Supporting Information

Medium-temperature thermochemical energy storage based on transition metal ammoniates – a systematic comparison

Danny Müller^{a,*}, Christian Knoll^{a,b}, Georg Gravogl,^{a,g} Christian Jordan^b, Elisabeth Eitenberger,^c Gernot Friedbacher,^c Werner Artner,^d Jan M. Welch^e, Andreas Werner^f, Michael Harasek,^b Ronald Miletich,^g Peter Weinberger^{a,*}

^a Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

^b Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

^c Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

^d X-Ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

^e Center for Labelling and Isotope Production, TRIGA Center Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria.

^f Institute for Energy Systems and Thermodynamics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

^g Institut für Mineralogie und Kristallographie, University of Vienna, Althanstraße 14, 1090 Vienna, Austria

*Corresponding author	danny.mueller@tuwien.ac.at
	peter.e163.weinberger@tuwien.ac.at

Figure S1 Used equipment for determination of the energy contents and cycle stabilities during thermal cycling under NH_3 -atmosphere a) Netzsch TGA/DSC 449 C Jupiter® instrument equipped with a water vapour furnace b) Sample compartment, showing $[Ni(NH_3)_4]SO_4$ after determination of the reaction enthalpy at room-temperature (filled crucible in front) and the reference crucible (empty crucible in the back)

Figure S2 Energy content of selected (transition) metal salts for reaction with NH_3 at 25 °C, ranked according to the molar energy content. a) Anhydrous form of the salts b) Most common hydrate species

Entry	Salt	kJ kg ⁻¹			kJ	∫ mol⁻	1	MJ m ⁻³		
1	NiCl ₂	2464	±	44.4	319	±	5.7	8.75	±	1.66.10-1
2	CoCl ₂	2278	±	41.0	296	±	5.3	7.65	±	1.45.10-1
3	CuCl ₂	2200	±	39.6	296	±	5.3	7.46	±	1.41.10-1
4	MnCl ₂	2040	±	36.7	257	±	4.6	6.08	±	1.15.10-1
5	CuSO ₄	1772	±	31.9	283	±	5.1	6.38	±	1.21.10-1
6	NiSO4	1432	±	25.8	222	±	4.0	5.74	±	1.09.10-1
7	CoSO ₄	1276	±	23.0	198	±	3.6	4.73	±	8.97·10 ⁻²
8	CdCl ₂	947	±	17.0	174	±	3.1	3.84	±	7.27.10-2
9	FeSO ₄	809	±	14.6	123	±	2.2	2.95	±	5.60.10-2
10	PdCl ₂	763	±	13.7	135	±	2.4	3.05	±	5.78·10 ⁻²
11	CdSO ₄	599	±	10.8	125	±	2.3	2.81	±	5.32.10-2
12	ZnSO ₄	568	±	10.2	92	±	1.7	2.01	±	3.81.10-2
13	Fe ₂ (SO ₄) ₃	561	±	10.1	224	±	4.0	1.74	±	3.30.10-2
14	FeCl ₃	534	±	9.6	87	±	1.6	1.55	±	2.93.10-2
15	FeCl ₂	492	±	8.9	62	±	1.1	1.55	±	2.95.10-2
16	ScCl ₃	386	±	6.9	58	±	1.0	0.92	±	1.75.10-2
17	ZnCl ₂	291	±	5.2	40	±	0.7	0.85	±	1.60.10-2
18	PtCl ₂	284	±	5.1	76	±	1.4	1.72	±	3.26.10-2
19	CeCl ₃	59	±	1.1	15	±	0.3	0.23	±	4.44·10 ⁻³

Table S1 Energy contents of the investigated anhydrous salts in kJ kg⁻¹, kJ mol⁻¹ and energy density in MJ m⁻³ for the ammoniation reaction

Table S2 Energy contents of the investigated salt hydrates in kJ kg⁻¹, kJ mol⁻¹ and energy density in MJ m⁻³ for the ammoniation reaction

Entry	Salt	kJ kg ⁻¹		kJ mol ⁻¹			MJ m ⁻³			
1	CuCl ₂ ·2H ₂ O	1441	±	25.9	246	±	4.4	3.66	±	6.59·10 ⁻²
2	FeCl ₂ ·4H ₂ O	1176	±	21.2	234	±	4.2	2.27	±	4.09.10-2
3	NiCl ₂ ·6H ₂ O	901	±	16.2	214	±	3.9	1.73	±	3.11.10-2
4	ZnSO ₄ ·6H ₂ O	802	±	14.4	231	±	4.2	1.66	±	2.99.10-2
5	FeCl ₃ ·6H ₂ O	792	±	14.3	214	±	3.9	1.44	±	2.59.10-2
6	CuSO4·5H2O	715	±	12.9	179	±	3.2	1.64	±	2.95.10-2
7	Fe ₂ (SO ₄) ₃ ·9H ₂ O	552	±	9.9	310	±	5.6	1.05	±	1.89.10-2
8	CoCl ₂ ·6H ₂ O	532	±	9.6	126	±	2.3	1.02	±	1.84.10-2
9	FeSO ₄ ·7H ₂ O	485	±	8.7	135	±	2.4	0.92	±	1.66.10-2
10	MnCl ₂ ·2H ₂ O	202	±	3.6	40	±	0.7	0.41	±	7.31.10-3
11	CdCl ₂ ·2H ₂ O	128	±	2.3	28	±	0.5	0.43	±	7.67.10-3
12	NiSO4·7H ₂ O	35	±	0.6	9	±	0.2	0.07	±	1.23.10-3
13	CdSO ₄ ·4H ₂ O	27	±	0.5	8	±	0.1	0.08	±	1.5.10-3
14	CoSO4·7H2O	23	±	0.4	6	±	0.1	0.04	±	8.07.10-4

Figure S3 TGA/DSC curve for the reaction $CuSO_4 + 4$ NH₃ \leftrightarrow [Cu(NH₃)₄]SO₄ to determine the energy content, displayed in figure 2. The mass increase of 43 % corresponds perfectly to the expected one, going along with a full uptake of 4 NH₃ ligands.

Figure S4 Cycle stability experiment of the reaction couple $[Co(NH_3)_4]Cl_2 \rightleftharpoons CoCl_2$ under NH₃ atmosphere. Mass-loss during 10 consecutive cycles: 2.1 %

Figure S5 Cycle stability experiment of the reaction couple $[Cu(NH_3)_6]Cl_2 \rightleftharpoons CuCl_2$ under NH₃ atmosphere. Mass-loss during 10 consecutive cycles: 3.2 %

Figure S6 Cycle stability experiment of the reaction couple $[Cu(NH_3)_4]SO_4 \rightleftharpoons CuSO_4$ under NH₃ atmosphere

Figure S7 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple [Mn(NH₃)₂]Cl₂ \rightleftharpoons MnCl₂

Figure S8 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple [Ni(NH₃)₄]SO₄ \rightleftharpoons NiSO₄

Figure S9 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple $[Co(NH_3)_4]SO_4 \rightleftharpoons CoSO_4$

Figure S10 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple $[Cd(NH_3)_4]Cl_2 \rightleftharpoons CdCl_2$

Figure S11 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple [Fe(NH₃)₂]SO₄ \rightleftharpoons FeSO₄

Figure S2 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple $[Cd(NH_3)_2]SO_4 \rightleftharpoons CdSO_4$

Figure S3 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple $[Zn(NH_3)_4]SO_4 \rightleftharpoons ZnSO_4$

Figure S4 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple [Fe(NH₃)₃]Cl₃ \rightleftharpoons FeCl₃

Figure S5 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple [Fe(NH₃)₃]Cl₂ \rightleftharpoons FeCl₂

Figure S6 Two consecutive charging / discharging cycles under NH₃ atmosphere of the reaction couple $[Zn(NH_3)_4]Cl_2 \rightleftharpoons ZnCl_2$

Figure S77 P-XRD of $[Co(NH_3)_4]SO_4$ before (black) and after (green) 10 heating / cooling cycles under NH₃ atmosphere

Figure S18 SEM image of $[Co(NH_3)_4]SO_4$ before (a) and after (b) 10 heating / cooling cycles under NH₃ atmosphere

Figure S19 P-XRD of $[Zn(NH_3)_4]SO_4$ before (black) and after (green) 10 heating / cooling cycles under NH₃ atmosphere

Figure S20 SEM image of $[Zn(NH_3)_4]SO_4$ before (a) and after (b) 10 heating / cooling cycles under NH₃ atmosphere

Figure S21 P-XRD of $[Co(NH_3)_4]Cl_2$ before (black) and after (green) 10 heating / cooling cycles under NH₃ atmosphere

Figure S22 SEM image of $[Co(NH_3)_4]Cl_2$ before (a) and after (b) 10 heating / cooling cycles under NH_3 atmosphere

Figure S23 P-XRD of $[Cu(NH_3)_6]Cl_2$ before (black) and after (green) 10 heating / cooling cycles under NH_3 atmosphere

Figure S24 SEM image of $[Cu(NH_3)_6]Cl_2$ before (a) and after (b) 10 heating / cooling cycles under NH₃ atmosphere