and ω = 80 π/β. The self-energy
Σν

k provides less difficulty in this regard, we choose k = (π/2, π). Note that points
k = (kx, ky) with |kx − π| + |ky − π| = π comprise the Fermi surface and are therefore
special, for example, here ε(k) = 0.

Straight away we see that agreement regarding Γ is excellent: The relative error on
the presented subset of indices ∆rel ≡ ∥Γref − Γown∥∞/∥Γref∥∞ is ∆rel ≈ 0.004 at βt = 2
and increases linearly with β to ∆rel ≈ 0.009 at βt = 5. Concerning Σ, the data disagree
more: While qualitatively similar, the methods produce somewhat different figures at
small frequencies ν. We again suspect the U2 correction to be at fault here; investigations
are ongoing at the time of writing.
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4.3. Comparison with reference data

Reference This work Difference

r=d 𝜈'[𝜋/𝛽] −50
0

50

r=m 𝜈'[𝜋/𝛽] −50
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0
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r=t

𝜈 [𝜋/𝛽]−50 0 50

𝜈'[𝜋/𝛽] −50
0

50

𝜈 [𝜋/𝛽]−50 0 50 𝜈 [𝜋/𝛽]−50 0 50−0.4 −0.2 0.0 0.2 0.4 −0.0015 0.0000 0.0015

ReΣ k𝜈 [t]
0.500
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0.503

𝜈 [𝜋/𝛽]0 50 100 150

ImΣ k𝜈 [t]

−0.03
−0.02
−0.01

0.00

ReferenceThis work

Figure 4.8: Comparison to reference data from the MBE parquet code. Shown is the channel-
reducible Γ-vertex without background at ω = 80 π/β, k = (π, 0), k′ = (0, π/2) and q = (π/2, π/2),
(i) in the first column Γown, produced via the presented code, (ii) in the second column Γref and
(iii) in the third column Γref − Γown. In the last column, the self-energy Σ at k = (π/2, π) is
compared to reference data. Note that here, only the data on the sampling points are shown. In
all cases the parquet approximation is used to approximate a solution to the U = 1t and β = 2/t
half-filled Hubbard model on 4 × 4 k-points.
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4. Results

Reference This work Difference
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Figure 4.9: Same as fig. 4.8, but with β = 3/t.
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4.3. Comparison with reference data

Reference This work Difference
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Figure 4.10: Same as fig. 4.8, but with β = 4/t.
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Reference This work Difference

r=d 𝜈'[𝜋/𝛽] −50
0

50

r=m 𝜈'[𝜋/𝛽] −50
0

50

r=s 𝜈'[𝜋/𝛽] −50
0

50

r=t

𝜈 [𝜋/𝛽]−50 0 50

𝜈'[𝜋/𝛽] −50
0

50

𝜈 [𝜋/𝛽]−50 0 50 𝜈 [𝜋/𝛽]−50 0 50−0.3 0.0 0.3 −0.004 0.000 0.004

ReΣ k𝜈 [t]
0.500
0.502
0.504

𝜈 [𝜋/𝛽]0 50 100 150

ImΣ k𝜈 [t]

−0.03
−0.02
−0.01

ReferenceThis work

Figure 4.11: Same as fig. 4.8, but with β = 5/t.
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4.4. Resulting vertices

4.4 Resulting vertices
Last, to try and convey some intuition for the vertices’ structure, we would like to provide
3D visualizations of the results for half-filling, U = 1t, βt = 5 on a 4×4 k-grid in figs. 4.12
to 4.14. Shown are the full vertex F , the channel-reducible vertex Φ and the self-energy
Σ.

𝜈 [𝜋/𝛽]𝜈' [𝜋/𝛽]

r = d

𝜈 [𝜋/𝛽]𝜈' [𝜋/𝛽]

r = m

𝜈 [𝜋/𝛽]𝜈' [𝜋/𝛽]

r = s

𝜈 [𝜋/𝛽]𝜈' [𝜋/𝛽]

r = t
-0.3

0.0

0.3
-25 0 25-250250.000.250.500.75

-25 0 25-250250.000.250.500.75

-25 0 25-250250.000.250.500.75

-25 0 25-250250.000.250.500.75

Figure 4.12: The half-filled Hubbard model in the parquet approximation with 4 × 4 k-points
at U = 1t and β = 5/t. Full vertex with background subtracted F rνν′ω

kk′q − Ur with ω = 30π/β at
k = (π/2, 0), k′ = (π, 0) and q = (π, π). The vertex’ values are shown once as a 3D scatter plot
over the ν- and ν′-axes and once as a 2D heatmap floating above.

We can observe clearly that the assumption eq. (3.33a) fails to hold: The four-point
vertices – after subtracting the background – rather than decaying at higher values of ν
and ν ′ are full of diagonal planes running through them and extending to infinity. For
example, F contains a plane at ν − ν ′ ∼ 0 and another at ν + ν ′ ∼ −ω, both smeared
out instead of sharp. This is a feature that is captured well by the overcomplete basis
but invalidates any naive background removal shortcut.

Φ’s structure is different from F ’s, featuring instead a “wedge” at�−ω ≲ ν ≲ 0 if ω ≥ 0
0 ≲ ν ≲ −ω if ω < 0

(4.1)

and another described by substituting ν → ν ′ above. These too are fuzzy.
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Figure 4.13: Same as fig. 4.12, but instead picturing the reducible vertex Φrνν′ω
kk′q with ω = 30π/β

at k = (π/2, 0), k′ = (π, 0) and q = (π, π).
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Figure 4.14: Same as fig. 4.12, but instead picturing the self energy Σ(ν) at k = (π, 0).
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CHAPTER 5
Conclusion and outlook

In this thesis, we developed the first parquet solver using the IR-basis, advancing the
state of the art in terms of performance and convergence properties.

It is implemented as a Julia library with unit tests covering all functions. We first
applied this library to solve the Hubbard atom, where our solution agrees with the known
exact solution. In his Bachelor’s thesis [43] – which I had the opportunity to co-supervise
– Matthias Michalek applied the code to the Anderson impurity model, with the results
matching data produced by a reference solver.

Support for k-space dependence enabled us to solve the 2-dimensional Hubbard model
with a 4 × 4 resolution on a desktop computer in a matter of minutes. Performance
scaling and convergence properties were thoroughly tested and found to be favorable.
Again, the results were compared to benchmark data and found to be in good agreement.

Still, much remains to be done. The multi-orbital parquet equations have been
derived [23], so supporting multiple orbitals should be a straightforward extension. This
new version would then presumably require more computing resources, i.e. an HPC
cluster, so distributed memory parallelization would be a natural next step. Relatedly,
optimization-wise there are still low-hanging fruits to be picked, such as the full Brillouin
zone symmetry reduction briefly alluded to in a footnote in section 3.2.1. We should
also explore more sophisticated techniques of storing the momentum dependence in the
future. Quantics tensor trains [44, 45, 46] are a promising candidate for this. Also, the
form-factor basis [47, 48] has already been applied and should be explored in our context
as well.

The code discussed in this thesis is available at https://github.com/tuwien-c
ms/ParquetIR.jl. It supports Julia 1.9 and newer.

39

https://github.com/tuwien-cms/ParquetIR.jl
https://github.com/tuwien-cms/ParquetIR.jl




Bibliography

[1] A. Georges et al. „Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions“. In: Reviews of Modern Physics 68.1
(1996), pp. 13–125. doi: 10.1103/RevModPhys.68.13.

[2] X. Blase et al. „The Bethe–Salpeter Equation Formalism: From Physics to Chem-
istry“. In: Journal of Physical Chemistry Letters 11.17 (2020), pp. 7371–7382. doi:
10.1021/acs.jpclett.0c01875.

[3] G. Onida, L. Reining, and A. Rubio. „Electronic excitations: density-functional
versus many-body Green’s-function approaches“. In: Reviews of Modern Physics
74.2 (2002), pp. 601–659. doi: 10.1103/RevModPhys.74.601.

[4] J. Lichtenstein et al. „Functional renormalization group study of an eight-band
model for the iron arsenides“. In: Physical Review B 89.21 (2014), p. 214514. doi:
10.1103/PhysRevB.89.214514.

[5] G. Esirgen and N. E. Bickers. „Fluctuation-exchange theory for general lattice
Hamiltonians“. In: Physical Review B 55.4 (1997), pp. 2122–2143. doi: 10.1103
/PhysRevB.55.2122.

[6] Y. M. Vilk and A.-M. Tremblay. „Non-Perturbative Many-Body Approach to the
Hubbard Model and Single-Particle Pseudogap“. In: Journal de Physique I 7.11
(1997), pp. 1309–1368. issn: 1286-4862. doi: 10.1051/jp1:1997135.

[7] Y. Takada. „Inclusion of Vertex Corrections in the Self-Consistent Calculation of
Quasiparticles in Metals“. In: Physical Review Letters 87.22 (2001), p. 226402. doi:
10.1103/PhysRevLett.87.226402.

[8] E. Maggio and G. Kresse. „GW Vertex Corrected Calculations for Molecular
Systems“. In: Journal of Chemical Theory and Computation 13.10 (2017), pp. 4765–
4778. issn: 1549-9618. doi: 10.1021/acs.jctc.7b00586.

[9] K. Zantout, S. Backes, and R. Valentí. „Effect of Nonlocal Correlations on the
Electronic Structure of LiFeAs“. In: Physical Review Letters 123.25 (2019), p. 256401.
doi: 10.1103/PhysRevLett.123.256401.

[10] Y. Pavlyukh, G. Stefanucci, and R. van Leeuwen. „Dynamically screened vertex
correction to GW“. In: Physical Review B 102.4 (2020), p. 045121. doi: 10.1103
/PhysRevB.102.045121.

41

https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1021/acs.jpclett.0c01875
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevB.89.214514
https://doi.org/10.1103/PhysRevB.55.2122
https://doi.org/10.1103/PhysRevB.55.2122
https://doi.org/10.1051/jp1:1997135
https://doi.org/10.1103/PhysRevLett.87.226402
https://doi.org/10.1021/acs.jctc.7b00586
https://doi.org/10.1103/PhysRevLett.123.256401
https://doi.org/10.1103/PhysRevB.102.045121
https://doi.org/10.1103/PhysRevB.102.045121


[11] J. Kuneš. „Efficient treatment of two-particle vertices in dynamical mean-field
theory“. In: Physical Review B 83.8 (2011), p. 085102. doi: 10.1103/PhysRev
B.83.085102.

[12] N. Lin, E. Gull, and A. J. Millis. „Two-Particle Response in Cluster Dynamical
Mean-Field Theory: Formalism and Application to the Raman Response of High-
Temperature Superconductors“. In: Physical Review Letters 109.10 (2012), p. 106401.
doi: 10.1103/PhysRevLett.109.106401.

[13] G. Rohringer, A. Valli, and A. Toschi. „Local electronic correlation at the two-
particle level“. In: Physical Review B 86.12 (2012), p. 125114. doi: 10.1103/Phy
sRevB.86.125114.

[14] H. Hafermann et al. „Collective charge excitations of strongly correlated electrons,
vertex corrections, and gauge invariance“. In: Physical Review B 90.23 (2014),
p. 235105. doi: 10.1103/PhysRevB.90.235105.

[15] J. Otsuki, H. Hafermann, and A. I. Lichtenstein. „Superconductivity, antifer-
romagnetism, and phase separation in the two-dimensional Hubbard model: A
dual-fermion approach“. In: Physical Review B 90.23 (2014), p. 235132. doi: 10.1
103/PhysRevB.90.235132.

[16] A. Galler et al. „Ab initio dynamical vertex approximation“. In: Physical Review B
95.11 (2017), p. 115107. doi: 10.1103/PhysRevB.95.115107.

[17] A. Kauch et al. „Generic Optical Excitations of Correlated Systems: π-tons“. In:
Physical Review Letters 124.4 (2020), p. 047401. doi: 10.1103/PhysRevLett.1
24.047401.

[18] M. Kitatani et al. „Why the critical temperature of high-Tc cuprate superconductors
is so low: The importance of the dynamical vertex structure“. In: Physical Review
B 99.4 (2019), p. 041115. doi: 10.1103/PhysRevB.99.041115.

[19] I. T. Diatlov, V. V. Sudakov, and K. A. Ter-Martirosian. „ASYMPTOTIC MESON-
MESON SCATTERING THEORY“. In: Soviet Phys. JETP 5 (1957). url: https
://www.osti.gov/biblio/4338008.

[20] C. De Dominicis and P. C. Martin. „Stationary Entropy Principle and Renormaliza-
tion in Normal and Superfluid Systems. II. Diagrammatic Formulation“. In: Journal
of Mathematical Physics 5.1 (1964), pp. 31–59. doi: 10.1063/1.1704064.

[21] J. Bezanson et al. „Julia: A fresh approach to numerical computing“. In: SIAM
review 59.1 (2017), pp. 65–98. doi: 10.1137/141000671.

[22] P. Thunström et al. „Analytical investigation of singularities in two-particle irre-
ducible vertex functions of the Hubbard atom“. In: Physical Review B 98.23 (2018),
p. 235107. doi: 10.1103/PhysRevB.98.235107.

[23] J. Mangott. Correlations in multi-orbital electronic systems: parquet equations.
Master thesis, TU Wien. 2022. doi: 10.34726/hss.2022.101270.

42

https://doi.org/10.1103/PhysRevB.83.085102
https://doi.org/10.1103/PhysRevB.83.085102
https://doi.org/10.1103/PhysRevLett.109.106401
https://doi.org/10.1103/PhysRevB.86.125114
https://doi.org/10.1103/PhysRevB.86.125114
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235132
https://doi.org/10.1103/PhysRevB.90.235132
https://doi.org/10.1103/PhysRevB.95.115107
https://doi.org/10.1103/PhysRevLett.124.047401
https://doi.org/10.1103/PhysRevLett.124.047401
https://doi.org/10.1103/PhysRevB.99.041115
https://www.osti.gov/biblio/4338008
https://www.osti.gov/biblio/4338008
https://doi.org/10.1063/1.1704064
https://doi.org/10.1137/141000671
https://doi.org/10.1103/PhysRevB.98.235107
https://doi.org/10.34726/hss.2022.101270


[24] H. Shinaoka et al. „Compressing Green’s function using intermediate representation
between imaginary-time and real-frequency domains“. In: Physical Review B 96.3
(2017), p. 35147. issn: 2469-9969. doi: 10.1103/PhysRevB.96.035147.

[25] J. Hubbard and B. H. Flowers. „Electron correlations in narrow energy bands“. In:
Proceedings of the Royal Society of London. Series A. Mathematical and Physical
Sciences 276.1365 (1963), pp. 238–257. doi: 10.1098/rspa.1963.0204.

[26] N. E. Bickers. „Self-Consistent Many-Body Theory for Condensed Matter Sys-
tems“. In: Theoretical Methods for Strongly Correlated Electrons. CRM Series in
Mathematical Physics. Ed. by D. Sénéchal, A.-M. Tremblay, and C. Bourbonnais.
Springer, 2004. doi: 10.1007/0-387-21717-7_6.

[27] G. Rohringer et al. „Diagrammatic routes to nonlocal correlations beyond dynamical
mean field theory“. In: Reviews of Modern Physics 90.2 (2018), p. 025003. doi:
10.1103/RevModPhys.90.025003.

[28] F. B. Kugler and J. von Delft. „Multiloop Functional Renormalization Group
That Sums Up All Parquet Diagrams“. In: Physical Review Letters 120.5 (2018),
p. 057403. doi: 10.1103/PhysRevLett.120.057403.

[29] D. G. Anderson. „Iterative Procedures for Nonlinear Integral Equations“. In: Journal
of the ACM 12.4 (1965), pp. 547–560. issn: 0004-5411. doi: 10.1145/321296.3
21305.

[30] H. F. Walker and P. Ni. „Anderson Acceleration for Fixed-Point Iterations“. In:
SIAM Journal on Numerical Analysis 49.4 (2011), pp. 1715–1735. doi: 10.1137
/10078356X.

[31] C. T. Kelley. SIAMFANLEquations.jl. Julia Package. 2022. doi: 10.5281/zenod
o.4284807. url: https://github.com/ctkelley/SIAMFANLEquations
.jl.

[32] H. J. Monkhorst and J. D. Pack. „Special points for Brillouin-zone integrations“.
In: Physical Review B 13.12 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.1
3.5188.

[33] N. W. Ashcroft and N. D. Mermin. Solid state physics. New York, NY: Holt,
Rinehart and Winston, 1976. url: https://cds.cern.ch/record/102652.

[34] J. A. C. Weideman. „Numerical Integration of Periodic Functions: A Few Examples“.
In: The American Mathematical Monthly 109.1 (2002), pp. 21–36. issn: 00029890,
19300972. url: http://www.jstor.org/stable/2695765 (visited on
05/06/2024).

[35] D. Cruz-Uribe and C. J. Neugebauer. „Sharp error bounds for the trapezoidal rule
and Simpson’s rule“. In: J. Inequal. Pure Appl. Math 3.4 (2002), pp. 1–22.

[36] M. Wallerberger et al. „sparse-ir: Optimal compression and sparse sampling of
many-body propagators“. In: SoftwareX 21 (2023), p. 101266. issn: 2352-7110. doi:
10.1016/j.softx.2022.101266.

43

https://doi.org/10.1103/PhysRevB.96.035147
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1007/0-387-21717-7_6
https://doi.org/10.1103/RevModPhys.90.025003
https://doi.org/10.1103/PhysRevLett.120.057403
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://doi.org/10.1137/10078356X
https://doi.org/10.1137/10078356X
https://doi.org/10.5281/zenodo.4284807
https://doi.org/10.5281/zenodo.4284807
https://github.com/ctkelley/SIAMFANLEquations.jl
https://github.com/ctkelley/SIAMFANLEquations.jl
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://cds.cern.ch/record/102652
http://www.jstor.org/stable/2695765
https://doi.org/10.1016/j.softx.2022.101266


[37] M. Wallerberger, H. Shinaoka, and A. Kauch. „Solving the Bethe-Salpeter equation
with exponential convergence“. In: Physical Review Research 3.3 (2021), p. 033168.
doi: 10.1103/PhysRevResearch.3.033168.

[38] H. Shinaoka et al. „Overcomplete compact representation of two-particle Green’s
functions“. In: Physical Review B 97.20 (2018), p. 205111. issn: 2469-9969. doi:
10.1103/PhysRevB.97.205111.

[39] S. Dirnböck et al. Overcomplete intermediate representation of two-particle Green’s
functions and its relation to partial spectral functions. 2024. doi: 10.48550/arx
iv.2404.05541. arXiv: 2404.05541 [cond-mat.str-el].

[40] J. Chen and J. Revels. „Robust benchmarking in noisy environments“. In: arXiv
preprint arXiv:1608.04295 (2016).

[41] F. Krien and A. Kauch. „The plain and simple parquet approximation: single-and
multi-boson exchange in the two-dimensional Hubbard model“. In: The European
Physical Journal B 95.4 (2022), p. 69. issn: 1434-6036. doi: 10.1140/epjb/s10
051-022-00329-6.

[42] F. Krien et al. „Boson-exchange parquet solver for dual fermions“. In: Physical
Review B 102.19 (2020), p. 195131. doi: 10.1103/PhysRevB.102.195131.

[43] M. Michalek. „Solving the Anderson impurity model with intermediate representa-
tion of the parquet equations“. 2024.

[44] H. Shinaoka et al. „Multiscale Space-Time Ansatz for Correlation Functions of
Quantum Systems Based on Quantics Tensor Trains“. In: Physical Review X 13.2
(2023), p. 021015. doi: 10.1103/PhysRevX.13.021015.

[45] M. K. Ritter et al. „Quantics Tensor Cross Interpolation for High-Resolution
Parsimonious Representations of Multivariate Functions“. In: Physical Review
Letters 132.5 (2024), p. 056501. issn: 1079-7114. doi: 10.1103/PhysRevLett
.132.056501.

[46] Y. Núñez Fernández et al. „Learning Feynman Diagrams with Tensor Trains“. In:
Physical Review X 12.4 (2022), p. 041018. doi: 10.1103/PhysRevX.12.041018.

[47] C. J. Eckhardt et al. „Truncated-unity parquet equations: Application to the
repulsive Hubbard model“. In: Physical Review B 98.7 (2018), p. 075143. doi:
10.1103/PhysRevB.98.075143.

[48] C. J. Eckhardt et al. „Truncated unity parquet solver“. In: Physical Review B
101.15 (2020), p. 155104. doi: 10.1103/PhysRevB.101.155104.

44

https://doi.org/10.1103/PhysRevResearch.3.033168
https://doi.org/10.1103/PhysRevB.97.205111
https://doi.org/10.48550/arxiv.2404.05541
https://doi.org/10.48550/arxiv.2404.05541
https://arxiv.org/abs/2404.05541
https://doi.org/10.1140/epjb/s10051-022-00329-6
https://doi.org/10.1140/epjb/s10051-022-00329-6
https://doi.org/10.1103/PhysRevB.102.195131
https://doi.org/10.1103/PhysRevX.13.021015
https://doi.org/10.1103/PhysRevLett.132.056501
https://doi.org/10.1103/PhysRevLett.132.056501
https://doi.org/10.1103/PhysRevX.12.041018
https://doi.org/10.1103/PhysRevB.98.075143
https://doi.org/10.1103/PhysRevB.101.155104

	Kurzfassung
	Abstract
	Introduction
	Outline

	Definitions
	Model
	Hubbard model
	Green's functions
	Self-energy

	Parquet equations
	Bethe-Salpeter equation
	Parquet equation
	Schwinger-Dyson equation
	Convergence and Uniqueness


	Methods
	Fixed-point structure
	Traditional method
	Proposed method

	Representation of quantities
	Momentum indices
	Frequency indices
	Intermediate representation

	Parquet equation
	Bethe-Salpeter equation
	Separating off the backgrounds
	Summation frequencies

	Schwinger-Dyson equation

	Results
	Convergence properties
	Single-run convergence
	Convergence with tolerance and Matsubara sum cutoff

	Benchmarks
	Comparison with reference data
	Resulting vertices

	Conclusion and outlook
	Bibliography

