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H I G H L I G H T S

• A nonlinear biomass furnace model for
control purposes is introduced and
validated.

• A state-of-the-art parameter sensitivity
analysis is conducted for the model.

• An implementation of the nu-gap me-
tric for model partitioning is pre-
sented.

• Fuzzy model predictive control for
grate combustion furnaces is in-
troduced.

• Carbon monoxide estimation models
are applied to different control algo-
rithms.
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A B S T R A C T

This work presents a fuzzy model predictive controller for small-scale grate furnaces based on a newly derived
biomass combustion model. Several local linear controllers are designed for a selected number of operating
points utilizing a gap metric. The resulting local predictive controllers are merged with membership functions to
form a global nonlinear fuzzy control structure. The presented framework intends to improve the transient and
steady state operation by applying an optimal control strategy with state estimation and to cover the entire
operating range of the furnace. The open loop results of the introduced combustion model are parameterized and
cross-validated with measured data from a test furnace. In order to find suitable parameters for the grey-box
model, a local sensitivity analysis is conducted to contribute to an efficient parameter estimation process. Closed
loop simulation results of the fuzzy model predictive controller, a linear model predictive controller and a PI
control algorithm are presented and compared. Based on the performance of the proposed fuzzy controller, its
application, advantages and disadvantages are discussed. Additionally, the impact of the different controllers on
the formation of carbon monoxide is investigated based on estimation models from literature. The simulation
results show that the fuzzy model predictive controller performs best in the considered categories.

1. Introduction

During the last decades, the combustion of biofuels has been ex-
tensively researched in order to enhance the benefits of this renewable
source of energy and to further exploit possible alternatives to fossil

fuels. Not only the research, but also the practical application of bio-
fuels has increased. In the year 2005, slightly more than 13.2% of the
total energy produced in the European Union was obtained from re-
newable sources [1]. More than a decade later, in 2017 this share has
already reached 22.9% of which 54.9% were obtained from the
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combustion of wood and other solid biofuels [2]. Detailed corre-
sponding values for some selected European countries are given in
Fig. 1.

Alongside the increased use of this renewable energy source, the
release of CO2 and other emissions like carbon monoxide, nitrogen
oxides and particulate matter (PM) have increased as well and are in-
fluencing our environment and health [3]. Whereas CO2 is the in-
evitable combustion product, other emissions like CO or NOx should be
minimized. As a result, preventing the release of emissions is becoming
of increased interest for most applications of biofuels. For the com-
bustion of biomass, a well adjusted control strategy is an attractive way
to decrease the formation of pollutants, to meet emission regulations
and to further increase the performance of existing and new furnaces
alike. The installation of additional filter is another way of preventing
the release of pollutants, but it cannot influence their formation or in-
crease the plant’s efficiency directly. In this work, a fuzzy model pre-
dictive controller (FMPC) is introduced for small-scale grate combus-
tion furnaces together with the underlying process model. The basic
idea is to exploit an optimal control strategy that can handle non-
linearities, constraints and whose optimization can be extended by

Nomenclature

Modeling

a ash content of dry fuel
cp specific heat capacity in J/kgK

Fisher information matrix
HL lower calorific heating value in J/kg
Jx,p Jacobian matrix of parameter sensitivities
k experimentally determined constant/ discrete time step
Lmin stoichiometric amount of air for complete combustion

air-to-fuel ratio
m mass in kg
m mass flow in kg/s
np number of parameters of the furnace model
nu number of controlled inputs
nx number of states
ny number of controlled outputs
O2 oxygen concentration of the flue gas in %
QF weighting matrix for the FIM
Q enthalpy/ power in W
Rthd rate of change for mthd

Stefan–Boltzmann constant in W/m2K4

T temperature in K
vector of parameters for the furnace model

0 vector of initial parameter values for the FIM
vector of parameters obtained from optimization

u input vector for the furnace model
w mass fraction of water content in %
xm state vector of the furnace model

Gap metric and fuzzy

A B C, ,m m m discrete state space matrices of the furnace model
b stability margin of the -gap metric

specified stability margin for the -gap metric
C transfer function of a controller
c centerpoints of the membership functions

validity functions of the fuzzy system
M number of submodels
µ membership functions of the fuzzy model
-gap distinct gap metric

P transfer function of a plant

spread of the membership functions
xpar partitioning variable for the fuzzy system

Control

A B C, , discrete state space matrices of the augmented control
system

Fu compact matrix for the outputs in MPC prediction
Fx compact matrix for the states in MPC prediction
Jc quadratic cost function for the MPC
Kkal Kalman filter gain
Nc control horizon
Np prediction horizon
P estimation-error covariance matrix
Pp predicted estimation-error covariance matrix
Qc weighting matrix for control errors
Rc weighting matrix for control inputs

U augmented control increments
v w/ measurement/ process noise
X augmented state vector
X estimated augmented state vector
x state estimates
xp/yp state/ output prediction for EKF
Yref setpoints for control
y measured outputs

Abbreviations

CO Carbon Monoxide
DoE Design of Experiments
EKF Extended Kalman Filter
FIM Fisher Information Matrix
FMPC Fuzzy Model Predictive Control
GMPC Global Model Predictive Control
LLMN Local Linear Model Network
MPC Model Predictive Control
NOx Nitrogen Oxides
PID Proportional Integral Differentiator
PM Particulate Matter
PSO Particle Swarm Optimization
RMSE Root Mean Squared Error
TS Takagi Sugeno

Fig. 1. The left bar represents the percentage of renewable energy to total
energy produced in a country or region in 2017 [2]. The right bar refers to the
share of energy obtained from the combustion of solid biofuels with respect to
renewable energies.
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additional control requirements, like emission estimation models or
formation data as presented in [4].

A lot of unwanted gaseous emissions and PM result from incomplete
combustion [5]. This often occurs during the transition between oper-
ating points, whereas a stationary operation is usually well adjusted. It
is therefore necessary to provide a control strategy that is able to
consider the transient behavior as well. Standard industrial control al-
gorithms, like PID based controllers, are usually able to provide sa-
tisfying steady state results, but can lack performance during transition.
Additionally, their implementation becomes more complex if several
inputs or actuator limitations have to be handled. Therefore, more
advanced model based control strategies are being implemented for the
domestic and industrial combustion of biomass. Applications for model
predictive control for large industrial furnaces are given for example in
[6] for a furnace with moving grate, in [7] for a combined heat and
power plant or in [8] for a municipal waste combustion plant. A dif-
ferent model based approach utilizing input–output linearization is
given e.g. in [9] for a small-scale biomass combustion furnace whose
design is comparable to the one considered in this work.

The general application of model based control algorithms however
suffers from the well known problem of finding an adequate model
which is simple enough for the controller design and the available
hardware, yet complex enough to describe all relevant characteristics of
the system. Depending on the field of interest, every modeling approach
serves a different purpose and is therefore often unfit for most other
applications. Although a lot of different furnace models exist, process
modeling, emission formation and other problems are similar in dif-
ferent fields, as presented in [10,11] for the combustion of coal or in
[12] for the co-combustion of coal and biomass. Combustion modeling
based on distributed approaches as presented in [13] for a stratified
downdraft gasifier and in [14] for fixed bed combustion focus on de-
scribing the complex thermochemical processes in detail, but are not
suitable for control design. Other approaches as presented in [15] or in
[16] are less complex, but sensitive equations are either used to de-
scribe the reaction kinetics or the heat transfer. In [6] an approach si-
milar to the one in [16] was presented using a linearized Arrhenius
equation, yet the overall model is still very detailed due to the pre-
sented furnace size and its application. Less complex process models
based on simplified reaction kinetics as suggested in [17] are presented
in [7,9,18]. In [7] a plant with a very specific structure is considered,
whereas in [9] numerous experimental coefficients are introduced for
the model. The model presented in [18] is simple and almost linear, but
not suitable for the description of the operating range of the in-
vestigated furnace. As a result, a new process model is introduced in
this work, which aims to use a reduced number of coefficients that can
be estimated by nonlinear optimization. To emphasize the estimability
of the parameters, a state-of-the-art sensitivity analysis based on the
Fisher information matrix (FIM) is conducted [19] and the obtained
parameters for the grey-box model are presented.

Based on the introduced process model, a network of constrained
model predictive controllers is proposed, which is convoluted to form a
fuzzy model predictive controller for small-scale furnaces. Linguistic
and rule based Mamdani fuzzy systems [20] have been successfully
applied in similar fields of research, for example to minimize N2O
emissions [21], to estimate model parameters in combustion furnaces
[22] or for the predictive modeling of biomass pyrolysis [23]. This work
is based on Takagi–Sugeno (TS) fuzzy systems [24] however, for which
Gaussian membership functions are applied favorably [25]. A survey
about closed loop stability of these systems is presented in [26] and in
detail e.g. in [27]. The local models for the linear controller design are
obtained by splitting the operating range of the nonlinear process
model into a number of linearized submodels. For this purpose a gap-
metric approach is proposed based on the work presented in [28] and
implemented as suggested in [29]. The selected -gap metric itself is
based on H loop-shaping and combined with Gaussian membership
functions reduces the number of independent parameters of the

membership functions to one. The underlying MPC beneficially solves
the problem of actuator saturation by a constrained optimization.

The combination of these methods yields an advanced overall
control-scheme based on a nonlinear biomass combustion model for an
existing plant with an application of the -gap metric. Closed loop si-
mulation results of the FMPC for the small-scale biomass combustion
furnace with a nominal load of 100 kW are illustrated in comparison to
a global model predictive controller (GMPC) and a classic PID control
concept from literature [30]. The different control designs are ex-
amined with regard to their stationary and transient performance and
the resulting CO emissions are evaluated based on models for the
combustion of wooden pellets [31]. This paper presents an approach on
how to implement a fuzzy model predictive controller for a small-scale
biomass combustion furnace and provides design methods for every
step on the way. A byproduct of of the described procedure is the
GMPC, which for itself is already an improvement compared to con-
ventional furnace control. This work aims to introduce a fully method
based state-of-the-art control concept for non-industrial furnaces and to
evaluate and critically discuss the performance of less complex control
algorithms in comparison.

This work is structured as follows: First, the underlying nonlinear
furnace model is introduced. Next, the operating points for the local
linear models are determined and the basic fuzzy formulation is pre-
sented. Then the time discrete model predictive control algorithm with
the fuzzy convolution and state estimation is introduced. Finally, the
model is validated for the investigated furnace and the simulation re-
sults for the controller are compared and discussed.

2. Material and methods

2.1. Furnace model

The introduced model of the furnace is based on physical principles
complemented with experimental design approaches where missing
information has to be obtained. The following sections present the basic
furnace structure with two combustion stages, the nonlinear differential
equations used for the controller design and a local sensitivity analysis
for parameter estimation.

2.1.1. Process description
To obtain a suitable model for the controller, it is sufficient for small

furnaces to use mass and energy balances without distributed para-
meters. Furthermore, by replacing complex reaction kinetics and heat
transfer phenomena with reasonable simplifications, an appropriate
process model can be defined by introducing only a manageable
number of additional parameters. A schematic of the furnace is given in
Fig. 2 where the massflows and temperatures available for modeling are
depicted.

The inputs to the system are the fuel mass flow mf of wet biomass,
the primary air from below the grate mpa and the secondary air msa1
streaming into the freeboard above the grate where the second stage of
the combustion takes place. The additional air inlet msa2 allows for a
more direct regulation of the flue gas burnout and therefore the flue gas
composition. The combustion residues mash and the flue gas mfg are
process dependent mass flows leaving the furnace.

Owing to its size, the investigated plant is designed for district or
domestic heating. The thermal power released during the combustion is
distributed to the consumers via a water circuit. Therefore, the differ-
ence between the supply water temperature Tsup and the return water
temperature Tret of the heating circuit is the primary measurement of
the plant power. The oxygen concentration of the flue gas O2 contains
valuable information about the process for feedback and control ad-
justments and indicates the current trade-off between performance and
emission formation. If the O2 concentration is small, efficiency is close
to the furnace maximum but the concentration of CO is typically
slightly higher than the achievable minimum [31]. High O2
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concentrations signal, that sufficient oxygen is available for a complete
combustion but often indicate the begin of performance losses.

The freeboard temperature Tfb and the temperature of the cold flue
gas exiting the furnace Tex are important for a proper control strategy of
the furnace as well, providing feedback about the combustion, emission
formation, wear, soot and condensation in the exhaust system. The
freeboard temperature is the main indicator for the thermal power re-
leased in the furnace, which should not be confused with the power of
the water circuit. While the thermal power mainly reflects the amount
of fuel that is converted during combustion, the water circuit heavily
depends on the return water temperature Tret and the water mass flow
mw as well. These two variables can be additional inputs to the furnace
and for plant control, but are kept constant at the investigated furnace.
The supply water temperature Tsup is therefore the mixed product of
these parameters. The exhaust gas temperature Tex can be considered
mostly as a monitoring state, which serves as a lower temperature
threshold for the exhaust system.

2.1.2. Solid mass balance
The current fuel mass mb of biomass on the grate can be obtained

from

=dm
dt

m m mb
f,dry thd ash (1)

with the mass flow of dry fuel mf,dry (in kg/s) onto the grate, mthd the
thermal decomposition of the fuel (in kg/s) and the grate speed de-
pendent disposal of combustion remains mash (in kg/s). The dry fuel
feed is given by

=m w m(1 ) ,f,dry H2O f (2)

where wH2O represents the mass fraction of the water content of the wet
fuel mass flow mf (in kg/s). If the grate speed is constant and slow, such
that a complete burnout of the combustible components on the grate is
guaranteed, the relation

=m a mash ash f,dry (3)

can be applied with aash as the ash content of the dry fuel. A simplified
description of the thermal decomposition on the grate is presented in
[17] as

= +m k m m m( )thd 1 b pa pa0 (4)

where k1 represents the combustion rate constant (in 1/kg), mpa the
mass flow of primary air (in kg/s) and mpa0 the load correction of the
primary air (in kg/s).

2.1.3. Oxygen concentration in flue gas
The oxygen concentration in the flue gas after the combustion can

be obtained from [30] as

=k dO
dt

O21 1
O

2
22 (5)

with the experimentally determined time constant kO2 of the O2-Sensor
and the air-to-fuel ratio as

= m
k L m

a

2 min thd (6)

where ma is the total amount of air flowing into the furnace (in kg/s)
including excess air and Lmin is the stoichiometric amount of air ne-
cessary for complete combustion given ideal conditions. Because la-
boratory conditions are not guaranteed in the furnace, the experimen-
tally determined factor k2 is introduced to correct Lmin towards
measurements. The relationship presented in Eq. (5) yields good sta-
tionary and transient results for the oxygen concentration, but very fast
dynamic effects are not represented entirely. Therefore the additional
state Rthd for the rate of change of the thermal decomposition mthd is
introduced as

=k dR
dt

m RR
thd

thd thdthd (7)

with the experimentally determined time constant kRthd. Eq. (5) is then
modified to

= +k dO
dt

R O21 1 .O
2

thd 22 (8)

The additional term of the thermal decomposition rate allows a de-
scription of the observed fast dynamics of the oxygen concentration at
the furnace.

2.1.4. Freeboard gas temperature
The temperature of the hot gas is obtained by an energy balance of

the freeboard subsystem depicted in Fig. 2, yielding

= +m c Q Q Q QdT
dtg p,g in comb gas rad,fb

fb
(9)

wheremg is the gas mass in the freeboard (in kg), cp,g is the specific heat
capacity of the hot gas (in J/kgK), Qin is the enthalpy transported into
the system with the air and the fuel (in W), Qcomb is the heat released
due to the combustion (in W),Qgas is the enthalpy of the hot gas leaving
the freeboard to the heat exchanger (in W) and Qrad,fb are the radiation
losses of the freeboard (in W). In detail, these terms are

= +Q m c T m c Tin a p,a amb f p,s amb (10)

=Q m Hcomb thd L (11)

=Q m c Tgas fg p,g fb (12)

=Q k Trad,fb 3 fb
3 (13)

where cp,a is the specific heat capacity of air (in J/kgK), cp,s is the
specific heat capacity of the solid fuel (in J/kgK), Tamb the ambient
temperature (in K), HL is the lower calorific heating value of the fuel (in
J/kg), mfg is the flue gas mass flow (in kg/s), k3 is an experimentally
determined constant for the simplified radiation term (in m2K) and is
the Stefan–Boltzmann constant (in W/m2K4). The Stefan–Boltzmann
law for thermal radiation requires the temperature to be of 4th order,
but better results for the investigated furnace have been achieved with
the simplified relation presented in Eq. (13). The enthalpy flow of the
ash mass leaving the furnace is not considered in Eq. (9) due to its
negligible magnitude.

2.1.5. Supply water temperature
The supply water temperature Tsup for the heating circuit can be

obtained by an energy balance of the heat exchanger. The thermal

Fig. 2. Schematic of the investigated biomass combustion plant with relevant
massflows and temperatures of the system.
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power of the transported waterQw is then part of the algebraic equation

+ = +Q Q Q Q ,w ex gas rec (14)

whereQex is the enthalpy flow of the exhaust gas leaving the furnace (in
W) and Qrec is the radiation recuperation term (in W), expressing the
fact that not all the radiation energy of the freeboard is lost to the heat
exchanger and the water circuit. The exhaust enthalpy flow is given by

=Q m c T ,ex fg p,ex ex (15)

where cp,ex is the specific heat capacity (in J/kgK) and Tex is the tem-
perature of the flue gas (in K). The radiation recuperation Qrec is again
obtained by the simplified relation

=Q k Trec 4 fb
3 (16)

under the condition that <k k4 3 is true and therefore Qrec cannot be a
power source. The simplified radiation terms are beneficial, if the
emissivity or the radiation surfaces of the furnace are unknown. With
Eq. (14) linking the gaseous part of the furnace to the water part, the
supply temperature Tsup can be obtained from

= +c m
dT

dt
Q c m T Tp,w w

sup
w p,w w ret sup

(17)

with the averaged heat capacity cp,w of water (in J/kgK), the water mass
mw inside the heat exchanger (in kg), the water mass flow mw (in kg/s)
and the temperature Tret of the returning water (in K).

2.1.6. Exhaust gas temperature
Assuming that no condensation occurs, the temperature of the gas at

the end of the heat exchanger can be expressed with the enthalpy flow
of the gas combined with a model for the heat transferred in the ex-
changer. A simplified approach is presented in [18] as

= +c m dT
dt

Q Q m k T T T T( )p,ex ex
ex

gas ex fg R fb sup ex ret (18)

where cp,ex is the constant averaged heat capacity of the gas (in J/kgK),
mex is the gas mass in the heat exchanger (in kg) and kR is a combined
refractory dependent coefficient (in J/kgK). In combination with mfg, a
load dependent heat transfer is obtained. However, Eq. (18) has a
strong interdependency with Eq. (17), which restricts either the grey-
box estimation of the supply water temperature or the exhaust gas
temperature. Since Tsup is the major variable for control and Tex is not a
primary target, the simple approach

= +c m dT
dt

T
k

T 273.15p,ex ex
ex fb

5
ex (19)

is suggested, which is basically a first order lowpass filter based on the
freeboard temperature Tfb corrected by the experimentally determined
constant k5.

2.1.7. Parameter sensitivity and estimation
The nonlinear furnace model is represented by Eqs. (1)–(9),

(13)–(17). The performance of the introduced model is presented and
discussed in Section 3.1, after the parameters are obtained. The foun-
dation of the parameter estimation process is described in the fol-
lowing. The states xm based on the first order differential equations of
the model are comprised of the vector

=x m O T T T R[ , , , , , ]T
m b 2 fb sup ex thd

and the nonlinear continuous system can be expressed by

=x t f x t u t( , ) ( ( , ), ( ), ).m m (20)

The grey-box model also depends on the vector of yet undefined de-
sign parameters for the given model

= [ ]k k k k k k k m, , , , , , ,R
T

1 2 3 4 5 O g2 thd

which have to be estimated based on measurements. The estimation is
conducted with a particle swarm optimization (PSO) to overcome the
obstacle of the results being dependent on the initial values. Introdu-
cing a high number or an unfavorable choice of design parameters
however can lead to issues in the performance of the estimation pro-
cess. Especially the reproducibility of the results can suffer due to non-
unique solutions. Therefore, a state-of-the-art parameter sensitivity
analysis based on the Fisher information matrix (FIM) as presented and
discussed in [19] and in [32] is conducted in order to investigate the
impact, magnitude and necessity of the parameters.

The sensitivity analysis allows a priori statements about the local
estimability of the parameters given experiment or measured data. The
FIM can aid in grey-box estimation to identify problematic parameters
or parameter combinations. These parameters typically show high
variances, which means their contribution to explain the measurements
is small. The FIM is based on the derivatives of the nx states with respect
to the np parameters in . Measurements are typically taken at a discrete
time step denoted by k, which yields

= =

…

…
J k x x k( , , ) ( , )

x k x k

x k x k
xp m

m

( , ) ( , )

( , ) ( , )

m,1
1

m,1
np

m,nx
1

m,nx
np (21)

where J k x( , , )xp m is the Jacobian matrix of the local parameter sen-
sitivities. The Fisher information can be obtained as

= J k x Q k J k x( ) ( , , ) ( ) , , ,
k

T
xp m F xp m

(22)

where Q k( )F is a weighting matrix. The aim is to maximize the in-
formation contained in ( ), which is usually expressed by the Cramér-
Rao inequality as

var ( ) ( ) 1 (23)

expressing that maximizing ( ) means to minimize the variance of the
parameters. Because not all modeled states can be measured, the Fisher
information is adapted based on the discrete state space representation
given in [33] with

+ = +x k A x k B u k( 1, ^) ( ^) ( , ^) ( ^) ( ),m m m m (24)

where a system augmentation is introduced that elegantly resolves the
partial derivatives of the parameters due to the expression
A x k( ) ( , )m m and the Fisher information then is obtained as ( ).

Based on the available measurements forO T T, ,2 fb sup andTex, a set of
initial parameters 0 is obtained which yields acceptable modeling re-
sults and allows an assessment of the range of the parameters. This
range serves as a boundary for the applied PSO. The Fisher information
is conducted for 0 and the parameter variances are evaluated. The
results of ( )0 and the parameter estimation are presented and dis-
cussed in Section 3.1.

2.2. Submodels and fuzzy system

In order to design individual linear predictive controllers for dif-
ferent operating points, a local linear model network (LLMN) is re-
quired. In this section, the submodels for the model network and their
locations within the operating range of the furnace are determined by a
gap metric. The submodels used for control design are blended with
Gaussian membership functions to form the overall nonlinear fuzzy
structure.

2.2.1. The -gap metric
Various approaches exist to find sets of submodels, for example

distributing linearization points equidistantly in the partitioning space,
positioning using experience or with methods like local linear model
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trees [34]. In this work a gap metric is suggested which approaches
partitioning from a controller point of view. Gap metrics are usually
used for loop shaping in robust control, but some of their properties can
also be applied for model spacing [35]. Based on the -gap metric in-
troduced by Vinnicombe [28], the stability margin bP,C of the H norm
is defined as

=b P
I I CP CI: ( )P,C

1

1

(25)

if P C[ , ] is stable and as

=b : 0P,C (26)

otherwise. In Eq. (25) P denotes the transfer function of the plant, C of
the controller and I is the identity matrix. Because the H norm is
unbounded for unstable plants, the addition made by Eq. (26) is ne-
cessary. The -gap metric of the two investigated plants is expressed
by the inequality relation

b b P P( , )P ,C P ,C 1 22 1 (27)

where P2 is a perturbed version of P1. It is important to note that

b0 1 and 0 1P,C (28)

holds by definition. Small gap values therefore indicate, that the in-
vestigated systems are close, whereas values close to 1 indicate the
maximal distance. The resulting properties derived by Vinnicombe
state, that a linear controller C that stabilizes the plant P1 with a gen-
eralized stability margin >bP C,1 is guaranteed to stabilize P2, if the
second model is close to the first in the sense that P P( , )1 2 holds
[28].

By specifying a value for the margin and reformulating the rela-
tion from inequality (27), limits on the perturbation for plant P2 with
respect to P1 can be found for which

P P( , )1 2 (29)

still holds. If the threshold depicted by is exceeded, a new submodel
or linearization point is added, resulting in an overall closed loop
transfer function based system description. A stepwise application of
this method is presented in [29].

The -gap metric is conducted for all input–output combinations in
order to find the largest gaps of the system. Discretizing the in-
vestigated operating range into 30 transfer function models with the
margin = 0.25 yields the gap map depicted in Fig. 3 for the supply
water temperature depending on the fuel mass flow. On the z-axis are
the obtained gap values of the partitioning variable Tsup and on the x-
and y-axis is the input mf normalized over its range, where 1 is equal to
the stationary fuel amount for the nominal load of 100 kW and 0 equals
the lowest operating point considered (30% load). The number of
submodels determined by the -gap metric as depicted in Fig. 3 is

=M 3 and is further discussed in Section 3.1. The supply water tem-
perature is selected as partitioning variable to describe the transition
between the local linear models. Alternatively, the total combustion air
ma can be considered as independent variable instead of mf . This yields
a different gap map and slightly different submodel locations, but be-
cause the amount of stoichiometric combustion air mainly depends on
the fuel mass flow and not the other way around, this approach is
discarded. Some of the following properties of the metric contain va-
luable information about the system:

• If the perturbed plant model P2 becomes unstable, the gap P P( , )1 2
will become close to or exactly 1. This property can be used to
identify problematic closed loop behavior, which is not the case for
the derived model.
• Since the stability margin is fixed and the submodels are placed in
the centers of the subregions, all local controllers are expected to
perform equally well within their range.

• The method reveals which subregions can be represented by the
same submodel, if their relative gap is smaller than , even if the
subregions are not adjacent.

The -gap metric can also be applied to obtain the position for a
single model or controller respectively. Based on Fig. 3, the location of
the GMPC would be at 55% nominal load, because this is the location
with the smallest maximum gap to all other operating points. In an-
ticipation of the results however, the linearization point for the GMPC
has to be close to the design point of the furnace for comparable results,
which is at 100% nominal load. Therefore only the gaps between 75%
and 100% are considered, which yields 90% nominal load as linear-
ization point for the GMPC.

2.2.2. Membership functions
For the combination of the local MPCs, smooth and continuously

differentiable transition functions are introduced to blend the sub-
models. If the transition is conducted with Gaussian membership
functions and their conjunction is realized with the product operator a
TS fuzzy system [24] is obtained, which is advantageous for the sta-
bility of discrete fuzzy controllers as shown ind [27]. Other membership
functions are not considered in this work, but comparably good simu-
lation results have been achieved as well.

Different means to blend submodels and to obtain global models or
structures are available in literature. One possibility for example is to
blend the outputs, which is a common approach in neuronal networks.
The proposed FMPC structure in this work operates with a blended
input vector. The following is based on the descriptions given in [25].
The input vector u from the fuzzy controller to the plant is composed of
the weighted sum of the inputs of the =M 3 local linear MPCs as

=
=

u x u( )
M

i 1
i par i

(30)

where x( )i par is the validity function depending on the partitioning
variables xpar, which is in this case but not necessarily only one state of
the model, and u n

i u is the input vector to the i-th subsystem. A
necessary property of the validity function is that

=
=

x( ) 1
M

i 1
i par

(31)

holds, which also guarantees that the combination of the inputs is still
subject to the input constraints of the MPC. The validity or weighting
functions themselves are obtained from

Fig. 3. Gap map of the partitioning space of Tsup based on mf with a resolution
of 30 discrete transfer functions. Detailed submodel locations are given in
Section 3.1.
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=
=

x
µ x

µ x
( )

( )
( )Mi par

i par

j 1 j par (32)

with

= =
=

µ x µ x
x c

( ) ( ) exp 1
2

( )
i par j par

p 1

par
par,p ip

2

ip
2

(33)

as the Gaussian membership functions, where cip is the location of the
centerpoints and ip is the spread or standard deviation of the Gaussian.
These two variables represent tuning parameters for the transition
functions, but since the locations of the centerpoints correspond to the
linearization points determined by the -gap metric, cip is not available
as degree of freedom. Due to the properties of the gap metric, local
linear controllers located at the obtained points are expected to perform
equally well [28]. This means, that the spreads of the Gaussians have to
be equal too in order to preserve this property. Therefore, the re-
maining degrees of freedom for the parametrization of the membership
functions for the M submodels are reduced to 1. Since p = 1, the
product operator can be omitted in Eq. (33) and similarly i,p is replaced
by M.

2.3. Control design

The intended network of fuzzy model predictive controllers consists
of a number of individual MPCs, which are merged by the introduced
membership functions. Each of these individual controllers is based on
the state space representation of the submodels selected by the gap
metric. Before the overall control structure for the network is presented,
the integrated MPCs and their fundamental equations are introduced in
this section.

2.3.1. Linear MPC with constraints
Because the design of the local MPCs is equivalent for all sub-

systems, the following formulation applies to all controllers with re-
spect to their linearization point and the index i for the numbering of
the submodels is omitted. The states xm, the controlled outputs y and
the controllable inputs u are

= = = +x

m
O
T
T
T
R

y
O
T
T

u
m
m m
m

, andm

b

2

fb

sup

ex

thd

2

fb

sup

f

pa sa1

sa2

respectively. The primary air mpa and the secondary air msa1 are ag-
gregated, since they are not controllable individually for the given
furnace. However, their ratio is fixed by geometry and a distinct
treatment in the modeling equations is possible. The grate speed is pre-
set in a way that only the ash content of the fuel is disposed, see Eq. (3),
and therefore is no input to the system. The discrete state space re-
presentation of the local linear model for time step k is given by

+ = +
=

x k A x k B u k
y k C x k

( 1) ( ) ( )
( ) ( )
m m m m

m m (34)

with x u y, ,n n n
m x u y and ×A n n

m x x as the system matrix,
×B n n

m x u as the input matrix and ×C n n
m y x as the output matrix.

To eliminate steady state offsets, a set of integrator states is embedded
into the system. For this matter a difference operation on both sides of
Eq. (34) is conducted as shown in [36], yielding

+ = +
+ = +

x k A x k B u k
y k C x k

( 1) ( ) ( )
( 1) ( 1)
m m m m

m m (35)

with the difference operators

+ = +
=
=

+ = +

x k x k x k
x k x k x k
u k u k u k
y k y k y k

( 1) ( 1) ( ),
( ) ( ) ( 1),

( ) ( ) ( 1),
( 1) ( 1) ( ).

m m m

m m m

By introducing the augmented state vector

=X k
x k
y k

( )
( )

( )

T

T
m

and after replacing the difference operator +y k( 1) in Eq. (35) the
augmented state space system for one MPC is represented by

+ = +X k AX k B u k( 1) ( ) ( ). (36)

The matrices A and B are now given by

= =A A o
C A I B B

C Band ,m

m m

m

m m

where ×o n nx y is a zero matrix and ×I n ny y is an identity matrix.
With the prediction horizon Np and the control horizon Nc, the stacked
vectors of the predicted outputs and inputs are

= + + … +
= + … +

Y y k y k y k N
U u k u k u k N

[ ( 1) ( 2) ( ) ] ,
[ ( ) ( 1) ( 1) ] .

T T T T

T T T T
p

c

The output vector can then be written in the compact form

= +Y F X k F U( )x u (37)

with

= …F CA CA CA CA[ ]N T
x

2 3 p

and

=

…
…
…

…

F

CB
CAB CB
CA B CAB

CA B CA B CA B

0 0
0
0

:
.u 2

N 1 N 2 N Np p p c

With the vector of future references Yref structured according to Y and
considering the linearization offset, the quadratic cost function Jc for
the optimization is

= +J Y Y Q Y Y U R U( ) ( )T T
c ref c ref c (38)

where ×Q n n
c y y is the weighting matrix for control errors and
×R n n

c u u the weighting matrix for control inputs. The optimal solu-
tion for the control increment U is obtained by setting the derivation
of Jc with respect to U equal to zero, yielding the control law

= +U F Q F R F Q Y F X k( ) ( ( ))T T
u c u c

1
u c ref x (39)

subject to the constraints:

U U U
u k u k u k
y k y k y k

( ) ( ) ( )
( ) ( ) ( )

min max

min max

min max

Finally, the input vector u k( ) of a local MPC is obtained by applying
the receding horizon principle to U as

= …u k I o o U( ) [ ]m m m (40)

where Im is an identity matrix and om are N 1c zero matrices mapping
only the first nu elements of U to u k( ) and discarding all other en-
tries. The hard constraints on the outputs can be replaced by a set of soft
constraints, if needed.

2.3.2. Fuzzy MPC with state estimation
The FMPC is obtained based on the local MPCs and the membership

functions. An illustration of the fuzzy control structure is given in Fig. 4.
Considering the individual controller operating points uo,i, the blended
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input vector u k( ) of the fuzzy predictive controller is

=
=

u k T k u k( ) ( ( )) ( )
i 1

3

i sup i
(41)

with the individual inputs u k( )i being

= +u k u k u( ) ( ) .i i o,i (42)

Because not all states can be measured, an extended Kalman filter (EKF)
is applied. The structure of the EKF for the state estimates x k( ) based
on [37] are

+ = +x k x k K k y k y k( 1) ( ) ( )( ( ) ( ))p Kal p (43)

where K k( )Kal is the filter gain, y k( ) is the vector of measurements and
x k( )p and y k( )p are the predicted states and outputs obtained from the
nonlinear furnace model

= +
= +

x k f x k u k w k
y k h x k v k

( ) (^ ( ), ( )) ( ),
( ) (^ ( )) ( )

p

p (44)

with the additive process and measurement noise w k( ) and v k( ) re-
spectively. Because the selected outputs correspond directly to modeled
states, the nonlinear output function h (·) is replaced by the constant
output matrix Cm. The Kalman gain is updated as

+ = +K k P k C C P k C R( 1) ( ) ( ( ) )T T
Kal p m m p m Kal

1 (45)

with the predicted estimation-error covariance matrix P k( )p and the
covariance matrix of the measurement noise RKal. The matrix P k( )p is
obtained from

= +P k A k P k A k Q( ) ( ) ( ) ( )T
p m m Kal (46)

with the updated state matrix A k( )m , the estimation-error covariance
matrix P k( ) and the covariance matrix QKal of the process noise. The
covariance matrix for the next time step is obtained from

+ = +P k I K k C P k( 1) ( ( 1) ) ( ),Kal m p (47)

where I is an identity matrix of size P. The control increment U from
Eq. (39) for each MPC is then obtained by solving

= +U F Q F R F Q Y F X k( ) ( ( ))T T
i u,i c u,i c

1
u,i c ref,i x,i (48)

after replacing X k( ) with the estimated state vector X k( ).

3. Results and discussion

3.1. Model parametrization and validation

This section presents the results of the parameter estimation, the
introduced nonlinear furnace model and the local linear model network
merged with the Gaussian membership functions. The results are ob-
tained by means of measurements of the furnace using wooden pellets
as fuel.

3.1.1. Parameter sensitivity and estimation
The variances of the initial model parameters 0 derived in Section

2.1.7 based on the Fisher information allow an a priori assessment of
the parameters subject to the nonlinear parameter estimation. These
results indicate which parameters are difficult to estimate with the
given experiments, should be estimated separately or be removed from
the model at all (i.e. they create a nonempty nullspace for ). This has
already been conducted for the presented model. The remaining re-
levant parameter variances of 0 are depicted in Fig. 5 in the upper part.
The obtained variances are upscaled by a large factor and then down-
scaled logarithmically, because otherwise only the last three presented
values could be distinguished from zero in the same figure. This distorts
the visible results slightly, but also highlights the critical parameters.
Although the a priori variance for parameter k1 is comparably small, it
has to be removed from the estimation. This is due to the fact, that k1 is
an equilibrium parameter and only measurements of the mass on the
grate can determine it definitely. The parameter is therefore fixed to
yield the expected stationary amount of fuel on the grate, which allows
the other time constants of the model to properly describe the re-
maining dynamic behavior. The parameter kRthd is also excluded from
the estimation, because it only describes the fast transient dynamics of
the oxygen concentration, which are underrepresented in the available

Fig. 4. Control structure of the fuzzy MPC with the nonlinear furnace model.
The index o indicates the different operating points of the subsystems.

Fig. 5. Top: A priori parameter variances based on the FIM as measure for the
estimability of a parameter given the experiment data. The variances are up-
scaled and then logarithmically downscaled in order to be representable in the
same figure. Bottom: Boxplot of the results of the particle swarm optimization
confirming the expected parameter uncertainty for the considered parameters.
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measurements. Based on expert knowledge and observations, kRthd is
estimated to be about ten times as fast as kO2.

The particle swarm used for identification is initialized with random
parameter values uniformly distributed within their limits. Over a
hundred independent estimation sequences are conducted in order to
allow for a statistical meaningful a posteriori analysis and to compare
the parameters to the a priori assessment based on the Fisher in-
formation. In the bottom part of Fig. 5, the scaled parameter values
resulting from the nonlinear optimization are presented in the boxplot,
after removing a small number of outliers. As predicted, the parameters
kO2 and mg show the highest variance, whereas the other parameters
converge very well to distinct values. The a posteriori parameter var-
iance is therefore consistent with the a priori prediction of the Fisher
information for the selected parameter subset. Since measurements
were already available for estimation, the FIM can be applied for future
design of experiments (DoE) in order to further define the parameters
excluded from the optimization or reduce their variance in the esti-
mation. The parameter values obtained for the investigated furnace are
given in the Appendix.

3.1.2. Model validation results
To illustrate the performance of the model introduced in Section 2.1

and the local linear model network, open loop simulations are com-
pared to measurements with a sampling time of Ts = 10sec obtained
from the combustion of wooden pellets. In Fig. 6 the performance of the
nonlinear and the local linear fuzzy model are presented on the iden-
tification data set. The model validation on new data is presented
subsequently in Fig. 7. The data in Fig. 6 show a number of con-
catenated measurements of the system taken on different occasions at
the investigated furnace. Various input steps have been applied to the
system and the entire operating range is represented by different set-
points as well. To properly validate the nonlinear model and the fuzzy-
LLMN, the model performance has to be tested on another set of mea-
surements not available for training, which is presented in Fig. 7. The
training and validation results are summarized quantitatively in Table 1
utilizing the Root Mean Square Error (RMSE) as a measure. The simu-
lation results show that the nonlinear model is able to represent the
open loop behavior quite well, especially Tsup. Deviations occur at high
oxygen concentrations and low temperatures, which are setpoints at
which the furnace should not be operated for a long time due to the
increased emission formation and inefficiency. It had to be expected,
that not all dynamics are described equally well by the model due to the
simplifications introduced in Section 2.1. However, some of the de-
viations between the model and the measured data are compensated by
the extended Kalman filter. Additionally, not all deviations are equally
severe for the MPC which is reflected in the entries of the weighting
matrices Qc and Rc used in Eq. (48).

The additional state for the oxygen concentration introduced in Eqs.
(7)–(8) contributes to the fast observable dynamics of the process.
Oxygen peaks occur at t = 1.8h in Fig. 6 and in Fig. 7 at t = 3.3h for
example. The local linear model network shows in general a perfor-
mance similar to the nonlinear model. Again especially Tsup is captured
well. The LLMN is convoluted with the membership functions de-
termined for the controller and with the linearized models resulting
from the margin = 0.25 for Eq. (29) for the -gap metric. Based onTsup
three submodels for the operating range are specified. Their locations
have already been presented qualitatively in Fig. 3 in the gap map and
are given quantitatively in Table 2. The spread of the membership
functions for Eq. (33) is obtained as = 0.1M , because based on the
applied gap metric all controllers are expected to perform equally well
within their designated range. The spread M and the centerpoints ci
shown in Table 2 fully describe the applied membership functions µ
which are depicted in Fig. 8 based on the constrained range of the
supply water temperature. Because the remaining spread is equal for all
Gaussians, they intersect exactly at half the distance between their
centerpoints. In contrast to linguistic or Mamdani [20] fuzzy systems,

no further defuzzification is necessary for the presented system. The
partitioning variable Tsup is transformed directly into the validity
functions by Eqs. (31)–(33), which are utilized in Eq. (30) to form the
weighted sum u of the local inputs for the fuzzy controller.

3.2. Closed loop simulation results

The simulation results of the fuzzy MPC presented in this section are
compared to the global MPC and a PID controller based on the currently
implemented control strategy. Both MPC concepts utilize the extended
Kalman filter as presented in Section 2.3.2 for state estimation.

3.2.1. Simulation setup
The prediction horizon is set to =N 180p and the control horizon to

=N 60c , which means that given the sampling time of Ts = 10sec Np
covers half an hour. The comparison of these controllers illustrates the
advantages of the FMPC and the GMPC and allows conclusions on when
a PID control strategy can be considered. Since the derivative part of
the implemented PID at the investigated furnace is zero, a PI controller
is considered instead. The results for a series of steps in terms of
nominal load of

=Power [100, 50, 75, 30]%

through the operating range of the furnace are illustrated in Fig. 9,
showing the controlled outputs O T,2 fb and Tsup. Additionally, the ac-
cording validity functions of the FMPC are given at the bottom. The
results show that all controllers are able to cover the operating range of
the furnace. Even though the GMPC is linearized around 90% nominal
load, the performance is similar to the FMPC. The oxygen concentration
of the flue gas O2 and the freeboard temperature Tfb have smaller
weights in the control error matrixQc, since the main focus is the supply
water temperature Tsup that accounts for the furnace power output.
Additionally, if the setpoints are not chosen properly, Tfb and Tsup pose
conflicting control goals for the MPC which can cause their integrators
to block each other. The weighting matrices Qc and Rc are given in the

Fig. 6. Simulation results of the nonlinear furnace model and the LLMN for the
measurements used for training showing the outputs considered for control.
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Appendix. At the bottom of Fig. 9 the validity functions of the FMPC
indicate how strong each submodel contributes to the input vector u
applied to the nonlinear furnace model. The numbers of refer to the

submodels and their locations as presented in Table 2.

3.2.2. Numerical comparison
To evaluate the controllers, the RMSE is applied to quantitatively

indicate the control performance, see Table 3. Although steady state
performance can hardly be evaluated by such a measure due to the
integral part of the controllers, the general performance can be illu-
strated. The applied PI control concept is shown in [30], where the
control error of Tsup determines the inputs for the fuel mass flow mf and
coupled by a constant factor (=k L2 min) the air mass flow mpsa as well.
The oxygen concentration has an additional control loop with the sec-
ondary air valve msa2 as degree of freedom and can therefore achieve
independent setpoints for O2 to reduce emissions and guarantee a
proper burnout of the combustibles in the flue gas. Although the control
errors of the FMPC and the GMPC for the conducted series of steps are
similar, all three controllers are able to eventually eliminate the steady
state offsets over time. Comparing the dynamic properties of the step
responses contains additional information about the transient behavior
of the closed loop system, especially the rise time tr and the percent

Fig. 7. Validation results of the nonlinear furnace model and the according
LLMN compared to new measurements not available for training.

Table 1
RMSE of training and validation results of the open loop model simulations of
Figs. 6 and 7.

Type Nonlinear LLMN

O2 Tfb Tsup O2 Tfb Tsup

Training 0.86 28.94 1.17 0.99 36.59 1.34
Validation 1.07 27.18 1.18 1.67 52.21 1.23

Table 2
Submodel ranges, locations and centerpoints of the local linear models based on
the -gap metric with the partitioning space defined by Tsup.

submodel OP 3 OP 2 OP 1

Disc. model range 1–11 12–24 25–30
Submodel location 7 18 27
Centerpoints ci in K 336.9 339.7 347.8

Fig. 8. Membership functions µ for the three submodels depending on the
supply water temperature Tsup. The submodels refer to Table 2 and the cen-
terpoints or linearization points are marked with the red-dashed lines.

Fig. 9. Comparison of simulation results of the FMPC, GMPC and the PI con-
troller with measurement and process noise. Both MPCs use an EKF for state
estimation. The plot at the bottom shows the validity functions of the local
models of the FMPC.

Table 3
Comparison of the RMSE of the control error over the simulation time of the
investigated controllers for the series of steps presented in Fig. 9.

FMPC GMPC PI

O2 in % 0.54 0.47 2.07
Tfb in K 25.17 25.30 66.44
Tsup in K 0.97 1.02 2.07
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overshoot PO. Their averaged values over the series of steps are pre-
sented in Table 4 and Table 5. For a fair comparison, all weighting
matrices of the GMPC and the FMPC are identical. The FMPC however
enables individual tuning for each local model, thus providing a higher
potential for optimal settings. The dynamic specifications show a more
clear distinction of the controller performances, highlighting the FMPC
in almost all specifications. The differences between the control con-
cepts of the PI and the MPCs are especially visible in the rise time tr for
which the prediction makes a decisive difference. Additionally the
FMPC shows slightly lower values for the overshoot than the GMPC.

3.2.3. Comparison of CO emissions
Closed loop simulation results are utilized to investigate the for-

mation of carbon monoxide emissions at the furnace. For this purpose,
the fuzzy-regression model presented in [31] for the CO estimation
based on wooden pellets in small-scale biomass furnaces is applied. The
controlled and constrained output variables O2 and Tfb are the inputs
required for this black-box model. A new series of steps through the
furnace power range is selected for which all effects of interest in the
formation of CO can be qualitatively observed. The second profile in
terms of decreasing and increasing the furnace power load is

=Power [100, 75, 50, 30, 50, 75, 100]%

and does not consider process and measurement noise in order to better
highlight the different CO concentrations. Fig. 10 shows the simulation
results for the estimated amount of CO normalized with the simulation
time resulting in a quantitative indication of the concentrations. The
predictive controllers are gaining momentum in the beginning in order
to control the oxygen concentration, which explains the increased ppm
levels at about t = 60min. The slow dynamics of the PI however be-
come visible in the CO concentration as well, which peaks at t
= 530min close to the end of the profile. This peak is explained by an
unfavorable combination of the low temperatures in the freeboard but
an already reduced oxygen concentration of the much faster second
control loop. The estimated peak is even higher than the average CO
levels at 30% load, where a stable combustion on the grate can barely
be maintained. Fig. 10 shows independent of the underlying emission
model, that in steady state all controllers eventually again will yield the
same CO levels, but during state transition huge differences surface.
This highlights especially the FMPCs ability to be adjusted to different
transient dynamics, not only for control performance but also for
emission limited combustion control. These two requirements however
typically cannot be reconciled optimally by the same tuning, as they are
opposing goals of a Pareto front [38] for combustion. Up to a certain
degree, the FMPC offers the security to comply with the emission re-
strictions due to the output constraints and the soft transitions between
operating points, therefore exceeding the capabilities of a common PI
controller.

3.3. Applications of the FMPC

The introduced FMPC framework allows the application of easy to
obtain local linear models, which are merged to form a global nonlinear
control algorithm. As the presented FMPC is introduced mainly to ac-
count for the nonlinearities of the combustion process, other control
aspects can be considered as well. As presented in [39] for example, a
fuzzy controller is applied to limit the formation of different emissions
during combustion. The necessary methodology for such an application
at the investigated furnace is presented in [31]. Assuming that one MPC
is sufficient and tuned for a fuel with a water content of 20% for ex-
ample, a second MPC can be designed and tuned for the combustion of a
similar fuel at 40% water content or a different fuel in general. The
application of the fuzzy controller therefore can introduce various de-
grees of freedom, as each FMPC can have a different underlying model,
tuning or fuel. For some of these applications, however, the main task
will rather be to optimally merge the individual models.

4. Conclusion

A new combustion model for a small-scale biomass furnace has been
introduced in the modeling section and open loop simulations have
been compared to and validated with measured data. The introduced
structure shows, that the nonlinear furnace model and the derived
LLMN are capable of describing the most important characteristics of
the combustion process. This is especially highlighted by the state
considered most important in this work, the supply water temperature
Tsup, for which both models showed a high consistency for the available
data. The presented modeling results translate to an average fit of about
80%, which is sufficient for a control application with state estimation.

The introduced model was profoundly analyzed with the Fisher
information matrix to predict and support the estimability of the grey-
box parameters. The conducted runs of the PSO for the nonlinear
parameter optimization delivered results within the expected variance
for the parameters considered by the FIM. The -gap metric was applied
to determine the linearization points for the network of linear sub-
models, which was combined favorably with Gaussian membership
functions. The resulting nonlinear fuzzy structure covers the entire
operating range of the furnace and requires only one additional para-
meter for tuning, which is very reasonable.

MPCs beneficially consider input and output constraints in their
optimization and combined with an extended Kalman Filter, as shown
in the control design section, provide a suitable approach. The FMPC
was able to increase the stationary and transient performance of the
GMPC, even if not always by far. Both predictive control concepts
achieve about two times better stationary performances for the RMSE
than the PI controller. This performance indicator is however relaxed
over time due to the integral part of the controller. Transient perfor-
mance measures showed, that the FMPC outperforms the GMPC, but it
is the prediction that brings the major improvements in the rise time by
a factor of about four compared to the PI controller. The CO estimation
results show, that it is important to keep the combustion parameters in
ranges which provide a complete oxidation of the gaseous elements.
The knowledge of these areas can be easily integrated into the con-
straints of a MPC, which can be key to achieve emission limited control.
The advantages of the predictive controllers are obviously relaxed by
the additional effort and their complexity. Therefore, the following
suggestions are derived for the application of predictive controller for
small-scale furnaces:

• If mostly stationary control performance, very limited calculation
power or easily manageable algorithms are of major concern, a
classic PI(D) approach should be considered.
• If transient control performance, constraint control or general
emission formation has to be considered, at least a linear model
predictive controller should be applied.
• If the process is highly nonlinear, optimizing the performance or
minimizing emissions is the major focus, the FMPC poses as a sui-
table candidate for small-scale furnaces.

This work introduced a comprehensive method based framework for
fuzzy model predictive controller design together with a nonlinear
furnace model and an application of the -gap metric and the FIM. The
results indicate, that for the implementation of a predictive controller a

Table 4
Comparison of the average rise time tr in minutes of the different control al-
gorithms for the series of steps presented in Fig. 9.

FMPC GMPC PI

O2 11.35 7.69 46.53
Tfb 16.51 17.27 49.63
Tsup 17.92 19.00 39.14

L. Böhler, et al. Applied Energy 276 (2020) 115339

11



single MPC might already be sufficient, depending on the furnace de-
sign and additional requirements. The next steps are the implementa-
tion of the presented control algorithm to the investigated furnace and

analyzing the performance in comparison to the implemented PI con-
troller.
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Appendix A

The applied parameters obtained for the furnace model from nonlinear constrained optimization are:

=^ [0.0055, 0.815, 1694.4, 1476.2, 7.25, 1.79, 17.95, 0.98]T

The implemented weighting matrices for the local optimization of U are

= =Q R
1 0 0
0 10 0
0 0 20

and
10 0 0
0 10 0
0 0 10

,c 4 c

3

2

2

of which Qc is additionally weighted with the expected averaged steady state outputs ȳ and Rc is weighted with the according averaged steady state
inputs ū. The constraints for the inputs u k( ), control increments U and outputs y k( ) applied to the predictive controllers are presented in Table 6.
To improve the calculation efficiency, the upper limit on O2 and the lower limit on Tfb can be omitted without affecting the results.

Table 5
Comparison of the average percent overshoot PO of the different control al-
gorithms for the series of steps presented in Fig. 9.

FMPC GMPC PI

O2 2.77 2.78 3.72
Tfb 27.82 27.91 28.8
Tsup 1.87 1.87 1.98

Fig. 10. Comparison of the estimated carbon monoxide emissions based on the
closed loop model behavior of the different controllers.

Table 6
Implemented constraints for controlled inputs, control increments and outputs for the MPCs.

Applied constraints

Inputs u in g/s

mf mpa + msa1 msa2
Upper limit 7 39 19
Lower limit 0.75 8.5 0.5

Increments U in g/s

mf mpa + msa1 msa2
Upper limit 0.3 1.5 0.5
Lower limit 0.3 1.5 0.5

Outputs y

O2 in % Tfb in K Tsup in K
Upper limit 21 1000 358
Lower limit 4 500 328
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