
Computer Methods in Applied Mechanics and Engineering 429 (2024) 117139

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Points of inflection of special eigenvalue functions as indicators of
stiffness maxima/minima of proportionally loaded structures
A. Wagner a,∗, J. Kalliauer a,b, M. Aminbaghai a, H.A. Mang a,c

a Institute for Mechanics of Materials and Structures, TU Wien – Technische Universität Wien, Karlsplatz 13 - E202, 1040 Vienna, Austria
b Department of Civil and Environmental Engineering, MIT – Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, 02139, MA, United States of America
c College of Civil Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China

A R T I C L E I N F O

Keywords:
Maximum (minimum) stiffness
Finite element method
Linear eigenvalue problem
Indefinite coefficient matrices
Hybrid finite element
Points of inflection of eigenvalue curves

A B S T R A C T

The stiffness of a proportionally loaded structure may continuously increase or decrease. As
a special exception, it may be constant. On the other hand, an initially stiffening (softening)
structure may turn into a softening (stiffening) structure. At the load level of such a change
the stiffness of the structure attains an extreme value. The task of this work is to present
mathematical conditions for these load levels. Lack of them represents a void in the pertinent
literature. The practical significance of the aforementioned changes is the one of indicators of
the mechanical behavior to be expected after their occurrence. The second and the last author
have recently presented a condition for the load level at which the stiffness of a proportionally
loaded structure becomes a minimum value. It is given as 𝑑2(ℜ(𝜒1(𝜆)))∕𝑑𝜆2 = 0, representing
the condition for a point of inflection of the real part of a complex eigenvalue function 𝜒1(𝜆),
where 𝜆 denotes a dimensionless load parameter. The underlying linear eigenvalue problem
has two indefinite coefficient matrices, which is a necessary condition for complex regions
of eigenvalue functions. These matrices are established with hybrid elements, available in a
commercial finite element program. In the present work, 𝑑2(𝜒1(𝜆))∕𝑑𝜆2 = 0 is shown to be the
condition for the load level at which the stiffness of a proportionally loaded structure attains
a maximum value. The eigenvalue function concerned has no complex region. It is also shown
that the displacement elements, which are the basis for their extension to the employed hybrid
elements, are unable to indicate the load level at an extreme value of the stiffness.

List of symbols

Nomenclature
Variable Base Explanation
𝑒 L Eccentricity of the normal force, illustrated in Fig. 2(a)
𝐟 various Vector of nodal force degrees of freedom in the framework of the FEM,

introduced in form of 𝑑f in (9)
𝑘 M T−2 Stiffness of a single d.o.f. member, introduced in (1)
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𝑛 – Number of displacement and force degrees of freedom in the FEM
simulations, introduced in (5)

𝐫 various Subvector of an eigenvector of the linear eigenvalue problem (4),
associated with the nodal displacement degrees of freedom

𝐫1 various Subvector of the fundamental eigenvector of the linear eigenvalue problem
(4), associated with the nodal displacement degrees of freedom, introduced
in (6)

𝐫̂ various Eigenvector of the linear eigenvalue problem (11)
𝐫⋄ various Eigenvector of the linear eigenvalue problem (25)
𝐭 – Subvector of an eigenvector of the linear eigenvalue problem (4),

associated with the nodal force degrees of freedom
𝐭1 – Subvector of the fundamental eigenvector of the linear eigenvalue problem

(4), associated with the nodal force degrees of freedom, introduced in (6)
𝐮 –; L Vector of nodal displacement degrees of freedom in the framework of the

FEM, introduced in form of 𝑑u in (9)
𝐮∗ L Vector of nodal translational degrees of freedom, introduced in (31)
𝐸 M L−1 T−2 Modulus of elasticity
𝐆 various Submatrix of one of the two coefficient matrices of the linear eigenvalue

problem (4)
𝐆0 various 𝐆(𝜆 = 0), introduced in (4)
I – Point of inflection, shown first in Fig. 1
I1 – Point of inflection of ℜ(𝜒1(𝜆)), shown in Fig. 2(b)
I𝑗 – Point of inflection of ℜ(𝜒𝑗 (𝜆)), shown in Fig. 2(b)
𝐊 various Tangent stiffness matrix, representing a submatrix of one of the two

coefficient matrices of the linear eigenvalue problem (4)
𝐊0 various 𝐊(𝜆 = 0), introduced in (4)
𝐊̂ various Tangent stiffness matrix, representing one of the two coefficient matrices

of the linear eigenvalue problem (11)
𝐊̂0 various 𝐊̂(𝜆 = 0), introduced in (11)
𝐿 L Length of a bar, introduced in Fig. 2(a)
𝑃 M L T−2 Force acting on a single d.o.f. member, introduced in (1)
𝑃 M L T−2 Reference load, shown first in Fig. 2(a)
𝐏 M L T−2 ;

M L2 T−2
Vector of reference work-equivalent node forces, introduced in (9)

𝐏̂ M L T−2 Vector of reference work-equivalent node forces, introduced in (8)
𝑅 L Radius of a circular arch, shown in Fig. 4
𝑆 – Stability limit, shown first in Fig. 3(a)
𝑈 M L2 T−2 Strain energy, introduced in (22)
𝑈M M L2 T−2 Contribution of bending and torsion to U, introduced in (22)
𝑠 L Axial coordinate, introduced in form of 𝑑𝑠 in (30)
𝑢 L Deformation of a single d.o.f. member, introduced in Fig. 1; tangential

displacement, introduced in Fig. 6
𝑢𝑎𝑣𝑒 L Average displacement, defined in (31)
𝑥 L Component of the co-ordinate system, shown in Figs. 2, 4, and 5
𝑦 L Component of the co-ordinate system, shown in Figs. 2, 4, and 5
𝜅 – Shear coefficient, introduced in Fig. 4
𝜆 – Proportionality factor of reference forces, shown in Figs. 2–4 and 6 and 8
𝜆𝐿 – Lower bound of the complex region of 𝜒1 and 𝜒𝑗 = 𝜒1, shown in Fig. 2(b)
𝜆𝑆 – Value of 𝜆 at the stability limit 𝑆, shown first in Fig. 3(a).
𝜆𝑈 – Upper bound of the complex region of 𝜒1 and 𝜒𝑗 = 𝜒1, shown in Fig. 2(b)
𝜇 – Read angle of a circular arch, shown in Fig. 4
𝜈 – Poisson’s ratio
𝜉 – Arc length of the FEM-displacements, defined in (30)
𝜙 – Rotation of the tangent, illustrated in Fig. 6
𝜒 – Eigenvalue of the linear eigenvalue problem (4)
𝜒1 – Fundamental eigenvalue of the linear eigenvalue problem (3), shown first

in Fig. 2(b)
𝜒1 – 𝜒1 = 𝜒𝑗 , fundamental conjugate complex eigenvalue in the complex region

of 𝜒1 and 𝜒𝑗 ; 𝜒1 is shown in Fig. 2(b)
𝜒 – Eigenvalue of the linear eigenvalue problem (11)
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𝜒⋄ – Eigenvalue of the linear eigenvalue problem (25)
ℜ(𝜒1(𝜆)) – Real part of the complex eigenvalue 𝜒1 and of the conjugate complex

eigenvalue 𝜒𝑗 = 𝜒1, introduced in the description of Fig. 2(b)

1. Introduction

Stiffness is a key term of structural mechanics. It either refers to materials or, as is the case in this work, to structures. The
tiffness of a proportionally loaded structure may continuously increase or decrease. As a special exception it may be constant. On
he other hand, an initially stiffening (softening) structure may turn into a softening (stiffening) structure. At the load level of such
change, the stiffness of the structure attains an extreme value. There is no generally accepted mechanical definition of the stiffness
f structures that represent multi degree-of-freedom (d.o.f.) systems. (Per se, the term stiffness of such structures is less significant

than the qualitative terms stiffening and softening, which signal important trends of structural behavior.) However, the term stiffness
s well defined for structural members that are single d.o.f. systems. Fig. 1(a) (Fig. 1(b)) shows a load–displacement diagram of
uch a structural member. It contains a point of inflection, denoted as I. This point defines the load, 𝑃 = 𝑃𝐼 , and the corresponding
eformation, 𝑢 = 𝑢𝐼 , for which the stiffness of the structural member becomes an extreme value. With

𝑘 = 𝑑𝑃
𝑑𝑢

> 0 (1)

s the definition of the stiffness, 𝑘, point I is characterized by

𝑑𝑘
𝑑𝑢

= 𝑑2𝑃
𝑑𝑢2

= 0. (2)

This point defines the transition from a stiffening (softening) to a softening (stiffening) single d.o.f.system. (It is worth mention that
the meaning of the term softening in material mechanics differs from the one used herein.)

The goal of this work is to present mathematical conditions for the load level at extreme values of the stiffness of multi d.o.f.
ystems, i.e. of structures, subjected to a proportionally increasing load. In general, load–displacement diagrams of individual
.o.f.s differ considerably. Moreover, in the framework of the Finite Element Method (FEM), which will be used to achieve the
forementioned goal, the individual d.o.f.s have, in general, different physical dimensions. Hence, it is usually impossible to
etermine the load level at which an extreme value of the stiffness of a structure occurs on the basis of selected d.o.f.s and, the less,
y a single d.o.f.

From the viewpoint of fundamental research in structural mechanics the significance of extreme values of the stiffness of
roportionally loaded structures is undisputed. Their practical significance is the one of indicators of the mechanical behavior to be
xpected after the transition from a stiffening (softening) to a softening (stiffening) structure. The rationale behind the former is that
he decrease of the stiffness of the structure after this transition will, in general, lead to buckling. The rationale behind the latter is
hat the increase of the stiffness of the structure after the respective transition temporarily postpones the structure’s tendency towards
oss of stability. The difference between the comment on stiffness maxima and the one on stiffness minima insinuates a fundamental
echanical difference between the two kinds of extreme values, entailing fundamentally different mathematical conditions. In this

ontext it deserves mention that buckling is per se not restricted to softening structures [1]. In other words, also structures with
ontinuously increasing stiffness may buckle.

In view of the global nature of extreme values of the stiffness of proportionally loaded structures, linear eigenvalue analysis, in
he framework of the FEM, is the proper means to the end of finding mathematical conditions for the load level at extreme values of
he stiffness of proportionally loaded structures. A first attempt in this direction by Kalliauer and Mang [2] has led to a condition for
inimum stiffness of such structures. By coincidence, a linear eigenvalue problem, originally proposed by Malendowski in [3], has

Fig. 1. Single d.o.f. systems with (a) maximum stiffness and (b) minimum stiffness, at point I.
3
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Fig. 2. Bar subjected to an eccentric compressive force: (a) undeformed structure, (b) 𝜒1(𝜆) and 𝜒𝑗 (𝜆) for 0 ≤ 𝜆 ≤ 𝜆𝐿 and 𝜆 ≥ 𝜆𝑈 , ℜ(𝜒1(𝜆)) = ℜ(𝜒𝑗 (𝜆)) for
𝜆𝐿 < 𝜆 < 𝜆𝑈 .

turned out to be the proper tool for finding this condition. To give a brief explanation of the nature of this serendipity-like finding,
the key result of the numerical example in [2] will be reproduced in the following. Its purpose is to facilitate the introduction to the
topic of this paper without the need of delving into [2]. At the time when the initially surprising result for the load level at minimum
stiffness of a proportionally loaded structure was obtained, the authors had no hint about the kind of duality of the conditions for
stiffness maxima and minima.

Fig. 2(a) shows a simply supported bar subjected to eccentric compression. Geometric details and material parameters are given
in [2]. Fig. 2(b) illustrates two eigenvalue curves, 𝜒1(𝜆) and 𝜒𝑗 (𝜆), where 𝜆 denotes a dimensionless load parameter. The underlying
linear eigenvalue problem [2], which will the discussed in detail in Section 2, enables eigenvalue functions to become complex
functions inside finite regions of 𝜆. In the interval (𝜆𝐿, 𝜆𝑈 ) in Fig. 2(b), ℜ(𝜒1) = ℜ(𝜒𝑗 ), where the symbol ℜ stands for real part,
and where 𝜒𝑗 = 𝜒1 is the conjugate complex eigenvalue of 𝜒1. In [2] it was shown that the value of 𝜆 at the point of inflection,
𝐼1 = 𝐼𝑗 = 𝐼 , of this curve is the load level at which the stiffness of the bar attains a minimum value. With the exception of this point,
the two eigenvalue functions 𝜒1(𝜆) and 𝜒𝑗 (𝜆) are mechanically insignificant. Nota bene, unless the expression for the curvature of the
bar is linearized, a stability limit does not exist in case of a linear elastic material. This is reflected by the fact that it is just the real
part of 𝜒1(𝜆) and 𝜒𝑗 (𝜆) that intersects the 𝜆-axis in Fig. 2(b). While ℜ(𝜒1) = ℜ(𝜒𝑗 ) = 0 has no physical meaning, the vanishing of a
real fundamental eigenvalue function, i.e. 𝜒1 = 0, is the buckling condition, as will be shown in Section 2. A necessary condition for
complex eigenvalues of a linear eigenvalue problem is that both coefficient matrices are indefinite matrices [4]. However, it needs
a physical reason for a part of 𝜒1(𝜆) to become a complex function. In the given case it is the existence of a minimum value of the
stiffness of the bar in the interval

[

𝜆𝐿, 𝜆𝑈
]

, see Fig. 2(b). Inside this interval, loss of stability is impossible. However, the existence
of a minimum value of the stiffness cannot preclude the possibility of buckling at a higher load level. This explains the return of
the two conjugate complex eigenvalues 𝜒1 and 𝜒𝑗 to real eigenvalues at 𝜆 = 𝜆𝑈 .

The opposite of escaping buckling by a transition from softening to stiffening in case of proportional loading of structures is loss
of stability preceded by the transition from stiffening to softening. For a single d.o.f. system, as shown in Fig. 1(a), this transition is
characterized by 𝑑2𝑃∕𝑑𝑢2 = 0 and 𝑑3𝑃∕𝑑𝑢3 < 0. As will be shown in this work, the corresponding conditions for multi d.o.f. systems
read as 𝑑2𝜒1∕𝑑𝜆2 = 0 and 𝑑3𝜒1∕𝑑𝜆3 < 0. For a single d.o.f. system, as shown in Fig. 1(b), the transition from softening to stiffening
is characterized by 𝑑2𝑃∕𝑑𝑢2 = 0 and 𝑑3𝑃∕𝑑𝑢3 > 0. The corresponding conditions for multi d.o.f. systems, reported in [2], read as
𝑑2(ℜ(𝜒1))∕𝑑𝜆2 = 0 and 𝑑3(ℜ(𝜒1))∕𝑑𝜆3 > 0.

Conditions for extreme values of the stiffness of structures are considered as fundamental ingredients of structural mechanics.
Lack of such conditions is viewed as a void of the literature in this scientific field. The purpose of the present paper is to fill this
void.

To the best knowledge of the authors, literature by other research groups on conditions for extreme values of the stiffness of
proportionally loaded structures in the framework of computational mechanics does not seem to exist. This explains the sparseness
of literature cited in this paper.

The remaining part of this work is organized as follows: Section 2 is devoted to the linear eigenvalue problem serving as the
tool for determination of mathematical conditions for extreme values of proportionally loaded structures. This eigenvalue problem
is a vehicle for so-called accompanying linear eigenvalue analysis. In the early days of structural stability analysis by the FEM this
4
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mode of analysis served the purpose of circumventing numerical problems in the vicinity of the stability limit. With the exception
of the zero position of the eigenvalue function 𝜒1(𝜆) at the stability limit, this function is per se mechanically insignificant. In the
present research, the limited mechanical significance of 𝜒1(𝜆) is extended to points of inflection of 𝜒1(𝜆) and ℜ(𝜒1(𝜆)), signaling
stiffness maxima and minima, respectively. Section 3 deals with hybrid finite elements, required for determination of the two real,
symmetric, indefinite coefficient matrices of this eigenvalue problem, allowing for conjugate complex eigenvalues. Section 4 contains
the numerical investigation. It deals with a segment of a circular arch, clamped at one end and hinged at the other one [5]. The
structure is subjected to a vertical point load, acting at its apex. Characteristic features of the structural behavior of this arch are
the anticipated existence of a maximum value of its stiffness, followed by a maximum value of the percentage bending energy of
the total strain energy before loss of stability by snap-through [6]. The reason for the restriction of the numerical investigation to
linear elasticity is to show that extreme values of the stiffness of proportionally loaded structures may occur even for the simplest
possible form of material behavior. The last section contains the conclusions drawn from the present research and an outlook on its
potential extension.

2. Linear eigenvalue problem

The conditions for a minimum value of the stiffness of proportionally loaded structures, originally reported in [2], were given
in the Introduction. They involve the real part of a complex eigenvalue. A necessary condition for complex eigenvalues is the
indefiniteness of both coefficient matrices of the underlying linear eigenvalue problem [4]. Since it is not a sufficient condition,
complex fundamental eigenvalues will not occur in the absence of a stiffness minimum, i.e. without a mechanical reason. The two
(𝑛 × 𝑛) matrices can formally be written as

[

K G𝑇

G 0

]

∧
[

K0 G𝑇
0

G0 0

]

. (3)

The submatrix 𝐊 = 𝐊(𝜆) in (1) denotes the (𝑚 × 𝑚) tangent stiffness matrix in the framework of the FEM, whereas the submatrix
0 = 𝐊(𝜆 = 0) stands for the small-displacement stiffness matrix. The existence of the two ((𝑛 − 𝑚) × 𝑚) submatrices 𝐆(𝜆) and
0 = 𝐆(𝜆 = 0) makes complex eigenvalues possible. This allows to distinguish between the condition for minimum stiffness and

he one for maximum stiffness. In contrast to the latter, the former is associated with a complex eigenvalue. 𝐆𝑇 and 𝐆𝑇
0 denote

he transpose of 𝐆 and 𝐆0, respectively. Both coefficient matrices are symmetric. They are the consequence of the assemblage
f extended element tangent stiffness matrices. The reason for these local extensions is purely numerical, as will be explained in
hapter 3. It has nothing to do with the present research. In the prebuckling region, 𝐊(𝜆) is a positive-definite matrix. Hence, 𝐊0

s a positive-definite matrix. The two above coefficient matrices, however, are indefinite matrices, since they do not satisfy the
onditions for definite matrices, according to which, e.g. for a positive-definite matrix, all principal minors must be positive [4].

The linear eigenvalue problem, containing the two coefficient matrices (3), can formally be written as
[

K − 𝜒K0 G𝑇 − 𝜒G𝑇
0

G − 𝜒G0 0

]

⋅
{

r
t

}

=
{

0
0

}

, (4)

here 𝜒 denotes an eigenvalue and ⌊𝐫𝑇 , 𝐭𝑇 ⌋ stands for the corresponding eigenvector, consisting of the two subvectors 𝐫 and 𝐭;
athematically, the components of 𝐭 represent Lagrange multipliers. The components of 𝐫 and 𝐭 have different physical dimensions.
ithout modifications, reference to which will be made in this Subchapter, they are mechanically insignificant. Specialization of

4) for 𝜆 = 0 gives

𝜒𝑖 = 1, 𝑖 = {1, 2,… , 𝑛}, (5)

epresenting an 𝑛−fold eigenvalue. Specialization of (4) for a stability limit, 𝜆 = 𝜆𝑆 , yields

𝐊 ⋅ 𝐫1 = 𝟎, 𝜒 = 𝜒1 = 0, 𝐆 ⋅ 𝐫1 = 𝟎, 𝐆𝑇 ⋅ 𝐭1 = 𝟎, (6)

noting that, for 𝜆 = 𝜆𝑆 , 𝐊 is a positive-semidefinite matrix that is singular [4]. 𝜒1 is termed as the fundamental eigenvalue; 𝐫1 and
1 represent the two subvectors of the respective eigenvector.

One of two reasons for the choice of the second coefficient matrix is its constancy. The other one is the equality of the physical
imension of corresponding coefficients of the two matrices in (3). This enables to make the characteristic polynomial of (4)
imensionless [2]. As mentioned previously, the components of the (𝑚 × 1) subvector 𝐫 and of the ((𝑛 − 𝑚) × 1) subvector 𝐭 of
he eigenvector have different physical dimensions. This is irrelevant to the present work insofar as eigenvectors are not needed.
owever, to stress the necessity of using a linear eigenvalue problem of the kind of (4) in this research, a comment on the correlation
f 𝜒̈1 = 0 ((ℜ(𝜒1))⋅⋅ = 0) for maximum (minimum) stiffness on the ‘‘eigenvalue level’’ with its counterpart on the ‘‘eigenvector level’’
s deemed useful. This counterpart is assumed to be 𝑠̈ = 0, where 𝑠 denotes the arc-length of a curve on the surface of a unit
ypersphere in the n-dimensional Euclidean space.

Beginning with the correlation of 𝜒̈1 = 0 and 𝑠̈1 = 0, the mentioned curve is described by the vertex of a vector 𝐫̃ of length
. ‖ ̇̃𝐫‖ = 𝑠̇ denotes the speed of the vertex of 𝐫̃. This vector is a modification of the eigenvector ⌊𝐫𝑇 , 𝐭𝑇 ⌋ of the linear eigenvalue
roblem (4). It serves the purpose of converting the components of the eigenvector, which have different physical dimensions,
o dimensionless quantities. This is required for computation of the Euclidean norm, ‖𝐫̃‖ = 1, needed for determination of 𝑠̇. For
5
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example, for an eigenvector with three d.o.f.s, 𝑟1, 𝑟2, 𝑡1, the components of 𝐫̃ are given as
√

𝑘(0)11 𝑟1,
√

𝑘(0)22 𝑟2, (𝑔
(0)
11 ∕

√

𝑘(0)11 ) 𝑡1, resulting
n

‖𝐫̃‖2 = 𝑘(0)11 𝑟
2
1 + 𝑘(0)22 𝑟

2
2 +

(𝑔(0)11 )
2

𝑘(0)11

𝑡21 = 1. (7)

The constant, positive factors 𝑘(0)11 , 𝑘(0)22 and (𝑔(0)11 )
2∕𝑘(0)11 in (7) follow from the second matrix in (3), which refers to the onset of

loading. In Appendix A of [2], the dimensions of 𝑘(0)11 , 𝑘(0)22 , and 𝑔(0)11 were chosen as [M T−2], [M L2T−2], and [M(1∕2)T−1], where M, L,
nd T stand for mass, length, and time, respectively. This enables determination of the dimensions of 𝑟1, 𝑟2, and 𝑡1. In this context
t is re-emphasized that (a) eigenvectors are irrelevant to the present work and that (b) they are per se mechanically insignificant.

Hence, a maximum value of the stiffness of a proportionally loaded structure correlates with an extreme value of the speed of
he vertex of the unit vector 𝐫̃, i.e. with 𝑠̈ = 0. It is this correlation that distinguishes 𝑠̈ = 0 from points of inflection of 𝑠(𝜆) that do
ot correlate with 𝜒̈1 = 0. Such unphysical points of inflection would be obtained if the fundamental eigenvectors were either left
naltered or if they were altered incorrectly. The described correlation between points of inflection on the ‘‘eigenvalue level’’ with
oints of inflection on the ‘‘eigenvector level’’ is formally analogous to the well-known correlation at loss of stability, see (6). For a
ong time, efficient determination of bifurcation points and snap-through points has been an important topic of research in the area
f computational stability analysis of structures. As an example, a general procedure for the direct computation of these points [7]
s mentioned. Ongoing research aims at proving that a maximum (minimum) value of 𝑠̇, characterized by 𝑠̈ = 0 and 𝑠 < 0 (> 0),
orrelates with (𝑈𝐌∕𝑈 )⋅ > 0 (< 0), where 𝑈 denotes the strain energy of the structure at the load level concerned and 𝑈𝐌 stands
or the part of 𝑈 , resulting from bending, torsion, and shear.

Analogous to the correlation of 𝜒̈1 = 0 with ‖

̇̃𝐫‖⋅ = 𝑠̈ = 0, (ℜ(𝜒1))⋅⋅ = 0 correlates with ‖(ℜ(𝐫̃))⋅‖⋅ = 𝑠̈ = 0. Again, 𝑠̈ = 0 and 𝑠 < 0
(> 0) is assumed to correlate with (𝑈𝐌∕𝑈 )⋅ > 0 (< 0).

The described correlations between points of inflection on the ‘‘eigenvalue level’’ with points of inflection, albeit of another
kind, on the ‘‘eigenvector level’’ are a benefit of the parameterization with the load parameter 𝜆. If, instead of it, the arc-length
were chosen as the parameter, the speed of the vertices of the modified eigenvectors would be constant and equal to 1 [4]. Hence,
points of inflection on the ‘‘eigenvector level’’ would not exist.

Apart from the subsidiary conditions (𝐆− 𝜒𝐆0) ⋅ 𝐫 = 𝟎, (4) belongs to a category of linear eigenvalue problems that have played
a great role in the early days of structural stability analysis by the FEM. These eigenvalue problems were the tool of so-called
accompanying linear eigenvalue analysis [8]. The underlying linear eigenvalue problem has the general form

[

𝐊̆ − 𝜒̆ 𝐁
]

⋅ 𝐫̆ = 𝟎, where
𝐊̆ denotes the tangent stiffness matrix [9]. Because of ||

|

𝐊̆(𝜆𝑆 )
|

|

|

= 0 ⇔ 𝜒̆1(𝜆𝑆 ) = 0, the real, symmetric coefficient matrix 𝐁 of this
eigenvalue problem has no influence on 𝜆𝑆 . With the exception of the vanishing of 𝜒̌1(𝜆𝑆 ), the solution of this linear eigenvalue
problem has no mechanical significance. This explains the irrelevance of the choice of different submatrices 𝐁 by different authors,
see e.g. [8,10,11]. For the given problem, however, the fundamental eigenvalue of (4), 𝜒1(𝜆), is a tool for determination of the
value of 𝜆, for which an extreme value of the stiffness of a proportionally loaded structure is assumed to occur in the prebuckling
region [2]. Hence, the selection of the two coefficient matrices of the underlying linear eigenvalue problem is not left to one’s
discretion. This explains the rather unconventional form of the underlying linear eigenvalue problem (4).

3. Finite elements

The eigenvector of the linear eigenvalue problem (4) consists of the two subvectors 𝐫 and 𝐭. Hence, it requires hybrid finite
elements for determination of the element matrices which are then assembled to the two matrices (3) of this eigenvalue problem.
In the given case, these elements are quadratic 3D Timoshenko-beam elements B32H and B32OSH, available in the element library
of the commercial FE program Abaqus [12]. (The letter symbols B, H, and OS stand for 𝑏eam, ℎybrid, and 𝑜pen cross-𝑠ections,
respectively. The numbers 3 and 2 refer to the terms 3D space and quadratic Timoshenko ansatz functions, respectively.) These elements
are extensions of the Abaqus displacement elements B32 and B32OS, respectively [12]. The equilibrium equations obtained with
the latter for an infinitesimal increment of work-equivalent node forces, 𝑑𝜆𝐏̂, where 𝐏̂ denotes the vector of reference node forces,
can formally be written as

𝐊̂ ⋅ 𝑑𝐮̂ = 𝑑𝜆𝐏̂, (8)

where 𝐊̂ denotes the tangent stiffness matrix, obtained with the displacement elements B32 and B32OS, respectively, and 𝑑𝐮̂
stands for an infinitesimal increment of the vector of nodal displacements. The extended equilibrium equations for an infinitesimal
increment of work-equivalent node forces 𝑑𝜆𝐏, where 𝐏 denotes the vector of reference node forces, can formally be written as

[

K G𝑇

G 0

]

⋅
{

𝑑u
𝑑f

}

= 𝑑𝜆

{

P
0

}

, (9)

where 𝑑𝐮 and 𝑑𝐟 denote infinitesimal increments of the displacement and force d.o.f.s, respectively. The matrix on the left-hand
side of (9), which is equal to one of the two coefficient matrices of the linear eigenvalue problem (4), is an assemblage of extended
element tangent stiffness matrices. The respective extension on the element level manifests itself in the inclusion of 𝐆 and 𝐆𝑇 on
the global level. The displacement nodal d.o.f.s of the hybrid elements are the same as the d.o.f.s of the displacement elements.
Thus, disregarding discretization errors,

̇ ̇̂𝐮. (10)
6
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Fig. 3. Diagrammatic sketches of the fundamental eigenvalue 𝜒1(𝜆), inspired by numerical results obtained with the Abaqus displacement beam element B32OS
for a problem (a) with and (b) without a stability limit, see [2].

This raises the question for the motivation of the extension of the displacement elements to hybrid elements. The answer to
this question is to avoid numerical problems with the displacement elements in case of nearly incompressible material [12]. The
mathematical starting point of the said extension is a variational principle with subsidiary conditions [12]. They are the basis of the
subsidiary conditions for the subvector 𝐫 of the eigenvector ⌊𝐫𝑇 , 𝐭𝑇 ⌋𝑇 in the underlying linear eigenvalue problem (4). Analogous
o the formal correlation of (4) and (9), (8) formally correlates with the linear eigenvalue problem

[

𝐊̂ − 𝜒 𝐊̂0

]

⋅ 𝐫̂ = 𝟎, (11)

where 𝐊̂0 = 𝐊̂(𝜆 = 0) and 𝜒(𝜆𝑆 ) = 𝜒(𝜆𝑆 ) = 0. In (11), 𝜒 denotes an eigenvalue and 𝐫̂ stands for the corresponding eigenvector.
Contrary to the linear eigenvalue problem (4), the linear eigenvalue problem (11) does not contain two indefinite coefficient
matrices.

In order to elucidate the necessity of using hybrid elements for the present research, typical fundamental eigenvalue functions
𝜒1 and 𝜒1 will be compared in the following. For this purpose, the mathematical formulations of the linear eigenvalue problems (4)
and (11) are differentiated with respect to 𝜆. This gives

[

K̇ − 𝜒̇K0 Ġ𝑇 − 𝜒̇G𝑇
0

Ġ − 𝜒̇G0 0

]

⋅
{

r
t

}

+
[

K − 𝜒K0 G𝑇 − 𝜒G𝑇
0

G − 𝜒G0 0

]

⋅
{

ṙ
ṫ

}

=
{

0
0

}

, (12)

nd
[ ̇̂𝐊 − ̇̂𝜒𝐊̂0

]

⋅ 𝐫̂ +
[

𝐊̂ − 𝜒𝐊̂0

]

⋅ ̇̂𝐫 = 𝟎, (13)

espectively. Then, (12) is premultiplied by ⌊𝐫𝑇 , 𝐭𝑇 ⌋. Consideration of (4) results in

𝜒̇ = 𝐫𝑇 ⋅ 𝐊̇ ⋅ 𝐫 + 2 𝐭𝑇 ⋅ 𝐆̇ ⋅ 𝐫
𝐫𝑇 ⋅𝐊0 ⋅ 𝐫 + 2 𝐭𝑇 ⋅𝐆0 ⋅ 𝐫

. (14)

Analogously, (13) is premultiplied by 𝐫̂𝑇 . Consideration of (11) results in

̇̂𝜒 = 𝐫̂𝑇 ⋅ ̇̂𝐊 ⋅ 𝐫̂
𝐫̂𝑇 ⋅ 𝐊̂0 ⋅ 𝐫̂

. (15)

Since 𝐊̂0 is a positive definite matrix, the quadratic form in the denominator of (15) is a positive quantity. In contrast to 𝐊̂0,
̇̂𝐊

is an indefinite matrix, allowing, in principle, for positive, zero, and negative values of the quadratic form in the numerator of
(15). The diagrammatic sketches in Fig. 3, inspired by numerical results obtained with the Abaqus displacement beam element
B32OS [12], elucidate the meaning of the term fundamental eigenvalue. Fig. 2(a) refers to a problem with a stability limit in the
orm of a bifurcation point, denoted as 𝑆. In this case, the fundamental eigenvalue is the one for which 𝜒1(𝜆𝑆 ) = 0. Fig. 2(b) refers
o a problem without a stability limit. In this case, the fundamental eigenvalue is the one that asymptotically tends to zero, 𝑖.𝑒.
im𝜆→∞ 𝜒1(𝜆) = 0. Obviously, this value has no physical significance. As follows from Fig. 3, the quadratic form in the numerator of
15) is a negative quantity.

None of the two diagrams in Fig. 3 contains a point of inflection. This is consistent with the assertion that it needs a linear
igenvalue problem of the kind of (4), based on hybrid elements, to obtain 𝜒̈1(𝜆) = 0 ((ℜ(𝜒1))⋅⋅ = 0) as the condition for the load

level at maximum (minimum) stiffness of a proportionally loaded structure. The condition for a minimum value can obviously not
be realized with the linear eigenvalue problem (11), because it does not allow that 𝜒1(𝜆) becomes a complex function. However,
7

also the condition for a maximum value of the stiffness cannot be realized with this eigenvalue problem, which is solved with the
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displacement elements that are the basis for their extension to the hybrid elements employed in this work. In the Appendix it will
be shown that ̈̂𝜒1 = 0 is restricted to the postbuckling region, whereas 𝜒̈1 = 0 will be shown in Section 4 to occur in the prebuckling
region.

In contrast to the monotonous decrease of 𝜒1(𝜆) in Fig. 3(b), based on the said finite beam element, other displacement beam
elements have resulted in non-monotonous relevant eigenvalue functions 𝜒1(𝜆) for the same problem, see Fig. 11 in Kalliauer
and Mang [1]. However, the extreme values of these eigenvalue functions are smaller than 1.0 ⋅ 10−4, which hints at numerical
artefacts. In contrast to the real eigenvalue functions 𝜒1(𝜆), with positive curvatures, shown in Fig. 3, the corresponding eigenvalue
functions 𝜒1(𝜆), not shown herein because of their qualitative similarity to the eigenvalue functions 𝜒1(𝜆) illustrated in Figs. 7 and 2,
respectively, contain points of inflection, characterized by 𝜒̈1 = 0 and (ℜ(𝜒1))⋅⋅ = 0, respectively. The fact that, in the given case, the
hybrid elements represent extensions of displacement elements corroborates the meaningfulness of the comparison of characteristics
of corresponding eigenvalue curves (For the sake of simplification of the notation, the subscript 1 in the symbols for the fundamental
eigenvalue, 𝜒1, and the corresponding eigenvector, 𝐫1, will generally be omitted.)

Since the Abaqus hybrid beam elements B32H and B32OSH are extensions of the Abaqus displacement beam elements B32 and
32OS, respectively, it is concluded that the quadratic forms

𝐫𝑇 ⋅ 𝐊̇ ⋅ 𝐫 ∧ 𝐫𝑇 ⋅𝐊0 ⋅ 𝐫 (16)

n (14) have similar mathematical properties as the quadratic forms

𝐫̂𝑇 ⋅ ̇̂𝐊 ⋅ 𝐫̂ ∧ 𝐫̂𝑇 ⋅ 𝐊̂0 ⋅ 𝐫̂ (17)

in (15). Hence, the bilinear forms

𝐭𝑇 ⋅ 𝐆̇ ⋅ 𝐫 ∧ 𝐭𝑇 ⋅𝐆0 ⋅ 𝐫 (18)

in (14) represent a scientific added value of the hybrid beam elements. It consists in the mathematical possibility of physically
motivated sign changes both in the numerator and the denominator of (14). The extreme values of the eigenvalue 𝜒1(𝜆) in Fig. 2(b)
are characterized by the vanishing of the expression in the numerator of (14), i.e. by

𝐫𝑇 ⋅ 𝐊̇ ⋅ 𝐫 + 2 𝐭𝑇 ⋅ 𝐆̇ ⋅ 𝐫 = 0. (19)

The double eigenvalue 𝜒1(𝜆𝐿) = 𝜒𝑗 (𝜆𝐿) and 𝜒1(𝜆𝑈 ) = 𝜒𝑗 (𝜆𝑈 ) in Fig. 2(b) at the beginning and the end, respectively, of the region
inside of which 𝜒1(𝜆) and 𝜒𝑗 (𝜆) are conjugate complex eigenvalues, is characterized by the vanishing of the expression in the
denominator of (14), i.e. by

𝐫𝑇 ⋅𝐊0 ⋅ 𝐫 + 2 𝐭𝑇 ⋅𝐆0 ⋅ 𝐫 = 0. (20)

As mentioned in the Introduction, the value of 𝜆 at the point of inflection, I, see Fig. 2(b), of the function ℜ(𝜒1(𝜆)) = ℜ(𝜒𝑗 (𝜆)) is
the load level at which the stiffness of the bar, subjected to eccentric compression, attains a minimum value. According to Fig. 2(b),
this point is characterized by

(ℜ(𝜒1(𝜆)))⋅⋅ = 0 .

(21)

In Section 4 it will be shown numerically that the condition for a maximum value of the stiffness of proportionally loaded structures
is markedly different from the one for a minimum value.

Maximum and minimum values of the stiffness of such structures are impossible if
𝑈𝐌
𝑈

= const.. (22)

This statement was verified numerically by checking the relevant eigenvalue function 𝜒1(𝜆) for the limiting cases of (22), 𝑖.𝑒. for
pure stretching and pure bending. (There are no other cases for which 𝑈𝐌∕𝑈= const..) Both functions were found to be monotonously
decreasing from 𝜒1(𝜆 = 0) = 1 to 𝜒1(𝜆 = 𝜆𝑆 ) = 0, without points of inflection. With the exception of the very moderately curved
eigenvalue function for the limiting case of pure bending, obtained with displacement elements, all fundamental eigenvalue functions
for both limiting cases were practically linear. Based on the disintegration of the first one of the two vector equations in (4), it can
be shown that for these cases,

𝐭𝑇 ⋅ 𝐆̇ ⋅ 𝐫 = 0 ∧ 𝐭𝑇 ⋅𝐆0 ⋅ 𝐫 = 0, (23)

which precludes (19) and (20). Substitution of (23) into (14) gives

𝜒̇ = 𝐫𝑇⋅ 𝐊̇ ⋅ 𝐫
𝐫𝑇⋅𝐊0 ⋅ 𝐫

, (24)

̇

8

which is of the same form as the expression for 𝜒 , see (15), obtained with displacement elements.
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Fig. 4. Segment of a circular arch, clamped at one end and hinged at the other one, subjected to a vertical point load at its apex.

Fig. 5. Segment of a circular arch, clamped at one end and hinged at the other one, subjected to a vertical point load at its apex: deformed structure without
superelevation and superimposed fundamental eigenform close before loss of stability by snap-through, obtained with Abaqus beam elements B32.

4. Numerical investigation

Fig. 4 shows a segment of a circular arch with the radius 𝑅 and the read angle 𝜇, clamped at one end and hinged at the other
one. It is subjected to a quasi-static vertical point load, 𝜆𝑃 , at the apex of the arch segment; 𝑃 denotes the reference load. The
values of 𝑅, 𝜇, and 𝑃 are given as 19.074 m, 215◦, and 1000 kN, respectively. The arch segment has a rectangular cross-section. Its
height, ℎ, is 0.2 m, and its width, b, is 0.1 m. The modulus of elasticity, 𝐸, Poisson’s ratio, 𝜈, and the shear coefficient, 𝜅, are given
as 2.1 ⋅ 1011 Pa, 0.25, and 0.2, respectively.

The same structure was originally analyzed by Da Deppo and Schmidt [5]. It was re-analyzed 𝑒.𝑔. by Pavlicek [6] and
Helnwein [10]. At the times of these analyses, the search for conditions for extreme values of the stiffness of proportionally loaded
structures had yet not been a topic of fundamental research in computational mechanics of structures. Nevertheless, the results of
structural analyses of the arch by these authors have proved to be useful for the present research. The analyses by Pavlicek [6] and
Helnwein [10] were performed with element #98 of the commercial finite element program MSC.MARC [13]. They are based on
the so-called ‘‘𝐶onsistently 𝐿inearized 𝐸igenvalue 𝑃 roblem’’ (CLE), which was originally proposed by Helnwein [10]. The CLE is
defined as follows:

[

𝐊 + (𝜒⋄ − 𝜆)𝐊̇
]

⋅ 𝐫⋄ = 𝟎. (25)

In the prebuckling region, 𝐊 is a positive-definite matrix. Consequently, the CLE would have been unsuitable for determination of
the load level at minimum stiffness of the bar subjected to an eccentric compressive force, see Fig. 2(a), located in the complex
region of the eigenvalue functions 𝜒1(𝜆) and 𝜒𝑗 (𝜆), see Fig. 2(b). Nevertheless, the coefficients of the characteristic polynomial of
(25) can be made dimensionless. This is a necessary condition for at least qualitatively acceptable eigenvalue functions for problems
with a maximum value of the stiffness.

Fig. 5 shows the deformed arch and the fundamental eigenform close before loss of stability of the structure by snap-through. The
main reason for having chosen this example is the anticipated existence of a maximum value of the stiffness of the proportionally
loaded arch before its decrease to zero at loss of stability by snap-through. The numerical investigation was carried out with Abaqus
displacement elements B32 and Abaqus hybrid elements B32H. A convergence study has shown that the discretization of the arch
segment with 40 elements provides sufficiently accurate results.

Fig. 6 shows 𝜆∕𝜆𝑆 − 𝑢 and 𝜆∕𝜆𝑆 −𝜙 diagrams for (a) the apex of the arch (𝑥 = 18.19m , 𝑦 = 24.81m ) and (b) for a point close to
its hinged support (𝑥 = 36.84m , 𝑦 = 1.73m ). 𝑢 denotes the horizontal displacement of the arch and 𝜙 stands for the rotation of the
tangent to its axis. At the stability limit, 𝑖.𝑒. for 𝜆∕𝜆 = 1, the curves have a horizontal tangent. The existence of points of inflection
9

𝑆
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Fig. 6. Segment of a circular arch, clamped at one end and hinged at the other one, subjected to a vertical point load at its apex: 𝜆∕𝜆S − 𝑢 diagram (solid blue
curve) and 𝜆∕𝜆S − 𝜙 diagram (dashed orange curve) for (a) 𝑥 = 18.19 m , 𝑦 = 24.81 m and (b) 𝑥 = 36.84 m , 𝑦 = 1.73 m , obtained with Abaqus hybrid beam
elements B32H. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Segment of a circular arch, clamped at one end and hinged at the other one, subjected to a vertical point load at its apex: 𝜒 − 𝜆∕𝜆𝑆 diagram obtained
with Abaqus hybrid elements B32H, see the solid curve, and 𝜒 − 𝜆∕𝜆𝑆 diagram obtained with Abaqus displacement elements B32, see the dotted curve.

of the two diagrams in Fig. 6 is consistent with the comment of Helnwein [10] that all d.o.f.s of the apex of this structure contain
such points. Helnwein’s observation that the 𝜆∕𝜆𝑆 − 𝑢 diagrams contain two points of inflection whereas the 𝜆∕𝜆𝑆 − 𝜙 diagrams
contain only one such point is confirmed by the diagrams in Fig. 6(a). The diagrams in Fig. 6(b), however, illustrate the opposite
situation. This proves that the qualification of a proportionally loaded structure as stiffening or softening at the load level concerned
on the basis of individual d.o.f.s is, in general, problematic.

Fig. 7 shows the 𝜒 −𝜆∕𝜆𝑆 diagram obtained with Abaqus B32H elements, see the solid curve, and the 𝜒 −𝜆∕𝜆𝑆 diagram obtained
with Abaqus B32 elements, see the dotted curve. The snap-through point is a singular point, characterized by

𝜒 = 0, 𝜒 ′ = 0, 𝜆 ′ = 0, (26)

where ′ ∶= 𝑑∕𝑑𝑠 denotes an infinitesimal increment of the arc length of the curve. Thus,
𝑑𝜒
𝑑𝜆

=
𝜒 ′

𝜆 ′ = 0
0
=

𝜒 ′′

𝜆 ′′ < 0. (27)

(The value of 𝜆𝑆 was extrapolated from the closest reliable numerical result for 𝜒(𝜆∕𝜆𝑆 ).) The 𝜒 −𝜆∕𝜆𝑆 diagram contains a point of
inflection, I, located between a minimum value and a maximum value of the eigenvalue function 𝜒(𝜆∕𝜆𝑆 ). (Nota bene, such extreme
values need not exist.) Point I signals a maximum value of the stiffness. In other words, the arch which has before been a stiffening
structure becomes a softening structure. Point I is a consequence of points of inflection of individual d.o.f.s of the structure, occurring
at different load levels, see Fig. 6. It is characterized by

𝜒̈1(𝜆) = 0 ,

(28)
10
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Fig. 8. Segment of a circular arch, clamped at one end and hinged at the other one, subjected to a vertical point load at its apex: 𝜆∕𝜆𝑆 − 𝑢𝑎𝑣𝑒 diagram, obtained
with Abaqus hybrid beam elements B32H.

which is the key result of this work. It expresses the remarkable ability of the linear eigenvalue problem (4), the coefficient
matrices of which are established with the help of hybrid finite elements, to determine the load level at the transition of the arch
from a stiffening to a softening structure. Fig. 7 also shows that the linear eigenvalue problem (11), the coefficient matrices of
which are established by means of displacement elements, is lacking this ability. Nota bene, apart from the stability limit, where
𝜒(𝜆∕𝜆𝑆 ) = 𝜒(1) = 0, and the point of inflection, 𝐼 , the eigenvalue function is mechanically insignificant.

A distinctive feature of the fundamental eigenvalue 𝜒 = 𝜒1 from five additionally computed eigenvalues of (4), not shown herein,
is the absence of an imaginary part of 𝜒1. The condition for a maximum value of the stiffness of the investigated arch, see (28),
differs markedly from the one for a minimum value of the stiffness of the bar subjected to eccentric compression, see (21). The
latter refers to a structure without a stability limit. This forces the fundamental eigenvalue function to evade the abscissa of the
𝜒−𝜆∕𝜆𝑆 system of reference on its way, starting at 𝜒(𝜆 = 0) = 1, to negative values of 𝜒 . In contrast to the 𝜒−𝜆∕𝜆𝑆 diagram, shown
in Fig. 7, none of the previously investigated structures without an extreme value of the stiffness resulted in a non-monotonous
𝜒 − 𝜆∕𝜆𝑆 diagram with a point of inflection, see 𝑒.𝑔. Fig. 3 in [2].

The 𝜒 − 𝜆∕𝜆𝑆 diagram obtained by Helnwein [10] is qualitatively similar to the one shown Fig. 7. Both diagrams start with a
positive curvature and end with a negative curvature. The value of 𝜆 at the point of inflection in Helnwein’s diagram, however, does
not agree with the one in this paper. However, the CLE, used by Helnwein, has several deficiencies, among them the previously
mentioned inability to produce conjugate complex eigenvalues in the prebuckling region. While the initial values of 𝜒⋄(𝜆) may be
positive or negative, all initial values of 𝜒(𝜆) are equal to 1. For the given problem, 𝜒(𝜆) is a real function at least for 0 ≤ 𝜆 ≤ 𝜆𝑆 .
In contrast to the CLE, 𝜒𝑖(𝜆) > 0, 𝑖 = {1, 2, … 𝑛}, for 0 ≤ 𝜆 < 𝜆𝑆 .

Contrary to the function 𝜒(𝜆∕𝜆𝑆 ) in Fig. 7, the function 𝜒(𝜆∕𝜆𝑆 ) in this figure is monotonously decreasing, without a point of
inflection. Hence, displacement elements, resulting in two positive-definite coefficient matrices in the prebuckling region, see (11),
are unsuitable for determination of extreme values of the stiffness of proportionally loaded structures.

In [1], an alternative condition for extreme values of the stiffness of proportionally loaded structures was presented. It reads as

𝑑2𝜉
𝑑𝜆2

= 0, (29)

where

𝜉 =
𝑢𝑎𝑣𝑒
∫ 𝑑𝑠

, (30)

is a dimensionless arc length. The ‘‘average displacement’’, 𝑢𝑎𝑣𝑒, is defined as

𝑢𝑎𝑣𝑒 =
∫ ‖𝐮∗‖𝑑𝑠

∫ 𝑑𝑠
, (31)

where ‖𝐮∗‖ denotes the Euclidean norm of the translational d.o.f.s of the structure and ds stands for an infinitesimal element of its
axis. The aforementioned condition was used in [2] for determination of the load level at which the stiffness of a proportionally
loaded bar subjected to eccentric compression, see Fig. 2(a), attains a minimum value. The result obtained for this load level agreed
well with the one obtained with the condition (ℜ(𝜒1))⋅⋅ = (ℜ(𝜒𝑗 ))⋅⋅ = 0, see Fig. 2(b).

Fig. 8 shows the 𝜆 − 𝑢𝑎𝑣𝑒 diagram obtained for the arch investigated in this paper. Qualitatively, this diagram is similar to the
𝜆∕𝜆𝑆−𝑢 diagram in Fig. 6(a) and the 𝜆∕𝜆𝑆−𝜙 diagram in Fig. 6(b). Both diagrams contain two points of inflection. The second one is
close to the snap-through point. However, the 𝜆∕𝜆𝑆 −𝑢 diagram in Fig. 6(b) and the 𝜆∕𝜆𝑆 −𝜙 diagram in Fig. 6(a) differ significantly
from the 𝜆∕𝜆𝑆 −𝑢𝑎𝑣𝑒 diagram, see Fig. 8. In view of the extremely large deformations of the arch it is not astonishing that a criterion
which is based on an Euclidean norm and, thus, can only consider the translational d.o.f.s yields results for the load levels at which
(𝑢𝑎𝑣𝑒)⋅⋅ = 0, see points I1 and I2 in Fig. 8, that deviate significantly from the result for 𝜆∕𝜆𝑆 at which 𝜒̈ = 0, see point I in Fig. 7.
In contrast to (31), the underlying linear eigenvalue problem considers all d.o.f.s. As mentioned previously, the coefficients of its
characteristic polynomial can be made dimensionless. This is a necessary condition for physically meaningful results. Noting that
11
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the investigated arch is obviously softening before snap-through, the existence of a load level at which the stiffness of the structure
becomes a maximum value, well in advance of the stability limit rather than very close to it, is considered to be a plausible result.

5. Conclusions

Proportionally loaded structures, which are initially stiffening (softening), may turn into softening (stiffening) structures. At the
oad level of such a change the stiffness of the structure attains an extreme value. It was demonstrated numerically that this is a
‘global mechanical event’’ rather than one of a representative d.o.f. Determination of the load level at which it occurs was shown
o require a ‘‘global mathematical tool’’ in the form of a special linear eigenvalue problem with two indefinite coefficient matrices.
his allows for eigenvalue functions with regions inside of which they become complex functions. In contrast to the previously
eported condition for the load level at which the stiffness of a proportionally loaded structure becomes a minimum, given as
ℜ(𝜒1(𝜆)))⋅⋅ = 0, the respective condition for a maximum, presented in this work, was found to be 𝜒̈1(𝜆) = 0. The reason for this
undamental difference is that a maximum value of the stiffness signals the beginning of the structure’s tendency towards loss of
tability, characterized by 𝜒1(𝜆𝑆 ) = 0. Hence, in contrast to a minimum value of the stiffness, there is no need for a complex region
f the eigenvalue function in order to postpone the possibility of an intersection of 𝜒1(𝜆) with the abscissa of the 𝜒1 − 𝜆 system of
eference to a higher load level.

In order to underline the necessity of a linear eigenvalue problem with two indefinite coefficient matrices, established with
baqus hybrid finite elements, the investigated structure was also analyzed with those Abaqus displacement elements that are the
asis for their extension to the employed hybrid elements. However, the respective linear eigenvalue problem does not have two
ndefinite coefficient matrices. Hence, the condition for the load level at which the stiffness attains a minimum value cannot be
ealized. However, also the condition for the load level at which the stiffness of a structure becomes a maximum cannot be realized,
ecause the real eigenvalue function concerned does not have a point of inflection in the prebuckling region, as was shown in the
ppendix. Moreover, this load level can also not be determined in the form of a point of inflection of a representative d.o.f.. Its
omputation is based on the Euclidean norm of the translational d.o.f.s. While the unavoidable disregard of the rotational d.o.f.s is
nsignificant in case of the example of a bar subjected to an eccentric compressive force, this does not apply to the example of a
egment of a circular arch, subjected to a point load at its apex.

The nucleus of the conclusions reads as follows: The linear eigenvalue problem (11), with the tangent stiffness matrix and the
mall-displacement stiffness matrix as the two coefficient matrices, imposes constraints on the eigenvalue functions. Hybrid elements
n the form of an extension of displacement elements, resulting in the linear eigenvalue problem (4), enable the removal of those
onstraints that prevent the determination of the load level at which the stiffness of a proportionally loaded structure attains an
xtreme value.

It would be astonishing if a linear eigenvalue problem with an amazing mechanical potential at the ‘‘eigenvalue level’’ had no
omparatively surprising mechanical potential at the ‘‘eigenvector level’’. Indeed, the assumed correlation of points of inflection at
he ‘‘eigenvalue level’’ with points of inflection at the ‘‘eigenvector level’’, is an example for the great potential of this eigenvalue
roblem at both levels. An interesting question for further research is whether or not an extreme value of 𝑈𝐌∕𝑈 is necessarily
receded by an extreme value of the stiffness of the structure. To answer this question requires the numerical verification of the
entioned correlation. This is beyond the scope of this work, which is restricted to the determination of eigenvalue functions with

pecial mechanical properties. Another interesting research question is whether or not 𝑈𝐌∕𝑈 is equal to the radius of curvature of
curve, described by the vertex of a unit vector resulting from normalization of a modification of the fundamental eigenvector of

he linear eigenvalue problem used in this work. A challenge of this modification is the requirement that the components of this
ector are dimensionless quantities. An example with three d.o.f.s for this modification was presented in Section 2.
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Appendix. Proof that ̈̂𝝌𝟏 ≡ ̈̂𝝌 = 𝟎, resulting from the linear eigenvalue problem (11), can only occur in the postbuckling
egion

Derivation of (13) with respect to 𝜆 gives
[ ̈̂𝐊 − ̈̂𝜒𝐊̂0

]

⋅ 𝐫̂ + 2
[ ̇̂𝐊 − ̇̂𝜒𝐊̂0

]

⋅ ̇̂𝐫 +
[

𝐊̂ − 𝜒𝐊̂0

]

⋅ ̈̂𝐫 = 𝟎. (A.1)

Premultiplication of (A.1) by 𝐫̂ 𝑇 and consideration of (11) yields

𝐫̂ 𝑇 ⋅
[ ̈̂𝐊 − ̈̂𝜒𝐊̂0

]

⋅ 𝐫̂ + 2 𝐫̂ 𝑇 ⋅
[ ̇̂𝐊 − ̇̂𝜒𝐊̂0

]

⋅ ̇̂𝐫 = 0. (A.2)

remultiplication of (13) by ̇̂𝐫 𝑇 results in

̇̂𝐫 𝑇
⋅
[ ̇̂𝐊 − ̇̂𝜒𝐊̂0

]

⋅ 𝐫̂ + ̇̂𝐫 𝑇
⋅
[

𝐊̂ − 𝜒𝐊̂0

]

⋅ ̇̂𝐫 = 0, (A.3)

ubstitution of (A.3) into (A.2) gives

𝐫̂ 𝑇 ⋅
[ ̈̂𝐊 − ̈̂𝜒𝐊̂0

]

⋅ 𝐫̂ − 2 ̇̂𝐫 𝑇
⋅
[

𝐊̂ − 𝜒𝐊̂0

]

⋅ ̇̂𝐫 = 0. (A.4)

n the following, the assumption that

̈̂𝜒 = 0 (A.5)

orrelates with
̇̂𝐫 𝑇

⋅ 𝐊̂ ⋅ ̇̂𝐫 = 0 (A.6)

ill be verified. The vanishing of this quadratic form requires that 𝐊̂ is an indefinite matrix. This is the case in the postbuckling
egion, 𝜆 > 𝜆𝑆 , where

𝜒 < 0. (A.7)

ubstitution of (A.5) and (A.6) into (A.4) gives

𝜒 |

|

|

̈̂𝜒=0
= − 𝐫̂ 𝑇 ⋅ ̈̂𝐊 ⋅ 𝐫̂

2 ̇̂𝐫 𝑇
⋅ 𝐊̂0 ⋅

̇̂𝐫
< 0. (A.8)

Since 𝐊̂0 is a positive-definite matrix,

̇̂𝐫 𝑇
⋅ 𝐊̂0 ⋅

̇̂𝐫 > 0. (A.9)

To check whether

𝐫̂ 𝑇 ⋅ ̈̂𝐊 ⋅ 𝐫̂ ||
|

̈̂𝜒=0
> 0, (A.10)

as must be in the case if (A.8) is correct, (A.4) is investigated. Noting that 𝐊̂−𝜒𝐊̂0 is a positive-semidefinite matrix which is singular
nd that ̇̂𝐫 is not an eigenvector of this matrix,

̇̂𝐫 𝑇
⋅
[

𝐊̂ − 𝜒𝐊̂0

]

⋅ ̇̂𝐫 > 0. (A.11)

s follows from (A.4) and (A.11),

𝐫̂ 𝑇 ⋅
[ ̈̂𝐊 − ̈̂𝜒𝐊̂0

]

⋅ 𝐫̂ > 0. (A.12)

pecialization of (A.12) for ̈̂𝜒 = 0 results in (A.10). Thus, (A.8), which rests on the correlation of (A.5) with (A.6), is verified. In
he prebuckling region, 0 < 𝜒(𝜆) ≤ 1. At the stability limit, 𝜒(𝜆𝑆 ) = 0. Hence, ̈̂𝜒 = 0 can only occur in the postbuckling region, quod
rat demonstrandum.
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