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Abstract

A popular tool of dimension reduction in many statistical fields is principal component
analysis (PCA). For the field of compositional data analysis (CoDA) weighting can
be seen as a similar approach of dimension reduction as PCA. It is a desire to find
those variables which explain a big part or even the majority of the variance of the
whole data. These variables are transformed into a coordinate system where they are
expressed by ratios of their logarithms. This concept is referred to as logratios and
has many practical advantages. In the considered framework of the Aitchison geometry,
weighting can be incorporated into the Aitchison inner product. Combined with graph
theory, the weights can be related to the covariance of the distribution of the underlying
data. These thoughts lead to so-called inverse variance problems. Next to a short
introduction into compositional data, such a problem is considered in this thesis. An
iterative algorithm is introduced to estimate a Laplacian matrix that is connected to the
distribution of the compositional data. This eventually leads to a sparse solution while
keeping the explained variance high.
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Kurzfassung

Beobachtet man multivariate, strikt positive Merkmale, welche relative Information
zwischen jenen Variablen enthalten, spricht man heutzutage von Kompositionsdaten
(englisch: compositional data). Nicht nur in der multivariaten Statistik, sondern auch
im Bereich von Kompositionsdaten ist die Hauptkomponentenanalyse (HKA, englisch:
principal component analysis) eine begehrte Methode der Dimensionsreduktion von
Datensätzen. Verschiedene Merkmale in den beobachteten Daten unterschiedlich zu
gewichten, ist eine weitere Möglichkeit, welche die Dimension der Daten unter möglichst
geringem Informationsverlust reduziert. Die dabei relevanten Größen werden von den
Verhältnisse der Logarithmen der einzelnen Variablen gebildet. Diese Verhältnisse be-
zeichnet man im Englischen als logratios. Gemeinsam mit der zugrundeliegenden Aitchi-
son-Geometrie, kann die Gewichtung der Daten in das sogenannte Aitchison Skalarpro-
dukt integriert werden. Graphentheorie spielt ebenfalls eine wichtige Rolle, da sie die
Struktur der Daten und deren Verteilung mit den Gewichten in Verbindung setzen kann.
Dieses Konzept führt zu sogenannten Inversen Kovarianz Problemen. Solch ein Opti-
mierungsalgorithmus wird in dieser Arbeit vorgestellt. Eine iterative Herangehensweise
schätzt die sogenannte Laplace Matrix, welche in einem direkten Zusammenhang mit
der Verteilung der Daten und den gesuchten Gewichten steht. Diese Matrix ermöglicht
eine hinreichend gute Erklärung der Daten in niedriger Dimension.
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1 Introduction

Compositional data became popular in the early 80s by the work of Aitchison (1982)
and have stayed relevant since. Originally they were viewed as multivariate observations
on the positive unit simplex, i.e. as vectors which entries would sum up to one. Due to
several practical reasons like missing values or different sums between observations, later
characterizations as in Egozcue (2009) or Pawlowsky-Glahn et al. (2015) defined them
as strictly positive vectors that carry relative information between the components.
According to the former, the field of compositional data should follow the princi-

ples of scale invariance, permutation invariance and subcompositional coherence. Three
important properties that distinguish them from other statistical areas.
The Aitchison geometry (Pawlowsky-Glahn and Egozcue, 2001) replaces the standard

Euclidean geometry as common statistical methods cannot be applied directly onto
compositional data. In this framework the simplex of strictly positive vectors forms
the sample space. Analogously to the vector addition and scalar multiplication of the
Euclidean space operators like perturbation and powering are defined respectively. Fur-
thermore, an inner product, called the Aitchison inner product, was proposed to obtain
a Hilbert space. Analysis can theoretically be conducted directly in this setting, but the
output would be unreliable.
For that reason a family of transformations to the Euclidean space was introduced.

This can also be seen as a representation of compositional data in a coordinate system.
That is why they are also referred to as coordinates. Additive logratios coordinates and
centered logratio coefficients were already introduced in Aitchison (1982) and Aitchison
(1983). Today the primary focus lays on isometric logratios coordinates, as in contrast
to the former, they form a basis a hyperplane. The orthonormal or pivot coordinates, as
the are also called, additionally lead to a more intuitive interpretation of the resulting
vectors.
All of these transformations revolve around the ratios of the logarithms of the data

and are called logratios. These ratios are regarded as the source of relative information
in compositional data. They not only make interpretations possible, but also direct
application of standard statistical methodology like principal component analysis.
Speaking of which, principal component analysis is a well known tool for dimension

reduction that can easily be extended to the compositional setting. There the principal
components can be derived directly through the data matrix of the isometric logratio
coordinates by singular value decomposition. Alternatively an eigenvalue decomposition
of an robust estimate of the covariance can lead to more sophisticated solutions.
Another way of dimension reduction can be achieved by integrating weights into the
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1 Introduction

Aitchison inner product. The idea behind this approach is, that there might be variables
which are more relevant for the analysis while others do not have a high contribution to
following investigations. Accordingly, features with a higher impact should get higher
weights, while less relevant variables should receive smaller weights.
As it turns out, these weights can be linked to the underlying distribution of the

data. Graph theory provides the key information to do so. Rieser and Filzmoser (2022)
describes that relationship with the use of the so-called Laplacian matrix which is de-
termined by the underlying graph structure of the data. With some properties of the
Laplacian following from Mohar (1991), the estimation of weights can be translated into
various different optimization problems as seen in Yuan and Lin (2007), Friedman et al.
(2008) or Holbrook (2018).
In this thesis an iterative approach to these inverse covariance problems is presented.

Derived from principal component analysis it iteratively solves a minimization problem
similar to the ones above. An additional sparsity term tries to function as a trade-off
between the sparsity of the resulting solution and the explained variance of the projected
data. As will be shown, it is possible to reduce the sparsity of the Laplacian significantly
while keeping the explained information sufficiently high.
The structure of this thesis is as follows. The second chapter introduces the frame-

work of compositional data combined with the Aitchison geometry and its operators.
Furthermore, some thoughts on descriptive statistics are mentioned. Chapter 3 extends
principal component analysis to the compositional case and presents different methods
to estimate the solution. In the fourth chapter the focus shifts to the concepts of weight-
ing, where graph theory and compositional data analysis are connected. Distributional
assumptions next to the class of inverse covariance problems are explained. Finally, an
iterative approach to weight estimation is proposed. In the following chapter the algo-
rithm is analyzed by 5-fold cross validation and evaluated on the basis of a real world
data set in Chapter 6. The final chapter concludes.
The implementation of the algorithm discussed in this work will be done with the

statistical software R (R Core Team, 2019) in the development environment RStudio

(RStudio Team, 2020). For the main part of the code the package for convex optimization
problems CVXR (Fu et al., 2020) is of most importance. It will be described in detail in
Section 5.3. For quick and efficient data manipulation the packages dplyr (Wickham
et al., 2021) and data.table (Dowle and Srinivasan, 2019) are being utilized. To speed
up the evaluations over the different parameter configurations are being parallelized
with the help of doParallel (Corporation and Weston, 2022) and foreach (Microsoft
and Weston, 2022). The igraph package (Csardi and Nepusz, 2006) is used to create
graphs according to the various levels of the optimization parameters. The underlying
graph structure is then used as an input to randomly simulate the data sets with the
mvtnorm package (Genz et al., 2021). The following visualizations are done with ggplot2

(Wickham, 2016).
The code itself will only be partially displayed at some places during the later chapters.
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2 An introduction into compositional
data analysis

2.1 What is compositional data?

If you talk about compositional data one would assume observations having a special
structure. The early definition of Aitchison (1982) postulated compositions as multi-
variate observations with positive entries which sum up to a constant. That might be
the case for proportions or percentages for which the components of the corresponding
observations would sum up to 1 or 100. Considering the possibility of variables not
being measured or being missing and that rounding errors or different sums between ob-
servations could violate the constant sum requirement, later interpretations of Egozcue
(2009) or Pawlowsky-Glahn et al. (2015) referred to compositions as strictly positive
multivariate vectors which carry relative information between the components. As Filz-
moser et al. (2018) argued, these definitions make sense, since if relative information is
analyzed, like in the case of compositional data, it is irrelevant whether absolute values,
proportions or percentages are present. The ratios between the components are always
the same. Accordingly, the value of the sum, which could be different between various
observations, is also irrelevant. They further concluded that the actual question, if one
deals with compositional data, depends on the interest of the analyst. Thus, a data set
might be compositional or not at the same time.

2.2 Applications of compositional data analysis

In order to underline these first thoughts let us start with an example from Filzmoser
et al. (2018), where they considered a data set with three observations on household
expenditures for different sectors, namely housing, foodstuff, transport and communi-
cations. Other groups are not reported since they are not of importance for this case.
In Table 1 the absolute values of expenditures in euros are presented. As we can see,
these values differ greatly, also their corresponding sums are not equal. Now, the relative
information in form of percentages of expenditures for one sector compared to the total
might be of interest. These values are also reported in the table. We notice, that both
representations explain the contributions of the variables to the whole, while only for
the percentages the values between the observations do not differ. Another possibility
would be to consider relative information between the variables themselves. For example
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2 An introduction into compositional data analysis

one could look at the ratios where transport is in the denominator and the remaining
variables form the nominators. The ratio of housing/transport for the raw data would
result in 1710/570 = 540/180 = 900/300 = 3 for the three observations. Looking at the
percentage data, we get the exact same result in 45/15 = 3, i.e. all three households
spend three times as much for housing than for transport. Since expressing the original
data in a different currency, or rescaling in general, would not alter these ratios, the
latter will build the relative information when speaking of compositional data.

Type Observation Housing Foodstuff Transport Communication Sum
absolute 1 1710 950 570 570 3800

information 2 540 300 180 180 1200
in EUR 3 900 500 300 300 2000

information 1 45 25 15 15 100
expressed 2 45 25 15 15 100

in % 3 45 25 15 15 100

Table 1: Household expenditures; absolute and relative values.

There are many more common problems from the field of compositional data. If the
reader is interested, we refer to Aitchison (2005) at this point for detailed information
and corresponding data tables.
For example, the geochemical composition of rocks is studied. Such observations

are usually composed out of percentages of weight of oxides or minerals. It might
be of interest to explain the variability between different samples or to find atypical
compositions. In order to compare specimens of different weights it would be impractical
to use absolute values and some kind of standardization to a unit weight is necessary.
Equivalently we could say that the results of such an analysis should not depend on the
weights of the samples. In Chapter 6 two geochemical data sets are analyzed.
Next to economics and geology other fields like agriculture, manufacturing, medicine

or paleontology are mentioned.

2.3 Special treatment for data analysis

After gathering data and performing preprocessing, the next step a statistician would
take would be a data analysis. It might seem natural to use already existing techniques of
multivariate statistics for analyzing compositional data, but one should be aware of the
problems this generates since the most common methods rely on the Euclidean geometry
on the real space. Pawlowsky-Glahn et al. (2015) explained that this framework is
inappropriate for positive data vectors which components include fractions of a whole.
As it will be derived later, the sample space of compositions has its own unique structure.
One of the problems that arises is the so-called negative bias problem. If we start with

our initial condition, the constant sum, i.e. x1 + x2 + . . . + xD = 1 for some D > 0, we
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2 An introduction into compositional data analysis

would get

cov(x1, x1 + . . .+ xD) = 0

which in turn would result in

var(x1) + cov(x1, x2) + . . .+ cov(x1, xD) = 0 ⇔
cov(x1, x2) + . . .+ cov(x1, xD) = − var(x1).

Except for the trivial case, in which the first variable has to be a constant, the right
hand side of the above equation is negative. Therefore, at least one term on the left
hand side must be negative as well. Replacing x1 by the other components in the first
part of the covariance would result in a similar outcome. This means that in all rows
of the covariance matrix, there is at least one negative entry, restricting the correlations
and not to being free to range between −1 and 1.

2.4 Aitchison geometry

Before a solution for problems like the one above is introduced, definitions and the
mentioned unique design of compositional data should be discussed. The following
chapter builds on the work of Aitchison (2005) and Filzmoser et al. (2018).
A compositional vector, or just a composition, is a D-variate column vector x =

(x1, . . . , xD)
′ with strictly positive entries. The components of such a vector, which will

also be called parts, contain relative information of some whole.
One of the most important principles is the one of scale invariance. This means that

the information of a composition shall not depend on a specific unit or on its size. If we
look back at the expenditure example and focus on the first and second observation, we
already saw that even though their values differ, the relative information they convey in
the form of ratios of their entries is the same. In other words, we could argue that the
multiplication of a compositional vector with some p > 0 should not change the ratios.
For the two considered observations, let us refer to them as x1 and x2, this relationship
would hold for p = 19/6, i.e. x1 =

19
6
x2.

This leads to the next definition, which is called compositionally equivalent, and ap-
plies to two observations if they only differ by a scaling factor. In this sense, all three
observations from the initial problem are compositionally equivalent.
Permutation invariance describes that a permutation of the parts of a composition

does not change the information content, like in multivariate statistics.
If we consider only some parts of a compositional vector, i.e. a subvector with d < D

components, then we speak of a subcomposition. With that we can define the next
principle, which is referred to as subcompositional coherence. For this to be fulfilled,
information coming from a subcomposition should not be contradictory to that from
the original composition. This can be split into subcompositional dominance and ratio
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2 An introduction into compositional data analysis

preserving. The first one means that any distances between two compositions must at
least be as big as the distance between the corresponding subcompositions. The latter
one states that ratios between two variables do not depend on other ones. This implies
that also for a subcomposition the scale invariance holds.
As stated before, the Euclidean space is not compatible with raw compositional data.

In order to make interpretations and analysis of compositions possible, a similar structure
has to be introduced. One of the early definitions of compositional data implied the
(D − 1)-standard-simplex

SD := {x ∈ RD|x1 + x2 + . . .+ xD = 1; xi ≥ 0 ∀ i ∈ {1, . . . , D}},

a subspace of RD, as the sample space of compositions. In three dimensions this describes
a triangle spanned by the vertices e1 = (1, 0, 0)′, e2 = (0, 0, 1) and e3 = (0, 1, 0)′, see
Figure 1 below.

Figure 1: The 2-standard-simplex in R3. Based on Filzmoser et al. (2018)

In higher dimensions the simplex is a tetrahedron induced by ei = (0, . . . , 0, 1, 0, . . . , 0)′,
i ∈ {1, . . . , D} with the 1 at the i-th component. To keep it more general, since the
parts of compositions do not always have to sum up to one, the D-part-simplex

SD := {x ∈ RD
+ |x1 + x2 + . . .+ xD = c}

is defined. This space includes all observations which sum up to a constant c and
have strictly positive entries. Still, this is a little bit too restrictive because not all
compositional observations do necessarily have to sum up to the same constant.

6



2 An introduction into compositional data analysis

For this the so-called closure-operator Cκ is introduced. Given a composition x and a
parameter κ, the closure-operator is defined as

Cκ(x) :=
�

κx1�D
i=1 xi

, . . . ,
κxD�D
i=1 xi

	′

which is a standardization of the input x to have a component sum of κ. This leads us
back to the definition of compositional equivalence, which now can be translated into
two compositions x and y being compositionally equivalent if there exist two parameters
κ and ν such that

Cκ(x) = Cν(y)
holds. In other words, all observations which are compositionally equivalent lay on the
same ray through the origin. The corresponding projections onto the simplex have a
sum of one and can be interpreted as the proper representation of this equivalence class.
With the closure-operator a new definition of the D-part-simplex arises,

S̃D := {x ∈ RD
+ |∀ κ > 0 ∃∗ λ > 0 : x1 + . . .+ xD = λCκ(x)}. (1)

This can be understood as the collection of all complete rays from the origin which
observations only have strictly positive entries. Since the exact value of κ does not
matter, this last definition of S̃D in (1) can be seen as a decomposition of RD into
equivalence classes of observations. Two of these possible equivalence classes are depicted
down below in Figure 2 for D = 3. The observations x1, x and x2 as well as y1, y and
y2 are compositionally equivalent, respectively, since they share the same ray. The
corresponding projections onto the simplex, x and y, are marked by the dashed lines.

Figure 2: 3-part compositions in R3 projected onto the standard simplex. Based on
Filzmoser et al. (2018)
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2 An introduction into compositional data analysis

Given S̃D as sample space, Pawlowsky-Glahn and Egozcue (2001) defined a structure
similar to the Euclidean vector space, the so-called Aitchison geometry. For this, they
used the already in Aitchison (1986) established shifting and multiplication operation.
When speaking of shifting or differences in the context of compositional data,

Filzmoser et al. (2018) mentioned an example considering the absolute values of votes
of a political party. Lets consider two different villages where the number of votes from
one year to the next changes from 300 to 200 and 3000 to 2900 respectively. In this
situation one would rather talk about a loss of votes of 10% and 3.3̄% rather than of a
loss of 100 votes. This concept is called the principle of relative scale, which states that
when talking of the dissimilarity of compositions, the ratio of the components should be
used rather than their differences.
This short example should motivate the definition of perturbation. Considering two

compositions x and y from S̃D, the perturbation operator ⊕ is defined as

x⊕ y := (x1y1, . . . , xDyD)
′.

Next to that, the powering operator ⊙ was introduced. For a scalar α ∈ R and a
composition x ∈ S̃D it is defined as

α⊙ x := (xα
1 , . . . , x

α
D)

′.

Applying both of these concepts can be used to define the perturbation difference between
two compositions, i.e.

x⊖ y := x⊕ (−1⊙ y) = (x1/y1, . . . , xD/yD)
′.

Therefore, the difference between a composition and itself results in the neutral element,
i.e.

x⊖ x = (x1/x1, . . . , xD/xD)
′ = (1, . . . , 1)′.

As Pawlowsky-Glahn and Egozcue (2001) showed, these definitions of perturbation and
powering are sufficient to induce a vector space on the simplex, which from this point
on was called the Aitchison geometry.
To obtain a (D− 1)-dimensional Hilbert space, they furthermore proposed the use of

an inner product, i.e.

⟨x, y⟩a := 1

2D

D�
i,j=1

log

�
xi

xj

�
log

�
yi
yj

�
, (2)

a vector norm, i.e.

||x||a :=
�

⟨x, x⟩a =
���� 1

2D

D�
i,j=1

log

�
xi

xj

�2

, (3)
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2 An introduction into compositional data analysis

and a distance, i.e.

d(x, y)a :=

���� 1

2D

D�
i,j=1

�
log

�
xi

xj

�
− log

�
yi
yj

��
. (4)

These operators are in general referred to as the Aitchison inner product, norm and
difference.

2.5 Logratios in compositional data analysis

Logratios, short for the logarithm of the ratio between two variables, as the ones above in
(2), (3) and (4), play an important role for compositional data analysis. As mentioned
before, these ratios are the source of relative information. The direct usage of the
raw ratios might not be the best option because of their asymmetry. The interval
(0, 1) would correspond to the variable in the denominator being dominant, a ratio of
1 stands for perfect balance and (1,∞) would imply that the numerator is larger. It
seems reasonable to extend the ratios by their logarithms in order to symmetrize these
intervals, as that would result in a range from −∞ to ∞ with a value of 0 representing a
balance between two parts. These logratios have several advantages from a mathematical
point of view. They can be expressed as difference of the respective logarithms, i.e.
log(xi/xj) = log(xi)− log(xj). This means that the Aitchison distance can be rewritten
into

d(x, y)a =

���� 1

2D

D�
i,j=1

�
log

�
xi

xj

�
− log

�
yi
yj

��

=

���� 1

2D

D�
i,j=1

(log(xi)− log(yi)− (log(xj)− log(yj)))

=

���� 1

2D

D�
i,j=1

�
log

�
xi

yi

�
− log

�
xj

yj

��

which backs up the concept of relative scale.
Using logratios also directly supports the property that the sum is irrelevant for com-

positional data. If we compare the values of the above defined operators for a composition
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2 An introduction into compositional data analysis

x and its scaled counterpart λx for some λ > 0 we see

⟨x, y⟩a = 1

2D

D�
i,j=1

log

�
xi

xj

�
log

�
yi
yj

�
=

1

2D

D�
i,j=1

log

�
λxi

λxj

�
log

�
yi
yj

�
= ⟨λx, y⟩a,

||x||a = ||λx||a,
d(x, y)a = d(λx, y)a.

Similar to these metric concepts for perturbation and powering we get

(λx)⊕ y = λ(x⊕ y) and

α⊙ (λx) = λα(α⊙ x).

Moreover, logratios and their inverse just differ in sign, i.e. log(xi/xj) = −log(xj/xi).
This also leads to a relationship of the variance between them, i.e. var (log(xi/xj)) =
var (log(xj/xi)), which could not have been established for just the raw ratios.
Another feature are the one-to-one transformations between compositions and a full

set of logratios, for example

(y1, . . . , yD−1)
′ =

�
log

�
x1

xD

�
, . . . , log

�
xD−1

xD

��′
(5)

with its scaled inverse

(x1, . . . , xD)
′ =

1

exp(y1) + . . .+ exp(yD−1) + 1
(exp(y1), . . . , exp(yD−1), 1)

′ .

Such transformation will be used to transfer the vectors of logratios from their restricted
sample space to the whole unrestricted real space where standard methods of multivari-
ate statistics can be applied.
One has to keep in mind that zeros in one of the components could lead to problems.

That is one of the reasons why S̃D only contains strictly positive observations. This
might seem to be a big restriction, but the arising disadvantages when dealing with real
world data are compensated by many convenient properties of logratios. Filzmoser et al.
(2018) devote a whole chapter onto the topic of how to deal with zero values.
Typically the natural logarithm ln is used in the context of compositional data analysis.

Since the use of another basis just refers to rescaling, it is a matter of taste which specific
logarithm is applied.

2.6 The family of logratio transformations

There are many ways in order to transform the compositional observations from the
simplex onto the whole real space. One possibility was already stated in (5). That

10



2 An introduction into compositional data analysis

representation reduced the dimensionality from the D parts to D − 1 logratios. In
general, for a D-dimensional composition there are D(D− 1) possible logratios. Since a
logratio and its reciprocal just differ by their sign, the number of distinct ratios reduces
toD(D−1)/2. It will always be possible to findD−1 logratios and express the remaining
ones through the identity

log

�
xi

xj

�
= log

�
xi

xk

�
+ log

�
xk

xj

�
,

see Filzmoser et al. (2018), i.e. the D-part compositions can be expressed by coordinates
in a D − 1 dimensional subspace of RD. The results of these transformations can be
interpreted as coordinates with respect to the Aitchison geometry. This view also helps
in understanding and explaining those.

2.6.1 Additive Logratio Coordinates

The mapping mentioned above is named additive logratio coordinates, or alr coordinates
for short. It transfers an observation x ∈ S̃D to RD−1 and results in coordinates x(j), i.e.

x(j) := alr(x) =
�
x
(j)
1 , . . . , x

(j)
D−1

�′

=

�
log

�
x1

xj

�
, . . . , log

�
xj−1

xj

�
, log

�
xj+1

xj

�
, . . . , log

�
xD

xj

��′
.

To get the original data from existing alr coordinates, the back-transformation

xi = exp
�
x
(j)
i

�′
for i ∈ {1, . . . , D}, i ̸= j

xj = 1 for j ∈ {1, . . . , D}

has to be applied. It has to be noted that the resulting parts do not necessarily have to
sum up to the same value as the original parts or to 1. Since the value of the sum does
not matter, scaling can be omitted.
Depending on the situation one might choose different values for j during the anal-

ysis. In general, the choice of the variable in the denominator does not matter too
much (Aitchison, 1986), and in geochemistry there are some guidances for selecting an
appropriate “reference” variable.
Another characteristic is that

alrj(x⊕ y) = alrj(x) + alrj(y) and

alrj(c⊙ x) = c⊙ alrj(x)
(6)

holds. Principally, this has not to be fulfilled for the Aitchison inner product and norm.

11



2 An introduction into compositional data analysis

2.6.2 Centered Logratio Coefficients

A transformation which achieves also these features expresses a composition x ∈ S̃D by
a vector y ∈ RD, i.e.

y := clr(x) =

�
log

�
x1

g(x)

�
, . . . , log

�
xD

g(x)

��′

with the geometric mean g(x) =
��D

i=1 xi

� 1
D
. These coordinates can be viewed as

centered logarithms of the original data. That is why they are called centered logratio
coordinates or coefficients, commonly just referred to as clr coefficients. The correspond-
ing inverse mapping, up to a scaling factor, is

xj = exp(yj) for j ∈ {1, . . . , D}.
The connection between the clr coefficients and the log transformation can be shown as
follows, Aitchison (1986). Start by defining

W := ID − 1

D
1D1

′
D.

Then it holds that

y = clr(x) = W log(x).

While the linearity was already fulfilled by the alr coordinates, clr coefficients also
satisfy

⟨x, y⟩a = ⟨clr(x), clr(y)⟩2 ⇒ ||x||A = ||clr(x)||2 and

d(x, y)a = d (clr(x), clr(y))2 .
(7)

Operations on the right hand side of the above equations refer to Euclidean inner prod-
uct, norm and distance, respectively. These two properties show that the clr coefficients
represent an isometry between S̃D and RD.
The coordinates build a generating system on a D − 1 dimensional subspace of RD

which can be demonstrated by

D�
j=1

yj =
D�
j=1

log

� xj��D
i=1 xi

� 1
D


 =
D�
j=1

�
log(xj)− 1

D

D�
i=1

log(xi)

	

=
D�
j=1

log(xj)−
D�
i=1

log(xi) = 0.

This implies that for data analysis, one coordinate cannot be considered on its own
without the others being taken into account.

12



2 An introduction into compositional data analysis

2.6.3 Isometric Logratio Coordinates

The next coordinates aim to establish an orthonormal basis in this hyperplane and try
to overcome this restriction. The representation of the clr coefficients is not resulting
in full rank, since one always get one more coordinate than necessary for the D − 1
dimensional Aitchison geometry. Due to that, there is also not an unique way to define an
orthonormal basis, which makes the isometric logratio coordinates a class of coordinates.
Based on their structure it is also common to refer to them as orthonormal coordinates.
Fǐserová and Hron (2011) chose the basis to have the following structure

z := ilr(x) whereas

zj =

�
D − j

D − j + 1
log

� xj��D
k=j+1 xk

� 1
D−j


 for j ∈ {1, . . . , D − 1}. (8)

To guarantee orthonormality of the resulting coordinates, the above scaling factors in
front of the logarithms are selected.
Just as the clr coefficients, the ilr coordinates also supply a one-to-one mapping be-

tween the simplex and RD−1. The original parts can be found, up to a scaling factor,
by

x1 = exp

�√
D − 1√
D

z1

�
,

xj = exp

�
−

j−1�
k=1

1�
(D − k + 1)(D − k)

zk +

√
D − j√

D − j + 1
zj

	
, j ∈ {2, . . . , D − 1},

xD = exp

�
−

D−1�
k=1

1�
(D − k + 1)(D − k)

zk

	
.

A direct link between the clr and pivot coordinates can be achieved by the basis vectors
of the spanned hyperplane. These orthonormal basis vectors are

v.j =

�
D − j

D − j + 1

�
0, . . . , 0, 1,− 1

D − j
, . . . ,− 1

D − j

�′
(9)

for j ∈ {1, . . . , D − 1}, whereas each vector has j − 1 zero entries. Collected into a
D× (D− 1) dimensional matrix V , the relationship between the two transformations is

y = V z and z = V ′y, (10)

see Egozcue et al. (2003).
As well as the clr coefficients the ilr transformation also describes a isometry. There-

fore, analogous results as in (6) and (7) hold.
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2 An introduction into compositional data analysis

Interpretation of compositional data is achieved by looking at the resulting logratio
transformations. For ilr coordinates we can observe that the first component x1 only
appears in the first coordinate z1. In contrary to this situation, for the alr and clr
transformation one could not interpret the coordinates in terms of the parts of the
composition simultaneously. Here all the relative information about one part is devoted
into one coefficient, i.e.

z1 =

�
D − 1

D
log

� x1��D
k=2 xk

� 1
D−1



=

�
1

D(D − 1)

�
log

�
x1

x2

�
+ . . .+ log

�
x1

xD

��
.

This can be interpreted as the relative dominance of x1 with respect to the other parts on
average. Since no other component can be viewed like that, a permutation of the com-
positional parts makes interpretation of other parts possible. Therefore, ilr coordinates
are also called pivot coordinates.
So, if a specific interpretation of part l of the composition is desired, one can consider

the permuted composition

x(l) = (xl, x1, . . . , xl−1, xl+1, . . . , xD)
′ =:

�
x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D

�′

and the corresponding generalized pivot coordinates

z
(l)
j =

�
D − j

D − j + 1
log

� x
(l)
j��D

k=j+1 x
(l)
k

� 1
D−j


 and

z(l) =
�
z
(l)
1 , . . . , z

(l)
D−1

�′
.

The first coordinate of z(l) and the l-th clr coefficient yl are proportional up to a scaling
factor

z
(l)
1 =

�
D

D − 1
yl. (11)

For multivariate data analysis, the ilr coordinates should be used as they have the
necessary properties so that interpretations of their transformed parts are meaningful
(Filzmoser et al., 2009b).
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2 An introduction into compositional data analysis

2.7 Descriptive statistics of compositional data

Standard descriptive statistics like the arithmetic mean or the variance can be applied
onto the transformed coordinates like the clr coefficients. Nevertheless, these observatory
tools are limited to the logratio coordinates, since only those ”live” in the Euclidean
space. Directly applied to the compositions in the Aitchison geometry rather leads to
problems.
Let us consider two observations x1 = (1, 2)′ and x2 = (3, 2)′. The arithmetic mean

of these observations is x̄ = x1+x2

2
= (2, 2)′. Due to the scale invariance one would

expect the scaled inputs to preserve the proportional information, i.e. x̄1

x̄2
= 1. But for

C1(x1) =
�
1
3
, 2
3


′
and C1(x2) =

�
3
5
, 2
5


′
the mean result in x̄∗ =

�
7
15
, 8
15


′
with a component

ratio of 7
8
= 0.875.

As we saw, the complication comes from the property of scale invariance, which the
arithmetic mean fails to maintain. Therefore, when it comes to descriptive analysis of
compositional parts, alternative approaches have to be used.
In the context of the mean with respect to the Aitchison geometry, Pawlowsky-Glahn

and Egozcue (2002) suggest the application of the component-wise geometric mean, also
called center. For an n×D matrix of compositions X it is defined as

gx = (g1, . . . , gD)
′

with gj = (
�n

i=1 xij)
1
n for j = 1, . . . , D. The center follows the principle of compositional

data, including the mentioned scale invariance. For the above considered observations
this can be shown by

gx =
�√

1 · 3,
√
2 · 2

�′
=

�√
3,
√
4
�′

and

C1 (gx) =
��

1

3
· 3
5
,

�
2

3
· 2
5

	′

=

��
3

15
,

�
4

15

	′

whereas both proportions result in
√
3/
√
4 =

√
3√
15
/

√
4√
15
.

Centering is carried out directly onto the original compositions. For one observation
of X, i.e. xi. = (xi1, . . . , xiD)

′, the centered composition is

xc
i. = xi. ⊖ gxi.

=

�
xi1

gxi.

, . . . ,
xiD

gxi.

�′
.

Due to the properties of the coordinate systems discussed in the last subsection, this
corresponds to mean-centering of the logratio coordinates.
The counterpart for the variance cannot be constructed directly for the compositions.

The focus is rather laid on source of information, i.e. the pairwise logratios. Introduced
in Aitchison (1986), the so-called variation matrix is formed by the variances of all
pairwise logratios.
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2 An introduction into compositional data analysis

Given a data matrix X ∈ Rn×D, the variation matrix is

T =

� t11 . . . t1D
...

. . .
...

tD1 . . . tDD



whereas each element tjl for j, l = 1, . . . , D is the sample variance of the pairwise logratios
between part j and l. It is defined by

tjl =
1

n− 1

D�
i=1

�
zijl − z̄jl


2
with

zijl = log

�
xij

xil

�
for i ∈ {1, . . . , D}

and

z̄jl =
1

n

n�
i=1

zijl.

The matrix T is symmetric by construction, with zeros on the diagonal. Its entries tjl
can be interpreted as the variation between two parts. For values of tjl close to zero, the
ratio between the corresponding parts xj and xl is nearly constant, implying an almost
perfect proportionality.
One downside of this approach is that interpretability in the sense of positivity and

negativity, derived from the correlation coefficient is lost. Also, because of the non-
linearity of the logarithm, it is not clear which values of tjl correspond to a high or a
low correlation.
Finally, the total variance of a compositional data set is defined as the scaled sum of

all elements of the variation matrix, i.e.

totvar(X) =
1

2D

D�
j,l=1

tjl. (12)
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3 Principal component analysis

Principal component analysis, or PCA for short, is an important statistical tool for
multivariate data analysis. Often the data set which has to be investigated consists of
many variables, each of them having a different level of contribution to the analysis.
The goal of PCA is to reduce the dimensionality of the data matrix by constructing new
latent variables, called principal components, which are orthonormal. These components
are linear combinations of the initial data, oriented in a way to contain the most relevant
variation. In general, the dimensionality of the principal components and the original
data is the same. Typically only the first few contain already enough information.
The goal of this section is not to introduce PCA as a new statistical method, but

rather to extend this tool to the context of compositional data. The compositions will
be represented by ilr coordinates, although clr coefficients are commonly applied during
PCA. This has methodological reasons.

3.1 Estimation by singular value decomposition

One of the many possible ways to estimate the principal components is by using singular
value decomposition or SVD.
The singular value decomposition of a real n×D matrix X is defined as a factorization

of the form

X = UDW ′, (13)

whereas

• U is an n× p orthogonal matrix containing the left singular vectors,

• D is a non-negative matrix containing the singular values d1, . . . , dp and

• W is a D × p orthogonal matrix containing the right singular vectors of X,

where p = min{n,D} refers to the rank of X. This factorization is not unique. Therefore
it is always possible to rearrange the columns of U and W with respect to decreasing
singular values d1 ≥ d2 ≥ . . . ≥ dp.
LetX be the matrix containing the compositional observations. Since PCA is not scale

invariant and we want to obtain directions (components) containing the most variance,

17



3 Principal component analysis

mean-centering is essential. Denote the centered ilr coordinates of X by Z. Choosing a
factorization with descending singular values, the SVD of Z can be rearranged into

Z = (UD)W ′ = Z∗W ′ (14)

which marks the PCA transformation. The matrix Z∗ represents the original data
mapped into an orthogonally rotated coordinate system. These coordinates z∗ij are
termed scores. Due to the orthonormal equivariance of PCA, the initial choice of or-
thogonal coordinates does not influence the resulting components. The variances of the
columns of Z∗ correspond to those from the principal components. These variances λi

are proportional to the singular values di, for i ∈ {1, . . . , p},

λi =
d2i

n− 1
.

The sum of the variances of all PCs is equal to the total variability of the data matrix
X (12), i.e.

p�
i=1

λi = totvar(X).

Thus, the proportion of variance explained by the i-th principal component is

λi�p
i=1 λi

.

Since the goal of PCA is dimension reduction, one question to ask is how many of
the resulting components to use for further analysis. The answer might depend on the
purpose of the components. If it just would be for a visual inspection, a ”rule of thumb”
can be sufficient. For this rule, the proportion of explained variance using the first k
principal components on the total variance is of interest, i.e.�k

i=1 λi�p
i=1 λi

≥ α.

The cut-off value α can be set to 80% or to 90%, for example.
If the user thinks that the last variables just contain some irrelevant noise, the last

approach might not be appropriate. For such a situation, a scree plot would mark another
possibility. It plots the explained variance of each component against its number. All
variables where the proportion approximately follows a linear trend can be excluded and
the remaining are considered relevant.
In (14) the matrix W is called the loadings matrix with the loadings in its columns.

There are many ways how to interpret them. From a geometrical perspective, they
are the basis vectors of the principal components. From a practical point of view, the
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3 Principal component analysis

entries wij are weights which reflect the influence of the original ilr coordinates on the
new orthonormal compositions. Using definition (8), the first element of each loading
vector can be seen as the effect of the relative dominance of the first part x1 to the
respective principal component. By using pivot coordinates before carrying out the PC
transformation, the relative dominance of other parts can be interpreted in the same
way.
The above transformation using SVD can be reformulated based on a different objec-

tive function. If one has chosen k, the relevant number of PCs, the data matrix Z can
be approximated by

Z̃ = Z∗
kW

′
k

which is n × (D − 1) dimensional. The matrices Z∗
k and W ′

k only contain the first k
columns of Z∗ and W , respectively. This approximation minimizes the Frobenius norm
between itself and the original data matrix Z, i.e.

||Z − Z̃||F =

�
n�

i=1

D−1�
j=1

(zij − z̃ij)
2

	1/2

.

For finding the directions of the principal components one thus minimzes residual sum-
of-squares, with residuals formed by the matrix Z − Z̃.
As already described above, single compositions can be interpreted by using pivot

coordinates. However, due to computational effort in the case of high dimensional com-
positions, it is not advised to calculate D different PC transformations. That is where
some properties of the clr coefficients come in handy. Because of the connection between
the coefficient yl and the first pivot coordinate z

(l)
1 , for l ∈ {1, . . . , D}, see (11). With

that one can show that the l-th row of the loading matrix Wy resulting from the clr data
matrix Y only differs by a constant from the loading matrix of the pivot coordinates
W (l), Kynčlová et al. (2016). Also the scores in Y ∗ and Z∗ corresponding to the non-
zero singular values are the same, Filzmoser et al. (2018). These properties imply that
it suffices to perform PCA in clr coefficients as the loadings and scores can be derived
afterwards. Also the relative importance of each original part can be acquired directly
from the loading matrix.

3.2 Estimation by the covariance matrix

Since we want to minimize the information loss in PCA, or in other words, we want to
maximize the variance of the transformed data, another method for finding the compo-
nents would be to look at the covariance matrix of the data. Again, let us assume Z
being the mean-centered data matrix of compositions with sample covariance matrix

Sz =
1

n− 1
Z ′Z.
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With the SVD of Z (13) this results in

Sz =
1

n− 1
WDU ′UDW ′ =

1

n− 1
WD2W ′

using the property U ′U = ID. Without loss of generality, we assume that the singular
values in the diagonal of D are of descending order as before. If we denote w.l by the
l-th column of W we get

Szw.l =
1

n− 1
WD2W ′w.l

=
1

n− 1
WD2el

=
d2ll

n− 1
Wel =

d2ll
n− 1

w.l,

i.e. the l-th column of W is just an eigenvector of Sz with respect to the eigenvalue
d2ii
n−1

.
The vector el is the l-th unit vector.
It turns out that if we want to find a linear combination of the original data Z under

the conditions of variance maximization and orthonormality of the resulting components,
the transformation matrix must consist of the eigenvectors of the covariance matrix Sz,
i.e. must be equal to W. The corresponding eigenvalues coincide with the variances of the
PCs derived in Section 3.1. We conclude that SVD applied on centered ilr coordinates
leads to the same result as an eigenvalue decomposition on the covariance matrix of
those coordinates. The loading matrix W of both approaches is the same and also the
scores are equal, i.e.

ZW = UDW ′W = UD = Z∗.

One advantage of the last attempt is the possibility to incorporate a robust estimate of
the covariance matrix Sz. A choice is the so-called MCD, short for Minimum Covariance
Determinant, estimator. It robustly estimates location and scale of a given data set by
calculating the mean and covariance only for the part of the data which minimizes
the determinant of the empirical covariance matrix of that proportion. It has a high
breakdown point and is affine equivariant. The latter means that the initial choice of ilr
coordinates does not alter the resulting estimates of location tMCD and scale CMCD.
Following Filzmoser et al. (2009a), the procedure for robust PCA in the case of n ≥

D − 1 starts with the SVD of CMCD, i.e.

CMCD = WMCDDMCDW
′
MCD,

with WMCD the robust loading matrix and DMCD containing the singular values with
are the robust variances of the resulting principal components. The data matrix then is
centered by tMCD resulting in ZMCD and scores are calculated by

Z∗
MCD = ZMCDWMCD.
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These scores are robust against outliers, Croux and Haesbroeck (2000). Because of their
large variance, these deviations might ”attract” the direction of the principal components
within a non-robust approach. Since outlier detection is not the objective of PCA, using
this robust method should be preferred if one assumes the presence of anomalies in the
data set.
One has to keep in mind that the MCD estimator can not be calculated for clr coef-

ficients because the covariance matrix does not have full rank. This time, it suffices to
conduct the robust decomposition on the ilr coordinates and determine scores and load-
ings for the clr coefficients afterwards. Again, scores corresponding to non-zero singular
values are the same, i.e Y ∗

MCD = Z∗
MCD. To get the loadings, the ilr loading matrix has

to be transformed according to (10), i.e.

Wy,MCD = WMCDV
′,

with V the orthonormal basis of the pivot coordinates described in (9).

3.3 Compositional biplots

Biplots, introduced in the 70s by Gabriel (1971), are a statistical tool to display ob-
servations and variables in a two-dimensional plot together. One area of application of
biplots is PCA, since the general assumption is that the data approximately has rank
two, i.e. the first few components already include the majority of information. If the
rank of the data is higher than two, the first two principal components should explain
the data variability sufficiently well.
The idea behind a biplot is to distribute the information of the data between two matri-

ces representing the variables and observations, respectively. Let Z be the mean-centered
data matrix of ilr coordinates. The best rank two approximation of Z is obtained by
taking the first two singular values d1 and d2 based on the SVD in (13). Furthermore,
the first two columns of U and W are being used, resulting in

Z2 = (u1u2)

�
d1 0
0 d2

��
w′

1

w′
2

�
.

This can be partitioned into

Z2 = GH ′

with

G = (u1u2)

�
d1 0
0 d2

�1−c

and

H = (w1w2)

�
d1 0
0 d1

�c

.
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The most common choice for c is c = 1, which leads to the so-called covariance biplot.
The plot consists out of the rows of G and H. The rows of G represent the coordinates
of the observations and are depicted by points in the plot. Analogously, the rows of H
stand for the variables, plotted as the head of arrows which start at the origin.
Rescaling of G and H leads to more sophisticated interpretations. For a direct appli-

cation in compositional data, coordinates resulting from sequential binary partitioning
have to be used (Pawlowsky-Glahn et al., 2015).
If these are not available, biplots have to be adjusted because it is not possible to create

them for the original observations. This can be achieved by a set of pivot coordinates.
Due to the rotational invariance of SVD, only the matrix W (l) and consequently H(l)

for l ∈ {1, . . . , D} leads to differences. Since it would not be practical to consider D
biplots for interpretations, the arrows, i.e. the variables, are joined into one single plot.
It is the default approach in compositional data and can be constructed directly in clr
coordinates. It is referred to as compositional biplot.
Interpretations also differ from the biplots from multivariate statistics. Usually, the

angle between the arrows of two variables approximates their correlation. For compo-
sitional biplots, the links between the vertices of variables are considered. These links
are approximately the variance of the corresponding pairwise logratios of the original
parts. The vertices of proportional parts coincide, or nearly so. If we compare two links,
namely the cosine of their enclosed angle, we get an approximation of the correlation
between the respective logratios.
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4 Weighting in compositional data
analysis

Weighting is a statistical tool to adjust different methods to specific situations. Rather
than having all variables of a collected data set having the same contribution, some
are assumed to be more relevant while others should have less to no importance to the
statistician.
In the field of compositional data, weighting had been applied in many different sit-

uations. When dealing with a measurement device analyzing the components of soil
samples, the accuracy might not be the same for all parts. Especially when variables fall
below a certain detection limit further analyses could be compromised by these inaccura-
cies. A possible outcome would be to down-weight variables with small concentrations,
as it was considered in Hron et al. (2022). Another situation occurs in Mart́ın-Fernández
et al. (2018), where they tried to raise the interpretability of the basis vectors through
the help of so-called principal balances. In Greenacre (2019) the author draws a con-
nection between variable selection of pairwise logratios and graph theory. The authors
of Rieser and Filzmoser (2022) go one step further and extend the Aitchison geometry
to a framework where only selected logratios are considered.
The latter work shall be the basis of the analysis in this theses. Based on distributional

assumptions of the ilr coordinates, an optimization problem to estimate a weighting
scheme is developed. For this, the Aitchison inner product (2) was chosen. To take the
relevance of every term into account, each pair of logratios must receive its own weight.
The Aitchison inner product therefore can be generalized to

1

2

D�
i,j=1

log

�
xi

xj

�
log

�
yi
yj

�
wij.

If one would assume equal weights, i.e. wij = 1/D for i ̸= j, the above would coincide
with the Aitchison inner product. Hence we also call these weights the Aitchison weights
and W the Aitchison weight matrix.
Before deriving the optimization problem some results from graph theory have to be

mentioned. Afterwards a connection between the latter one and compositional data
analysis can be drawn.
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4 Weighting in compositional data analysis

4.1 Graph theory and compositional data

A graph G is an ordered pair G = (V , E). V is a set which elements which are called
vertices, and it denotes a set of indices corresponding to nodes. E stands for the edge
set of the graph and includes all edges between two vertices of V which are connected.
The graph G contains no self-loops, i.e. an edge from one vertex to itself, it is also called
a simple undirected graph.
For weighting purposes, the graph G has to be extended. A weighted graph G′ is

defined as an ordered tuple G′ = (V , E,W ). Here, W is a symmetric square matrix with
a zero diagonal. Its entries correspond to weights between two vertices. In the context
of compositional data, V is chosen to be V = {1, . . . , D} and W ∈ RD×D.
A common tool for edge-weighted graphs is the so-called Laplacian matrix L. It is an

easy way to define a graph and is calculated by

LW := diag

�
D�
j=1

w1j,

D�
j=1

w2j, . . . ,

D�
j=1

wDj

	
−W. (15)

The first part is a diagonal matrix of the row-sums of W . In other words, each entry of
this diagonal matrix is the sum of weights between one vertex and its adjacent vertices.
In general, there are different types of graph Laplacians. The above definition is also

referred to as combinatorial graph Laplacian and corresponds to a weighted graph with
no self-loops, Egilmez et al. (2017).
Laplacians have a broad field of application. In spectral theory, properties of graphs

are derived by investigating the characteristic polynomial, eigenvalues or eigenvectors of
the corresponding graph Laplacian. In machine learning, they are used as kernels. In
connection to graph signal processing, operations like filtering, sampling or transforma-
tions are developed for graphs associated with Laplacians.
Some results which will be used later are mentioned in Lemma (1) below, see Mohar

(1991) for a proof.

Lemma 1. Let W be a symmetric matrix with non-negative entries and a zero diagonal,
then

• LW is a symmetric positive semi-definite matrix

• the vector 1 := (1, . . . , 1)′ ∈ RD is an eigenvector of LW , i.e. LW1 = 0.

The definition of LW is motivated by

1

2

D�
i,j=1

(fi − fj)(di − dj)wij = f ′LWd (16)
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4 Weighting in compositional data analysis

for some vectors f = (f1, . . . , fD), d = (d1, . . . , dD)
′ ∈ RD, see Merris (1994). This

equation marks the link to compositional data. If we would use the Aitchison weights,
the inner product can be rewritten into

⟨x, y⟩a = 1

2

D�
i,j=1

log

�
xi

xj

�
log

�
yi
yj

�
1

D

=
1

2

D�
i,j=1

(log(xi)− log(xj)) (log(yi)− log(yj))
1

D

= log(x)′LAlog(y).

Here, LA denotes the Laplacian matrix resulting from the Aitchison weights, i.e. LA =
(1− 1

D
)ID − (11′ − ID) 1

D
= ID − 11′ 1

D
.

From this point on, Rieser and Filzmoser (2022) extended operators like perturbation
⊕, powering ⊙ and the inner product (2) to construct a new Hilbert space in order to
incorporate weighting.

4.2 On the distribution of compositional data

One class of distributions which resides on the D−part simplex just as compositional
observations, is the class of Dirichlet distributions. For x ∈ SD and α = (α1, . . . , αD)

′ ∈
RD

+ the density function is defined as

f(x, α) =
1

B(α)

D�
i=1

xαi−1
i .

The normalizing constant is the multivariate beta function composed as a product of
gamma functions, i.e.

B(α) =

�D
i=1 Γ(αi)

Γ
��D

i=1 αi

� .
Before the introduction of logratios, this distribution was used for the statistical analysis
of compositional data, see Aitchison (1986). It is widely investigated, among others in
Bayesian statistics where is is used as a prior and posterior distribution, as well as
the conjugate prior of the multivariate normal distribution. Next to that, marginal
distributions follow a Dirichlet distribution again. The same holds for subcompositions
and amalgamations of the data. Besides that, the fixed proportional representation
allows zeros in parts of the composition.
That all seems very beneficial, but already in Aitchison (1982) a few drawbacks of this

density were outlined. The isoprobability contour-lines for every Dirichlet distribution
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4 Weighting in compositional data analysis

are convex, which means that this class of distribution must fail to characterize concave
data patterns as in compositional data. Another impediment is the high independence
structure built into its definition, which makes it inconvenient to model compositional
data. Also, the Dirichlet distribution only works for observations which exactly sum up
to one.
In the more recent setting of coordinate transformations, another severe downside

emerges. The Dirichlet distribution also fails to preserve scale invariance. An easy way
to show this is by its mode, i.e.

mode(x, α) =

�
α1 − 1�D
i=1 αi −D

, . . . ,
αD − 1�D
i=1 αi −D

	′

.

Assume that for D = 3 and α = (1, 2, 3), the mode is (0, 1/6, 2/6). Scale invari-
ance implies that rescaled observations, which would lead to a rescaling of α, have the
same mode. But if α is multiplied, i.e. (2, 4, 6) by two the resulting mode would be
(1/12, 3/12, 5/12)
These inconveniences cannot be hurdled even when adjusting the Dirichlet distribution

to the Aitchison geometry, see Monti et al. (2011) and Pawlowsky-Glahn et al. (2015).
Another noticeable case discussed in the following is the multivariate normal distri-

bution. As groundwork, the relationship between log(x) and the clr coefficients as well
as between the latter one and ilr coordinates are utilized, i.e.

clr(x) = LAlog(x),

ilr(x) = V ′clr(x),

see Filzmoser et al. (2018) and (10). V denotes the matrix of orthonormal basis vector
corresponding to the pivot coordinates. This can be combined into

ilr(x) = V ′LAlog(x).

In classical compositional data analysis it is assumed that x follows a normal distribu-
tion for some fixed V , if ilrV (x) follows a multivariate normal distribution, i.e. ilrV (x) ∼
N(0,Σ), whereas Σ ∈ R(D−1)×(D−1) is a positive definite matrix. With that and the con-
nection between the ilr coordinates and the logarithm of the data derived above, log(x)
must follow a multivariate normal distribution with mean 0. Since LA is singular and V
non-quadratic, the resulting distribution is degenerate and requires the use of the Moore-
Penrose inverse, i.e. log(x) ∼ N(0, L) with L = (V ′LA)

†Σ(LAV )† = (LAV Σ−1V ′LA)
†
.

The superscript † indicates the pseudo inverse.
The reciprocal of the covariance, LAV Σ−1V ′LA, has a few important properties con-

necting it to the theory discussed in the last section. It is symmetric, positive definite
and the vector of (1, . . . , 1) ∈ RD is an eigenvector to (0, . . . , 0) ∈ RD or, in other words,
lies in the nullspace of L. Every symmetric matrix L with L1 = 0 can be partitioned as
follows L = diag(W1)−W , whereas W is also symmetric with zero diagonal.
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4 Weighting in compositional data analysis

If we restrain ourselves onto non-negative entries in W , by the above thoughts, the
inverse of the covariance of log(x) follows the structure of a Laplacian matrix.
This coincides with the results in the context of graphical models derived by Lau-

ritzen (1996). There they showed that the precision matrix Σ−1 for multivariate normal
distributed data u, i.e. u ∼ N(0,Σ), with positive definite Σ, represents the graph
structure by the conditional independence between the variables. This connection can
be stated as follows, Egilmez et al. (2017)

E [xi|(x1, . . . , xi−1, xx+1, . . . , xD)] = − 1

Σ−1
ii

D�
j=1

Σ−1
ij xj,

Prec [xi|(x1, . . . , xi−1, xx+1, . . . , xD)] = Σ−1
ii ,

Corr [xixj|(x1, . . . , xi−1, xx+1, . . . , xj−1, xj+1, . . . , xD)] = − Σ−1
ij�

Σ−1
ii Σ

−1
jj

∀ i ̸= j.

These conditional terms are the minimum mean square error (MMSE) and the precision
of xi as well as the partial correlation between xi and xj using all the remaining random
variables. For example, if the two variables xi and xj are conditionally independent, i.e.
Σ−1

ij = 0, there is no edge between the vertices of the respective vertices representing
these variables.
It seems natural to estimate L by the inverse of the sample covariance matrix of the

data Σ̂. The problem with that lies in the high number of parameters to be estimated
which would result in a non-stable estimator. Also the desired sparsity of the graph
respectively in the weight matrix will not be present, because in general there are no
zero entries in Σ̂, Yuan and Lin (2007). That is where specific optimization problems as
discussed in the next section come into play.

4.3 Estimating weights

As mentioned before, only non-negative weights are considered in the following. De-
pending on the situation, it makes sense to choose appropriate weights in advance to
put emphasize on certain logratios. If there is no expert knowledge available beforehand,
according to Rieser and Filzmoser (2022) it makes sense to assume that the data follows
a distribution with improper density

1

(2π)D/2 |αI + L†
W |+

exp

�
−1

2
||x||2W,α

�
. (17)
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Here ||x||W,α denotes their extension of the Aitchison inner product to a graph structure
on log(x), i.e.

⟨x, y⟩W,α = α⟨log(x), log(y)⟩2 + ⟨log(x), LW log(y)⟩2
||x||W,α =

�
⟨x, x⟩W,α.

The term |.|+ stands for the pseudo determinant described in Minka (2000).
According to the last section, in order to detect underlying relationships between the

variables one must find the inverse of the covariance of the given (log-transformed) data.
An appropriate search space including all possible Laplacian matrices is

L := {L ∈ RD×D|∀i ̸= j : Lij ≤ 0,−Lii =
D�
i=1

Lij}.

While the last condition is equivalent to L1 = 0, both constraints assure that L can be
decomposed as in (15). So-called inverse covariance estimation problems consider L as
their target space.
Based on the distributional assumptions of the data X ∈ Rn×D and X ∼ N(0,Σ),

a penalized log-likelihood problem under different frameworks was considered in Yuan
and Lin (2007) and Friedman et al. (2008). The problems were of the form

Σ̂−1 := arg min
L∈RD×D,

L′=L,L p.d.

log(|L|)− trace

�
L

�
1

n
X ′X

��
+ λ||L||1, (18)

whereas p.d. stands for positive definite. This is the Gaussian log-likelihood with an
additional lasso constraint in λ||L||1 which encourages sparsity of the resulting estimator.
In order to extend this to the compositional setting, i.e. X ∈ Rn×D

+ sampled after (17),
the following problem can be considered (Rieser and Filzmoser, 2022),

min
α>0,
L=L′

log (|αI + L|)− trace

�
(αI + L)

�
1

n
log(X)log(X)

��
+ λ||L− ddiag(L)||1

s.t. L ∈ L, trace(L) = D − 1,

with the logarithm applied coordinate-wise to X. The operator ddiag(L) forms a diago-
nal matrix consisting out of the diagonal elements of L. The constraint trace(L) = D−1
ensures compatibility with the compositional case, LA.
For α = 0, the pseudo determinant would be a discontinuous function, Holbrook

(2018), leading to a discontinuous problem which is hard to solve.
Another approach for weight estimation of compositional data was established by

Kurtz et al. (2015) using centered logratio coefficients. The transformed observations,
i.e. ti := clr(xi) for i ∈ {1, . . . , n}, were collected row-wise in a matrix T . After that,
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4 Weighting in compositional data analysis

either (18) with X ≡ T , or a series of D optimization problems, by Meinshausen and
Bühlmann (2006) extended from a non-compositional framework,

min
β∈RD−1

1

n
||Tj − T−jβj||22 + λ||β||1

for λ ≥ 0 are solved. In the above notation, Tj refers to the columns of T for j ∈
{1, . . . , D} while T−j to the latter with the j-th column deleted. To obtain suitable
weights, in a further step w̃ij := |1

2
(βij + βji) | for i ̸= j and w̃ii := 0 for i = j are

defined.
In connection to graph theory, the problem of finding weights can be also viewed as in

finding a graph which enables smooth data transfer between its nodes, Friedman et al.
(2008). A possible way to quantify how smooth given data on a simple weighted graph
is by looking at the function

D�
i,j=1

wij||x.i − x.j||22 = trace(X ′LX)

with wij denoting the weights between the vertex i and j. That can be translated to
variables residing on two well connected nodes, i.e. wij being large, are expected of
having a small distance ||x.i − x.j|| in order for trace(X ′LX) being small.
A general graph learning framework could look like

min
W=W ′∈RD×D

+ ,

diag(W )=0

D�
i,j=1

wij||x.i − x.j||22 − α1′log(W1) +
β

2
||W ||2F ,

see Kalofolias (2016) for a similar representation. Above, the Frobenius norm is denoted
by ||.||F . The parameters α and β control the sparsity of the resulting graph.
This can also be extended to the compositional case by

min
W=W ′∈RD×D

≥0 ,

diag(W )=0

D�
i,j=1

wij||log(X).i − log(X).j||22 − α1′log(W1) + β||W ||2F ,

see Rieser and Filzmoser (2022).

4.3.1 Iteratively estimating weights

In this thesis another algorithm, similar to those above, is proposed. The key difference
lies in the distributional assumptions of the data X. The algorithm is based on the
PCA approach discussed in Section 3. For the derivation we take a closer look at the
optimization steps of classical multivariate PCA. The resulting optimization problem to
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find the first principal component subject to variance maximization and orthonormality
can be written as

min
a

− trace
�
a′Σ̂a

�
s.t. ||a||2 ≤ 1

whereas Σ̂ = 1
n
X ′X is the sample covariance matrix of X.

In a compositional context this can be reformulated into

min
L=L′

− trace

�
L
1

n
log(X)′log(X)L

�
s.t. L ∈ L, ||L||2 ≤ 1.

Adding a lasso regularization term, the above objective function results in

min
L=L′

− trace

�
L
1

n
log(X)′log(X)L

�
+ λ||L− ddiag(L)||1

s.t. L ∈ L, ||L||2 ≤ 1.

(19)

The constraints ensure that the resulting matrix L will be a Laplacian matrix. The
distributional difference of the data comes from the fact that the trace in (19) can be
rewritten into trace( 1

n
log(X)′log(X)LL). If we define L̃ := LL in the latter term results

in trace( 1
n
log(X)′log(X)L̃), similar as in the objective functions of the inverse covariance

estimation problems considered above. The resulting distribution of log(X) is again a
degenerate multivariate normal distribution with 0 mean and covariance (LL)†.
The problem of this algorithm is, that L appears quadratic in the trace. An idea for

solving this issue is to start with a fixed L̃ and solve the following optimization problem

min
L=L′

− trace

�
L̃
1

n
log(X)′log(X)L

�
+ λ||L− ddiag(L)||1

s.t. L ∈ L, ||L||2 ≤ 1.

(20)

The result of this minimization problem will be inserted as L̃ for the next iteration. The
idea is to start with for example L̃ = LA and continue this procedure until convergence.
A detailed schema is presented in the following example algorithm.
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Algorithm 1: Iteratively weight estimating

Result: given a compositional data set X ∈ Rn×D this algorithm iteratively
estimates the inverse covariance of the data under a L1 and L2

constraint
Input : dataset X, optimization parameters (max iters, λ, error tol,. . . )
Output: estimate of weights W and Laplacian matrix L

1 initialize the starting Laplacian L̃ as L̃old, e.g. with LA, iter = 0, rel error = Inf
2 while rel error > error tol and iter < max iters do

solve (20) with L̃ = L̃old for L
set L̃new as the solution of the above minimization problem
rel error = ||L̃new − L̃old||2/||L̃old||2
L̃old = L̃new

iter = iter + 1
3 end while

4 recalculate estimate of weights W out of L̃old.
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4 Weighting in compositional data analysis

An extension to this algorithm would be to rewrite it in dependence of the weights
wij. Since the weight matrix is symmetric with zeros on the diagonal it seems natural
to only consider for example the entries in W above the diagonal. For convenience, we
define X̃ := 1

n
log(X)L̃ ∈ Rn×D. We also use the notation of x.l and xi. for column and

row vectors respectively. With that, the trace in (20) can be rewritten into

trace

�
L̃
1

n
log(X)′log(X)L

�
= trace(X̃ ′log(X)L)

= trace(log(X)LX̃ ′)

=
n�

i=1

log(xi.)Lx̃
′
i..

In the next step we make use of equation (16)

n�
i=1

log(xi.)Lx̃
′
i. =

n�
i=1

1

2

D�
l,k=1

wlk (x̃il − x̃ik) (log(xil)− log(xik))

=
1

2

D�
l,k=1

wlk

n�
i=1

(x̃il − x̃ik) (log(xil)− v(xik))

=
1

2

D�
l,k=1

wlk⟨x̃.l − x̃.k, log(x.l)− log(x.k)⟩2.

Since wlk = wkl holds for k, l ∈ {1, . . . , D} and we have that x̃.l − x̃.k = −(x̃.l − x̃.k)
as well as log(x.l) − log(x.k) = −(log(x.l) − log(x.k)) the last term can be simplified as
follows

1

2

D�
l,k=1

wlk⟨x̃.l − x̃.k, log(x.l)− log(x.k)⟩2 =
D�
l=1

D�
k>l

wlk⟨x̃.l − x̃.k, log(x.l)− log(x.k)⟩2.

The trace in the objective function is now strictly a function of the upper triangular
part of W . Lets define w as these entries, column-wise stacked into a vector of size
D(D − 1)/2. Also let Z := (zlk) ∈ RD×D with zlk = ⟨x̃.l − x̃.k, log(x.l)− log(x.k)⟩2.
This matrix is also symmetric and has a zero diagonal. Therefore, we analogously

define z ∈ RD(D−1)/2 as a vector consisting of the stacked columns of the strictly upper
triangular part of Z. Then the conversion can be finalized as follows

trace

�
L̃
1

n
X ′XL

�
=

D�
l<k=2

wlk⟨x̃.l − x̃.k, log(x.l)− log(x.k)⟩2

= w′z.
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With that the first three conditions in (20) are automatically fulfilled. The L2 norm
appearing in the constraints can be calculated by recreating W and L out of w. The
L1 norm in the objective function (20) is just the sum of absolute values of each non-
diagonal entry of L, in other words two times the sum of absolute values of the elements
from w.
Thus, one iteration of optimization problem can be rewritten into

min
w∈RD(D−1)/2

+

− w′z + κ||w||1

s.t. w ∈ RD(D−1)/2
≥0 , ||Lw||2 ≤ 1.

(21)

Below, an example algorithm describes the derived optimization problem in a similar
fashion as before. Note that in the simulation in Chapter 5 the vectorized version of the
algorithm is not considered.

Algorithm 2: Iteratively weight estimating - vectorized

Result: given a compositional data set X ∈ Rn×D this algorithm iteratively
estimates the strictly upper triangular part of the weight matrix W
via a vectorized inverse covariance optimization problem

Input : dataset X, optimization parameters (max iters, κ, error tol,. . . )
Output: estimate of weights W

1 initialize the starting weight vector w as wold, e.g. with
1
D
1, iter = 0, rel error

= Inf

2 calculate X̃ = 1
n
log(X)LA and initialize z as zold by using X̃

3 while rel error > error tol and iter < max iters do
solve (21) with z = zold for w
set wnew as the solution of the above minimization problem
rel error = ||wnew − wold||2/||wold||2
wold = wnew

recalculate L̃ from wnew

set X̃ = 1
n
log(X)L̃ and calculate z

iter = iter + 1
4 end while
5 calculate the weight estimate W out of wnew.
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5 Simulation

In the first part of the empirical simulation in this thesis we consider artificial data sets
to analyze the behavior of the algorithm for problem in Equation (20) over different
sparsity parameters λ. The simulation itself is carried out in R (R Core Team, 2019).
The data originates from the igraph (Csardi and Nepusz, 2006) package which allows
a simple handling of graphs. For the following minimization the convex optimization
tool CVXR (Fu et al., 2020) is utilized. Different dimensions of observations as well as
compositional parts are considered while also the number of relevant logratios changes
throughout the procedure. After that the performance of each configuration is evaluated
over different aspects.

5.1 Data generation

As described in (4.3.1), for the generation of a data we need to assume our data to follow
a graph structure. For that the igraph package is considered. It is an efficient open
source programming tool for an easy analysis of graphs and networks. It includes many
functions to randomly generate different types of graphs and visualize them afterwards.
In this work we consider the function

which produces a simple graph g for D vertices, i.e. compositions. The fixed probability
p of two nodes being connected can be adjusted manually. These parameters are the
only one relevant in this work.
From g the adjacency matrix A can be extracted by the function

This matrix describes the connectivity between the nodes of a graph. An entry aij
equals one if there is an edge between vertex i and j and zero otherwise. Therefore, it
is a symmetric matrix and since we only consider graphs with no self-loops, its diagonal
is zero. For simplicity we only consider weights to be zero or one, so that the weight
matrix W equals the adjacency matrix directly. This makes it also easier to recalculate
the weights from the Laplacian after the algorithm is finished.
With (15) and the thoughts in Section 4.3.1, the Laplacian L and the covariance (LL)†

are computed. Under the considered distributional assumptions log(X) is generated
followed by row and column centering which replaces an observations xi. by its centered
logratio and also ensures that 1

n

�D
i=1 log(xi.) = 0.
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5.2 Evaluation

The performance of the algorithm is evaluated by the explained variance EV similar to
R2, the coefficient of determination. For that the resulting Laplacian L is needed. The
computation of EV itself consists of several steps:
1. We start with the SVD of the Laplacian L, i.e. L = UΣU ′. Note that for L in

(13) U = W holds. Then we calculate the projections of log(X) onto eigenvectors which
correspond to positive eigenvalues in Σ. Let us define these columns of U with Ũ . For
the next step we start with an index set I := {}.
2. Now, for each index j ∈ 1, . . . , n and j /∈ I, the projection of the combined indices

I ∪ j, i.e.
�
Ũ ′log(xi.)

�
i∈I∪j

, are fitted onto log(X) by a linear regression model. Let the

resulting fitted values be denoted by log(X)j,fitted.
3. In the final step a goodness of fit between log(X)j,fitted and log(X) is consulted

as the quality measure. The explained information of these projections is calculated by

EV = 1− ||log(X)− log(X)j,fitted||2
||log(X)||2 .

Given the index, we set I := I ∪ {j} for that component j for which the above in-
formation is maximized and continue the procedure at step 2. This iteration leads to
projection directions which subsequently increase the explained variance. The idea of
this measurement is to see how good (lower dimensional) projections of log(X) onto the
eigenvectors of L given the distributional assumption of the data approximate log(X).
To get a first visual impression of this, the explained variance can be plotted against

the number of components. They will be called variance component plots. It is obvious
that the higher the number of components get, the higher the explained variance will
be since more information of the original data gets available. It would be ideal to get
results where already a low number of compositional parts describes a high amount of
variance of the data.
Regarding the resulting sparsity of L̃, a plot of the sparsity parameter λ versus the

actual sparsity of the Laplacian can be analyzed. Increasing values for λ should result
in a higher sparsity of L̃.
What also would be interesting is the trade-off between the explained variance and

the sparsity of the Laplacian. Ideally, we would obtain a sparse solution for L̃ while the
explained variance is high. For lower levels of the connectivity p, the resulting structure
should be close to the underlying one and therefore also achieve higher values. When
the number of relevant logratios increases, a sparse solution might not be able to result
in a high explained variance.
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5.3 CVXR

For solving the minimization problem in (20) the package CVXR, see Fu et al. (2020), is
used. It supplies an object oriented modeling language for convex optimization problems.
It allows the user to intuitively implement convex problems.
In the beginning the target variable is defined by

where n is the row dimension and D is the number of columns.
An objective function of a minimization problem, as in this work, can be defined by

whereas the input of the function follows the classical R syntax. The package also
provides built-in functions that simplify formulations.
Additional constraints on the variable are collected into a list object by

Then the optimization problem is defined by

and solved with

CVXR internally converts the problem into standard form by graph implementations
before passing it on to a solver. For this analysis the cone solver ECOS is used.
Next to the target variable, values like the number of iterations and the solving time

are returned.

5.4 Optimization parameters

The parameter λ in (20) controls the sparsity of the resulting Laplacian. The higher
it is, the more zeros L should contain. The behavior of different values for λ will be
determined by cross validation over different configurations of the number of observations
n, the compositional parts D and the connectivity p of the underlying graph structure.
During k-fold cross validation the data set is split into k equal parts. In each iteration

of this procedure one of the k sets is considered the test set while the algorithm is
executed on the remaining k−1 folds. The performance is then evaluated by calculating
the explained variance for the left out fold. For each configuration an overall efficiency
can be calculated as the mean explained variance over all k iterations.
In the following we will consider 5-fold cross validation. The parameter n can take

the values 50, 100, 200 and 500 whereas D ranges between 5, 10 or 20. These values are
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considered to give a good overview how the algorithm behaves on various parameter con-
figurations. Next to that, also different levels of connectivity between the compositional
parts are considered. This is achieved by varying the value of p in sample gnp(D,p)

between 0.1 and 0.5. These values seem reasonable since they simulate situations where
not all logratios are relevant. Too low values could lead to an empty graph with no
relevant connection implying the Laplacian equaling a matrix of zeros. That is why for
D = 5 only vales above 0.1 are considered. On the contrary, if an analyst assumes a high
number of relevant ratios beforehand, finding the latter might not be the main purpose
of such an algorithm. It would rather be of interest to only get a validation for this
assumption.
The lower p is, the less the probability of nodes being connected and the more sparse

W gets. This implies that less logratios seem to be relevant. Therefore, it should be
possible to capture the variance of the data by a potentially smaller number of these
logratios. If p attains higher values, more nodes are connected and a higher number of
logratios may be needed to explain the data sufficiently well.
We examine twenty different values for the sparsity parameter. For that, we consider

equidistant steps in the interval between log(0.01) and log(20), i.e. log(0.01) = ϕ1 <
ϕ2 < . . . < ϕ20 = log(20). From that we take λi = exp(ϕi) as the sparsity parameters.
Logarithmic scaling of lasso parameters an established method during cross-validation.
The maximum number of updates for L̃ is set to 30. Next to that, the error threshold

for the relative error in each iteration is 10−5. Table 2 gives an overview of the just
discussed domains of the optimization parameters.

Optimization parameter Domain
sparsity parameter λ {exp((i− 1)(log(20) − log(0.01)/20)) , i ∈ {1,. . . ,20}}

number of observations n {50,100,200,500}
number of compositional parts D {5,10,20}

connectivity probability p {0.1,0.2,. . . ,0.5}
error tolerance 10−5

maximum iterations 30

Table 2: Optimization parameters for the 5-fold cross validation.

5.5 Results

In the following we will take a look at the resulting variance plots over various config-
urations in order to get a feeling of the behavior of the algorithm. We will start with
lower values of D and increase it subsequently. It might happen that due to numeric
errors not all eigenvalues of the resulting Laplacian are non-negative, or that all values
are zero or less. In these instances the explained variance can only be calculated for less
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Figure 3: Variance component plots for different sparsity levels; D = 5, n = 200.
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than D, say D̃, components. If that situation occurs, the variance for the projections
based on D̃ + 1, . . . , D ratios is set to the last attained value.

The first plots start with D = 5 and n = 200. In Figure 3 the results for the connec-
tivity probabilities p 0.2, 0.4 and 0.5 are displayed. For p = 0.2 the corresponding graph
is plotted in Figure 4. As we can see, there is only one edge between two components.
This seem to be a relevant connection, since already for one component the explained
variance is nearly one. Hence there is little to no improvement when the number of
components is increased. For higher values of p the number of components must be
increased in order to achieve a higher explained variance. Even though more logratios
are relevant due to the construction of the underlying graphs, less projection direction
can already explain a lot of variance of the data. In contrary to the linear increase in
variability for p= 0.4, for a value of 0.5 there is a high jump for some sparsity levels
when increasing the components from one to two.
As we will see later, the sparsity of L̃ gets close to one, which results in a explained

variance of zero. What might look like some lines are missing, can also follow from the
fact that the lower values of λ are close together, resulting in similar explained variances
and therefore overlapping paths.
As explained before, constant paths result due to numeric issues or no positive eigen-

values being present.
It slowly becomes apparent that the higher the sparsity parameter get, the lower the

maximally achievable explained information gets. For higher values of λ the paths seem
to converge to a lower maximum.
Different counts for the number of observations n lead to similar results.

Figure 4: Simple graphs for 5 and 10 nodes and connection probability p= 0.2, respec-
tively.

For D = 10 and n = 200 we get an even clearer picture of our last thoughts. Here,
we look at four different values for p. The more connections there are between the
variables, the more components are need to achieve a higher explained variance. For
lower values of p, i.e. 0.1, we notice that two components already explain the whole data
very well, while additional components only minorly improve the variance. Increasing p

subsequently lead to lower explained variances for a lower number of components used
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5 Simulation

for the projections. Whilst for p = 0.2 the available information starts at around 0.65,
for 0.4 and 0.5 these values drop to 0.55 and 0.4 respectively.
We again notice that the level of the explained variance does not converges to one for

some sparsity parameters. That is what we would expect for higher values of λ as the
level of sparsity in L will not be able to capture the relevant information of the original
data.

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0

number of components

e
x
p
la

in
e
d
 v

a
ri

a
n
c
e

log(λ)

−4.6
−4.2
−3.8
−3.4
−3
−2.6
−2.2
−1.8
−1.4
−1

−0.6
−0.2
0.2
0.6
1
1.4
1.8
2.2
2.6
3

connectivity probability p: 0.1

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0

number of components

e
x
p
la

in
e
d
 v

a
ri

a
n
c
e

log(λ)

−4.6
−4.2
−3.8
−3.4
−3
−2.6
−2.2
−1.8
−1.4
−1

−0.6
−0.2
0.2
0.6
1
1.4
1.8
2.2
2.6
3

connectivity probability p: 0.2

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0

number of components

e
x
p
la

in
e
d
 v

a
ri

a
n
c
e

log(λ)

−4.6
−4.2
−3.8
−3.4
−3
−2.6
−2.2
−1.8
−1.4
−1

−0.6
−0.2
0.2
0.6
1
1.4
1.8
2.2
2.6
3

connectivity probability p: 0.4

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0

number of components

e
x
p
la

in
e
d
 v

a
ri

a
n
c
e

log(λ)

−4.6
−4.2
−3.8
−3.4
−3
−2.6
−2.2
−1.8
−1.4
−1

−0.6
−0.2
0.2
0.6
1
1.4
1.8
2.2
2.6
3

connectivity probability p: 0.5

Figure 5: Variance component plots for different sparsity levels; D = 10, n = 200.

Increasing D to 20 yields a more smooth results for p = 0.1. Still, a low number of
components can explain the variability of the data sufficiently well. For p = 0.2 we again
see that the higher λ gets, the lower the achievable variance gets. Values of 0.4 and 0.5
conclude in similar fashion.
What we also notice is, that for all three dimensions the different sparsity parameters

λ act very similar.
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Figure 6: Variance component plots for different sparsity levels; D = 20, n = 200.

Another question might be the direct impact of λ onto the sparsity of the weight matrix
respectively the Laplacian. For this, the relative sparsity of the estimated Laplacian is
calculated by the number of entries being zero divided by the total number of parameters
in L̃, i.e.

#{(i, j)|L̂ij = 0}
D(D − 1)/2

. (22)

These sparsities are averaged over the folds and collected for each λ. In Figure 7 we
see the resulting trends for different values of D and p.
In all configurations we get an increase in the sparsity of L̃ when the sparsity λ

increases. Due to numeric issues it might occur that the number of zero entries in L̃
already starts relatively high or begins rather low. Nevertheless, due to increasing λ,
the algorithm always reduces the sparsity of the Laplacian.
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Figure 7: Relative sparsity of the Laplacian L̃.
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For the lowest value of compositional parts the behavior of this increase seems to
be different for each connectivity level. If p = 0.2 the underlying graph structure is
already very sparse. The algorithm seems to catch that, resulting in the Laplacian in
being nearly fully spars from the beginning and rising very quickly afterwards. For 0.3
and 0.4 this changes takes place significantly later. If D now increases to 10 or 20 these
paths align more and more while configurations with higher connectivity levels get sparse
faster.
What is interesting is that the sparsity for p = 0.1 always starts significantly higher

than for the remaining levels. It seems that if the number of relevant logratios is lower,
the algorithm is able to reproduce the underlying graph structure quite well from the
beginning.
In the final part of this section we will look at the trade-off between the sparsity of L̃

and the contained information. In Figure 8 we have plotted the mean values resulting
from the cross-validation for the relative sparsity against the explained variance. Higher
values of λ are denoted by brighter colors, while different connectivity levels p are labeled
by different symbols.
The first thing to notice again here is, that for higher values of D the explained

variance decreases subsequently.
Higher values for D do not necessarily lead to less sparse solutions. For D = 5 there is

only one configurations where the sparsity of L̃ is significantly low. For remaining ones,
not only the corresponding sparsity is high, but also the explained variance. A smaller
number of components is already able to explain a high proportion of the information
in the data.
Different levels of λ influence the sparsity in the same way for all values of D. For

lower values of λ a small increase does lead to an increase in the sparsity as well, while
is does not decrease the explained variance. If the lasso parameter reaches higher val-
ues, the explained variance suddenly drops down, implying a too sparse solution. This
phenomenon occurs in all connectivity levels p.
Another aspect from before can also be observed in these plots again. The higher p

gets, the lower the explained variance is.
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Figure 8: Trade-off between sparsity of L̃ and the explained variance for two components.
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6 Real world data application

6.1 Data sets

In this section we will analyze two different compositional data sets with the before
introduced iterative algorithm. The first one is the Kola data set collected in the Kola
Project in the 90s in Finland, Norway and Russia, see Reimann et al. (2010). It contains
over 600 observations of soil samples of five different layers. For this analysis we consider
a subset of 10 variables corresponding to the concentration of different chemical elements
in the C horizon, a specific layer. The data set can be found in the StatDA package, see
Filzmoser (2020).
The second data we examine originates from the GEMAS (Geochemical mapping of

agricultural and grazing land soils) project, see Reimann et al. (2012). Among others,
the concentration of geochemical elements in agricultural soil have been collected in
mg/kg. The data is available in robCompositions (Templ et al., 2011). It includes 2108
observations on 30 different variables. In this analysis we deal with 17 of those variables
corresponding to the geochemical elements.
Before applying the procedure, the data has to be scaled appropriately. At first the

centered logratios from each data set are calculated. Afterwards these ratios are centered
by their corresponding column means. The results are the row and column centered
logarithms of the original data. These values are assumed to follow a degenerate normal
distribution, see Section 4.2. Looking at the histogram of various compositions of the C
horizon data set, this assumption can be confirmed.

45



6 Real world data application

0

20

40

60

80

−1 0 1

Mg_XRF

c
o

u
n

t

0

25

50

75

−1 0 1

Mn_XRF

c
o

u
n

t

Figure 9: Histogram of different variables of the scaled C horizon data set.

Also for the first two parts of the GEMAS data set, the histograms yield similar
results.
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Figure 10: Histogram of different variables of the scaled GEMAS data set.

6.2 Evaluation and results

For the evaluation of these two data sets we shorten the range of sparsity parameters used
in Chapter 5 to equidistant points between log(0.01) and log(2). We compare resulting
variance plots and look at the sparsity of the resulting Laplacians as well as graphs
resulting from different values of λ.
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6.2.1 Kola data

We start with the Kola data set. In Figure 11 we see the development of the sparsity of
the resulting Laplacian for increasing λ. We notice a steady increase of the sparsity in
the beginning for the lower values of the lasso parameter. At a certain level this increase
suddenly stagnates.
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Figure 11: Sparsity of L̃. Kola data set.

Next, in Figure 12 we get another view on the influence of increasing λ. We get
an insight at the trade-off between the sparsity of L̃ and the explained variance when
projecting the data onto the first two eigenvectors of the Laplacian. With an increase
in λ the sparsity increases while the explained variance stagnates. Eventually for the
higher lasso parameter there is a sudden drop in the explained variance.
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Figure 12: Trade-off between sparsity of L̃ and the explained variance for two compo-
nents for the Kola data.

In Figure 13 we see the underlying graph structure of the Kola data set for λ before and
after this drop in variance. These formations result from the Laplacian. The estimate of
the adjacency matrix Ã, which is needed for the construction of the graphs, is extracted
from the previous by

Ã = L̃− ddiag(L̃).

For simplicity we additionally set all non-zero entries in Ã to one, i.e. we only consider
weights being zero or one.
The upper left graph results from the lasso parameter λ ≈ 0.013. We observe no clear

structure or a unique relationship between the compositional parts. The sparsity of the
underlying Laplacian is about 18%. The upper right graph comes from λ ≈ 0.093. Now,
the relative sparsity is already at 0.85. We detect two clusters. For λ ≈ 0.214 we get
the graph on the bottom left. The logratio between the elements phosphorus P and
silicon Si does not seem to be important anymore. Furthermore, the second cluster has
reduced itself to a single connection between magnesium Mg and sodium Na. All of the
previous graphs have an explained variance of about 0.65 to 0.7 for projections onto the
first two eigenvectors of L̃. Interestingly, the explained variance drops to 0.34 when the
Laplacian gets even more sparse. This is represented by the bottom right graph where
the link between Mg and Na has been removed due to change in the sparsity level λ
to approximately 0.375. That might imply that the logratio between the parts Mg and
Na plays a significant role when analyzing the data.
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Figure 13: Graphs for different sparsity parameters. Kola data set.

Finally, in Figure 14 the variance plot of the data set is displayed. The results seem
reasonable as the higher values of λ lead to a lower maximum of the explained variance.
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Figure 14: Variance component plot for the Kola data set.

6.2.2 GEMAS data

In contrary to the last example, the graph in the sparsity plot of the GEMAS data set
15 follows a more s-shaped curve. It seems like it takes the algorithm some time before
a higher value of λ leads to a higher sparsity. Roughly at about the same value for λ as
in 11 the graph flattens and the influence of λ onto the structure of L̃ falls off.
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Figure 15: Sparsity of L̃. GEMAS data set.
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The sparsity variance trade off for the GEMAS data set follows a similar structure.
For a projection on only the first two eigenvectors of L̃, the explained variance is already
very high. Although the number of components is significantly higher than for the Kola
data set, the variances are almost the same. This would imply a more sparse structure
of the GEMAS data.
Furthermore, an increase in λ leads to a higher sparsity while the explained variance

remains nearly constant. Ultimately, this also concludes in a sudden shift of the variance
to a lower level. It seems like this drop happens earlier than for the Kola data set.
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Figure 16: Trade-off between sparsity of L̃ and the explained variance for two compo-
nents for the GEMAS data.

In Figure 17 we again study the change in the underlying graph structure due to an
increase in λ. As we already saw in Figure 15, the increase in sparsity is rather slow
when compared to the Kola data set. That becomes noticeable when we compare the
graphs for the same levels of λ. The two upper graphs correspond to λ ≈ 0.214 and
λ ≈ 0.375. Before the algorithm already had achieved a very sparse structure with only
a few logratios being relevant. Here there a still a few more connections between the
compositional parts. The explained variance lies between 0.55 and 0.6. If λ gets even
higher the number of relevant links continues to reduce and the explained variance drops
to around 0.35 to 0.4. The bottom graphs result from λ ≈ 0.655 and λ ≈ 0.866.
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Figure 17: Graphs for different sparsity parameters. GEMAS data set.

In the final variance plot in Figure 18 the implication of different sparsity parameters
in the objective function is even more diverse. In contrary to before, we get various
paths converging to lower levels of explained variance for higher λ.

52



6 Real world data application

0.00

0.25

0.50

0.75

1.00

5 10 15

number of components

e
x
p
la

in
e
d
 v

a
ri

a
n
c
e

log(λ)

−4.6
−4.3
−4
−3.8
−3.5
−3.2
−2.9
−2.7
−2.4
−2.1

−1.8
−1.5
−1.3
−1
−0.7
−0.4
−0.1
0.1
0.4
0.7

Gemas data set

Figure 18: Variance component plot for the GEMAS data set.
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7 Conclusions

In the beginning of this work, the concept of positive vectors that contain relative in-
formation of a whole was introduced. The ”raison d’être” of this framework becomes
apparent when looking at the corresponding sample space of such observations, which
is significantly different from the well established Euclidean space. These compositions
rather originate in the (unit) simplex. Accordingly, it turned out that already sophisti-
cated methods from many areas of multivariate statistics were applied incorrectly onto
the constrained data.
The foundation of a solution to this problem was set in the early 80s by the debut

of compositional data. That approach was expanded about twenty years later by the
Aitchison geometry, which made that idea more tangible.
Over the course of this thesis we came in contact with several fields of application

of compositional data like economy or geology. Furthermore, different extensions from
standard statistical techniques are considered.
We took a closer look at the concept of dimension reduction. At first we dealt with

principal component analysis which could be easily extended to the compositional case.
For the second approach we considered weighting. Relevant variables or ratios of the

latter should be higher weighted during the analysis. On the contrary, unimportant
logratios should receive little to no weight which would equal a dimension reduction as
well. This thought was incorporated into the inner product of the Aitchison geometry
and together with results from graph theory a series of optimization problems could be
established. Through these the Laplacian matrix of underlying graph can be estimated
as the inverse covariance of the corresponding data.
Analogously to principal component analysis, an iterative algorithm for this kind of

problem was introduced. An additional lasso term should control the sparsity of the
solution. By 5-fold cross-validation over various parameter configuration, including the
number of observations or compositional parts, the behavior of the algorithm was ana-
lyzed on simulated data. The explained variance was consulted as goodness of fit. The
procedure performed as expected. Higher lasso parameters led to more sparse solutions,
while the obtainable variance decreased. Still, it was possible to get to a relative high
sparsity of the Laplacian before the contained information reduced significantly. The
results over different dimensions were similar.
Afterwards, the performance of the algorithm was tested on two geochemical data sets.

The Kola and GEMAS, which were both collected in Europe, contain concentrations of
chemical elements in soil. Here, results were also promising. The algorithm was able to
find sparse solutions, yet containing enough information to describe the data sufficiently
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well. Through the structure of the underlying graphs for different sparsity levels it was
also possible to find those ratios that might be of importance.
Since these outcomes already look very reasonable, tasks of future work shall extend

this framework. Now it is of interest to find a criterion that, among other, selects an
optimal sparsity parameter based on a trade-off between the sparsity of the solution and
the explained variance.
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