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Kurzfassung

Diese Diplomarbeit befasst sich mit der Verbesserung des Markowitz-Modells für das Er-
stellen eines optimalen Portfolios. Das Ziel eines ausgewogenen, diversifizierten und risiko-
effizienten Portfolios steht dabei im Vordergrund. Die Schwachstellen ebenjener Methodik
sollen durch die Erweiterung um die Entropie ausgemerzt werden. Diese wird zunächst sta-
tisch eingeführt. Um die Veränderungen und Schwankungen auf dem Kapitalmarkt jedoch
ebenso einfließen zu lassen, wird danach eine Methodik vorgeschlagen, die den Einfluss der
Entropie dynamisch über die Zeit gewichtet.

Des Weiteren wird untersucht, ob solche Methodiken zur Optimierung von Portfolios
gegenüber vordefinierten Benchmarks führen können. Dazu wird auch die Kullback-Leibler
Divergenz verwendet um zu sehen, ob das tracken eines statischen Sets von Assetklassen-
gewichten statt der Gleichgewichtung, die durch die Entropie-Methodik verfolgt wird, zu
besseren Ergebnissen führt.

Abschließend wird noch versucht den dynamischen Einfluss der Entropie anzupassen
um ein robusteres und stabiles Portfolio zu erlangen. Dazu wird der initiale Versuch, den
Parameter empirisch zu steuern, abgelöst von einer Performance-basierten Variante.
Als Resultat hat sich ergeben, dass sich diese Methodiken durchaus eignen, um profitable

und zugleich risikoeffiziente Portfolios zu erzeugen. Je nach Art der Benchmark oder des
Investmentziels, kann es zu etwas unterschiedlichen Ergebnissen kommen. Während sich die
reine Entropie-Methode bei einer konservativeren Benchmark als effizienter erwiesen hat,
führt das adaptierte Entropie-Modell bei dynamischeren Zielen zu besseren Ergebnissen.
Wichtig für einen Investor ist, diese Optimierungsmodelle zu verstehen und in Investmen-

tentscheidungen mit einfließen zu lassen. Solch quantitave Verfahren können in Hinsicht auf
sowohl Risiko als auch Ertrag eines Portfolios einen großen Mehrwert beisteuern.



Abstract

This thesis deals with the improvement of the Markowitz model for the process of crea-
ting an optimal portfolio. The goal of a balanced, diversified and risk-efficient one is at
the forefront. The weaknesses of Markowitz’ methodology are to be eliminated by adding
entropy. This is first introduced statically. However, in order to incorporate the changes
and fluctuations on the capital market, a methodology is then proposed that dynamically
incorporates the influence of entropy over time.

Furthermore, it is examined whether such methodologies can be used for the optimization
of portfolios over predefined benchmarks. For this purpose, the Kullback-Leibler divergence
is used to see whether tracking a static set of asset class weights instead of an equalibrium,
which is pursued by the entropy methodology, leads to better results.
Finally, an attempt is made to adjust the dynamic influence of entropy to achieve a more

robust and stable portfolio. For this purpose, the initial attempt to empirically calculate
the parameter is replaced by a performance-based variant.
As a result, it has been shown that these methods are certainly suitable for creating

profitable and and risk-efficient portfolios at the same time. Depending on the type of
benchmark or what investment objective is pursued, the results may vary somewhat. Whe-
reas the pure entropy method has proven to be more efficient with a more conservative
benchmark, the adapted entropy model leads to better results with more dynamic targets.
It is important for an investor to understand these optimization models and to incor-

porate them into investment decisions. Such quantitative procedures can be used to add
great value to a portfolio in terms of both risk and return.
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haben. Ein besonderes Dankeschön möchte ich Herrn Professor Klaus Felsenstein ausspre-
chen, der mich fachlich hervorragend unterstützt hat. Desweiteren gebührt mein Dank
Herrn DI Patrick Fiedelsberger, der mir bei jedem Schritt meiner Diplomarbeit zur Seite
gestanden ist und mich immer motiviert hat. Darüber hinaus möchte ich mich auch bei der
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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 22. Oktober 2024
Lukas Meisinger



Contents

1 Introduction 1

2 Distribution of Returns 2
2.1 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Log-normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Student’s t-distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Return Measures 4
3.1 Simple Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Total Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Money-Weighted Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Time-Weighted Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Arithmetric and Geometric Average . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Expected Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Risk Measures 9
4.1 Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Conditional Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Portfolio Models 13
5.1 Markowitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.2 Mean-Variance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.3 Diversification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.4 The Efficient Frontier . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.5 Conclusion and Problems . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 The Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Formula and Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.4 The Market Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.5 The Capital Market Line . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.6 The Sharpe Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.7 The Security Market Line . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



Contents

5.3 The Entropy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.1 The Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Relative Entropy and Cross-Entropy . . . . . . . . . . . . . . . . . . 28
5.3.3 Entropy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.4 Entropy Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.5 Adapted Entropy Model . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Test Data 33
6.1 Global Equities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Government Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Corporate Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Emerging Market Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Results 35
7.1 Standard Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.2 Weight Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.3 Efficient Frontiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2 Optimization of Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.1 Conservative Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.2 Balanced Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.3 Dynamic Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Performance-Based Parameter Calculation . . . . . . . . . . . . . . . . . . . 47

8 Conclusio 50

Bibliography 51

List of Figures 53

ii



1 Introduction

In the world of finance, an investor has to navigate through a highly complex universe of
different asset classes, securities and financial instruments. Each and every single one of
them has their own characteristics. With purchasing an asset comes always the chance for
potential gains, but also for possible losses. To get the best out of an investment, it is
crucial to understand how one can minimize the risk of losing money and at the same time
maximize the return of one’s portfolio. However, this is not an easy process since there are
numerous ways to measure both of these metrics and beyond that even more options on
how to interprete and use them to get the best possible trade-off between risk and return.
The base for the modern portfolio theory as we know it has been laid by Harry M.

Markowitz in his infamous ”Portfolio Selection” in 1952. According to this article, investors
are able to optimize their investment strategies by looking at the trade-off between risk
and return. He starts by assuming an investors seeks to get as much expected return as
possible while taking as little risk as possible. [1]
However, over the many years a broad range of other optimization models and ideas

was created. One of the main problems with the Markowitz model is,that it tends to
extreme solutions. That means it overweights certain asset classes while others with not
ideal characteristics are excluded or only up to a very small percentage. This contradicts
the initial idea of diversification.

To deal with this issue, different authors tried to adjust the model. One of these ad-
justments is to include the entropy in the objective function. Since the entropy is at its
maximum when the assets are equally distributed, this method should avoid such extreme
weights in their solution according to Song and Chan ([2]) or Mercurio, Wu and Xie ([3]).
As in every other model as well, there are some problems to be addressed. One of them,
is that pure entropy would deliver an equally distributed portfolio, ignoring the character-
istics of the single assets or asset classes. This might not be very appealing to investors in
reality. Therefore, this thesis tries to adress the inclusion of entropy into the Markowitz
model while also maintaining a good trade-off to both the risk and the return.
Moreover, the aim of this thesis here is also to try and compare the different models

when trying to reach different goals. Insurance companies for instance are financial service
providers with a broad palette of various products to sell to their clients with different levels
of risk and return. Those products can reach from very conservative investments with a
high share in government bonds to more dynamic ones with a bigger equity percentage
in the portfolio. Due to this, the optimization objective can vary hugely. Because of
this, this thesis tries to compare the models included here with fictive benchmarks to see,
which model can produce a portfolio with less risk and more return than these benchmarks
without too much deviation from said benchmarks.
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2 Distribution of Returns

The assumption made about the distribution of the asset returns is one of the most im-
portant ones when it comes to portfolio optimization. Based on the characteristics of the
chosen distribution, the inputs, calculation and interpretation can change a lot. The most
common ones for asset returns are the normal distribution, the log-normal distribution and
the Student’s t-distribution, therefore in the following we concentrate on these three.

2.1 Normal distribution

This distribution is a continuous one, which is defined by the two parameters µ, the mean
or expectation, and σ2, the variance. The general form of its density function is

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (2.1)

The main assumption here is that the returns are symmetrically distributed around the
mean, while there exist neither skewness nor fat tails. This means that extreme gains or
losses are less probable than in distributions with fat tails, which often leads to underesti-
mating risks since in reality such events are more likely than in this distribution. However,
the big advantage of the normal distribution is that the relationship between assets can be
fully described by their linear correlation. This leads to a very straightforward modelling
of the diversification effect. [4]

2.2 Log-normal Distribution

This distribution is connected to the previously described normal distribution. A random
variable is log-normal distributed, when its logarithm is normally distributed, i.e.

Y ∼ Log-normal(µ, σ2) ⇐⇒ Y = ln(X) with X ∼ N (µ, σ2) (2.2)

Thus, the density has the form

f(x) =
1√
2πσ2

e−
(ln(x)−µ)2

2σ2 =
1

xσ
φ
� ln(x)− µ

σ

�
(2.3)

, where x > 0, σ > 0, µ ∈ R and φ is the density of standard normal distribution. The
resulting distribution is asymmetrical and positively skewed. Consequently, the log-normal
distribution has fat tails, which is more adequate for modelling asset returns than using the
normal distribution. Additionally, the fact that prices cannot go below zero is also reflected
by this distribution. However, using this distribution would lead to increased complexity
in the whole portfolio optimization process. The calculation of expected returns, risk
and other key figures needs to be adjusted to adress the skewness and kurtosis in this
distribution. [5]

2



2 Distribution of Returns

2.3 Student’s t-distribution

Last but not least is the Student’s t-distribution. It is a generalization of the standard
normal distribution and like the latter, it is symmetric around zero and has the shape of a
bell. The big difference is the former has heavier tails, which are defined by the degrees of
freedom ν > 0, which at the same time is the only parameter of the distribution. For large ν
the tails begin to get thinner and for ν → ∞, it becomes the standard normal distribution.
Since the Student’s t-distribution takes extreme market movements as a more likely event
than the normal distribution suggests, it would lead to a more cautious approach in portfolio
optimization. The fat tails would result in higher estimated risks and consequently would
return in portfolios that are more robust to extreme losses and are more diverse but also
more conservative ones.[6]

2.4 Summary

While the log-normal and Student’s t-distribution both are closer to the real world than the
normal distribution, the latter supplies a mathematically more straightforward way to do a
portfolio optimization. The two former would increase the complexity in the whole process
exponentially. The calculation of both the portfolio return and the portfolio risk would need
to be adapted. The diversification effects might also differ depending on the distribution
since the choice of it might also affect the covariance matrix. Therefore, the comparability
and interpretation between models with different distributions are more difficult.

Since this thesis aims to examine a portfolio optimization approach including entropy and
compare it to the Markowitz model, going forward we will concentrate on the log-normal
distribution.

3



3 Return Measures

The return is a fundamental component of portfolio theory and can be measured in various
ways, all of which have their own up and down sides. In most cases, it is not the real
returned money one gets from selling an asset, but the growth of the value of an asset or
the wealth of an investor while considering different factors. To move forward we look at
the most common ones.

3.1 Simple Return

The most straightforward way to measure the growth of the value is by looking at the start
value v0 and end value v1 after a given period. By dividing the difference between those
two by v0, we reach the percentual growth of value of the asset.

R =
v1 − v0

v0
(3.1)

This can be either applied to one asset or to a whole portfolio by taking the sum of all
investments. It is the simplest and most basic form to measure the return.

3.2 Total Return

Many assets like bonds or stocks also come with dividends, interests, coupons or other
payments one can get by holding onto them. These benefits are taken into account by the
total return. Let i be the payment one gets for the asset. Then the return can be calculated
by extending formula (3.1).

R =
v1 − v0 + i

v0
(3.2)

This kind of return is also quite straightforward and easy to compute for one period models.
[7, p. 862]

3.3 Money-Weighted Return

The money-weighted return, or internal rate of return as it is also called, considers also
payments, that have been made inbetween the start and end point of the calculation.
Therefore, it is seen as a way to measure return over multiple periods. In general the
computation can be done by solving

0 =
T�
t=0

ct
(1 +R)t

(3.3)
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3 Return Measures

for R, where ct is the cash flow at time t, which can take both negative and positive values.
This discount rate is the annual rate of growth that an investment is expected to generate.
The higher it is, the more appealing it is to buy said asset. Since it is uniform for various
types of investments, it can be used to rank and compare them on a similar basis. The
following example demonstrates this return on a two period model.

Example 3.3.1. Let an investor buy a stock for the initial price of 100. After the first
period, the asset pays a dividend of 5 and the decision is made to buy another share of
said equity. However, the price rose to 103. At the end of the second period both stocks
are sold at a price of 104 each.

Time Outgoing cash flow Incoming cash flow

0 100 0
1 103 5
2 0 218

Now the average return over this two periods can be calculated using the discounted cash
flow and setting the present values of the incoming and outgoing cash:

100 +
103

(1 +R)
=

5

(1 +R)
+

218

(1 +R)2
(3.4)

By solving this equation for R the return in this case is approximately 6.57%. Looking
at both time steps separately, one can notice, that the bigger impact on the performance
comes from the second period. This is due to the fact, that in this time frame the value of
the investments is higher and therefore the influence on the overall return is also increased.
As of this reason, this measure is called the money-weighted rate of return. [8]

3.4 Time-Weighted Return

Another alternative measure is the time weighted return. In contrast to the money weighted
return, this method doesn’t depend on the amount invested in the assets. To calculate it,
one only needs the total return in each period and then averages over all time periods. So
for an investment portfolio over n periods, one needs to take the following formula:

R =
1

n

n�
t=1

Rt (3.5)

where the Rt reflects the total return for the period t.

Example 3.4.1. Let’s return to the example of the previous section and calculate the time
weighted return. We start by looking only at the first period. For the return in that time
we get

103 + 5− 100

100
=

8

100
= 8% (3.6)

since we have a starting price of 100 and an end value of 103. By considering also the
dividend of 5 we reach a return of 8%. Whereas, in the second period we start with a price

5



3 Return Measures

of 103 and reach at the end 104 for our two stocks. Therefore, by considering also the total
dividend of 10, we end up with the following return.

208 + 10− 206

206
=

12

206
= 5.83% (3.7)

With the last step, taking the average, the calculation comes to a return of 6.91%.

Compared to the money-weighted return this measure is higher due to the fact, that the
performance in the first period was better than in the second. Since there was more money
invested in the second period, it has more impact in the first calculation.
Due to this fact, the former is also a measure of the investment decision of the manager.

It can show if the timing of the purchase was rather good or bad, whereas the time-weighted
return doesn’t take this into account and only measures the performance of the asset itself.
For this reason, it is more commonly used in fields where the portfolio manager doesn’t
have all the control over the cash flows like in pension funds. In that case, the payments
are fixed, but can vary for many reasons, that are out of control of the fund manager. [7,
682 f.]

3.5 Arithmetric and Geometric Average

To round up this section about return measures, we have a look at another approach to
the calculation of the time-weighted average. We introduced it as an arithmetric average,
while we could also take the geometric version. To calculate it, one again needs the returns
over each period of time Rt and plug them into the following formula

(1 +RG)
n =

n�
t1

1 +Rt (3.8)

⇔ RG = (
n�
t1

1 +Rt)
1
n − 1 (3.9)

This method is also quite interesting since it delivers the constant rate of return one needs
to earn yearly to match the actual performance over the investment period.

Example 3.5.1. Let’s have another easy example to demonstrate this. A stock with
initial price 100 doubles its value and afterwards loses half of it again, so at the end of
two periods the price is again at 100. The former arithmetric average delivers a result of
(100%− 50%)/2 = 25%. However, in reality the value of the asset at the start and the end
is the same. The geometric average shows this with a simple computation:

1 +R =



(1 + 1)(1− 0.5) (3.10)

⇔ R = 0 (3.11)

As a general property, the geometric average is always lower than the arithmetric one
since the bad returns here have a higher impact on the overall performance. The difference
between the two can also be seen as a kind of measure of standard deviation. For an asset

6



3 Return Measures

with a very low variance in its returns, both methods return a similar result, whereas for
an investment with very high volatility the difference between the two increases greatly.
However, an important property, that distinguishes the two of them, is that the arithmetric
average is an unbiased estimator for future performance. On the other side, the geometric
average is a downward-biased estimator for the expected return in the future.
To sum it up, the geometric average includes the effect of compounding growth over

time. This is important when measuring investment and portfolio performance. [7, 863 f.]

3.6 Expected Return

The question is now what to use for the expected return of an asset in the future. Since
this theses aims to combine different asset classes in the optimization process, the answer
is not so simple.
For fixed-income investments the historic price is not an appropriated estimator for the

expected return since prices and yields are inverse. That means that drops in prices lead to
increasing yields and the other way around. Due to this, the yield to maturity (Y TM) is a
better fitting measure to use. It represents the total rate of return of a bond, that is hold
until maturity and fulfills the interest payment as well as the redemption price. In other
words, it is the internal rate of return of a bond until maturity transformed into an annual
rate. This measure takes into account the current market price P , the coupon payments C,
the time to maturity t and the nominal value of the investment N . With this informations
the formula to calculate it, is the following

Y TM =
C + N−P

t
N−P

2

The big advantage of using this key measure is, that it increases the comparability of bonds
with different coupon rates or maturity dates dramatically. Therefore, investors get a better
understanding of the investments. [9]
The second type of assets in the construction of an optimal portfolio in this thesis are

equities. In this asset class are a few different estimators that can be used. While the mean
of the past log returns of an equity can be used for such purposes, a more sophisticated
indicator would be the golden cross GC. It is widely known as a signal for an upcoming
bull market, i.e. a rising price for the equity. The idea of it is to compare a moving average
over the most recent past to the same measure over a bigger time period.

SMA =
1

f1

f1−1�
i=0

Pt − i

LMA =
1

f2

f2−1�
i=0

Pt − i

GC =
SMA

LMA

In this formula SMA stands for the short-term moving average over the last f1 ∈ N
timesteps and LMA is the long-term moving average over the last f2 ∈ N ones. The

7



3 Return Measures

quotient of the two then is the golden cross signal. The investor can then define his
expectation of the future return of the asset, for instance the historic mean and multiply
it by this factor to include the market trend into the it. [10]
Alternatively for the expected return of equities, one can also use the earnings yield.

This key figure measures the earnings per share in the most recent period in relation to the
current market price per share. If it is growing, it means the equity generates more income
compared to its cost, while small values for the ratio mean that the equity is overvalued.
Consequently, this return metric does give a valuable insight on the profitability or the
return on an equity investment and can be used to estimate the expected return. [11]
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4 Risk Measures

The second side of the coin of portfolio optimization is to evaluate the uncertainity that
comes with the various investment. As investors navigate through different asset classes,
they encounter numerous risks, from market volatility to economic issues. It is essential to
recognize, understand and measure these risk factors in order to construct a portfolio that
can withstand different market conditions.
In this chapter, we are going to try to get a comprehensive understanding of risk measures

and how they work, from standard deviation and variance to more advanced methods like
Value at Risk and Entropy.

4.1 Standard Deviation

The most straightforward form of risk measurement is the standard deviation. In general,
it is the spread of data from its expected value. In the context of assets, it is used to
measure the historical volatility of an investment in relation to its annual rate of return.
In other words, an asset with a high standard deviation varies a lot in its value gains and
losses and is therefore considered riskier. As one might already know, the computation of
the standard deviation σ is quite commonly known as the root of the variance V

V(X) = σ2 = E[(X − µ)2] (4.1)

where µ is the expected value of the return and the random variable X describing the
return of the asset.
If one wants to get to concentrate on the riskier side of the deviation, it is also possible to

exclude the gains and only consider the losses by using the negative part of the expectation.
The argument here is that all deviations above the mean are desirable and therefore not
risky.

Vsemi(X) = E[((X − µ)−)2] (4.2)

This is called the semivariance. However, it is much more difficult to use, when calculating
it for whole portfolios and not for single investments. Furthermore, empirical data shows
that the returns of most stocks are reasonably symmetrical, which causes semivariance to
be proportional to the normal variance and standard deviation. For this reason, it is not
very widespread. [12][p.49 ff.]

4.2 Value at Risk

As it is already known, the return of an asset or even a whole portfolio is expressed as a
random variable X that depends on a single or multiple risk factors, i.e. prices, exchange
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rates or interest rates. The expected value and standard deviation can be estimated using
historical data. From this definition, one can also derive the losses L over a period of time
as a random variable:

Lt,t+δ = Xt −Xt+δ (4.3)

Starting from the underlying distribution of X, the distribution of L can also be determined
as dependent on the information available at time t.

In practice, one of the most common risk measures is the Value-at-Risk(VaR) of the loss.
For a chosen confidence level α, the VaR is defined by the smallest value l for which the
probability of a loss L is lower than 1−α and the loss itself is bigger than l. In other words,
it is the α-quantile of the loss.

V aRα = inf{l ∈ R : P(L > l) ≤ 1− α} (4.4)

= inf{l ∈ R : 1− FL(l) ≤ 1− α} (4.5)

= inf{l ∈ R : FL(l) ≥ α} (4.6)

Example 4.2.1. A one-period 95% VaR of l = 100000 means that in 95 cases out of 100
the loss over the time period will not exceed this level l.

Although, this measure is in reality widely used since it has a lot of useful character-
istics like monotonicity, homogeneity and translation invariance, it does come with some
limitations and downsides. First of all, it assumes the distribution of returns is known and
constant, which is in reality not applicable, because in most cases there are widely spread
portfolios with all kind of assets. It can be quite difficult, if not impossible, to determine
the mixed distribution. Moreover, it does not give any indications on how big the loss is
going to be, if it exceeds the given level, which might be very bad in case of heavy-tailed
distributions. Also it does not consider the timing of losses, which can be crucial in some
situations. [13][35]

4.3 Conditional Value at Risk

The conditional Value-at-Risk (CVaR) is an extension of the normal VaR to assess the risk
in extreme scenarios. It measures the size of the average losses that exceed the VaR for a
given confidence level. Formally spoken, it can be expressed as a conditional expectation.

CV aRα = E[L|L > V aRα] (4.7)

It is very useful for capturing the tail risk or, in other words, it measures the risk of extreme
losses, which the standard VaR might underestimate. Furthermore, it is a coherent risk
measure, i.e. it satisfies subadditivity, translation invariance, positive homogeneity and
monotonicity.
For continuous distributions, the CVaR takes on the form

CV aRα =
1

1− α

� 1

α
V aRudu (4.8)
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while for discrete versions the formula is the following

CV aRα =
1

1− α

�
j:Lj≥V aRα

Ljpj . (4.9)

Example 4.3.1. Given an empirical distribution with a sample size of 1000, the CVaR for
a confidence level of 99% is easily computed, by taking the 10 biggest losses and calculating
the average of those.
In practice, this measure is a very common and important one since it gives investors a bet-
ter understanding of risks that go beyond the VaR level. It provides a more comprehensive
view of extreme risk, so to speak. [13][36]

4.4 Beta

Another approach to measure how risky an asset is, is to look at its Beta. This concept
takes into account how volatile the investment is compared to the market. In this context,
market is meant to be an index or some sort of benchmark, for instance the S&P 500 could
be an appropriate choice for a stock.

To calculate the Beta, one only needs to know two things, the variance of the market
itself V(XM ) and the covariance between it and the chosen asset Cov(XM , X), where XM

represents the returns of the market as described above and X the ones for said asset. The
former variance is also referred to as the systematic market risk. The ratio of the two of
them is the Beta.

β =
Cov(XM , X)

V(XM )
(4.10)

An asset with β = 1 moves pretty much along with the market as it has the same
variance. For values above 1 an asset would be more volatile than the benchmark, which
means it comes with more risk, but also with more possible reward in terms of returns
given a rising market. Conversely, investments with low Betas pose less risk and also lower
potential gains. This method of risk measurement could also return negative values. This
would mean that the asset moves against the swing of the market or in other words is
negatively correlated to market movements.
Due to its properties, conservative investors are more likely to look for the stocks or bonds

with low Betas, while day-traders, who look for fast and quick gains, are more interested
in high Beta assets. This measure is primarily useful when considering the capital asset
pricing method (CAPM), which is introduced later on in chapter 5.2.
Although Beta does have some very useful properties and returns interesting information

on an investment, it also does come with some disadvantages. Since it is calculated by using
historical data points, Beta is not appropriate to determine the future movements of the
stock. Due to this and the fact, that the volatility of an asset can change yearly, making it
an unstable measure, it is not useful when considering long-term investments. [14]
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4.5 Alpha

To conclude this chapter about risk measures, we have a look at the Alpha of an invest-
ment or fund. The Alpha-measure is often used when describing the strategy’s ability to
outperform the market itself over a certain period of past time. Therefore it is also often
called the ”excess return” or ”abnormal rate of return” in relation to a benchmark. In
other words, it is not a risk measure per se, but more like a risk-adjusted performance
measure of the portfolio manager, since it is a result of active investing. An Alpha value
of zero would indicate, that the manager did not add or lose any additional value in the
specified time period and is tracking the market perfectly. [15]
The reason this measure is included in this chapter, is that it is based on the Beta,

which was described above and is often used in combination with it. To calculate it, one
needs to start off with determining the excess return the benchmark achieved over a risk-
free investment. In other words, this is simply the difference between the return of the
former minus the return of the latter. With this information, the next step is to compute
the expected return of the market by multiplying the excess with the Beta - that got
introduced in the previous section - of the portfolio or investment at hand and adding it
to the risk-free return.

RM = RRFR + β × (RBM −RRFR) (4.11)

In this formula, the R in general stands for the expected return. The indices state which
of the components they represent, namely either the risk-free rate (RFR), the benchmark
(BM) or the market (M). The second term on the right, β × (RBM −RRFR), is also called
the risk premium since it illustrates the additional return, that is required to justify the
risk taken by investing in that portfolio.
Now, all that is left to do is to calculate the difference between the actual return of the

portfolio RPF and the expected return of the market RM .

α = RPf −RM (4.12)

As we already know from the previous chapter, a high Beta value indicates a more volatile
asset or fund. Such a portfolio does have to perform a whole lot better to reach a positive
alpha, since the expected return is directly correlated to the Beta and therefore leads to
a higher risk-adjustment. Two funds could come with the same return, but with quite
different alphas due to different risk levels.
As all other risk, return or performance measures, this one is also not perfect. First and

foremost, the same limitation of Beta also get inherited by the calculation of Alpha. It is
a measure of the past success and thus not too reliable as a future predictor. It can be
influenced by luck, a few successful bets of the portfolio manager or also a combination of
both with a good market timing.
Moreover, the calculation of Alpha is also quite sensitive to the assumptions made as the

choice of the risk-free rate or the benchmark. A badly chosen benchmark, for instance one
that has a low correlation to the fund, can return a misleading value for Alpha. Additionally,
the choice of the time period is very important. For too short-term periods, the Alpha can
include some noise and randomness and may not reflect the actual performance of the fund
or the skill of its manager. [16]
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In this chapter, we dive into the world of different theories on how to get a optimal portfolio.
Since there are countless different approaches, we concentrate on the most common and
important ones.

5.1 Markowitz Model

To start things off, we have to talk about the father of the Modern Portfolio Theory
as we know it. In 1952 Harry Markowitz introduced his groundbreaking article ”Portfolio
Selection”, in which he shared his insights on risk, return and the benefits of diversification.
Those thoughts have altered the way investors and researchers think about said aspects,
shaping the field of portfolio management until today. [1]

5.1.1 Introduction

In his article, Markowitz addressed the universal problem of investors, namely to maximize
the return of their portfolio all while minimizing their risk. He defined risk as the variability
of the return and stated that a key aspect is the trade-off between that and the return itself.
Markowitz was already aware that assets with greater returns also pose higher risk levels
and investors have to take that into account when deciding on investments.
His revolutionary thougth was that the risk/return-profile of the separate assets should

not be examined for each on its own, but alltogether as a whole portfolio. Markowitz
claimed those portfolios to be efficient if they either maximize the return for a given level
of risk or vice versa minimize the risk for a given level of return. Although, both approaches
are equivalent to each other, the type of optimization problem is a different one. The first
one turns out to be linear optimization with quadratic constraints whereas the second one
is a quadratic one with linear constraints. [13][p.43 f.]

5.1.2 Mean-Variance Analysis

To deal with this problem, he introduced the mean-variance analysis. Markowitz assumed
that he has N assets to choose from with every single one being divisible indefinitely and
the returns from those to be jointly normally distributed. The concept relies on three key
figures to assess the risk and return, the expected return E(Ri), the variances V(Ri) and
the covariances Cov(Ri, Rj) of every asset i. Based on those the return and the variance
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of the whole portfolio can be calculated by applying the following formulas:

E[R] =
�
i

ωiE[Ri] (5.1)

V(R) =
�
i

�
j

ωiωjCov(Ri, Rj) (5.2)

In this equations, ωi stands for the weight of the asset i and the covariance being calculated
by the well known formula

Cov(Ri, Rj) = ρijσiσj (5.3)

with ρij being the correlation coefficient of assets i and j. In the financial world, covariance
measures the direction in which the returns of two assets move. With positive values, both
tend to go in the same direction, while negative values imply that two assets trend into
opposite ones.
With this formulae, one can specify the optimization problem in some different ways

depending on what exactly to achieve. The first possibility is to maximize the return of
the portfolio given a specific level σ2 of variance.

max E[R] (5.4)

s.t. V(R) ≤ σ2 (5.5)

and
�
i

ωi = 1 with 0 ≤ pi < 1, i = 1, 2, ..., n. (5.6)

The goal is here to reach as much return as possible while maintaining at least an upper
border for the variance. Without it, the optimization would invest the whole capital in
the asset with the highest return expectation, making it not applicable. Moreover, this
definition of the optimization problem is more theoretical and not used very often in reality.
The other direction is the more common approach of the Markowitz model. This way

the variance is minimized with the optional constraint of a minimum return. The resulting
optimization problem is a quadratic one with linear constraints.

min V(R) (5.7)

s.t. E[R] ≥ µ (5.8)

and
�
i

ωi = 1 with 0 ≤ pi < 1, i = 1, 2, ..., n. (5.9)

Theorem 5.1.1. The solution to the optimization problem in (5.7-5.9) has the form

ω = (1− α)ωminvar + αωmk

,where ωminvar are the weights of the global minimum variance portfolio, ωmk are the market

weights with the form ωmk = Σ−1E[R]
1TΣ−1E[R]

and

α =
µ(E[R]TΣ−1E[R])(1TΣ−11)− (E[R]TΣ−11)2

δ
.
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Proof. The objective function of the problem is to minimize the variance σ2. Since Σ is
positive definite, the variance term is strictly convex. To solve such a constrained optimiza-
tion problem, one can use the method of Lagrange multipliers. The Langrangian function
is defined as

L(ω, λ1, λ2) = ωTΣω + λ1(µ− E[R])Tω + λ2(1− 1Tω),

where the first term corresponds to our objective function, i.e. the variance. The second
term is the constraint of a minimum return and the last illustrates the full investment
constraint, i.e. that the sum of the weights has to be equal to one. Then, we can extract
the Karush-Khun-Tucker(KKT) conditions.

0 = Σω − λ1E(R)− λ21 (5.10)

µ ≤ E[R]Tω, 1Tω = 1, 0 ≤ λ1 (5.11)

λ1(E[R]Tω − µ) = 0 (5.12)

Now, let ω̂ be the solution to the problem and we can see that we have two cases:

• µ < E[R]T ω̂: This would imply that λ1 is equal to 0 due to the third KKT condition
leaving only two equations:

0 = Σω̂ − λ21

1Tω = 1

Then, we can multiply the first by the inverse of the covariance matrix Σ and with
the unity vector 1 to get 1T ω̂ = λ2(1

TΣ−11). Since the left side is equal to 1 due to
the second KKT condition we end up with λ2 = (1TΣ−11)−1 and can plug this into
the previous equation to get

ω̂ = (1TΣ−11)−1Σ−11.

Therefore, all KKT conditions are true for this ω̂ making it in fact a solution to the
optimization problem. It is important to note, that this solution yields the smallest
possible variance over all portfolios.

• µ = E[R]T ω̂ In this case, we start by dividing the first KKT condition by Σ.

ω̂ = λ1Σ
−1E[R] + λ2Σ

−11 (5.13)

This expression then can be used for the second line of the KKT conditions.

µ = λ1E[R]TΣ−1E[R] + λ2E[R]TΣ−11

1 = λ1E[R]TΣ−11+ λ21
TΣ−11

Extracting the left sides and also λ1 and λ2 as vectors, these equations can be written
in 2× 2 matrix equation with the matrix having the form

T =

�
E[R]TΣ−1E[R] E[R]TΣ−11
E[R]TΣ−11 1TΣ−11

�
=

�
E[R]1

�T
Σ−1

�
E[R]1

�

15



5 Portfolio Models

This matrix is always is always positive semi-definite since Σ is also positive definite
and the following holds, if E[R] and 1 are linear independent:

0 < δ = (E[R]TΣ−1E[R])(1TΣ−11)− (E[R]TΣ−11)2

To see that this is true, one has to look at δ = 0. Then the expected return has to be
equal to τ1 for some τ ∈ R. However, this would mean for µ/τ ̸= 1, that the problem
is necessarily infeasible. On the other hand for µ/τ = 1, there would only be the
minimum variance solution since every portfolio delivers the same expected return.

If δ > 0, the system described above can be solved and we can express λ1 and λ2 in
the following way:

λ1 = 1T ν

λ2 = −E[R]T ν

with ν = δ−1Σ−1(µ1− E[R]

As a consequence, we can resubstitute this into 5.13 and get the optimal solution for
our problem:

ω̂ =
Σ−11

1TΣ−11
+ α

�
Σ−1E[R]

1TΣ−1E[R]
− Σ−11

1TΣ−11

�
= (1− α)

Σ−11

1TΣ−11
+ α

Σ−1E[R]

1TΣ−1E[R]

= (1− α)ωminvar + αωmk.

5.1.3 Diversification

The key aspect to this whole model is the importance of diversification. Markowitz states
that investors can eliminate the risk of a portfolio up to a certain point without losing out
on the return by mixing assets with non-perfectly correlated returns. This is due to the
fact, that the portfolio risk does not only rely on that of each single component, but also
on the interaction between them. In other words, the correlation between assets needs to
be estimated as well to do mean-variance optimization according to Markowitz.
Furthermore, Markowitz also gives two logical restrictions to the weight of the assets.

The first is that the sum of them should be one while the second states that no negative
weights are allowed. The former just adds a little bit of normalization to the weights. The
latter however, prevents the model from returning infinite weights since it could just short
sell an infinite amount of undesirable assets and buy other ones with that. This could also
be weakened by restricting short selling, i.e. negative weights, only up to a certain level.
[1]
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5.1.4 The Efficient Frontier

Last but not least, Markowitz introduced visualizations of all possible portfolios in terms
of risk and return. Going along the border of the set of all possible portfolios, one can find
all of the efficient ones, i.e. the portfolios with maximum return for a given level of risk or
vice versa minimum risk for a given return level.

Theorem 5.1.2 (Caratheodory). Let S be a convex subset of Rn. Every element s ∈ S
can be described as a convex combination of n+ 1 elements of S,

s =

n+1�
i=1

λisi with si ∈ Ω,

n+1�
i=1

λi = 1, λi ≥ 0. (5.14)

Proof. Suppose s is a convex combination of the form

s =
k�

i=1

λisi with si ∈ Ω,
k�

i=1

λi = 1, λi ≥ 0

with k > n + 1. since there are more than n + 1 elements, they are linearly dependent.
Therefore, we can look at the homogeneous linear system of equations

α1s1 + α2s2 + ...+ αksk = 0

α1 + α2 + ...+ αk = 0.

Due to the fact that si ∈ Rn, this system has n + 1 equations and therefore less than the
number of indeterminates. This ensures that there is a non-trivial solution (α1, α2, ...αk).
As the λi sum up to 0, but not all are equal to 0, there exists at least one i with λi > 0.

Let

τ = min{λi

αi
|αi > 0}

and
βi = λi − ταi∀i = 1, ..., k.

Then, the following holds

βi ≥ λi − λi

αi
= 0

k�
i=1

βi =
k�

i=1

λi − τ
k�

i=1

αi = 1.

Now, we can rewrite the convex combination from the start.

β1s1 + ...βksk = λ1s1 + ...λmsm − τ(α1s1 + ...αmsm) = x

This results in our goal. When there is an index j with τ =
λj

αj
, then βj = 0 due to the

construction and we can cut off sj .
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This theorem can be applied to the set of all portfolios, since this is also a convex subset
of the R2, characterized by the return and the risk. With this, we can derive also a theorem
for the upper border of this convex set.

Theorem 5.1.3 (Two-fund theorem). Given two portfolios on the efficient frontier, one
can express any other efficient portfolio as a linear combination of the first two.

Proof. Let’s assume, there are two portfolios on the efficient frontier characterized by the
vectors of their asset weights ωA and ωB. Their according expected returns are then given
by µA and µB while their variances are σ2

A and σ2
B. The corresponding covariance is also

known by σAB.
Now consider a new portfolio as a linear combination of the two of them with some scalar
α.

ωC = αωA + (1− α)ωB (5.15)

(5.16)

The expected return can thus be calculated with the following formulas.

µC = αµA + (1− α)µB (5.17)

σ2
C = (αωA + (1− α)ωB)

TΣ(αωA + (1− α)ωB) (5.18)

= α2ωT
AΣωA + 2α(1− α)ωT

AΣωB + (1− α)2ωT
BΣωB (5.19)

= α2σ2
A + 2α(1− α)σAB + (1− α)2σ2

B (5.20)

Due to the convexity of the efficient frontier, the new portfolio ωC either lies on this line
or is within the boundary of it. Additionally, the two initial portfolios are both efficient,
hence they deliver the best possible expected return for their levels of risk. By combining
them, the resulting portfolio also inherits this property. Therefore, it maintains this optimal
risk-return trade-off and thus lies on the efficient frontier as well.

As a result, any efficient portfolio on this frontier can be derived by a linear combination
of the minimum variance portfolio and another efficient portfolio on it. The covariance
between the derived portfolio and the chosen efficient one is then equal to the variance of
the minimum variance portfolio.
From looking at figure 5.1, one can see that there indeed exists an unique global minimum

for the risk. Extending this graph to the right, it can also be seen, that this set of portfolios
is closed and there also exists a global maximum return portfolio. [13][p.44 f.]
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Figure 5.1: Example of an efficient frontier[17]

5.1.5 Conclusion and Problems

To sum up, Markowitz’s model provides portfolio managers with a systematic and balanced
approach by considering the trade-off between risk and return. The concepts of mean-
variance analysis, efficient frontier, diversification and covariances help investors a lot with
constructing a balanced and robust portfolio. Its impact cannot be understated since so
many more portfolio models and risk management strategies are based on it and to this
day it is still one of the most important models in existence.
On the other hand, there are some problems that can be encountered in the real world

when using the Markowitz model. In practice, the mean-variance optimization can lead to
highly concentrated allocations in very few assets, especially when the goal is to reach as
much return as possible. In such extreme cases, the solution tends to lose the desirable
effect of the diversification and is to invest in a very limited amount of possibly extremely
risky assets. Further on, investors want to include their own views on the market in the
model by adjusting some inputs to the calculation of the covariance matrix or choosing
a different way to calculate it and thus can disturb the dependence structure. This can
lead to irritating and highly volatile optimization results. Even slight changes have the
possibility to do a lot of harm and alter everything in unpredictable ways.
Another difficulty of this approach is the assumption of normality among the asset re-

turns. If they appear to be non-normal or asymmetric, for instance it the returns follow a
log-normal or Student’s t-distribution, the optimization can result in surprising and unex-
pected portfolios. In fact, most returns are not symmetrically in practice, which makes the
variance a poor risk measure and leads to losing upside volatility in returns. In addition to
all of this, portfolio optimization models have the claim to be forward-looking as they want
to project the best portfolio for the future. However, the estimators for the covariance and
the return rely on historical data and therefore can often turn out to be not that useful.
[3]
To tackle all this issues, we examine some different models in the upcoming sections and

then try to see which one would be useful for deciding on future investments.
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5.2 The Capital Asset Pricing Model

The next very important model is the Capital Asset Pricing Model (CAPM), which is an
extansion of the Markowitz model. It was introduced in 1964 by an American economist
called William F. Sharpe, who also won the Nobel Prize in Economic Sciences for his work
on the CAPM together with Harry Markowitz and Merton Miller. The key aspect here
is the calculation of the expected return of a risky asset by implying a linear relationship
between it and the expected return of the market. This is done by adding the parameter
β to the calculation, but first let’s talk about the motivation.

5.2.1 Assumptions

Before we start off with the motivation and idea behind the CAPM, we need to clarify some
assumptions made by it. First off, the model makes a few such premises about the market
circumstances itself. It assumes that there are neither transaction costs nor taxes on the
gains from assets. Both of those would add a lot of unwanted complexity to the model, since
the goal of this paper is not to address problems in relation to taxes or costs of buying assets.
The next premise is that all assets are infinitely divisible, i.e. that an investor can invest any
amount of money in a stock and does not have to consider the stock prices. Furthermore,
all market prices are independent from single market participants. In other words, a single
investor cannot influence the price by selling or buying for instance a certain stock. The
prices are just regulated by the overall demand of all investors together. Additionally,
investors are allowed to make unlimited short sales and there is also the possibility of
unlimited lending and borrowing at a riskless rate. Finally, the CAPM assumes that all
assets, including human capital, are marketable or in other words can be bought and sold.
On the other hand, there are also a few assumptions made about the market participants

themselves. It is assumed, that all investors make their respective decisions solely based
on the expected return and standard deviation of the returns of the assets. Moreover, all
market participants also share the same believe on the distributions of those key figures
and they also define the relevant period of the investment exactly the same way.
To sum up, there are quite a few assumptions to the CAPM that are quite obviously not

applicable in the real world. Nonetheless, the CAPM still delivers a quite good view on
the risk and return itself but more on that in the following. [12][p.294 f.]

5.2.2 Motivation

Let’s assume that the weights of a portfolio with n assets have the form wi =
1
n , 1 ≤ i ≤ n.

The goal is to calculate the variance of the whole portfolio. To do this, we need to have
a look at the variances and covariances of the assets. Suppose the former are uniformly
bounded by σ2 ≤ L. Then we can plug into our formula for the portfolio risk.

σ2 =
n�

i,j=1

ωiωjσij =
n�

i=1

ω2
i σ

2
i +

�
i ̸=j

ωiωjσij ≤ n
1

n2
L+

1

n2

�
i ̸=j

σij (5.21)

Looking at the covariance matrix, the elements in the diagonal are already bounded since
those are the variances themselves. A similar assumption is now made for the off-diagonal
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elements, namely that they are also uniformly bounded by a constant c ≥ |σij |, i ̸= j. This
leads to

σ2 ≤ L

n
+

1

n2
n(n− 1)c (5.22)

Finally, let n go to ∞ and one can see that the upper bound for the risk of a portfolio
converges to c. This leads to the conclusion, that the variances of single assets become
irrelevant for a very wide spread portfolio since the first term in the inequality is the upper
bound of those and converges to zero for high n.

This proof motivates a differentiation between two different types of risk. The first one
is the diversifiable or specific risk. That risk can be reduced to zero by adding assets and
expanding the portfolio. The other one is called the undiversifiable, systematic or market
risk. This one describes the interaction between the assets and their movements together.
All in all, this idea of separating the risk implies that instead of minimizing the overall
variance, one should concentrate on the undiversifiable risk, which in turn depends on
the covariances between the assets. The CAPM tries to do exactly that by linking the
systematic risk of an asset with its expected return. [18][p.67 ff.]

5.2.3 Formula and Calculation

To start the calculation itself, we first have a look at the computation of the expected
return. Suppose that there exists a risk-free asset with a guaranteed return R, which is
lower than the expected return of the whole portfolio, and has, as the name says, no risk.
According to the CAPM, the expected return µi of the i-th asset in the portfolio can be
calculated through the formula

µi = R+ βi(µm −R). (5.23)

using the βi of each asset, which got introduced in section 4.4. This formula might seem
familiar since we already introduced it in section 4.5 to calculate the alpha of a portfolio.
As mentioned before the beta determines the risk premium an investor has to get to justify
the taken risk and as a result also the expected return on a security. This also means that
beta quantifies the undiversifiable risk.

With this information, one can proceed with the same steps as in the Markowitz model
and calculate the minimum variance portfolio and efficient frontier using this expected
returns instead of the mean returns in the previous section. Additionally to these key
figures, the CAPM also uses the capital market line, the security market line and the
Sharpe ratio as indicators for investment decisions. [18][p.67 ff.]

5.2.4 The Market Portfolio

According to the CAPM, every portfolio manager holds a combination of the risk-free asset
and the market portfolio, which is the optimal portfolio on the efficient frontier when one
considers the existence of a risk-free asset. Basically, the market portfolio contains all risky
assets in the market, weighted according to their market values. It serves as a representation
of the overall market. Since the weights are the market values of the assets, the bigger a
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company and its market capitalization is, the higher is its impact on the performance of
the market portfolio.
The goal of the market portfolio is to provide a very well-diversified representation of the

entire market by including all possible risky assets. This is done to spread the risk across
different assets and reduce the impact of poor performance in a single asset. In reality, such
a portfolio is nearly impossible to implement or generate and therefore market indices, such
as S&P 500 or MSCI World, are used as market portfolios. The market portfolio and thus
the capital market line are a feasible theory only if the risk-free return R is smaller than
the expected return of the minimum variance portfolio. Else an investor would have no
interest in taking on some risk if he can get more reward when taking no risk. In reality this
assumptions hold in nearly all cases, since very secure assets usually do not hold remarkable
returns.[18][p.67 ff.]
Now, we do a little excursion into linear regression. Let X and Y be random variables

taking real values as well as Z be the n-dimensional vector-valued random variable. the
next step is to perform a linear regression of both X and Y on Z. To do this, we look at
the corresponding model

X = αx + βxZ +Resx

and minimize the sum of squared residuals

Resx = min
αX ,βX

n�
i=1

(Xi − αX − βXZi)
2

by using ordinary least squares. This results in the residuals having the form

Resx = X − (αX + βXZ).

The analogue procedure is for the regression of Y on Z. Now, we calculate the correlation
between those residuals and end up with the following definition.

Definition 5.2.1 (Partial Correlation Coefficient). The partial correlation between two
random variables X and Y given a set of controlling variables Z is defined as the correlation
between the residuals of X and Y .

ρXY ·Z =
ρXY − ρXZρY Z�
(1− ρ2XZ)(1− ρ2Y Z)

(5.24)

The partial correlation coefficient then can be used to calculate the weights of the market
portfolio by using the following formula

m =
C−1(µ−R1)

1TC−1(µ−R1)
(5.25)

where C is the covariance matrix of the whole market, µ is the vector of the individual
returns and 1 is a vector of just ones. Moving forward, one can calculate the expected
return µm of this portfolio m.
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5.2.5 The Capital Market Line

Now, we can use this µm to get a more general form of the formula 5.23. With the same
assumption about the risk-free rate, for any portfolio w holds

µw = R+ βw(µm −R). (5.26)

By using this expectation and the according standard deviation σm, we can draw a line
through the points (0, R) and (σm, µm) or in the form of an equation

µ = R+
µm −R

σm
σ. (5.27)

This graph is called the capital market line (CML). The last term on the right µm−R
σm

σ is
also called the risk premium.
If all investors use the mean-variance optimization and believe in the same parameters

for the model, i.e. the same expected returns on the assets and same covariance matrix.
Then all optimal portfolios would lie on the capital market line.
Since all investors share the same beliefs on the expected returns and the covariance

matrix, they would all compute the same efficient frontier as well as the same capital market
line for everybody. To achieve the individual portfolio ωPF with the desired risk-return
profile, each investor would buy a combination of the risk-free asset ωRFR and the risky
portfolio, i.e. the market portfolio ωM . Therefore, the calculation is very straightforward
with the parameter α.

ωPF = αωRFR + (1− α)ωM (5.28)

One can see easily that this linear combination never leaves the capital market line, which
is drawn straight from the risk-free asset to the market portfolio.
In other words, every investor should invest in the mix of the risk-free asset and the

market portfolio. The only difference between them would be their risk aversion, so how
they weight these two ingredients.
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Figure 5.2: Example of the Capital Market Line[19]

As one can see in figure 5.2 the Capital Market Line is tangent to the efficient frontier
and the point of tangency is exactly the market portfolio. Depending on the risk appetite
of an investor, their portfolio is more to the left, if they are more conservative and risk
averse and more to the right, if they are more aggressive in their approach of investing.
[18][p.62 ff.]

5.2.6 The Sharpe Ratio

The slope of the capital market line is also called the Sharpe Ratio due to its discoverer,
the before mentioned William F. Sharpe. It is a risk-adjusted performance measure since
it takes both the return and the risk of an investment or portfolio into account. This key
figure helps an investor to evaluate if the additional risk taken is justified by the additional
return of the security and is a way to compare investments on a risk-adjusted basis. To put
it more formally, it measures the return, that exceeds the performance of the benchmark
or risk-free rate, per unit of risk taken. Therefore, a high Sharpe Ratio, usually above 1, is
desirable. The formula is implicitly already described in equation 5.27

SRm =
µm −R

σm
. (5.29)

for the benchmark, i.e. the market portfolio. The general form for a portfolio w is

SRw =
µw −R

σw
. (5.30)
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The optimal Sharpe Ratio is the one for the market portfolio. This portfolio gathers the
most additional return over the risk free rate per unit of risk that the investor takes on.

Example 5.2.2. Let the risk-free rate R be 2%. Assume the expected return of the market
portfolio µm is 5% and its standard deviation σm is 15%. Then the Sharpe Ratio can be
calculated.

SRm =
0.05− 0.02

0.15
= 0.02 (5.31)

Therefore, the Sharpe Ratio of the market portfolio is 2% and at the same time optimal.
The investor with this portfolio strategy gathers 2% more return than the risk-free rate for
every percent of its standard deviation. Every other portfolio is below this threshold and
delivers less return per unit of risk.

This key figure has in practice a quite important role. It is used by many investors, who
seek to assess the risk-adjusted performance and compare investments. To sum it up, the
Sharpe Ratio is a very powerful tool to make investment decisions based on the risk-return
trade-off of assets. However, one should also keep in mind that the standard deviation does
not capture all aspects of risk, since financial assets are often not normally distributed.
Due to this reason, there are also strategies with high Sharpe Ratios that lead to losses.
[20]

5.2.7 The Security Market Line

The next indicator derived from the CAPM is the security market line (SML). This graph
is quite similar to the capital market line but instead of the (σ, µ)-plane we have a look at
the (β, µ)-world. Using formula 5.23 one can draw a straight line there and see that the
intercept with the y-axis is again the risk-free rate R and the slope is (µm −R).

Figure 5.3: Example of the security market line [21]
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This line demonstrates how all portfolios and assets behave in a market equilibrium
compared to the market portfolio, i.e. that all investments do in fact reward the investor
for their risk if they lie above this line or vice versa do not otherwise.
Let us see the return in formula 5.23 as the required return, that means how the market

sees the expected return on a given security. Hereby, the market view would be an average
of all market participants. One can imagine, that every single one of them has a sligthly
different view and opinion on each asset. If one investor believes, that for a given security
the true expected return is higher than the required return, i.e.

µi > R+ βi(µm −R), (5.32)

then he believes that this asset is underpriced. That means that it would lie above the
capital market line in figure 5.3. Conversely, if he believes that the security underperforms
the expected return, then it would lie beneath it and would therefore be overpriced. In
both cases, something similarly would happen. For underpriced assets, more and more
investors would buy this specific asset, which would increase the price of it due to the risen
demand. Overpriced assets would similarily get sold or even shorted, which would lead to
a price drop. Due to this chain reactions, one should observe price adjustments to reach
the equilibrium of the CAPM formula again. [18][p.67 ff.]

5.2.8 Conclusion

As a result, the capital asset pricing model provides a theoretical framework to estimate
expected returns based on their risk factors and use those to calculate theoretically opti-
mized portfolios. With this informations, investors can achieve a better understanding of
the systematic and specific risk, that they take by investing in their portfolio. This allows
them to make better informed decisions on purchasing and selling certain assets.
However, they also have to keep in mind the downsides of this model. As with all models,

it cannot fit the whole truth into it and made some assumptions that may not hold in the
real world. Additionally, it is only one of many tools on the way to prepare oneself for the
financial world and should not be used as a sole information base.

5.3 The Entropy Model

One of the main problems, when it comes to mean-variance portfolio optimization, is that
often the resulting portfolios are highly concentrated in a few assets. This stands in contrast
to the diversification principle that lies beneath the whole idea of optimal investing. In
general, this disadvantage can be traced back to the statistical errors, that occur when one
estimates the inputs of the mean-variance model. As already mentioned, those errors then
can lead to very extreme positions in the portfolio.
To prevent this to happen, one can use a different approach by measuring the diversity or

randomness within a portfolio. This can be done by using the Shannon entropy, introduced
in 1948 by Claude Shannon. Although, Shannon was an expert in information theory and
his Entropy measure is of great use in physics as well, it found its way into the modern
portfolio theory.
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Another advantage of using entropy is that it always exists as opposed to the variance,
which can in theory also expand to infinity.
This section aims to explain the theoretical foundations, methodology and practical

implications of the incorporation of the entropy measure into the portfolio optimization
process.

5.3.1 The Shannon Entropy

As mentioned before, Shannon had great expertise in the field of information theory and
introduced the concept of entropy in conjunction with communication theory. The goal of
it is to measure how much randomness is included in the distribution at hand. In other
words, it represents the degree of uncertainty or disorder in an event. Another way to
imagine it, is to see it as the average amount of information needed to describe the possible
outcomes of a random variable.

Definition 5.3.1. Given a discrete random vector X with probability distributions P =
(p1, p2, ..., pn) that satisfy the normalization condition

�n
i=1 pi = 1., we can define the

entropy in formula notation as

H(P ) = −
n�

i=1

pi log(pi), (5.33)

where pi is the probability of event i and log(pi) the information that it contains.

Theorem 5.3.2. This entropy concept has three very important mathematical properties,
which are very useful when using the mean-variance model.

(a) The first such characteristic is the non-negativity.

(b) Another property of the Shannon entropy is that there exists a maximum and a min-
imum value. The maximum value is reached when pi =

1
n for i = 1, .., n

H(P ) = −
n�

i=1

1

n
log(

1

n
) = − log(

1

n
) (5.34)

and the minimum value is achieved when exactly one pi = 1 and all others are 0.
Then the formula delivers H(X) = − log(1) = 0. These optimums are also unique
due to the next property.

(c) The last of the three characteristics is the strict concavity of the entropy function.

Proof. To prove (a), one takes 0 ≤ pi ≤ 1, log(pi) ≤ 0 and −�n
i=1 pi log(pi) ≥ 0. Then it

can easily be shown with the definition of the natural logarithm that equality only happens
when exactly one of the pi = 1 and all others are equal to 0. In the context of the portfolio
optimization process, the entropy is incorporated in the objective function to determine the
portfolio weights. Therefore, the obtained weights are automatically non-negative, which
implies that the entropy model assumes no short-selling at all.
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The proof of (b) and (c) can be done by applying the definition of strictly concave on
two different random vectors P and Q with the parameter ω ∈ (0, 1). This delivers the
inequality

ωH(P ) + (1− ω)H(Q) ≤ H(ωP + (1− ω)Q) (5.35)

−ω
n�

i=1

pi log(pi)− (1− ω)
n�

i=1

qi log(qi) ≤ −
n�

i=1

(ωpi + (1− ω)qi) log(ωpi + (1− ω)qi)

(5.36)

This can be transformed into

ω
n�

i=1

pi log
�ωpi + (1− ω)qi

pi

�
+ (1− ω)

n�
i=1

qi log
�ωpi + (1− ω)qi

qi


 ≤ 0. (5.37)

In this last inequality, the equality is only reached when P = ωP + (1− ω)Q, which would
mean that P is exactly identical to Q. However, this contradicts the assumption that
P ≠ Q and therefore the equality cannot be reached. Furthermore, we know for sure that
the natural logarithm is concave and therefore can use the Jensen Inequality. This delivers
the following

n�
i=1

qi log
�ωpi + (1− ω)qi

qi

�
≤ log

� n�
i=1

qi
ωpi + (1− ω)qi

qi

�
= log

� n�
i=1

pi

�
= log(1) = 0.

Now we can use this result in equation 5.37 for both terms in the same way and see that
the inequality stands since both ω and (1− ω) are greater than 0. This also concludes the
proof of the strict concavity of the entropy function. [2]

5.3.2 Relative Entropy and Cross-Entropy

There are also some other entropy measures beside the Shannon entropy, that can also be
shown useful for portfolio optimization.

Theorem 5.3.3. (Gibbs’ inequality) To start off, consider two different, discrete probability
distributions P and Q. The Gibbs inequality holds for all such distributions.

−
n�

i=1

pi log(qi) ≥ −
n�

i=1

pi log(pi) (5.38)

In the case of continuous probability distributions, it is defined by using the probability
density functions p(x) and q(x).

−
� ∞

−∞
p(x) log(q(x))dx ≥ −

� ∞

−∞
p(x) log(p(x))dx (5.39)

28



5 Portfolio Models

Proof. Let’s start off with the discrete case. The proof again relies on the strict concavity
of the natural logarithm and the Jensen inequality. For two probability distributions the
following inequality holds.

log

�
n�

i=1

pi
qi
pi

	
≥

n�
i=1

pi log
� qi
pi

�
(5.40)

On the left side, one can simplify the term and use that the sum over all qi is equal to 1.

log(1) ≥
n�

i=1

pi log
� qi
pi

�
(5.41)

0 ≥
n�

i=1

pi log(qi)−
n�

i=1

pi log(pi) (5.42)

The proof for the continuous case can be done analogously.

Then we can define the cross-entropy between discrete distributions P and Q as

H(P,Q) = −
n�

i=1

pi log(qi) (5.43)

and for continuous ones as

H(P,Q) = −
� ∞

−∞
p(x) log(q(x))dx. (5.44)

One can show easily that equality only holds if P and Q are the same distribution. In
the context of portfolio optimization, it measures the dissimilarity between the predicted
returns of a portfolio and the observed ones and it is therefore often used as a loss function.
To go further into detail, we can look at the difference between the cross-entropy and

the already introduced Shannon entropy.

KL(P,Q) = H(P,Q)−H(P ) (5.45)

=
n�

i=1

−
n�

i=1

pi log(qi) +
n�

i=1

pi log(pi) (5.46)

=
n�

i=1

pi log
�pi
qi

�
(5.47)

This is called the relative entropy or also the Kullback-Leibler divergence. It compares the
chaos or uncertainity in the two distributions or, in other words, it is a measure of how one
probability distribution diverges from a second one. The continuous version again looks
like this:

KL(P,Q) =

� ∞

−∞
p(x) log

�p(x)
q(x)

�
dx (5.48)

However, if the distribution P is known, the relative and cross-entropy can be viewed
equivalently since the entropy of P becomes a constant and the only difference between
the two measures. Therefore, we can choose one of them for our optimization model going
forward. [22]
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5.3.3 Entropy Model

The model itself is quite similar to the basic Markowitz model itself. With the same
assumptions taken in chapter 5.1, one can adapt the markowitz model (5.7-5.9) to include
the Shannon entropy of the portfolio P with n assets itself.

min V(R)− λH(P )) (5.49)

s.t. E[R] ≥ µ (5.50)

and

n�
i

pi = 1 with 0 ≤ pi < 1, i = 1, 2, ..., n. (5.51)

Again, pi stands for the weight of the i-th asset in the portfolio and R is the aggregated
return. Additionally, there is the real constant λ, which is chosen according to the risk
appetite and strategy that the investor wants to pursue. It affects the impact of the entropy
on the optimization. The idea of this concept is to minimize the variance and to maximize
both the return and the entropy at the same time.

Theorem 5.3.4. The solution to the minimization problem 5.49 is unique.

Proof. Firstly, it is necessary to show that the following function is convex.

f(x) = λ(V(R)− ζH(P ))− E[R] (5.52)

Since the covariance matrix is positive definite, the first term is convex as a function of the
portfolio weights for λ > 0. The entropy is a concave function as shown above. This leads
to the second term being convex, if both λ > 0 and ζ > 0. The last term is linear as a
function of the weights and therefore does not impact the overall convexity. All in all, the
function is convex and therefore any local minimum is a global minimum. Furthermore,
there only exists one such minimum within the feasible region, since this region is also
convex due to the constraints. [2]

5.3.4 Entropy Transformation

As already described in the introduction, companies may have different goals to reach.
They might have subportfolios in their portfolio where they try to achieve different levels
of return with different levels of risk as well. For instance, insurance companies have so
called fund-linked life insurance products. Within those subportfolios, the percentage of
equities can vary, since they are both the riskiest as well as the most profitable assets in
general.
So how can this be incorporated in the optimization model? We propose to incorporate

the Kullback-Leibler divergence, already described in (5.45-5.47). Replacing the entropy
in (5.49-5.51) with the KL divergence should do exactly what we want.

min V(R)− λKL(P,Q)) (5.53)

s.t. E[R] ≥ µ (5.54)

and

n�
i

pi = 1 with 0 ≤ pi < 1, i = 1, 2, ..., n. (5.55)
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This way, an investor can tell the model, what preferences he has regarding the asset
weights and the model tries to optimize the weights with respect to that. This increases
the flexibility of the optimization process immensely since the investor is not constrained to
a uniform distribution of his weights. It enables the optimization of benchmarks in regard
to risk tolerance by incorporating investment strategy or market views. Furthermore, this
model still tries to make a more stable and predictable portfolio performance as extreme
allocations are discouraged and the weights seen over time tend to be smoother than with
convential mean-variance analyses. The uniqueness of the solution follows with theorem
5.3.3 and the convexity of the KL divergence.

5.3.5 Adapted Entropy Model

The choice for the parameter λ in the previous model could turn out to be quite problematic
since the market can be very dynamic and require it to change over time. To achieve such
an adaption, one could include λ as a variable depending on different observations rather
than a pure constant.

min V(R)− λtH(P ) (5.56)

s.t. E[R] ≥ µ (5.57)

and
n�
i

pi = 1 with 0 ≤ pi < 1, i = 1, 2, ..., n. (5.58)

This definition is equivalent to the one in the standard entropy model (5.49-5.51) with
the addition of λ introduced as a stochastic process. The big question is how to model
said dynamic parameter λ based on the historic data. In this thesis, we try out different
approaches to see what would work best.

Empirical Testing

This method is probably the most straight-forward one there is. We plug in values from
0 to 1 with steps of 0.01 for our λ into the entropy model (5.49-5.51) and optimize the
portfolio. This way the effect of the parameter is directly observable. Then based on
what λ produces the highest realized Sharpe ratio in the sample, we decide to take that.
Although, this method takes up the most resources since there are more optimization runs
to be done in each time step.

Performance Based λ

Let’s take time steps to be one month and the vector of the portfolio weights belonging
to the previous month t− 1 is Pt−1 = (p(1,t−1), p(2,t−1), ...p(n,t−1)). Analogously, the return
of the time step is in the vector Rt−1 and the expected return of each asset i is also put
into the according vector Mt−1 = E[Rt−1]. Additionally, we also have the n× n covariance
matrix of the past step Vt−1 = E[Rt−1 − E[Rt−1]]

2.

31



5 Portfolio Models

Suppose a starting value λ0. With this starting value, we can optimize the first portfolio.
From there,we can calculate a value for each time step t by using the following formulae

µt = P T
t−1Rt.

This corresponds to the actual return in the past month. Now, we can compare this figure
to our target return µ. Depending on that, we can adjust our λ in the following ways.

• Performance risk-affine: If we failed to meet our target return, i.e. µt < µ, we try
to increase the parameter.

λt = λt−1 + µt (5.59)

The idea of this is, that the optimization penalized the risk of the assets too much.
Since risky assets come with more volatility but also more possible gains, the risk term
in the optimization tends to give them smaller weights than. Therefore, increasing
the parameter leads too less focus on the risk and we might increase the performance
for the next term.

If the return exceeds our target, the investor might want to decrease the risk further
and secure his gains. Due to this, we can decrease the λ:

λt = λt−1 − µt

• Performance risk-averse: What if the investor thinks exactly the other way around?
His idea might be that when the target is not met, the risk was too high. Conse-
quently, he wants to decrease the λ to get more emphasis on the risk term.

λt = λt−1 − µt (5.60)

Of course, if the target is met, the investor might seek to increase the λ since the
markets are going good in his opinion and the need for risk-aversion is not so high.

λt = λt−1 + µt

As a result, this model can adapt to the different effects that can be observed on the
financial market by adding this dynamic parameter λt due to the fact that it considers also
the diversification of the portfolio and thus creates a more robust one. The question is now
which way the optimization works the best. [2]
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The data used to test these models was provided by the Niederösterreichische Versicherung
AG. Specifically, the optimization was done with four different asset classes, each repre-
sented by an according index. The data was provided on a monthly base from 31.12.1998
on until 30.09.2024. The four indices are shortly described in this section.

6.1 Global Equities

The MSCI World index is one of the most famous indices out there. It tracks the perfor-
mance of companies from large to mid-size market capitalisation in the developed world.
Approximately 85% of the free float-adjusted market cap is covered in each of the countries,
that are monitored by this index. There is no restriction to any sectors, which provides a
broad representation of the global equity market.

6.2 Government Bonds

The next index is one to measure fixed-income investments. More specifically, it is designed
to track the performance of Euro-denominated government bonds with maturities over one
year. Governments in the Eurozone tend to have a higher level of credit quality, which
represents their low risk of default and high stability. However, this also leads in general
to lower coupons than for other fixed-income investments, which was observable in the last
decade, where the interest rates were close to zero. All in all, it provides a comprehensive
and reliable benchmark for government debt performance inside the Eurozone.

6.3 Corporate Bonds

Another component of the money market are corporate bonds. The index used to track
them consists of fixed-rated bonds issued by a diverse range of corporate entities, including
the industrial, utility or financial sector. All of them are denominated in Euro to avoid
currency risk within the index. To be included, they have to have an investment-grade,
which ensures a higher credit quality and leads to lower default risk. To sum up, this index
delivers a transparent and objective benchmark for the performance of liquid investment-
grade corporate bonds in the Eurozone market.
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6.4 Emerging Market Bonds

Since the previous indices have more of a focus on Europe or other developed countries,
the last one aims to track a different class of bonds. It tracks the performance of corporate
bonds issued in hard currencies by companies in emerging markets such as China, Brazil
or South Africa. The requirement of an investment-grade is similar to the previous ones,
making it also less risky than benchmarks with not rated bonds. To mitigate currency
risk, the index also includes a hedging mechanism, ensuring more stable returns while
also strengthening the comparability with the other indices used. Again, a broad range
of different sectors are tracked, delivering a good overview of corporate bonds in emerging
markets.
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7 Results

The models were all implemented using the software R. First off, the three described model -
Mean-Variance (MV), Entropy (E) and Adapted Entropy (AE) were tested without a target
return. This means, they solely produce their respective minimum variance portfolio. It is
important to note, that here the λ in the Adapted Entropy model was always chosen by the
empirical testing method, since the model lacked a target to beat in terms of performance
and therefore the decision on how to proceed in the other methods. For the standard
entropy model, the test included λ in the range of [0, 1] to see some differences there as
well. From thereon, the target return was introduced to create the efficient frontier in
respect to each of their risk measures.
After this first stage of testing, three fictive benchmarks were introduced to see which

model performed the best in regard to those. For the three standard models, weight
boundaries were added to make them comparable to the benchmark. Additionally, the
entropy transformation was tested for both the Entropy and the Adapted Entropy model
to see, how the weights and performance evolved with this change. Moreover, the different
methods on how to choose the λ in the Adapted Entropy were tested alongside, to also
monitor their impact on the optimization.

7.1 Standard Optimization

To start things off, we did the optimization without a return target to get a feeling for
how the various models behave. As already mentioned, the data is available from the year
end of 1998 so we start there. To estimate the covariance as well as the expected returns,
we take the first 10 years as our sample, therefore the start of the optimization is the
31.12.2008. Then, the portfolios are calculated on a monthly basis. This way, the weights
can be adjusted on a monthly basis based on new information. The sample data for the
parameter estimation is also moving along over time. In other words, for every time step,
that is added to the sample, the oldest data is deleted to have a bigger focus on more recent
data.

7.1.1 Performance

When simply minimizing the respective risk, the entropy model generated a higher per-
formance compared to both the mean-variance and the adapted entropy model due to its
approach in weighting equities as can be seen in table 7.1.1 and figure 7.1. The key reason
here is that the entropy model does not avoid the risk of equities as much as the other two
models, since it is more focused on the uniform distribution between the asset classes. By
doing so, it captures a broader range of market movements. In other words, this model
seems to perform better as the impact of any single asset’s poor performance is mitigated
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Figure 7.1: The cumulated performance of the three optimization methods from 2008 until
today

by the equal presence of other assets in the portfolio. The volatility however is also higher
compared to the other two models. This is not surprising as the main focus in this model
is not on the risk. The Sharpe ratio on the other hand is also increased. The entropy
portfolio therefore seems to return a better trade-off between its risk and return making it
more appealing.

Model Return p.a. Vola p.a. Entropy Sharpe Ratio

Mean-Variance 2, 89% 4, 58% 0, 46 63, 04%

Entropy 5, 67% 5, 90% 1, 39 70, 33%

Adapted Entropy 3, 68% 5, 24% 1, 39 96, 02%

Table 7.1: Key figures for the three models in the standard optimization run

In contrast, the mean-variance model focuses on minimizing the risk. While effective, this
model can - as already mentioned - sometimes lead to portfolios that are overly concentrated
in assets with historically high returns and lower variance, potentially increasing risk if
market conditions change.
The adapted entropy model, on the other hand, underperformed primarily due to its

choice of lambda, a parameter that controls the trade-off between entropy and volatility.
For most of the time, the lambda calculated by empirical testing was close to zero, which
means the model leaned heavily towards the mean-variance. This resulted in portfolios
that participated less in the increases in the market.
The evolution of the parameter λ can be seen in figure 7.2. Two time steps stand out to

the others. At the start the mean-variance model always returns a portfolio with a higher
Sharpe ratio than the adapted entropy model until September of 2018. In this specific time
step, the algorithm cuts off a month, where the emerging market bonds performed excep-
tionally bad with a loss of over 20%. As already observed, the mean-variance optimization
does not include this asset class at all. This leads to a jump in the return and volatility of
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this asset which is also used for the calculation of the Sharpe ratio and consequently the λ.
Therefore, the entropy slightly starts to get involved up until July of 2021. Here, the same
argument can be stated for the emerging market bonds as well as equities. However, in this
time step the situation gets turned upside down. The λ jumps to 1 and stays there until
the rest of the timeline. This brings up the question, if this method is too unstable and
sensitive to use. This is gonna be discussed in section 7.3 together with the other methods
to calculate it.

Figure 7.2: Choice of λ by empirical testing over time

7.1.2 Weight Evolution

The evolution of the weights for each portfolio can be seen in figure 7.3. One has to notice
the breaks of the y-axis for each model. The mean-variance and adapted entropy model
both have quite a big range, while the entropy model never really deviates much from the
25% mark, since there is maximum entropy reached. Here, one can see perfectly that the
AE portfolio tracks the MV one almost exactly up until the year 2019. What happens
then is that the MV model invests even more in corporate bonds, which makes it even less
appealing. Therefore, the λ parameter changes very quickly from 0 to 1 and it tracks the
entropy version.
Another advantage of the entropy optimization can also be observed, when looking at

these graphs. While the mean-variance has big changes in its portfolio and even excludes
one asset class completely, the entropy model moves rather smoothly. The size of the jumps
and the evolution itself is way more robust than in the former. In reality, this would be
also the goal of an investor since very few of them want to reallocate their whole portfolio
on a monthly basis, but make rather small changes to it to generate more stability.
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Figure 7.3: Weights of the asset classes for each optimization model over time

7.1.3 Efficient Frontiers

Moving on, we also visualized the efficient frontier in regard to the two different risk mea-
sures, the volatility and volatility reduced by the entropy. This is necessary due to the
efficient frontier changing according to which objective was pursued in the optimization.
The graphs on display respond to the last timestep in the optimization process since it is
always drawn for one time step. Consequently, the adapted entropy portfolio was left out
since in the last time step λ = 1 and therefore its efficient frontier was the same as for the
entropy model.
What can be observed in the graph 7.4 is, that in regard to the volatility, the mean-

variance optimization always performs better. The entropy model delivers a bit of a be-
wildering graph. The maximum return portfolio for both models is the same, since this
corresponds to the asset class with the highest expected return. Both algorithms need to
invest 100% in that to reach the most return. This portfolio however is not the one with
the highest volatility in the set of optimal ones returned by the entropy optimization.
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Figure 7.4: The efficient frontier in regard to volatility

However, as soon as we change the risk measure and subtract the entropy from the
volatility, we end up with figure 7.5. There, one can see that the mean-variance model
delivers a rather wild graph up until an expected return of 5%. From there the deviance is
shrinking due to the fact that the impact of the entropy is shrinking since both models need
to invest in asset classes with higher expected returns. Figure 7.6 displays the evolution of

Figure 7.5: The efficient frontier in regard to volatility reduced by the entropy

the asset weights for the portfolios on the efficient frontier. It emphasizes the statement
above. With a low target return, the entropy model on the right can equally distribute the
portfolio, but the higher the goal is, the more it has to deviate from that as only emerging
markets have an expected return over 6% at this point in time.
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Figure 7.6: Weights of the asset classes of the optimal portfolios - on the left for the mean-
variance model and on the right for the Entropy model

To put it in a nutshell, in the first tests we saw that the entropy model performs quite
well compared to the mean-variance model, although the volatility increases when investing
in an uniform way. Nonetheless, the Sharpe ratio was higher in the entropy model making
it the best in terms of risk-return trade-off. Therefore, it seems quite appealing for an
investor to distribute his capital equally.

7.2 Optimization of Benchmarks

The next step in the optimization is to see how the models can perform, when trying
to track a certain benchmark. For this purpose, three fictive sets of index weights were
constructed - conservative, balanced and dynamic. These names relate to the weight of
the equity and emerging markets in the set. The more these asset classes are involved, the
riskier - or dynamic - the portfolio becomes. The exact weights are displayed in table 7.2
below.

Benchmark Government Bonds Corporate Bonds Equities Emerging Market Bonds

Conservative 70% 10% 20% 0%

Balanced 40% 15% 40% 5%

Dynamic 10% 20% 60% 10%

Table 7.2: This table shows the weights of the asset classes for each benchmark.

Moreover, the different models were given an additional constraint to make them compa-
rable. The target return µ was calculated as the expected performance of the benchmark
in each time step. Since the weights of that index set do not change, this measure can be
calculated easily. Moreover, this ensured, that all of the models had the same constriction
to build something profitable.

7.2.1 Conservative Benchmark

To start off, we have a look at the supposedly least volatile and safest of the three weight
sets. To the three already tested models were another two added. Both of the entropy
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and adapted entropy got transformed as described in section 5.3.4 so that their aim is not
equally distributed weights, but to distribute the capital like the benchmark itself. In the
following, these two are called entropy to benchmark and adapted entropy to benchmark.
However, both still try to minimize the variance as well.

Figure 7.7: Performance of all five models compared to the conservative benchmark

As one can see in figure 7.7, the entropy portfolio outperforms the rest of the models
by quite a margin in regard to the return. This makes sense since here both of the riskier
asset classes emerging market bonds and equities are more included than in the other asset
classes. Interestingly, this portfolio performed exactly as in the standard optimization
run. That means that it actually can achieve the expected target return with its optimal
portfolio in regard to its risk measure. The adapted entropy on the other hand also returns
a better performance than the benchmark. Both of those methods also achieve a higher
Sharpe ratio than this fixed index set as one can see in table 7.2.1 below.
The benchmark itself has only very limited focus on equities and excludes the former en-

tirely so it is not surprising, that it misses that much performance. The entropy model that
used the Kullback-Leibler divergence instead of the Shannon entropy tracked the bench-
mark almost perfectly. However, the adapted entropy model with the same transformation
did have less performance. This is also understandable, since it tends to track the mean-
variance, if the Sharpe ratio of that is better and ends up between the benchmark and the
Markowitz model.
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Model Return p.a. Vola p.a. Entropy Sharpe Ratio

Balanced Benchmark 4, 41% 5, 30% 0, 80 83, 21%

Mean-Variance 3, 41% 4, 66% 0, 34 73, 23%

Entropy 5, 67% 5, 90% 1, 39 96, 21%

Entropy to Benchmark 4, 38% 5, 28% 0, 83 82, 96%

Adapted Entropy 4, 64% 5, 31% 1, 39 87, 35%

Adapted Entropy to Benchmark 4, 06% 5, 08% 0, 83 79, 93%

Table 7.3: Key figures for the models compared to the conservative benchmark

Figure 7.8: Weights of the asset classes of the optimal portfolios for the conservative bench-
mark

The weights of each of the optimized portfolios is visualized in figure 7.8. As already

42



7 Results

said in the previous section, the weights of the mean-variance portfolio tend to deviate a
lot and also overly concentrate in specific asset classes whereas the two entropy portfolios
almost perfectly track their respective equilibrium. The question is here, if the entropy
gets too much attention or the target return is too low, but more in the analyses of the
balanced and dynamic optimization.
The adapted entropy portfolios do tend to jump also quite. The calculation of λ is not

really smooth so they change from the entropy to the mean-variance method very fast. In
reality, no company would want to overhaul their portfolio in such fast and dramatic way.

7.2.2 Balanced Benchmark

Next up is the index set, that has a more balanced approach between risk and return.
Again, all five of the portfolio models were calculated with the goal of reaching the same
expected return in each time step as the balanced benchmark.
The picture already turned here, where no portfolio could outgain the benchmark. The

adapted entropy with the KL divergence again stayed very close to it. All of the others
failed to get as much as return as the two as one can see in table 7.2.2. The Sharpe ratios
however are all quite close to each other except for the mean-variance one, which could
indicate that those are still very risk efficient except for the latter.

Figure 7.9: Performance of all five models compared to the balanced benchmark

Except for the transformed entropy model, all of them had to make adjustments to their
weight distribution to reach the excepted return. The mean-variance had to give more focus
to equities as well as emerging market bonds to get more return but excluded corporate
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bonds for a long time in respond to that. The entropy optimization had to deviate quite
strongly compared to the tests before. In other words, if the expected return target rises,
it has to deviate more from its equilibrium.

Figure 7.10: Weights of the asset classes of the optimal portfolios for the balanced bench-
mark
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Model Return p.a. Vola p.a. Entropy Sharpe Ratio

Balanced Benchmark 6, 70% 6, 72% 1, 16 99, 66%

Mean-Variance 4, 52% 5, 22% 0, 80 86, 68%

Entropy 5, 81% 5, 97% 1, 39 97, 39%

Entropy to Benchmark 6, 63% 6, 66% 1, 19 99, 58%

Adapted Entropy 5, 61% 5, 73% 1, 39 97, 99%

Adapted Entropy to Benchmark 6, 12% 6, 02% 1, 19 101, 76%

Table 7.4: Key figures for the models compared to the balanced benchmark

7.2.3 Dynamic Benchmark

Last but not least, we have a look at the optimization with the highest percentage of
equities included. The trend of the last section continues as the benchmark soars with
the transformed entropy method a close second. What is really noticeable through these
three test runs, is that the Sharpe ratio of the adapted entropy optimization with the KL
divergence as objective surpassed all others as one can see in table 7.2.3. Meanwhile, the
portfolio produced by the Markowitz model struggles to generate more return as well as a
higher Sharpe ratio.

Figure 7.11: Performance of all five models compared to the dynamic benchmark
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Model Return p.a. Vola p.a. Entropy Sharpe Ratio

Dynamic Benchmark 9, 04% 8, 81% 1, 09 102, 62%

Mean-Variance 5, 54% 6, 27% 0, 87 88, 29%

Entropy 7, 17% 7, 28% 1, 36 98, 50%

Entropy to Benchmark 8, 93% 8, 70% 1, 13 102, 67%

Adapted Entropy 6, 86% 6, 91% 1, 36 99, 25%

Adapted Entropy to Benchmark 8, 21% 7, 44% 1, 13 110, 36%

Table 7.5: Key figures for the models compared to the dynamic benchmark.

Figure 7.12: Weights of the asset classes of the optimal portfolios for the dynamic bench-
mark

The weights do continue the trend that we saw earlier. The entropy model has to re-
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adjust its weights on a regular basis and is far from an uniformely distributed portfolio. In
general, all of the models take on a much higher investment in equities than before. The
stakes in emerging markets also continued to rise, while both the government and corporate
bonds lost their impact in the portfolios.

7.2.4 Conclusion

To sum up, we saw that the entropy portfolio does bode quite well. In every optimization,
it returned a stable Sharpe ratio of close to 100%. In other words, this model achieved a
very risk efficient portfolio, although the higher the target gets or the more the benchmark
deviates from the uniform distribution, the more it has to vary its weights.
The adapted entropy method on the other hand did what we expected from it. It returned

a portfolio that was between the benchmark and the mean-variance portfolios. This way,
it always provided an overproportionate increase of return compared to the additional
volatility to the mean-variance portfolio.
The change from the Shannon entropy to the Kullback-Leibler divergence seemed to

perform especially well, when used in combination with a higher risk appetite and the
adapted entropy model. In the last test, it scored the highest Sharpe ratio. Compared to
the entropy model, it increased the return per anno over 1% while only taking on 0, 16%
more volatility.

7.3 Performance-Based Parameter Calculation

The last open question is the change to different methods to calculate λ. The model on its
own performed rather well. The evolution of the parameter however is quite sensitive as
can be seen in figure 7.13, where its change over the time is visualized.

Figure 7.13: The evolution of λ in the adapted entropy model over the time

Therefore, we tried to adapt the way of the calculation as described in section 5.3.5. This
was tested using the dynamic benchmark since there the adapted entropy portfolio with
benchmark transformation scored the highest Sharpe ratio.
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Figure 7.14: The performance of the adapted entropy model for different λ calculation
methods

In the standard adapted entropy case, the different models however delivered no real
change to the performance, which can be observed in figure 7.14. While the approach of
increasing λ when the return target is not met, i.e. the performance risk-affine method,
had a minimally higher return than the empirical version, its volatility rose more so that
the Sharpe ratio went down. The other direction had a lower volatility as well as a lower
performance, with a Sharpe ratio of just over 100%. Therefore, no real improvement had
been achieved in this case although the evolution of λ did differ quite a lot, as can be seen
in figure 7.15.

Figure 7.15: The evolution of λ in the different models

On the other hand, the spread of the results was higher in the version with the Kullback-
Leibler divergence. Both versions of the performance-based λ calculation increased the
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performance of the portfolio. However, the volatility in both cases rose disproportion-
ately leading to a shrinking Sharpe ratio. Due to this, the adapted, transformed entropy
optimization model with the empirical λ method returned the most risk-efficient portfolio.

Figure 7.16: The performance of the adapted entropy model with entropy transformation
for different λ calculation methods
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8 Conclusio

All in all, the mean-variance method developed by Markowitz is a fundamental component
of portfolio optimization regardless of its limitations and weaknesses. There are countless
approaches to sophisticate and improve it and the inclusion of entropy works quite well.
Both the entropy and adapted entropy method described in this thesis can deliver a more
risk-efficient and diversified portfolio. The concentration in a few assets is the most focal
point that is improved by these two models. However, one has to be careful with the
different inputs and estimators used. A different way of estimating the expected returns of
the assets, can change the weights of the whole portfolio.
Moreover, the model itself is also very sensitive to the parameter λ. The different ways of

calculation always have a trend which direction the parameter tend to approach. Therefore,
there might be more improvement, if a more robust way of calculating it is introduced.
Nonetheless, the goal of producing a more stable portfolio compared to the mean-variance

method was succesfully reached. The portfolios calculated by the proposed models tended
to have higher returns in the backtests as well as a better Sharpe ratio.
One of the questions of this thesis was also how to improve a certain benchmark. This was

thoroughly tested, however not so easily answered. The problem of beating the performance
of such a specified static portfolio in reality, is that it is strongly dependent on what the
weights and the aim of said benchmark is. Risk-optimizing methods are improving the
risk-efficiency of such benchmarks, however they tend to reduce the weight of volatile
assets. However, they also come with the highest returns, resulting in weaker performance
return-wise.
The inclusion of such portfolio optimization methods and understanding them is a cru-

cial part of investing for several reasons. Utilizing mathematical and statistical techniques
provides a solid foundation for investment decisions. They reduce the reliance on intuition
and emotion biases, that can revolve in negative impacts on the performance. By system-
atically managing both the risk and the return, the growth of a portfolio can be controlled
more consistently and sustainably contributing to a healty financial situation.
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