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Kurzfassung

Die Integration von IoT (Internet of Things) Sensorplattformen in industrielle Anlagen
eröffnet neue Möglichkeiten für den Einsatz von Modellen des maschinellen Lernens, insbe-
sondere in der Anomalie-Klassifizierung. Der erfolgreiche Einsatz dieser Modelle in solchen
Systemen ist jedoch mit erheblichen Herausforderungen verbunden. Insbesondere weichen
die in kontrollierten Laborumgebungen gesammelten Trainingsdaten häufig erheblich von
den Echtzeitdaten in Produktionsumgebungen ab. Zudem ist es oft nicht möglich, für jede
Anomalie-Klasse in neuen Umgebungen eine ausreichende Menge an Daten zu beschaf-
fen. Daher ist es von entscheidender Bedeutung, anpassungsfähige Modelle zu entwickeln,
die sich effektiv von einer Umgebung in eine andere übertragen lassen und eine schnelle
Anpassung unter Verwendung normaler Daten ermöglichen. Diese Arbeit erweitert diese
Problemstellung auf allgemeine Klassifikationsaufgaben und formuliert die Fragestellung
der “One-Class Domain Adaptation” (OC-DA). Nach meinem Kenntnisstand handelt es
sich bei dieser Arbeit um die erste, die sich mit OC-DA befasst. Im Rahmen dieser Ar-
beit wird eine Task-Sampling-Strategie vorgeschlagen, die es ermöglicht, jeden zweistufi-
gen Meta-Learning-Algorithmus an die Anforderungen von OC-DA anzupassen. Konkret
wird der “Model-Agnostic Meta-Learning” (MAML) Algorithmus modifiziert und der OC-
DA MAML Algorithmus entwickelt. Eine theoretische Analyse zeigt, dass OC-DA MAML
Meta-Parameter findet, die es dem Modell ermöglichen, sich mit nur wenigen Trainingsda-
ten einer einzigen Klasse an eine neue Umgebung anzupassen. Der OC-DA MAML wird
empirisch anhand des Rainbow-MNIST Meta-Learning-Benchmarks und eines realen Da-
tensatzes aus vibrationsbasierten Sensormesswerten evaluiert. Die Ergebnisse zeigen, dass
OC-DA MAML signifikant bessere Leistungen erbringt als MAML mit der herkömmlichen
Task-Sampling-Strategie.



Abstract

In recent years, the integration of IoT (Internet of Things) sensor platforms into industrial
plants has opened up new opportunities for applying machine learning models to various
tasks, such as anomaly classification. However, the deployment of these models in such
systems poses significant challenges due to distribution shifts, as the training data acquired
in controlled laboratory settings may significantly differ from real-time data in production
environments. Furthermore, many real-world applications cannot provide a substantial
number of labeled examples for each anomalous class in every new environment. It is
therefore crucial to develop adaptable machine learning models that can be effectively
transferred from one environment to another, enabling rapid adaptation using normal data.
I extended this problem setting to an arbitrary multi-class classification task and formulated
the one-class domain adaptation (OC-DA) problem setting. To the best of my knowledge,
my work is the first to address one-class adaptation across domains. I took a meta-learning
approach to tackle the challenge of OC-DA, and proposed a task sampling strategy to adapt
any bi-level meta-learning algorithm to OC-DA. I modified the well-established model-
agnostic meta-learning (MAML) algorithm and introduced the OC-DAMAML algorithm. I
provided a theoretical analysis showing that OC-DA MAML optimizes for meta-parameters
that enable rapid one-class adaptation across domains. I empirically evaluated OC-DA
MAML on the Rainbow-MNIST meta-learning benchmark and on a real-world dataset
of vibration-based sensor readings. The results show that OC-DA MAML significantly
outperforms MAML using the standard task sampling strategy.
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1 Introduction

In recent years, the integration of Internet of Things (IoT) sensor platforms into industrial
plants has opened up new avenues for the application of machine learning models in various
industrial systems [14, 9, 18, 30], offering significant opportunities for enhancing efficiency
in industrial processes. However, deploying machine learning models in such systems poses
significant challenges, particularly in ensuring consistent performance across diverse envi-
ronments within an industrial plant. In many industrial machine learning applications,
models are developed in controlled laboratory settings before being deployed into critical
production environments [15]. However, real-world data is inherently complex and diverse,
and thus, the training data may significantly differ from the real-time data in production.
Distribution shifts – where the training distribution differs from the test distribution – pose
significant challenges in the application of machine learning, as they can lead to a substan-
tial decline in model performance [17]. Therefore, it is crucial to develop robust machine
learning models that can be effectively transferred from laboratory settings to real-world
deployments, as well as from one environment to another within an industrial system.

The generalization ability of machine learning models has been significantly driven by the
wealth and diversity of available data. This is evident in computer vision, where datasets
like ImageNet [26] have improved the performance of image classification models. Although
these pre-trained models can be effectively applied to related computer vision tasks, such
extensive datasets are often unavailable in many specialized domains [12]. Common ap-
proaches to directly addressing the challenge of distribution shifts are domain adaptation
and domain generalization. Domain adaptation methods leverage unlabeled or sparsely la-
beled data from the test environment for adaptation, while domain generalization methods
are specifically trained to achieve invariance across diverse environments, enabling them to
generalize to the test environment without requiring further adaptation [12]. While domain
adaptation and generalization methods require a sufficiently large amount of data [1, 13],
real-world applications often face significant limitations in data availability. This scarcity is
often due to intrinsic factors (e.g., rare medical conditions, special industrial failure types)
or the time-consuming and costly nature of data acquisition processes. In contrast, meta-
learning is specifically tailored to few-shot learning settings and can effectively address
both domain adaptation and domain generalization tasks [12]. Meta-learning is commonly
understood as ‘learning to learn’ and leverages prior experience across multiple tasks with
limited datasets to develop models capable of rapid adaptation to new tasks [12].

However, a notable shortcoming of existing meta-learning algorithms is that the adaptation
process still requires access to examples of every class, either for ranking similarity between
examples [16, 32, 29] or for fine-tuning classifiers [25, 3, 24, 22]. This dependence constrains
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1 Introduction

the applicability of current meta-learning methods. In many real-world applications, the
adaptation data in new domains is constrained not only by limited volume but also by the
scarcity of certain classes. For illustration, machine learning models in industry are typi-
cally pre-trained in laboratory settings before being transferred to real-world deployments.
While normal operational data is often readily available for model adaptation, acquiring
anomalous data within large and complex industrial systems is both expensive and time-
consuming [5]. This raises the question of whether and how the information present in
normal data can be leveraged for adaptation to a new domain.

I extended this problem setting to an arbitrary multi-class classification task and formulated
the One-Class Domain Adaptation (OC-DA) problem setting. To the best of my knowledge,
my work is the first to address one-class adaptation across domains. The goal of OC-DA is
to learn a model that is able to quickly adapt to a new domain using only a few examples of
one class. I take a meta-learning approach to tackle the challenge of OC-DA and propose a
task sampling strategy to adapt any bi-level meta-learning algorithm to the OC-DA setting.
While recent meta-learning algorithms are designed to effectively address generalization
across diverse learning tasks, i.e., learning tasks with varying label spaces [16, 32, 29, 25,
3, 24, 22], OC-DA focuses on generalization from one class to the other classes of a single
learning task across diverse domains.

In Chapter 2, I discuss the challenges involved in transferring machine learning models to
real-world deployments, with a focus on distribution shifts. Chapter 3 provides an overview
of recent meta-learning approaches, covering metric-based, model-based, and optimization-
based algorithms. In Chapter 4, I introduce the OC-DA problem setting and propose a task
sampling strategy to adapt any bi-level meta-learning algorithm to the OC-DA setting. I
focus on modifying the well-established model-agnostic meta-learning (MAML) algorithm
[3] and introduce the OC-DA MAML algorithm. Furthermore, I provide a theoretical anal-
ysis showing that the OC-DA MAML algorithm explicitly optimizes for meta-parameters
that enable rapid one-class adaptation across domains. In Chapter 5, I discuss the empir-
ical experiments and results. I demonstrate the effectiveness of the OC-MAML algorithm
on the Rainbow-MNIST dataset [4] and on a real-world dataset of vibration-based sensor
readings recorded by centrifugal pumps within diverse environments. I show the perfor-
mance gap between source and target domains, and compare the MAML algorithm to the
OC-DA MAML algorithm. In Chapter 6, I summarize my results.

In summary, my contributions are:

(1) I formulate a new problem setting in the context of domain adaptation (OC-DA)
motivated by real-world challenges and requirements.

(2) I show that the well-established meta-learning algorithm MAML fails in the OC-DA
setting.

(3) I propose a sampling strategy to adapt any bi-level meta-learning algorithm to OC-
DA. I focus on modifying the MAML algorithm and introduce the OC-DA MAML
algorithm.

2



1 Introduction

(4) I provide a theoretical analysis showing that the OC-DA MAML algorithm optimizes
for meta-parameters that enable rapid one-class adaptation across domains.

(5) I empirically evaluate the OC-MAML algorithm on a meta-learning benchmark, the
Rainbow-MNIST dataset [4], and on a dataset of sensor readings recorded by centrifu-
gal pumps within diverse environments, demonstrating its robustness for real-world
applications.
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2 Distribution Shifts

A common assumption in machine learning is that data is identically and independently
distributed (iid), and both training and testing examples are drawn from the same dis-
tribution [17]. However, this assumption often fails to hold in real-world applications.
In real-world applications, data is inherently complex and diverse, often collected across
multiple environments [1]. In machine learning, these variations are known as distribu-
tion shifts, where the training distribution differs from the test distribution [17]. In many
real-world deployments, distribution shifts naturally arise in applications such as animal
species categorization, tumor identification, poverty mapping [17], remote sensing [27] and
industrial systems [15], caused by different cameras, hospitals, demographics, continents,
countries, seasons and time periods. For instance, in biomedical applications, machine
learning models are frequently trained on data from a limited number of hospitals, yet the
goal is to generalize their deployment across a broader range of hospitals [17]. In remote
sensing, the increasing number of satellite constellations facilitates the monitoring of global
issues such as deforestation, wildfires, road flooding, and urban development [27]. However,
the representations of the Earth’s surface can differ significantly between continents and
across seasons, posing challenges for the effective transfer of machine learning models to
previously unseen geographic regions [27].

2.1 Distribution Shifts in Industrial Systems

In industrial machine learning, model robustness plays a crucial role. In many applica-
tions, models are often developed in laboratory settings before being transferred to critical
production environments. However, the transfer of these models to real-world deployments
poses significant challenges due to distribution shifts, as the training data acquired in
controlled laboratory settings may significantly differ from real-time data in production
environments. Moreover, even if the training data is initially collected from production
environments, it is often outdated by the time the model is developed and ready for de-
ployment [15]. Furthermore, an increasing number of industrial assets is equipped with
IoT sensor platforms, presenting significant opportunities for applying machine learning
models in industrial systems (e.g., predictive maintenance, condition monitoring, anomaly
classification, etc.) [9]. Industrial plants often contain multiple industrial assets of the same
type; for instance, it is common to find hundreds of identical filling pumps within a single
food and beverage plant [14]. Additionally, these industry-standard assets are frequently
deployed across multiple industrial plants world-wide. However, the model transfer from
one industrial asset to another, even if they are of the same type and highly standardized,
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2 Distribution Shifts

is often difficult. Various real-world factors, such as slight variations in production, wear
and tear, and environmental factors, can influence the sensor recordings [14, 9]. For reliable
performance, it is crucial to develop robust models that can be effectively transferred from
one industrial asset to another across diverse environments.

Figure 2.1: Process in industrial machine learning: (1) Model training in laboratory setting.
(2) Model transfer to real-world deployments.

As illustrated in Fig. 2.1, the process of designing a machine learning model for an industrial
application typically involves the following steps:

1. Model Training in a Laboratory Setting: Initially, data is collected from industrial
assets within a controlled laboratory environment. This dataset is then utilized to
train the machine learning model.

2. Model Deployment in Real-World Environments: After training, the model is de-
ployed across various real-world settings. These environments often differ significantly
from the laboratory setup, encompassing a wider range of asset and environmental
characteristics.

The data acquisition process in controlled laboratory settings often follows standardized
measurement protocols. While this controlled setting facilitates the collection of detailed
sensor data under consistent conditions, it fails to produce the diverse dataset necessary
for training a robust model. To address this limitation, it may be beneficial to adjust the
laboratory setup to simulate distribution shifts, thereby generating a more varied dataset.
However, a key challenge in this process is that the laboratory setting can only simulate a
limited spectrum of the environmental influences that the model will encounter in actual
deployment. Real-world environments can significantly differ from the laboratory setup,
presenting a broader range of asset and environmental characteristics.
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2 Distribution Shifts

Figure 2.2: Illustration of training data distribution in industrial system: (1) Model training
in laboratory setting. (2) Model transfer. (3) Model adaptation in real-world
environments.

The deployment of machine learning models into real-world industrial systems poses chal-
lenges beyond distribution shifts. Another major challenge is the limited availability of
anomalous data in real-world deployments. Acquiring anomalous data in large and com-
plex industrial systems is both expensive and time-consuming. Normal operational data
is typically available, while data on anomalous conditions is scarce in critical production
environments [11]. Simulating failure types requires intervention from domain experts, a
process that is extremely time-consuming for a large number of industrial assets and poses
a substantial risk of material damage or complete system breakdown [14]. While it is
possible to simulate anomalous conditions of industrial assets in laboratory settings with
manageable risk, collecting data for every possible failure type from each individual asset
within a large industrial system is infeasible.

For illustration, consider the Centrifugal-Pumps dataset detailed in Section 5.1. Normal
state data for centrifugal pumps in industrial systems can be readily collected. However,
simulating common failure types, such as hydraulic blockage, dry running, and cavita-
tion, requires interruptions in continuous operation, resulting in unwanted downtime and
potentially leading to the breakdown of the entire system [30]. This raises the question
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2 Distribution Shifts

whether it is possible to leverage normal operational data for efficient adaptation to a new
environment, bridging the gap between the laboratory setting and the actual deployment
environment, see Fig. 2.2.

2.2 Problem Statement

Consider a collection of datasets (Di)i∈E acquired in multiple domains E . Each dataset
Di := (Xi,Yi) contains pairs of feature vectors Xi ⊂ X and labels Yi ⊂ Y. The domain set
E is split into a collection of source and target domains Esource ∩ Etarget = ∅. The goal is
to use Esource to learn a robust prediction model fθ with parameters θ that can generalize
to unseen domains Etarget. The performance on a domain is specified by a loss function L
measuring the error between correct labels and those predicted by fθ. Thus, the objective
is

θ⋆ := argmin
θ

E
i∼E

Di=(Xi,Yi)

L�fθ(Xi),Yi

�
. (2.1)

There are two common approaches to tackle the challenge of distribution shifts: domain
generalization (DG) and domain adaptation (DA). DG methods train a model on the source
domains, aiming to ensure the model performs well in a new target domain without further
adaptation [21]. Unlike standard algorithms that focus on minimizing the empirical risk
(ERM), DG methods frequently incorporate a penalty term to promote invariance across
domains [17]. For instance, invariant risk minimization (IRM) aims to learn an invariant
model across multiple domains with the ability to generalize to new domains by learning
a data representation, typically through a neural network, such that the optimal classifier
built upon this data representation is consistent across all source domains [1].

However, DG may not accurately reflect realistic scenarios [8]. In many real-world appli-
cations, the trained model is not expected to perform well out of the box in a new domain.
Typically, the model has access to at least a small dataset from the target domain, allowing
for some degree of domain-specific adaptation.

In contrast to DG, DA methods utilize unlabeled or sparsely labeled data in the target do-
main to adapt the model. Transfer learning is a form of DA, and leverages prior experience
from source domains to improve learning on a target domain in terms of data efficiency,
speed and performance [12].

In transfer learning, a model is initially pre-trained on source domains using standard learn-
ing techniques and subsequently fine-tuned on a smaller dataset from the target domain.
However, the effectiveness of fine-tuning diminishes significantly when the target domain
dataset is very small [13]. This dependency on the data volume of adaptation datasets can
be a significant limitation in scenarios where acquiring a large amount of target domain
data is impractical or impossible.

Meta-learning, on the other hand, is specifically tailored to few-shot learning settings and
can effectively address both DA and DG tasks [12, 21, 20]. This is particularly useful in
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2 Distribution Shifts

scenarios where only a few examples from the target domain are available. Thus, meta-
learning algorithms offer an effective approach for overcoming the challenges associated
with distribution shifts in few-shot learning settings.
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3 Meta-Learning

A defining trait of human intelligence is the ability to quickly learn new skills and quickly
adapt to new tasks, such as recognizing objects from only a few examples [3]. The goal
of meta-learning is the design of machine learning systems with similar properties [35].
In traditional machine learning, machine learning models are trained from scratch for a
specific task [12]. This paradigm faces three significant challenges: data and computation
bottlenecks, as well as generalization gaps [12].

First, the training of machine learning models requires large amounts of data and com-
pute resources, excluding many applications where data is rare or expensive and compute
resources are limited [12]. In medical diagnosis, data acquisition itself is expensive, e.g.,
in medical imaging where data annotation requires domain expertise [5]. Also, acquiring
a large labeled dataset for every possible medical condition is infeasible, either due to pri-
vacy concerns or the rarity of certain conditions. Similarly, the operation of an industrial
system under anomalous conditions poses the risk of expensive material damage, arising
from wear and tear or even complete system breakdown [14]. Hence, the collection of data
in industrial systems and many other real-world applications is difficult.

Second, the generalization ability of machine learning systems has been driven by the
wealth of available data. Large and diverse datasets are crucial for achieving broad gen-
eralization in machine learning models, enabling the model to learn robust patterns [12].
This is evident in computer vision, where datasets like ImageNet [26] have improved the
performance of image classification models. Although these pre-trained models can be
effectively applied to related computer vision tasks, such extensive datasets are often un-
available in many specialized domains, such as time-series domains.[12]. The scarcity of
data and limited computational resources make it impractical to train models from scratch
for each medical condition, industrial system, or even individual assets within an indus-
trial system. Meta-learning aims to address these challenges by leveraging prior experience
across multiple tasks with limited datasets to develop models capable of quick adaptation
and generalization to new tasks. Meta-learning is commonly understood as ‘learning to
learn’, referring to the process of improving a learning algorithm [12].

The classification of handwritten characters has received significant attention in machine
learning research [19]. While traditional machine learning models have achieved high per-
formance on the standard MNIST dataset, which provides thousands of examples, they
still fall short of human-level competence [19]. To address this gap, meta-learning datasets
have been introduced, offering a setting that challenges machine learning models to learn
from only a few examples. The Omniglot dataset [19] contains 1623 handwritten charac-
ters from 50 different alphabets, with each character being drawn by one of 20 different

9



3 Meta-Learning

Figure 3.1: Illustration of one-shot learning on the Omniglot dataset [19].

individuals, see Fig. 3.1. Humans can effortlessly label a new character from an unknown
alphabet after seeing only one example of that character [19]. This capability is rooted in
the human brain’s remarkable ability to generalize from limited examples, leveraging prior
knowledge and learning new patterns rapidly. In contrast, traditional machine learning
models struggle with this task, typically requiring extensive training data to achieve high
performance and lacking the ability to naturally generalize well from a few examples.

3.1 Problem Statement

In supervised meta-learning, a dataset D := {(xi, yi)} contains pairs of feature vectors
xi ∈ X ⊂ Rn and labels yi ∈ Y ⊂ N. The training dataset Dtrain is divided into a collection
of meta-training tasks T train

i , the test dataset Dtest is divided into a collection of meta-
testing tasks T test

i . Each task Ti is associated with two disjoint sets, a support set Si and
a query set Qi [24]. In meta-training, the objective is to learn a model fθ, parameterized
by θ, that can generalize across tasks [24]. The performance on a task is specified by a loss
function L which measures the error between correct labels and those predicted by fθ. The
support set Strain

i is used for adapting the model on a task T train
i , while the query set Qtrain

i

is used to evaluate this adaptation [24]. The generalization performance on a meta-testing
task T test

i is assessed by the loss on the query set Qtest
i after adaptation on the support set

Stest
i [24].

In traditional machine learning, the objective is to learn a model fθ, parameterized by θ,
that maximizes the log-probability of the correct labels,

θ⋆ := argmax
θ

E
(x,y)∼Dtrain

log pθ(y|x). (3.1)

In meta-learning, however, the goal is to optimize the model’s performance across various
tasks, rather than a single training dataset. The objective shifts to learning a model fθ
that utilizes the support set for adaptation to a task,

θ⋆ := argmax
θ

E
T ∼p(T )
T =(S,Q)



(x,y)∈Q

log pθ(y|x, S), (3.2)

10



3 Meta-Learning

where p(T ) denotes a distribution over tasks. A standard assumption in meta-learning is
that both meta-training and meta-testing tasks are drawn from the same task distribution
[3]. During meta-training, the model is explicitly trained to quickly adapt to new tasks,
effectively learning ‘how to learn’. Here, ‘quickly’ refers to the ability to learn from a small
number of examples. In N -way K-shot learning, the support and query sets of a task
consist of K feature-label pairs per class, with N randomly sampled classes.

Figure 3.2: Example of 3-way 1-shot learning on the Rainbow-MNIST dataset [4].

The Rainbow-MNIST dataset [4] is created from the MNIST dataset. It provides 56 do-
mains, each domain corresponding to a background color (‘red’, ‘orange’, ‘yellow’, ‘green’,
‘blue’, ‘indigo’, ‘violet’), degree of rotation (0◦, 90◦, 180◦, 270◦) and scale size (‘full’, ‘half’).
Fig. 3.2 illustrates 3-way 1-shot learning on the Rainbow-MNIST dataset. The domains
are divided into meta-training and meta-testing domains. Meta-training tasks are sampled
from the meta-training domains, meta-testing tasks are sampled from the meta-testing
domains. In meta-training, the model learns to adapt to a new task utilizing only one
example per class (meta-training support). In meta-testing, the model is given one exam-
ple per class from a previously unseen task (meta-testing support), and its performance
is evaluated based on its ability to generalize to unseen data from that task (meta-testing
query).

There are three common approaches to meta-learning: metric-based, model-based and
optimization-based meta-learning [31]. These approaches differ in how they leverage the
support set S to model the probability distribution over labels pθ(y|x, S), see Table 3.1.
Metric-based meta-learning focuses on learning a similarity measure kθ,S to compare new
examples with those in the support set, enabling classification based on proximity in an
embedding space [31]. Model-based meta-learning, on the other hand, directly trains mod-
els to represent pθ(y|x, S), using architectures specifically designed for rapid adaptation to
new tasks [31]. Finally, optimization-based meta-learning aims to optimize the learning
process itself by learning an adaptation procedure Alg(θ, S) [24]. The adaptation proce-
dure computes effective task-specific parameters using the examples from the support set.
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3 Meta-Learning

Each approach offers a unique method for improving the model’s ability to learn from a
small number of examples and generalize to new tasks effectively.

Metric-Based Model-Based Optimization-Based
pθ(y|x, S)

�
(xi,yi)∈S kθ,S(x, xi) fθ(x, S) pAlg(θ,S)(y|x)

Table 3.1: Meta-learning approaches leverage the support set to model the probability dis-
tribution over labels pθ(y|x, S) [31].

3.2 Metric-Based Meta-Learning

The key idea of metric-based meta-learning is learning a robust embedding function, pa-
rameterized by θ, which maps features to an embedding space such that similar features
are situated close to each other [31]. The similarity of these embedded features is measured
using an appropriate distance function. Given tasks of the form T := (S,Q), the probabil-
ity distribution over labels y of a query feature x given a support set S is determined by the
distance between x and the support features in the learned embedding space. By normal-
izing these distances, a probability distribution is obtained. This probability distribution
can be modeled as

pθ(y|x, S) =



(xi,yi)∈S
kθ,S(x, xi), (3.3)

where kθ,S(x, xi) is a learned similarity measure comparing x with the support feature xi,
based on the learned embedding function and the distance function [31].

3.2.1 Siamese Neural Network

The key idea of Siamese Neural Networks for one-shot learning [16] is to learn feature rep-
resentations via an embedding function and then use a distance function to rank similarity
between embedded features. The Siamese Neural Network consists of twin networks fθ′

with shared parameters θ′. The embedding function fθ′ : X ⊂ Rn → Rm is a sequence
of convolutional layers and maps a feature from the n-dimensional feature space into a
m-dimensional embedding space.

In meta-training, the Siamese Neural Network is trained for a verification task, learning to
identify feature pairs based on the probability that they share the same label [16]. Given a
feature pair (xi, xj), the pair is labeled y := χyi=yj ∈ {0, 1} to indicate whether the features
are similar or dissimilar. The feature pair is passed through the twin networks, i.e., the
embeddings fθ′(xi) and fθ′(xj) are computed. These embeddings are then compared using
the L1 element-wise distance d : Rm × Rm → [0,+∞)m,

d
�
fθ′(xi), fθ′(xj)

�
:=

�
|fθ′(xi)k − fθ′(xj)k|

�m

k=1
. (3.4)
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This distance is converted to a probability pθ(xi, xj) by a linear layer with weights W ∈ Rm

and a sigmoid layer σ,

pθ(xi, xj) := σ
�
W⊤d

�
fθ′(xi), fθ′(xj)

�� ∈ (0, 1), (3.5)

where θ := (θ′,W ). Using the cross entropy loss, the loss on a batch B of feature-label
pairs is given by

Lθ(B) :=



(xi,yi),(xj ,yj)∈B
χyi=yj log pθ(xi, xj) + (1− χyi=yj ) log

�
1− pθ(xi, xj)

�
. (3.6)

Then, the training objective becomes

θ⋆ := argmin
θ

E
B∼Dtrain

Lθ(B),

where B is a subset of Dtrain and consists of feature-label pairs that include only a subset
of the label space (yi)

N
i=1 ⊂ Y. The Siamese Neural Network is trained by minimizing the

loss with respect to the parameters θ via stochastic gradient descent. It is important to
note that the meta-training process aligns with the conventional machine learning objec-
tive, as outlined in Eq. 3.1, and does not integrate the task-specific setup characteristic of
meta-learning. This is based on the assumption that networks trained for verification can
generalize to one-shot classification [16]. Provided that the network has been exposed to
a variety of data, the network can be used for measuring the similarity between unknown
labels.

Figure 3.3: Diagram of Siamese Neural Network strategy. The model is first trained to
discriminate between same/different pairs and then used to rank similarity be-
tween given support examples and an unknown example [16].

At meta-testing time, a N -way 1-shot learning setup is considered. Thus, the support set
of a task T = (S,Q) contains one feature-label pair per class, S = (xi, yi)

N
i=1. The Siamese

Neural Network compares a query feature x to every support feature xi. Note that pθ(x, xi)

13
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corresponds to the probability pθ(y = yi|x, S). The predicted label ŷ of a query feature x
is then given by the highest probability,

i⋆ := argmax
i=1,...,N

pθ⋆(x, xi),

ŷ := yi⋆ .

3.2.2 Matching Networks

Matching Networks [32] are based on the simple machine learning principle that training
and testing conditions must match, leveraging principles of metric learning and attention
mechanisms. In meta-training, a mapping h : S �→ hS is learned that maps a support set
S to a classifier hS . The classifier hS defines a probability distribution over labels.

Given tasks of the form T := (S,Q) with a set of task labels C ⊂ Y, the key idea is to
learn an embedding function g for the support features and an embedding function f for
the query features mapping the support and query features into a shared embedding space,
as illustrated in Fig. 3.4. Let fθ1 , gθ2 : X ⊂ Rn → Rm denote these embedding functions.
fθ1 is an LSTM and gθ2 is a bidirectional LSTM.

Figure 3.4: Diagram of the Matching Network. The model learns an embedding function
that maps support examples and a query example into a shared embedding
space [32].

An attention mechanism a is used to assign weights to support examples. Let aθ : Rn×Rn →
R denote an attention mechanism with parameters θ := (θ1, θ2). In the simplest form,
the attention mechanism is a softmax function over distances between support and query
features in the embedding space measuring the similarity between the query feature x and
each support feature xi. Let d : Rm × Rm → [0,+∞) denote a distance function, such as
the cosine similarity function d(x, xi) := x·xi

∥x∥∥xi∥ . The attention mechanism is then given
by

aθ(x, xi) :=
exp

�
d
�
fθ1(x), gθ2(xi)

��
�

(xj ,yj)∈S exp
�
d
�
fθ1(x), gθ2(xj)

�� .
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The classifier hS : X → [0, 1]|C|, hS(x) :=
�
pθ(y = c|x, S)�

c∈C is fully specified by the
attention mechanism aθ [32], where the probability of a query feature x belonging to class
c ∈ C is computed as the sum of the corresponding attention weights,

pθ(y = c|x, S) :=



(xi,c)∈S
aθ(x, xi).

In meta-training, the classifier is trained by maximizing the log-probability of the correct
label of the query examples via stochastic gradient descent,

θ⋆ := argmax
θ

E
T ∼p(T )
T =(S,Q)



(xi,yi)∈Q

log pθ(y = yi|xi, S). (3.7)

In meta-testing, given a task T := (S,Q) with a set of task labels C, the predicted label of
a query feature x is computed as

ŷ := argmax
c∈C

pθ⋆(y = c|x, S).

Long Short-Term Memory (LSTM)

The LSTM network [10] is a recurrent network architecture with an efficient, gradient-
based learning algorithm that enables learning long-term dependencies and overcomes the
exploding and vanishing gradient problems [10]. The recurrent hidden layers include so-
called memory blocks, each containing an input gate, an output gate and a forget gate [28].
The LSTM network maps an input sequence x := (xt)

T
t=1 of elements xt ∈ Rn to an output

sequence y := (yt)
T
t=1 of elements yt ∈ Rn. The key idea of LSTM networks is based on a

cell state ct controlling the flow of information [23]. A memory block processes the current
sequence element xt, the cell output ht−1 and the cell state ct−1 from the previous memory
block [23], see Fig. 3.5. It then updates the cell state to ct and computes the cell output
ht [23].

Figure 3.5: Memory block in a recurrent LSTM layer [23].

The forget and input gates regulate the flow of information from the previous cell state
ct−1 to the next cell state ct [23]. The forget gate enables the cell state to reset itself, while
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the input gate enables the cell state to store new information [6]. The forget gate vector ft
and the input gate vector it are computed by applying a sigmoid activation function σ to a
linear combination of the current sequence component xt and the previous cell output ht−1

[23], see Eq. 3.8, 3.9. The candidate cell state gt represents the new information that could
be added to the current cell state ct−1 [23]. It is computed by applying the hyperbolic
tangent function tanh to a linear combination of the current sequence element xt and the
previous cell output ht−1 [23], see Eq. 3.10. The forget gate vector ft determines which
information from the previous cell state ct−1 should be retained or discarded, while the
input gate vector it determines how much of the newly computed candidate cell state gt
will be added to the next cell state ct [23], see Eq. 3.12. The output gate controls the
extend to which the updated cell state ct contributes to the current cell output ht [23],
see Eq. 3.13. In summary, the LSTM network maps the input sequence x to the output
sequence y by computing iteratively

it := σ(Wixxt +Wihht−1 + bi), (3.8)

ft := σ(Wfxxt +Wfhht−1 + bf ), (3.9)

gt := tanh (Wgxxt +Wghht−1 + bg), (3.10)

ot := σ(Woxxt +Wohht−1 + bo), (3.11)

ct := ft ⊙ ct−1 + it ⊙ gt, (3.12)

ht := ot ⊙ tanh (ct), (3.13)

yt := Wyht + by. (3.14)

The W(·)x ∈ Rm×n, W(·)h ∈ Rm×m, Wy ∈ Rn×m terms denote weight matrices, and the
b(·) ∈ Rm, by ∈ Rn terms denote bias vectors where m is the number of hidden units [28]. ⊙
is the element-wise product. The bidirectional LSTM network processes the input sequence
in both forward and backward directions [7].

3.2.3 Prototypical Networks

Prototypical Networks [29] are based on the idea that there exists an embedding in which
features cluster around a prototype representation for each class. Therefore, a non-linear
mapping fθ : X ⊂ Rn → Rm from the n-dimensional feature space into a m-dimensional
embedding space is learned using a neural network with parameters θ. Given tasks of the
form T := (S,Q) with a set of task labels C ⊂ Y, the prototype vc of class c ∈ C is the
mean of the embedded support features,

vS,c :=
1

|Sc|



(xi,yi)∈Sc

fθ(xi),

where Sc := {(xi, yi) ∈ S|yi = c}.
Let d : Rm ×Rm → [0,+∞) denote a distance function, such as the Euclidean distance. A
softmax function is used to convert the distances to the prototypes in the embedding space
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Figure 3.6: Illustration of prototypes in the embedding space [29].

to a probability distribution over labels. Specifically, the probability distribution pθ for a
query feature x is given by

pθ(y = c|x, S) :=
exp

�
− d

�
fθ(x), vS,c

��
�

k∈C exp
�
− d

�
fθ(x), vS,k

�� .
In meta-training, the neural network is trained by minimizing the negative log-probability
of the correct label of the query examples via stochastic gradient descent,

θ⋆ := argmin
θ

E
T ∼p(T )
T =(S,Q)



(xi,yi)∈Q

− log pθ(y = yi|xi, S).

In meta-testing, given a task T := (S,Q) with a set of task labels C ⊂ Y, the predicted
label of a query feature x is computed as

ŷ := argmax
c∈C

pθ⋆(y = c|x, S).

This corresponds to finding the nearest prototype in the embedding space [29].

3.3 Model-based Meta-Learning

Model-based meta-learning directly trains models fθ, parameterized by θ, to represent the
probability distribution pθ(y|x, S). fθ can be any model capable of learning in a few-
shot learning setting [31]. Given N -way K-shot learning tasks T = (S,Q) with task
labels (k)Nk=1 ⊂ Y, the model fθ processes the entire support set S and a query feature x,
outputting a probability distribution over labels, as illustrated in Fig. 3.7. The probability
distribution is given by pθ(y|x, S) := fθ(x, S) ∈ [0, 1]N . During meta-training, the log-
probability of the correct labels for the query examples is maximized,

θ⋆ := argmax
θ

E
T ∼p(T )
T =(S,Q)

N

k=1



(x,k)∈Q

log fθ(x, S)k. (3.15)
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Figure 3.7: The meta-learner fθ takes as input the entire support set S := (xi, yi)
3
i=1 along

with a query feature x [31].

3.4 Optimization-Based Meta-Learning

The key idea of optimization-based meta-learning is to optimize the learning process itself
[12]. While gradient-based optimization has seen great success in a variety of learning
problems, these achievements have relied on many iterative updates across many training
examples [25]. Gradient-based optimization algorithms are not tailored to few-shot learn-
ing, as they are not designed to learn with a small number of training examples or converge
within a small number of updates [25]. Optimization-based meta-learning aims to adjust
gradient-based optimization to a small data regime.

The optimization-based meta-learning approach frames the meta-training process as a
bi-level optimization problem. The goal is to learn meta-parameters that produce good
task-specific parameters after an adaptation procedure Alg [24]. Alg corresponds to an
algorithm that computes task-specific parameters φi using a set of meta-parameters θ and
the support set Si of a task Ti [24]. Given a meta-batch (Ti)Ni=1 of meta-training tasks
Ti = (Si, Qi), the meta-learning problem in Eq. 3.2 can be formalized as

θ⋆ := argmin
θ

1

N

N

i=1

L�Qi|φ⋆
i (θ)

�
(3.16)

s.t. φ⋆
i (θ) := Alg(θ, Si). (3.17)

Since Alg(θ, Si) is typically interpreted as solving explicitly [3] or implicitly [25] an un-
derlying optimization problem, this is viewed as a bi-level optimization problem [24]. The
learned model outputs a probability distribution over labels,

pθ(y|x, S) = pAlg(θ,S)(y|x),
where the adaptation procedure Alg utilizes the support set S to find good task-specific
parameters given a set of meta-parameters θ [24].

This framework satisfies the machine learning principle that training and testing conditions
must match: In meta-training, the support set is used for the adaptation procedure on a
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task and the query set is used for evaluating this adaptation. Specifically, the goal for a
task Ti = (Si, Qi) is to learn task-specific parameters utilizing the support set Si such that
the loss on the query set Qi is minimal [24]. Consequently, at meta-testing time, good
generalization performance can be achieved using the meta-learned parameters θ⋆. The
generalization performance on a meta-testing task T test

i is measured by the loss on the
query set Qtest

i after performing the adaptation procedure on the support set Stest
i with

meta-learned parameters θ⋆ [24].

3.4.1 Meta-Learner LSTM

The key idea is to train a meta-learner to optimize a learner classifier [25]. The learner
Mφ is a neural network parameterized by φ, mapping a feature x ∈ X to a probability
distribution over labels, Mφ(x) := pφ(y|x). The meta-learner, Rθ, is based on an LSTM
network parameterized by θ and trained to optimize the learner Mφ. Therefore, the LSTM-
based meta-learner receives a series of support set gradients and losses from the learner and
proposes new learner parameters. The objective is to minimize the loss of the proposed
learner on a query set with respect to the meta-learner parameters [25]. Note that a task
T =

�
(St)

T
t=1, Q

�
is associated with a series of support sets (St)

T
t=1 and a single query set

Q. In the following, I will write St = (Xt, Yt) and Q = (X,Y ).

In the bi-level optimization view, the inner-level algorithm Alg(θ, (St)
T
t=1) in Eq. 3.17 refers

to a forward pass of the meta-learner Rθ and computes task-specific parameters φ for the
learner Mφ. The outer-level problem in Eq. 3.16 is solved via gradient descent. The loss
function is the negative log-probability of the correct label [25]. The loss in Eq. 3.16 is
defined as the query set loss of the learner,

L(Q|φ) := L(Mφ(X), Y ). (3.18)

The learner Mφ is not explicitly trained via gradient descent; instead, its parameters φ are
updated by the LSTM-based meta-learner Rθ. This is motivated by the similarity between
gradient descent updates and cell state updates [25]. The gradient descent algorithm uses
updates of the form

φt := φt−1 − αt∇φt−1Lt, (3.19)

where φt−1 are the current parameters, αt is the current learning rate, Lt is the loss of the
classifier Mφt−1 , ∇φt−1Lt is the gradient of that loss, and φt are the updated parameters
[25]. This update resembles the cell state update within a memory block of an LSTM
network, see Eq. 3.12, if ft = 1, ct−1 = φt−1, it = αt, and gt = −∇φt−1Lt [25]. However,
fixing the input gate vector it and the forget gate vector ft might not be the optimal choice
[25]. Thus, they are learned as well by the meta-learner,

it := σ(Wi · [∇φt−1Lt,Lt, φt−1, it−1] + bi), (3.20)

ft := σ(Wf · [∇φt−1Lt,Lt, φt−1, ft−1] + bf ). (3.21)
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The initial value of the cell state c0 is also treated as a parameter of the meta-learner
Rθ, corresponding to the initialization of the learner classifier Mφ [25]. Given a task
T =

�
(St)

T
t=1, Q

�
, the learner parameters are passed through the meta-learner,

Lt := L(Mφt−1(Xt), Yt), (3.22)

ct := Rθ(∇φt−1Lt,Lt), (3.23)

φt := ct. (3.24)

Figure 3.8: Computational graph for the forward pass of the meta-learner [25]. The dashed
arrows indicate steps where back-propagation is omitted during the training of
the meta-learner Rθ [25].

The learner loss Lt and the gradient ∇φt−1Lt of that loss are computed, see Eq. 3.22. In Eq.
3.23, the meta-learner receives the learner gradient and loss, and computes the cell state ct
using Eq. 3.12. The learner parameters are updated to the cell state, see Eq. 3.24. After T
updates, the proposed learner MφT

is evaluated on the query set Q, L := L(MφT
(X), Y ).

The meta-learner parameters θ are updated via gradient descent using ∇θL. Note that the
series of gradients and losses (∇φt−1Lt,Lt)

T
t=1 is dependent on the meta-learner parameters

θ. Thus, the meta-learner gradient ∇θL involves second-order derivatives. In order to avoid
these second-order derivatives, the dependence of the learner gradients and losses on the
meta-learner parameters is ignored in the computation of the meta-learner gradients [25].
The corresponding computation graph is shown in Fig. 3.8.

3.4.2 Model-Agnostic Meta-Learning

MAML

The key idea of model-agnostic meta-learning (MAML) [3] is to learn an initialization for
the parameters θ of a neural network fθ. The neural network fθ maps a feature x ∈ X to a
probability distribution over labels, fθ(x) := pθ(y|x). In contrast to the LSTM meta-learner
[25], MAML explicitly optimizes for initial parameters that enable rapid adaptation to a
new task. MAML ensures that with only a few gradient descent steps on a few examples of
a new task, the model can achieve good task-specific parameters [3], as illustrated in Fig.
3.9.
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Figure 3.9: Diagram of the MAML algorithm [3].

The notation introduced here will be used throughout the work. Let L represent a loss
function, such as the categorical cross-entropy loss,

L(fθ(x), y) := −


y′∈Y

�
χy′=y log pθ(y = y′|x)

�
. (3.25)

Then, LD(θ) denotes the loss on dataset D based on fθ, defined as a function of the
parameters θ,

LD(θ) :=
1

|D|



(x,y)∈D
L(fθ(x), y). (3.26)

In the bi-level optimization view, the inner-level and outer-level problems are both mini-
mized via gradient descent. The inner-level algorithm Alg(θ, Si) in Eq. 3.17 corresponds
to a few gradient descent steps on the support set Si initialized at meta-parameters θ. For
simpler notation, only one gradient descent step is used in the following. By this, MAML
explicitly optimizes for parameters θ such that one gradient descent step on a small number
of examples from a new task Ti produces good task-specific parameters φi(θ),

Alg(θ, Si) := φi(θ) := θ − α ∇LSi(θ). (3.27)

The outer-level problem in Eq. 3.16 is solved by performing a gradient descent step on the
corresponding query sets,

θ⋆ := θ − β ∇
� 1

N

N

i=1

LQi

�
φi(·)

��
(θ) = θ − β

N

N

i=1

∇�LQi ◦ φi

�
(θ). (3.28)

Note that the outer-level loss in Eq. 3.16 is computed based on the task-specific parame-
ters φ, however, the outer-level optimization is performed over the meta-parameters θ [3].
Therefore, MAML can be viewed as a form of transfer learning with many tasks, where pa-
rameters are differentiated through the fine-tuning process, i.e., the adaptation procedure
Alg [22]. In classical transfer learning, a model is first pre-trained on a large dataset and
subsequently fine-tuned on a smaller dataset. However, this approach does not guarantee
that the pre-trained model will be well-suited for fine-tuning [22]. In contrast, MAML
directly optimizes for initial parameters so that the model performs well on the query set
after fine-tuning on the support set [22].
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First-Order MAML (FOMAML)

Since the meta-gradient ∇�LQi ◦ φi

�
(θ) in Eq. 3.28 is computed with respect to the meta-

parameters θ, the meta-gradient update involves second-order derivatives. First-order
model-agnostic meta-learning (FOMAML) is a first-order approximation of MAML where
these second-order derivatives are omitted [3],

∇�LQi ◦ φi

�
(θ) = d(LQi ◦ φi)(θ)

⊤ (3.29)

=
�
dLQi

�
φi(θ)

�
dφi(θ)

�⊤
(3.30)

=
�
dLQi

�
φi(θ)

��
I − α ∇2LSi

�
φi(θ)

���⊤
(3.31)

≈ dLQi

�
φi(θ)

�⊤
(3.32)

= ∇LQi

�
φi(θ)

�
. (3.33)

The meta-gradient update then becomes

θ⋆ = θ − β

N

N

i=1

∇LQi

�
φi(θ)

�
. (3.34)

Implicit MAML (iMAML)

Let φk denote k gradient descent steps,

φk := φ ◦ · · · ◦ φ.� �� �
k steps

(3.35)

In the general case, MAML solves the inner-level problem in Eq. 3.17 by taking k gradient
descent steps on the support set,

Alg(θ, Si) := φk
i (θ) = θ − α

k−1

j=0

∇LSi

�
φj
i (θ)

�
. (3.36)

The computation of the meta-gradient ∇(LQ ◦φk)(θ) in Eq. 3.28 then involves the compu-
tation of k second-order derivatives,

∇(LQ ◦ φk)(θ) = d(LQ ◦ φk)(θ)⊤ (3.37)

=
�
dLQ

�
φk(θ)

�
dφk(θ)

�⊤
(3.38)

= dφk(θ)⊤dLQ

�
φk(θ)

�⊤
(3.39)

=

k−1	
j=0

�
I − α ∇2LS

�
φj(θ)

��∇LQ

�
φk(θ)

�
. (3.40)
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The derivative dφk(θ) is derived in Section 4.2. Thus, for a large number of inner gradient
descent steps, the meta-gradient computation requires significant computational and mem-
ory resources [24]. Implicit MAML (iMAML) [24] solves this problem by approximating
the inner-level derivative dφk(θ) with a term that requires the computation of only one
second-order derivative.

In order to prevent over-fitting in the inner-level problem in Eq. 3.27, Alg(θ, S) needs to
incorporate some form of regularization [24]. While MAML uses a small number of gradient
descent steps as a form of regularization, iMAML explicitly adds a proximal regularization
term with regularization strength λ > 0 [24]. Let φ⋆(θ) denote the exact solution to the
following optimization problem,

φ⋆(θ) := argmin
φ

LS(φ) +
λ

2
∥φ− θ∥2. (3.41)

Rajeswaran et al. [24] prove that if
�
I+ 1

λ ∇2LS

�
φ⋆(θ)

��
is invertible, the derivative dφ⋆(θ)

is given by

dφ⋆(θ) =
�
I +

1

λ
∇2LS

�
φ⋆(θ)

��−1
. (3.42)

By approximating dφk(θ) ≈ dφ⋆(θ), the computation of the meta-gradient in Eq. 3.37 –
3.40 can be significantly simplified in terms of second-order derivatives. However, note that
inverting the matrix in Eq. 3.42 may be computationally prohibitive for large deep neural
networks [24].

3.4.3 Reptile

Reptile [22] is a simple first-order meta-learning algorithm. Similar to MAML [3], Reptile
learns an initialization for the parameters θ of a neural network fθ such that a small number
of gradient descent steps on a new task will produce good task-specific parameters, enabling
quick adaptation to a new task. The inner-level algorithm in Eq. 3.17 corresponds to k
gradient descent steps on the support set,

Alg(θ, Si) := φk
i (θ) = θ − α

k−1

j=0

∇LSi

�
φj
i (θ)

�
. (3.43)

In contrast to MAML, Reptile does not differentiate through the adaptation procedure
Alg, thereby avoiding the computation of second-order derivatives. Instead, the outer-level
update in Eq. 3.16 is given by

θ⋆ := θ +
β

N

N

i=1

(φk
i (θ)− θ). (3.44)

The key idea is to update the parameters θ in the direction of (φk
i (θ) − θ), effectively

adjusting the parameters θ towards the task-specific parameters φk
i (θ) [22]. Note that

23



3 Meta-Learning

Reptile does not assess the adaptation performance of the task-specific parameters using
a separate query set. Instead, it updates the meta-parameters exclusively based on the
support set in meta-training.
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4 Domain-Adaptation via Meta-Learning

The success of machine learning has been driven by the wealth and diversity of avail-
able datasets. This is evident in computer vision, where datasets like ImageNet [26] have
improved the performance of image classification models. However, in many real-world ap-
plications, acquiring a large labeled dataset is often impractical or impossible. Moreover,
training data is often distributed across multiple sources due to privacy concerns, limited
computational resources, or the natural distribution of data across different production
environments. A significant challenge in such settings is the presence of distribution shifts
[17, 14]. Meta-learning algorithms are specifically designed for few-shot learning settings,
where data is scarce or expensive to obtain. By interpreting the domains as a collection of
related tasks, meta-learning algorithms can be effectively applied to DG and DA tasks [12,
21, 20].

However, a notable shortcoming of existing meta-learning algorithms is that the adaptation
procedure still requires access to examples of every class, either for ranking similarity
between a new example and each example in the support set [16, 32, 29] or for fine-tuning
classifiers using the support set [25, 3, 24, 22]. This dependency limits the applicability
of current meta-learning methods, preventing them from fully addressing the challenges
posed by DA in scenarios where access to every class is unavailable during the adaptation
phase, as discussed in Section 2.1.

In many real-world applications, the adaptation data in new domains is constrained not
only by limited volume but also by the scarcity of certain classes. For illustration, machine
learning models in industry are typically pre-trained in laboratory settings before being
transferred to real-world deployments. While normal operational data is often readily
available for model adaptation, acquiring anomalous data in large and complex industrial
systems is both expensive and time-consuming. This raises the question of whether and how
the information present in normal data can be leveraged for adaptation to a new domain.
Effectively utilizing the structure and patterns in normal data could potentially facilitate
the model’s ability to quickly adapt to new environments in real-world deployments.

Figure 4.1: Illustration of three Rainbow-MNIST domains [4].

This problem setting is not limited to anomaly classification tasks in industrial systems
but can be extended to an arbitrary multi-class classification problem that allows for in-
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ferring domain-specific information from one class to the other classes. In other words, the
source and target domains have to share a common structure, enabling one class to encode
sufficient information about the corresponding domain to make inferences about the other
classes within that domain. I introduce this problem as One-Class Domain Adaptation
(OC-DA). For example, the Rainbow-MNIST handwritten digit classification problem [4]
involves 56 domains, each defined by a unique combination of background color, degree of
rotation, and scale size. Fig. 4.1 illustrates different domains, where one class encodes in-
formation regarding background color, degree of rotation, and scale size, thereby providing
sufficient domain-specific information for the model’s adaptation to the new domain.

4.1 Problem Statement

In the One-Class Domain Adaptation (OC-DA) setting, data is distributed across multiple
domains. The goal of OC-DA is to learn a model that is able to quickly adapt to a
new domain using a few examples from only one class. I will refer to this class as the
normal class n. The model is a multi-class classifier, capable of differentiating between
normal class examples and examples of multiple other classes using only a few normal class
examples. I take a meta-learning approach to tackle the challenge of OC-DA. While recent
meta-learning algorithms are designed to effectively address generalization across diverse
learning tasks [16, 29, 25, 3], i.e., learning tasks with varying label spaces, OC-DA focuses
on generalization from normal class examples to examples of multiple other classes of a
single learning task across diverse domains. To the best of my knowledge, my work is the
first to address one-class adaptation across domains.

My approach is related to previous work by Li et al. [21] that proposes a meta-learning
method for domain generalization (MLDG). Rather than explicitly training for rapid adap-
tation, MLDG explicitly trains a model for good generalization ability to new domains.
Therefore, MLDG simulates domain shifts by splitting the source domains into training
and virtual testing domains. The key idea is that gradient descent steps on training do-
mains should also improve performance on virtual testing domains.

The most related work is the task sampling strategy in few-shot one-class classification
(FSOC) by Frikha et al. [5], studying the intersection of few-shot learning and one-class
classification. One-class classification refers to learning a binary classifier that can differ-
entiate between in-class and out-of-class examples using only in-class data [5]. The goal
of FSOC is to learn a binary classifier such that fine-tuning on a few in-class examples
achieves the same performance as doing so with a few in-class and out-of-class examples.
The class-imbalance rate indicates the ratio of in-class and out-of-class examples. FSOC
modifies the task sampling strategy in bi-level meta-learning algorithms such that the class-
imbalance rate in the support set of meta-training tasks matches the one in the support
set of meta-testing tasks, while the query set of meta-training and testing tasks is class-
balanced.

Rather than training a binary classifier, I am interested in learning a multi-class classifier
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that is able to differentiate between normal class examples and examples of multiple other
classes using only a few normal class examples. I propose a task sampling strategy to adapt
any bi-level meta-learning algorithm to OC-DA, thereby extending the use of meta-learning
to one-class adaptation across domains.

Consider a collection of datasets (Di)i∈E acquired in multiple domains E . Each dataset
Di := (Xi,Yi) contains pairs of feature vectors Xi ⊂ X and labels Yi ⊂ Y. The domain set
E is split into a collection of source and target domains Esource ∩ Etarget = ∅. The goal is to
learn a robust prediction model fθ on the source domains such that it can quickly adapt to
an unseen target domain using a few normal class examples. This training objective can
be formulated as

θ⋆ := argmax
θ

E
i∼E

E
Ti∼Di

Ti=(Si,Qi)



(x,y)∈Qi

log p(y|x, Si), (4.1)

where Si ⊂ Xi × {n} is a subset of a few normal class examples in Di.

Figure 4.2: Example of a 3-way 1-shot learning task in the OC-DA setting.

The bi-level optimization framework of optimization-based meta-learning, as detailed in
Section 3.4, enables direct optimization for one-class adaptation across domains. Meta-
training tasks are sampled from the source domains, while meta-testing tasks are sampled
from the target domains. In N -way K-shot learning, classical meta-learning algorithms
typically sample tasks where both the support and query sets consist of class-balanced
datasets, each containing NK examples, with K examples per class. I aim to train a
model on the source domains in the same manner it will be utilized in the target domains.
Therefore, I propose a task sampling strategy that aligns the task setup during meta-
training with that of meta-testing. Thus, the support set is restricted to normal class
examples, while the query set remains class-balanced in meta-training tasks. This strategy
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requires the domain-specific parameters obtained by performing the adaptation procedure
Alg using a few normal class examples to improve performance on a class-balanced dataset
within the domain.

Fig. 4.2 illustrates 3-way 1-shot learning in the OC-DA setting on the Rainbow-MNIST
dataset. During meta-training, the model learns to adapt to a new domain utilizing only
one normal class example (n = 3). At meta-testing time, the model is given one normal
class example from a previously unseen domain, and its performance is evaluated on a
class-balanced dataset within the domain.

OC-DA allows addressing distribution shift challenges in industrial machine learning ap-
plications, where only normal data is available for model adaptation in new environments.
Fig. 4.3 illustrates the training of a machine learning model in the OC-DA setting for an
industrial application. The model is trained in the laboratory setting in the same way
it will be utilized in real-world systems, learning to leverage domain-specific information
present in normal operational data (shown in green) for adaptation to new domains. At
deployment time, the model can effectively leverage the available information to maintain
robust performance when encountering failure types (shown in red) in the system.

Figure 4.3: Illustration of OC-DA in industrial machine learning.
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4.2 One-Class Domain Adaptation via Model-Agnostic
Meta-Learning

I apply my proposed task sampling strategy to the MAML algorithm [3], using the notation
introduced in Section 3.4.2. The OC-DA MAML algorithm for the meta-training process is
described in Algorithm 1. The neural network fθ is randomly initialized. In each iteration
step, a random batch of domains I ⊂ E is selected. For each domain i ∈ I, a N -way
K-shot learning task is sampled according to our task sampling strategy: the support set
Si contains K normal class examples, while the query set Qi is a class-balanced dataset
with K examples per class. Then, the domain-specific parameters φi(θ) are computed by
performing k gradient descent steps on the support set. Finally, the meta-parameters θ are
updated via a gradient descent step on the query set. Note that this includes differentiating
through the fine-tuning process on the support set. By this, the meta-parameters θ are
explicitly optimized such that performing k gradient descent steps on a few normal class
examples yields effective domain-specific parameters φk

i (θ).

Algorithm 1: MAML for One-Class Domain Adaptation (OC-DA MAML)

Required: model fθ parameterized by θ, loss function L, inner learning rate α, outer
learning rate β, set of class labels C, normal class n ∈ C, number of inner gradient
descent steps k

Randomly initialize θ0
while not done do

Sample batch of domains I ⊂ E
for i ∈ I do

Sample K examples Si := {(xj , n)}Kj=1 from Di

for c ∈ C do
Sample K examples Qc

i := {(xj , c)}Kj=1 from Di

end
Qi := ∪

c∈C
Qc

i

Compute domain-specific parameters via k gradient descent steps:
φk
i (θt) := θt − α

�k−1
j=0 ∇LSi

�
φj
i (θt)

�
end
Perform meta-update via gradient descent:
θt+1 := θt − β

|I|
�

i∈I ∇
�LQi ◦ φk

i

�
(θt)

end
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Through iterative application of the chain rule, the derivative of φk is given by

dφk(θ) = d(φ ◦ · · · ◦ φ)(θ) (4.2)

= dφ
�
φk−1(θ)

�
dφ

�
φk−2(θ)

�
. . . dφ(θ) (4.3)

=
�
I − α ∇2LS

�
φk−1(θ)

�⊤� �
I − α ∇2LS

�
φk−2(θ)

�⊤�
. . .

�
I − α ∇2LS

�
θ
�⊤�
(4.4)

=
k−1	
j=0

�
I − α ∇2LS

�
φj(θ)

�⊤�
. (4.5)

Then, the meta-gradient ∇(LQ ◦ φk)(θ) can be written as

∇(LQ ◦ φk)(θ) = d(LQ ◦ φk)(θ)⊤ (4.6)

=
�
dLQ

�
φk(θ)

�
dφk(θ)

�⊤
(4.7)

= dφk(θ)⊤ dLQ

�
φk(θ)

�⊤
(4.8)

=
k−1	
j=0

�
I − α ∇2LS

�
φj(θ)

�⊤�⊤∇LQ

�
φk(θ)

�
(4.9)

=
k−1	
j=0

�
I − α ∇2LS

�
φj(θ)

��∇LQ

�
φk(θ)

�
. (4.10)

Since the computation of the meta-gradient performs a gradient descent step with re-
spect to the meta-parameters θ, the meta-update involves the computation of second-order
derivatives,

θt+1 = θt − β

|I|


i∈I

∇�LQi ◦ φk
i

�
(θt) (4.11)

= θt − β

|I|


i∈I

k−1	
j=0

�
I − α∇2LSi

�
φj
i (θt)

��∇LQi

�
φk
i (θt)

�
. (4.12)

4.3 Analysis of OC-DA MAML

In the following section, I present an analysis to provide a deeper understanding of my
proposed task sampling strategy and its underlying motivation. Specifically, I will use
a Taylor series expansion to approximate the gradient of the OC-DA MAML algorithm,
g(θ) := ∇(LQ ◦ φk)(θ) [22]. This analysis will focus on two key components: the first term
minimizes the loss on the query set, while the second term maximizes the inner product
between the gradients of the support and query loss [22]. For simplicity, I will initially
consider a single inner gradient descent step (k = 1) before generalizing to multiple steps.

Using the second-order Taylor series expansion of ∇LQ around θ, for small α > 0, the
OC-DA MAML gradient can be approximated as [22]
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g(θ) = ∇(LQ ◦ φ)(θ)
=

�
I − α∇2LS(θ)

� ∇LQ

�
φ(θ)

�
=

�
I − α∇2LS(θ)

� �∇LQ(θ) +∇2LQ(θ)
�
φ(θ)− θ

�� �� �
=−α∇LS(θ)

+O�||φ(θ)− θ||2�� �� �
=O(α2)

�
=

�
I − α∇2LS(θ)

� �∇LQ(θ)− α∇2LQ(θ)∇LS(θ) +O(α2)
�

= ∇LQ(θ)− α∇2LQ(θ)∇LS(θ)− α∇2LS(θ)∇LQ(θ) +O(α2)

= ∇LQ(θ)− α
�
∇2LQ(θ)∇LS(θ) +∇2LS(θ)∇LQ(θ)

�
+O(α2)

= ∇LQ(θ)− α ∇�∇LQ · ∇LS

�
(θ) +O(α2)

= ∇�LQ − α∇LQ · ∇LS

�
(θ) +O(α2).

Then, the meta-update can be written as

θt+1 = θt − β

|I|


i∈I

∇�LQi ◦ φk
i

�
(θt) (4.13)

= θt − β

|I|


i∈I

∇
�
LQi − α∇LQi · ∇LSi

�
(θt) +O(α2). (4.14)

While the first term minimizes the loss on the query set, the second term maximizes the
inner product between the gradients of the support and query loss [22]. When this inner
product is positive, performing a gradient descent step on one dataset improves performance
on the other [22]. The MAML algorithm maximizes this inner product, thereby finding
update directions that minimize both the support and query loss [21]. Consequently, a
gradient descent step on the support set improves performance on the query set, and thus,
enables within-task generalization [22]. In the context of OCDA-MAML, this implies that
gradient descent steps on normal class examples not only improve performance on normal
data but also improve performance on data including other classes. At meta-testing time,
when the model only has access to normal class examples, fine-tuning on a few normal class
examples will produce good domain-specific parameters while avoiding over-fitting.

Figure 4.4: MAML maximizes the inner product between the gradients ∇LQ and ∇LS .

It is straightforward to extend this to k inner gradient descent steps. For sufficiently small
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αk, the first-order Taylor series expansion of ∇LS around θ yields

∇LS

�
φk(θ)

�
= ∇LS(θ) +O�∥ φk(θ)− θ� �� �

=−α
�k−1

j=0 ∇LS

�
φj(θ)

� ∥
�

(4.15)

= ∇LS(θ) +O(αk). (4.16)

Analogously, I have

∇2LS

�
φk(θ)

�
= ∇2LS(θ) +O(αk). (4.17)

For sufficiently small αk, the gradient ∇LQ

�
φk(θ)

�
can be approximated by the second-

order Taylor expansion as [22]

∇LQ

�
φk(θ)

�
= ∇LQ(θ) +∇2LQ(θ)

�
φk(θ)− θ

�
+O�∥φk(θ)− θ∥2�

= ∇LQ(θ) +∇2LQ(θ)
�
− α

k−1

j=0

∇LS

�
φj(θ)

��
+O(α2k2)

= ∇LQ(θ)− α∇2LQ(θ)

k−1

j=0

∇LS

�
φj(θ)

�
+O(α2k2)

= ∇LQ(θ)− α∇2LQ(θ)

k−1

j=0

�∇LS(θ) +O(αj)
�
+O(α2k2) (4.18)

= ∇LQ(θ)− αk∇2LQ(θ)∇LS(θ) +O(α2k2) +O(α2k2)

= ∇LQ(θ)− αk∇2LQ(θ)∇LS(θ) +O(α2k2),

where I used the first-order Taylor series expansion of ∇LS

�
φj(θ)

�
from Eq. 4.16 in Eq.

4.18. Therefore, the OC-DA MAML gradient can be approximated as [22]
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g(θ) = ∇(LQ ◦ φk)(θ)

=
k−1	
j=0

�
I − α ∇2LS

�
φj(θ)
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φk(θ)
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�
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= ∇LQ(θ)− αk∇2LQ(θ)∇LS(θ)− αk∇2LS(θ)∇LQ(θ) +O(α2k2)

= ∇LQ(θ)− αk∇�∇LQ · ∇LS

�
(θ) +O(α2k2)

= ∇�LQ − αk∇LQ · ∇LS

�
(θ) +O(α2k2).

Again, the first term minimizes the loss on the query set and the second term maximizes
the inner product between the gradients of the support and query loss [22].
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In the next chapter, I present the experiments on distribution shifts and one-class domain
adaptation. I implemented both standard learning and meta-learning methods. In the
context of standard learning, I illustrate the performance gap between source and target
domains. For meta-learning, I implemented the MAML algorithm and the OC-DA MAML
algorithm in the OC-DA setting. I aim to show that the MAML algorithm is not tailored to
OC-DA settings and demonstrate the effectiveness of my task sampling strategy in OC-DA
MAML, enabling rapid one-class adaptation. To ensure the reliability of my results, all
results were averaged over three runs with different seeds. In the implementation of the
MAML and OC-DA MAML algorithm, I used the ‘learn2learn’ library [2], a library for
meta-learning research that provides low-level routines built on top of PyTorch for few-
shot learning and differentiable optimization (e.g., automatic differentiation through the
meta-updates in MAML).

I empirically evaluate my approach on two datasets. First, I utilize a well-established meta-
learning benchmark, the Rainbow-MNIST dataset [4] and adapt it to the OC-DA setting.
Second, I assess my approach using a real-world dataset of vibration-based sensor readings
recorded by four centrifugal pumps across multiple domains (Centrifugal-Pumps dataset),
demonstrating its robustness and applicability in real-world applications. The goal of my
experimental evaluation is to answer the following questions:

(1) Is it possible to leverage domain-specific information present in one class for efficient
domain adaptation?

(2) Can OC-DA MAML enable rapid one-class adaptation in the context of domain
adaptation tasks?

(3) How does OC-DA MAML compare to the original MAML algorithm in the OC-DA
setting?

5.1 Data

For the Rainbow-MNIST dataset, I followed the approach of Finn et al. [4] and split the
MNIST dataset into 56 class-balanced sub-datasets, each containing 1000 examples, and
applied the corresponding domain transformation to each sub-dataset. Support and query
tasks are sampled randomly from these domain datasets. To adapt the meta-learning
benchmark to the OC-DA setting, I designate one class in the original dataset as the
normal class. I split the domains into 40/8/8 domains for meta-training/validation/testing
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and list their corresponding combinations of domain transformations as follows:

Source domains:

Meta-training: (‘orange’, 0◦, ‘full’), (‘orange’, 0◦, ‘half’), (‘orange’, 90◦, ‘full’), (‘orange’,
90◦, ‘half’), (‘orange’, 180◦, ‘full’), (‘orange’, 180◦, ‘half’), (‘orange’, 270◦, ‘full’), (‘orange’,
270◦, ‘half’), (‘yellow’, 0◦, ‘full’), (‘yellow’, 0◦, ‘half’), (‘yellow’, 90◦, ‘full’), (‘yellow’, 90◦,
‘half’), (‘yellow’, 180◦, ‘full’), (‘yellow’, 180◦, ‘half’), (‘yellow’, 270◦, ‘full’), (‘yellow’, 270◦,
‘half’), (‘blue’, 0◦, ‘full’), (‘blue’, 0◦, ‘half’), (‘blue’, 90◦, ‘full’), (‘blue’, 90◦, ‘half’), (‘blue’,
180◦, ‘full’), (‘blue’, 180◦, ‘half’), (‘blue’, 270◦, ‘full’), (‘blue’, 270◦, ‘half’), (‘indigo’, 0◦,
‘full’), (‘indigo’, 0◦, ‘half’), (‘indigo’, 90◦, ‘full’), (‘indigo’, 90◦, ‘half’), (‘indigo’, 180◦,
‘full’), (‘red’, 180◦, ‘half’), (‘indigo’, 270◦, ‘full’), (‘indigo’, 270◦, ‘half’), (‘violet’, 0◦, ‘full’),
(‘violet’, 0◦, ‘half’), (‘violet’, 90◦, ‘full’), (‘violet’, 90◦, ‘half’), (‘violet’, 180◦, ‘full’), (‘violet’,
180◦, ‘half’), (‘violet’, 270◦, ‘full’), (‘violet’, 270◦, ‘half’)

Meta-validation: (‘red’, 0◦, ‘full’), (‘red’, 0◦, ‘half’), (‘red’, 90◦, ‘full’), (‘red’, 90◦, ‘half’),
(‘red’, 180◦, ‘full’), (‘red’, 180◦, ‘half’), (‘red’, 270◦, ‘full’), (‘red’, 270◦, ‘half’)

Target domains:

Meta-testing: (‘green’, 0◦, ‘full’), (‘green’, 0◦, ‘half’), (‘green’, 90◦, ‘full’), (‘green’, 90◦,
‘half’), (‘green’, 180◦, ‘full’), (‘green’, 180◦, ‘half’), (‘green’, 270◦, ‘full’), (‘green’, 270◦,
‘half’)

The Centrifugal-Pumps dataset comprises sensor readings recorded from four identical
centrifugal pumps, each equipped with IoT sensors recording vibration data, in a controlled
laboratory environment. Centrifugal pumps are the most widely used industrial assets in a
broad range of industrial systems [18]. The continuous use of centrifugal pumps within an
industrial system makes it prone to failure, with the risk of material damage or complete
system breakdown [14]. Therefore, maintenance work is crucial in the deployment of these
pumps to ensure their reliable operation and longevity [30].

The widespread installation of IoT sensor platforms on industrial assets offers significant
opportunities for applying machine learning models to predictive maintenance [14]. The
goal of predictive maintenance in industry is to assess the condition of industrial assets to
predict the optimal timing for maintenance interventions [34]. This strategy offers potential
cost savings compared to periodic or time-based maintenance by ensuring that maintenance
tasks are carried out only when necessary. Moreover, identifying failure types is crucial for
facilitating efficient maintenance services [15]. Typical failure types in centrifugal pumps
include blockage, where the liquid flow is obstructed, and cavitation, which occurs when
the liquid pressure drops too low [30].

In order to create a diverse dataset with multiple domains, I simulated varying environmen-
tal influences by placing the pumps on different surfaces. For each measurement round,
a pump was placed either on a concrete surface or within a steel framework and oper-
ated under multiple conditions, including normal operational data, idle state data and
three anomalous conditions: hydraulic blockage, dry running and cavitation. For hydraulic
blockage, the flow of liquid was blocked in the outlet pipe. For dry running, the flow of
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Figure 5.1: Centrifugal pump in laboratory environment.

liquid was blocked in the inlet pipe. Cavitation was simulated by reducing the liquid pres-
sure. The IoT sensors were consistently positioned on the same location of each pump, see
Fig. 5.1. Each sensor recorded vibration data at a frequency of 6644 Hz, collecting 512
data points per minute. By the fast Fourier transform (FFT), the raw signal in the time
domain is converted to its representation in the frequency domain.

The dataset provides 32 domains: Each domain corresponds to a measurement round
involving one of four centrifugal pumps placed on a concrete surface or within a steel
framework and equipped with two sensors positioned at different locations of the pump.
Each experiment was repeated on another day. Each domain contains approximately 100
normal examples, 60 idle state examples and 25 examples per anomalous class.

Instead of fixing a single source and target domain setup, I investigate multiple combina-
tions of source and target domains. Previous work by Kemnitz et al. [14] demonstrated that
transferring data from one pump to another, even within the same environment, presents
significant challenges. In real-world deployment, industry partners are typically interested
in transferring a model not only to another pump within the same environment but also
to another pump within an unknown environment. Therefore, I split the domains into
multiple combinations of source and target domains, each combination corresponding to a
transfer to a new pump within an unknown environment.

Specifically, I split the domains into 12/4/4 domains for meta-training/validation/testing.
The meta-training domains correspond to three pumps operated in the same environment,
including the repeated measurement round. The meta-validation domains correspond to
the new pump within the known environment. The meta-testing domains correspond to
the new pump within the unknown environment. This setup results in a total of eight
source and target domain combinations. For illustration, I list one such source and target
domain combination as follows:

Source domains:
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Meta-training: (P1, S1, ‘steel’), (P1, S1, ‘steel’, ‘repetition’), (P2, S1, ‘steel’), (P2, S1,
‘steel’, ‘repetition’), (P3, S1, ‘steel’), (P1, S1, ‘steel’, ‘repetition’), (P1, S2, ‘steel’), (P1, S2,
‘steel’, ‘repetition’), (P2, S2, ‘steel’), (P2, S2, ‘steel’, ‘repetition’), (P3, S2, ‘steel’), (P3, S2,
‘steel’, ‘repetition’)

Meta-validation: (P4, S1, ‘steel’), (P4, S1, ‘steel’, ‘repetition’), (P4, S2, ‘steel’), (P4, S2,
‘steel’, ‘repetition’)

Target domains:

Meta-testing: (P4, S1, ‘concrete’), (P4, S1, ‘concrete’, ‘repetition’), (P4, S2, ‘concrete’),
(P4, S2, ‘concrete’, ‘repetition’)

5.2 Experimental Setup

In this section, I detail my experimental setup. I first introduce the metrics used to measure
the performance gap resulting from distribution shifts between source and target domains,
and explain their significance for my evaluation. I then outline my proposed task sampling
strategy for bi-level meta-learning algorithms in OC-DA settings. I contrast this strategy
with the task sampling approach used in classical bi-level meta-learning algorithms, with
a particular focus on comparing it to the task setup employed by the MAML algorithm.
Finally, I provide the model architecture for the Rainbow-MNIST and the Centrifugal-
Pumps dataset.

In the context of distribution shifts, accurately measuring the performance drop caused
by these shifts is challenging. The machine learning literature distinguishes between in-
distribution (ID) and out-of-distribution (OOD) performance [17]. ID performance is mea-
sured by training a model on the training distribution and evaluating its performance on
held-out data from the training distribution [17]. This metric provides insight into how
well the model generalizes on the training distribution. In contrast, ODD performance is
measured by the model’s performance on data from the test distribution [17]. This metric
is crucial for assessing the model’s robustness and provides insight into how well the model
generalizes to data outside its training distribution.

However, the comparison of the ID and OOD metrics alone might not effectively isolate
the impact of the distribution shift [17]. Since the ID metric is evaluated on the training
distribution and the OOD metric on the test distribution, the observed performance gap
may be influenced by factors beyond the distribution shift [17]. The test distribution might
present greater challenges for model training; for example, classification could be more
difficult in the test domain due to domain-specific factors [17]. For illustration, consider an
IoT sensor-based dataset. In real-world deployments, industrial assets are often integrated
into large and complex industrial systems. Unlike training data obtained in controlled
laboratory settings, the real-world environment might introduce additional noise to the
recorded sensor signals, thereby posing greater challenges for model training. Consequently,
the gap between ID and OOD performance might be larger than the actual distribution
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shift gap. In addition to the ID and OOD metrics, it is therefore crucial to measure the
model’s performance by training and evaluating it directly on the test distribution (ID-
test metric) [17]. The ID-test performance is measured by training a model on the test
distribution and evaluating its performance on held-out data from the test distribution
[17]. This metric provides a performance baseline in the test domain. However, a major
challenge of the ID-test metric is that the test domain often lacks sufficient data to train a
robust model [17].

To demonstrate the performance gap between the source and target domains, I train a
model on the source domains and evaluate its performance both on held-out data from
each source domain (ID performance) and on the target domains (OOD performance). I
then evaluate the effectiveness of my adapted OC-DA MAML variant within the OC-DA
setting and compare it to the original MAML algorithm. The ID and ODD metrics not only
provide insights into the distribution shift gap but also serve as baselines for my OC-DA
MAML algorithm.

The ODD metric can be viewed as a lower bound for performance, indicating that model
adaptation on target domain data should outperform standard learning on the source do-
mains and direct model transfer to the target domains. Additionally, the ID metric serves
as a reference for predicting performance on the target domains, establishing a baseline
expectation for how well the model should perform given similar training conditions to the
source domains. The ID-test metric also provides a baseline expectation for performance
in the target domains. However, it is important to consider the data and computational
resources required in the target domains. Although training a model directly on the target
domains may produce better results, it demands considerable amounts of target domain
data and significant computational resources. For example, the domains in the Centrifugal-
Pumps dataset are severely data-constrained, providing only 25 examples per anomalous
class. Furthermore, it is not feasible to train a new model for each new centrifugal pump
within a new environment.

Shots per class c (support) Shots per class c (query)
c = n c ∈ C \ {n} c ∈ C

MAML
Meta-training K K K
Meta-validation K K K
Meta-testing K 0 min

c∈C
N i

c

OC-DA MAML
Meta-training K 0 K
Meta-validation K 0 K
Meta-testing K 0 min

c∈C
N i

c

Table 5.1: Task sampling strategy of MAML vs. OC-DA MAML: Meta-testing tasks are
sampled in terms of the OC-DA setting, where the support set containsK normal
examples and the query set is class-balanced. In MAML, meta-training and
meta-validation tasks are K-shot learning tasks. In OC-DA MAML, the support
set only contains K normal examples. N i

c denotes the number of examples in
Di that belong to class c.
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I divide the source domains into training and validation domains. During meta-training,
meta-training tasks are sampled from the training domains, meta-validation tasks are sam-
pled from the validation domains. Meta-training is stopped either by reaching the maximal
number of iterations or through early stopping. In MAML, the meta-training and valida-
tion tasks are K-shot learning tasks, including K examples per class for both the support
and query sets. In the OC-DA MAML sampling strategy, only K examples of the normal
class are sampled for the support set, see Table 5.1. In each target domain i ∈ Etarget, the
model is adapted on K normal examples (meta-testing support set) and evaluated on a
class-balanced dataset (meta-testing query set).

In Rainbow-MNIST, the domains are class-balanced by design. In Centrifugal-Pumps, I
down-sampled the target domain datasets Di by reducing the number of examples per class
to match the size of the minority class. Here, N i

c denotes the number of examples in Di

that belong to class c, N i
c := |{j|(xj , yj) ∈ Di, yj = c}|. Note that the MAML algorithm

is designed for classical meta-learning settings, where the task setup typically differs from
the task setup in the OC-DA setting, as outlined in Table 5.1. In classical meta-learning
settings, the support and query sets of meta-training, validation, and testing tasks are K-
shot learning tasks. In contrast, in the OC-DA setting, the support set of meta-testing tasks
is limited to K shots of the normal class, as detailed in Table 5.1. Furthermore, evaluating
the model’s performance using only K-shots per class in the target domain is impractical
for domain adaptation. Therefore, I assess the model’s performance on a down-sampled
dataset, rather than a dataset with K-shots per class.

In Rainbow-MNIST, I adopt the approach of Yao et al. [33] by employing a convolutional
neural network that consists of four convolutional blocks, followed by a linear layer and soft-
max activation function. Each convolutional block is designed with a two-dimensional con-
volutional layer with 32 filters of size 3× 3, a batch normalization layer, a ReLU activation
function, and a two-dimensional max-pooling layer of size 2× 2. In the Centrifugal-Pumps
dataset, I use the same model architecture as Frikha et al. [5], that is, a convolutional
neural network with three convolutional blocks, a linear layer and a softmax activation
function. Each block consists of a one-dimensional convolutional layer with 32 filters of
size 5, a one-dimensional max-pooling layer of size 2, and a ReLU activation function.

5.3 Results

Fig. 5.2 illustrates differences in the data distribution across two different domains in the
Centrifugal-Pumps dataset. The plots show the average amplitude of FFT vibration signals
for each class (1-normal, 5-cavitation, 6-hydraulic blockage, 7-dry running). The data was
recorded by the same pump placed on two different surfaces: within a steel framework and
on a concrete surface. There are significant differences in the data distribution. Empirical
experiments will later confirm that these visual differences in the data distribution present
challenges for classification models and lead to a substantial performance drop, see Table
5.4.
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Fig. 5.3 illustrates domain-specific patterns in the Centrifugal-Pumps dataset. The plots
show the 95% confidence interval of the FFT vibration signals in the frequency spectrum.
The normal class encodes domain-specific information, in the sense that the vibration
signals of the anomalous classes follow the pattern of the normal class. This observation
motivates the question whether the information present in normal data can be leveraged
for adaptation to another domain.

Figure 5.2: Visualization of distribution shifts in the Centrifugal-Pumps dataset, showing
the average amplitude [mm] of FFT vibration signals per frequency [Hz] for each
class (1-normal, 5-cavitation, 6-hydraulic blockage, 7-dry running), recorded by
the same pump operated within a steel framework vs. on a concrete surface.

Metric Training dataset Test dataset Rainbow-MNIST
ID source source 83.93
ODD source target 13.5
ID-test target target 72.77

Table 5.2: Experimental results of standard learning on source and target domains on
Rainbow-MNIST. Note that the ID metric is evaluated on held-out data from
each source domain, the ID-test metric is evaluated on held-out data from each
target domain.

Table 5.2 presents the experimental results on the Rainbow-MNIST dataset, demonstrating
the performance gap between source and target domains. In model training, I split the
data into training and validation data and applied early stopping. For the ID metric, I
collected, shuffled and split the data in the source domains into a training, validation and
test dataset. The ID metric is computed as the accuracy [%] on this test dataset. For the
ODD metric, I collected, shuffled and split the data in the source domains into a training
and validation dataset. The ODD metric is computed as the average accuracy [%] over
the class-balanced target domain datasets. For the ID-test metric, I collected, shuffled
and split the data in the target domains into a training, validation and test dataset. The
ID-test metric is computed as the accuracy [%] on this test dataset. The results show
high ID performance and low ODD performance. Additionally, the ID-test performance
significantly outperforms the ODD performance, indicating that the target domains are not
intrinsically more challenging and the performance gap between source and target domains
is indeed due to distribution shifts. Since the corresponding training dataset is substantially
larger, the ID performance is higher than the ID-test performance.
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Figure 5.3: Visualization of domain-specific information in the Centrifugal-Pumps dataset,
showing the average amplitude [mm] of the FFT vibration signals per frequency
[Hz] with a 95% confidence interval. Each anomalous class (5-cavitation, 6-
hydraulic blockage, 7-dry running) is compared to the normal class (1-normal
class), recorded by same pump operated within a steel framework vs. on a
concrete surface.

Table 5.3 presents the experimental results of the meta-learning approaches on the Rainbow-
MNIST dataset in the OC-DA setting, showing the average accuracy [%] computed on the
target domain datasets. To adapt the Rainbow-MNIST dataset to the OC-DA setting, I
designate one class as the normal class. I conducted experiments for each class, using two
different values for K. The hyperparameters are presented in more detail in Table 5.5.
Performance improves with larger values of K. Furthermore, the results demonstrate the
effectiveness of my task sampling strategy in OC-DA MAML, significantly outperforming
MAML with classical K-shot learning tasks. Note that OC-DA MAML achieves results on
the target domains that are comparable to the ID performance on the source domains, as
shown in Table 5.2.

Table 5.4 shows the experimental results on the Centrifugal-Pumps dataset. In each source
and target domain combination, note that there are 16 source domains and 4 target do-
mains, as outlined in Section 5.1. For the distribution shift metrics, I down-sampled each
domain dataset by reducing the number of examples per class to match the size of the
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K = 1 K = 3
Class n MAML OC-DA MAML MAML OC-DA MAML
0 41.33 82.17 44.2 86.07
1 36.9 80.87 41.63 81.77
2 32.33 80.77 39.53 89.57
3 20.03 84.93 31.1 92.67
4 37.07 84.63 43.87 91.1
5 32.37 82.3 31.3 87.87
6 37.23 86.1 31.4 92.47
7 35.87 86.23 39.23 93.07
8 41.73 82.73 40.1 86.73
9 41.4 78.87 41.43 82.33
Average 35.6 82.9 38.4 88.4

Table 5.3: Experimental results of meta-learning approaches on Rainbow-MNIST in OC-
DA setting.

minority class. For the ID metric, I collected, shuffled and split the data in the source
domains into a training, validation and test dataset. The ID metric is computed as the
accuracy [%] on this test dataset. For the ODD metric, I collected, shuffled and split the
data in the source domains into a training and validation dataset. The ODD metric is
computed as the average accuracy [%] over the class-balanced down-sampled target do-
main datasets. In meta-learning, the source domains include 12 meta-training domains
and 4 meta-validation domains, the target domains include 4 meta-testing domains. The
table shows the average accuracy [%] computed on class-balanced down-sampled target
domain datasets (meta-testing query sets), as described in Table 5.1. While the OC-DA
MAML algorithm outperforms the standard MAML algorithm, the performance gap be-
tween MAML and OC-DA MAML is smaller compared to the Rainbow-MNIST dataset.
This can be attributed to the well-defined structure and deliberate design of the domains in
the benchmark. In contrast, the Centrifugal-Pumps dataset provides less domain-specific
structure, making it more challenging for the OC-DA MAML algorithm to fully leverage
its advantages. Additionally, the performance drop is notably smaller on the Centrifugal-
Pumps dataset compared to the benchmark, suggesting that the distribution shifts are
less pronounced. Given that the original MAML algorithm is optimized for within-domain
generalization, I attribute its higher performance to these less severe distribution shifts
between domains, although they remain significant.

Table 5.5 shows the hyerparameter settings. I used the Adam optimizer with corresponding
learning rates α, β and a weight decay of 1e− 5. In all experiments, I used the categorical
cross entropy loss.
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K=2
Source domains Target domains ID ODD MAML OCDA-MAML
P1, P2, P3 ‘steel’ P4 ‘concrete’ 96.2 80.3 87.73 89.63
P1, P2, P4 ‘steel’ P3 ‘concrete’ 94.77 89.56 74.03 93.7
P1, P3, P4 ‘steel’ P2 ‘concrete’ 94.86 79.73 76.17 91.2
P2, P3, P4 ‘steel’ P1 ‘concrete’ 94.23 77.57 91.53 92.43
P1, P2, P3 ‘concrete’ P4 ‘steel’ 92.63 71.4 92.47 93.5
P1, P2, P4 ‘concrete’ P3 ‘steel’ 93.93 88.9 86.9 93.1
P1, P3, P4 ‘concrete’ P2 ‘steel’ 95.07 89.53 81.4 98.6
P2, P3, P4 ‘concrete’ P1 ‘steel’ 94.67 80.83 83.8 90.47
Average 95.5 82.2 84.3 92.8

Table 5.4: Experimental results on the Centrifugal-Pumps dataset.

Hyperparameter Rainbow-MNIST Centrifugal-Pumps
Input size 28× 28 1× 256
Meta-batch size |I| 4 2
Meta-training iterations 30,000 20,000
Inner gradient descent steps k 1 1
Inner learning rate α 0.01 0.01
Outer learning rate β 0.001 0.001
N (Classes per task) 10 5
K (Shots per class) {1, 3} 2

Table 5.5: Hyperparameters in MAML and OC-DA MAML.
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In recent years, the integration of IoT sensor platforms into industrial plants has opened new
opportunities for the application of machine learning in various industrial systems. In many
real-world applications, machine learning models are developed in controlled laboratory
settings before being deployed into critical production environments. However, distribution
shifts pose significant challenges in deploying these models effectively. Furthermore, real-
world data is often constrained not only by limited volume but also by the scarcity of certain
classes (e.g., rare medical conditions, specific industrial failure types). I extended this
problem setting to an arbitrary multi-class classification task and introduced the OC-DA
problem setting. A major assumption in OC-DA is that the source and target domains share
a common structure, allowing one class to encode sufficient domain-specific information to
make inferences about the other classes within the domain.

In this work, I proposed a task sampling strategy to adapt any bi-level meta-learning
algorithm to the OC-DA setting. Based on this strategy, I modified the MAML algorithm
and introduced the OC-DA MAML algorithm. I provided a theoretical analysis of the
OC-DA MAML meta-update, demonstrating that OC-DA MAML explicitly optimizes for
meta-parameters that enable generalization from one class to the other classes within a
domain, and thus, one-class adaptation across domains. My empirical results support
these theoretical observations.

I evaluated the OC-DA MAML algorithm on a meta-learning benchmark and demonstrated
its robustness in real-world applications using a dataset of vibration-based sensor read-
ings recorded by centrifugal pumps in diverse environments. On the benchmark, OC-DA
MAML significantly outperforms MAML with the standard task sampling strategy. In
the real-world dataset, I illustrated differences in the data distribution across domains and
confirmed that these visual differences cause a substantial performance drop. However,
the performance drop is notably smaller compared to the benchmark, suggesting that the
distribution shifts are less pronounced. The OC-DA MAML algorithm consistently out-
performs the standard MAML algorithm for all source and target domain combinations. I
conclude that it is possible to leverage domain-specific information present in one class for
efficient domain adaptation. The proposed task sampling strategy in bi-level meta-learning
enables generalization from one class to other classes within a domain, and thus, one-class
adaptation across domains.

Despite the growing demand for machine learning in industry, transferring models from lab-
oratory settings to real-world deployments is an open challenge. While I achieved promising
results on a real-world dataset, the centrifugal pumps were operated within a laboratory
setting. It would be interesting to explore the performance of OC-DA MAML in actual
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deployments, including a large number of pumps in diverse environments. Additionally,
I only considered centrifugal pumps of the same type and size. In reality, it is common
to encounter pumps assembled according to a modular system. In such systems, pumps
are composed of separate components that can be combined, interchanged, or replaced to
create different pump configurations. Future research could therefore explore generalizing
the models not only to different pumps in new environments but also to entirely new pump
configurations.
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