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ABSTRACT

This paper presents the application of an emission limiting model-based predictive controller for a small-scale
biomass grate furnace. The furnace has a nominal power of 100 kW with wood pellets as fuel, but it can be
operated with different fuels as well. The model predictive approach extends the existing static feedforward
controller of the investigated furnace with a dynamic feedback controller that is able to improve the combustion
performance. Simultaneously, the formation of carbon monoxide emissions is minimized within the prediction
horizon based on an available emission estimation model for pellets. The results obtained from closed-loop
measurements show that the control concept is able to reduce carbon monoxide emissions in partial load
operation up to four times while the control error of the supply water temperature for heating is nearly
halved during transient operation. This is achieved by incorporating the emission estimation model into the
constrained optimization of the predictive controller. Additional results obtained from closed-loop experiments
for different fuel types with varying water contents demonstrate the advantages of the proposed model-based

approach and its robustness with respect to typical uncertainties of the combustion process.

1. Introduction

While modern furnace designs are optimized with the latest de-
velopment tools, their integrated control algorithms are still often
realized with classical PID-based methods. A major reason is their
simplicity and robustness while requiring only a basic understanding
of control engineering and little maintenance effort. As the require-
ments for combustion increase, especially with respect to efficiency
and emission limitations, the requirements for furnace control increase
as well. Varying fuel properties, complex underlying process models
and highly specific furnace designs however inhibit the implementa-
tion of advanced control algorithms. This work therefore proposes the
application of a model predictive controller (MPC) for the considered
furnace.

The goal is to design a simple and effective model-based con-
troller, which specifically reduces carbon monoxide (CO) emissions
in all operating points and increases the fuel flexibility without the
loss of performance. Limiting emissions based on primary measures
is economically more alluring for small-scale furnaces compared to
retrofitting each individual plant with filters. This work introduces the
combination of a process model and a carbon monoxide estimation
model for control, resulting in a novel CO emission limiting predictive
controller without requiring additional measurements. Performance
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measures quantitatively validate the emission model and the efficiency
of the controller. Moreover, they highlight that the targeted CO limiting
strategy and fuel flexibility are in fact achieved.

Emission limiting combustion control has already been introduced
over two decades ago in [1] for the control of a municipal waste incin-
erator. Surveys have been performed regarding the emission formation
of CO and nitrogen oxides (NO,) at the incinerator. These observations
have been translated into a linguistic fuzzy-rule based controller. A
similar approach is later presented in [2], which introduces a hier-
archical fuzzy-rule based control concept to prevent the formation of
CO in a 200kW stoker burner for wood chips. Even if successfully
realized, both approaches lack process or emission formation models
which prevents further application of more advanced control concepts.
In [3] an RBF-ARX model-based MPC is introduced for a 375 MW oil
fired electric power plant which incorporates the NO, decomposition of
the process. Although the presented predictive approach is generic, it
requires an extensive identification and model selection process that
results in several local linear black-box models of a specific system.
For the investigated furnace a distinct process model [4] and a CO
estimation model [5] are available, which provide the basis for a more
transparent control design. Although literature suggests the application
of fuzzy or nonlinear methods, one MPC is sufficient to cover the entire
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operating range if adequately set up. This is facilitated by a feedforward
controller that compensates most of the static nonlinearities of the
investigated plant. Thus, a linear predictive controller based on the
available model and linearized around one operating point determined
by the v-gap metric [6] is considered.

Model-based control concepts evolving around input-out-put lin-
earization and decoupling addressing similar issues have been derived
in [7] for medium-scale and adapted in [8] for small-scale furnaces.
Consecutive works are presented for example in [9], presenting internal
model control, or in [10], showing that these concepts can be applied
to large-scale furnaces as well. As addressed in [11], constraints for
input-output linearization based approaches have to be taken into
account by trajectory planning. Handling constraints or anti-windup
effects is however already incorporated in standard MPC formulations.
Successfully applied predictive controllers are presented in [12] for the
combustion of waste or in [13] for a 5SMW furnace for the combustion
of wood chips. Depending on the model and control complexity though,
the optimization conducted by the MPC can lead to computational
loads potentially exceeding the capabilities of small furnaces, which is
hardly an issue for dynamic feedforward control. The emission limiting
MPC concept proposed in this work therefore aims to prevent high
calculation efforts by using a simple linearized process model and
only the most essential extensions to consider emission formation and
saturations.

Emission reduced control requires a basic understanding of emis-
sion formation and how it can be made accessible for control. The
formation of emissions depends on several factors, like the elemen-
tal composition of the fuel, the combustion technology [14] or the
operating conditions [15]. The combustion can be described in detail
by stoichiometric relations, as presented in [16], or be derived from
observations and measurements as in [14] or [17] for different combus-
tion technologies and fuels. While stoichiometric approaches require
knowledge about the combustion reactants [18], which is often not
available, observations can be gathered to derive data-driven models.
Static approaches are presented in [15] for instance which can be
especially useful to identify optimal steady-state operating conditions
for minimal emissions. Comprehensive data on the influence of ex-
cess air and temperature on the formation of emissions, including
CO and NO,, is collected and presented in [19] for a small-scale
grate furnace. These surveys only allow for furnace-specific statements
regarding emission reduction since the variation of technology and fuel
has a major influence on emission formation. Dynamic models allow
transient process descriptions but are more difficult to obtain. This is
typically addressed by the application of black-box models, for which
an overview is given in [20]. Estimation models specifically for CO are
derived and compared in [5] for the combustion of wood pellets or
in [21] for lump coal. Both, dynamic and static emission estimation
models, can be integrated into the MPC by different means in order to
achieve emission limited combustion.

In order to design the furnace controller, a simple but descriptive
process model is required. Approaches with distributed parameters, as
presented in [22] for fixed-bed combustion of biofuels, for example, are
typically too complex for control. Various process models are available
in literature apart from those already addressed in the context of
control. For example, [23] presented a model specifically designed
for optimal control applications and [24] provided a compact set of
equations for small furnaces as well. The considered combustion model
is obtained from [4] and adjusted based on measurements since it is
already tailored to the investigated furnace.

This paper is structured as follows: First, the furnace design and
the governing equations for the process model are introduced and
described together with a short recap about emission formation in small
furnaces. Next, the application of the MPC is illustrated and discussed
in detail, followed by the introduction of the control algorithm. Then,
closed-loop results are shown based on wood pellets and consecutively
for different fuels. Finally, improved control and model settings for
CO emission limiting combustion are discussed and measurements are
presented before the paper concludes with a summarizing discussion.
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Fig. 1. Basic furnace structure with the most important mass flows and temperatures
required for modeling. The furnace is split into the freeboard subsystem and the heat
exchanger.

2. Furnace model

This section introduces the basic furnace design, the underlying
process model and provides a short overview of emission formation for
small-scale biomass grate furnaces. A basic description of the furnace
and the process model is given in [4] and of the specific CO formation
process in [5], but important information is recapitulated for consistent
readability. Adaptions made to the model used for control design are
also presented and discussed in this section.

2.1. Process description

The investigated plant is a small-scale grate furnace, as depicted
schematically in Fig. 1 that is designed for the combustion of wood
pellets or chips. Other fuel types are possible as well if they are
provided in small pieces that can be managed by the conveyor system.
Inputs to the furnace are the mass flow of wet fuel g, the primary
air mass flow rrp, and the secondary air mass flow rg,. The secondary
air mass flow is split into s,;, which enters the freeboard just above
the grate, and rirg,5 to support complete combustion in the freeboard.
The water mass flow i, of the heating circuit enters the heat exchanger
with the return water temperature T}, on the colder side and leaves the
furnace as supply water temperature Ty, on the hotter side. The spread
between these two temperatures is the main measure for the energy
supplied by the furnace to the heating circuit. For the investigated
system, the water mass flow s, and the return temperature T, are
kept constant on the test rig, but they can be part of the controlled
system. The return water temperature can be included in the state
space system of the predictive controller as a measured disturbance
for compensation. The water mass flow on the other hand has to be
estimated if required since typically no measurements are available for
small-scale furnaces. Therefore, the supply water temperature demand
Tup,ref 18 the determining value of the furnace.

The air mass flows of the plant are not controllable independently.
All three mass flows depend on the fan speed of the single fan in the
exhaust system, which pulls the air through the furnace. The secondary
air mass flow 2 can be adjusted by an additional flap, which allows
shutting down rig,, almost completely. Geometric relations of the flow
system however allow for an explicit constant ratio between iy, and
tga1, Which is typically adjusted during the installation of the furnace.
This ratio contains empirical fuel-specific knowledge for the air mass
flows and theoretically requires manual adjusting for different fuel
types due to the existing feedforward control.
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2.2. Modeling equations

The equations presented in this subsection are based on the energy
and mass balances presented in [4] in order to obtain simple but de-
scriptive relations for the model-based controller. Benefits of this model
are the thoroughly investigated estimability of the gray-box parameters,
the simplified thermal radiation terms and the small number of states.
The following only contains the state equations necessary for control
and minor adaptions to the original model.

2.2.1. Solid mass balance

The mass of fuel on the grate my, is described by the balance
equation
imb = Ihf 1 —m (1)
dt uel,net thd>»
where ritgye) et is the net mass flow of fuel available for combustion (in
kg/s) and riyg,q is the thermally decomposed fuel mass leaving the grate
in a gaseous state over time (in kg/s). Due to the coupled air mass flows
tipa and rigy, the primary air mass flow is expressed in terms of

mpa = Tpas1 mpsa! 2

where ritpg, is the combined mass flow of the primary and secondary
air 1 (in kg/s) and rpy;; is the geometric factor accounting for the fuel
dependent air distribution of the furnace. The secondary air mass flow
1 is then given by

figgy = (1 — rp251)mpsa~ 3)

2.2.2. Oxygen concentration in flue gas
The oxygen concentration O, of the gaseous part after the combus-
tion is considered to be finished based on [15] is obtained as

d A—-1 R
TO2 EOZ =21 T + thhd Ripg — Oy, 4)

where Ty, is the experimentally determined time constant of the
oxygen sensor, A is the air-to-fuel ratio and kg, is an experimentally
determined gain for R4, which is the rate of change for the thermal
decomposition (in kg/s). This additional state is considered to account
for the fast dynamics of the oxygen concentration and is given by

%Rr_hd = tighg — € Rengs Q)

where ¢ is 1/s and accounts for the correct representation of the
physical units.

2.2.3. Freeboard gas temperature
The freeboard gas temperature Ty, is obtained from the energy
balance of the freeboard subsystem as

d . ) ) .
MgCp g Ebe = Qin + Qeomb — ans = Orad- (6)

where mg is the gas mass in the freeboard (in kg), ¢, ¢ is the specific heat
capacity of the hot gas (in J kg/K), Oy, is the enthalpy transported into
the furnace by the fuel and combustion air (in W), Q. is the energy
released due to combustion (in W), ans is the enthalpy flow of the hot
gas leaving the freeboard (in W) and Q,,4 are the radiation losses (in

W).

2.2.4. Supply water temperature

Adaptions to the model derived in [4] are made focusing on the
description of the supply water temperature Ty, and the temperature
of the exhaust gas T,, which were both considered as states for the con-
troller. Because these variables are coupled and based on the intention
to use a simplified heat exchanger model, the exhaust air temperature is
not considered as a state variable, but described by an algebraic relation
instead. The supply water temperature Ty, is obtained as

_d . A
mw,hecp,wETsup =0y — My Cp,w (Tsup - Tret) + ksup’ (7)
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where m,, 1, is the mass of water in the heat exchanger (in kg), ¢y, is
the specific averaged heat capacity of water (in J kg/K), Q,, is the heat
flow of water (in W), r,, is the water mass flow of the heating circuit
and kg, is an experimentally determined constant temperature offset
(in K). The water heat flow is obtained similar to [8] as

Qw = kQ,l [mfg (be - Tw)]kQ’2 + Qrecv (€]

where kg1 and kg, are experimentally determined constants to shape
the thermal energy exchange, T,, is the averaged water temperature
in the heating circuit (in K) and Q... is the radiation recuperation
(in W). Although the combination of the parameters kga and ko
can cause difficulties in their estimation, the relation is quite flexible
to be adjusted to measurements. The exhaust gas temperature Ty, is
approximated by an algebraic equation similar to [25] as

0
Tex = Tpp = —>—, ©)
Mg Cp,fg
where ¢ ¢, is the constant averaged heat capacity of the flue gas. This

relation presents a sufficient description for Ty, since it is not utilized
for furnace control but only to monitor if condensation of the flue gas
occurs.

2.3. Emission formation

In order to achieve emission limiting control, the formation of the
most relevant emissions for the given furnace has to be considered.
CO, NO, and other trace gases are measured on the test rig by a
nondispersive infrared sensor and are available offline for modeling and
evaluation. Additional CO or NO, measurements could be made avail-
able for control by combined CO- or NO,-4 sensors, but model-based
emission reduction strategies are to be preferred.

2.3.1. Nitrogen oxides

The release of NO, for the combustion of wood pellets and chips
depends on the temperature, the nitrogen content of the fuel and
the combustion technology [14]. Reduced nitrogen concentrations are
already achieved for the given furnace by air staging with substoi-
chiometric conditions on the grate (A1<1) and excess air ratios in the
freeboard (4>1). Although temperature measurements are only avail-
able in the freeboard, thermal and prompt NO, formation is assumed to
be restricted due to temperature levels that never exceed 1000K [15].
The remaining NO, is mainly fuel-based and related to the amount of
energy released. The required load determines the air ratios and the
temperatures, resulting in an almost linear, load-dependent relation for
the NO, concentration which is presented in Section 4 together with
closed-loop measurements. The available NO, data is also presented
in Fig. 2 for wood pellets and chips over the operating range of the
freeboard temperature. The mostly linear relation can be translated into
output constraints on the freeboard temperature for the MPC in order
to limit NO,.

2.3.2. Carbon monoxide

The formation of CO is a regular part of the combustion process.
Provided enough oxygen, high temperatures and reaction time are
available, carbon monoxide is oxidized almost completely to CO, in
the freeboard. This is already achieved for nominal load at the given
furnace. Static CO-A diagrams show the averaged CO concentration
in the flue gas as a function of the air-to-fuel ratio 4, the fuel type
and/or the combustion temperature for a specific furnace. Such CO-
A characteristics are available in literature, e.g. in [1] or in [15] and
typically reveal the optimal stationary operating conditions for minimal
CO concentrations. In [5] dynamic and static models depending on the
oxygen concentration O, and the freeboard temperature Ty, as inputs
are derived for wood pellets. These black-box models provide dynamic
estimates for a wide range of operating conditions based on the given
combustion technology. Including such models into the prediction of
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Fig. 2. Measured NO, concentration in mg/m3N referenced to an oxygen concentration
of 13Vol.-% over the freeboard temperature Ty, in Celsius for wood pellets and chips.
The black line represents a linear regression performed on the presented data to indicate
the correlation with the operating temperature.
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Fig. 3. Training procedure for the CO estimation model for wood pellets. The structure
of the multilayer perceptron network is selected based on [5]. The network is trained,
validated and updated in a loop until either the maximum number of iterations or
a certain MSE is met. Because the model is static, different hold-out methods can
conveniently be used for validation.

the MPC can provide a sophisticated approach for emission limiting
control.

Simulation results of the model predictive controller with integrated
dynamic CO models however have shown unsatisfactory performances
due to high sensitivities of the output, especially with respect to dis-
turbances in the oxygen concentration. This effect can be further am-
plified by inexpensive oxygen sensors that are commonly installed in
small-scale furnaces which can show significant measurement errors.
Furthermore, it is difficult to select setpoints or constraints for emis-
sions, which are either unreasonable in general or cause conflicts with
the more important setpoints for the furnace performance in terms
of power. To prevent such conflicts and to keep the overall model
as simple as possible, a static CO-O,-Ty, map is utilized to derive a
control strategy to limit the CO concentration through emission-related
penalties instead.

This map is derived based on the results presented in [5], where
several black-box modeling approaches are investigated and compared
for the combustion of wood pellets. Inputs to the model are the mea-
surements of O, and Ty, for which the parameterization procedure
is displayed schematically in Fig. 3. A static multilayer perceptron
network is trained and updated until a specific stopping criteria is
met. Such approaches are utilized in different fields of engineering,
e.g. for the estimation of mechanical properties [26], and are applicable
to different furnaces as well since the measurements of O, and Tp,
are usually always available for automated combustion processes. The
obtained CO-O,-Tj, estimation model or CO map for wood pellets is
presented in Section 4.1 in Fig. 8 and validated together with the
closed-loop measurements of the MPC in Section 4.3 in Figs. 9, 10, 14
and 15.

3. Controller design

This section provides the predictive control algorithm utilized at
the investigated furnace and its application together with the already
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existing feedforward controller. The resulting architecture is depicted
in Fig. 4 to provide a general understanding and is explained in detail
throughout the following.

3.1. Application restrictions

The development of the MPC has to take the existing feedforward
controller into account. Although this might limit the achievable poten-
tial of the newly developed controller, this fact also provides certain
advantages. Because the given interfaces and settings are already de-
fined, retrofitting the MPC to another furnace of the same design is
straightforward. Additionally, because the existing feedforward control
comprises the start-up, shut-down and safety features present at the
furnace, they are kept in place without adaptions. Therefore, the model
predictive controller can be considered as an “add-on” to the furnace.
Nonetheless, the presented approach is applicable to the whole class of
small-scale furnaces. Differences between applications with or without
feedforward controller only arise in the MPC formulation relying on
either absolute or relative values of the controllable inputs.

3.2. Extended furnace model

The presented model of the furnace together with empirically
evolved software extensions constitute the extended furnace model as
shown in Fig. 4, which is further introduced in the following. The
extended furnace setup includes the input interface and the feedforward
controller, which are briefly discussed in Sections 3.2.1 and 3.2.2,
respectively.

3.2.1. Input interface

The most common control strategy for small-scale furnaces is based
on independently designed control loops using simple linear PI con-
trollers [15]. To achieve sufficient control performance with such
an approach, decoupling of the process [27] and linear input-output
behavior [28] are necessary prerequisites. In order to fulfill these
requirements, the furnace manufacturer implemented the empirically
designed input interface, which comprises hardware components (mo-
tors and valves) and an appropriately designed software to facilitate
furnace operation. The so defined interface can be described as a
four-dimensional look-up table given in concise form by the nonlinear
mapping

[Taupret() u"(0)] [mfuel(z) i (1) tigg, (1) msaz(t)] (10)
with the vector u according to

T
u= ["fuel Upa ”sa] . 11

While the subfigure in Fig. 4 shows how this mapping is integrated
in the overall control concept, Fig. 5 shows explicit three-dimensional
plots constituting the mapping of the input interface. Each of these
plots visualizes a projection of the four-dimensional input vector to
two inputs. The actual mass flows are thus obtained by interpolat-
ing within the complete four-dimensional look-up table. The supply
temperature demand Ty, ¢ influences this transformation in such a
nonlinear way, that the process considering only the remaining input
vector u is decoupled and exhibits linear input-output behavior. As
long as the actual supply temperature is close to the reference value,
these conditions are fulfilled in an appropriate but still approximate
manner. Consequently, the vector u represents the controllable inputs
of the extended furnace. Although the scalar inputs u basically lack a
direct physical interpretation, they are labeled by indices referring to
their main influence on the actual mass flows.
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Fig. 4. Conceptual architecture of the overall control structure. The presented furnace, the input interface and the feedforward controller together constitute the extended furnace
model. The extended controller comprises the MPC, the state observer, and the interface providing the necessary reference values. Applied filtering and discretization transforms
measured time-continuous outputs y(7) into its time-discrete counterparts y(k). Numbers in brackets refer to the sections describing the corresponding block.

Fig. 5. Illustration of the relations within the input interface. While each column considers the influence of Ty, s and one item of u = [45gel Upy
line-by-line. To allow depicted simplified representation, remaining values of u are chosen according to Eq. (12) in each diagram. Note that s, can be split up into

according to Egs. (2) and (3), respectively.

3.2.2. Feedforward controller
The feedforward controller is designed empirically by the furnace
manufacturer and is realized as a database of static fuel dependent
tables. The applied static projection can be written in abbreviated form
as
T
Tsup,ref = ug = [ufuel,ff Upa, ff “sa,ff] g 12)

and is depicted in Fig. 6, which presents the settings applied for wood
pellets. Based on the current fuel, the supply temperature reference
Tgup,ref defines feedforward actuator settings ug, which are experi-
mentally determined settings enabling high combustion quality for
undisturbed combustion. Therefore, the MPC has to provide a feedback
driven deviation term Su in addition to ug. The combined feedforward

and feedback control input u is thus obtained as
u = ug+ ou. 13)

While performing trajectory planning in dynamic feedforward control
would allow for designing the reference and disturbance behavior

T .
ug,| , mass flows are organized

pa and rig,

separately [29], the applied static input ug constrains the versatility of
the system. The incapability of the static feedforward part to consider
dynamic load changes forces the feedback controller to consider refer-
ence changes in a deviation-related fashion in addition to disturbance
rejection. As the intended model predictive approach already includes
the predictive property and therefore trajectory planning inherently, a
dynamic extension of the existing static feedforward controller is not
considered.

3.3. Extended controller

In addition to the emission limiting MPC, which is described in
detail in Section 3.3.1, a state observer is necessary to estimate un-
measurable model states, which is briefly addressed in Section 3.3.2.
Section 3.3.3 introduces the reference interface required to translate the
supply temperature demand into the individual output references for
the MPC. Because the control task requires these additional algorithms,
the related blocks constitute the extended controller as shown in Fig. 4.
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Fig. 6. Static feedforward relationship of Eq. (12) between T, ¢ and items in ug for
the combustion of wood pellets.

3.3.1. MPC
Unconstrained formulation

Based on the state space representation of the augmented furnace
(furnace and input interface) with the state vector x,, € R"x, the output
vector y € R"Y according to Eq. (14), and the vector of controllable
inputs u € R", see Eq. (11), a linear MPC is established. The states
and outputs are expressed as:

T
Xm = [my Ring Oz Tpp Tyyp)
T

y= [be O, Tsup]

In order to obtain the necessary linearized furnace model, steady-
state operating points resulting from feedforward control offer a wide
range of potential linearization points. The v-gap metric introduced by
Vinnicombe [6] provides an appropriate method to compare different
linear models regarding their deviation from each other in a closed-loop
setting. Since Ty, or is not included in the controllable input vector u,
the obtained linear models only differ slightly from each other in a v-
gap sense. This is due to the feedforward part, which covers most of the
nonlinearities in the considered furnace setup due to the dependency
on Ty, rer- Thus, deviations from the selected linearization point are
approximately equal to deviations from the steady-state operating point
related to the feedforward control input ug.

14)

Based on these considerations and on the MPC formulation pre-
sented in [30], the discrete state space representation of the model used
for control design can be written as
8%k + 1) = Ay 6% (k) + By, Su(k) + Ep 8d(k)

oy(k) = C, 6x,, (k)

(15)

with the system matrix A, € R"™*", the input matrix B, € R,
the matrix E;, € R"™*"d of measured disturbances d and the output
matrix C,,, € R"Y*"x, The system presented in Eq. (15) is formulated in
a deviation related fashion due to the existing feedforward controller.
The matrix E,, accounting for the impact of the return water tempera-
ture d = T, on the system can be omitted since T, is constant. In the
following, the placeholder (x) therefore denotes the deviations 6 from
the steady-state operating points (x)g defined by feedforward control
as

6(x) = (%) = X (16)

In order to eliminate steady-state offsets the plant model of Eq. (15)
is augmented by adding n, integrators. Applying the difference opera-
tion

A(x)(k+ 1) = 6(x)(k + 1) — 6(x)(k) a7)
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yields the incremental formulation

Axp(k+1) = Ay Axp (k) + By, Au(k)

18)
Sy(k + 1) = sy(k) + Cpy Axpy(k + 1)
of the plant. With the augmented state vector
Ax (k)
k) = m 19
x(k) [ Sy(k) ] 19

the state space representation of the augmented model is given by

x(k + 1) = Ax(k) + BAu(k)

6y(k) = Cx(k) 0
with the matrices
A=[ An onxxny] B=[ By ]
Cohm 1, | CnBn|’ @D

where I denotes an identity matrix and 0 a zero matrix of appropriate
size. With N, as the control horizon and N, as the prediction horizon,
the vectors of stacked incremental inputs AU and stacked predicted
outputs Y are defined as

AU = [4u()” Auk+ 1T ... dutk+ N, - D], (22)
Y = [oy(k + 11K sy(k+ 2107 ... 8y(k +NP|k)T]T, (23)

respectively. Thus, the prediction can be written compactly as

Y = Fx(k) + ® AU, @24
where the matrices are given by
T N, T T
F=|caAT (ca?)" .. (CA p) ] , (25)
CB 0, 0,
CAB CB -
®=| CcA’B CAB Opcny |- (26)
cAMT'B  cA™2B CAM~Nep

With Y. as the vector of stacked references within the prediction
horizon according to

T
Y ref = [0res(k + DT 8ypep(k +2)7 ... Syper(k + Np)'| 27)
the cost function J for optimization is determined by

T
J=AUTRAU + (Yo = Y) Qy (Yyer =Y ) + Jeo (28)

where the term J. accounts for additional costs due to soft constraints
and is yet to be defined. The weighting matrices R, and Q, represent
costs for increasing control inputs and to penalize control errors. Min-
imizing the cost function of Eq. (28) without considering constraints
yields the optimal control sequence AU* according to

AU* = (870, @ + R,) ™ @TQ, (Yo - Fx(K)). (29)

The solution for the sequence of inputs AU is obtained from solving the
quadratic programming problem with the commercial software package
MATLAB®.

Constraint formulation

The accessible solution space for the inputs is restricted by con-
straints on the amplitude of the inputs éu, which must be chosen with
respect to the absolute limits of u. Based on the vector 6U, which
combines the deviation-related inputs within the control horizon as

ou(k)

su(k + 1)

8U = =Ty, utk—1)+ Ty, AU (30)

su(k+ N, — 1)
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Fig. 7. Different options for the constraints imposed on O,. While option (a) introduces
a limit relative to the feedforward settings, option (b) restricts O, in an absolute fashion.
The time-discrete values are connected smoothly to guide the eye.

with the matrices

Inu Inu Onuxnu e Onuxnu
I I I .. 0

Ty1= :’u Ty, = :’u ny Xy | 31D
I"u nll I"u o InM

hard input constraints are expressed by
Tu,l 6umin <éU < Tu,l‘sumaX' (32)

Since the CO emissions strongly increase if the oxygen concentration
falls below certain values, which is visible in Fig. 8 in Section 4.1 of
the results, introducing a bottom limit for O, is reasonable to ensure
high combustion quality. Hard limitations of output variables however
can restrict the feasibility of the optimization problem. To penalize
low O, levels, soft constraints are assigned to the vector of predicted
deviation-related oxygen concentrations Y y,, which are obtained from
the according entries of Y. In order to ensure feasibility, a slack variable
s € R%* is introduced, yielding the condition

Y02 > YOZ,min - lNle (33)

with Y0, min 38 the vector of minimum permissible oxygen concentra-
tions within the prediction horizon and 1 denoting a matrix of ones
of appropriate size. Fig. 7 presents two possible approaches to specify
these limits in the given setting. Option (a) represents a constant limit
802 min in the form of an offset relative to the steady-state oxygen
concentration O, g and option (b) constitutes a constant absolute bot-
tom limit Oy ,,;,, independent of the actual operating point. Their
mathematical implementations are given by Egs. (34)(a) and (34)(b)
respectively.

Y lexl 502,min (a) (34)
0,,min = d
: le><1 OZ,min - ngfef (b)
The vector Ogrfefd is defined as
d T
ogfff = [Og gk +1) Og ek +2) ... Ogglk + Np)| . (35

and comprises steady-state oxygen concentrations based on the feed-
forward controller. Constraint option (a) represents a reasonable ap-
proach, if the feedforward settings already result in low emissions
in steady-state operation. Experimental results together with the CO
model however suggest oxygen references, which are different from
those provided by the feedforward part. The applied soft constraints are
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further discussed in the results section. Both options however introduce
the additional costs Jg, as stated in Eq. (28), according to
Joe =5+ czs2 (36)

with ¢;,¢, € R allowing to influence the soft constraint’s impact.
Considering s as an additional decision variable, the overall quadratic
cost function is augmented to

T
J [AU] H [AU] LT [AU] 37
N S S
with the matrices
R, +®TQ,® 0]

01><Ncnu 5}

H= [ (38)
T =[-2 (Yt — Fx(k)) Qy®, ¢]. (39)
Eq. (37) is therefore subject to the inequality constraints expressed by

Toy Oy Ty (St — Sulk — 1))

—Tys Oy [AU] <|Tua (=8t + Su(k — 1)) 40)
_TOZ(p _leXI s TozFx(k) - YOZ,min
leNcnu -1 0

with the transformation matrix T, pointing only to oxygen. Eq. (40)
constitutes the final quadratic programming problem. Due to the re-
ceding horizon principle, only the first entry of the solution for AU*
obtained from optimization is applied.

3.3.2. Observer

Based on the furnace model, an extended Kalman filter is applied
to estimate model states and outputs. The extended Kalman filter is ap-
plied because it is considered to be the standard approach for nonlinear
observation and since no differences in the performance compared to
an unscented Kalman filter have been observed. The estimated state
vector %,(k) and output vector y(k) are combined to an augmented
state vector X(k) and replace x(k) in Eq. (29) and in the consecutive
equations.

3.3.3. Reference interface

The reference interface as part of the extended controller has to
provide an appropriate reference vector 8y,.s for the MPC according
to

5be,ref
502,ref
oT,

sup,ref

O¥ref = = Yref = Yt (4D

for every time step within the prediction horizon. Thereby, the absolute
reference y, is corrected by the steady-state value yg. Because the
control algorithm is based on a deviation related formulation, the
steady-state values, x, ¢ and yg, have to be considered permanently.
For this purpose, the reference interface uses an overall model of the
process, consisting of the feedforward controller (Eq. (12)), the input
interface (Eq. (10)), and the furnace (Egs. (1)-(8)). In order to obtain
the steady-state state and output values solely induced by feedforward
control, these equations are solved stationarily for the applied supply
temperature reference by setting all time derivatives to zero. The
resulting nonlinear mappings can be written in abbreviated form as:

Tsup,ref(k) = xrn,ff(k) (42)
Tsup’ref(k tk+ NP) - yglk @ k+ Np) (43)
Since the return water temperature T,., and water mass flow s, are
both constant in the given furnace setup, the absolute heat power

demand P, is directly proportional to the supply water temperature

Tsup,ref given by

Pres = mwcp,w (Tsup,ref - Tret) . (44)
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This relation further justifies utilizing Ty er as the main reference
value for control. Due to the static feedforward controller, harsh
changes of P, cause rapid changes of the actuators as well. In order
to prevent excessive excitations, the reference interface incorporates
a moving average filter with a window length of 90 time steps to
smoothen the references within the prediction horizon. Therefore, the
applied relative oxygen constraint according to Eq. (33) based on
Eq. (34)(a) becomes active 15 min before the steps occur as well.

4. Results and discussion

In the following, the closed-loop results for the combustion of
different solid biofuels are presented. The results for the combustion of
wood pellets are discussed first, after a short introduction of the general
MPC setup. Fuel flexibility and emission limiting control are presented
in the consecutive subsections.

4.1. Control setup

The main control objectives are providing a specific heat demand
expressed by the supply water temperature Ty, and enabling a high
combustion quality. The freeboard temperature Ty, is considered more
as a result of these demands rather than an independently controlled
variable. This is due to potential conflicts with the more important
O, references in terms of emissions and efficiency. The impact of T,
therefore is restricted to achieving steady-state setpoints and respecting
constraints, but less so for transient behavior. This is realized by small
weights for Ty,. Unless stated otherwise, the weighting matrices are set
according to

Ry = diag([ryel pa rsal) = diag([10 2.5 1)), (45)
1) = diag([0.01 0.75 10]). (46)

0, = diag(lgry, 40, ITgyp
The MPC utilizes a prediction horizon of N,=180 and a control horizon
of N.=90 time steps. The furnace system is sampled with 7, = 10s,
thus yielding a prediction horizon of 30 min and a control horizon of
15 min. Adaptions to the weighting matrices R, and Q, are conducted
based on results obtained from experiments, aiming for emission lim-
ited combustion control. The MPC is operated in MATLAB® over an
interface provided by LabVIEW®, which itself is connected to the fur-
nace bus-system. This setup allows to bypass the necessity to generate
machine-interpretable code and allows quick adaptions to model and
controller even during operation.

The emission related costs for the optimization of the MPC are based
on the stationary outputs of the acquired CO estimation model for
wood pellets, which is presented in Fig. 8. The combinations of O, and
Ty, which result in the minimal CO concentration over the operating
range are highlighted in red. Including this setpoint dependent path
into the optimization of the MPC decreases the emissions optimally.
Alternatively, a simpler but suboptimal path can be defined where the
O, concentration is constant. This coincides with the CO-1 diagrams
from literature, since the influence of Ty can be neglected in most
cases for the given furnace. For each temperature level, the projections
of the CO-O, plane are therefore slices of CO-4 diagrams for different
operating conditions. Both paths however represent a potential basis for
the formulation of penalties in the optimization of the MPC to achieve
emission limiting control, as elaborated in Section 3.3.1. The CO map
can be obtained similarly for other furnaces and other fuel types as
well, because the process described in Fig. 3 is generic and physically
motivated. The CO map presented in Fig. 8 is thus only valid for wood
pellets and a specific furnace, as the CO-4 diagrams are. Additionally,
long term degradation and measurement uncertainties of the oxygen
sensor can lead to deviations from the obtained map.
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Fig. 8. Map of the CO concentration over the oxygen concentration O, and the
freeboard temperature Ty, for wood pellets for the given furnace. The red line with
stars highlights the path through the operating range resulting in the minimal CO
concentration. The brown line represents a simpler suboptimal reference value of O,
for low CO concentrations independent of Tp,.

4.2. Experimental setup

In order to compare the desired closed-loop results of the emission
limiting MPC to the initial PI controller and for different fuels, the
entire operating range of the furnace has to be investigated. This is
conducted by a series of reference steps for Ty, ror covering the supply
water temperature levels of interest, starting at 100 kW nominal load
and stepping through the operating range. The reference power is
reduced to 50% and consecutively to 30% nominal load before it is
increased to 100% load in the final step, which is the largest possible
reference step realizable at the investigated furnace. All presented data
obtained from different fuel types and controllers are generated for
this profile and thus comparable, although the time between individual
steps can differ slightly between experiments.

4.3. Initial closed-loop results for wood pellets

It is assumed, that the existing feedforward controller provides
a reasonable steady-state combustion quality. The initial experiment
settings therefore rely on the reference values y . which are identical to
the outputs yg provided by the feedforward part. These references are
the result of the heat demand expressed by Ty rer and the correlated
values of P according to Eq. (44). These references have not yet
been optimized regarding emission formation. Closed-loop experiment
data gathered from the application of the model predictive controller
are presented in Fig. 9 for the combustion of wood pellets. The soft
constraint for the oxygen concentration is set to AffOz)min = 2Vol.-%
according to Eq. (33) and option (a) of Eq. (34) with the initial cost
coefficients being ¢, = ¢, = 10.

The results presented in Fig. 9 clearly indicate appropriate conver-
gence towards reference values in steady state and satisfying transient
behavior. In Section 4.5 a comparison between the simulated closed-
loop results of the MPC and the currently employed PI control strategy
shows that the implemented MPC in fact offers significant improve-
ments as suggested in [4]. Among many aspects, the penalizing effect
of the soft constraints contributes to this enhancement. Hard con-
straints have proven to be too harsh, whereas the influence of the
soft constraints illustrates, that the oxygen concentration never falls
significantly short of the applied limit.

Estimated CO emissions obtained from the soft-sensor according to
Section 2.3 exhibit good agreement with measured values as shown in
the second last diagram of Fig. 9. However, a considerable amount of
CO emissions, especially occurring in the lower power range, indicate
that the chosen references are inappropriate in terms of emissions.
Peaks in the first hour are associated with low oxygen concentra-
tions while increased CO emissions in the time span between 1h and
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Fig. 9. Experimental closed-loop results for the combustion of wood pellets based on

references supplied by the feedforward controller. The bottom plots show the measured
and estimated emissions in the flue gas.
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Fig. 10. Further experimental results for the combustion of wood pellets with slightly
adapted O, references. The qualitative capabilities of the CO estimation model are
validated in the second last plot.
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Fig. 11. Closed-loop results for the combustion of wood chips with a water content
of 35wt.-%. The references are supplied by the feedforward controller. The gray area
indicates a short interruption due to grate cleaning.

4h15min are the result of a low freeboard temperature 7y, and a
relatively high O, concentration. These observations together with
the CO map of Fig. 8 suggest to decrease the O, references during
periods of lower power. Maintaining the same controller configuration
but applying a slightly adapted O, reference yield the closed-loop
results depicted in Fig. 10. While experimental results confirm the high
estimation quality of the CO emission model, insufficient handling of
the O, references highlights that constraints are partly situated by the
MPC. Therefore, either the O, references or the soft constraints have to
be adapted.

4.4. Fuel flexibility

Although the investigated furnace is mainly utilized for the combus-
tion of wood pellets, minor changes of specific furnace settings allow
other solid biofuels to be burned as well. This requires adjustments
to the actuator settings of the furnace, which are expressed by the
geometric ratio introduced in Egs. (2)—(3) for the primary and sec-
ondary air mass flows. Updating the model parameters for a different
fuel type is not necessary, if the expected water content of the fuel
is approximately known. Therefore, based on the model parameters
estimated for pellets, closed-loop results for the combustion of wood
chips with water contents of 35wt.-% and 20 wt.-% are obtained and
displayed in Figs. 11 and 12, respectively.

The results for the combustion of wood chips with a water content
of 35wt.-% (Fig. 11) show a satisfying control performance by utilizing
the unaltered controller settings. A short interruption due to furnace
cleaning is highlighted by the gray areas in the figure, which required
a restart in order to obtain the full measurement series. Based on the
experiment data, small changes in the weighting factors of R, and O,
according to

rpa =05, 4o, =3 (47)
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Fig. 12. Closed-loop experimental results for the combustion of wood chips with a
water content of 20 wt.-% with slightly adapted O, references as applied in Fig. 10.

are introduced, which yield the results depicted in Fig. 12 for wood
chips with a water content of 20wt.-%. The oxygen references in
Fig. 11 have been unchanged compared to Fig. 9, whereas in Fig. 12
they have been altered towards lower levels. Due to the active O,
soft constraint in Fig. 12, the control error increases in the time span
between 2h30min. and 3h45min. Even though the soft constraints
are permanently active for low temperatures, the MPC is able to reach
the reference values. This shows, that the references for T, and O,
can be selected independently to a certain degree and that the impact
of the soft constraint is potentially too small.

Adjusting the soft constraints accordingly and fully incorporating
sophisticated CO reduction strategies is expected to decrease the re-
sulting emissions, especially for pellets, which is further discussed in
the following section. The MPC configurations prove to be capable of
controlling the combustion of different solid biofuels and providing
a fast and effective approach for fuel switches through a minimal
adaption of parameters, which could then be replaced by a fuzzy
MPC for different fuels. The ability to control the supply temperature
efficiently for different fuels is already a major improvement compared
to the initial furnace control.

4.5. Emission limiting control

The application of the available CO models for wood pellets dis-
cussed in Section 2.3 describing the relations between O,, Ty, and
CO offers a profound approach to find (sub)optimal O, references to
minimize CO emissions. Fig. 8 reveals, that the dependency of the
carbon monoxide concentration on the combustion temperature Tg,
is rather small for some constant O, values. Deviations from these
temperature levels are only penalized with slightly increased CO levels,
whereas deviations of O, on the other hand can lead to very high
CO concentrations. Therefore, a constant O, reference of 7 Vol.-% is

10

Applied Energy 285 (2021) 116414

a T T T T T
) 85+ | measurement == prediction = - reference | E
O et |
s 80F H
= 75 |
afor
5]
Ec? 70k !\-A_w._.-.,‘—-—g - ; 1
65 i ! - — —
0 1 2 3 4 5
b) T T T T T
& 15F | measurement — - reference | P = ,i 4
- e .
= 1 ! .
A ! |
S [ i soft constraint active Lo A
5 i
0 1 2 3 4 5
C) 12 T T T T T
x 10L | — prediction = - reference ]
=
8
S)
4 soft constraint active
0 1 2 3 4 5
d)1200 : : : . .
- measurement == prediction
£ 900k | ]
=~
2
2 600+ i
8 300F ]
. bl pat U
0 1 2 3 4 5
time in h

Fig. 13. Comparison between the initial closed-loop results for the combustion of
wood pellets from Fig. 9 and the predicted results for the improved MPC based on
simulation. The simulation is conducted with the adapted O, reference according to
the CO reduction strategy, an absolute O, soft constraint and the adjusted weighting

matrices of the MPC. The results for Ty are compared in (a), whereas O, results

are depicted separately in (b) and (c). In (d), the expected improvements of the CO
concentration based on the predicted simulation is compared to the measurements
obtained from the initial MPC settings.

determined to fulfill the objectives of simplicity and emission limita-
tion, although the optimal path through the CO valleys of Fig. 8 is
expected to yield better results. The CO model additionally reveals,
that O, concentrations below 4.5Vol.-% favor an excessively high
CO formation, hence a bottom limit of Oy, = 4.5Vol.-% for the
soft constraint according to Egs. (33) and option (b) of Eq. (34) is
applied. To enhance the new soft constraints and to refrain from hard
implementing limits, the cost coefficients are set to ¢, = ¢, = 10°.

Based on these considerations, a closed-loop simulation is utilized
to investigate the expected improvements based on the available CO
estimation model. The simulation results are depicted in Fig. 13 and
compared to the already presented measurements shown in Fig. 9.
The results for O, are presented separately in Figs. 13(b) and 13(c)
for better visibility whereas Ty, is omitted. For the simulation, newly
adapted MPC configurations are applied according to

R, = diag([2.5 2.5 1)), (48)

0, = diag([0.01 20 20]) 49

to better account for the importance of the oxygen concentration
and to facilitate influence on the fuel mass flow, enhancing control
performance. In Fig. 13(d) the simulation results of the predicted
improvements of the CO concentration obtained with the updated con-
troller tuning and the integrated CO strategy including new references
are compared to the initially measured CO concentrations presented in
Fig. 9. The resulting CO concentration is expected to be much lower
with the updated settings than initially measured.

While shorter transition periods of Ty, for the first two reference
steps assume a higher control performance with the adapted settings,
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Table 1

Quantitative comparison of the control performance of the supply water temperature
T for the initial and the final MPC settings based on the RMSE together with the
experiment duration.

Settings RMSE (in °C) Duration (in h)
PI initial 2.48 5.0
MPC final 1.51 5.0

the last and largest reference step shows a slightly increased rise time,
see Fig. 13(a). As the underlying feedforward related actuator settings
also exhibit these harsh changes, the MPC accepts a short activation
of the soft constraints at 5h10min in order to guarantee a smooth
transition of the more important control goal of Ty,,, which leads to
a short CO peak in the simulation. The introduced intensified focus
on the oxygen concentration however provides the intended emission
reduction over the entire operating range, as presented in Fig. 13(d).
Raising the lower oxygen limit O,,;, towards the reference could
decrease CO emissions during transition but simultaneously increase
the rise time of Ty, as well. The expected trade-off between conflicting
control goals prohibits further adaptions to the limits on O, since
higher rise times can lead to unfavorable adjustments of the prediction
horizon.

Finally, the experimental results for the intended emission limiting
model predictive controller with fuel flexibility based on the discussed
adaptions are presented in Fig. 14 showing the obtained CO mea-
surements in the CO map and in Fig. 15 compared to the results
obtained with the initial state-of-the-art PI controller. The resulting CO
emissions are in fact vastly reduced based on the constant reference
value of 7 Vol.-% for O, together with the soft constraints according to
Eq. (34)(b) in comparison to the initial PI controller and to the MPC
settings of Fig. 9. Especially in partial load operation, which is the
case whenever Ty, is less than 80 °C, the CO emissions are reduced
up to a factor of four. It is visible from the results, that the reference
of the freeboard temperature Ty, needs to be reconsidered in terms of
weighting or be redefined in general for the MPC. Although the higher
temperature levels of Ty, might indicate an increased fuel consumption,
the oxygen values and thus the mass flows of cold combustion air have
been reduced as well.

To fully emphasize these improvements, Table 1 quantitatively
compares the control performance of Ty, in terms of the root-mean-
squared-error (RMSE) between the two controllers presented in Fig. 15.
The RMSE allows an interpretation in the corresponding magnitudes,
which are Celsius for the water temperature and mg/rni] (Ogref =
13 Vol.-%) for the emissions.

Table 1 indicates, that the MPC considerably improved the control
performance for the dynamic profile. Although the performance of the
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Table 2

Quantitative comparison of the CO concentration in mg/my: (O, f=13 Vol.-%) between
the initial state-of-the-art PI controller and the final MPC settings based on values
averaged over the series of steps.

Toupres  (l0ad %) Initial PI Final MPC
CO in mg/mys CO in mg/my
80 °G+ (100%) 3.54 1.85
71 °C  (50%) 39.98 24.34
67 °C  (30%) 185.52 45.96
80 °C+ (100%) 7.14 1.68
Total avg. 59.04 18.46

PI controller is reasonable, the MPC achieves equal results in steady
state but exceeds the PI during transition. The focus is however not
to compare a PI controller with a predictive controller, but rather to
highlight the incorporation of emission related control requirements.
Therefore, similar to the comparison of Tg,, the measured CO emis-
sions can be compared for these experiments as well. These results are
presented in Table 2, showing the CO measurements averaged over the
duration of the operating conditions according to the conducted series
of steps.

Apparently, CO emissions have been reduced significantly in addi-
tion to the fact that the performance in terms of Ty, has not become
worse but rather increased as well. The furnace settings for nominal
load have already been well adjusted, which is highlighted by the fact
that the PI feedback controller in Fig. 15 is even turned off in the
gray areas. For partial load however, a favorable choice of references,
constraints and weights for the MPC brings considerable improvements
to the combustion quality, as presented. The obtained experimental
results therefore show, that the introduced MPC setup considering
emission limiting combustion indeed has the addressed potential to
improve combustion control for existing furnaces.

5. Conclusion

This work introduced a model predictive controller for emission
limiting small-scale biomass combustion for different fuel types based
on staged combustion. Various results demonstrate the capability of the
introduced methods in combination with the emission related consid-
erations, which have been applied successfully to fuels with different
properties. Due to the requirements stated by the already existing
feedforward controller, the obtained MPC formulation can conveniently
be retrofitted to furnaces of the same type without further adjustments
or additional sensors.

The nonlinear furnace model introduced in Section 2 describes the
combustion process adequately for the controller and the CO estimation
model provided essential information about the emission formation
process. Although in the final setting the CO model itself is not actively
utilized, it has been essential to obtain the references for the oxygen
concentration to highlight unfavorable operating conditions. Improve-
ments to the CO model are expected to support the optimal choice of
the O, references further. Limits on NO, emissions can be achieved by
constraining the upper limit of the freeboard temperature, at least for
the considered combination of combustion technology and fuel.

The linear model predictive controller with the introduced mix
of hard and soft constraints as presented in Section 3 proves to be
sufficient for the investigated combustion process. A major part in
smoothing the nonlinearities of the process is contributed by the exist-
ing feedforward controller, which prevents the necessity of a nonlinear
controller design. However, the feedforward part also requires the
derived controller to be defined in a deviation related formulation with
respect to the provided steady-state inputs. In combination, these two
controllers are able to provide reliable stationary operation for the
entire furnace operating range.

While the original PI controller requires manual adjustment of the
furnace hardware before operating with a different fuel, the derived
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b) emission limiting MPC
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Fig. 15. Comparison of the experimental results obtained with the (a) state-of-the-art PI controller and the (b) emission limiting MPC. All relevant signals for a full comparison
of the control algorithms are presented. The gray areas of the PI controller indicate that only feedforward control is active which has to be considered for the comparison of the
controllers since the PI controller is not always fully active but the MPC has no such restrictions.

model predictive controller is able to cover the entire furnace operating
range without hard adaptions. The acquired experimental results indi-
cate, that further improvements can be achieved by fine adjustment of
the weighting matrices of the MPC and a favorable choice of the output
references. The development of the emission limiting MPC is not yet
finished, but this work provides potential concepts. The optimal trade-
off between heating performance, CO and NO, emission reduction
however has to be adapted to the specific requirements. An interesting
considerable improvement would be to extend the furnace MPC with
a soft-sensor for the water content or lower heating value of the fuel
respectively, in order to further enhance robust control. The application
of a fuzzy MPC could make use of additional CO maps for different fuel
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types or could eliminate manual interference with the process model at
all.

A method has been formulated in this work for the operation of
small-scale furnaces in an emission optimizing manner. The presented
methodology is in general transferable to similar combustion systems,
but special differences in technology and fuel require a precise exami-
nation of whether these measures are realizable or not. Caution should
be taken when transferring the presented methods to other combustion
processes: An important part of the strategy is that CO emissions can
be reduced without an additional CO sensor. Based on a reliable CO
map, operating conditions favoring low emissions can be identified.
Prerequisites are robust oxygen sensors, which is however often not
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the case for furnaces of smaller sizes because inexpensive sensors
with significant measurement errors, especially on a long term basis,
are common. Furthermore, for the presented two degrees of freedom
controller and its application to other furnace systems, it is important
that the feedforward controller describes the major nonlinearities of
the process in order to allow an efficient linear feedback controller
to be applied on the available hardware. It is therefore necessary that
the feedforward control is valid for the entire range of operation or
completely replaced by a MPC.
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