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Kurzfassung

Brustkrebs ist die häufigste Krebserkrankung bei Frauen und macht 23,8 % aller weib-
lichen Krebserkrankungen aus. Um das individuelle Risiko zu bewerten und Patientin-
nen entsprechenden Risikogruppen mit spezifischen Screening-Protokollen zuzuordnen,
werden genetische Tests und auf kategorischen Variablen basierte Modelle verwendet.
Hochrisikopatientinnen wird in der Regel empfohlen, jährliche Vorsorgeuntersuchungen,
einschließlich Mammographien und Brust-DCE-MRTs, durchzuführen. Dennoch besteht
das Risiko, dass frühe Läsionen übersehen werden oder sich zwischen den Untersuchungen
Krebs entwickelt. Dies hat zur Entwicklung von Deep-Learning-Methoden geführt, die
Risikobewertungen auf Basis von Daten der medizinischen Bildgebung durchführen oder
Bilddaten in bestehende Methoden integrieren. Jedoch konzentrieren sich bestehende
bildbasierte Ansätze vorwiegend auf Mammographien von Frauen mit durchschnittlichem
Risiko und identifizieren keine spezifischen Risikobereiche im Brustgewebe.

Ziel dieser Masterarbeit ist einerseits die Entwicklung einer Segmentation-Pipeline zur
Identifizierung von Hochrisikobereichen in negativ befundeten Brust-DCE-MRTs. An-
dererseits wird untersucht, ob MRT-Schnittbilder in jene mit und ohne Risiko für die
Entwicklung zukünftiger Läsionen klassifiziert werden können, basierend auf statistischen
Features, die aus den entstehenden Segmentierungs-Wahrscheinlichkeitskarten berechnet
werden. Zu diesem Zweck werden DCE-MRT-Daten von Hochrisikopatientinnen aus zwei
aufeinanderfolgenden Screenings am AKH Wien verwendet. Mit diesen Daten werden
mehrere Segmentierungsarchitekturen, darunter U-Net, nnU-Net und DeepLabv3+, hin-
sichtlich ihrer Fähigkeit verglichen, auffällige Bereiche zu identifizieren, die mit einem
erhöhten Risiko für die Entwicklung von Läsionen innerhalb von 6 bis 24 Monaten
verbunden sind. Zur Verbesserung der Segmentierung werden Datenaugmentation und
domänenspezifisches Transfer-Learning eingesetzt und deren Effekt untersucht. Für die
Klassifizierung werden Random-Forest-Ensemble-Modelle mit statistischen Features trai-
niert, die aus den Segmentierungswahrscheinlichkeitskarten extrahiert wurden (Mittelwert,
Median, Maximalwert, 95. Perzentil und Anzahl der Läsionspixel). Zusätzlich wird die
Klassifizierungsleistung der einzelnen Features analysiert.

DeepLabv3+ übertrifft die anderen Architekturen bei der Segmentierung von Hochrisiko-
bereichen, insbesondere in Kombination mit Datenaugmentation und domänenspezifi-
schem Transfer-Learning. Das Modell zeigt auch Potenzial für die Risikostratifizierung,
mit einer Klassifikationsgenauigkeit von 0,61, einer Präzision von 0,68 und einem Recall
von 0,41. Der Mittelwert, der Maximalwert und die Anzahl der Läsionspixel erweisen sich
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dabei als besonders aussagekräftige Features für die Risikostratifizierung (max. ROC-
AUC: 0,68, 0,69, 0,66). Allerdings verdeutlichen die Kompromisse zwischen Genauigkeit,
Präzision und Recall die Notwendigkeit weiterer Modelloptimierungen.

Insgesamt zeigt diese Masterarbeit das Potenzial der Integration segmentierungsbasierter
statistischer Features aus DCE-MRTs zur Risikostratifizierung bei Hochrisikopatientinnen
mit Brustkrebs. Trotz der begrenzten Segmentierungsleistung liefern die Wahrscheinlich-
keitskarten wertvolle Informationen für die nachfolgende Risikoklassifizierung. Obwohl die
Ergebnisse vielversprechend sind, bedarf es weiterer Forschung, um die Generalisierbarkeit
zu verbessern und den Merkmalsextraktionsprozess für eine höhere Vorhersagegenauigkeit
zu optimieren.



Abstract

Breast cancer is the most common cancer in women, accounting for 23.8% of female
cancers. Genetic testing or risk models using categorical variables are used to evaluate
an individual’s risk, categorising patients into corresponding risk groups with predefined
screening protocols. Those at high-risk are advised to participate in annual screenings
that include mammograms and breast DCE-MRI scans. However, early-stage lesions can
be missed, and cancer may develop between screenings. This has led to the exploration
of Deep Learning methodologies that integrate medical imaging data into risk assess-
ment. However, existing image-based approaches are mostly based on mammograms of
individuals at average risk and do not identify suspicious areas in breast tissue.
This thesis develops a segmentation pipeline to identify high-risk areas in negatively
evaluated breast DCE-MRI scans, and evaluates the effectiveness of classifying MRI slices
as at risk or not at risk for future lesion development based on features derived from
segmentation probability maps. DCE-MRI data of high-risk patients from two consecutive
screenings at the AKH Wien was used to compare several segmentation architectures,
namely U-Net, nnU-Net and DeepLabv3+, in their ability to delineate areas at risk of
developing lesions within 6 to 24 months. Data augmentation and transfer learning were
explored to improve performance. For classification, Random Forest ensemble models
were trained using statistical features (mean, median, maximum value, 95th percentile,
and lesion pixel count) extracted from segmentation probability maps, and the individual
features’ effectiveness in risk stratification was evaluated.
DeepLabv3+ outperformed other architectures in segmenting future lesion areas, particu-
larly when combined with data augmentation and domain-specific transfer learning. The
segmentation backbone also proved useful for future risk stratification, with a classifica-
tion accuracy of 0.61, a precision of 0.68, and a recall of 0.41. The mean, maximum value,
and lesion pixel count were identified as features with a strong discriminative power
for risk stratification (max ROC-AUC: 0.68, 0.69, 0.66). However, trade-offs between
accuracy, precision, and recall highlight the need for further refinement.
In conclusion, this master’s thesis demonstrates the potential of integrating segmentation-
derived features from breast DCE-MRI scans for breast cancer risk stratification in
high-risk populations. While the segmentation performance based on binary masks was
limited, the probability maps proved to be highly informative for downstream classification.
While initial results are promising, further research is required to enhance generalisability
and to refine the feature extraction process to improve predictive accuracy.
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CHAPTER 1
Introduction

Breast cancer is the most prevalent type of cancer among women in the world and the
leading cause of cancer-related death in females, accounting for 670,000 deaths globally
in 2022 [22, 191].

While risk factors for developing breast cancer include certain modifiable factors such
as physical activity, obesity or hormone replacement therapy (HRT), other important
risk factors are non-modifiable, such as age or family history [28]. With regard to family
history, the elevated risk is often attributed to germline mutations and epigenetic factors.
Female individuals with a hereditary predisposition or known mutation of the BRCA-1
and BRCA-2 genes (BReast CAncer genes 1 and 2) have an exceedingly high lifetime
risk of developing breast cancer, estimated at 40-85% [61].

As a result, individuals’ risk of developing breast cancer is either determined through
genetic testing or by using existing models for risk assessment. In the former case, if
an individual is identified as a carrier of a deleterious mutation, the mutation itself
determines cancer risk. In other cases, when the patient does not meet the criteria for
genetic testing and existing risk assessment models are employed, the risk is determined
based on a set of categorical variables, including patient demographics, personal and
family history, and age-driven risk factors [104]. In both cases, patients are assigned to a
specific risk group and are subject to a pre-defined screening protocol and interval. As
preventative and surveillance measure, high-risk cancer patients are recommended to
participate in screening programmes that include annual mammograms as well as annual
Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) of the breast,
given the high sensitivity of the latter [127, 134].

However, with constrained resources and the additional burden it puts on patients,
the success and practicality of screening initiatives relies on striking the right balance
between the capability for early detection and the risk of excessive screening. Despite
the enhanced sensitivity of DCE-MRI screening in high-risk patients, there remains a
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1. Introduction

risk of missing or developing cases of invasive breast cancer between screenings, known
as interval cancer. As demonstrated by Vreemann et al. [182], approximately one-third
of cancers detected in high-risk screening programmes were already visible in the most
recent negative DCE-MRI scan (i.e. assessed as showing no signs of suspicious lesions).
Furthermore, in an additional 34% of the cases, the prior MRI showed minimal indications
of lesion occurrence that would likely not have be recognised as suspicious by trained
radiologists [182]. This indicates that, even when evaluated as negative, DCE-MRI exams
bear high potential for risk assessment.

As a result, approaches have been investigated to incorporate information from medical
images into risk assessment models. In particular, recent studies have demonstrated
considerable potential of image-based Deep Learning (DL) models for more accurately
assessing the risk of breast cancer in individual patients [194, 195, 112]. However, the
current approaches are primarily based on mammograms of individuals at normal risk,
with only a limited number of publications focusing on DCE-MRI of high-risk cancer
cohorts [152, 27]. Moreover, these models predict the risk of a patient developing cancer
within a specified time frame, yet they do not identify suspicious regions leading to this
conclusion.

To address these limitations, we propose the development of a segmentation model for
the identification of suspicious regions in breast DCE-MRI scans of high-risk patients
associated with a higher risk of suspicious lesion emergence in the future. By identifying
such structures in breast tissue, individual risk scores could be adjusted in the short to
mid-term to optimise or personalise screening intervals and improve screening outcomes.
Furthermore, to evaluate the usefulness of the identified risk pattern in greater depth,
we propose training a classification model aimed at distinguishing between MRI slices
that are at risk of developing future lesions and those that are not, based on statistical
features derived from the segmentation probability maps.

1.1 Aim of the Work
This thesis investigates the following research questions,which guide the research process:

1. What segmentation architectures and methodological strategies are most effective
for identifying areas associated with a higher risk of suspicious lesion emergence in
negatively evaluated breast DCE-MRIs?
This research question focuses on determining a suitable segmentation pipeline
to identify high-risk areas in breast DCE-MRIs. It involves the investigation
of different architectures, namely U-Net, nnU-Net, and DeepLabv3+, as well as
exploring relevant model training and regularisation strategies to create a robust
pipeline tailored to identifying high-risk areas in breast DCE-MRIs.

2



1.2. Structure of the Thesis

2. To what extent is a segmentation model capable of identifying high-risk areas?
This research question examines the effectiveness of the developed segmentation
model. It involves systematically assessing the model’s performance in correctly
identifying high-risk areas in breast DCE-MRIs. This evaluation includes the
selection of suitable metrics and evaluation methods to test the model’s output.

3. How effective is the developed segmentation model as a feature extractor for clas-
sifying breast DCE-MRIs into those at risk and not at risk for suspicious lesion
development?
This question explores the utility of the segmentation model beyond its primary
task by assessing how well the features derived from its probability maps can be
used for classification. In particular, it investigates the discriminative power of
these features in distinguishing between DCE-MRI slices at risk of developing future
lesions and those that are not. The objective is to assess the reliability of the
segmentation model as a feature extractor and breast cancer risk assessment tool.

1.2 Structure of the Thesis
This thesis is comprised of eight chapters. Following the introduction in this chapter,
Chapter 2 provides the requisite medical background on breast cancer and breast cancer
screening, as well as an introduction to Deep Learning. Chapter 3 examines state
of the art in Machine Learning-based approaches for breast cancer research, with a
particular focus on image segmentation and breast cancer risk assessment. The datasets,
data preprocessing steps, and the methodological approaches employed for future lesion
segmentation and classification are explained in Chapter 4. Chapter 5 delineates the
experiment setup for the segmentation and classification tasks conducted in this thesis.
A presentation and discussion of the segmentation and classification experiments are
provided in Chapter 6 and 7, respectively. Finally, Chapter 8 offers concluding remarks,
summarising the contributions and limitations of the thesis, and provides an outlook on
potential future research directions in the field of breast cancer risk assessment using
medical image segmentation.
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CHAPTER 2
Background

This chapter provides information on the medical background of breast cancer, including
risk factors, risk assessment and the screening and diagnosis of breast cancer. Additionally,
it introduces Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI)
and the Breast Imaging Reporting and Data System (BI-RADS). Finally, it presents an
introduction to Deep Learning (DL), a specialised subdomain of Machine Learning (ML).

2.1 Breast Cancer
Breast cancer is the most commonly diagnosed type of cancer among women worldwide
(Figure 2.1), accounting for 23.8% of all female cancer cases, with an estimated 2.3 million
new cases reported among females in 2022 [22, 191]. It accounts for nearly 12% of the
global cancer burden and is the leading cause of cancer-related death among women [22].
In 2022, approximately 670,000 women died from breast cancer, representing 1 in 6.5
cancer deaths in women globally [22].

While the risk of developing breast cancer is relatively high for women, with an estimated
1 in 20 females diagnosed in their lifetime, breast cancer in men is relatively rare, with
0.5 to 1% of cases [22, 191, 103]. This thesis focuses solely on female breast cancer.

2.1.1 Risk Factors
Non-Modifiable Risk Factors

The most significant risk factor for breast cancer is female sex, largely due to elevated levels
of oestrogen and progesterone, which promote breast tissue growth [5]. Consequently,
early onset of menarche (first menstruation) and delayed menopause (last menstruation)
are linked to an increased risk of breast cancer, as the recurring fluctuations of oestrogen
stimulate breast tissue development [84, 128].

5



2. Background

Figure 2.1: Most common type of cancer incidence in 2022 among women. Data source:
GLOBOCAN 2022 [22], Map: International Agency for Research on Cancer, ©World Health
Organization (WHO) 2022. All rights reserved.

Age represents a further significant risk factor for breast cancer. The incidence of breast
cancer increases substantially with age, with approximately 80% of cases occurring in
women over 50 years old [128]. In light of this age related risk, the U.S. Preventive
Services Task Force (USPSTF) recommends biennial mammographic screenings for all
women of average risk from the age of 40 (Section 2.1.3) [143].

A family history of breast or ovarian cancer further increases risk, particularly in first-
degree relatives. The risk of developing breast cancer is increased by a factor of 1.8
(99% CI 1.69-1.91) in women with one first-degree relative affected by the disease,
compared to women with no affected first-degree relatives [83]. This heightened risk can
be attributed to inherited genetic mutations and epigenetic factors. Notably, genetic
mutations, particularly in the BRCA-1 and BRCA-2 genes, which play a pivotal role
in DNA repair and cell cycle regulation, significantly increase breast cancer risk. The
lifetime risk of developing breast cancer in women with a BRCA-1 mutation is estimated
to be between 45 and 87%, while those with BRCA-2 mutations have a lifetime risk of
50 to 85% [128, 176, 85]. Other highly penetrant genes have also been identified as being
associated with an increased risk of developing breast cancer, including TP53, CDH1,
PTEN or STK11 [170].

Additional non-modifiable risk factors include a personal history of breast cancer or
certain non-cancerous breast diseases, greater breast tissue density, or race and ethnicity
[170].

Modifiable Risk Factors

In addition to the non-modifiable risk factors discussed above, there exist a number of
modifiable lifestyle and environmental risk factors. However. their contribution to overall
risk remains a topic of debate in some cases.
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2.1. Breast Cancer

Regular physical activity has been linked to a relative reduction in breast cancer risk
of 19-27% compared to low levels of physical activity [60]. It is hypothesised that the
protective effect is mediated through multiple mechanisms, including hormone regulation
and improved immune function [138].

Furthermore, obesity is acknowledged as a recognised risk factor, particularly in post-
menopausal women. A meta-analysis revealed that women with a body mass index
(BMI) in the overweight range have a 1.61-fold increased risk of developing breast cancer
compared to women with normal BMI. The relationship between obesity and breast
cancer risk is thought to be mediated by increased oestrogen production in adipose tissue
[19].

Moreover, the prolonged use of HRT has been associated with an increase risk of breast
cancer, as have other lifestyle factors, such as smoking, alcohol consumption, or the
intake of processed meat [128].

2.1.2 Risk Assessment and Groups
Breast Cancer Risk Assessment

Breast cancer risk assessment is a tool to predict an individual’s risk of developing breast
cancer during a specific timeframe (e.g. 10 years, lifetime). In existing approaches, risk
estimates are typically determined through genetic testing or by using existing models
for risk assessment, as illustrated in Figure 2.2 [104].

Genetic testing is conducted on individuals who meet the criteria for testing, typically
due to a strong family history of breast or ovarian cancer or other indicators of hereditary
cancer syndromes. In such instances, if a harmful mutation, such as those in the BRCA-1
or BRCA-2 genes (Section 2.1.1), is identified, the individual’s cancer risk is determined
by the presence of this mutation itself, with a lifetime risk of up to 87% in the case of a
BRCA mutation [104, 176].

In the absence of eligibility for genetic testing, the likelihood of breast cancer occurrence
is estimated using existing risk prediction models that incorporate a range of clinical and
demographic factors, some of which are outlined in Section 2.1.1. These models comprise
regression models and genetic risk model, which typically evaluates categorical variables
such as patient age, reproductive history, family history of breast cancer, and other
relevant personal health information [104]. These models include the Gail model/BCRAT
[62], the Tyrer-Cuzick (IBIS) model [180], or the Breast Cancer Surveillance Consortium
(BCSC) model [177] (Section 3.2).

In addition to genetic testing and conventional risk assessment models, recent advances in
Artificial Intelligence (AI) have led to the emergence of AI-based risk assessment models
[88]. Conventional risk prediction models differ in the specific risk factors considered and
their performance may vary based on population characteristics, given that each was
developed using distinct inclusion criteria [61]. Consequently, AI-based risk prediction
models have been proposed as potential enhancements to existing approaches. A more
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2. Background

Figure 2.2: Risk assessment algorithm: Breast cancer risk is either determined through
genetic testing or by using existing models for risk assessment. Figure by [104], adapted from
[15], with permission.

detailed discussion of these advancements can be found in the State of the Art chapter
in Section 3.2.

Risk Groups

Following the estimation of an individual’s risk of developing breast cancer, patients
are typically assigned to a specific risk group based on their overall risk score. These
risk groups help to guide clinical decision-making, particularly in the determination of
appropriate screening strategies.

While there is no internationally standardised set of risk groups or universally accepted
thresholds for risk classification [61], the National Institute for Health and Care Excellence
(NICE) classifies the risk of developing breast cancer into three levels, namely general
population risk, moderate risk and high risk [142, 57]:

• General population risk is defined as the risk level of the average population
and corresponds to an overall lifetime risk from the age of 20 of less than 17% [57].
This generally applies to women without a family history of breast cancer or who
have not undergone a previous biopsy [61].

• Moderate risk is defined as a lifetime risk between 17 and 29% [57]. Women in
this risk group often have a family history of breast cancer, a personal history of
breast biopsies, or high breast density, leading to a slightly higher risk compared to
women in the general population [61].

• High risk corresponds to a lifetime risk greater than 30% or a ten-year risk above
8% [57]. This group typically encompasses women with BRCA-1/2 mutations
or mutations in other highly penetrant genes, a strong family history of breast
cancer, or those who received radiation therapy to the chest during childhood or
adolescence [61].
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2.1. Breast Cancer

Alternative categorisations of risk exist in various clinical guidelines and studies, such as
the classification of risk levels as low, average, elevated, and high, as exemplified by the
Women Informed to Screen Depending on Measures of Risk (WISDOM) study [54].

While risk assessment alone does not have direct clinical implications, the subsequent
assignment of individuals to specific breast cancer risk groups plays a pivotal role in
guiding screening strategies.

2.1.3 Screening and Diagnosis
Breast Cancer Screening

Since the 1960s, organised breast cancer screening programmes have been in place globally
with the objective of detecting the disease at its earliest stages, thereby improving
treatment outcomes and reducing mortality [61, 193].

For women in the general population (i.e. those at general population risk), preventative
screening is typically age-bound. The majority of European countries recommend
mammograms every two to three years for women aged 50 to 69. In the United States
of America (USA), screening is often recommended from an earlier age. The USPSTF
recommends biennial mammograms for all women of average risk from the age of 40 [143],
and the American Cancer Society recommends annual mammographic screenings from
the age of 45, with the option to begin at 40, particularly in the presence of additional
risk factors [172]. In Austria, a population-based screening programme was introduced
in January 2014, offering biennial mammograms to women aged 45 to 69. Additionally,
women aged 40 to 44 and those over 70 may request to participate in the programme
[61].

For high-risk individuals, such as those with a strong family history of breast cancer or
carriers of germ line mutations (Section 2.1.2), screening protocols are more intensive.
High-risk screening typically begins at an earlier age, often between 25-30 years, and
may entail annual mammograms in conjunction with other imaging modalities, such as
DCE-MRI (Section 2.2) [142, 172]. In Austria, the recommendations for high-risk patients
include annual DCE-MRI screenings from the age of 25, additional annual mammographic
screening from the age of 35, and supplementary sonographic assessments as needed [171].
These protocols are designed to address the elevated lifetime risk of breast cancer in this
group, allowing for earlier detection and management.

While breast cancer screening has proven beneficial, it also carries potential drawbacks,
such as false-positive results, overdiagnosis, and subsequent overtreatment, which can
lead to unnecessary psychological and physical burdens on patients [61]. The success
and practicality of screening initiatives relies on striking the right balance between the
capability for early detection and the risk of excessive screening. Furthermore, current
screening programmes often adopt a "one-size-fits-all" approach based on age, despite the
varying risk profiles of individuals [147]. Moving toward personalised screening strategies,
which consider individual risk factors and incorporate information from medical images,
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2. Background

could optimise screening efficacy by tailoring intervals, modalities, and starting ages to
each patient’s specific risk.

Diagnosis

In the diagnosis of breast cancer, diagnostic protocols often entail a combination of imaging
techniques, such as mammography and DCE-MRI, for the assessment of suspicious
findings, whether identified during routine screening or due to the presentation of
symptoms. Mammography remains the primary diagnostic tool. However, due to
the influence of age and breast density on the sensitivity and detection capabilities of
mammograms, additional imaging, such as DCE-MRI, may be required (Section 2.2) [14,
133, 12]. Following the identification of suspicious changes in breast tissue by imaging
techniques, tumour biopsies are necessary for accurate diagnosis [25]. These involve the
removal and analysis of a small sample of breast tissue, which can confirm whether the
tumour is benign or malignant.

2.2 Dynamic Contrast Enhanced Magnetic Resonance
Imaging

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is one of the most
sensitive imaging techniques for breast cancer detection, offering sensitivity rates between
75.2% and 100%, and typically above 80% [134]. This renders DCE-MRI approximately
twice as sensitive as mammography. Specificity values range from 83% to 98.4%, thereby
establishing DCE-MRI as a highly reliable imaging technique for the identification of
malignancies [134].

Furthermore, DCE-MRI avoids the use of ionising radiation, which is of particular
significance for younger women at high risk. In the case of carriers of certain genetic
mutations, such as BRCA-1 or BRCA-2, the Austrian guidelines advise against the use
of mammography until the age of 35, given that the breast tissue of younger women
is more susceptible to radiation. Moreover, mammography is less effective in this age
group due to the higher density of breast tissue, which limits its diagnostic accuracy
[171]. Consequently, annual DCE-MRI is often recommended as the primary diagnostic
tool for high-risk individuals, with mammography introduced as a supplementary tool
after this age [172, 163].

Nevertheless, DCE-MRI is not without its own set of limitations, including higher
costs, longer examination times, and reduced availability compared to mammography.
Furthermore, the modality has been observed to yield a higher rate of false-positive results,
which can result in the performance of unnecessary interventions and an increased level
of patient anxiety [14]. Certain patient populations, such as those with claustrophobia or
individuals with implantable electronic devices (e.g., pacemakers), may also be unable to
undergo DCE-MRI without additional precautions. Consequently, the American Cancer
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Society recommends DCE-MRI primarily for women with a cumulative lifetime risk
exceeding 20-25% or with a significant family history of breast or ovarian cancer [172].

The diagnostic capability of DCE-MRI, which relies on the acquisition of T1-weighted
images, is contingent upon the neovascularity generated by tumours during their growth,
and the use of a Gadolinium-based contrast agent (e.g. Gd-DTPA). The contrast agent
is administered intravenously and is absorbed by malignant lesions at a faster rate
than benign lesions, resulting in an enhanced signal due to a shortened T1 relaxation
time by Gd [110], as illustrated in Figure 2.3. The enhanced uptake is associated with
tumour-induced angiogenesis in tumours exceeding 2mm in size [67]. The newly formed
blood vessels permit the leakage of the contrast agent into the surrounding tissues,
thereby creating a visible enhanced signal on MRI images [108]. In clinical practice, the
initial step in a DCE-MRI protocol is the acquisition of a native T1-weighted image
(pre-contrast image), which is followed by the intravenous injection of the contrast agent.
Subsequently, several T1-weighted post-contrast DCE-MRIs are collected at previously
specified intervals, typically over a period of 8 minutes, with at least three post-contrast
images [81]. This is done to capture contrast agent dynamics and temporal enhancement
patterns of tissue after the administration of contrast agent.

(a) Pre-Contrast Image (b) Post-Contrast Image

Figure 2.3: Comparison of pre- and post-contrast images in DCE-MRI: (a) Native
T1-weighted DCE-MRI slice showing the breast tissue before the administration of a contrast
agent. (b) The same slice following contrast agent administration illustrating the enhancement of
tissue. The lesion in the red bounding box becomes visible after contrast injection, highlighting
an area with increased blood flow.

Enhancement Curves

Enhancement curves are a fundamental tool in the interpretation of DCE-MRI results,
displaying the relative change in signal intensity over time within a region of interest
(ROI) (Figure 2.4) [81]. The curves provide insight into the behaviour of suspicious
tissue post contrast administration, particularly regarding the rate of enhancement in
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the first 2 minutes and subsequent washout patterns of the enhancement signals [16,
132, 56]. Malignant lesions typically demonstrate a rapid initial enhancement, which is
then followed by either a plateau (type II curve) or washout (type III curve). Both of
these patterns are highly indicative of malignancy. Approximately 91% of malignant
lesions display type II or III enhancement patterns [110]. In contrast, benign lesions are
typically associated with slower enhancement, corresponding to type I curves in 83% of
cases or, in 12% of cases, type II curves [110]. While enhancement patterns alone are not
sufficient for definitive diagnosis, the combination of enhancement curve analysis and
lesion morphology significantly enhances diagnostic accuracy [16].

Figure 2.4: Enhancement curves: The figure illustrates the three typical enhancement curve
patterns observed in DCE-MRI of breast lesions: Type I (slow and persistent enhancement),
Type II (plateau type), and Type III (rapid enhancement followed by washout). Type III curves
are commonly associated with malignant lesions, Type II curves indicate intermediate risk of
malignancy, and Type I curves are more often indicative of benign lesions [56]. Figure by [150].

2.3 The Breast Imaging Reporting and Data System
The Breast Imaging Reporting and Data System (BI-RADS) was developed by the
American College of Radiology (ACR) with to standardise the reporting and interpretation
of breast imaging across imaging modalities, including DCE-MRI, mammography, and
ultrasound [13]. The BI-RADS classification system employs a scoring system ranging
from 0 to 6, with each category reflecting a distinct level of concern for malignancy. This
is summarised in Figure 2.5.

A BI-RADS score of 1 or 2 indicates the presence of either healthy tissue or benign
findings, with essentially no risk of malignancy. In instances where a lesion is deemed to
be benign with a probability of less than 2% of being malignant, a BI-RADS 3 score is
assigned. In such cases, follow-up imaging is typically recommended at a shorter interval to
monitor for changes. Lesions deemed suspicious for malignancy, with probabilities ranging
from 2% to 95%, are assigned a BI-RADS 4 score, whereas lesions highly suggestive of
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Figure 2.5: Breast Imaging Reporting and Data System (BI-RADS) assessment cate-
gories: The table summarises the BI-RADS categories, detailing the assessment, recommended
management, and likelihood of cancer for each category, ranging from 0 (incomplete, requiring
further imaging) to 6 (known biopsy-proven malignancy). Taken from [141].

malignancy, with a probability exceeding 95%, are given a BI-RADS 5 classification. In
these higher-risk categories, a biopsy is advised to confirm the diagnosis. In the event
that malignancy is confirmed, the lesion is reclassified as BI-RADS 6; conversely, if the
result is benign, the lesion is reassigned to BI-RADS 2. In the event that imaging findings
are inconclusive, a BI-RADS score of 0 is assigned, indicating that further diagnostic
evaluation with additional imaging modalities, such as mammography or ultrasound, is
required to determine the final BI-RADS score [141].

2.3.1 Classification Criteria
To facilitate the systematic evaluation of DCE-MRI images, Baum et al. [16] developed
a points-based system to assess lesions, taking into account both morphological and
dynamic features. This classification system aids in the determination of BI-RADS scores
by evaluating five key characteristics:

• KM (Kontrast Mittel) pattern: describes distribution of the contrast agent
within the lesion, classified as homogeneous, inhomogeneous, or rim. The contrast
distribution pattern is indicative of tumour vascularisation, with inhomogeneous or
rim patterns often associated with malignancy.

• Initial enhancement: Describes the maximum relative enhancement within the
first three minutes following contrast administration, classified as < 50%, 50-100%,
or > 100%. Rapid initial enhancement is typically associated with malignancy.

• Post-initial enhancement: Analyses the shape of the signal-to-time curve with a
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focus on the period after the initial peak, examining patterns of continuous increase,
plateau, or washout. A washout pattern is highly suggestive of malignancy.

• Lesion shape: Classified as round, oval, dendritic, or irregular. Irregular shapes
are often indicative of malignancy, while round or oval shapes are more likely
associated with benign lesions.

• Lesion border: Assessed as either well-defined or ill-defined. Poorly defined
borders, particularly when combined with surrounding tissue invasion, are critical
indicators of malignancy and play an essential role in BI-RADS classification.

Each characteristic is assigned a point score, with the total point value providing a
recommendation for the BI-RADS classification (Table 2.1). One limitation of this
system is the tendency to generate a significant number of BI-RADS 3 cases, which can
affect patient compliance with follow-up recommendations [17].

Points Characteristics

Shape Border KM pattern Initial
enhancement

Post-initial
enhancement

0 round, oval well-defined homogeneous <50% continuous increase
1 dendritic, irregular ill-defined inhomogeneous 50-100% plateau
2 - - rim >100% wash out

BI-RADS 1 2 3 4 5
Sum of points 0-1 2 3 4-5 6-8

Table 2.1: BI-RADS classification scheme for DCE-MRI lesions according to Baum
et al. [16]. The systems considers morphological (shape, border) and dynamic aspects
(initial and post-initial enhancement) of contrast enhancement as well as the KM pattern
for classification.

2.4 Deep Learning
Deep Learning (DL) is a specialised subdomain of Machine Learning (ML), which itself
constitutes a core branch of Artificial Intelligence (AI) (Figure 2.6). AI describes the
development of machines or systems that are capable of simulating human abilities
and performing tasks that require human-like intelligence, such as reasoning, learning,
decision making, or problem solving. ML is a key approach within AI that uses statistical
algorithms to learn hidden patterns and relationships directly from data, while improving
performance over time by applying that learning [42, 7].

2.4.1 Conventional Machine Learning
Conventional Machine Learning (CML) models are statistical algorithms that rely on
structured data and a set of manually engineered features [86, 139]. These features are
typically defined by domain experts or data scientist and designed to quantify specific
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Figure 2.6: A visual representation of Deep Learning as a subset of Machine Learning
and Artificial Intelligence. Figure by [49].

characteristics of the input data, such as texture, shape, pixel intensities, or other
properties [86]. This enables the model to make predictions or classifications.

Random Forest

One commonly utilised algorithm in CML is Random Forest (RF) [23]. RF is a robust
ensemble learning method that combines multiple decision trees to enhance predictive
performance. A RF is constructed by training a predefined number of decision trees
on bootstrap samples of the training data with only a random subset of features. Each
decision tree in the forest makes a prediction and the final prediction is determined by
aggregating the outputs of all trees (Figure 2.7). Depending on the type of problem, the
outputs of the individual trees are either averaged (in the case of a regression task) or
majority voting is applied (in the case of classification task), whereby the most frequent
categorical variable is determined [189].

Figure 2.7: Illustration of a Random Forest: Multiple decision trees are combined to produce
a final output through aggregation. Figure by [189].
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The RF algorithm offers several key advantages, including the reduction of overfitting
through the use of multiple decision trees, which enhances its robustness compared to a
single tree. Moreover, it allows for the calculation of feature importance scores (e.g. using
Gini importance or Mean Decrease in Impurity), which facilitates the understanding
which features exert the greatest influence on the decision-making process, thereby
contributing to Explainable AI [189]. However, conventional models like RF require
manual feature engineering, and their performance is often constrained by the quality of
these handcrafted features [181]. Furthermore, their ability to handle unstructured data,
such as images, is limited without extensive preprocessing.

2.4.2 Artificial Neural Networks
Deep Learning differs fundamentally from CML as it does not require the explicit definition
of features. Instead, it employs Artificial Neural Networks (ANNs), comprising layers of
interconnected nodes, or "neurons", to automatically learn patterns and representations
from raw data [86, 154]. ANNs are computational models inspired by the structure
and function of the human brain, specifically by the way neurons are organised and
communicate [154]. The concept of neural networks was first introduced in the 1940s by
McCulloch and Pitts [136], and later gained prominence in the 1980s with the development
of backpropagation, a method enabling networks to learn from errors [99, 161].

DL is characterised by the use of ANNs with multiple layers or neurons (i.e. hidden
layers), known as Deep Neural Networks (DNNs). A DNN typically consists of an input
layer that receives the raw data input (e.g. pixel values from an image), multiple hidden
layers (at least 2), and an output layer that produces the final result of the network
(e.g. classification label or a regression value) [164]. The basic architecture of a DNN is
illustrated in Figure 2.8.

Figure 2.8: Basic architecture of a Deep Neural Network: The network consists of an
input layer, n-hidden layers, and an output layer. Figure by [179].

The hidden and output layers in the DNN are composed of multiple neurons, with each
neuron i connected to the outputs of the neurons xj in the previous layer. The "influence"
of these input connections is determined by weights wi,j , which are adjusted during
training through backpropagation [161, 99]. The output yi of neuron i is computed by
calculating the weighted sum of its inputs (the product of wi,j and xj), adding a bias b
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and passing the resulting sum through a non-linear activation function a, as shown in
Equation 2.1 [115].

yi = a

 n	
j

wi,jxj + b

 (2.1)

Common activation functions include the hyperbolic tangent tanh(·), or Rectified Linear
Unit (ReLU) max(0, ·). When every neuron in one layer is connected to every neuron in
the previous layer, the layer is referred to as a fully connected layer [154].

Through the use of hidden layers performing nonlinear transformations, DNNs are able
to automatically learn hierarchical representations of the input data at increasing levels
of abstraction [164]. This process enables DNNs to capture complex relationships within
the data, thereby allowing it to excel in a wide range of tasks, including image recognition
[79], drug discovery [205], and medical imaging [105].

Convolutional Neural Networks (CNNs) are the most widely employed DL model [144,
68, 4], demonstrating unparalleled success in computer-aided diagnosis [199]. In the field
of breast imaging and breast cancer research, DL is nowadays employed in a multitude
of tasks, including breast/lesion segmentation [113] and the assessment of future breast
cancer risk [194, 195, 112] (Chapter 3).

In this thesis we develop a novel DL-based method for the analysis of breast DCE-MRIs.
In particular, semantic segmentation (i.e. the assignment of a semantic class label to
each pixel in an image [190]) is performed to identify suspicious areas that are associated
with an increased risk of lesion emergence in the future.
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CHAPTER 3
ML in Breast Cancer Research -

State of the Art

This chapter provides an overview of the current state of the art in Machine Learning
(ML) approaches in breast cancer research. In recent years, advances in ML, particularly
in the area of Deep Learning (DL) (Section 2.4), have led to remarkable progress in
medical image analysis. DL has become the state-of-the-art foundation for identifying,
classifying, and quantifying patterns in medical images [169]. In the field of breast
imaging and breast cancer research, ML is employed to address various tasks, including
breast/lesion segmentation [113], efficient lesion detection [80], predicting and assessing
responses to chemotherapy [55], and cancer risk assessment [97, 195, 88].
In this thesis we employed both Deep Learning and Conventional Machine Learning
(Section 2.4.1) to investigate the potential of semantic image segmentation in future
lesion detection, and the classification of breasts into those at risk and not at risk of
developing future lesions. Therefore, we provide an overview of the state of the art in
the relevant fields, namely medical image segmentation and risk assessment in cancer
research, in the following, including a reflection on the current literature. Additionally,
we introduce transfer learning, a ML paradigm that is relevant to this thesis.

3.1 Medical Image Segmentation in Cancer Research
Medical image segmentation refers to the process of delineating anatomical structures
or ROIs from medical images, a crucial task in medical diagnostics and research [130].
Specifically, semantic image segmentation is a form of dense prediction and assigns a class
label to each pixel within an image [190]. In the medical field, semantic segmentation is
employed in tasks such as the identification of tumours [157], the segmentation of organs
[165], and the detection of anomalies in medical scans [166, 26], enabling the diagnosis of
disease, treatment planning, and the monitoring of disease progression [130].
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The use of DL, particularly CNNs, has significantly impacted and transformed the
field of medical image segmentation. While manual segmentation is still considered the
gold standard, it is a labour- and time-intensive process that relies heavily on expert
knowledge [130]. Historically employed segmentation, such as thresholding, region-based
methods, and edge detection [148, 3, 201], while beneficial in certain contexts, frequently
encountered challenges in dealing with the intricacy and variability inherent in medical
imaging data [168]. In contrast, DL models are capable of automatically learning feature
representations directly from imaging data, resulting in enhanced accuracy and efficiency
compared to traditional techniques that are on par with manual expert segmentations
[169].

3.1.1 Advancements in CNN-Based Segmentation
The proposal of Fully Convolutional Networks (FCNs) by Long et al. in 2015 [126]
established CNNs as a fundamental tool in modern image segmentation. This is due to
their capacity to automatically extract hierarchical feature representations from images,
including colour, texture, object parts and scenes [202]. The U-Net architecture[159], a
variant of FCN originally developed for biomedical segmentation, adds skip connections
to the encoder-decoder structure to capture both fine details and global context, even
with limited data. Multiple efforts have been made to improve U-Net. These primarily
focus on enhancing skip connections [210, 96], incorporating diverse backbones [79, 91,
2], refining the bottleneck with attention and multi-scale modules [58, 69, 185, 73], and
employing multi-scale and multi-modal fusion techniques [124, 50]. Building on the U-Net
architecture, nnU-Net [93] represents a self-adapting framework that automates key steps
such as pre- and post-processing and network architecture design, thereby adapting
to various medical imaging tasks without the need for extensive manual intervention
(Section 5.1.1).

While CNNs have proven successful, the locality of their receptive field can constrain the
amount of context captured and the ability to reason globally [123]. DeepLabv3 [35] and
DeepLabv3+ [37] addressed this limitation by introducing atrous/dilated convolutions,
which expand the receptive field without increasing computational cost. Moreover,
DeepLabv3+ incorporates spatial pyramid pooling [78] to capture features at varying
levels of details. The resulting Atrous Spatial Pyramid Pooling (ASPP) module enables
the model to capture a more expansive range of multi-scale contextual information and
refine segmentation boundaries (Section 4.3.1 for additional details on the Deeplabv3+
architecture).

In addition to these architectural developments, other models have contributed to CNN-
based segmentation advancements. Key developments in multi-scale feature extraction
include the Feature Pyramid Network (FPN) [119], which employs a pyramid network to
aggregate features at multiple scales, and the Pyramid Scene Parsing Network (PSPNet)
[206] which captures global context through the use of a pyramid pooling module, al-
though at higher computational cost [157]. PANet [121] further refines this approach by
augmenting FPN with a bottom-up path and adaptive feature pooling, thereby improv-

20



3.1. Medical Image Segmentation in Cancer Research

ing information flow and strengthening low-level features for finer detail segmentation.
Efficiency-focused models, such as LinkNet [32] and Pyramid Attention Network (PAN)
[116] prioritise speed and memory efficiency, with LinkNet designed for real-time segmen-
tation. SegNet [11] simplifies the upsampling path to reduce computational complexity,
although resulting in a trade-off in fine-grained segmentation performance.

Building on improvements in receptive fields and multi-scale aggregation, recent advances
have introduced hybrid models that combine CNNs with Vision Transformers (ViTs)
[157], with the aim of capturing both local and global context for improved segmentation
performance. Models such as TransUNet [34] and Swin-UNet [125] utilise CNNs for local
feature extraction while employing transformers for long-range dependencies, representing
a growing trend in medical image segmentation research.

3.1.2 Segmentation in Medical Imaging
CNNs are frequently employed in medical image segmentation tasks, particularly for
the segmentation of major organs, different tissue types, or pathological anomalies [157].
The segmentation applications can be categorised into two main types: the segmentation
of anatomical structures and the segmentation of abnormalities, such as lesions and
calcifications. The objective of anatomical structure segmentation is to delineate organs,
skeletal components and vascular structures [1]. Examples of this include the segmentation
of the brain’s cortical and subcortical regions [183, 188], the segmentation of cardiac
structures for ventricular function analysis [184, 122, 76], and the segmentation of liver
and lung tissue in Computed Tomography (CT) scans [167, 102].

Abnormality segmentation enables the automatic detection and delineation of pathological
regions across a range of medical imaging modalities and medical fields. CNN-based
models have been employed to identify brain tumours, providing precise segmentation of
intra-tumoural structures [92, 33, 149, 209, 184], or to monitor volume changes during
chemotherapy in bladder cancer [30, 31]. 2D U-Nets were employed to achieve precise
segmentation of both prostate glands and prostate lesions [74], and the segmentation of
hepatic tumours in the liver, lung nodules and skin lesions was studied in [40, 167, 39,
153, 93, 135, 95, 140, 75, 157, 1, 155].

Segmentation in Breast Cancer Research

In the field of breast cancer research, the application of CNN-based segmentation has
resulted in notable advancements, particularly in the enhancement of diagnostic accuracy
and the facilitation of treatment planning. Two principal application are the delineation
of breast fibroglandular tissue (FGT) from fatty tissue, and the segmentation of breast
lesions. Both of these processes are of great importance in the detection of breast cancer
and the monitoring of treatment responses [158].

Delineating FGT from fat is a common task in breast DCE-MRI given its correlation with
mammographic breast density, a well-established risk factor for breast cancer [24] (Section
2.1.1). Furthermore, it is a prerequisite for the quantification of the post-contrast amount
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of enhancement in FGT, known as background parenchymal enhancement (BPE), which
has additionally been identified as a risk factor for breast cancer [51, 106]. In 2017, Dalmış
et al. [43] proposed the use of DL, specifically U-Nets, for the segmentation of FGT
in breast DCE-MRI, demonstrating superior performance to conventional segmentation
methods. Subsequently, a number of approaches utilising the U-Net architecture for
FGT/BPE segmentation demonstrated comparable levels of performance [94, 72, 59].
Zhang et al. [204] evaluated the performance of U-Net architectures for FGT segmentation
in DCE-MRIs on independent validation datasets, demonstrating high Dice Similarity
Coefficient (DSC) (0.83±0.06) and accuracy (0.93±0.04) across scanner types. Similarly,
Huo et al. [87] successfully applied the nnU-Net framework to whole breast and FGT
segmentation (DSC: 0.968 ± 0.017 and 0.877 ± 0.081), providing further support for the
utility of DL in breast tissue segmentation.

Lesion segmentation represents a further crucial application in breast cancer research,
particularly in distinguishing between normal and abnormal BPE as an indicator for
breast cancer. Early approaches relied on statistical techniques, such as Fuzzy C-Means
(FCM) algorithms, to segment lesions from surrounding tissue. However, these methods
are sensitive to noise and less effective in cases of low-contrast lesions or in the case of
Non-mass Enhancements (NMEs) with diffuse borders [158]. Furthermore, they frequently
necessitate the input of experts, which is labour-intensive and introduces inter-reader bias.
DL methods demonstrate enhanced reliability and consistency across imaging devices
and healthcare institutions [158], offering the potential for large-scale dataset analysis.
Consequently, Dalmış et al. [44] proposed the use of a 2D U-Net to fully automate lesion
detection in breast DCE-MRI in 2018, achieving significantly higher performance than
previous computer-aided detection systems.
Since that time, a number of different DL models have been put forth as potential
solutions to a variety of challenges associated with the segmentation of breast lesions:
Gao et al. [64] proposed a dense encoder-decoder network with a two-level context en-
hanced residual attention mechanism to address the challenge of capturing fine details in
tumour regions and delineating complex tumour boundaries. The approach demonstrated
superior segmentation performance (DSC: 0.81) in comparison to other methods at the
time. Piantadosi et al. [151] introduced a 3TP U-Net deep CNN, which employs temporal
data from three distinct post-contrast time points in DCE-MRI to enhance segmentation
accuracy. This method capitalises on the dynamic information from different contrast
enhancement phases (Section 2.2), demonstrating significant improvements in lesion
segmentation (DSC: 0.61 ± 0.12). Wang et al. [186] further investigated the utilisation of
3TP data in the segmentation of breast lesions by introducing a hybrid 2D and 3D CNN
architecture based on the U-Net model. Their model incorporated contextual information
to improve segmentation with limited DCE-MRI slice availability, demonstrating superior
performance in the handling of diffuse borders and small structures on their dataset
compared to other methods (DSC: 0.765). Furthermore, the utilisation of a three-channel
input image resulted in enhanced segmentation performance in comparison to a single-
channel input (DSC: 0.734 vs. 0.696). This suggests that the incorporation of additional
post-contrast time points is advantageous for the delineation of lesions, particularly
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those exhibiting intricate dynamic enhancement patterns, and the approach is therefore
adopted in this thesis. Hirsch et al. [82] trained several 3D CNN architectures to achieve
a level of accuracy in lesion segmentation that is comparable to that of radiologists. The
3D U-Net network demonstrated the highest performance (DSC: 0.77), achieving results
comparable to those of radiologists. The utilisation of fully automated segmentation
methodologies not only reduces the time required for segmentation but also minimises the
necessity for human intervention. Similarly, Douglas et al. [52] compared the performance
of 2D U-Net, 3D U-Net and FCM segmentation algorithms for automatic breast lesion
segmentation in DCE-MRIs. The study specifically evaluated segmentation performance
on both mass lesion and NMEs,the latter of which are particularly challenging due to their
diffuse and irregular nature. The results demonstrated that the 2D U-Net architecture
exhibited superior performance compared to the 3D U-Net and FCM algorithms on both
mass lesions and NMEs.
Recent research has also investigated the potential of innovative DL architectures, in-
cluding ensemble models and pipelined approaches: Khaled et al. [100] investigated
the use of ensemble models, which pool the strengths of multiple U-Net variations to
enhance robustness and generalisation, achieving a DSC of 0.80 for primary lesions on the
publicly available TCGA-BRCA dataset [120]. Galli et al. [63] addressed the challenge of
segmenting lesions with diffuse or irregular borders in breast DCE-MRI by introducing a
tracer-aware U-Net segmentation pipeline. The pipeline performed well even in complex
cases, attaining a median 10-fold CV DSC of 0.70.

As DL research continues to evolve, hybrid models that combine the strengths of different
architectures are emerging as a new field of research. In particular, hybrid CNN-
ViT models are being explored to capture both local and global context for improved
segmentation. Zhou et al. [208] applied such an approach, combining CNN-based
local feature extraction with transformers to model long-range dependencies in breast
tumour segmentation, aligning with the broader trend of hybrid models in medical image
segmentation.

Notwithstanding the considerable progress made in the field of breast lesion segmentation
in DCE-MRIs, a number of challenges remain. One significant challenge is the variability
in imaging protocols across institutions, which can limit the generalisability of models
trained on datasets from specific centres. To address this issue, Zhao et al. [207]
introduced the BreastDM dataset, a large-scale, standardised dataset for breast tumour
segmentation and classification in DCE-MRIs. The dataset incorporates imaging data
from multiple centres with varied protocols, with the aim of improving model robustness
and enabling generalisation to diverse clinical environments.

3.2 Breast Cancer Risk Assessment
Breast cancer risk assessment refers to the process of estimating an individual’s likelihood
of developing breast cancer within a specific timeframe. It is a crucial component in
the field of preventive care and personalised medicine. By evaluating a combination
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of genetic, hormonal, environmental, and lifestyle factors, these models assist in the
identification of high-risk individuals who may benefit from enhanced screening, genetic
counselling, or preventive measures [104]. Traditional tools incorporate variables such as
age, family history, and genetic mutations to calculate risk scores [62, 180].

In recent years, advances in imaging and AI have introduced novel, image-based methods
for predicting breast cancer risk. While conventional models primarily rely on genetic,
clinical and demographic data, image-based risk prediction utilises features indicative of
risk extracted directly from various medical imaging modalities [88]. These approaches
leverage DL algorithms to identify subtle imaging biomarkers associated with increased
cancer risk, potentially enhancing the accuracy and personalisation of risk assessments
compared to traditional methods [137].

3.2.1 Traditional Risk Assessment Models
A number of traditional models have been developed to estimate breast cancer risk by
incorporating various clinical, demographic, and genetic factors. Among these, the Gail
model [62], the Tyrer–Cuzick (International Breast Intervention Study (IBIS)) model
[180], and the Breast Cancer Surveillance Consortium (BCSC) model [177] are particularly
noteworthy for their relevance in clinical and research settings. Other models, including
the Rosner-Colditz [160], Claus [41], BRCAPRO [18], BOADICEA [111], and Myriad
models [104], have been developed for specific purposes and serve a more specialised
function.

The Gail model, developed by Gail et al. in 1989 [62], was one of the first to provide
individualised risk predictions for breast cancer and forms the basis of the widely used
Breast Cancer Risk Assessment Tool (BCRAT). The Breast Cancer Risk Assessment
Tool (BCRAT) estimates the probability of developing breast cancer over a five-year
period and throughout a woman’s lifetime. This is based on non-genetic factors such
as age, reproductive history (e.g., age at menarche and age at first live birth), family
history of breast cancer in first-degree relatives, and history of breast biopsies. Despite
the widespread use of the Gail model due to its simplicity, it also has limitations. Notably,
it excludes genetic factors such as BRCA-1/2 mutations, which are crucial for high-risk
populations (Section 2.1.1). Additionally, it is designed primarily for women aged 35 and
older and is not intended for women with a prior diagnosis of breast cancer. Consequently,
its applicability may be limited for certain populations [104].

Similarly, the BCSC model developed by Tice et al. [177] is a non-genetic, regression-based
model analogous to the Gail model. The model is distinguished by its incorporation of
mammographic breast density in addition to traditional demographic and clinical variables.
Breast density is a well-established independent risk factor, and its inclusion improves
the model’s effectiveness for women undergoing regular mammography screenings. The
BCSC model considers similar non-genetic factors to the Gail model, such as age, family
history of breast cancer, ethnicity, and history of prior breast procedures, in addition
to breast density. However, the model is limited in its applicability for populations
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not undergoing regular mammographic screening or where breast density information is
unavailable. Furthermore, like the Gail model, it does not incorporate genetic factors
[104].

In contrast, the Tyrer–Cuzick (IBIS) model [180] is a genetic risk model that incorporates
both genetic and non-genetic risk factors, thereby making it particularly useful for the
assessment of lifetime risk. The model incorporates a number of variables, including age,
family history, reproductive factors, BRCA-1 and BRCA-2 mutations, BMI, and hormone
replacement therapy usage. The inclusion of genetic predisposition enhances its value for
individuals with a family history of breast cancer. However, the model’s complexity and
reliance on detailed genetic information can limit its use in settings where such data is
not readily available [104].

While the aforementioned models are widely used, other risk assessment tools such as
the Rosner-Colditz and Claus models focus on specific factors or populations. Models
such as BRCAPRO, BOADICEA, and the Myriad model are specifically designed for
individuals with strong family histories of breast or ovarian cancer, providing genetic risk
estimates related to BRCA mutations [104].

3.2.2 Image-Based Breast Cancer Risk Prediction
Medical images contain a wealth of untapped information that extends beyond the scope
of traditional clinical or genetic risk factors, and their potential in breast cancer risk
prediction has long been recognised. As stated above, breast density, a key feature
derived from mammograms, is incorporated in the traditional Breast Cancer Surveillance
Consortium (BCSC) risk assessment model [177]. Similarly, background parenchymal
enhancement, assessed through magnetic resonance imaging, has been identified as a risk
factor for breast cancer [51, 106], further illustrating the potential of imaging biomarkers
for risk prediction.

The application of AI has further enhanced image-based breast cancer risk prediction.
Conventional Machine Learning methods have been applied to imaging data with the
objective of uncovering patterns that might not be evident through traditional risk
approaches. For example, Tan et al. [175] employed Support Vector Machines (SVMs)
to assess bilateral mammographic feature asymmetry for predicting near-term breast
cancer risk, demonstrating that subtle differences in mammographic images could serve
as indicators of future cancer development. Similarly, Saha et al. [162] applied logistic
regression to features of BPE extracted from high-risk screening DCE-MRIs to predict the
future occurrence of breast cancer, thereby demonstrating the potential of image-based
ML methods in predicting future risk. While CML methods have shown promise in
breast cancer risk prediction, their reliance on manually extracted features limits their
ability to fully capture the complexity of imaging data. Consequently, DL-based models
have emerged as a promising alternative.
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Deep Learning in Image-Based Breast Cancer Risk Assessment

In one of the initial studies to demonstrate the capacity of DL to effectively extract
features for breast cancer risk prediction, Li et al. [117] evaluated the effectiveness of
CNNs in classifying high- and low-risk patients using full-field digital mammograms.
The findings revealed that the DL model and computerised texture analysis exhibited
comparable performance in BRCA-1/2 carriers (AUC: 0.83 vs. 0.82), but the CNN
model demonstrated significantly better performance in one-sided breast cancer cases
and low-risk patients (AUC: 0.82 vs. 0.73).
Building on this early exploration of DL in mammogram analysis, Ha et al. [71]
investigated the potential of CNNs for pixel-wise breast cancer risk stratification by
employing pixel-wise analysis to mammographic images. The retrospective study was
conducted on mammograms of women at average risk of developing breast cancer. The
images were divided into two groups: a high-risk group comprising negatively evaluated
mammograms from patients who developed breast cancer for the first time at least
two years later, and a low-risk group comprising mammograms from patients without
subsequent breast cancer development. The CNN-based model, inspired by the U-Net
architecture and adapted with residual connections, generated pixel-wise risk scores and
the final classification into high-risk and low-risk groups was determined based on the
average of the raw logit output from each pixel. The model demonstrated an accuracy of
0.72 in the high-risk group, exhibiting greater predictive potential than breast density
for risk stratification in average-risk screening women. This indicates that the pixel-wise
evaluation of breast images using CNN architectures is beneficial for the classification
of patients into those at high or low risk for future lesion development. Similarly to Ha
et al. [71], Arefan et al. [6] utilised DL to analyse negatively evaluated mammograms
without any visible signs of breast cancer to predict the short-term risk of future breast
cancer development. The proposed models were trained to predict the future status of a
patient as breast cancer-free or with breast cancer based on the mammographic image.
The DL-based models achieved higher performance than classification based on breast
density (AUC: 0.73 vs. 0.54), suggesting that even negatively evaluated mammograms
can contain subtle features predictive of future cancer risk that can be leverage by DL.
This highlights the growing potential of DL to identify early breast cancer risk, even
when conventional assessments do not flag concerns.
In a comparative approach, Dembrower et al. [47] evaluated a DL-generated risk score
against traditional mammographic density-based models for estimating future breast
cancer risk. The risk score was derived from mammograms of women of screening-age
(40–74 years) and logistic regression models were trained to predict the occurrence of
future breast cancer based on either density features or the DL risk score. The results
demonstrated that the DL model produced a higher level of accuracy (AUC: 0.65)
compared to density-based methods (AUC: 0.57-0.60). Furthermore, the model exhibited
a lower false-negative rate (31%) than the best-performing density model (36%). This
highlights the superiority of DL models in risk prediction, particularly in cases where
density-based assessments fail to identify potential risks.
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Portnoi et al. [152] expanded the application of DL to breast Dynamic Contrast Enhanced
Magnetic Resonance Imaging (DCE-MRI) and high-risk cancer cohorts. They developed
a CNN model based on ResNet-18 to predict the risk of developing cancer within a
five-year timeframe based solely on DCE-MRIs. The study comprised 1,656 MRI scans
from screening examinations of 1,183 high-risk women, with classification performed on
2D projection images to predict the development of cancer within 5 years of the time
of examination. The DL model demonstrated superior performance (mean AUC: 0.638)
compared to a logistic regression model based on traditional risk factors (mean AUC:
0.558) and compared to the Tyrer-Cuzick model (AUC: 0.493). These findings illustrate
the capacity of DL to perform risk discrimination based solely on features present in
DCE-MRI screenings, and exhibited better risk discrimination performance compared
to traditional risk assessment models. Similarly, Burger et al. [27] investigated the
feasibility of DL to identify changes in DCE-MRI scans associated with future lesion
emergence in high-risk women. The study involved training a generative adversarial
network to generate an anomaly score, reflecting the deviation of observed DCE-MRI
scans from normal breast tissue variability. The anomaly score was identified as a robust
predictor of future lesion emergence (AUC: 0.804) and was significantly associated with
lesion emergence, further substantiating the value of DL in high-risk populations and
underscoring the potential for early risk adjustment and personalised screening strategies.

More sophisticated models have integrated both imaging data and clinical risk factors
to improve predictive accuracy: Yala et al. [194] developed a hybrid DL model that
combined mammograms and data on traditional risk factors to assess breast cancer
risk within five years. The study, which was conducted on 88,994 mammograms, found
that the hybrid model achieved an AUC of 0.70, which was superior to that of an
image-only DL model (AUC: 0.68), as well as a risk-factor-based logistic regression model
(AUC: 0.67) and the Tyrer-Cuzick model (AUC: 0.62). Notably, the image-only DL
model also demonstrated a higher AUC than the models based solely on traditional risk
factors. Building on this research, Yala et al. [195] introduced the MIRAI model, which
incorporates mammographic images and clinical risk factors into a DL framework. The
MIRAI model was designed to ensure generalisability across diverse populations, and it
achieved a significantly higher Area Under the Curve (AUC) than their previous hybrid
DL model and the image-only DL model. Additionally, it exhibited high C-indices for
test sets from various other institutions. Interestingly, the performance of MIRAI was not
significantly better with the inclusion of risk factors than without. Further validation by
Yala et al. [196] corroborated the model’s robustness across tests sets from seven hospitals
across five countries. Damiani et al. [45] extended this validation by assessing MIRAI
on an independent dataset, thereby further substantiating its potential for widespread
clinical use (AUC: 0.68).

Recent research has also investigated incorporating temporal information in DL-based
models [27]. In a novel approach building upon the MIRAI model, Lee et al. [112]
integrated prior mammographic images to enhance risk prediction by capturing subtle
tissue changes over time. By predicting a cumulative hazard function, the model employs
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survival analysis to estimate the likelihood of cancer development in the future. The
method was compared to the MIRAI model and demonstrated superior performance in
terms of C-index and AUC, thereby underscoring the benefit of integrating prior imaging
data into prediction models. The introduction of a transformer decoder in addition to
the prior images further improved performance. The study highlights the importance of
temporal data in capturing progressive patterns that may indicate elevated cancer risk.

3.3 Transfer Learning in Medical Imaging

Transfer learning has emerged as a highly effective paradigm in Machine Learning, offering
a valuable solution to the challenges posed by limited labelled data in supervised learning
tasks. In supervised learning, models are trained on labelled datasets in order to make
predictions, a technique that is commonly applied in segmentation tasks [10]. Transfer
learning enables a model that has been pre-trained on one source task or domain to
transfer its learned knowledge to another target task or domain, potentially improving
performance and reducing the need for extensive labeled data [197]. When knowledge
is transferred within the same domain, the process is referred to as domain-specific (or
intra-domain) transfer learning. In contrast, cross-domain transfer learning involves
applying knowledge from one domain (e.g. natural images) to a different domain (e.g.
medical imaging) [146].

In the field of medical image analysis, the acquisition of extensive, annotated datasets,
required for training DL models in supervised learning tasks, is a significant challenge.
To address this challenge, transfer learning has emerged as a prominent strategy in the
medical image domain [98]. Domain-specific transfer learning has demonstrated efficacy
in enhancing model performance across a range of medical imaging tasks, including
the classification of breast lesions [150] or the identification of ductal carcinoma in
histopathology imaging [101]. In particular, transfer learning has been shown to markedly
improve accuracy in segmentation tasks, particularly for challenging anatomical regions
where the target dataset may be of lower resolution or have fewer images [98].

Despite the advantages of domain-specific transfer learning, the restricted accessibility
of extensive public datasets in the medical domain has resulted in the prevalence of
cross-domain transfer learning, whereby models trained on large datasets, such as those of
natural images, are fine-tuned for medical imaging tasks [156]. Moreover, the effectiveness
of transfer learning in segmentation is contingent upon the specific task and the available
dataset. In medical image segmentation, significant enhancements have been observed
predominantly in scenarios where the task is more intricate and the available training
data is constrained [98]. Consequently, this master’s thesis investigated the advantages
of domain-specific transfer learning for the segmentation of prospective lesion areas.
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3.4 Reflection on Current Literature
The field of breast cancer research has made considerable advances with the incorporation
of Machine Learning techniques, particularly those based on Deep Learning. Nevertheless,
there are notable research gaps in the existing literature with regard to breast segmentation
and risk assessment.

The current methodologies for assessing the risk of developing breast cancer predominantly
rely on the analysis of mammograms of individuals at normal risk of developing the disease
[71, 195, 47]. Only a limited number of studies have explored the potential of DCE-MRI in
high-risk cohorts [152, 27]. This represents a significant gap in early detection strategies,
particularly for high-risk populations undergoing DCE-MRI screening. Vreemann et
al. [182] demonstrated that approximately one-third of cancers detected in high-risk
screening programmes were already visible in the last negative DCE-MRI screen (i.e.
assessed as showing no signs of suspicious lesions). Furthermore, 34% of cases exhibited
minimal signs of lesion occurrence, which would likely not be identified as suspicious
by trained radiologists. This highlights the untapped potential of negatively assessed
DCE-MRI exams for enhanced breast cancer risk prediction.

Moreover, while the majority of existing segmentation models focus on the detection of
lesions visible at the time of imaging, limited effort is directed towards the identification
of regions that may potentially be associated with the emergence of suspicious lesions
in the future. Similarly, risk models typically aim to predict a patient’s risk of cancer
development within a specified timeframe, yet are unable to identify the suspicious regions
within the breast that lead to these predictions. Although pixel-wise approaches have
been investigated in breast cancer risk stratification [71], the models employed were not
explicitly trained to identify specific areas of the breast that are prone to cancer or lesion
development. Instead, they utilised average pixel-wise information from segmentation
maps for classification purposes.

This thesis seeks to address the aforementioned limitations and to advance DL-based
breast cancer risk assessment. The objective of this thesis is to develop an image-based
segmentation model based on DCE-MRI scans from high-risk patients, with the aim
of identifying suspicious areas in breast tissue that are associated with future lesion
emergence. The identification of these areas within breast tissue could facilitate the
implementation of tailored adjustments to individual risk scores over the short to mid-
term, with the objective of enhancing screening outcomes and optimising or personalising
screening intervals. Furthermore, this thesis builds upon the concept of utilising pixel-wise
information for risk stratification by further refining the use of segmentation maps as
a feature extractor and employing aggregated pixel-wise information for future lesion
prediction. By addressing these gaps, this thesis contributes to the growing body of work
in early detection strategies and personalisation of breast cancer screening.
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CHAPTER 4
Materials and Methods

This chapter describes the datasets employed in this thesis and provides a detailed
account of the methodological approach used for data selection and preprocessing,
the segmentation of future lesion areas, and the classification of future breast lesion
development.

The initial section presents an overview of the datasets used in this master’s thesis,
including details on the University Hospital Vienna (AKH Wien) high-risk patient cohort,
the data selection process, the manual lesion annotation procedure, and the dataset
partitioning (Section 4.1). Subsequently, the preprocessing steps employed to prepare the
DCE-MRI images for their use as input for the DL experiments are described in detail
(Section 4.2). Section 4.3 outlines the framework used for investigating the potential of
semantic image segmentation in future lesion detection. Section 4.4 provides a detailed
account of the novel approach developed for the classification of future breast lesion
development. Finally, the evaluation metrics used to assess the performance of the
segmentation and classification models are introduced (Section 4.5).

4.1 Datasets
4.1.1 AKH Wien High-Risk Patient Cohort
The AKH Wien high-risk patient cohort forms the basis of the two datasets used in
this thesis (Sections 4.1.2 and 4.1.3). The cohort comprises 1,487 patients who have
been identified as being at high risk of developing breast cancer. They were recruited at
the Genetic Counseling Center of the University Clinic for Gynecology in AKH Wien.
Patients were included in the cohort if they met at least one of the following criteria and
provided their consent:

• Previous diagnosis of breast cancer before the age of 36
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• Previous diagnosis of ovarian cancer before the age of 41
• Confirmed mutation in the genes BRCA-1 or BRCA-2
• Family history: cumulative risk of developing breast cancer before the age of 79

above 20%

Patients belonging to the high-risk cohort were invited to participate in regular DCE-MRI
screenings (Section 2.2) at the AKH Wien, which will henceforth be referred to as "visits".
A trained radiologist evaluated each visit and assigned a BI-RADS score (Section 2.3).
In cases where suspicious changes in the breast tissue were identified (corresponding
to BI-RADS 4 or 5), a follow-up visit for a biopsy were requested. Imaging data with
corresponding BI-RADS scores were available for 5,310 visits between February 2002 and
September 2022 from 1,398 patients. The majority of those visits (90.43%) displayed
no significant suspicious tissue changes (BI-RADS 1, 2, or 3). A total of 8.06% of
visits exhibited suspicious lesions (BI-RADS 4). Visits in which lesions were deemed
highly suspicious (BI-RADS 5) constituted 0.38% of the total. In the case of a single
visit, a BI-RADS score of 6 signified the presence of a known biopsy-proven malignancy.
Furthermore, 1.11% of visits were characterised by insufficient imaging data (BI-RADS
0). This distribution is illustrated in Figure 4.1.

Figure 4.1: Distribution of Breast Imaging Reporting and Data System (BI-RADS)
scores in the AKH high-risk patient cohort: The proportion of suspicious visits (BI-RADS
≥ 4) is relatively low compared to those deemed benign (BI-RADS < 4).

Imaging Modalities

Due to evolving acquisition protocols and MRI scanner types over the years, the MRI
imaging data of the AKH Wien high-risk patient cohort can be categorised into three
distinct imaging modalities, as defined by Burger in her work with this cohort [26].
Images of modality 1 were acquired before 2007, with a transversal resolution of 256x256
pixels. The resolution increased to 384x384 pixels with modality 2, which was utilised
between 2007 and 2014. In 2014, modality 3 was introduced, further enhancing the
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resolution to 512x512 pixels and incorporating fat suppression in the imaging protocol.
This suppression resulted in notable differences between native modality 2 and modality
3 images; however, these differences can be mitigated during preprocessing of the images
(Section 4.2).

Preliminary Data Selection

Given significant differences in imaging quality and acquisition protocol between modality
1 and modalities 2 and 3, only MRI images collected from 2007 onwards (modality 2 and 3
only) were considered for use in this thesis to ensure reliability of the data. Consequently,
740 visits and 168 patients were excluded in this preliminary stage of data selection,
reducing the number of visits eligible for use to 4570 from 1230 patients (Figure 4.2).
While 4242 (92.82%) of these visits were evaluated as benign, 328 visits (7.18%) from
269 patients exhibited suspicious or highly suspicious lesions, corresponding to BI-RADS
4 and 5, respectively.

Figure 4.2: Number of visits per year since 2007: The bar plot shows the total number of
patient visits recorded each year from 2007 onwards.

4.1.2 Visit-Pair Dataset

The principal objective of this thesis was to identify regions within breast tissue that
are associated with the emergence of suspicious lesions in the future. To achieve this,
a dataset comprising pairs of visits was required. Each visit pair must include a "main
visit" and a corresponding "previous visit" of the same patient at an earlier time point to
enable comparative analysis.

Main visits were defined as visits exhibiting at least one suspicious (BI-RADS 4) or highly
suspicious (BI-RADS 5) lesion. Furthermore, manual lesion annotations or lesion masks,
which determine the position of the suspicious lesions in the MRI volume, needed to be
available for these visits. Lastly, a corresponding negatively assessed previous visit was
required (i.e. assessed as showing no signs of suspicious lesions).
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In order for a previous visit to be considered as such, several criteria had to be met.
Firstly, the interval between the previous visit and the main visit had to lie between
6 and 24 months, corresponding to the time frame specified by Vreeman et al. [182].
Additionally, the visits had to be of modality 2 or 3, and a minimum of three post-contrast
MRI scans were required for each visit.
Moreover, visit pairs that met at least one of the following criteria were excluded from
the dataset:

• The patient had undergone a mastectomy and/or had a breast implant on at least
one side.

• Suspicious tissue changes had already been detected in the previous visit (BI-RADS
4 or 5) and concerned the same lesion as in the main visit.

• Exclusion was recommended by a trained radiologist.

Data Selection

In line with the above specifications, the 328 visits (269 patients) with BI-RADS scores
of 4 or above since 2007 formed the basis of the visit-pair dataset. Next, visits with a
corresponding previous examination were identified. Among these, visits lacking available
lesion masks were excluded. Subsequently, the time intervals between main and previous
examinations were investigated, resulting in the exclusion of those visit pairs for which
the interval was less than 6 months or exceeded 24 months. Further exclusions were
applied in cases where any of the aforementioned exclusion criteria were met. In the next
step, all visit pairs with previous visits of modality 2 or 3 and with a minimum of three
post-contrast MRI scans were identified, all other visit pairs were excluded. Finally, a
last visit pair with corrupted imaging data was excluded, resulting in the final visit-pair
dataset consisting of 130 visit pairs (112 patients). The described selection process is
illustrated in Figure 4.3.

Final Dataset Description

The final visit-pair dataset comprises 130 visit pairs from 112 patients. For each visit
pair, the following information is available:

• T1-weighted pre-contrast image of the main and previous visit
• A minimum of 3 T1-weighted post-contrast images of the previous visit
• Pixel/voxel-wise lesion mask of the main visit
• BI-RADS scores for main and previous visit

The average time interval between the main and previous visits is 407.5 days, or 13.4
months, based on the average calendar month length of 30.437 days. With regard to
modality, 51 visit pairs (39%) have modality 2 and 79 visit pairs (61%) have modality
3 (Figure 4.4). The modality is determined by the main visit as a result of the inter-
timepoint registration process (Section 4.2.2).
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Figure 4.3: Selection process for the visit-pair dataset: The visit-pair dataset consists of
visits with BI-RADS ≥ 4, available lesion masks, and corresponding previous examinations that
fulfill specific imaging criteria. This process resulted in a final dataset of 130 visit pairs from 112
patients.

35



4. Materials and Methods

Figure 4.4: Modality distribution in the visit-pair dataset: Frequency of modality 2 and
modality 3 visits over the years, based on the study date of the previous visit.

4.1.3 Pre-Training Dataset
In order to utilise as much available data as possible, including those BI-RADS ≥ 4 visits
not used in the visit-pair dataset, a supplementary dataset was developed to facilitate
domain-specific transfer learning (Section 3.3). This pre-training dataset encompasses a
broader set of lesion visits with the aim of enhancing the robustness and generalisability
of the models used in this thesis.

The pre-training dataset was constructed by selecting visits based on the following criteria.
Firstly, visits included in this dataset exhibited at least one suspicious (BI-RADS 4) or
highly suspicious (BI-RADS 5) lesion. Lesion masks needed to be available and visits
were required to be of modality 2 or 3. In addition, a minimum of three post-contrast
MRI scans were required. Visits that were already utilised as a ’previous visit’ in the
visit-pair dataset were excluded from this dataset in order to avoid data leakage.

Furthermore, visits that met at least one of the following criteria were excluded from the
dataset:

• The patient had undergone a mastectomy and/or had a breast implant on at least
one side.

• The imaging data stems from a biopsy examination.
• Exclusion was recommended by a trained radiologist.

Data Selection

Beginning with the initial pool of 328 visits (269 patients) with BI-RADS scores of 4 or
above since 2007, manual lesion annotations were available for 206 of these visits (168
patients). Of these, 205 visits (167 patients) satisfied the metadata requirement of being
of modality 2 or 3. After ensuring the availability of a minimum of three post-contrast
images, 198 visits (163 patients) were retained.

To ensure the independence of the pre-training dataset from the visit-pair dataset, visits
that were already used as a ’previous visit’ in the visit-pair dataset were excluded,
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reducing the number to 190 visits (163 patients). Further exclusions were applied in cases
where any exclusion criteria were met or if the imaging data was found to be corrupted.
This resulted in the final pre-training dataset consisting of 180 visits (154 patients).

Final Dataset Description

The final pre-training dataset comprises 180 visits from 154 patients. For each visit, the
following information is available:

• T1-weighted pre-contrast image and a minimum of 3 T1-weighted post-contrast
images

• Pixel/voxel-wise lesion mask
• BI-RADS score

With regard to modality, 80 visits (44%) are of modality 2 and 100 visits (56%) are of
modality 3 (Figure 4.5).

Figure 4.5: Modality distribution in the pre-training dataset: Frequency of modality 2
and modality 3 visits over the years.

4.1.4 Manual Lesion Annotation Process
Given the supervised learning paradigm followed in this thesis, manual lesion annotations
identifying the position of lesions in the MRI volume were essential for the training and
evaluation of our DL models. At the start of this thesis, lesion masks were available
for 142 of the 192 visits with suspicious lesions (BI-RADS ≥ 4) used in either the visit-
pair or pre-training dataset. For the remaining 50 visits, lesion masks were created in
collaboration with a radiologist from AKH Wien.

To achieve this, manual lesion segmentations were initially obtained from the radiologist,
provided as annotated DCE-MRI slices. Based on this information, pixel-wise annotations
were performed for each relevant slice in the first post-contrast MRI volume using ITK-
SNAP [200] version 4.0.2 (23 September 2023) for MacOS Binary (Intel Processor, 64
bit), resulting in complete 3D lesion masks.
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4.1.5 Partitioning of Datasets
The visit-pair dataset and the pre-training dataset were both divided into training,
validation, and test sets in a 7:1:2 ratio, respectively. To ensure the integrity of the
data partitions, each patient was included in only one of these splits (i.e. all visits
corresponding to a single patient were assigned to either the training, validation or test
split). Furthermore, stratified samples were generated for both datasets according to
imaging modality in order to maintain the distribution of this variable across the splits.
To further prevent data leakage, all visits corresponding to patients who were included
in the test set of the visit-pair dataset were excluded from the pre-training dataset prior
to performing the stratified splits. Consequently, of the initial 180 (154) visits in the
pre-training dataset, only 156 (134) were allocated to the training, validation, or test
sets.

Visit-Pair Dataset Pre-Training Dataset
Train Val Test Train Val Test

Visits (Patients) 90 (80) 12 (10) 28 (22) 111 (95) 16 (13) 29 (26)
Modality 2 visits 35 5 11 49 7 13
Modality 3 visits 55 7 17 62 9 16

Table 4.1: Statistics of the datasets by split

4.2 Data Preprocessing
4.2.1 DCE-MRI Preprocessing
In order to prepare the DCE-MRI images for use in the DL experiments, the scans were
preprocessed using the following steps, adapted from the preprocessing pipelines outlined
by Burger [26] and Perschy [150]:

1. Conversion of Imaging Data: The DICOM files[20] were converted to NIfTI
format using the Python package dicom2nifti(2.4.2).

2. Bias Field Correction: The N4 Bias Field Correction algorithm [178] was applied
to mitigate noise signals present in the image. The implementation of this algorithm
is part of the Python library antspyx(0.3.8), which serves as a wrapper for
Advanced Normalization Tools (ANTs). The N4ITK algorithm corrects for intensity
inhomogeneities in MR images by estimating and removing the bias field, thereby
facilitating more accurate image analysis. For further details refer to Tustison et al.
[178].

3. Registration: The post-contrast T1-weighted DCE-MRI images were registered
to the native (pre-contrast) image using the AffineFast transformation with
default settings, as implemented in the Python package antspyx(0.3.8) [9]. The
registration process uses affine transformations, including rotation, translation, and
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shearing, to align the post-contrast images with the pre-contrast image, utilising
mutual information as the optimisation criterion. Further details can be found in
Avants et al. [9].

4. Calculation of subtraction images: The subtraction images Si,t of a visit
on examination date t were obtained by performing a pixel-wise subtraction of
the registered pre-contrast image I0,t from each post-contrast image Ii,t , with i
indicating the specific post-contrast time point and t the examination date of the
visit. The final preprocessed images were then exported as NIfTI files for subsequent
use. This process was conducted using the Python package nibabel(4.0.1).
As discussed by Perschy [150], the calculation of subtraction images effectively
diminishes the differences between modality 2 and modality 3 images described in
Section 4.1.1, thereby enabling the combined use of data from both modalities in
the experiments presented in this thesis.

Figure 4.6: Illustration of the DCE Image Preprocessing Steps: Pre-contrast images are
depicted in column I0, the bias field-corrected pre-contrast images in column I0 (BFC), and
the first post-contrast subtraction image is shown in column S1. The first row illustrates AKH
modality 2 without fat suppression, while the second row represents AKH modality 3 with fat
suppression.

4.2.2 Inter-Timepoint Registration

For all visits in the visit-pair dataset, it was crucial to establish spatial correspondence
between the main visit images at time t0 and those of the corresponding previous visit at
time t−1, to ensure alignment of the lesion location across these two timepoints. Thus,
inter-timepoint registration was performed on the visit-pair dataset as a subsequent
preprocessing step.
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Registration Scheme

The objective of the registration was to establish spatial correspondence between main
(t0) and previous visits (t−1) in a visit-pair, enabling the manually annotated lesion mask
to be applicable to the imaging data of both timepoints. As lesion masks were derived
from the MRI volume of the main visits (Section 4.1.4), the main visit constituted the
target frame for the registration. Consequently, all relevant imaging data of the previous
visit, comprising the pre-contrast image I0,t−1 and all subtraction images Si,t−1 , had to
be aligned with the corresponding imaging data of the main visit in each visit-pair.

To achieve this, the pre-contrast image of the previous visit I0,t−1 was first registered to
the pre-contrast image of the main visit I0,t0 . Following the registration step in the DCE
preprocessing pipeline (Section 4.2.1), the subtraction images Si,t and pre-contrast image
I0,t from any visit at time t already shared a common frame. Therefore, all subtraction
images of the previous visit Si,t−1 could be brought into the target frame by applying the
transformation obtained from the pre-contrast image registration to all difference images
Si,t−1 . As a result, the registered previous visit images Ireg

0,t−1 and Sreg
i,t−1 were obtained.

Figure 4.7: Schematic overview of the inter-timepoint registration process: Images from
previous visits at time t−1 are brought into the frame of the respective main visit at time t0

Implementation

The inter-timepoint registration process was conducted using a two-step approach, which
was loosely based on the method proposed by Burger [26]:

1. Affine Transformation: An affine transformation was applied to achieve an appro-
priate initial alignment. This was achieved using the AffineFast transformation
with default settings, as implemented in the Python package antspyx(0.3.8)
[9].
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2. Non-Rigid Transformation: To accommodate changes in breast shape over time
[131], a non-rigid transformation was performed using the Symmetric Image Nor-
malization (SyN) method, implemented as SyN transform in the antspyx(0.3.8)
package [8]. The SyN method facilitates the alignment of anatomical structures
across different images by accounting for deformations that can occur over time. It
leverages a symmetric diffeomorphic model, ensuring that transformations remain
both invertible and smooth, thereby preserving the topology of the anatomical
structures. In a comparative study of registration algorithms, Klein et al. identified
SyN as a top-performing method [107]. Further details on the SyN method can be
found in Avants et al. [8].

Figure 4.8: Inter-timepoint registration results: Visual comparison of the registered previous
visit pre-contrast image (Ireg

0,t−1
), the main visit pre-contrast image (I0,t0), and the overlay of

both images with the previous visit in red. The results are shown for AKH modality 2 and AKH
modality 3.

4.2.3 Breast Tissue Segmentation
Segmentation, or masking, is an effective technique for isolating the ROI within images
by removing superfluous background elements. In the context of breast DCE-MRI,
segmentation is used to distinguish breast tissue as the ROI from other areas captured in
the MRI, such as the thorax and surrounding air. In this thesis, three-dimensional breast
masks were utilised to focus the training and evaluation of the DL models exclusively on
regions containing breast tissue. Consequently, it was necessary to generate these masks
for each DCE-MRI volume.

Several methods exist for generating breast tissue masks. These include template-based
approaches [26][118], DL-based methods [114][203], and techniques that utilise Hessian-
based sheetness filters [187]. Additionally, Otsu thresholding, as used by Chen et al. [38]
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and refined by Perschy [150], involves the use of intensity histograms to separate breast
tissue from the background in MRI slices.

In this thesis, the Otsu-based Breast Segmentation Algorithm, developed by Perschy [150],
was employed to create the 3D breast tissue masks for each visit in the datasets. This
choice was motivated by the fact that Perschy developed the algorithm using the same
AKH Wien high-risk patient cohort as utilised in this thesis, thereby ensuring a high level
of relevance and compatibility with our data. The algorithm employs Otsu thresholding
to generate a binary mask, followed by binary dilation to delineate the breast/air border.
Subsequently, additional steps are undertaken to determine the thorax/breast boundary.
Comprehensive details regarding the algorithm can be found in Perschy [150].

Implementation

For the main visits in the visit-pair dataset and all visits in the pre-training dataset,
the breast tissue masks were generated from the T1-weighted pre-contrast image I0,t.
Following the registration step in the DCE preprocessing pipeline (Section 4.2.1), these
breast masks are also applicable to the respective subtraction images Si,t. For the
previous visits in the visit-pair dataset, the breast masks were generated from the
registered T1-weighted pre-contrast image Ireg

0,t−1 . As a consequence of the inter-timepoint
registration (Section 4.2.2), these masks are similarly applicable to all corresponding
registered subtraction images Sreg

i,t−1 .

Figure 4.9: Breast tissue masks: Examples of segmented breast tissue using the masking
algorithm of non-fat-suppressed (AKH modality 2) and fat-suppressed (AKH modality 3) pre-
contrast bias field corrected MRI scans.
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4.3 Segmentation of Future Lesion Areas

Figure 4.10: Conceptual design of the training approach for segmentation of future
lesion areas using DeepLabv3+: Models are first pre-trained on the pre-training dataset to
segment suspicious lesions in breast tissue (BI-RADS ≥ 4). They are then fine-tuned on the
visit-pair dataset to identify regions associated with the future development of suspicious lesions.

In this thesis, we propose the use of the DeepLabv3+ segmentation architecture [37]
to identify areas in breast tissue associated with the development of suspicious lesions
(BI-RADS ≥ 4) at a future point in time (Section 4.3.1 for a detailed description of the
segmentation architecture). The segmentation methodology is illustrated in Figure 4.10
and consists of the following phases:

1. Slice-based training:

a) Pre-training: DeepLabv3+ models are initially trained on the training and
validation splits of the pre-training dataset.

b) Fine tuning: The models are further fine-tuned on the training and validation
splits of the visit-pair dataset
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2. Visit-wise volumetric evaluation:

a) The fine-tuned DeepLabv3+ models are evaluated on the test split of the
visit-pair dataset.

The methodological approach described in this section is the result of an iterative process
involving the testing of multiple segmentation architectures, regularisation techniques
and model training strategies. A detailed description of the experiments and comparative
analyses that led to the selection of this final segmentation pipeline is provided in Sections
5.1, 6.1 and 7.

4.3.1 DeepLabv3+ Segmentation Architecture
DeepLabv3+ [37] is a state-of-the-art architecture for semantic segmentation and an
extension of DeepLabv3 [36]. It combines ASPP from DeepLabv3, which captures
rich semantic information, with an encoder-decoder structure to produce more detailed
segmentation results and precise object boundaries (Figure 4.11).

Figure 4.11: DeepLabv3+ architecture: The DeepLabv3+ architecture represents an enhance-
ment of the DeepLabv3 model, achieved through the adoption of an encoder-decoder framework.
The encoder captures multi-scale contextual information through atrous convolutions at different
scales, while the decoder refines the segmentation results, particularly enhancing the precision
along object boundaries. Figure by [37]

Atrous Spatial Pyramid Pooling

Atrous Spatial Pyramid Pooling (ASPP) integrates the principles of Atrous Convolutions
[35] and Spatial Pyramid Pooling [78] to effectively capture contextual information at
different scales within an image.

Atrous convolutions (also known as dilated convolutions) expand the receptive field of
the filters in a network without reducing the spatial resolution of feature maps. This
is achieved by introducing spaces (dilations) between the convolutional kernel, thereby
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enabling the network to capture a broader context from a larger area of the input image
without the need for downsampling (Figure 4.12) [35].

Figure 4.12: Atrous convolution: A 3x3 kernel (in green) with a dilation factor of 2 is applied
to a 7x7 input tensor (in blue), expanding the receptive field without increasing the kernel size.
The kernel moves with a stride of 1 over the input tensor. Figure by [53]

Spatial pyramid pooling is a technique that involves applying pooling operations at
multiple scales or levels, thereby enabling the network to aggregate features from different
levels of detail [78].
In ASPP, these two components are integrated by applying several parallel atrous
convolution layers with varying dilation rates, which effectively form a spatial pyramid.
Furthermore, a global average pooling layer captures the global context, while a 1x1
convolution combines the multi-scale features into a semantically meaningful output
(Figure 4.13) [36].

Figure 4.13: Atrous Spatial Pyramid Pooling (ASPP) structure: The illustration depicts
the ASPP module, comprising a single 1x1 convolution and three 3x3 atrous convolutions with
rates of 6, 12, and 18 (when the output stride is 16), in conjunction with image-level pooling.
The outputs from these branches are concatenated, followed by a 1x1 convolution, and finally,
another 1x1 convolution generates the final logits. Figure by [36]

The Decoder Module

In order to recover object boundaries and refine segmentation results, DeepLabv3+
introduces a decoder module to the DeepLab architecture. By upsampling the coarse,
low-resolution feature maps produced by the encoder and combining them with higher-
resolution features from earlier layers, the decoder recovers fine spatial details that might
be lost during the downsampling process in the encoder, thereby improving the accuracy
of object boundary delineation. The integration of the decoder module in DeepLabv3+
ensures that segmentation results are not only accurate in terms of pixel classification
but also spatially precise.
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4.3.2 Slice-Based Training (2D)
In order to identify suspicious areas in breast MRIs, DeepLabv3+ models were trained
and fine-tuned to perform semantic segmentation of lesions in MRI slices, utilising the
temporal information obtained from DCE-MRIs (Section 2.2). The models were trained
and fine-tuned using the training and validation split of the pre-training and visit-pair
dataset, respectively. The training process was exclusively focused on slices containing
(future) lesions, with slices without (future) lesions deliberately excluded (Table 4.2).

Each input sample for pre-training and fine-tuning comprised a three-channel image and
a corresponding lesion mask. The three-channel images were constructed by combining
slices from the first three post-contrast subtraction images (Si,t, i ∈{1,2,3}), representing
the first, second and third channels, respectively. This method is based on the 3TP
approach [46] and effectively incorporates valuable temporal DCE-MRI information into
the model [38, 151, 186] (Section 2.3). In the case of the pre-training dataset, both the
three-channel images and the lesion mask originate from the same visit. In contrast, in
the visit-pair dataset used during fine-tuning, the three-channel images are derived from
the registered post-contrast subtraction images of the negatively assessed previous visit,
while the lesion mask corresponds to the main visit containing a suspicious lesion.

Pre-Training Dataset Visit-Pair Dataset
Train Val Test Train Val Test

Visits 111 16 29 90 12 28
Patients 95 13 26 80 10 22
Lesion Slices 436 43 165 370 38 132

Table 4.2: Number of lesion slices per dataset and split

4.3.3 Visit-Wise Volumetric Evaluation (3D)
In the evaluation phase, the trained models were employed to identify future lesion areas
in the MRI volumes of the test split from the visit-pair dataset. This was achieved by
performing semantic segmentation for all slices from a visit that contained future lesions
(Table 4.2). The semantic segmentation output for each slice comprises two elements:

1. A sigmoid-derived probability map indicating the future lesion probability for each
pixel.

2. A binary prediction map where each pixel is classified as either containing a future
lesion (class 1) or not (class 0) based on a binarisation threshold of 0.5.

The slice-wise segmentation outputs were grouped on a per-visit basis to reflect the clinical
evaluation of DCE-MRIs as a volumetric image. Subsequently, for each visit, key metrics
were calculated, including Dice Similarity Coefficient (DSC), 95% Hausdorff Distance,
precision, and recall, providing a detailed evaluation for each individual visit in the test
set. To obtain a more comprehensive assessment of the model’s overall performance, the
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visit-wise metrics were aggregated by calculating the arithmetic mean across all visits in
the test set. These mean values represent the final evaluation metrics used for model
comparison and selection. Further details on the evaluation metrics and the experiment
setup can be found in Sections 4.5 and 5.1, respectively.

4.4 Classification of Future Breast Lesion Development

Figure 4.14: Conceptual design of the classification approach for predicting future
lesion development: Probability maps generated by a segmentation pipeline are partitioned
along the midline, and statistical features are calculated for each individual breast. These features,
extracted from lesion slices of the validation and test splits of the visit-pair dataset, are used to
train and test K Random Forest (RF) classifiers. Group K-fold cross-validation is performed
during training to classify breasts into those likely to develop lesions and those that are not. The
final prediction is made by merging the outputs of all K models into a single ensemble.

The second objective of this thesis is to investigate the classification of MRIs of individual
breasts into two categories: those at risk of developing suspicious lesions in the near future
and those not at risk of future lesion development. While the precise segmentation of
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suspicious structures in breast DCE-MRI screens is beneficial, it is of greater importance
to be able to accurately distinguish between breasts that are likely to develop lesions and
those that are not, particularly in the context of breast cancer screening and personalised
patient care.

We hypothesised that the probability maps generated by the segmentation model de-
scribed in Section 4.3 contain discernible patterns that can be exploited to predict lesion
development. By using the probability maps as input to a classification pipeline, the
segmentation model is repurposed as a feature extractor, providing essential data for the
subsequent classification pipeline. The methodology employed in this classification task
is illustrated in Figure 4.14 and described in the following sections.

4.4.1 Preprocessing: Partitioning of Probability Maps
The slice-wise probability maps generated by the developed segmentation model constitute
the raw input data for the classification pipeline. As an initial preprocessing step, each
probability map is divided along the midpoint of the image, effectively separating the
left and right breast. This division ensures that each breast is treated as an independent
sample in the subsequent classification task, thus enabling a more detailed analysis of
future lesion development.

The breast-wise approach was selected for two key reasons. Firstly, it was employed to
generate no-lesion samples, given that only slices containing future lesions were used in
the segmentation pipeline (Section 4.3). Secondly, it was used to increase the overall size
of the dataset, thereby enhancing the robustness of the classification model. By treating
each breast separately, this methodology effectively increases the available data while
addressing the need for a balanced set of lesion and no-lesion samples.

4.4.2 Breast Wise Feature Calculation
Following the partitioning of the probability maps, a series of statistical features are
calculated for each breast to transform the probabilistic information contained within the
maps into meaningful metrics for subsequent classification. The calculated metrics include
the mean, median, 95th percentile, maximum value, and the number of lesion pixels.
These selected features were chosen to represent various aspects of the segmentation
model’s probabilistic output, thereby providing a representation of both high-probability
regions and overall lesion probability distribution.

Prior to the calculation of the mean, median, 95th percentile, and maximum value, the
previously generated breast tissue masks (Section 4.9) are applied to the probability
maps. This ensures that the features are calculated exclusively within the relevant breast
tissue.

Mean: The mean probability value within each breast represents the average intensity
across the region and provides a general measure of the future lesion probability. This is
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calculated using the following formula:

Mean = 1
N

N	
i=1

pi (4.1)

where N is the number of breast tissue pixels in a breast and pi is the probability value
of a pixel i.

Median: The median is calculated in order to identify the central tendency of the
probability values, offering a robust measure less influenced by outliers compared to the
mean. Let X be the set of probability values pi, i ∈ {1, 2, ..., N}, ordered in ascending
order. The median is then defined as:

Median(X) =

X[N+1
2 ], if N is odd

X[ N
2 ]+X[ N

2 +1]
2 , if N is even

(4.2)

95th percentile: The 95th percentile assesses the upper end of the distribution of
the probability values within each breast. Given a set X of probability values pi,
i ∈ {1, 2, ..., N}, the 95th percentile is defined as the value y such that 95% of the values
pi are less than or equal to y.

Max: The maximum value represents the single highest future lesion probability value
within each masked breast and captures the most extreme probability value within the
region. It is defined as follows:

pmax = max(p1, p2, ..., pN ) (4.3)

Number of Lesion Pixels: The number of lesion pixels is calculated in order to
quantify the extent of potential future lesion areas within each breast. This metric is
defined as the count of values in the probability map exceeding a specific binarisation
threshold T :

Number of Lesion Pixels =
N	
i

I(pi > T ) (4.4)

In contrast to the other metrics, this calculation is performed on the unmasked probability
maps. The binarisation threshold T is determined through an optimisation process on
the training data of the classification task, whereby a range of potential thresholds are
systematically evaluated. The objective is to identify the threshold that maximises the
Dice score (Section 4.5) of the stack of slices contained in the training set. The threshold
that achieves the highest Dice score is considered optimal and is then applied consistently
to both the training and test datasets to accurately identify and count the number of
lesion pixels.
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4.4.3 Classification
The classification is conducted based on the statistical features extracted from the
probability maps calculated for each individual breast (Section 4.4.2). The primary
objective of this task is to perform a binary classification of breasts into those at risk of
developing a future lesion and those not at risk. This is achieved through two steps:

1. Single-Feature Thresholding

2. Ensemble Prediction with Random Forest (RF) Classification

The dataset used for training and testing the classification pipeline comprises the proba-
bility maps of the lesion slices from the validation and test splits of the visit-pair dataset,
respectively (Section 4.1.2).

Single-Feature Thresholding

Single-feature thresholding is performed to evaluate the discriminative power of individual
features derived from the probability maps of each breast, namely the mean, median, 95th

percentile, maximum probability value, and the number of lesion pixels. The objective is
to determine the effectiveness of each feature in distinguishing between breasts at risk of
developing future lesions (class "lesion") and those not at risk (class "no-lesion").
The evaluation process for each feature entails the following steps:

1. Thresholding Procedure: A range of potential thresholds is evaluated for each
feature to determine its capacity to differentiate between the "lesion" and "no-lesion"
classes. The thresholding process entails binarising the samples based on the feature
values: samples with feature values above the threshold are classified as "lesion",
whereas those below are classified as "no lesion". The optimal threshold is identified
using Youden’s J statistic [198], which maximises the sum of sensitivity (recall)
and specificity.

2. Performance Evaluation: The discriminative power of each feature is assessed
using the Area Under the ROC Curve (ROC-AUC). This metrics evaluates the
feature’s ability to distinguish between the two classes across all possible thresholds
(Section 4.5).

Ensemble Prediction with Random Forest Classification

In order to classify the breasts as either "lesion" and "no-lesion", an ensemble classifier
comprising Random Forest models was trained (Section 2.4.1). Due to the relatively
limited number of lesion slices present in the validation and test splits of the visit-
pair dataset, used for training and testing respectively, a Group K-fold cross-validation
approach was employed, where each group comprised all slices from a single patient.
For each fold in the cross-validation, hyperparameter tuning was performed using grid
search, and the RF model with the highest recall value was saved. This process yielded a
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set of K optimal models, which were subsequently combined into a voting classifier to
reduce variance and enhance prediction robustness. Following the fitting of the ensemble
classifier on the entire training set, the classifier was evaluated on the test split. In this
evaluation, the predictions of the K models were merged to a single ensemble prediction
through soft voting. Soft voting entails averaging the predicted class probabilities from
each of the constituent models and selecting the class with the highest average probability
as the final prediction.

4.5 Evaluation Metrics
This section introduces the metrics employed for evaluating the models used in the seg-
mentation of future lesion areas and the classification of future breast lesion development.
The Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD) are identified as
the key evaluation metrics for segmentation. Furthermore, the confusion matrix, accuracy,
precision, recall (sensitivity), and specificity are discussed, as they are pertinent to both
segmentation and classification tasks. Finally, the Receiver Operating Characteristic
curve and Area Under the Curve are explained, utilised for evaluating the discriminative
power of individual features within the classification pipeline.

Dice Similarity Coefficient

The DSC [48], also known as the F1-score or Dice score, is a widely used metric for
evaluating the overlap between two binary segmentation masks, particularly in the context
of medical volume segmentations. The metric facilitates the direct comparison between
predicted segmentations, Ŝ, and ground truth segmentations, S, and is defined as:

Dice = 2 × |S ∩ Ŝ|
|S| + |Ŝ| = 2TP

2TP + FP + FN
(4.5)

where True Positives (TP) represent correctly classified positive pixels, False Positives
(FP) denotes incorrectly classified positive pixels, and False Negatives (FN) denotes
incorrectly classified negative pixels.

The DSC ranges from a value 0 to 1, with a value of 1 signifying perfect overlap between
S and Ŝ, values between 0 and 1 indicating a partial overlap, and a value of 0 representing
no overlap. The DSC has been extensively validated in numerous medical imaging studies,
and its effectiveness in quantifying segmentation accuracy in both two-dimensional and
three-dimensional images has established it as the most widely adopted metric in this
field [174].

95% Hausdorff Distance

The Hausdorff Distance (HD) is a metric that captures the edge-specific performance of
a segmentation algorithm by measuring the maximum distance between the boundary
points of predicted segmentations, Ŝ, and ground truth segmentations, S. In particular,
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it represents the maximum distance of a finite point set A to the nearest point in another
point set B and is mathematically defined as:

H(A, B) = max(h(A, B), h(B, A)) (4.6)

where
h(A, B) = max

a∈A
min
b∈B

∥a − b∥ (4.7)

is the directed Hausdorff Distance, with ∥a − b∥ denoting some norm between points a
and b [89].

Figure 4.15: The Hausdorff Distance measures the maximum distance between two finite
point sets [173].

Given the sensitivity of the HD to outliers, a common issue in medical segmentations
[66], this thesis employs the 95% Hausdorff Distance, defined as the 95th percentile of
the set of distances rather than the maximum. This approach based on the quantile
method of Huttenlocher et al. [89], offers a more robust measure of boundary accuracy
by mitigating the impact of extreme outliers [174].

The HD is a critical metric for assessing the boundary precision of segmentation models,
particularly in applications where precise edge delineation is paramount, such as lesion
segmentation [173].

Confusion Matrix

The confusion matrix is a fundamental tool for the evaluation of model performance in
both pixel-wise segmentation and binary classification tasks. It provides a structured
framework to assess the relationship between (pixel-wise) predicted labels, ŷ, and the
ground truth labels, y, thereby offering a detailed overview of a model’s performance. In
this thesis, the positive class indicates the presence of a future lesion, while the negative
class denotes its absence.

The model’s outputs, whether in pixel-wise segmentation or binary classification, can be
categorised into four distinct outcomes:

• True Positive (TP): Correct identification of the presence of a future lesion,
y = ŷ = 1
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Predicted Label ŷ

Ground Truth y

Positive (1) Negative (0)
Positive (1) True Positive (TP) False Negative (FN)
Negative (0) False Positive (FP) True Negative (TN)

Table 4.3: The confusion matrix describes the relationship between predicted labels and
ground truth labels "Positive" (future lesion) and "Negative" (no future lesion).

• True Negative (TN): Correct identification of the absence of a future lesion,
y = ŷ = 0

• False Positive (FP): Incorrect identification of a future lesion, y = 0 ̸= ŷ = 1,
resulting in a Type I error.

• False Negative (FN): Incorrect identification of the absence of a future lesion,
y = 1 ̸= ŷ = 0, resulting in a Type II error.

All four outcomes represent non-static numbers and can be expressed as a function of a
thresholding parameter t ∈ R, which determines the probability cut-off for categorising a
lesion as "Positive" or "Negative".

Accuracy, Precision, Recall (Sensitivity) and Specificity

The metrics of accuracy, precision, recall (sensitivity), and specificity are derived from
the confusion matrix and can be expressed as functions of the threshold t:

• Accuracy represents the proportion of all correctly predicted instances (both
"Positive" and "Negative") out of the total number of predictions:

accuracy(t) = TP (t) + TN(t)
TP (t) + FP (t) + TN(t) + FN(t) (4.8)

• Precision reflects the proportion of correctly predicted "Positive" instances out of
all instances predicted as "Positive":

precision(t) = TP (t)
TP (t) + FP (t) (4.9)

• Recall, also Sensitivity or True Positive Rate (TPR), measures the ratio of correctly
predicted "Positive" instances to all actual "Positive" instances:

recall(t) = sensitivity(t) = TPR(t) = TP (t)
TP (t) + FN(t) (4.10)

• Specificity, or True Negative Rate (TNR), indicates the proportion of correctly
predicted "Negative" instances out of all actual "Negative" instances:

specificity(t) = TNR(t) = TN(t)
TN(T ) + FP (t) (4.11)
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From the TNR(t), the False Positive Rate (FPR) can be calculated as

FPR(t) = 1 − TNR(t) (4.12)

In the context of predicting future lesions, an ideal model would achieve high accuracy
(correctly distinguishing between classes), precision (ensuring that all predicted future
lesions indeed develop), recall (identifying all future lesion cases), and specificity (correctly
identifying instances without lesions).

Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve is generated by plotting the True
Positive Rate (sensitivity) against the False Positive Rate (FPR) (1-specificity) and
illustrates the performance of a binary classifier at various threshold t settings [77]
(Figure 4.16). It provides a visual summary of the trade-off between sensitivity and
specificity, which makes it a valuable tool for assessing the model’s ability to distinguish
between the positive class (future lesion) and the negative class (no future lesion) across
different thresholds.

A key metric associated with the Receiver Operating Characteristic (ROC) curve is
the Area Under the Curve [21], which offers a single scalar value that summarises the
model’s discriminative power across all thresholds. The Area Under the ROC Curve is
mathematically defined as:

ROC-AUC =
� 1

0
ROC(t)dt (4.13)

The ROC-AUC value ranges from 0 to 1, whereby a value of 1 indicates perfect discrimi-
nation, and a value of 0.5 suggests a performance equivalent to that of random guessing.
Consequently, a higher AUC value is indicative of superior model performance across the
range of thresholds.

Figure 4.16: Illustration of the ROC curve, with the ROC-AUC shaded in light-grey and a
reference line indicating random performance. Figure by [150]
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CHAPTER 5
Experiment Setup

This chapter outlines the experiment setup employed for the segmentation of future lesion
areas (Section 5.1) and the classification of future breast lesion development (Section
5.2). Methodological details are provided in Section 4.3 and Section 4.4.

All experiments employed the splits of the visit-pair dataset and pre-training dataset, as
outlined in Section 4.1 and Table 4.1.

5.1 Segmentation of Future Lesion Areas
This section delineates the experiment setup designed to evaluate and determine the seg-
mentation pipeline for identifying high-risk areas in breast DCE-MRIs. The experimental
process focused on three primary areas: segmentation architectures (Section 5.1.1), data
augmentation techniques (Section 5.1.2), and domain-specific transfer learning (Section
5.1.3).

5.1.1 Experiment A – Baseline Architecture Comparison
Given the significant variability in the performance of different model architectures across
tasks and datasets [70], the primary objective of this experiment was to evaluate the
efficacy of different segmentation architectures in identifying high-risk areas in breast
DCE-MRIs. To this end, three state-of-the-art models, namely U-Net [159], nnU-Net [93],
and DeepLabv3+ [37], were implemented to ascertain their capabilities and limitations
in this context.

U-Net, nnU-Net and DeepLabv3+

The U-Net architecture was initially developed for biomedical image segmentation and
has become a prominent encoder-decoder architecture in the medical domain. It employs
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skip connections to enhance the capture of semantic features, thereby enabling the model
to produce precise segmentations even with limited training data [159]. nnU-Net builds
upon this foundation and introduces a self-configuring framework that automates key
steps such as preprocessing, network architecture design, and training protocols based on
extracted dataset characteristic, enabling the model to adapt to various medical imaging
tasks without extensive manual intervention [93].

As detailed in Section 4.3.1, DeepLabv3+ [37] extends the traditional encoder-decoder
concept by integrating Atrous Spatial Pyramid Pooling for multi-scale contextual in-
formation and introduces a sophisticated decoder for refining segmentation boundaries.
While U-Net and nnU-Net emphasise the preservation of spatial details through their
skip connections, DeepLabv3+ is designed to handle complex segmentation tasks by
leveraging contextual information at multiple scales.

This thesis employs the U-Net and DeepLabv3+ architecture versions by Iakubovskii
[90] with randomly initialised ResNet50 [79] encoders (encoder_weights=None), and
the 2d configuration of nnU-Net(2.3.1).

Dataset

The segmentation architecture experiments were conducted on the visit-pair dataset.

Training Parameters

The U-Net and DeepLabv3+ architectures were trained from scratch, with the following
specifications:

• Data Preprocessing: The input images from modality 2 and their correspond-
ing masks were resized to the target size of 512x512 pixels, consistent with
modality 3 images. This resizing was performed using the Resize function of
torchvision (0.17.1) with nearest-neighbour interpolation, ensuring uniform
input dimensions across the entire dataset. Additionally, all data was scaled to the
range [0, 1].

• Loss Function: The models were trained using the DiceCELoss function from
the MONAI framework (1.3.1) [29], with parameter sigmoid=True and all
other parameters set to default settings.

• Batch Size: 4

• Optimiser: AdamW from PyTorch(2.2.1)

• Learning Rate: 0.001, dynamically adjusted using the ReducLROnPlateau
scheduler with parameter patience=4 from PyTorch(2.2.1), i.e. the learning
rate is reduced by a factor of 0.1 if no improvement in validation loss is observed
for 4 consecutive epochs.
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• Binarisation Threshold: a binarisation threshold of 0.5 was applied to the
sigmoid outputs to generate binary masks.

nnU-Net was employed using the bespoke architecture configuration and preprocessing
pipeline designed by the network on the fly based on a set of automatically extracted
dataset-specific properties, such as image size and intensity information. The full 2d
configuration is provided in Appendix A. The nnU-Net architecture was trained on the
custom training and validation split of the visit-pair dataset.

All architectures were trained for a total of 100 epochs. In the case of the U-Net
and DeepLabv3+ models, the weights of the epoch with the highest Dice score on the
validation split (calculated by stacking all slices and computing a single Dice score across
the entire volume) were saved and used in the subsequent evaluation on the test split.
For nnU-Net, the default model selection process, which employs the final model for
inference, was adopted due to the robust performance of nnU-Net in prior studies across
a wide range of medical imaging tasks [129].

ID Architecture Dataset Epochs
ARC-A1 U-Net visit-pair 100
ARC-A2 nnU-Net visit-pair 100
ARC-A3 DeepLabv3+ visit-pair 100

Table 5.1: Overview of the models trained in the Experiment A - Segmentation
Architectures

5.1.2 Experiment B – Data Augmentation
The best-performing segmentation architecture based on the mean per-visit Dice score
from Table 6.1 (DeepLabv3+) was selected for the experimentation with data augmen-
tation techniques, to improve the generalisation and robustness of the model. The
experiment assessed the effectiveness of different combinations of spatial, colour, and
noise augmentations and the effect of variation in augmentation parameters.

Dataset

The data augmentation experiments were conducted on the visit-pair dataset.

Augmentation Parameters

The Python package torchvision (0.17.1) was used for the implementation of spa-
tial and colour augmentation. For the purpose of noise augmentation, the monai(1.3.1)
package was utilised. Spatial augmentation comprises a combination of different trans-
forms, whereas colour and noise augmentation each incorporate a single transform. Each
of the three augmentation types, was applied with a probability of 0.9. Three variations
of augmentation settings were explored, referred to as ’low’, ’medium’, and ’high’. Each
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variation corresponds to a specific combination of parameter values, with ’low’ represent-
ing minimal augmentation, ’medium’ representing moderate augmentation, and ’high’
representing the most intense augmentation settings. Details on the functions and their
respective parameters for the different augmentation types and settings are provided in
Table 5.2.

Augmentation
Type Function Parameters Low Medium High

Spatial RandomVerticalFlip() probability 0.5 0.5 0.5

Spatial RandomResizedCrop()
size
interpolation
scale

(512, 512)
NEAREST

(0.95, 1)

(512, 512)
NEAREST

(0.90, 1)

(512, 512)
NEAREST

(0.75, 1)
Spatial RandomRotation() degrees (-5, 5) (-8, 8) (-15, 15)

Spatial RandomAffine() degrees
translate

0
(0.07, 0.03)

0
(0.10, 0.05)

0
(0.20, 0.20)

Colour ColorJitter() brightness
contrast

0.2
0.2

0.25
0.25

0.4
0.4

Noise RandGaussianNoise()
prob
mean
std

0.2
0.0
0.02

0.3
0.0

0.025

0.3
0.0

0.025

Table 5.2: Overview of augmentation functions and parameter specifications for each
augmentation type (spatial, colour, noise) and augmentation setting (low, medium, high).

The training parameters employed for the DeepLabv3+ model were consistent with those
described in the Segmentation Architecture Experiments (Section 5.1.1). An overview of
the models trained in this data augmentation experiment is provided in Table 5.3.

ID Architecture Dataset Augmentation
DA-B1 DeepLabv3+ visit-pair spatial (low)

DA-B2 DeepLabv3+ visit-pair spatial (low)
colour (low)

DA-B3 DeepLabv3+ visit-pair spatial (low)
noise (low)

DA-B4 DeepLabv3+ visit-pair
spatial (low)
colour (low)
noise (low)

DA-B5 DeepLabv3+ visit-pair
spatial (medium)
colour (medium)
noise (medium)

DA-B6 DeepLabv3+ visit-pair
spatial (high)
colour (high)
noise (high)

Table 5.3: Overview of the models trained in Experiment B - Data Augmentation
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5.1.3 Experiment C – Transfer Learning

To further optimise the segmentation pipeline, domain-specific transfer learning was
explored. The objective of this experiment was to assess the impact of pre-training of
the model on the pre-training dataset, followed by fine-tuning on the visit-pair dataset,
with the goal of improving model performance in detecting high-risk areas in breast
DCE-MRIs.

Dataset

Pre-training was conducted using the dataset splits of the pre-training dataset (Section
4.1.3). Fine-tuning was performed using the training and validation split of the visit-pair
dataset (Section 4.1.2).

Training Procedure

The best-performing model configuration from the data augmentation experiments, as
reflected in the mean per-visit Dice score from Table 6.2 (DA-B4), was selected as the
baseline for this experiment. The training process comprised the following two stages:

• Pre-training: The selected DeepLabv3+ baseline model was initially trained on
the pre-training dataset with training parameters consistent with those described in
Section 5.1.1, and with augmentation settings according to DA-B4. The resulting
trained model is referred to as Pretrain_DA-B4.

• Fine-tuning: Following the pre-training phase, the model was fine-tuned for 20
epochs on the training split of the visit-pair dataset. During this phase, all layers of
the model were fine-tuned (i.e., no layers were frozen), allowing the model to fully
adjust to the specific characteristics of the target dataset. The learning rate for
the optimiser (AdamW) was inherited from the state dictionary of the pre-trained
model, ensuring continuity in the training process.

ID Pretrained Finetuned
Layers Epochs Augmentation

TL-C1 Pretrain_DA-B4 all 20
spatial (low)
colour (low)
noise (low)

TL-C2 Pretrain_DA-B4 all 20
spatial (medium)
colour (medium)
noise (medium)

TL-C3 Pretrain_DA-B4 all 20
spatial (high)
colour (high)
noise (high)

Table 5.4: Overview of the models trained in Experiment C - Transfer Learning
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As in the data augmentation experiments, three levels of augmentation settings (low,
medium, and high) were applied during fine-tuning. The augmentation strategies were
consistent with those outlined in Experiment B (Section 5.1.2), with the same parameters
and probabilities applied across the three levels.

The model weights from the epoch with the highest Dice score on the visit-pair validation
split were saved and employed for subsequent final evaluation on the visit-pair test split.
An overview of the models trained in this transfer learning experiment is provided in
Table 5.4.

5.1.4 Evaluation
After performing model selection based on the validation-set performance, the final
segmentation performance of the models from experiments A, B and C was evaluated on
the test split of the visit-pair dataset. Visit-wise performance metrics for each visit in
the test set were aggregated by calculating the arithmetic mean, as described in Section
4.3. The aggregation yielded four key evaluation metrics, as follows:

1. Mean Dice score - measures the overlap between predicted and ground truth
segmentations.

2. Mean 95% Hausdorff Distance - assesses the spatial distance between the
predicted and ground truth boundaries.

3. Mean Precision - indicates the ratio of true positive pixels to all positively
predicted pixels.

4. Mean Recall - indicates the ratio of true positive pixels to all actually positive
pixels.

The metrics compare the predicted binary labels to the ground truth labels and are
described in detail in Section 4.5. Additionally, the total number of predicted pixels was
recorded, providing insight into the extent of the segmented regions and acting as an
indicator of potential over- or underprediction.

5.2 Classification of Future Breast Lesion Development
Following the segmentation of future lesion areas, the second objective of this thesis was
the classification of breast DCE-MRIs into those at risk of developing suspicious lesions
and those not at risk, using the probabilistic output generated by the segmentation
models. The classification task evaluated the segmentation model’s utility as a feature
extractor and breast cancer risk assessment tool. The following sections describe the
experiment setup of the conducted classification experiments.

Dataset The dataset employed for training and testing the classification pipeline
consists of the lesion slices from the validation and test splits of the visit-pair dataset
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(Table 4.1). Each slice was treated as an independent sample, with the probability maps
generated by the segmentation models serving as input to the classification pipeline.
Moreover, the left and right breast were evaluated separately, creating two samples from
each slice (Section 4.4.1).

5.2.1 Segmentation Backbones
The classification task was performed using the probabilistic outputs generated by the
segmentation models from Experiments B and C (Tables 5.3 and 5.4). Furthermore,
Experiment D was conducted to investigate the impact of an augmented ROI during
training of the segmentation model on the classification performance, as outlined below.

Experiment D – Lesion Inflation

This experiment was designed to investigate whether enlarging the lesion area in the
ground truth lesion masks used during model training could facilitate the segmentation
model to capture additional patterns in the surrounding tissue, potentially indicative of
future lesion development. In light of the importance of lesion borders and the structure
of the surrounding tissue in the differential diagnosis of breast lesions (Section 2.3),
we hypothesised that lesion masks with an enlarged ROI would allow the model to
learn contextual information from the adjacent tissue, which could be reflected in the
probabilistic output of the segmentation model. The objective of this experiment was to
assess whether these additional patterns enhance the classification of future breast lesion
development.

Lesion Inflation Process The modification in this experiment was the use of lesion
masks with an enlarged ROI in lieu of the original ground truth masks during segmen-
tation model training. To achieve this, binary dilation was performed on the ROI of
the original masks using the binary_dialation function from the Python package
scipy(1.9.3). Two sets of inflated lesion masks were generated:

• Light inflation: using the inflation parameter inflation_iter=5
• Heavy inflation: using the inflation parameter inflation_iter=20

An example of the resulting inflated lesion masks is provided in Figure 5.1.

Dataset and Training Procedure Two additional segmentation models were trained
using the inflated lesion masks, with one using the lightly inflated lesion masks and
the other employing the heavily inflated masks. In accordance with the segmentation
experiments outlined in Section 5.1, the models were trained on the training split of the
visit-pair dataset. Similarly to the transfer learning experiments, the training procedure
followed the configuration of the best-performing model from the data augmentation
experiments in Section 5.1.2 (DA-B4). An overview of the segmentation models trained
for this inflated lesion experiment is provided in Table 5.5.

61



5. Experiment Setup

Figure 5.1: Lesion mask inflation results: Visual comparison of the original lesion mask (left),
the lightly inflated mask (middle) and the heavily inflated mask (right).

ID Architecture Dataset Augmentation Lesion
Inflation

LI-D1 DeepLabv3+ visit-pair
spatial (low)
colour (low)
noise (low)

light

LI-D2 DeepLabv3+ visit-pair
spatial (low)
colour (low)
noise (low)

heavy

Table 5.5: Overview of the models trained in Experiment D - Lesion Inflation

Following training, the segmentation models were used to generate the probabilistic
outputs for the validation and test sets. These outputs were then used as input features
for the classification pipeline.

5.2.2 Feature Calculation and Classification Setup
Feature Calculation and Thresholding

The probabilistic output generated by the segmentation models was used to extract
statistical features for each individual breast. The extracted features included the
mean, median, 95th percentile, maximum value, and the number of lesion pixels, and
were computed for both the validation and test sets. The capacity of each feature to
discriminate between at-risk and not-at-risk breasts was assessed through single-feature
thresholding (Section 4.4.3). Subsequently, the features were employed as the input to
the ensemble RF classification model. The feature calculations were performed using the
Python package numpy(1.26.4). Further details on the feature extraction methodology
can be found in Section 4.4.2.

Random Forest Classification Setup

A total of 11 classification setups with different segmentation backbones were tested,
corresponding to the segmentation models from Experiment B (DA-B1 to DA-B6),
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Experiment C (TL-C1 to TL-C3), and Experiment D (LI-D1 and LI-D2), as listed in
Tables 5.3, 5.4 and 5.5, respectively.

In all setups, a Random Forest ensemble classifier was trained using Group K-fold
cross-validation with K=10, equal to the number of patients in the validation set. The
ensemble was implemented using the VotingClassifier class of the Python package
scikit-learn(v.1.4.1.post1).

Each RF model in the ensemble was implemented using the RandomForestClassifier
class with default parameters from the scikit-learn package and trained on a different
cross-validation fold. Within each fold, hyperparameter tuning was conducted using
scikit-learn’s GridSearchCV class with 3-fold internal cross-validation. The grid
search parameters were defined as follows:

• n_estimators: [20, 50]
• max_depth: [None, 10]
• min_samples_split: [2, 5]
• min_samples_leaf: [1, 2]

For each cross-validation fold, the model with the highest recall value was saved. The
ensemble was constructed using soft voting, whereby the predictions from the K models
were combined by averaging the predicted probabilities to produce the final classification
result.

5.2.3 Evaluation
Single-Feature Evaluation

The individual features derived from the probabilistic outputs were evaluated for their abil-
ity to distinguish between at-risk and not-at-risk MRI slices. This was achieved through
single-feature thresholding (Section 4.4.3). For each feature and for each classification
setup the ROC-AUC was calculated (Section 4.5) to asses the individual contribution of
each feature to the classification task.

Ensemble Classification Performance

The overall classification performance of the models was evaluated on the test split of
the visit-pair dataset, with the predictions of the K models in the ensemble combined
using soft voting. The principal objective of this classification task was to evaluate the
general ability to differentiate between the lesion and no-lesion classes on the basis of
statistical features derived from the probability maps of the segmentation algorithm. To
this end, three principal metrics were used for evaluation (Section 4.5):

1. Accuracy - reflects the model’s overall effectiveness in distinguishing between
lesion and no-lesion classes.
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2. Precision - provides insight into the reliability of positive predictions.

3. Recall - indicates the model’s capacity to identify all potential lesions.
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CHAPTER 6
Results

This chapter presents the results of the segmentation of future lesion areas in Section 6.1
and the classification of future lesion development in Section 6.2. Both quantitative and
qualitative results are included.

6.1 Segmentation Results
In this section, the evaluation performance of the segmentation models from Experiments
A, B and C (Section 5.1) on the test split of the visit-pair dataset is shown. The results
reported include the Dice Similarity Coefficient (DSC), 95% Hausdorff Distance (HD),
precision and recall, as detailed in Section 5.1.4.

6.1.1 Experiment A - Baseline Architecture Comparison Results
Quantitative results for each state-of-the-art architecture (U-Net, DeepLabv3+, and
nnU-Net) are presented in Table 6.1.

ID Architecture DSC 95% HD Precision Recall Predicted
Pixels

ARC-A1 U-Net 0.0211 7.9563 0.0161 0.1290 1,369,679
ARC-A2 nnU-Net 0.0130 4.8175 0.0465 0.0090 4,696
ARC-A3 DeepLabv3+ 0.0464 5.8764 0.0489 0.0582 69,361

Table 6.1: Baseline Architecture Comparison Results: Performance of the baseline archi-
tectures on the test split of the visit-pair dataset, including the number of predicted future lesion
area pixels compared to the ground truth of 68,535 pixels.

DeepLabv3+ achieved the highest DSC (0.0464) and demonstrated a reasonable balance
between precision (0.0489) and recall (0.0582), thereby outperforming U-Net and nnU-Net

65



6. Results

in terms of segmentation accuracy. Although nnU-Net exhibited the lowest HD (4.8175),
its low recall (0.0090) suggests severe challenges in identifying high-risk areas. U-Net
demonstrated superior recall (0.1290), however, the model suffered from lower overall
precision (0.0161) and the highest HD (7.9563). This is further corroborated by the
number of predicted pixels. U-Net exhibited a considerable discrepancy in the number
of pixels predicted compared to the ground truth, with a ratio of 1,369,679 to 68,535,
indicative of substantial oversegmentation. In comparison, nnU-Net underpredicted with
only 4,696 pixels. The DeepLabv3+ model exhibited a more accurate alignment with the
ground truth, with a ratio of 69,361 to 68,535. Segmentation results of the three models
are illustrated in Figure 6.1.

The relatively low DSC values across all models highlight the necessity to investigate
additional techniques, such as data augmentation and transfer learning, to improve
the segmentation performance. Based on these results, DeepLabv3+ was identified as
the most effective architecture for subsequent experiments aimed at enhancing model
performance.

Figure 6.1: Qualitative segmentation results of Experiment A: The 3-channel input slices
of an example visit of the test set (first column) are shown, together with the ground truth
annotation (second column) and corresponding segmentation results from U-Net (DSC: 0.1555,
HD: 8.5912), nnU-Net (DSC: 0.1576, HD: 5.3568), and DeepLabv3+ (DSC: 0.3346, HD: 4.5826).
The visual comparison highlights the variation in segmentation accuracy, with DeepLabv3+
demonstrating a closer match to the ground truth compared to the other models.
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6.1.2 Experiment B - Data Augmentation Results

Table 6.2 presents the results of the data augmentation experiments, where different com-
binations of spatial, colour, and noise augmentation were applied to the best-performing
baseline model, DeepLabv3+.

ID Augmentation DSC 95% HD Precision Recall Predicted
Pixels

DA-B1 spatial (low) 0.0662 5.8669 0.0645 0.0956 76,457

DA-B2 spatial (low)
colour (low) 0.0619 5.4824 0.0693 0.0662 90,843

DA-B3 spatial (low)
noise (low) 0.0679 5.4366 0.0723 0.0829 76,810

DA-B4
spatial (low)
colour (low)
noise (low)

0.0828 6.0898 0.0647 0.1388 101,064

DA-B5
spatial (medium)
colour (medium)
noise (medium)

0.0823 5.7233 0.0843 0.1142 96,413

DA-B6
spatial (high)
colour (high)
noise (high)

0.0772 6.3808 0.0552 0.1718 166,280

Table 6.2: Data Augmentation Experiment Results: Performance of DeepLabv3+ with
varying levels of spatial, colour, and noise augmentation applied to the test split of the visit-pair
dataset, including the number of predicted pixels compared to the ground truth of 68,535 pixels.

The results demonstrate that all data augmentation techniques led to an performance
improvement in DSC, Precision and Recall of the segmentation model, compared to the
baseline model from Experiment A (ARC-A3). The combination of all three augmentation
techniques yielded the most substantial improvement in model performance in terms
of DSC. In particular, the combination of spatial, colour, and noise augmentation
at low intensity (DA-B4) achieved the highest DSC (0.0828) in comparison to other
configurations (Table 6.2).

Augmentation Combinations Spatial-only augmentation (DA-B1) yielded a Dice
score of 0.0662 and an enhance performance across all other metrics in comparison to
the baseline model ARC-A3. The incorporation of noise augmentation (DA-B3) resulted
in an additional slight performance improvement in DSC (0.0679), HD (5.4366) and
precision (0.0723), indicating that noise contributed to model generalisation. However,
the incorporation of colour augmentation (DA-B2) resulted in a reduction in DSC (0.0619)
and recall (0.0662) compared to spatial-only augmentation. The predicted pixel count of
90,843 also represented a notable increase over the ground truth, yet did not correspond
with an equivalent enhancement in segmentation performance. The combination of

67



6. Results

all three augmentation techniques yielded to the most pronounced overall performance
improvement.

Varying Augmentation Intensities Low-intensity augmentation (DA-B4) achieved
the highest overall DSC (0.08298), with a relatively high recall (0.1388). The precision
(0.0647) and moderate HD (6.0898) further indicate consistent boundary delineation
and segmentation accuracy. Medium-intensity augmentation (DA-B5) achieved a compa-
rable DSC (0.0823) and a reduced HD (5.7233), although at a reduced recall (0.1142).
High-intensity augmentation (DA-B6), while achieving the highest recall (0.1718), ex-
hibited lower precision (0.0552) and an increased HD (6.3808), indicating substantial
oversegmentation, as further evidenced by the considerably higher predicted pixel count
(166,280).

6.1.3 Experiment C - Transfer Learning Results

Table 6.3 presents the results of the transfer learning experiments, comparing the per-
formance of models trained with pretraining and varying augmentation intensities. The
models are compared to the corresponding non-pretrained models from Experiment B
(DA-B4, DA-B5, DA-B6) to assess the impact of pretraining on segmentation performance.

ID Configuration DSC 95% HD Precision Recall Predicted
Pixels

TL-C1 pretraining +
augmentation (low) 0.0741 5.3657 0.0831 0.1000 47,744

TL-C2 pretraining +
augmentation (medium) 0.0711 5.3643 0.0810 0.0899 47,466

TL-C3 pretraining +
augmentation (high) 0.0667 5.2704 0.0917 0.0792 36,700

Table 6.3: Transfer Learning Experiment Results: Performance of DeepLabv3+ with
pretraining and varying levels of augmentation applied to the test split of the visit-pair dataset,
including the number of predicted pixels compared to the ground truth of 68,535 pixels.

While pretraining improved segmentation precision and HD, it did not surpass the
performance of the non-pretrained models in terms of DSC or recall. The model that
demonstrated the highest DSC in this experiment (0.0741), TL-C1 (pretraining with low-
intensity augmentation), achieved a lower DSC than the non-pretrained low-augmentation
model (DA-B4, 0.0828). However, TL-C1 yielded a higher precision (0.0831) and lower
HD (5.3657) and demonstrated a reduced predicted pixel count (47,744) compared to
DA-B4 (101,064), as illustrated in Figure 6.2. Additionally, TL-C1 had the highest recall
(0.1000) among the transfer learning models.

Model TL-C2 (pretraining and medium-intensity augmentation) displayed a comparable
performance to TL-C1 in terms of DSC (0.0711) and HD (5.3643). However, TL-C2
exhibited a lower recall (0.0899) and slightly lower precision (0.0810).
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Figure 6.2: Qualitative segmentation results of Experiment C: The 3-channel input slices
of an example visit of the test set (first column) are shown, together with the ground truth
annotation (second column) and corresponding segmentation results from the non-pretrained
model DA-B4 (DSC: 0.3772, HD: 6.3017) and its pretrained counterpart TL-C1 (DSC: 0.1361,
HD: 4.9497).

Model TL-C3 (pretraining and high-intensity augmentation) exhibited the highest preci-
sion (0.0917) and the lowest HD (5.2704) among the transfer learning models. However,
TL-C3 also exhibited the lowest recall (0.0792) and DSC (0.0667), indicating that pretrain-
ing combined with high-intensity augmentation led to undersegmentation, as evidenced
by the lower predicted pixel count (36,700). In comparison to the non-pretrained model
(DA-B6), pretraining improved precision and HD.

The boxplot in Figure 6.3 provides additional visual insights into the variability of DSC
scores across different augmentation intensities and pretraining configurations. The plot
demonstrates that the majority of models displayed a wide interquartile range (IQR),
indicating significant variability in DSC scores. While the median DSC remains low for
all models (orange line), the presence of outliers (dots outside the whiskers) indicates
cases where the DSC was notably higher than typical performance level.
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Figure 6.3: DSC boxplot comparing models by augmentation intensity and pretraining:
Variability in DSC across models with and without pretraining, using low-, medium-, and high-
intensity augmentation.

6.2 Classification Results
This section presents the results of the classification pipeline on the test split of the
visit-pair dataset for the classification setups outlined in Section 5.2. For single-feature
thresholding, the ROC-AUC is reported, while accuracy, precision and recall illustrate
the overall classification performance (Section 5.2.3).

6.2.1 Single-Feature Thresholding Results
Table 6.4 presents the ROC-AUC for each feature and each classification setup. It reflects
the performance of individual features derived from the segmentation probability maps
of the segmentation models from Experiments B, C, and D. The ROC-AUC boxplot in
Figure 6.4 illustrates the variability in ROC-AUC across features. It provides further
insight into the discriminative ability of the individual features and allows for additional
comparison across segmentation backbones.

The ROC-AUC scores demonstrate that the segmentation backbones trained with pre-
training (TL-C1 to TL-C3) achieved the highest overall ROC-AUC values across all
models and features. This suggests that these models generate probability maps that
exhibit greater discriminative features than other segmentation backbones. The boxplot
further illustrates that the variability for these pretrained models is largely confined to the
higher range of ROC-AUC values across features. In contrast, models trained with lesion
inflation (LI-D1, LI-D2) exhibited substantially lower ROC-AUC values across nearly all
features, reflecting underperformance in producing effective classification features.
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Segmentation
Model ID

ROC-AUC
’Mean’

ROC-AUC
’Median’

ROC-AUC
’Max’

ROC-AUC
’95th percentile’

ROC-AUC
’Lesion Pixels’

DA-B1 0.5513 0.4894 0.5979 0.5423 0.5775
DA-B2 0.5572 0.4782 0.5624 0.5489 0.5799
DA-B3 0.5555 0.4939 0.5672 0.5432 0.5631
DA-B4 0.6431 0.5257 0.6678 0.6131 0.6213
DA-B5 0.5570 0.5427 0.5430 0.5533 0.5723
DA-B6 0.5585 0.5249 0.5672 0.5650 0.5916
TL-C1 0.6609 0.5853 0.6765 0.6090 0.6432
TL-C2 0.6764 0.5833 0.6867 0.6108 0.6627
TL-C3 0.6794 0.5820 0.6872 0.6030 0.6602
LI-D1 0.5040 0.5044 0.5225 0.5143 0.5193
LI-D2 0.4389 0.4883 0.4093 0.4172 0.4314

Table 6.4: ROC-AUC scores for Single-Feature Thresholding Evaluation: ROC-AUC
values for individual classification features across different segmentation models from Experiments
B, C, and D. The highest values of each column are highlighted in bold.

Figure 6.4: ROC-AUC boxplot comparing individual classification features: The boxplot
illustrates the variability in ROC-AUC for the individual classification features across the different
segmentation model backbones. The median ROC-AUC values are represented by yellow lines.

Discriminative Power of Features

The features Lesion Pixels and Max exhibit the highest median values across features
(yellow line in the boxplot). The Lesion Pixels features achieves a maximum ROC-AUC
of 0.6627 (TL-C2) and Max reaches a value of 0.6872 (TL-C3). The Max feature also
exhibits the largest IQR, indicative of substantial variability in performance of and
sensitivity to different segmentation backbones.
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In contrast, the Median feature demonstrates the smallest IQR and the lowest median
ROC-AUC across all models, indicating that it is the least effective feature for classification.
Its consistently poor performance across different segmentation models suggests that this
feature has limited discriminative power.

The Mean and Lesion Pixels features display moderate variability, with IQRs narrower
than Max but wider than Median. Notably, the Mean feature exhibits a high upper-
quartile range and higher ROC-AUC values in pretrained models. In particular, the
Mean feature demonstrate robust performance in TL-C3 (pretraining with high-intensity
augmentation), attaining a ROC-AUC of 0.6794.

In general, the more effective features for classification (Max, Lesion Pixels, Median),
characterised by higher higher upper-quartile ranges and median values, show greater
variability, reflecting their dependence on the segmentation backbone. Conversely, less
effective features with lower upper-quartile range and median values (Median, 95th

percentile) exhibit lower variability, indicating that segmentation backbones do not
influence their performance and suggesting that these features are inherently less useful
for classification.

Segmenation Backbones: Pretraining vs. Lesion Inflation

Models trained with pretraining (TL-C1 to TL-C3) consistently exhibited superior
performance compared to non-pretrained models across the majority of features. The
model TL-C3 (pretraining with high-intensity augmentation), yielded the highest ROC-
AUC for both the Max (0.6872) and Mean (0.6794) features, and model TL-C2 (pretraining
with medium-intensity augmentation) demonstrated the highest ROC-AUC value for
the Lesion Pixels (0.6627) feature. These findings indicate that pretraining, particularly
when combined with medium or high-intensity augmentation, enhances the segmentation
models’ capacity to produce probability maps containing useful probabilistic patterns for
classification.

In contrast, models trained with lesion inflation (LI-D1 and LI-D2) demonstrated sub-
stantially inferior performance across all features, with the lowest ROC-AUC scores
in the features Mean, Max, 95th percentile and Lesion Pixels across models. Notably,
model LI-D2 is responsible for the outliers observed in the boxplot for the 95th percentile
and Lesion Pixels features. This indicates that lesion inflation does not contribute
meaningfully to the improvement of the discriminative power of features for classification.

These above results are further illustrated in Figure 6.5, showing the ROC curves for
model TL-C3 and LI-D2 across classification features.

6.2.2 Random Forest Ensemble Classification Results

Table 6.5 presents the performance of the Random Forest ensemble classifiers for classifying
breasts into those at risk of developing lesions in the near future and those not at risk,
using all statistical features extracted from the segmentation probability maps as input.
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(a) ROC curve for TL-C3 (b) ROC curve for LI-D2

Figure 6.5: ROC curve comparison for a) TL-C3 and b) LI-D2: ROC curves for the best
(TL-C3) and worst (LI-D2) performing segmentation backbones in the single-feature thresholding
task. The curves highlight the difference in discriminative power of features between the pretrained
model (TL-C3) and the lesion inflation model (LI-D2), with the best thresholds for each feature
marked. TL-C3 shows better feature separability across all features, while LI-D2 performs
substantially worse.

The reported metrics include accuracy, precision, and recall for the lesion class, as detailed
in Section 5.2.3.

Segmentation
Model ID Accuracy Precision

(lesion class)
Recall

(lesion class)
DA-B1 0.5682 0.5957 0.4242
DA-B2 0.5606 0.5618 0.4924
DA-B3 0.5265 0.5310 0.4545
DA-B4 0.5492 0.5497 0.5000
DA-B5 0.5417 0.5350 0.6364
DA-B6 0.5152 0.5130 0.5985
TL-C1 0.5909 0.6091 0.5076
TL-C2 0.6061 0.6522 0.4545
TL-C3 0.6061 0.6750 0.4091
LI-D1 0.5417 0.5347 0.5878
LI-D2 0.4508 0.4463 0.4091

Table 6.5: Ensemble Classification Results: Accuracy, Precision and Recall from the Random
Forest ensemble classifier, applied to different segmentation backbones from Experiments B, C,
and D. The metrics demonstrate the performance of each segmentation backbone in classifying
breasts at-risk and not-at-risk of developing future lesions, with TL-C3 showing the highest
accuracy and precision, and DA-B5 the highest recall.
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The median accuracy across all models lies at 0.5492 and individual accuracy values
are above 0.5 for all classification setups, with the exception of model LI-D2. Models
trained with pretraining, TL-C1 to TL-C3, exhibited superior performance in accuracy
(mean: 0.6010) and precision (mean: 0.6454) compared to other segmentation backbones,
in particular compared to their non-pretrained augmentation counterparts DA-B4 to
DA-B6 (mean accuracy: 0.5354, mean precision: 0.5326). However, in terms of recall,
the non-pretrained models surpass the pretrained models in average performance (0.5783
vs. 0.4722).

Models TL-C2 and TL-C3 (pretraining with medium- and high-intensity augmentation,
respectively) achieved the highest overall classification accuracy (0.6061), with TL-C3
additionally yielding the highest lesion-class precision (0.6750). This indicates that the use
of pretraining-based segmentation backbones results in a more effective identification of
breasts at risk of lesion, while minimising false positives. In contrast, model LI-D2 trained
with heavy lesion inflation exhibited the lowest accuracy (0.4508) and precision (0.4463)
across all segmentation backbones. This suggests that this approach had a detrimental
effect on classification performance. Model LI-D1 with light lesion inflation exhibited
a lower level of performance in accuracy and precision compared to the pretraining
models. However, it demonstrated a similar level of performance in these metrics to the
non-pretrained models that used medium- or high-intensity augmentation (DA-B5 and
DA-B6). The qualitative differences in the probability maps generated by the best and
worst performing segmentation backbones are illustrated in Figure 6.6.

Figure 6.6: Comparison of segmentation probability maps: The ground truth (left) is
compared with the probability maps generated by the segmentation backbone with the highest
accuracy and precision (TL-C3), the highest recall (DA-B5), and the lowest performance across
classification metrics (LI-D2).

Pretraining and Augmentation Impact

While pretraining (TL-C1 to TL-C3) markedly enhanced accuracy and precision com-
pared to non-pretrained counterpart models (DA-B4 to DA-B6), this improvement is
accompanied by a reduction in recall. For example, TL-C3 illustrates a trade-off between
a high precision value (0.6750) offset by one of the lowest recall values (0.4091). This
indicates that the classifier failed to identify a significant number of positive cases, despite
accurately identifying many at-risk breasts. TL-C2 (medium-intensity augmentation),
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offers a more even distribution between precision (0.6522) and recall (0.4545), providing
a better balance between sensitivity and specificity.

The non-pretrained models with varying augmentation intensities (DA-B4 to DA-B6)
generally display a more balanced performance between precision (mean: 0.5326) and
recall (mean: 0.5783). DA-B5 (medium-intensity augmentation) demonstrated the highest
recall (0.6364), effectively identifying a greater number of at-risk breasts, though with
lower precision (0.5350). Other non-pretrained models, such as DA-B6, exhibit lower
overall accuracy (0.5152) and precision (0.5130).
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CHAPTER 7
Discussion

This chapter presents a discussion of the results presented in Chapter 6, contextualised
with references to recent literature, and identifies the principal insights gained from this
thesis.

7.1 Segmentation of Future Lesion Areas
Comparison of Segmentation Architectures

The results of the segmentation task demonstrated that DeepLabv3+ exhibited superior
performance compared to both nnU-Net and U-Net in delineating areas prone to develop-
ing lesions in the future. This enhanced performance may be attributed to the increased
receptive field of the architecture, achieved through the utilisation of atrous convolutions.
By expanding the receptive field, the model is potentially more capable of capturing the
broader context of the breast tissue, including subtle signs of lesion development at the
lesion boundaries and surrounding regions. Additionally, DeepLabv3+ was designed to
capture features at varying levels of details through the use of spatial pyramid pooling.
The ability to capture spatial dependencies at different scale likely contributes to its
superior segmentation performance in this particular task.

Impact of Data Augmentation and Transfer Learning

Moreover, the inclusion of data augmentation and transfer learning resulted in enhanced
segmentation performance. The application of data augmentation resulted in a notable
improvement in the DSC, precision and recall scores. This is likely due to augmentation
facilitating the model to generalise more effectively by introducing variability in the
training data. These findings are consistent with previous research that highlights the
efficacy of augmentation in enhancing model robustness, particularly in medical imaging
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tasks, where data scarcity often poses a challenge [192, 65, 93]. Additional domain-
specific transfer learning further improved HD and precision metrics, consistent with
prior studies which suggest that transfer learning can be particularly beneficial medical
image segmentation tasks involving intricate targets and limited data availability [98].

Performance Challenges in Binary Segmentation

The capacity of DL models’ precisely delineate prospective lesion regions in negatively
assessed DCE-MRIs remains somewhat constrained. Performance across segmentation
metrics, particularly DSC, was generally low. This outcome may be expected when
the nature of the data is taken into account. The images used for evaluation were
assessed as showing no signs of suspicious lesions by radiologists. In such cases, any
discernible patterns that were more readily identifiable would likely have been identified
by human experts, leaving the DL models to work with subtler, harder-to-detect signals.
Furthermore, since a threshold of 0.5 was applied to the probability maps to create binary
masks, subtle lesion patterns may have been discarded due to lower probabilities, resulting
in underrepresentation in the final segmentation maps. The discrepancy between the
patterns detected by the models and the information reflected in the binary segmentation
maps affects the segmentation metrics’ performance, which do not account for the finer
gradations of probability captured by the models. Thus, it is reasonable to expect that
segmentation outputs would reflect this increased difficulty.

In certain instances, the models achieved DSC scores above 50%, which could indicate
that the model identified potential missed lesions by the radiologists. This underscores
the utility of DL models in complementing radiologists in the context of risk assessment,
particularly in identifying subtle signs of lesion development that may be overlooked in
standard assessments [6, 27, 152].

7.2 Classification of Future Breast Lesion Development
Feasibility of Classification Using Segmentation Features

The classification results demonstrate that the distinction between breasts at risk of
developing lesions and those not at risk is feasible using statistical features derived from
segmentation probability maps of DCE-MRIs. This finding is consistent with the work
of Ha et al. [71], who demonstrated the effectiveness of using pixel-wise information from
mammograms for risk stratification, and extends it in modality to DCE-MRI. The median
and individual accuracy values across all models but one consistently exceed 0.5, providing
further support for the viability of this approach and indicating that performance exceeds
random classification. However, variation in classification performance across models
underscores the vital role of the choice of segmentation backbone.

In particular, the utilisation of inflated lesion masks during the training of the segmenta-
tion backbone proved an ineffective approach with regard to classification. This approach
resulted in probability maps that lacked discernible patterns for classification. This was

78



7.2. Classification of Future Breast Lesion Development

reflected in the low discriminative power of the extracted features and poor classification
performance. It seems likely that inflating the lesion masks provided an ambiguous
indication of ROIs, which prompted the model to oversegment and to segment general
breast tissue rather than suspicious areas. The oversegmentation is reflected in the
inferior performance of features derived from models with greater inflation (LI-D2) in
comparison to those with less inflation (LI-D1), although both models demonstrated a
diminished performance in comparison to those without lesion inflation.

Discriminative Power of Statistical Features

The thresholding results revealed that not all statistical features derived from the
segmentation probability maps were equally effective for classification purposes. While the
mean, maximum value, and lesion pixel count emerged as features with high discriminative
power for short-term risk assessment, the features median and 95th percentile displayed
lower discriminative capability. This finding is in line with and extends results from
previous work, which demonstrated the effectiveness of using the mean of raw logits for
risk stratification [71].

The lower discriminative power of features such as the median and 95th percentile may be
attributed to their smoothing effect, which may obscure important tissue-level variations
necessary for distinguishing high-risk areas. The probability maps represent skewed
distributions, with a large proportion of values clustered around 0 and only subtle
indicators of high-risk areas with higher numbers and closer to 1. As a central tendency
measure, the median may fail to capture the subtle but important variations between
high-risk and non-risk areas, due to its tendency to overlook extremes. The 95th percentile,
while demonstrating superior performance to the median (with higher upper-quartile
range and median value), also smooths out some of the data’s key variations in higher
values, limiting its effectiveness. Features like the mean and maximum seem to be more
effective at capturing the extremes in the data, which likely contain crucial information
for distinguishing high-risk regions. These observations suggest that statistics which
better reflect the skewness of the data, such as the mean or maximum, are more useful
for classification purposes.

Impact of Segmentation Backbones on Classification Performance

The choice of segmentation backbone plays a crucial role and influences the classification
outcome, indicated by notable variation in classification performance was observed across
different segmentation backbones. Domain-specific transfer learning was found to be the
most effective approach for enhancing performance in single-feature thresholding and
the binary classification task. These findings are supported by recent literature, where
domain-specific transfer learning markedly enhances lesion classification [150, 101]. The
features derived from the probability maps of models trained using a transfer learning
approach displayed higher discriminative power than those of the other models. Among
the models trained solely using data augmentation, those combining spatial colour and
noise augmentation and varying levels of augmentation intensity generally produced
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better features than single-augmentation models. However, the differences in performance
were less pronounced in features with higher discriminative power than less effective
features.

The trend of transfer learning consistently improving performance across features in
thresholding could not be observed across all metrics in binary classification. Transfer
learning models demonstrated superior performance in accuracy and precision compared
to augmentation-only models but at the expense of recall. In contrast, augmentation
models with medium and high intensity levels of augmentation (DA-B5 and DA-B6)
displayed considerably higher recall than all other models, albeit with lower accuracy
and precision. We hypothesise, that the enhanced precision in transfer learning models is
attributable to the pretraining process, which enabled the model to recognise well-defined
lesion tissue patterns. It is probable that the pretrained features assisted the model
in focusing on more discernible patterns of lesion formation, leading to more precise
predictions and fewer false positives. However, the lower recall in these models suggests
that the pretraining may have introduced a more conservative tendency, causing the
model to detect more obvious lesion patterns, while omitting subtle early tissue variations
indicative of future lesion development. While transfer learning enhanced the model’s
specificity, it appears to have limited its ability to generalise to cases that deviate from
the learnt patterns, particularly those that do not resemble more obvious lesions. In
contrast, models trained without pretraining and higher levels of augmentation may have
benefited from the additional variability introduced during training, allowing them to
generalise better to subtle or diverse patterns, resulting in higher recall.

Connection Between Segmentation and Classification Performance

Upon examination of the trends in performance observed in the segmentation and
classification results, no discernible correlation between the two was identified. The
segmentation models with higher DSC values generally yielded features with higher
discriminative power. Nevertheless, the higher DSC score did not directly translate into a
higher binary classification performance. For example, non-pretrained models (DA-B4 to
DA-B6) exhibited higher mean DSC than their pretrained counterparts (TL-C1 to TL-C3)
(0.0808 vs. 0.0706). However, they produced features with lower ROC-AUC scores across
all features than the latter. In transfer learning models, a trend was observed whereby
classification recall was found to mirror segmentation recall. Yet, this pattern was not
observed consistently across other model groups, suggesting that the connection between
segmentation and classification recall is not straightforward and may depend on other
factors.

The absence of a clear connection between segmentation and classification performance
may be attributed to the binarisation of segmentation maps, which results in the loss their
probabilistic information. The evaluation metrics employed for segmentation are all based
on binary masks and do not consider the finer gradations of probability that may be crucial
for future lesion risk stratification. This discrepancy between the probabilistic detection
capabilities of the models and the binary outcomes reflected in segmentation metrics
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may elucidate the observed disparity in performance. While the direct segmentation
results offer value, the probability maps generated by the models prove more important
for risk assessment. These maps not only indicate areas with a higher likelihood of future
lesion development but also serve as crucial inputs for subsequent classification tasks,
where statistical features derived from these maps can be leveraged to improve lesion
risk prediction.

81





CHAPTER 8
Conclusion and Outlook

8.1 Conclusion
This thesis has investigated and addressed three key research questions surrounding
the segmentation of high-risk areas in negatively evaluated breast DCE-MRIs and the
subsequent classification for risk stratification. The following section presents a summary
of the principal findings and contributions of this research project.

1. What segmentation architectures and methodological strategies are most
effective for identifying areas associated with a higher risk of suspicious lesion
emergence in negatively evaluated breast DCE-MRIs?

The evaluation of various segmentation pipelines, including different architectures as
well as model training and regularisation strategies, revealed that DeepLabv3+ with
domain-specific transfer learning is the most effective approach for identifying future
high-risk areas in breast DCE-MRIs. Although comparable to non-pretrained models in
segmentation performance, this segmentation pipeline produced classification features
with the highest discriminative power, particularly when fine-tuned with high-intensity
augmentation. The statistical features extracted from the probability maps of this model
were found to be critical for downstream classification tasks, demonstrating that the
combination of an advanced segmentation backbone and effective training strategies can
significantly enhance both segmentation and classification outcomes.

2. To what extent is a segmentation model capable of identifying high-risk
areas?

Segmentation models demonstrated some degree of success in delineating areas associated
with emergence of lesions in the future. However, the overall performance in precisely
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segmenting high-risk areas remained limited when assessed on evaluation metrics based
on binary masks. Nevertheless, the probability maps generated by the model proved to
be a valuable tool for downstream risk assessment. These maps served as critical inputs
for and directly contributed to the classification of future lesion risk.

3. How effective is the developed segmentation model as a feature extractor for
classifying breast DCE-MRIs into those at risk and not at risk for suspicious
lesion development?

The segmentation models demonstrated notable utility beyond their primary function of
lesion delineation, acting as a feature extractor for classification. Certain features derived
from the segmentation probability maps, including the mean, maximum value, and lesion
pixel count, displayed substantial discriminative power in distinguishing between breasts
at risk of developing future lesions and those not at risk. The statistical features captured
important variations in the probability maps, thereby providing crucial inputs for the
classification task. By leveraging the probability maps in this way, the model contributed
to the risk stratification process, underscoring its value not just for segmentation but
also for future-oriented risk prediction. The TL-C3 DeepLabv3+ segmentation backbone,
trained using domain-specific transfer learning and fine-tuned with the most intense
augmentation settings explored in this thesis, demonstrated the best overall classification
performance across all model groups, particularly in terms of accuracy and precision.

The capacity to utilise features derived from segmentation probability maps for classifica-
tion represents a novel advancement in breast cancer risk stratification. This method
introduces a new approach to personalised risk assessment, building on prior work in
pixel-wise risk stratification but extending it to breast DCE-MRI data. By employing
segmentation-derived features, this approach paves the way for more targeted interven-
tions and demonstrates the potential of segmentation models being used as a new tool
for future lesion risk prediction.

8.2 Building on the Results of this Thesis
The presented segmentation-based approach for breast cancer risk assessment offers
numerous avenues for further development and future research, particularly given the
constraints of the present thesis. The following outlines key areas for further investigation,
building on the findings and addressing the limitations encountered.

A notable drawback of the existing methodology is the trade-off observed between
precision, accuracy, and recall, wherein no single model demonstrated robust performance
across all three metrics. While one model exhibited relatively high accuracy and precision,
another model demonstrated superior recall performance, albeit at the expense of the
former. This inconsistency across models indicates the necessity for further refinement to
achieve an effective balance between these metrics. In clinical applications, both high
precision (to avoid false positives and unnecessary interventions) and high recall (to
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minimise missed true positive cases) are crucial for effective decision-making. Models that
prioritised precision often demonstrated lower recall, indicating that certain high-risk
cases may be overlooked. Conversely, models with superior recall exhibited a tendency
to produce more false positives, which could result in unnecessary follow-up procedures.

In order to address the limitations encountered in balancing classification performance,
several avenues of future research emerge. One promising avenue of research is the
integration of clinical risk factors with imaging data. Studies such as those by Yala et
al. [194, 195] have demonstrated that combining imaging data with clinical variables,
such as family history, genetic predispositions, and hormonal factors, leads to improved
risk prediction. By incorporating patient-specific clinical data, models could be further
refined, enhancing their ability to accurately stratify breast cancer risk.
Another area in which improvement could be made is the inclusion of multi-modality
imaging. Although this thesis has concentrated on T1-weighted DCE-MRI scans, clinical
practice frequently involves a combination of imaging modalities, including mammography,
T2-weighted MRI images, and Diffusion-weighted Imaging (DWI). The integration of
these additional imaging modalities could provide complementary information, potentially
improving both the accuracy of segmentation and the efficacy of classification. Kuang
et al. [109] presented an unsupervised method that facilitates breast segmentation
across different MRI modalities, underscoring the feasibility and benefits of a multi-
modal approach. Future research could explore incorporating these additional imaging
techniques to provide a more comprehensive and accurate prediction of breast cancer
risk.
Moreover, enhancements could be achieved by diversifying the ensemble of classifiers
employed for risk prediction. In the current approach, the ensemble classifier is based on
individual Random Forest (RF) classifiers, which, while effective, may restrict the model’s
capacity to fully utilise the range of available classification techniques. The incorporation
of additional models, such as logistic regression, could enhance the balance between
precision and recall. Prior research has demonstrated the effectiveness of logistic regression
in image-based breast cancer risk prediction models [162, 47], with superior performance
compared to traditional risk models in DCE-MRI imaging [152]. By incorporating logistic
regression and other classification methods, the ensemble could achieve a more robust
and balanced performance across key metrics.

A further limitation pertains to the dataset employed for both segmentation and classifi-
cation purposes. This thesis employed data from a single institution, namely University
Hospital Vienna (AKH Wien), which, while effective for initial evaluation, constrains
the generalisability of the findings. The relatively small size of the dataset, particularly
for the classification task, also constrains the model’s ability to perform robustly across
diverse patient populations. To address this, future research should explore testing the
developed models on datasets from other institutions. Such an approach would allow
for the assessment of the model’s generalisability and provide insights into how well it
performs across varying populations and imaging conditions.

Furthermore, the classification model was trained and evaluated exclusively on slices
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containing lesions in the future, employing a breast-wise assessment. Incorporating
non-lesion slices from patients with suspicious lesions, as well as data from patients who
did not develop future lesions, into the analysis would facilitate a more comprehensive,
patient-wise evaluation. This broader evaluation strategy could provide a more realistic
assessment of the model’s clinical applicability. For example, Ha et al. [71] found no
significant bias towards the breast that developed cancer in their CNN algorithm. Instead,
they observed a correlation between the cancerous and non-cancerous sides, indicating
that their model predicted breast cancer risk based on features largely conserved across
both breasts. This suggests that a more holistic, patient-level evaluation could improve
model performance and yield more accurate risk predictions.

Further research is required to gain a deeper understanding of the relationship between
segmentation performance and classification outcomes. Although this thesis primarily
evaluated segmentation performance using traditional metrics such as Dice Similarity
Coefficient and Hausdorff Distance, it remains unclear how these metrics directly influence
classification performance. A more detailed examination of the relationship between
segmentation and classification metrics, or the utilisation of alternative performance
metrics that more accurately reflect the impact of segmentation on classification, could
provide valuable insights. This context also helps to explain the model’s generally lower
performance in binary segmentation evaluations, despite the detection of probabilistic
patterns useful for classification. Moving beyond traditional binary segmentation metrics
and considering probabilistic outputs may provide a more informative representation of
the model’s capabilities.

The analysis conducted in this thesis concentrated on suspicious lesions with BI-RADS
scores of 4 or above, irrespective of the malignant nature of the lesion. Further studies
could refine this approach by focusing specifically on malignant lesions. This would
facilitate a more targeted evaluation of the model’s effectiveness in predicting future
cancer development, in accordance with the work of Vreeman et al. [182].

Finally, further investigation is warranted to assess the impact of specific statistical
features on classification outcomes. In particular, features such as the median and
95th percentile exhibited limited discriminative power in the thresholding experiment
conducted in this thesis. Exploring the effect of removing these features, employing
more sophisticated feature selection techniques or adding other features, could enhance
classification performance and facilitate the development of more refined predictive
models.
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APPENDIX A
nnU-Net Configuration

{
"dataset_name": "Dataset002_AKH_bfc",
"plans_name": "nnUNetPlans",
"original_median_spacing_after_transp": [

2.0,
0.703125,
0.703125

],
"original_median_shape_after_transp": [

3,
227,
444

],
"image_reader_writer": "SimpleITKIO",
"transpose_forward": [

0,
1,
2

],
"transpose_backward": [

0,
1,
2

],
"configurations": {

"2d": {
"data_identifier": "nnUNetPlans_2d",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 19,
"patch_size": [

256,
512

],
"median_image_size_in_voxels": [

255.0,
478.0

],
"spacing": [

0.703125,
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A. nnU-Net Configuration

0.703125
],
"normalization_schemes": [

"ZScoreNormalization",
"ZScoreNormalization",
"ZScoreNormalization"

],
"use_mask_for_norm": [

true,
true,
true

],
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {

"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null

},
"resampling_fn_seg_kwargs": {

"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null

},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {

"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null

},
"architecture": {

"network_class_name": "dynamic_network_architectures.architectures.unet
.PlainConvUNet",

"arch_kwargs": {
"n_stages": 7,
"features_per_stage": [

32,
64,
128,
256,
512,
512,
512

],
"conv_op": "torch.nn.modules.conv.Conv2d",
"kernel_sizes": [

[
3,
3

],
[

3,
3

],
[

3,
3

],
[
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3,
3

],
[

3,
3

],
[

3,
3

],
[

3,
3

]
],
"strides": [

[
1,
1

],
[

2,
2

],
[

2,
2

],
[

2,
2

],
[

2,
2

],
[

2,
2

],
[

2,
2

]
],
"n_conv_per_stage": [

2,
2,
2,
2,
2,
2,
2

],
"n_conv_per_stage_decoder": [

2,
2,
2,
2,
2,
2
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],
"conv_bias": true,
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm2d",
"norm_op_kwargs": {

"eps": 1e-05,
"affine": true

},
"dropout_op": null,
"dropout_op_kwargs": null,
"nonlin": "torch.nn.LeakyReLU",
"nonlin_kwargs": {

"inplace": true
}

},
"_kw_requires_import": [

"conv_op",
"norm_op",
"dropout_op",
"nonlin"

]
},
"batch_dice": true

},
"3d_fullres": {

"data_identifier": "nnUNetPlans_3d_fullres",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 6,
"patch_size": [

4,
256,
384

],
"median_image_size_in_voxels": [

4.0,
255.0,
478.0

],
"spacing": [

2.0,
0.703125,
0.703125

],
"normalization_schemes": [

"ZScoreNormalization",
"ZScoreNormalization",
"ZScoreNormalization"

],
"use_mask_for_norm": [

true,
true,
true

],
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {

"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null

},
"resampling_fn_seg_kwargs": {

"is_seg": true,
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"order": 1,
"order_z": 0,
"force_separate_z": null

},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {

"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null

},
"architecture": {

"network_class_name": "dynamic_network_architectures.architectures.unet
.PlainConvUNet",

"arch_kwargs": {
"n_stages": 7,
"features_per_stage": [

32,
64,
128,
256,
320,
320,
320

],
"conv_op": "torch.nn.modules.conv.Conv3d",
"kernel_sizes": [

[
1,
3,
3

],
[

3,
3,
3

],
[

3,
3,
3

],
[

3,
3,
3

],
[

3,
3,
3

],
[

3,
3,
3

],
[

3,
3,
3

]
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],
"strides": [

[
1,
1,
1

],
[

1,
2,
2

],
[

1,
2,
2

],
[

1,
2,
2

],
[

1,
2,
2

],
[

1,
2,
2

],
[

1,
2,
2

]
],
"n_conv_per_stage": [

2,
2,
2,
2,
2,
2,
2

],
"n_conv_per_stage_decoder": [

2,
2,
2,
2,
2,
2

],
"conv_bias": true,
"norm_op": "torch.nn.modules.instancenorm.InstanceNorm3d",
"norm_op_kwargs": {

"eps": 1e-05,
"affine": true

},
"dropout_op": null,
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"dropout_op_kwargs": null,
"nonlin": "torch.nn.LeakyReLU",
"nonlin_kwargs": {

"inplace": true
}

},
"_kw_requires_import": [

"conv_op",
"norm_op",
"dropout_op",
"nonlin"

]
},
"batch_dice": false

}
},
"experiment_planner_used": "ExperimentPlanner",
"label_manager": "LabelManager",
"foreground_intensity_properties_per_channel": {

"0": {
"max": 691.0,
"mean": 29.42961311340332,
"median": 20.0,
"min": -184.0,
"percentile_00_5": -120.0,
"percentile_99_5": 288.0,
"std": 58.199951171875

},
"1": {

"max": 634.0,
"mean": 36.46983337402344,
"median": 32.0,
"min": -248.0,
"percentile_00_5": -161.0,
"percentile_99_5": 333.0,
"std": 69.0374984741211

},
"2": {

"max": 742.0,
"mean": 40.257232666015625,
"median": 38.0,
"min": -268.0,
"percentile_00_5": -181.0,
"percentile_99_5": 344.0,
"std": 74.44144439697266

}
}

}
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Overview of Generative AI Tools
Used

ChatGPT [145]

• Version: GPT-4 (based on architecture)
• Provider: OpenAI
• Usage Date: July 2024 – October 2024
• Purpose of Use: aid for grammatical corrections and linguistic refinements
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