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Footprints in the Sand

One night I dreamed a dream.
As I was walking along the beach with my Lord.
Across the dark sky flashed scenes from my life.
For each scene, I noticed two sets of footprints

in the sand,
One belonging to me and one to my Lord.
After the last scene of my life flashed before me
I looked back at the footprints in the sand.
I noticed that at many times along the path of

my life,
especially at the very lowest and saddest times,
there was only one set of footprints.
"I don’t understand why, when I need You most,

You would leave me.”
He whispered, "My precious child, I love you

and will never leave you,
Never, ever, during your trials and testings.
When you saw only one set of footprints,
It was then that I carried you."

Margaret Fishback Powers, 1964
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Abstract

Pelton turbines rely on a distributor system and injectors to feed high-quality water
jets to the runner to operate efficiently. The jet formation is highly influenced by the
upstream flow history, where secondary flows are mainly created in the distributor
system. A good distributor system allows for low energy losses and limited sec-
ondary flow. Previously, it was proven that for conventional distributor systems of
six-jet Pelton turbines, the secondary flows upstream of the injectors, and thus, the
jet qualities differ significantly, leading to notable variations in turbine efficiencies.
Following these observations, this thesis explores how Pelton turbine distributor
systems must be designed to allow for similar flow conditions in all branches and
injectors and maintain a high-quality water jet at all relevant operating conditions.
A yet unexplored solution could be distributor systems with axial inflow. Hence,
this thesis describes the flow phenomena in such distributor systems with axial
inflow (= AxFeeder) and derives designs favourable for high-quality flow.

Four core designs of the AxFeeder, the diffuser manifold (basic model), the diffuser
manifold with conical frustum, the spherical manifold and the cylindrical manifold,
differing mainly in the shape of the manifold and the positioning of the branch lines,
were drafted. Operating parameters representative of future potential applications
of the AxFeeder in small hydropower plants were derived, the operating regime was
simulated, and a realistic design point for the parametric investigation was selected.
The parametric investigation analysed the effects of changes in the manifold and
branch line geometries on the flow quality criteria, namely the power losses, the
dissipation power coefficient and the secondary velocity ratio.

In particular, the parametric investigation detected areas of the AxFeeder where the
flow reacted most sensitively to a change. These included the size of the manifold,
the transition zone from the manifold head to the branch line and the injector bend.
A conical frustum connecting the manifold and the branch line, combined with
a steep deviation angle of the branch line, results in low losses in the distributor
system and limited secondary flow upstream of the injector position. The secondary
flow at this station showed a distinct reverse S-shape pattern, which appeared to
be characteristic of many AxFeeder configurations. All concepts were compared by
a compound quality coefficient that equally weighs losses and secondary velocities.
Only a few combinations of geometrical parameters allowed for minimal losses
and secondary flows simultaneously. With a reduction of the compound quality
coefficient of 44 %, the best results were achieved by the diffuser-shaped manifold
with a conical frustum and a converging branch line of a deviation angle of 90◦.
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Kurzfassung

Um hohe Wirkungsgrade zu erzielen, muss das Laufrad der Peltonturbine mit
qualitativ hochwertigen Freistrahlen beaufschlagt werden. Die Strahlformation wird
dabei von in der Verteilleitung generierter Sekundärströmung beeinflusst. Eine gute
Verteilleitung ermöglicht geringe Energieverluste und begrenzte Sekundärströmung.
Aktueller Stand der Forschung ist, dass bei konventionellen Verteilleitungen die
Sekundärströmungen vor den Düsen, die Strahlqualität und die Turbinenwirkungs-
grade deutlich variieren. Hiervon ausgehend wird in dieser Arbeit die Frage gestellt,
wie Verteilleitungen von Peltonturbinen gestaltet sein müssen, um ähnliche Strö-
mungsverhältnisse in allen Verzweigungen und Düsen zu ermöglichen und einen
hochwertigen Freistrahl unter allen relevanten Betriebsbedingungen zu erzielen.
Eine wenig erforschte Lösung könnten Verteilleitungen mit axialer Zuströmung sein.
Daher werden in dieser Arbeit die Strömungsphänomene in solchen Verteilleitungen
mit axialer Zuströmung (= AxFeeder) mithilfe numerischer Strömungssimulationen
beschrieben und hohe Strömungsqualität ermöglichende Konstruktionen abgeleitet.

Es wurden vier Basis-Varianten des AxFeeders entworfen, welche sich vor allem durch
die Form des Mehrfach-Abzweigeelements und der Abzweigeleitungen unterscheiden.
Aus einer potentiellen zukünftigen Anwendung des AxFeeders in Kleinwasserkraft-
werken wurden typische Auslegungsdaten abgeleitet, danach die Kennlinien simuliert
und ein Betriebspunkt für die Parameterstudie festgelegt. In dieser wurden die
Auswirkungen geometrischer Änderungen an Mehrfach-Abzweigeelement und Ab-
zweigeleitungen auf die Qualitätskriterien zur Beurteilung der Strömung, nämlich
Verluste und Sekundärströmungsanteil analysiert.

Das Volumen des Mehrfach-Abzweigeelements, der Übergang von diesem zu den
Abzweigeleitungen und der Düsenkrümmer waren besonders sensible Bereiche
hinsichtlich geometrischer Änderungen. Geringe Verluste und niedrige Sekundär-
strömungsanteile konnten bei Verwendung eines Kegelstumpfes als Verbindung
von Mehrfach-Abzweigeelement und Abzweigeleitung erzielt werden, insbesonde-
re, wenn die letztere unter einem steilen Winkel abzweigte. Dabei zeigte sich
in der Auswerteebene stromauf der Düsenposition eine charakteristische, um-
gekehrte S-Form der Sekundärströmung. Ein Vergleich aller Varianten erfolgte
mittels eines Verbund-Qualitätskoeffizienten, bei dem die Verluste und die Sekun-
därströmungsanteile gleichermaßen gewichtet wurden. Mit einer Reduzierung des
Verbund-Qualitätskoeffizienten von 44 % wurden die besten Ergebnisse durch das
Mehrfach-Abzweigeelement mit Diffusor und Kegelstumpf in Verbindung mit einer
90◦-Abzweigeleitung mit konvergentem Düsenkrümmer erzielt.
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Nomenclature

Superscripts
A Area average value of a field variable
L Lumped
M Mass average value of a field variable

Further mathematical symbols
δij Kronecker delta, 1 if i = j, 0 if i ̸= j

(̄.) Mean value = arithmetic average; time-averaged quantity
(̂.) Area (cross-section) integrated value of a field variable
(.)′ Fluctuating variable

Some conventions

In agreement with Greitzer et al. [26], the nomenclature should be easy to read, and
follow industry conventions. Therefore, whenever convenient, widespread symbols
were used, even if it was necessary to employ the same symbol for more than one
quantity, e.g. the letter x, a linear coordinate and a wildcard variable used in
several equations. Naturally, the context should clarify what the symbol stands for
in a particular use case.

For the definition of coefficients, e.g. the loss coefficients in Section 3.3 or the
secondary velocity ratio in Section 3.4, the more convenient cartesian velocity nota-
tion u⃗ = (u, v, w)T was used. For describing the flow in a pipe system such as the
AxFeeder, where the mean streamline of the pipe is not always aligned with cartesian
coordinates, the velocity formulated in cylindrical coordinates c⃗ = (cr, cθ, cs)T was
employed.

Stations were often numbered from 0, 1, 2, and so on or are labelled by capital
letters A, B, C, . . . In other cases, designations such as Roman numerals or
position specifications, e.g. z/d = 2.0, were also used.

Software

All simulations presented in this thesis were computed with the computational fluid
dynamics solver ANSYS CFX 19.2. The geometries were created in Solidworks 2020
and ANSYS DesignModeler, for spatial discretisation ANSYS Meshing was used,
and post-processing of the simulation results used the ANSYS post-processing
utilities CFD-Post 19.2 and CFD-Post 2022 R1. Data curation and visualisation
were done in Matlab R2019b, Microsoft Excel 2016, and LATEX (mainly using the
pgfplots and TikZ packages). For sketching and figure preparation, Inkscape 1.1
was used.
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CHAPTER 1
Introduction

Pelton turbines are impulse-type water turbines used for heads up to 2000 m and low
to moderate volumetric flow rates. Within the turbine itself, a distributor system
guides the flow to the injectors, where the potential energy of the water is converted
into kinetic energy of the free-surface water jets. These jets push on the buckets of
the runner and thus create the turning motion of the turbine shaft. Typically, for
low flow rates, Pelton turbines with one or two injectors are used; with higher flow
rates, Pelton turbines fed with up to six injectors are built. Often, Pelton turbines
with one or two injectors have a horizontal turbine shaft, while Pelton turbines with
three to six injectors have a vertical turbine shaft. The significant advantages of
Pelton turbines are their simple concept, fast controllability and excellent part-load
efficiencies. These advantages make Pelton turbines highly suitable for storage
power plants to fulfil peak load demands. Conversely, some of the challenges Pelton
turbines face are the dependence of the formation of high-quality water jets on
the upstream flow conditions in the penstock, the distributor system and injectors;
the susceptibility of the injectors and the runner to erosion and cavitation wear;
the intermittent, pulsating loads on the buckets and the runner due to the finite
number of jets acting only for a specific period of a complete runner revolution;
and the two-phase flow phenomena in the casing of multi-injector Pelton turbines.

From an operational point of view, at the cost of the increased complexity of the
distributor system, a higher number of injectors leads to better load distribution
and utilisation of the runner, as well as smaller buckets and runners. A lighter
runner allows for higher runner speeds, simpler generators and a more compact
turbine unit with the same power output at significantly reduced costs. Overall, it
is also economically favourable to have a design with a horizontal shaft instead of a
vertical shaft, as a horizontal shaft allows for a more straightforward turbine shaft
arrangement, less complex bearings and generator supports, especially at lower
heads. These design and economic advantages would make a six-jet Pelton turbine
with a horizontal shaft a highly favourable combination of Pelton turbines. The
benefits above are outweighed by the difficulties of feeding a high-quality flow to
the turbine through a simple and reliable distributor system and by discharging
the flow from the casing of such a six-jet horizontal shaft Pelton turbine.
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1. Introduction

Over the years, various ideas and concepts were researched to overcome the difficul-
ties of a six-jet Pelton turbine with a horizontal shaft. The most extensive studies
on this configuration were published by Erlach [18–20]. In his studies, Erlach and
his collaborators conducted model tests to investigate the efficiency potential of
two possible designs of six-jet Pelton turbines with horizontal shafts. One design
had a conventional spiral-like distributor system, where one branch line parts at a
time. This design was turned by 90◦ towards the vertical direction to allow for a
horizontal turbine shaft. The other design used a novel type of distributor system
with axial inflow, where all branch lines part simultaneously. Both designs were
also equipped with a new type of casing, allowing for a better flow discharge. Two
main findings were that the novel type of distributor with axial inflow had very low
deviation in the turbine efficiencies when single-jet operation was tested and that
both turbine designs profited significantly from the new type of casing. Despite the
successful model test, Erlach’s ideas were not acted upon. A prototype of a six-jet
Pelton turbine using a horizontal shaft was not built before 20221.

Elaborating on the challenges of the six-jet Pelton turbine with a horizontal shaft,
this thesis focuses on the distributor system feeding the flow to such a turbine
configuration. Distinctly, each Pelton turbine distributor system has the task of
distributing the flow evenly to all injectors. Thereby, the energy losses must not
exceed 2 % to 3 % of the available energy computed from the geodetic head and a
good flow quality shall be maintained over a wide range of operating conditions [89].
Due to this, a conventional Pelton turbine distributor system is constructed from
welded steel sheets with gradually tapering cross-sections and special branch seg-
ments. Usually, each conventional distributor system is a unique prototype made to
fit one particular power plant precisely. Also, within the distributor system, each
of the branches is unique. Therefore, effort is required to provide the same flow
rate to every injector over a wide range of operating scenarios, also dramatically
increasing manufacturing complexity and costs.

It was shown by Peron et al. [70] and Staubli et al. [101, 103] that a bad quality
flow upstream of the injectors in the distributor system leads to ill-formed jets.
These, in turn, cause an unfavourable momentum transfer from the jets to the
buckets, leading to excessive splash water in the casing and, ultimately, a reduction
in the turbine efficiency. Poor flow quality in Pelton turbine distributor systems is
commonly associated with secondary flows and high turbulence. Semlitsch proved
that disturbances upstream [89] or in [90] a conventional distributor system2 propa-
gate through the distributor system and the injectors and deform the jets unevenly.
Thus, the efficiencies of a Pelton turbine fed by a conventional distributor system
vary significantly as systematic tests of single-jet operation unfolded. Typically, the
last jet produces the highest efficiency, see e.g. Erlach [19].

1In this year, in two refurbishment projects, Gerlos I [57, 58] and Vermuntwerk [77], six-jet Pelton
turbines with horizontal shaft were installed for the first time. In both projects, a conventional
Pelton turbine distributor system, turned by 90◦ towards the vertical direction to allow for the
horizontal shaft, was employed together with a novel type of casing.

2E.g. during part-load operation when multiple injectors are out of operation or by baffle blades
that are primarily aligned for full-load conditions.
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1. Introduction

The central question in the research of Pelton turbine distributor systems, therefore,
is: "How do Pelton turbine distributor systems need to be designed to allow for
similar flow conditions in all branches and injectors and maintain a high-quality
water jet at all relevant operating conditions?"

One possible solution to allow for similar flow conditions in all branches and in-
jectors and overcome the issue of varying jet quality was proposed by Erlach and
Staubli [21] in 2007 and included the study series mentioned above [18–20]. This
novel type of distributor with axial inflow, where all branch lines part at the same
time, appeared to be promising3, but a detailed, isolated analysis of the flow in
such a system with axial inflow was never conducted before.

Consequently, this thesis investigates the flow in Pelton turbine distributor systems,
which allow axial inflow and outflow tangential to the runner. First, criteria
are developed to unbiasedly compare different types of Pelton turbine distributor
systems with axial inflow. Then, alternative designs are elaborated on, and the
effect of geometric changes of the main design parameters on the flow is studied. A
further objective is understanding the flow phenomena in these distributor systems
and finding a combination of geometric parameters favourable for high-quality flow.
The method chosen for this thesis is numerical flow simulations, which allow for
testing a wide variety of possible designs and parameter combinations before even
starting with expensive laboratory testing. Furthermore, the distributor system
is seen as an isolated component because any integration into the whole turbine
system would increase the number of variables and the complexity of the studies to a
point where such a study could not be conducted with rational effort. Therefore, the
results of this thesis do not account for the flow in the injectors or the free-surface
jets.

3Another aspect that makes this type of distributor system interesting is the potential to reduce
manufacturing costs as all branch lines are made from identical components.
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CHAPTER 2
Literature review

In considering the key aspects of investigating and optimising the flow of a new
Pelton turbine distributor system, one has to understand the effects impacting
the high efficiency of Pelton turbines. Therefore, using a top-down approach of
reviewing Pelton turbine literature, this chapter addresses how the flow phenomena
in a Pelton turbine distributor system affect the turbine efficiency and what to pay
attention to when studying a new type of distributor system.

2.1 On the efficiency of a Pelton turbine
When studying, building, and deploying a Pelton turbine, the ultimate goal is
to maximise its efficiency. Several contributions have proven that the efficiency
of a Pelton turbine is highly dependent on the jet quality, necessitating not only
numerical and experimental work but also research on past efforts. Their most
relevant findings are discussed in this section.

Within the Jet Improvement for Swiss Pelton Plants project led by Staubli and
Bissel [102], several refurbishment projects of Swiss Pelton turbine power plants
were analysed. In this report, the potential to improve the efficiency of a Pelton
turbine by modifying the injectors is estimated in the range of 0.4 % to 0.8 %.
By the example of hydropower plant (HPP) Fionnay, Peron et al. [70] reported
a measured efficiency increase of around 0.4 % in the whole power range. This
increase was attributed to the improved jet quality, e.g. less dispersion1, as a result
of modifying the injectors. For the refurbishment project of HPP Rothenbrunnen,
Staubli et al. [103] were able to improve the efficiency of the Pelton turbines by
1.4 % by replacing the injectors and modifying the casing. The authors conclude
that the efficiency increase correlates with fewer disturbances on the jet surface,
less jet dispersion, and a smaller amount of splashing water [103].

1In cases with highly dispersed jets, the pressure field is distributed over a wider area, which
deviates from the hydraulic optimum and thus hurts the runner efficiency [70].
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2. Literature review

Further understanding of the correlation of jet quality and turbine efficiency was
gained by computational fluid dynamics (CFD) simulations.
Santolin et al. [81] compared the performance of a runner admitted with an ideal,
circular jet to that of a runner admitted with a perturbed real jet. In the real
jet configuration, the jet was perturbed by the needle wake and secondary flows
induced by upstream parts, e.g. penstock and distributor system [81]. Consequently,
the simulated differences in efficiency between the runner subject to the ideal jet
and real jet amount to 1.9 %.
Gupta et al. [27] investigated the effects of several jet shapes on the performance of
the runner and the flow patterns during jet-bucket interaction. One main finding of
this research was that a circular-shaped jet exhibits the highest force on the buckets,
and thus, the runner admitted by this jet has the highest torque and efficiency.
Jošt et al. [40, 41] obtained a negative correlation between secondary velocity in
the jets and turbine efficiency for 1-nozzle operation. They simulated the entire
flow path comprised of the final part of the penstock, the conventional distributor
system, the injectors and the runner of a six-jet Pelton turbine with a vertical axis.
Their simulation strategy was such that the penstock, distributor system, injectors
and free-surface jets were simulated in the first step. In the second step, the velocity
fields from the jets and the air-water distribution were prescribed as boundary
conditions for the runner simulations. The results for single jet operation show that
the losses in the distributor system were the highest when the last jet was active.
However, in this case, the secondary velocities in the jet were the lowest, and the
acquired efficiency was the highest. The monitored spread in turbine efficiency
between the best and the worst active jet was almost 0.4 %.
Petley et al. [71] aimed at improving the performance of a Pelton turbine by chang-
ing the geometry of the needle and the nozzle in the injector2. Their computations
estimated the difference in turbine efficiency between a case where the buckets
were admitted with an ideal jet and a case with a real jet from their standard
injector with 1.7 %. With their optimised injector geometry, this difference shrunk
to remarkably low 0.2 %, implying an efficiency increase of 1.5 %. The experimental
tests resulted in a similar efficiency increase of around 1.4 % in efficiency between
their standard and their optimised injector. Petley et al. [71] attributed the ef-
ficiency increase to a more uniform jet velocity profile with their optimised injector3.

Generally, an ill-formed jet not only lowers the efficiency of the Pelton turbine
but also affects the flow pattern in the buckets and the time the jet enters the
buckets. It further causes uneven forces on the buckets, the relative amplitudes
of pressure pulsations of the turbine increase significantly, the axial forces on and
axial oscillations of the runner increase, and the buckets become more susceptible
to vibration, cavitation and fatigue damage. The latter three raise maintenance
costs and lower the lifetime of the runner. A high overall noise level of the turbine
can also be associated with ill-formed jets [70]. Deng et al. [14] showed that the jet
2Within this thesis, the entire assembly of injector pipe, nozzle, needle, needle body (= torpedo),
torpedo support, ribs is called the injector. The term nozzle denotes the contracting part of the
injector. The zone of the nozzle with the smallest diameter is called the throat.

3The optimised injector has steeper needle and nozzle angles. The authors emphasise that the
steeper angles might cause more secondary velocity in the flow.
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position also massively impacts the jet-bucket interaction. The authors found that
even a slight radial deviation of the jet, which corresponds to a different effective
pitch cycle diameter, increased the axial force on the runner by a factor of two and
decreased the tangential force on the runner, which is directly associated with the
turbine efficiency, by roughly 0.25 %. An axial deviation of the jet axis towards
either side of the bucket would eventually increase the axial forces by a factor of
four and decrease the tangential force and thus the turbine efficiency by around
0.40 %.

Following the examples presented above, this section closes with the statement:

"Bad jet quality = low turbine efficiency"

2.2 On the quality of a Pelton turbine jet
This section aims to understand a good jet and what phenomena might lead to a
bad jet. Thereby, this section presents quantities commonly used to describe the
quality of a jet.

Among the most relevant parameters to describe the quality of a jet are:

• The jet dispersion - how much does the jet diameter increase along its path?

• The jet deviation - how much does the jet centreline differ from the injector
axis?

• The jet surface deformation - how much does the jet surface differ from an
axisymmetric shape?

The jet dispersion is typically expressed by a dispersion angle α. Zhang and Casey
[117, 118] reported typical dispersion angles of 0.2◦ to 0.5◦. Unterberger et al. [110]
measured dispersion angles between 0.25◦ for small nozzle openings and thus low
volumetric flow rates and 1.20◦ for the maximum nozzle opening and high volumetric
flow rates. Jet dispersion is mainly caused by secondary flows upstream of the nozzle
[101, 102]. It is thus influenced by bends, bifurcations, and any other object in the
flow, such as the mechanism for adjusting the needles. It is further influenced by the
nozzle and needle geometry and the head. For example, Unterberger et al. [110]
observed that steeper nozzle angles lead to higher dispersion angles but decreased
energy losses in the injector. Two effects should be considered when discussing
jet dispersion. One effect is the jet expansion of the jet cross-sectional area due
to decreased jet velocity. The other effect is the entrainment of air bubbles on
the surface of the jet. Zhang and Casey [117, 118] demonstrated by analytical
considerations that the first effect contributes only slightly to the energy loss
according to dispersion. Peron et al. [70] deducted from snapshots of jets operating
at different heads that the second effect heavily depends on the head. Jets operated
at high heads show an increased thickness of the mixed air-water flow zone, which
forms a dispersed phase directly impacting and decreasing the turbine efficiency.
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Many publications, e.g. [70, 101, 117], identify the upstream flow structures
in the distributor system and the injectors as the root cause for jet deviation.
Semlitsch [89] proved that the mass flow rate imbalance across the nozzle sides
and the total pressure distribution upstream of the nozzle also play an essential
role. The mass flow rates and, thus, the flow velocities on the outside of the
injector (with respect to the last bend) are higher than those on the inside. This
is called mass flow rate imbalance. Also, the static pressure on the outside of the
injector (with respect to the last bend) is higher than that on the inside. Thus, the
total pressure in the injector is as well higher on the outside than on the inside.
When the balance of momentum is applied to the jet, the only forces acting on the
jet are those at the nozzle exit and at the tip of the needle4. Because the total
pressure in the nozzle is not uniform, the flow momentum over the jet axis is not
balanced, deviating the centreline of the water jet of the injector axis towards the
inside of the last bend. At the same time, secondary flows induced by upstream
bends or the ribs holding the needle are present. These secondary velocities induce
a radial flow momentum, which can counteract the effect of the mass flow rate
imbalance. Depending on the strength of the mass flow rate imbalance and the
strength of the secondary flow, either effect can dominate. Experience shows that
the jet is typically deviated towards the inner side of the upstream bend, indicating
that the effect originating from the mass flow rate imbalance is more pronounced
than the effect of the secondary flows5. Semlitsch [89] reported numbers for the
deviation angle between 0.17◦ to 0.32◦, a seemingly low figure. However, referring to
Deng et al. [14] as discussed in Section 2.1, even such minor deviations significantly
impact the performance of the turbine.

In a systematic comparison of the jet envelopes produced by an injector with
a straight inlet to those produced by an injector with a 90◦ elbow bend up-
stream, Fiereder et al. [24] found that secondary flows due to the inlet elbow
generated an asymmetry in the jet profile which developed to a distinct bulge
(nose). Riemann [75] explained that this bulge is always located at the inside of
the injector with respect to the last bend and increases as the jet travels away
from the nozzle opening. This type of deformation, which was also observed in
[12, 70, 89, 90, 117] is a primary example of jet surface deformation exemplifying
the difference between jet dispersion (which also deforms the jet surface to some
extent) and jet surface deformation, which means deformations on a larger scale.
Similar to any other large-scale jet surface deformation, such a nose in the jet
envelope alters the jet profile from the ideal circular form. This alteration of how
much the jet cross-section differs from a circle can be described by a circularity or
out-of-roundness coefficient. Staubli and Bissel [102] defined this out-of-roundness
coefficient as the difference between the maximum and the minimum diameter of
the water jet at a given cross-section over the mean diameter at this cross-section.

4Hereby, it is assumed that the jet expands into free ambient conditions.
5The effect of mass flow rate imbalance is highly dependent on the interior geometry of the injector,
the number of ribs that support the needle adjusting mechanism and the upstream flow from the
branch lines and the bends. These features also affect the production of secondary flows, though,
and it has to be analysed for each combination of distributor system and injector individually,
which effect dominates.
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Semlitsch [89] suggested accounting for general, non-elliptic or axisymmetric jet
shapes by using the difference between the maximum and the minimum radius of
the water jet over the theoretical radius. Staubli and Bissel [102] reported out-of-
roundness coefficients for a straight pipe and an injector with internal servomotor
around 4 % to 5 %, depending on the head. When a 90◦ pipe bend or a rod in the
inlet pipe upstream of the injector was considered, the values mentioned above
more than doubled as a direct result of the secondary flow induced by the upstream
components. For a conventional distributor system, Semlitsch [89] computed out-
of-roundness coefficients of around 15 % to 20 %, depending on the position of the
injector. Those injectors subjected to the highest secondary velocity magnitudes
showed the highest values of the out-of-roundness coefficient. Chongji et al. [12]
simulated the flow in a Pelton turbine injector attached to a 120◦ elbow pipe
and calculated out-of-roundness coefficients of around 5 % for a medium nozzle
opening and around 10 % for a large nozzle opening6. The authors also plotted
patterns of the secondary velocity in the jet, from which a correlation between the
jet shape deformation and the secondary flow structures was identified. Further,
the secondary flow structures were associated with the upstream elbow and the ribs
supporting the needle. All values of the out-of-roundness coefficient presented here
were given for a position four throat diameters downstream of the nozzle opening.

Other criteria mentioned by Zhang and Casey [117, 118] are the jet core shift and
the jet instability. Zhang and Casey describe the jet core shift as the shift of the
centre of the jet, which is identified by the wake of the needle, from the original
axis of the needle [117]. The jet core shift appears due to transversal flow in the jet,
which again results from secondary flow induced by the upstream internals of the
injector and by bends and branches. The jet instability corresponds to fluctuations
in the highly dynamic jet surface.

The quality of the jet is further affected by the axial velocity distribution in the
jet, as was suggested by Petley et al. [71] and discussed in Section 2.1. Khan and
Kumar [43] express the velocity distribution in the jet by a jet flow uniformity index.

The overall deformation of a jet is a superposition of the effects discussed in this
section. Thus, a jet with a highly-disturbed surface has most likely a significant jet
deviation and might be unstable. However, one common cause could be identified
for all of these effects: strong secondary flows. Therefore, from the criteria to
quantify the jet quality, it is possible to conclude:

"High secondary flow = Bad jet quality"

6Chongji et al. [12] did not calculate the out-of-roundness coefficients explicitly but gave data for
the maximum and minimum diameters in two perpendicular coordinate directions from which
the out-of-roundness coefficients stated in this section were derived.
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2.3 On the flow in a Pelton turbine distributor
system

The quality of a jet is highly influenced by secondary flow induced upstream of
the injectors by the distributor system, bends and branches, bifurcations, and in
the injectors by the needle regulating parts such as the torpedo, the rod or the
ribs. Therefore, this section focuses on these parts and describes the mechanisms
creating losses and secondary flow structures, especially in the distributor system.

Sick et al. [93] investigated the flow in the distributor system and the injectors of a
six-jet vertical Pelton turbine at high Reynolds numbers, O(106). This uncovered
that there are two types of losses in a distributor system. First, there are the
energy losses in the distributor itself related to pipe friction, change of direction,
and parting of the flow. Second, losses occur during the jet-bucket interaction
as a direct result of the secondary flow structures in the distributor and the in-
jectors that adversely influence jet formation. Parkinson et al. [68] concluded
that energy losses in the junction pipe (branch line) and injectors are three times
higher than in the main pipe of a distributor system. The research emphasised
that flow patterns present at the inlet of the injectors were convected through the
injectors into the jet and directly influenced the behaviour of the runner, even if
the ratio of secondary flow kinetic energy related to axial kinetic energy was very low.

Different definitions are used in the literature to elaborate on the energy losses in
the distributor system; thus, the individual results are hard to compare unbiasedly.
However, some general trends still emerge. For example, plausible numbers for
the energy losses in the distributor system and the injector are around 2 % to 3 %
[80, 89]. The majority of these energy losses can be attributed to the injector.
Fan et al. [22] reported that more than 90 % of the head losses came from the injec-
tor. Zeng et al. [116] estimated the head losses in the distributor system between
an upstream reference station and a probe position upstream of the injectors to
0.2 %. Yilin et al. [115] achieved a similar result. Lei et al. [55] computed the
head losses in the injectors (including the contraction in the nozzle) to be two
orders of magnitude higher than the losses attributed to the bifurcations. While the
losses in the injector, especially in the contracting nozzle section, are substantial,
Patel et al. [69], Mack et al. [56] or Sandmaier et al. [80] proved the potential of
careful changes in the distributor geometry to reduce distributor losses significantly.

The following observations are notable regarding the losses due to secondary flows.
Peron et al. [70] witnessed in a refurbishment project of HPP Bordogna that the
vortices induced by several upstream bends and by the servomotor shaft were
convected with the flow and resulted in severe deformation of the jet surfaces.
Staubli et al. [101] computed the ratio of secondary velocity to jet axial velocity of
a two-jet horizontal Pelton turbine to around 3 %, Zeng et al. [116] found the mag-
nitude of secondary velocity in the jet of a four-jet distributor configuration to be
about 2 % of the main flow and Patel et al. [69] estimated the kinetic energy of the
secondary flow at the injector inlets of a six-jet vertical Pelton turbine to be between
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10 % to 100 % of the turbulent kinetic energy of the flow, where the lower values
accounted for an improved distributor design. For comparison, Hahn et al. [28]
analysed the secondary flow patterns in a jet of a single injector with straight,
undisturbed inflow and acquired secondary velocity magnitudes of around 2.5 %
of the theoretical jet velocity in the wake region of the ribs and less than 1.0 %
of the theoretical jet velocity in those areas of the jet less affected by the wake.
Han et al. [32], with their simulations of a distributor system for a six-jet vertical
Pelton turbine, were able to correlate the jet surface deformation observed at the
sixth injector to the Dean vortices created in the last bend of the distributor main
line upstream of the injector. In this case, as indicated by Parkinson et al. [68],
the vortices were convected with the flow and deformed the jet in multiple directions.

To gain a deeper understanding of the effect of secondary flows on the jet formation,
instead of the complex case of a distributor system, many researchers resorted to the
generic case of a 90◦ pipe bend upstream the injector, e.g. [24, 75, 102, 117]. This
approach allowed for an isolated analysis of the effects such bends have on the jet
formation and served as the artificial case closest to a real-world distributor system.
In 90◦ pipe bends, there is an inward pressure gradient due to the centrifugal forces
induced by the turning of the flow. In the boundary layers at the wall, where the
centrifugal forces are less due to the lower velocity, the inward pressure gradient
forces the flow along the wall towards the inner part of the bend. For continuity to
be fulfilled, the flow has to move towards the outside of the bend in the centre of
the pipe. Thus, a pair of counter-rotating Dean vortices is induced. These vortices
are convected through the injector and, while being superimposed by the vortices
generated due to the ribs in the injector, stay visible as secondary velocities in the
jet, e.g. [12, 101, 117].

Practically, the same mechanism was reported for the flow in distributor systems.
Zeng et al. [116] related the deformations in the jet surface to the Dean vortices
and other secondary flow induced by the elbow upstream of the injectors and by
the support ribs in injectors. Han et al. [32] observed secondary flow created
in the distributor and transiting into the bifurcations, injectors and then the jet,
which caused deviation from the ideal jet shape. Especially in the bifurcations
of a six-jet distributor system, the secondary flow phenomena (Dean vortices)
in and downstream of the bifurcations appeared identical to those in a 90◦ pipe
bend. They explicitly said the flow pattern was similar to classical bend pipe flow.
Fan et al. [22] showed that Dean vortices appear already in the only slightly curved
main pipe of a six-jet Pelton turbine distributor system. Investigating the transient
flow in a Pelton turbine during startup, Sun et al. [106] found that strong vortices
were induced in the bifurcation pipe of the conventional distributor system. These
vortices, influenced by upstream inflow and downstream reverse flow during the
startup process, occupied a significant area of the flow passage.

From the analysis of the literature most relevant for understanding the flow in a
Pelton turbine distributor system, it can be concluded that:

"Good distributor system = Limited secondary flow and low energy losses"

11



2. Literature review

2.4 On the different distributor system concepts
While a distributor system with large curvature radius and pipe diameters would
allow for limited secondary flows and low energy losses, the cost of manufacturing
the distributor and the construction of the powerhouse might be untenable. Hence,
a compact distributor with small curvature radius and pipe diameters would be less
heavy and expensive but might not match the guaranteed performance. The afore-
mentioned is one general compromise for any distributor system, but apart from
that, unfortunately, next to no information is published or publicly available about
how a good Pelton turbine distributor has to be designed in order to accomplish
the goals of low energy losses and low secondary flows at the same time. However,
the literature provides some examples of flow-calming devices primarily applied
in refurbishment projects and some remarkable concepts of distributor systems
themselves.

In hydropower plant refurbishment projects, due to constraints in the power plant
layout, it is often not possible to alter the geometry of the distributor system as a
whole. Therefore, the most common solution to address problems with secondary
flow is to install guide vanes or a flow straightener directly upstream of the injector
or as an integral part of the injector. Peron et al. [70] showed for HPP Bordogna
that guide vanes placed as a form of extension to the ribs holding the needle rod
reduced the secondary flows significantly, improving the jet shape. A similar ap-
proach was presented by Mack et al. [56] for modernising HPP Lünersee in Austria.
At this power plant, a flow straightener was installed in the first part of the injector.
The reduction of secondary flows was so effective that efficiency gains of up to
0.60 % could be achieved for small and medium flow rates. Only at high flow rates
do the increased friction losses due to the flow straightener outweigh the reduced
secondary flow improvements.

Concerning Pelton turbine distributor systems, the most common concept for multi-
jet turbines with four to six injectors is sketched in part a) of Figure 2.1. This
conventional Pelton turbine distributor system consists of the distributor main line
and the bifurcation parts, where at each bifurcation, one branch line deviates from
the main line, leading to the injector. As mentioned in Chapter 1, the conventional
distributor system is constructed from welded steel sheets with gradually taper-
ing cross-sections and unique branch segments. It is thus complex and costly to
manufacture and often requires precautionary measures when transported from the
manufacturer to the power plant site. An exciting alternative with likely similar
flow behaviour to a conventional distributor was employed in HPP Silz in Austria,
where the turbine is fed by two semi-distributor systems as shown in part b) of
Figure 2.1.

From a fluidic point of view, several authors reported that the energy losses and the
amount of secondary velocity upstream of the injectors in a conventional distributor
vary significantly for the different injectors [68, 69, 80, 93]. Semlitsch [89, 90] also
found that the mass flow rate imbalance between the two sides of the injectors
varies for every injector up to 2 %. The same author pointed out that under oper-
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Injector I1
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B2
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I2

BL2

BL3
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I6

Bifurcation B1

Distributor
main line

B4

B5

b)a)

∗) from the
penstock

∗)

line BL1

Figure 2.1: Two concepts of a Pelton turbine distributor system for a six-jet
Pelton turbine with vertical shaft. Part a) recreated and modified
from [30], part b) modified from [109].

ating conditions where one or more injectors were shut off entirely, the secondary
velocities upstream of the injector lay between 7 % of the primary flow velocity
for the best injector, which was the first injector, and 18 % for the worst injector.
In model tests of a conventional distributor system, Erlach [20] found that, as a
consequence of the flow characteristics of a conventional distributor, the turbine
efficiencies varied up to about 2 % when the turbine was operated in single-jet mode.

This characteristic behaviour of Pelton turbines fed by conventional Pelton tur-
bine distributor systems underlines significant room for improvement. Therefore,
the central question regarding Pelton distributor systems remains7 as stated in
Chapter 1. The most far-reaching attempt to overcome the known issues of con-
ventional Pelton turbine distributor systems was made by Erlach and his research
partners. Erlach and Staubli patented a novel type of Pelton turbine distributor
system [21] that, in theory, should allow for the same inflow conditions to every
injector, thus the same jets and a more uniform energy transfer from the indi-
vidual jets to the buckets. This system was envisioned such that all six branch
lines separate from the central distributor pipe8 at the same time. The central
distributor pipe was aligned in the axial direction with the runner shaft instead
of perpendicular to the shaft, as known from conventional distributor systems.
Further, all six branch lines were claimed to be identical, allowing for possible
standardisation in the manufacturing process. This standardisation could reduce
costs and make such a system especially suitable for small hydropower plants,
where investment costs are a decisive factor in project planning. Extensive model
7"How do Pelton turbine distributor systems need to be designed to allow for similar flow conditions
in all branches and injectors and maintain a high-quality water jet at all relevant operating
conditions?"

8In this section, when citing from the patent of Erlach and Staubli [21], the terms of the patent
are translated as close to their German meaning as possible. Further in the thesis, especially in
Chapter 6, a terminology defined within this thesis will be used.

13



2. Literature review

tests were conducted [18–20], which showed that the turbine efficiencies varied
much less in single-jet operating conditions when the turbine was fed by such a
novel type of Pelton turbine distributor system. Notably, in these model tests,
a novel casing approach was also investigated at the same time, so the effects of
the distributor system could not be isolated entirely. Apart from these model
tests, detailed studies of this novel type of distributor system were never conducted.
Therefore, at this stage of the research, the exact effects occurring in the novel type
of distributor system remain uninvestigated, and it has not been explored yet if the
designs published by Erlach et al. [18–21] are the most promising when it comes
to distributor systems with axial inflow and branch lines departing at the same time.

Consequently, this section cannot close with definite statements as in the previous
sections, as the question remains:

"New concept ?= Good distributor system"

2.5 Research questions
In the next steps of investigating such a new concept of Pelton turbine distributor
system, in order to allow for an orderly, well-projected and unbiased analysis, the
following main questions guide the research of this thesis:

1. What potential Pelton turbine distributor system designs allow axial inflow
and outflow tangential to the runner?

2. Is a steady-state simulation approach feasible to accurately predict the flow
in such a Pelton turbine distributor system?

3. How does the operating regime of such a Pelton turbine distributor system
in the context of small hydropower plants look like, and what is a realistic
design case?

4. How does the flow behave in a Pelton turbine distributor system with axial
inflow, and what components significantly influence the flow quality?

5. Which combination of geometric parameters is favourable?

The answers to these questions will be outlined in Chapter 7.
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CHAPTER 3
Flow quality criteria

The first step in answering the proposed research questions is to assess whether
the flow in a given Pelton turbine distributor system behaves favourably or not.
Therefore, this chapter is dedicated to specifying criteria to rate the quality of a flow
in such a Pelton turbine distributor system. These flow quality criteria concentrate
on quantifying the losses and the secondary flow in the distributor system and were
either taken from reference books and papers or derived from basic fluid mechanics
equations. The total pressure drop, Section 3.2.2, the losses, Section 3.3, and the
secondary velocity ratio, Section 3.4.1, were applied similarly in prior publications
of mine, including On the numerical assessment of flow losses and secondary flows
in Pelton turbine manifolds [31] and Numerical Investigation of Pelton Turbine
Distributors Systems with Axial Inflow [30].

3.1 Averaging of field variables
Instead of interpreting the local flow fields in non-uniform flows, it is often desired
to compute an average value over a station of interest to quantify the state of a
variable. This section, therefore, addresses how to define an appropriate average
value for a flow property in a non-uniform incompressible flow with constant density.

The two most common definitions of an average value1 are:

• The area average, where a quantity is integrated over the surface area Ai of
a station of interest. No weighting is applied. It can be derived from the
conservation of mass, where, e.g. the area averaged velocity uA is defined as

uA =
�

Ai
u⃗ · dA⃗�

Ai
dA⃗

= 1
Ai

·
�
Ai

u⃗ · dA⃗ . (3.1)

1For a comprehensive derivation and discussion, it shall be referred to Greitzer et al. [26]. There,
another form of average is introduced, namely the mixed out average. For example, a mixed
out average stagnation pressure is defined as the stagnation pressure that would exist after full
mixing at constant area [26].
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• The mass average, where in the integration over the surface area Ai of a
station of interest, each area element is weighted by its associated mass flow
per unit area. It can be derived from the balance of momentum and, in the
case of the mass averaged velocity uM , is defined as

uM =
�

Ai
(ρu⃗) u⃗ · dA⃗�

Ai
ρu⃗ · dA⃗

= 1
ṁi

·
�
Ai

(ρu⃗) u⃗ · dA⃗ . (3.2)

Usually, the two average values are different. In mass averaging, the parts in the
stream with high velocities are more heavily weighted than those parts with low
velocities [26, 111]. In area averaging, all parts are weighted the same. Therefore,
the mass average value is generally higher than the area average value2, uM > uA.
Assuming inviscid, constant density flow in a straight pipe of constant area with
no external forces acting, the balance of momentum between the ’inlet’ and the
’outlet’ (positioned such that all flow quantities have become uniform) of a control
volume denotes as �

Ai

(ρu⃗) u⃗ · dA⃗ +
�
Ai

pdA⃗ = ṁu? + p?A . (3.3)

Comparing the momentum terms on both sides of Equation (3.3), gives the definition
of the mass average as presented in Equation (3.2) and comparing the pressure terms
closely resembles the definition of the area average as presented in Equation (3.1)

ṁuM =
�
Ai

(ρu⃗) u⃗ · dA⃗ and pAA =
�
Ai

pdA⃗ (3.4)

Therefore, within this thesis, if not specified otherwise, all velocity-related quantities
(primary and secondary flow velocity, total pressure and dynamic pressure, turbulent
kinetic energy) were mass averaged, and the static pressure was area averaged.
The only exceptions to these rules were the intensity of secondary flow, described
in Section 3.4.2, and the turbulence intensity, described in Section 3.5.2. Both
quantities were area averaged to allow for a direct comparison to the experimental
data from Sudo et al. [104]. For the sake of easier to read symbols, the superscripts
’A’ and ’M’ are dropped again.

3.2 Pressure
3.2.1 Pressure coefficient
The pressure coefficient Cp is one standard method to express the pressure in a
flow domain in non-dimensional form, e.g. the pressure distribution along the walls
in a pipe bend [104], or the pressure distribution at the surface of an aerofoil [87].
Thereby, the pressure at the location of interest is related to the pressure at a
reference location and divided by the dynamic pressure at this reference location
2Greitzer proves this statement by the example of averaging the stagnation pressure [26].
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Cp = p − pref

pdyn,ref

= 2 (p − pref )
ρu⃗2

ref

. (3.5)

In conditions with an adverse pressure gradient in streamwise direction, dp
ds

> 0, e.g.
at the outer wall of the first segment of a 90◦ bend, the flow is decelerated and Cp

increases, whereas in conditions with a favourable pressure gradient, dp
ds

< 0, e.g. at
the inner wall of the first segment of such a bend, the flow is accelerated and Cp

decreases (see also Figure 5.2).
One can show that under the assumption of steady-state, incompressible flow [2],
for a stagnation point, where the flow velocity becomes zero, the pressure coefficient
equals 1. Following a streamline from the reference station to a stagnation point
(index 0), Bernoulli’s equation gives

pref +
ρu⃗2

ref

2 = p0 (3.6)

which, inserted into Equation (3.5), results in

Cp,0 = 2 (p0 − pref )
ρu⃗2

ref

=
ρu⃗2

ref

2
ρu⃗2

ref

2

= 1 . (3.7)

3.2.2 Total pressure drop
In many industries, e.g. hydraulic machinery and piping systems, a commonly used
quantity to rate the losses and the ’quality’ of the flow is the total pressure drop3

between two stations of interest, e.g. the inlet and the outlet, Δpt = pt,inlet −pt,outlet.
To allow for a better comparison of different situations, in hydraulic machinery
applications, the geodetic head H, or a pressure p = ρgH or a velocity u =

√
2gH

derived from the head H are often used as reference values. If, under the assumption
of pt,inlet ∼ ρgH, the total pressure drop is normalised by the reference value acquired
from the geodetic head, the following relationship can be derived

Δpt

pt,inlet

= pt,inlet − pt,outlet

pt,inlet

= 1−pt,outlet

pt,inlet

= 1−Q · pt,outlet

Q · pt,inlet

= 1−Poutlet

Pinlet

= 1−η . (3.8)

where, if the fraction is expanded by the volumetric flow rate Q, one ends up with
the ratio of the hydraulic powers at the inlet, Pinlet and the outlet, Poutlet, which
equals the definition of an efficiency η. So, in the case of a pipe system, when using
the assumption pt,inlet ∼ ρgH, the efficiency can be expressed as

ηpipe = pt,outlet

pt,inlet

= pt,outlet

ρgH
. (3.9)

This way of defining a non-dimensionalised loss quantity has a major disadvantage,
namely, that in pipe systems4, the losses and thus the pressure at the outlet, in
general, scale with the square of the flow velocity and not with the pressure level at
3The terms total pressure drop and total pressure loss are largely used synonymously.
4Here and during the rest of this thesis, the flow is always assumed to be incompressible.
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the inlet (e.g. the geodetic head). The flow velocity in such a situation is typically
in the low single-digit range5 and also independent of the pressure level at the
inlet. However, a situation might occur where two pipe systems have the same
efficiency ηpipe but at a different pressure level. Then, the pipe system with the
lower pressure level would have a lower pressure drop and should be rated as the
pipe system with the better flow quality. Unfortunately, if the efficiency were used,
this result would be hidden. Therefore, the presented approach is unsuitable for an
unbiased method to assess the flow quality in a Pelton turbine distributor system.

3.3 Losses
3.3.1 Power loss coefficient - Classical approach
Following the conclusions from the previous chapter, choosing a reference velocity
representative of the flow in the pipe system is a more suitable approach for
calculating and comparing total pressure losses in a non-dimensionalised form.
Then, analogously to Equation (3.5), the total pressure loss coefficient6 ζp,t can be
defined as

ζp,t = 2 · pt,inlet − pt,outlet

ρu⃗2
ref

, (3.10)

where the difference in total pressure pt = p + 0.5 ρu⃗2 between two stations of
interest, most often inlet and outlet of a domain of interest, is non-dimensionalised
by the dynamic pressure pdyn = pt −p = 0.5 ρu⃗2 computed from the average velocity
magnitude at one of these stations or a suitable reference station.
Alternatively, a total pressure loss coefficient ζp,ts is employed by Shiraishi et al. [92]

ζp,ts = 2 · pt,inlet − poutlet

ρu⃗2
ref

, (3.11)

by subtracting the static pressure at a station of interest, e.g. the outlet, from the
total pressure of an upstream station of interest, e.g. the inlet, and dividing it by
the dynamic pressure computed from a reference velocity. This definition follows the
experimental configuration for determining loss coefficients in pipe bends presented
in Idelchik [38], which was set up such that the pressure losses at the exit of the
bend into the atmosphere were included. An equivalent statement regarding the
accounting of pressure losses at the exit of pipes is made by Bohl and Elmendorf [6].

Both definitions, Equations (3.10) and (3.11), are commonly used for loss accounting
in pipe systems. However, for a Pelton turbine distributor system with one inlet
and n outlets, a more convenient way to calculate a loss coefficient is to compute
the fluxes of total pressure and dynamic pressure and account for them in the same
way as in Equation (3.10).

5A list of typical flow velocities for common hydropower applications is presented in Table 6.5.
6An alternative name for the total pressure loss coefficient, found primarily in the literature
related to piping systems, e.g. [37, 38], is (total) resistance coefficient. For further reference on
the definition of the total pressure loss coefficient, refer to [6, 16, 38].
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When the total pressure at station i is integrated over the area Ai of that station,
the flux of total pressure through this station is defined as

PmT E,i =
�
Ai


p + ρ

2 u⃗2


u⃗ · dA⃗ . (3.12)

The flux of total pressure can be interpreted as the power of mechanical total
energy7, where u⃗ = (u, v, w)T is the flow velocity vector written in a Cartesian
(x, y, z)-coordinate system. The magnitude of u⃗ becomes ||u⃗|| =

"
(u2 + v2 + w2).

Analogously, the dynamic pressure at station i can be integrated over the area Ai

of that station to compute the corresponding flux

PKE,i =
�
Ai


ρ

2 u⃗2


u⃗ · dA⃗ , (3.13)

which can be interpreted as the power of kinetic energy8.

Combining Equations (3.12) and (3.13) according to the concept of Equation (3.10),
one arrives at the definition of the power loss coefficient between a reference station
ref and station i for an arbitrary pipe system9

ζP mT E|iref = PmT E,ref − PmT E,i

PKE,ref

=
�

Aref


p + ρ

2 u⃗2


u⃗ · dA⃗ − �
Ai


p + ρ

2 u⃗2


u⃗ · dA⃗�
Aref


ρ
2 u⃗2


u⃗ · dA⃗

.

(3.14)
This definition is independent of the pressure level (head) and allows for an unbiased
comparison of any pipe system. Therefore, different Pelton turbine distributor
systems can be compared, even if projected for different heads.

When applied to evaluate the loss coefficient of a simple pipe (without partitions of
the stream), Equation (3.14) can be traced back to the basic definition of Equa-
tion (3.10). Assuming a pipe with a 90◦ bend similar to that of Shiraishi et al. [92]
(see Section 5.2), where the losses shall be computed between two stations A (far
upstream the bend) and Z (far downstream the bend), the power loss coefficient
becomes

ζP mT E|ZA = PmT E,A − PmT E,Z

PKE,A

(1)=
�

A


p + ρ

2 u⃗2


u⃗ · ρdA⃗ − �
Z


p + ρ

2 u⃗2


u⃗ · ρdA⃗�
A


ρ
2 u⃗2


u⃗ · ρdA⃗

(2)=

=

�
A

(p+ ρ
2 u⃗2)u⃗·ρdA⃗�

A
ρu⃗·dA⃗

−
�

Z
(p+ ρ

2 u⃗2)u⃗·ρdA⃗�
A

ρu⃗·dA⃗�
A

( ρ
2 u⃗2)u⃗·ρdA⃗�
A

ρu⃗·dA⃗

(3)=
pt,A −

�
Z

(p+ ρ
2 u⃗2)u⃗·ρdA⃗�

Z
ρu⃗·dA⃗

pdyn,A

(4)=

7Hence the symbol PmT E .
8Hence the symbol PKE .
9For convenience, instead of, e.g. ζP mT E |101

1 , the more straightforward form ζP mT E,1011 is used
within this thesis, especially in Chapter 6.
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= pt,A − pt,Z

pdyn,A

= ζpt,AZ . (3.15)

In step (1), the fraction is expanded by the constant density ρ. In a single pipe
configuration with constant diameter and stations A and Z far upstream and
downstream of the bend, the conservation of mass states�

A

ρu⃗ · dA⃗ =
�
Z

ρu⃗ · dA⃗ . (3.16)

Therefore expanding the fraction by 1/ṁ = 1/
�

A ρu⃗ · dA⃗


in step (2) is justified.
Step (3) follows with

pt,A =
�

A


p + ρ

2 u⃗2


u⃗ · ρdA⃗�
A ρu⃗ · dA⃗

and pdyn,A =
�

A


ρ
2 u⃗2


u⃗ · ρdA⃗�

A ρu⃗ · dA⃗
, (3.17)

where pt,A is the mass average total pressure and pdyn,A is the mass average dynamic
pressure in station A. With these intermediate steps, in step (4), the equation is
simplified to

pt,A − pt,Z

pdyn,A

, (3.18)

which is equivalent to ζpt,AZ . This derivation proves that in a case without partitions
in the stream, both definitions of loss coefficients, ζP mT E|ZA and ζpt,AZ are identical10.

In [31], a lumped power loss coefficient, denoted by the superscript L, was employed
for a conventional Pelton turbine distributor system. Within this example, the
lumped power loss coefficient was computed by weighing the individual contributions
of every branch line by their respective mass flow rate. It can be demonstrated
that such a lumped power loss coefficient is also a dedicated form of the general
definition. Starting from this general definition as presented in Equation (3.14),
and performing the same steps (1) and (2) that were explained in Equation (3.15),
the power loss coefficient for a Pelton turbine distributor system to be evaluated
between stations 1 (before the flow is parted) and 10011 (upstream the injectors of
the Pelton turbine distributor system) denotes as

ζL
P mT E

***100

1
=

pt,1 −
�

A100
(p+ ρ

2 u⃗2)u⃗·ρdA⃗�
A1

ρu⃗·dA⃗

pdyn,1
=

pt,1 −
�

A100
(p+ ρ

2 u⃗2)u⃗·ρdA⃗

ṁ1

pdyn,1

(1)=

=
pt,1 −

(n

i=1

�
A10i

(p+ ρ
2 u⃗2)u⃗·ρdA⃗

ṁ1

pdyn,1

(2)=
pt,1 −

(n

i=1 ṁ10i·pt,10i

ṁ1

pdyn,1
=

=
pt,1 − (n

i=1
ṁ10i

ṁ1
· pt,10i

pdyn,1
. (3.19)

10For the cases of Shiraishi et al. [92], see Section 5.2, the relative differences between the two
forms were

***1 − ζP mT E |Z
A

ζpt,AZ

*** < 2 · 10−3.
11The n = 6 individual station 101, 102 . . . 106, one station number 10i for every branch line i,

together form station 100. Each station 10i has its surface area A10i. The total surface area of
station 100 thus becomes A100 =

(n
i=1 A10i.
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Here, in step (1), the integration over station 100 is replaced by the sum of the
integrals over the n = 6 individual stations 101, 102 . . . 106�

A100


p + ρ

2 u⃗2


u⃗ · ρdA⃗ =
n'

i=1

�
A10i


p + ρ

2 u⃗2


u⃗ · ρdA⃗ . (3.20)

In step (2), the integrals in the sum were exchanged by the corresponding mass
average total pressures and the mass flow rates

n'
i=1

�
A10i


p + ρ

2 u⃗2


u⃗ · ρdA⃗ →
n'

i=1
ṁ10i · pt,10i . (3.21)

In Chapter 6 , the power loss coefficient is evaluated between stations 1 and 100 as

ζP mT E|100
1 =

�
A1


p + ρ

2 u⃗2


u⃗ · ρdA⃗ − (n
i=1

�
A10i


p + ρ

2 u⃗2


u⃗ · ρdA⃗�
A1


ρ
2 u⃗2


u⃗ · ρdA⃗

. (3.22)

In this form, the only term that changes in cases where the number of branch lines
would change is the upper limit of the sum.

3.3.2 Dissipation power coefficient - Second law analysis
Instead of computing the losses by balancing the power of mechanical total en-
ergy between two stations of interest, the irreversible entropy produced within the
system’s borders can be integrated over the entire domain of interest to achieve a
different loss coefficient. This approach is based on the second law of thermody-
namics. It thus trades under the name second law analysis (SLA)12. The second
law analysis method in its present form was derived rigorously by Kock [50] in
2003 and since then was continuously adapted and improved, e.g. by Kock and
Herwig [48, 49] or Herwig et al. [34]. Prominent applications of Kock’s form of
the SLA method were shown for analysing and optimising conduit components
such as bends [84, 85], diffusers and nozzles [83], and external flows [35]. Compact
introductions to the most critical aspects of employing the SLA method in the CFD
simulation process when analysing hydraulic machinery were presented in [7, 33]
for pumps and in [30, 31] for Pelton turbine distributor systems. An extensive
review of recent applications of the SLA method in pumps and turbines is given by
Zhou et al. [119]. The following paragraph gives an overview of the implementation
of the SLA concept in the present study and largely follows Hahn et al. [30].

Analogously to Equation (3.14), a dissipation power coefficient ζΦ can be defined as

ζΦ = PΦ

PKE,ref

= PT urb + PV is

PKE,ref

(3.23)

with PT urb and PV is being the power of turbulent (Turb) and viscous (Vis) dissipation
and PΦ = PT urb + PV is the dissipation power. These two terms are computed by the
12Another widespread name is entropy production method, e.g. [119].
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volume integrals of the corresponding dissipation terms over the domain of interest

PT urb =
�
V

ΦT urb dV and PV is =
�
V

ΦV is dV . (3.24)

With Reynolds averaging Section 4.1.2, the viscous (direct) dissipation ΦV is follows
from inserting the time-averaged velocity components ū, v̄, w̄ into the product of
the viscous stress tensor τij and velocity gradients ∂ui/∂xj

ΦV is = τ̄ij · ∂ūi

∂xj

= µ ·
� 2 ·


∂ū
∂x

2
+


∂v̄
∂y

2
+


∂w̄
∂z

2


+

+


∂ū
∂y

+ ∂v̄
∂x

2
+


∂v̄
∂z

+ ∂w̄
∂y

2
+


∂ū
∂z

+ ∂w̄
∂x

2

  . (3.25)

The turbulent (indirect) dissipation is either computed directly from the turbulent
eddy dissipation ε, e.g. when using a variant of the k-ε model (kE) of Launder and
Spalding [53], or the turbulent dissipation is computed from the turbulent kinetic
energy k, the turbulent eddy frequency ω and the turbulence model coefficient
β∗ = 0.09, when using ω-based turbulence models, e.g. the k-ω Shear Stress
Transport (SST) model of Menter [61]

ΦT urb = ρ · ε
(1)= β∗ρωk . (3.26)

Here, in step (1), the relation ε = β∗ωk is used [23, 83, 113]. Because all of the
turbulence variables mentioned above rely on some modelling assumptions of the
turbulence model and the specified boundary conditions, this approach induces an
additional uncertainty to the method13.

Alternatively, instead of integrating over a volume V , the integration can be split
such that, at first, the direct dissipation ΦV is and the indirect dissipation ΦT urb are
computed for every cross-section

Φ̂T urb =
�
A

ΦT urb dA and Φ̂V is =
�
A

ΦV is dA . (3.27)

Then, at second, these cross-section integral values (indicated by the ˆ symbol),
which equate to a dissipation per unit length, can be integrated along the streamwise
direction,

PT urb =
�
s

Φ̂T urb ds and PV is =
�
s

Φ̂V is ds , (3.28)

to again give the powers of turbulent and viscous dissipation.

3.4 Secondary flow
Secondary flows created in the upstream distributor system and the injectors are
the primary source of disturbances in Pelton turbine jets. Secondary flows in piping
systems such as a Pelton turbine distributor system are mainly caused by changes
in the flow direction and flow divisions, e.g., in the manifold or branches, and the
interior parts, e.g., baffles or guides needed in the injector.
13This issue will be discussed by the example of the 90◦ pipe bend of Shiraishi et al. [92] in

Section 5.2.3.
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3.4.1 Secondary velocity ratio
In order to quantify the amount of secondary flow in a pipe, the magnitude of the
secondary velocity needs to be compared to the magnitude of the primary velocity.
Therefore, at first, the flow velocity u⃗ = (u, v, w)T has to be split into a primary
flow velocity u⃗I and a secondary flow velocity u⃗II , such that u⃗ = u⃗I + u⃗II . The
primary flow velocity14 is the velocity component in principal flow direction n⃗,

u⃗I = (u⃗ · n⃗) n⃗ , (3.29)

and the secondary flow velocity is the velocity component orthogonal to the principal
flow direction,

u⃗II = u⃗ − u⃗I = u⃗ − (u⃗ · n⃗) n⃗ with u⃗II · n⃗ = 0 . (3.30)

Typically, a Cartesian coordinate system would be oriented so that one coordinate
axis coincides with the principal flow and the other two directions span the plane
in which the secondary flow is described. When using a velocity formulation in
cylindrical coordinates, e.g. c⃗ = (cr, cθ, cs)T , the streamwise direction s⃗ would
represent the principal flow direction and thus the streamwise component cs would
correspond to the primary flow velocity.
Implementing the equations necessary to compute the secondary velocities in a
post-processing utility is explained in Appendix B.1 and published in [30].

After these preparatory steps, the secondary velocity ratio at any location within
the area of an arbitrary station i of an internal flow system is defined as

φII = ||u⃗II ||
||u⃗I || =

%&&$u2
II + v2

II + w2
II

u2
I + v2

I + w2
I

, (3.31)

with
||u⃗I || = u⃗ · n⃗ =

"
u2

I + v2
I + w2

I (3.32)
being the magnitude of the primary flow velocity and

||u⃗II || =
"

u2
II + v2

II + w2
II (3.33)

being the magnitude of the secondary flow velocity.
To achieve a single value for the secondary velocity ratio at a given station i, the
magnitudes of the primary and the secondary velocity are mass averaged

φII,i =

�
Ai

(ρ||u⃗II ||)u⃗·dA⃗�
Ai

ρu⃗·dA⃗�
Ai

(ρ||u⃗I ||)u⃗·dA⃗�
Ai

ρu⃗·dA⃗

(1)=
�

Ai
||u⃗II || (u⃗ · n⃗) dA�

Ai
||u⃗I || (u⃗ · n⃗) dA

(2)=
�

Ai
||u⃗II || · ||u⃗I ||dA�

Ai
||u⃗I || · ||u⃗I ||dA

. (3.34)

Here, in step (1), the constant density and the mass flow rate
�

Ai
ρu⃗ · dA⃗ are can-

celled out. In step (2), the term (u⃗ · n⃗) is replaced by the magnitude of the primary
14Sometimes also referred to as transport velocity.
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velocity ||u⃗I || as defined in Equation (3.32). This way, the denominator ||u⃗I || and
the enumerator ||u⃗II || are both weighted by the primary velocity magnitude. If not
stated otherwise, this definition of the secondary velocity ratio φII,i in station i was
used in all subsequent chapters of the thesis.

In a similar way to Equation (3.19), a lumped form of the secondary velocity ratio

φL
II,100 =

�
A100 ρ||u⃗II || (u⃗ · n⃗) dA�
A100 ρ||u⃗I || (u⃗ · n⃗) dA

(1)=
Σn

i=1
�

A10i
ρ||u⃗II || (u⃗ · n⃗) dA

Σn
i=1

�
A10i

ρ||u⃗I || (u⃗ · n⃗) dA

(2)=

= Σn
i=1ṁ10i · ||u⃗II ||10i

Σn
i=1ṁ10i · ||u⃗I ||10i

(3.35)

denoted by the superscript L, can be derived exemplary for station 100 of a Pelton
turbine distributor system. Station 100 is located just upstream of the injectors and
thus is composed of multiple surfaces. Starting from Equation (3.34), in step (1),
again, the integration over station 100 is replaced by the sum of the integrals over
the n = 6 individual stations 101, 102 . . . 106 of a typical Pelton turbine distributor
systems with six branch lines. In step (2), the integrals in the sum were exchanged
by the corresponding mass average velocities (∗ = I or II) and the mass flow rates

n'
i=1

�
A10i

ρ||u⃗∗|| (u⃗ · n⃗) dA →
n'

i=1
ṁ10i · ||u⃗∗||10i . (3.36)

This lumped form of φL
II,100 is equivalent to the secondary velocity ratio employed

in [31].

Alternatively, the secondary velocity ratio itself can be mass averaged

φM
II,i =

�
Ai

(ρφII) u⃗ · dA⃗�
Ai

ρu⃗ · dA⃗

(1)=
�

Ai

||u⃗II ||
||u⃗I || (u⃗ · n⃗) dA�
Ai

(u⃗ · n⃗) dA

(2)=
�

Ai
||u⃗II ||dA�

Ai
||u⃗I ||dA

. (3.37)

Here, in step (1), the constant density is cancelled out, and in step (2), the definition
of the magnitude of the primary flow velocity, ||u⃗I || = u⃗ · n⃗, is employed.

3.4.2 Intensity of secondary flow
Instead of taking the ratio of the secondary flow velocity magnitude ||u⃗II || to the
primary flow velocity magnitude ||u⃗I ||, the intensity of secondary flow

Is = φ2
II =

 ||u⃗II ||
||u⃗I ||

2

= u2
II + v2

II + w2
II

u2
I + v2

I + w2
I

(3.38)

can be introduced as the square of the secondary velocity ratio φII . This definition
is motivated by comparing the kinetic energies of the primary and secondary flows
rather than the velocities.
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Analogously to Equation (3.34), a single value for the intensity of the secondary
flow at a given station i is computed by using the mass average values of ||u⃗I ||2 and
||u⃗II ||2

Is,i =

�
Ai

(ρ||u⃗II ||2)u⃗·dA⃗�
Ai

ρu⃗·dA⃗�
Ai

(ρ||u⃗I ||2)u⃗·dA⃗�
Ai

ρu⃗·dA⃗

(1)=
�

Ai
||u⃗II ||2 (u⃗ · n⃗) dA�

Ai
||u⃗I ||2 (u⃗ · n⃗) dA

(2)=
�

Ai
||u⃗II ||2 · ||u⃗I ||dA�

Ai
||u⃗I ||3dA

. (3.39)

Steps (1) and (2) are the same as for Equation (3.34). To allow for an exact com-
parison of the simulation results against the experimental data of Sudo et al. [104]
in Section 5.1, the form presented in Equation (3.39) is not used in this thesis.
Instead, a version with area average values of ||u⃗I ||2 and ||u⃗II ||2 is introduced

Is,i =

�
Ai

||u⃗II ||2dA⃗�
Ai

dA⃗�
Ai

||u⃗I ||2dA⃗�
Ai

dA⃗

=
�

Ai
||u⃗II ||2dA⃗�

Ai
||u⃗I ||2dA⃗

(1)=

=
�

Ai
∥u⃗II∥2 dA⃗�

Aref
∥u⃗ref∥2 dA⃗

(2)= 4
πd2u2

b

·
�
Ai

∥u⃗II∥2 dA⃗ . (3.40)

The primary flow velocity u⃗I at station i in the denominator can be substituted by
a reference velocity u⃗ref taken at any station, which is done in step (1). If, as done
by Sudo et al. [104], u⃗ref is set to be the constant bulk velocity ub of the flow in a
cylindrical pipe with diameter d, the integral in the denominator can be replaced by
multiplication in step (2). The advantage of relating the secondary velocity to the
bulk velocity is that for many cases, the bulk velocity can be computed explicitly
from the Reynolds number15 or from given operating conditions. For configurations
where a change of the primary (transport) velocity occurs, e.g. by a change of the
pipe diameter, it seems to be advisable to follow the definitions of Equations (3.34)
and (3.39), where both the primary (transport) velocity and the secondary velocity
are evaluated at the same station.

3.4.3 Secondary velocity ratio in pipes with changing
cross-section

In Pelton turbine distributor systems, the cross-section of the pipe usually becomes
smaller along the flow path, raising the question: How is the secondary velocity
ratio φII affected if the diameter of a pipe changes16?

15Within this thesis, if not stated otherwise, the Reynolds number in its standard definition for
pipe flow, Re = ub·d

ν , with a bulk velocity ub, the diameter d of a cylindrical pipe, and the
kinematic viscosity ν = µ/ρ, is used.

16Such a situation occurs in the AxFeeder when the influence of converging branch lines is studied
in Section 6.5.1.
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Assuming uniform density, incompressible, inviscid flow with conservative body
forces17, Kelvin’s theorem

DΓ
Dt

= 0 (3.41)

states that the circulation Γ is constant for a vortex tube of fixed identity18 [26].
The circulation is defined as the line integral of the velocity u⃗ along a curve C [51]

Γ =
�
C

u⃗ · dx⃗
(1)=

�
A

(∇ × u⃗) · n⃗dA
(2)=

�
A

ω⃗ · n⃗dA . (3.42)

With Stokes’ theorem applied in step (1), the line integral can be rewritten as a
surface integral of the curl of the velocity ∇ × u⃗, which, in step (2), is substituted
by the vorticity ω⃗ := ∇ × u⃗. Eventually, the circulation becomes equivalent to the
net flux of vorticity through a closed surface A⃗.

For a vortex tube with radius r small enough for the vorticity ω to be considered
uniform over the area [26], the combination of Kelvin’s theorem, Equation (3.41),
with the definition of the circulation, Equation (3.42), yields

ω · dA = const. or Γ = ωπr2 = const. (3.43)
If the vortex tube is stretched (e.g. because the pipe diameter becomes smaller),
the vorticity must increase to keep the circulation constant. In this scenario, the
secondary velocity uII corresponds to the swirl velocity ωr, whereas the primary
velocity uI is computed from a constant mass flow rate as uI = ṁ/(ρπr2). The
secondary velocity ratio then becomes a function of the radius r only

φII = uII

uI

= (ωr) · (ρπr2)
ṁ

(1)= Γrρ

ṁ
= const. · r , (3.44)

where in step (1), the relation ω = Γ/ (πr2) was inserted. The conclusion from
Equation (3.44) is that in a pipe with decreasing diameter (e.g. a nozzle or
converging branch line), the space for the vortex tubes becomes smaller, and
the secondary velocity ratio is reduced. An equivalent statement is made by
Greitzer et al. [26], who approximates the vortex tube equivalent to a streamtube
and relates the swirl velocity ωr to the axial velocity u (computed from the continuity
equation in the streamtube) in terms of a swirl angle tan(α) ∼ α ∼ (ωr)/u.

3.5 Turbulence
3.5.1 Turbulent kinetic energy
A detailed explanation of the turbulent kinetic energy k can be found in Section 4.1.2.
For the sake of completeness, only the basic definition of k is given as

k = u
′
iu

′
i

2 = u′u′ + v′v′ + w′w′

2 = u′u′ + v′v′ + w′w′

2 . (3.45)

17The integral of a conservative (body) force along a closed curve C is zero, regardless of the path
of C. This is equivalent to the force being the gradient of a potential.

18This corresponds to Helmholtz’s first theorem [100].
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3.5.2 Turbulence intensity
For the simulation of engineering flows, especially when prescribing inlet boundary
conditions, the turbulent kinetic energy k is often unknown. Instead, the turbulence
intensity It, typically a value between 1 % to 10 %, is specified. Motivated by the
assumptions of one-dimensional mean flow with flow velocity ū (which is frequently
encountered in engineering problems, e.g. at the inlet of a pipe) and isotropic
turbulence, u′u′ = v′v′ = w′w′ , a commonly presented definition for the turbulence
intensity is

It =

#
u′u′

ū2 =

#
u′u′ + v′v′ + w′w′

3ū2 =
#

2k

3ū2 (3.46)

Here, the turbulence intensity It describes the fraction of the fluctuating portion of
the flow to the mean flow [23].

For a fully developed flow in a straight pipe, an average value over the cross-section
area can be estimated by the correlation found from Russo and Basse [79]

It,est = 0.140 · Re−0.0790 , (3.47)

which, for a Reynolds number of 1 · 106, results in a turbulence intensity of 4.7 %.
This value coincides with the engineers’ rule of thumb value of 5 %.

A different definition of the turbulence intensity was introduced by Sudo et al. [104],
where the turbulent kinetic energy is related to the square of a constant bulk
velocity ub. This definition denotes as

ka = k

u2
b

= 3
2 · I2

t , (3.48)

and can easily be linked to Equation (3.46), if the bulk velocity is interpreted as
the mean flow velocity ū.

When estimating boundary conditions for the turbulent kinetic energy in CFD
simulations, It is much more commonly used than ka. Thus, within this thesis, the
turbulence intensity will be expressed by It, and values for ka retrieved from the
literature will be converted following Equation (3.48).

Computations of the turbulent kinetic energy k and the turbulence intensity It

rely heavily on modelling assumptions. Any resulting value of k and It must be
seen concerning these assumptions, especially to the specified inlet turbulence
level. It was demonstrated by Hahn et al. [31] that the choices of turbulence model
and inlet turbulence intensity significantly impact the loss coefficient and flow
structures. Therefore, to avoid over-interpretation, in this thesis, the turbulence
intensity is used to validate the modelling approach against experimental data from
Sudo et al. [104], but not taken as a criterion for assessing the flow quality in a
Pelton turbine distributor system.
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CHAPTER 4
Simulation methods

This chapter will introduce the most relevant theoretical considerations for un-
derstanding and simulating incompressible, isothermal turbulent flow. To start,
the Navier-Stokes equations are presented, and the idea of Reynolds averaging is
outlined in the context of this research. Second, the turbulence models applied in
this thesis are explored. Third, the importance of choosing the correct boundary
conditions is highlighted. Finally, the Grid Convergence Method of Celik et al. [11]
as the standard method for error estimation and reporting in CFD simulations is
summarised.

For detailed derivations of the Finite Volume Method, interpolation and differentia-
tion practices, as well as solution strategies for the discretised equations, please refer
to the relevant literature, in particular, the reference books of Ferziger et al. [23],
Laurien and Oertel [54], and Schwarze [86].

4.1 Basic equations for turbulent flows
4.1.1 Navier-Stokes equations
Under the assumptions of incompressible and isothermal flow, the governing equa-
tions in index notation1 for the motion of a Newtonian fluid with constant density
ρ and constant dynamic viscosity µ are:

• Conservation of mass
∂ui

∂xi

= 0 (4.1)

• Conservation of momentum

ρ


∂ui

∂t
+ uj

∂ui

∂xj


= − ∂p

∂xi

+ µ
∂2ui

∂xi∂xj

+ Fi (4.2)

1The convention of the index notation states that a repeated subscript implies summation over
the appropriate indices [26].
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Together, the conservation of mass (= continuity equation) and the conservation
of momentum form the Navier-Stokes equations2, which represent a set of par-
tial differential equations with the velocity vector ui(xi, t), in Cartesian notation
u⃗(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))T , and the pressure p = p(xi, t)
being unknown.
The terms on the left-hand side of Equation (4.2) correspond to the material
derivative

D
Dt

= ∂

∂t
+ uj

∂

∂xj

. (4.3)

The first two terms on the right-hand side of Equation (4.2) represent the divergence
∂

∂xj
(Πij) of the stress tensor

Πij = −pδij + τij = −pδij + µ


∂ui

∂xj

+ ∂uj

∂xi


(4.4)

of an incompressible Newtonian fluid, with τij being the viscous stress tensor and
δij being the Kronecker delta. The body forces acting on the fluid element, e.g.
gravity, buoyancy or rotational forces3, are represented by the vector Fi(xi, t), in
Cartesian notation F⃗ (x, y, z, t) = (Fx(x, y, z, t), Fy(x, y, z, t), Fz(x, y, z, t))T .

4.1.2 Reynolds decomposition
The complexity of the Navier-Stokes equations requires some modelling assumptions
when working on engineering flow problems. The most common approach is to
model the flow as statistically steady4 and write every variable, e.g. the velocity u,
as the sum of a time-averaged value ūi and a fluctuation in time u′

i about that
value [23]

ui(xi, t) = ūi(xi) + u′
i(xi, t) and p(xi, t) = p̄(xi) + p′(xi, t) . (4.5)

This type of averaging is called Reynolds-averaging, and when applied to the Navier-
Stokes equations (body forces will not be considered further in this thesis), the
resulting equations for the mean flow are called Reynolds-averaged Navier-Stokes
(RANS) equations:

• Conservation of mass
∂ūi

∂xi

= 0 (4.6)
2A detailed derivation of the Navier-Stokes equations can be found in many textbooks, e.g. [26,
36, 51, 82, 100]. This thesis largely follows the derivations of Greitzer et al. [26], Schlichting and
Gersten [82] and Ferziger et al. [23].

3Within the modelling assumptions taken in this thesis for the validation cases in Chapter 5 and
the studies of the distributor systems with axial inflow in Chapter 6, neither of these forces is
significant. They are therefore dropped in the following.

4Averaging is conducted over a time scale Δt that is large relative to the turbulent fluctuations,
but small relative to the time scale to which the equations are solved [3]. For unsteady flows, the
equations are averaged over ensembles, and the resulting mean flow equations may be unsteady
too; hence, they are called unsteady RANS (URANS) equations [3, 23]. Durbin [17] states that
in this URANS modelling approach, the mean flow can also be a function of time, and eventual
time-averaging is a mere post-processing step. Concerning these aspects, the presence of the
temporal derivative ∂ūi

∂t is justified in Equation (4.7).
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• Conservation of momentum

ρ


∂ūi

∂t
+ ūj

∂ūi

∂xj


= − ∂p̄

∂xi

+ µ
∂2ūi

∂xi∂xj

− ρ
∂u

′
iu

′
j

∂xj

(4.7)

By comparison, Equations (4.2) and (4.7) are formally the same, except for the

term −ρ
∂u

′
iu

′
j

∂xj
. This term arises from the non-linear advection term uj

∂ui

∂xj
of the

Navier-Stokes equations, from which the mean of the product of the turbulent
fluctuations u

′
iu

′
j cannot be eliminated. This additional term, though, can be

rewritten as

−ρ
∂u

′
iu

′
j

∂xj

= ∂

∂xj


−ρu

′
iu

′
j


= ∂

∂xj

τ
′
ij , (4.8)

where, in analogy to the viscous stress tensor τij , the tensor of the turbulent stresses
τ

′
ij is defined as

τ
′
ij := −ρu

′
iu

′
j . (4.9)

The six components of the turbulent stress tensor5 τ
′
ij are additional unknowns and

cannot be computed directly. A turbulence closure is required to solve the system
of the RANS Equations (4.6) and (4.7).

4.1.3 Eddy viscosity hypothesis
Following the idea of Boussinesq [8] to model the turbulent stresses in analogy to
the viscous stresses as proportional to the mean velocity gradients by introducing a
turbulent (eddy) viscosity µt, the eddy viscosity hypothesis states

τ
′
ij = −ρu

′
iu

′
j = −2

3ρkδij + µt


∂ūi

∂xj

+ ∂ūj

∂xi


. (4.10)

To close the RANS equations, the turbulent viscosity µt = µt(x, y, z) = ρ · νt(x, y, z)
needs to be modelled. Here, the turbulent kinetic energy is defined as

k = u
′
iu

′
i

2 = u′u′ + v′v′ + w′w′

2 . (4.11)

The right-hand side of Equation (4.7) can be rewritten as

− ∂p̄

∂xi

+ µ
∂2ūi

∂xi∂xj

− ρ
∂u

′
iu

′
j

∂xj

= ∂

∂xj


−pδij + µ


∂ūi

∂xj

+ ∂ūj

∂xi


− ρu

′
iu

′
j

�
(1)=

= ∂

∂xj


−pδij + µ


∂ūi

∂xj

+ ∂ūj

∂xi


− 2

3ρkδij + µt


∂ūi

∂xj

+ ∂ūj

∂xi

�
=

= ∂

∂xj


−pδij − 2

3ρkδij


+ ∂

∂xj


(µ + µt)


∂ūi

∂xj

+ ∂ūj

∂xi

�
, (4.12)

5The turbulent stress tensor is also known as the Reynolds stress tensor.
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wherein step (1), the eddy viscosity hypothesis, Equation (4.10), was inserted.
Launder and Sandham [52] suggest assimilating the isotropic part of the closure
model into the pressure term

pmod = p + 2
3ρk (4.13)

to achieve a modified pressure.
The Reynolds-averaged momentum equation6 subjected to the eddy viscosity hy-
pothesis becomes

ρ


∂ūi

∂t
+ ūj

∂ūi

∂xj


= ∂pmod

∂xi

+ ∂

∂xj


(µ + µt)


∂ūi

∂xj

+ ∂ūj

∂xi

�
. (4.14)

The six unknown components of the turbulent stress tensor τ
′
ij could be reduced to

two new unknowns, the turbulent kinetic energy k and the turbulent viscosity µt.
Both must be modelled.

4.2 Turbulence models
This section briefly introduces the turbulence models applied in Chapters 5 and 6.
First, two-equation models based on the eddy viscosity hypothesis are outlined.
These are the k-ε model (kE) of Launder and Spalding [53], and the k-ω Shear Stress
Transport model (SST) of Menter [61]. Both are often applied for computing flows
where the assumption of isotropic turbulence7 is justified [86]. Second, a Reynolds-
stress model, the Baseline-Explicit Algebraic Reynolds Stress Model (EARSM) of
Menter, Garbaruk, and Egorov [62], is presented.

4.2.1 k-ε model
The eddy viscosity hypothesis reduced the six unknown components of the turbulent
stress tensor to two independent parameters, the turbulent viscosity µt, and the
turbulent kinetic energy k. In the k-ε model, these parameters are linked by

µt = ρ · Cµ
k2

ε
, (4.15)

where ε is the turbulent eddy dissipation (or turbulent energy dissipation rate) and
Cµ = 0.09 a model constant. The turbulent kinetic energy k is associated with
the intensity or "strength" of the turbulence [54]. Based on the observation that
dissipation is needed in the energy equation to balance the rates of production and
6Launder and Sandham [52] point out that in this equation, the turbulence field is coupled to
the mean field only through the turbulent viscosity. In general, µt > µ and thus, an additional
diffusivity is induced in the RANS equations, possibly distorting the behaviour of the flow.

7To speak of isotropic turbulence in a strict sense, the turbulence quantities must be inde-
pendent of the orientation of the coordinate system [36]. From this, u′u′ = v′v′ = w′w′ and
u′v′ = v′w′ = w′u′ = 0 follows. For practical applications, it is sufficient if the turbulent fluctua-
tions in the three principal directions of the Reynolds stress tensor, u′u′ , v′v′ , and w′w′ , are of
the same order of magnitude [54].
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destruction of turbulence in equilibrium turbulent flows [23], the turbulent eddy
dissipation is associated with the dissipation of small-scale turbulent structures [54].
Both scalar quantities need to be modelled in the form of a transport equation.
For the turbulent kinetic energy k, the modelled equation8 denotes

ρ
∂k

∂t
+ ρūj

∂k

∂xj� �� �
Convection

= µt
∂ūi

∂xj


∂ūi

∂xj

+ ∂ūj

∂xi


� �� �

P roduction

+ ∂

∂xj


µ + µt

σk


∂k

∂xj

�
� �� �

Diffusion

− ρε����
Dissipation

, (4.16)

and for the turbulent eddy dissipation ε, the modelled equation9 denotes

ρ
∂ε

∂t
+ ρūj

∂ε

∂xj� �� �
Convection

= Cε1
ε

k
µt

∂ūi

∂xj


∂ūi

∂xj

+ ∂ūj

∂xi


� �� �

P roduction

+ ∂

∂xj


µ + µt

σε


∂ε

∂xj

�
� �� �

Diffusion

− Cε2ρ
ε2

k� �� �
Dissipation

.

(4.17)
The five empirical model constants are Cµ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44
and Cε2 = 1.92 [3, 23, 54].

The k-ε model is known for its stability and robustness to the choice of inflow
boundary conditions and is therefore widely used in engineering simulations of fully
turbulent flows [54]. When used in a high-Re formulation with wall-functions10,
the grid towards the walls can be coarse11. Hence, the simulation needs fewer
computational resources than a simulation with a grid for low-Re models with full
wall resolution (see also Tables C.2 and C.7). The k-ε model is less suited for
the computation of complex flows with stagnation points, swirling flows or in the
accurate prediction of flow separation12 [86]. Several sub-variants of the k-ε model
were derived to overcome its deficiencies, e.g. the Renormalization-Group-k-ε model
of Yakhot et al. [114] or the Realizable-k-ε model of Shih et al. [91].

4.2.2 k-ω Shear Stress Transport model
A different approach is to use the turbulent eddy frequency

ω = ε

β∗k
(4.18)

as a substitute for the turbulent eddy dissipation ε. Here, β∗ = 0.09 is a model
coefficient [113]. Wilcox [113] derived the k-ω model, which uses a modified
form of the k-equation and another differential equation for ω to describe the
8A detailed derivation for both equations is given in Laurien and Oertel [54]. There, the k-equation
is derived from the momentum equation, and modelling assumptions are introduced for all terms,
including fluctuating quantities, e.g. the triple velocity correlation u

′
iu

′
iu

′
j .

9Ferziger et al. [23] point out that the modelling applied to it is so severe that it is best to regard
the entire equation as a model, although it is possible to derive an exact equation for ε from the
momentum equations as well.

10In ANSYS CFX, the k-ε model is combined with scalable wall functions to model the flow near
the wall [3].

11Sample grid points for a high-Re model with wall functions are included in Figure 4.1.
12See also Figure 5.6 and the related discussion.
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turbulence. This model proved superior near solid walls but was sensitive to
free-stream conditions for ω and thus susceptible to ill-prediction of free-shear
flows. Consequently, several improved versions of the Wilcox k-ω model have been
implemented. However, of these, the k-ω Shear Stress Transport model (SST) of
Menter [61], due to its effective combination of both the k-ω model close to walls
and the k-ε model in free-stream situations, has become the most widely used
model for simulating engineering flows.
In the SST model of Menter, slightly different forms of the k-equation

Dρk

Dt
= µt

∂ūi

∂xj


∂ūi

∂xj

+ ∂ūj

∂xi


� �� �

P roduction

+ ∂

∂xj


(µ + σkµt)

∂k

∂xj

�
� �� �

Diffusion

− β∗ρωk� �� �
Dissipation

(4.19)

and the ω-equation

Dρω

Dt
= γ

νt

τij
∂ūi

∂xj� �� �
P roduction

+ ∂

∂xj


(µ + σωµt)

∂ω

∂xj

�
� �� �

Diffusion

+ 2ρ(1 − F1)σω2
1
ω

∂k

∂xj

∂ω

∂xj� �� �
Cross−Diffusion

− βρω2� �� �
Dissipation

(4.20)
with the definition

τij = µt


∂ūi

∂xj

+ ∂ūj

∂xi


(4.21)

are used13.
These equations were derived by inserting ε = ωk into the ε-equation14 and
combining the equations of the k-ω model and the thus transformed equations of
the k-ε model through a blending function F1. This blending function guarantees a
smooth transition of the ω-equation between the near wall formulation according to
the k-ω model and the free-stream formulation according to the k-ε model. The new
model constants σk, σω, β, β∗, γ are calculated from the constants of the k-ω model15

(index 1) and the the transformed k-ε model16 (index 2) by φ = F1φ1 + (1 − F1)φ2.
Menter [61] introduces an additional blending function F2 to enforce a limit to the
turbulent viscosity

µt = ρ
a1k

max(a1ω; SF2)
, (4.22)

where a1 = 0.31 is a constant and S is an invariant measure of the strain rate [3].
This method improves the prediction of boundary layer separations.

In the ANSYS CFX implementation of the SST model, automatic near-wall treat-
ment is performed [3]. In this approach, the turbulent eddy frequency ω is blended
between the near wall formulation in the viscous sub-layer and the formulation
in the logarithmic section of the boundary layer [3]. This blending effectively
automatically switches between the low-Re near wall formulations and the scalable
13Menter et al. [63] use a formulation of the SST model, where the coefficients were chosen slightly

different. Smirnov and Menter [95] use a different factor for the turbulent viscosity.
14Thereby, a new cross-diffusion term emerges.
15σk1 = 0.5, σω1 = 0.5, β1 = 0.0750, β∗ = 0.09, κ = 0.41, γ1 = β1/β∗ − σω1κ2/

√
β∗

16σk2 = 1.0, σω2 = 0.856, β2 = 0.0828, β∗ = 0.09, κ = 0.41, γ2 = β2/β∗ − σω2κ2/
√

β∗
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wall functions [3]. The experience of Hahn et al. [31], the simulations in Chapter 5,
as well as the suggestions by Menter et al. [63], show, however, that the most
trustworthy simulations and the best agreements between the simulation results
and experimental data are achieved if the computational mesh is refined close to
the walls such that a non-dimensional wall distance y+ close to or less than one is
guaranteed.
If this requisite is met, the SST model shows significant improvements over the
k-ε and the k-ω models, especially in flows with strong adverse pressure gradients
and in predicting pressure-induced flow separations. Further, the stability and
numerical effort are comparable to the previous models.

Curvature correction

Eddy viscosity turbulence models cannot capture the effects of streamline curvature
and system rotation in full detail [63]. Spalart and Shur [97] attempted to overcome
these deficiencies by multiplying a rotation function

frotation = (1 + cr1)
2r∗

1 + r∗ [1 − cr3 arctan(cr2)r)] − cr1 (4.23)

to the production term in the eddy viscosity transport equation of the Spalart-
Allmaras model [98]. Here, cr1, cr2 and cr3 are empirically found constants and r∗

and )r are functions depending on the strain and vorticity tensors. Smirnov and
Menter [95] apply a slightly altered rotation function

fr1 = max [min(frotation, 1.25), 0.0] (4.24)

as a multiplication factor to the production terms of the k- and ω-equation of the
SST model.
Smirnov and Menter [95] benchmarked their implementation of the curvature
correction terms in the SST model against the SST model without curvature
correction and a Reynolds-stress model for several cases. The cases most relevant to
this thesis were the two-dimensional flow in a duct with a U-turn and the developed
flow in a curved channel. For both cases, the SST model with activated curvature
correction (SSTCC) matched the given experimental data more closely than the SST
model without curvature correction. Therefore, turbulence models with curvature
correction were also tested in the validation cases presented in Chapter 5.

4.2.3 Baseline-Explicit Algebraic Reynolds Stress model
In complex three-dimensional flows, the eddy viscosity hypothesis does not hold.
In particular, the assumption of isotropic turbulence cannot be fulfilled. Thus, the
Reynolds stresses, and the strain rates are related by a tensor-type formulation
of the eddy viscosity instead of a simple scalar quantity as presented in Equa-
tion (4.10). In Reynolds stress models, a partial differential equation is derived
from the Navier-Stokes equations for each of the six components of the Reynolds
stress tensor τ

′
ij [23, 36]. These equations include several new terms, such as the

pressure-strain relation, the dissipation tensor and the turbulent diffusion, that
must be modelled to achieve a closed system of equations. The benefits of Reynolds
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stress models lie in their improved performance for swirling flows, flows with strong
curvature and separation from curved surfaces [23]. Unfortunately, six additional
transport equations to be solved, one for each component of τ

′
ij, drastically raises

the computational costs of Reynolds stress models.

Menter, Garbaruk, and Egorov [62] came up with the idea to combine the stress-
strain relationship proposed in the Explicit Algebraic Reynolds Stress model of
Wallin and Johansson [112] with the ω-equation baseline model underlying the SST
model. In this approach, the anisotropy of the Reynolds stress tensor is taken into
account by modifying the production terms )Pk of the k- and ω-equations by using
the stress-strain relationship [62]

τ
′
ij = u

′
iu

′
j = k


aij + 2

3δij


(4.25)

with the anisotropy tensor aij = f (Sij, Ωij) being a function of the non-dimensional
strain tensor

Sij = τ

2


∂ūi

∂xj

+ ∂ūj

∂xi


, (4.26)

and the non-dimensional vorticity tensor

Ωij = τ

2


∂ūi

∂xj

− ∂ūj

∂xi


, (4.27)

where τ represents a turbulent time scale. The Baseline-Explicit Algebraic Reynolds
Stress Model reads for the k-equation
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and for the ω-equation
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The production term17 is defined as

)Pk = min


τ

′
ij

∂ūi

∂xj

, 10β∗ωk


, (4.30)

including a production limiter as customary in the SST model [3, 62]. Also, the
model constants are defined as in the SST model Section 4.2.2.

The significant advantage of the presented approach is that the anisotropy tensor
is calculated from a set of linear equations. Thus, the computational costs of a
17Menter et al. [62] put a minus sign in front of τ

′
ij . However, this minus does not appear in any

of the EARSM models presented in [65] and is therefore omitted in Equation (4.30).
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simulation with the EARSM model are only moderately higher than with eddy
viscosity models (see also Tables C.2 and C.7) but reasonably less than for other
Reynolds stress models. The performance of the EARSM approach was investigated
in a series of test cases by Menter et al. [62]. For a rectangular diffuser as an
example of an internal flow problem, Menter et al. [62] proved that the flow field and
the pressure coefficient predicted by the EARSM model matched the experimental
data better than the results of the SST model. This performance qualifies the
EARSM model as a notable alternative for the validation cases in Chapter 5.

4.3 Boundary conditions and wall treatment
A complete description of the flow problem requires boundary conditions for each
of the unknowns. In the case of a turbulent flow to be computed by solving
the Reynolds averaged Navier-Stokes equation with one of the turbulence models
introduced in Section 4.2, these unknowns are the three velocity components
u, v and w, the pressure p, the turbulent kinetic energy k and either the turbulent
eddy dissipation ε or the turbulent eddy frequency ω. When modelling an internal
flow problem, like a Pelton turbine distributor system, the most relevant types of
boundaries are the inlet and outlet(s), walls and symmetry planes.

4.3.1 Inlet, outlet and symmetry
The combination of specifying the values of the velocity components at the inlet
and the pressure at the outlet (Dirichlet type boundary condition) has proven
favourable. At the outlet, a zero-gradient boundary condition (von Neumann type),
∂u⃗
∂n⃗

= 0, is then imposed for the velocity. Conversely, the zero-gradient boundary
condition for the pressure, ∂p

∂n⃗
= 0, is imposed at the inlet.

Hahn et al. [31] emphasised the importance of carefully selecting appropriate inlet
boundary conditions for the turbulence quantities. Typically, the turbulent kinetic
energy at the inlet

kinlet = 3
2 (ūinletIt,inlet)2 (4.31)

is computed from the turbulence intensity18 It,inlet and a mean flow velocity ū
(calculated from a mass flow rate or the Reynolds number).

The turbulent viscosity at the inlet can be approximated by a velocity scale and a
length scale. With

√
kinlet for the velocity scale and lt,inlet = x · Dh as the length

scale19, the turbulent viscosity becomes νt,inlet =
√

kinlet · lt,inlet =
√

kinlet · (xDh).
From Equation (4.15), the equation for the turbulent eddy dissipation at the inlet20

εinlet = Cµ
k2

inlet

νt,inlet

= Cµ
k

3
2
inlet

lt,inlet

= Cµ
k

3
2
inlet

xDh

(4.32)

18The rule of the thumb for engineering flows is It,inlet = 5 %.
19The length scale is a measure of the size of the largest turbulent eddies.
20A different version of this equation with C

3/4
µ is commonly used as well.
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was derived, where x is a fraction of the hydraulic diameter Dh at the inlet. An
often-used assumption for developed flow is x = 0.1.
The turbulent eddy frequency at the inlet follows with

ωinlet = εinlet

β∗k
=

√
kinlet

lt,inlet

=
#

3
2 · ūinletIt,inlet

xDh

, (4.33)

where the constants Cµ and β∗ were cancelled out.

At the outlet, the flow should have developed sufficiently, such that for all three
turbulence quantities, k, ε and ω, a von Neumann type zero-gradient boundary
condition, ∂k

∂n⃗
= ∂ε

∂n⃗
= ∂ω

∂n⃗
= 0, should be specified.

The velocity perpendicular to the symmetry plane is zero, u⃗ · n⃗ = 0. For all other
quantities φ = (p, k, ε, ω), the gradient perpendicular to the symmetry plane is zero,
∂φ
∂n⃗

= 0.

4.3.2 Wall
At the wall of the domain, the no-slip and no-penetration conditions state that the
flow tangential to the wall, u⃗ · t⃗, and perpendicular to the wall, u⃗ · n⃗, is zero.

In many internal flow problems, turbulence is generated in the turbulent boundary
layers. The flow in turbulent boundary layers is either modelled by wall functions
(high-Re models) or resolved down to the viscous sublayer (low-Re models).
The wall function approach is based on the velocity distribution in the boundary
layer of turbulent Couette flow [86]. This boundary layer can be divided into three
regions: the viscous sublayer (y+ < 5), the buffer layer (5 < y+ < 30) and the
log-law region (y+ > 30). The velocity profile and the three regions are displayed
in Figure 4.1 in non-dimensional coordinates

y+ = y · uτ

ν
and u+ = ū

uτ

, (4.34)

with the shear velocity uτ =
"

τwall/ρ [23].

Under the assumption of constant shear stress in the turbulent Couette flow and
that turbulence production and dissipation are balanced in the buffer layer, with

k+ = k

u2
τ

= 1
C

1/2
µ

≈ 3.3 and ε+ = εν

u4
τ

= ν

uτ κy
= 1

κy+ , (4.35)

non-dimensional forms of the turbulence quantities are derived [86].

Most wall functions for high-Re turbulence models offered in CFD codes are based
on the standard wall functions of Launder and Spalding [53]

y∗ < 11.06 : u∗ = y∗ (4.36a)

y∗ > 11.06 : u∗ = 1
κ

ln(Ey∗) with E = 9.793 (4.36b)
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Figure 4.1: Universal law of the wall with the Karman-constant κ = 0.41, and
a constant for smooth surfaces C ∼= 5.5 [51, 86]. Sample grid points
for high-Re models with wall functions are indicated by ◦, for low-Re
models and models with full wall resolution by •.

For improved numerical stability21, y+ and u+ were replaced by y∗ and u∗. The
latter are computed with the turbulent kinetic energy k instead of the shear
velocity uτ [86]. Unfortunately, the standard wall functions lack precision in pre-
dicting flows with adverse pressure gradients, swirling flows or flows in small gaps.
Therefore, scalable wall functions are employed in ANSYS CFX [3]. In the scalable
wall function method, y∗ is limited such that only mesh points outside the viscous
sublayer are considered. The turbulent kinetic energy is computed in the entire
domain, and the boundary condition for the turbulent eddy dissipation becomes [3]

ε = ρu∗

µy∗ · C3/4
µ

κ
· k3/2 . (4.37)

The wall functions for low-Re turbulence models are often modified versions of the
standard wall functions. Because the boundary layer is resolved down to y+ < 1,
setting kwall = 0 and εwall = 0 at the walls is justified.

For a correct application of wall functions in high-Re turbulence models, the wall-
nearest grid point must lie in the log-law region, 30 < y+ < 300. To achieve the
most accurate results with low-Re turbulence models, the wall-nearest grid point
must lie in the viscous sublayer, ideally y+ < 1. Further, the viscous sublayer and
the buffer layer must be resolved with at least ten to twenty grid points [3, 86].

4.4 Estimation of discretisation uncertainty
One important measure of quality control in CFD simulations projects is to estimate
the potential error induced by discretisation. Several guidelines on that matter
were published over the last decades, e.g. [1, 10, 76]. Among these issues, the
21At separation points, uτ approaches zero and u+ becomes singular.
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Grid Convergence Method (GCI) of Celik et al. [11] has established itself as the
quasi-standard for every carefully executed CFD study.

The underlying idea of this method is to run simulations for at least three different
grids and observe the impact of a change of the number of mesh cells Nm on
variables φ critical to the flow problem. The number of mesh cells in these three
grids has to vary such, that, ideally, the refinement factors

r21 = h2

h1
and r32 = h3

h2
, with h1 < h2 < h3 , (4.38)

which are computed from the average cell sizes

h =
 1

Nm

Nm'
j=1

(ΔVj)
1/3

(4.39)

are greater than 1.3.
For each of the selected quantities φ, the apparent order poa of the method is
computed iteratively by

poa = 1
ln (r21)

·
***** ln

*****φ3 − φ2

φ2 − φ1

***** + q(poa)
***** (4.40a)

q(poa) = ln


rpoa
21 − s

rpoa
32 − s


with s = 1 · sgn


φ3 − φ2

φ2 − φ1


(4.40b)

A negative value of s is an indication of oscillatory convergence. The ratio of data
points with oscillatory convergence

Roc = 1
Np

·
Np'
i=1

if (si < 0) (4.41)

counts how many data points i of a quantity φ result in a value of s < 0.
The extrapolated values of each variable φ are obtained by

φ21
ext = rp

21φ1 − φ2

rp
21 − 1 and φ32

ext = rp
32φ2 − φ3

rp
32 − 1 . (4.42)

Then, the approximate relative error e21
a , the extrapolated relative error e21

ext ,

e21
a =

*****φ1 − φ2

φ1

***** and e21
ext =

*****φ21
ext − φ1

φ21
ext

***** , (4.43)

and the fine-grid convergence index

GCI21
fine = 1.25 · e21

a

rp
21 − 1 (4.44)

are calculated for each variable φ.
Finally, for each quantity of interest, the mean value GCI21

fine,mean and the maximum
value GCI21

fine,max of the fine-grid convergence index as well as the mean value of the
apparent order poa of the method together the ratio of data points with oscillatory
convergence Roc are reported. Celik et al. [11] recommend to indicate the numerical
uncertainty for computed profiles by adding error bars (e.g. Figure C.2).
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CHAPTER 5
Comparison to experimental data

This chapter tests the applicability of the flow quality criteria and numerical meth-
ods introduced in Chapters 3 and 4 on two 90◦ pipe bends. These were chosen as the
references because the examples discussed in Section 2.3 showed an excellent analogy
of the flow phenomena in a 90◦ pipe bend and a Pelton turbine distributor system.
Also, the branch lines of the AxFeeder combine straight and bent pipe sections.
Thus, if the flow quality criteria and numerical methods match the experimental
results for the cases of the 90◦ pipe bends, the numerical results for the parametric
simulations of the AxFeeder are also trustworthy.

Numerical studies were conducted for two configurations of 90◦ pipe bends:

A) R/D = 2 and Re = 6.0 · 104, experimental data from Sudo et al. [104]

B) R/D ∼= 1 and Re = 3.2 · 105, 1.2 · 106, 2.8 · 106 and 3.7 · 106, experimental
data from Shiraishi et al. [92]

These studies investigated the impact of different meshes and turbulence models on
loss generation, velocity contours, secondary flows and turbulence intensity.

5.1 Configuration A - Sudo
In 1998, Sudo et al. [104] conducted experiments on the steady, turbulent flow in a
90◦ pipe bend with smooth walls (R/D = 2, Re = 6.0 · 104).

5.1.1 Test configuration - A
The experimental apparatus is sketched in Figure 5.1. By a fan (1), the airflow is
pushed into a settling chamber (2) and forced through a contraction (3) before it
goes through a straight pipe section with l/d = 100, the upstream tangent (4). This
guarantees fully developed turbulent flow conditions upstream of the bend (5). It
is followed by the downstream tangent (6), a straight pipe with l/d = 40. Velocity
measurements were made by rotating a single inclined hot wire [104]. Due to
symmetric flow, these measurements were executed only in the bottom half of the
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Figure 5.1: Test configuration of Sudo’s experiment, recreated and modified
from [104]. 1 Fan, 2 Settling chamber, 3 Contraction, 4 Upstream
tangent, 5 90◦ bend, 6 Downstream tangent

pipe (shaded in blue in Figure 5.1). The static pressure was measured on the pipe
wall between the upstream and the downstream tangents including the bend [104].

5.1.2 Investigated cases - A
In the first series of simulations, four meshes, differing in grid spacing from coarse to
fine, were tested. Three of those meshes were made from hexahedral cells (Coarse H,
Medium H and Fine H) and in one mesh, hexahedral cells were used in the straight
pipe sections, and tetrahedrons were employed in the bend (Medium rM). All of
these simulations were run with the k-ω Shear Stress Transport (SST) turbulence
model.

In a second series of simulations, four turbulence models were investigated. These
were: the k-ε model (kE) of Launder and Spalding [53] with the scalable wall
function approach [3]; the k-ω Shear Stress Transport model of Menter [61] with
automatic wall treatment for ω-based models [3]; further, the SST model with acti-
vated curvature correction (SSTCC) and the Baseline-Explicit Algebraic Reynolds
Stress model (EARSM) of Menter, Garbaruk and Egorov [62]. All of these simula-
tions were run with the Medium H mesh1.

A detailed description of all cases and the relevant numerical settings for simulating
the steady, incompressible and isothermal internal flow problem is presented in
Appendix C.1.1.

1For the kE model cases, the boundary layer resolution was adjusted to meet the requirements of
the wall function approach.
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5.1.3 Station averaged quantities
Pressure coefficient

The distribution of the pressure coefficient Cp along the inside, bottom and outside
wall of the pipe is shown in Figure 5.2 for different mesh sizes and turbulence
models and compared against experimental values2. An explanation for the pressure
coefficient at the outside wall being greater than at the inside wall can be derived
from the radial equilibrium [16]

1
ρ

dp

dr
= c2

s

r
. (5.1)

With the centripetal acceleration c2
s/r always being positive, the radial direction

pressure gradient is also positive. Thus, the pressure coefficient at the outside wall
must be higher than at the inside wall of the 90◦ bend. The general decline of Cp

along the streamwise coordinate can be attributed to the pressure losses due to the
deflection of the flow and wall friction.

The differences between the Cp curves for the hexahedral meshes are almost negligi-
ble. This observation is supported by the results of the grid independence study in
subsection Appendix C.1.2. Also, the resulting curves for the mixed-element mesh
Fine rM are practically identical to the curves of the hexahedral meshes. Thus, for
evaluating wall pressures, a discretisation with purely hexahedral cells or mixed
hexahedral and tetrahedral cells gives plausible and reproducible results as long as
the spatial resolution is sufficient.

The analysis of the Cp curves for cases with different turbulence modelling ap-
proaches in part b) of Figure 5.2 reveals general agreement between simulation
results and experimental data. It is also notable that the kE model delivers its
best results if the wall-adjacent mesh node lies within the region of validity of the
logarithmic law of the wall. In contrast, the SST model delivers its best results
if the wall-adjacent mesh node lies well within the viscous sublayer region of the
boundary layer. Consequently, using a sufficiently refined grid near the walls is
necessary for the SST model to predict the velocity profiles close to the walls as
accurately as the modelling assumptions allow. The EARSM model delivers results
indistinguishable from the two-equation eddy viscosity models but at slightly higher
computational costs (Table C.2).

Intensity of secondary flow

Regardless of the meshing and turbulence modelling approach, all cases shown
Figure 5.3 underestimate the intensity of secondary flow caused by the change of
direction in the bend between ϕ = 0◦ and ϕ = 90◦. At the entrance to the bend at
ϕ = 0◦, simulation and experiments lie in good agreement. The gap between the
simulated values of Is and their respective experimental values increases through
the bend. The biggest difference occurs at the bend exit at ϕ = 90◦, where the
2Sudo et al. [104] did not specify measurement uncertainties for Cp.
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Figure 5.2: Longitudinal distributions of the pressure coefficient Cp at the in-
side (full stroke), bottom (dotted) and outside wall (dashed lines).
Comparison of experimental data (measurement uncertainties not
specified) of Sudo et al. [104] against CFD results for different meshes
and turbulence models. M. = Medium.

secondary flow has the strongest intensity. This difference stays roughly the same
until approximately 6 to 8 diameters downstream of the bend when most of the
secondary flow has dissipated.

The differences in the Is curves are again negligible for the investigated meshes.
The cases with the SST turbulence model most closely match the experimental
data. In the bend, the SST model without curvature correction is evidently slightly
better, while in the downstream leg, the SSTCC model with curvature correction
lies marginally closer to the experiments. The kE and EARSM models under-predict
the secondary flow in the bend and the downstream leg.
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Figure 5.3: Longitudinal distributions of the area average intensity of secondary
flow Is. Comparison of experimental data (including measurement
uncertainties) of Sudo et al. [104] against CFD results for different
meshes and turbulence models.

Turbulence intensity

The distribution of the turbulence intensity3 along the mean streamline is displayed
in Figure 5.4. All simulated cases start from an approximate It ∼ 6·10−2. This value
is slightly larger than that of the experiments. However, it coincides pretty well
with the correlation of Russo and Basse, Equation (3.47), which gives an estimated
turbulence intensity of 5.87 · 10−2 for the Reynolds number of 6 · 104. After the flow
enters the bend, the turbulence intensity increases towards its maximum values,
which are reached just downstream the exit of the bend. In the downstream leg,
there is a good agreement between the simulated data and the experimental data
for all cases, regardless of the grid resolution. All tested meshes predict values of It

within the measurement uncertainty range for most parts of the region of interest.

3Sudo et al. [104] specify the uncertainty for the turbulence intensity ka as defined in Equa-
tion (3.48). A conversion of the measurement uncertainty to It is explained in Appendix A.3.2.
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Figure 5.4: Longitudinal distributions of the area average turbulence intensity It.
Comparison of experimental data (including measurement uncertain-
ties) of Sudo et al. [104] against CFD results for different meshes and
turbulence models.

Typically, the tetrahedral cells in the Medium rM mesh lead to higher numerical
dissipation and, thus, a lower level of turbulent kinetic energy in the pipe than the
Medium H mesh with purely hexahedral cells. The observed differences lie in the
same margin as those between the Coarse H and the Medium H meshes.

In part b) of Figure 5.4, the effect of different turbulence models on the area average
turbulence intensity along the mean streamline is compared against the experi-
mental results. The kE model case shows the sharpest increase of the turbulence
intensity in the bend and the highest levels of It in the downstream leg. This
behaviour is attributed to the issue of standard two-equation turbulence models
producing excessive turbulent kinetic energy upstream of areas with stagnating
flow [42]. In the case of the pipe bend, the area of stagnating flow is located on
the outside of the bend, which causes It to rise to higher values reached at lower s/d.
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In the cases using the SST and the EARSM model, the turbulence intensity rises
moderately in the bend, thus resembling the experimental data quite well, especially
in and after the bend. With the EARSM model case, It climbs steeply in the
bend and reaches peak levels approximately in the middle of the kE model and the
SST model cases. The effect of curvature correction leads to an early decline of It

in the SSTCC case. Moreover, in this case, It never reaches the same maximum
values as for the SST and EARSM model cases. A likely explanation is that the
rotation function (Equation (4.23)) and especially the included production limiter
(Equation (4.24)) of the SSTCC model hinder the production of turbulent kinetic
energy and thus It a bit too much for such a type of flow problem [95, 97]. Overall,
the SST model with y+ = 1 matches the experimental data best.

5.1.4 Local flow quantities
The local flow velocities were evaluated at eleven stations, starting one diameter
upstream of the bend and ending ten diameters downstream of the bend. For all
these stations, the streamwise velocity cs was evaluated in a horizontal plane from
the inside to the outside wall of the pipe and in a vertical half-plane from the
bottom of the pipe to its centre. Also, the circumferential velocity cθ was evaluated
in the vertical half-plane from bottom to centre. All velocities were normalised by
the mass averaged streamwise velocity cs,ref at the reference plane. The normalised
flow velocities are plotted in Figure 5.5 for the cases with different meshes and in
Figure 5.6 for the cases with different turbulence models. In these figures, the top
plot depicts the streamwise velocity in the horizontal plane, and the mid and bottom
plots depict the streamwise and the circumferential velocity in the vertical half-plane.

The velocity curves for the different meshes almost overlap at most stations. Differ-
ences appear towards the inside wall of the bend starting at station ϕ = 60◦. Here,
the pressure increases near the inside wall; simultaneously, the flow is decelerated,
which causes a deficit in the streamwise velocity. This deficit is also visible in the
contour plots of Figure 5.7. Nevertheless, the velocity curves reveal that neither
mesh can fully capture this phenomenon. This difference between CFD results
and experiments has its most considerable extent at the bend exit (ϕ = 90◦) and
becomes less as the flow is mixed out when moving downstream. The mid plot of
Figure 5.5 shows a better agreement between simulated and measured streamwise
velocities in the vertical half-plane for all mesh cases. The lower plot in this figure
gives an even better agreement of simulation data and experiments for the circum-
ferential velocity in this vertical half-plane. Also, the case with the mixed element
mesh can replicate the circumferential velocity curves with satisfactory precision.

The velocity curves predicted in the different turbulence model cases match the
experimental data satisfactorily, except for the distortion of the velocity profiles at
the inside of the bend. Notably, in the cases with turbulence models that integrate
the velocity profile to the wall (SST, SSTCC and EARSM; all with y+

max < 1), this
distortion of the velocity profiles is predicted too early. Here, the wall function
approach of the kE model proves superior. As the flow moves along the bend, the
streamwise velocity deficit becomes more and more pronounced at the inside of
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Figure 5.5: Velocity distributions at several stations for different meshes.
a) = Coarse H, b) = Medium H, c) = Fine H, d) = Medium rM

the wall. The ω-based turbulence models (SST, SSTCC and EARSM) can capture
this deficit to an observable extent. In contrast, the velocity curves predicted by
the kE model deviate noticeably more from the experimental data. Overall, the
kE turbulence model cannot accurately compute the velocity deficit associated with
the deceleration of the flow at the inside of the bend4. This is especially seen at
stations ϕ = 75◦ and ϕ = 90◦.
In contrast, the two cases using the SST model in combination with a finely resolved
wall layer mesh, SST y+ = 1 and SSTCC, can partially reproduce the velocity
deficits in the curves of the streamwise velocity. The EARSM model performs

4For further discussion on the features of the kE model see Section 4.2.1.
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Figure 5.6: Velocity distributions at several stations for four turbulence models.
a) = kE y+ = 77, b) = SST y+ = 1, c) = SSTCC, d) = EARSM

similarly to the SST model with y+ = 1. The simulated curves deviate from the
experimental data towards smaller values of 2r/d, i.e., closer to the inside wall.
Just as in the SST model cases, the velocity deficit at the inside wall is predicted
too early (top plot of Figure 5.6). Apart from that, the simulated profiles follow
the experimental curves of the streamwise velocity very well.

Except for the weaknesses in predicting the distortion of the velocity profiles at the
inside of the bend, the agreement between the simulated velocity curves and the
experimental ones in the horizontal plane is satisfactory. The simulation results
for the streamwise and circumferential velocities in the vertical half-plane meet the
experimental data, as in the cases with different meshing approaches.
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5.1.5 Contour plots
In order to better assess flow structure downstream the pipe bend, contours of
the normalised streamwise velocity cs/cs,ref and the turbulence intensity It are
plotted in Figure 5.7 for the cases with different meshes and in Figure 5.8 for the
cases with different turbulence models. Each of these figures is structured such
that the upper half of the figure shows the velocity contours and the lower half
shows the contours of turbulence intensity. In every line, for one station, four
cases are shown. For every case, the simulation data is depicted in the upper half
of the plot, and the experimental contours are depicted in the lower half. The
contour bands of the simulation data are adjusted to meet the values of the contour
bands from the experiments. Therefore, the minimum and maximum values of the
legends are determined by the respective values of the experimental contours. The
plot view is oriented towards the upstream direction. Thus, the left of the circular
plots corresponds to the inside of the bend, and the right corresponds to the outside.

Cases Medium H and Fine H can emulate the contours of the experimental stream-
wise velocities with reasonable accuracy. The plots from the Coarse H case differ
slightly from the other two meshes. This mesh is too coarse to precisely capture
the distortion of the velocity contours on the inside of station ϕ = 90◦. While
mesh Medium rM delivers a result similar to meshes Coarse H and Medium H,
mesh Fine H exaggerates the size and shape of the distortion zone, forming a blue,
mushroom-shaped contour at the centre of the pipe at station z/d = 1. Some
discrepancies between simulation results and experiments are noticeable down-
stream of the bend at station z/d = 5 for all cases, where the remains of the
mushroom-shaped distortion zone are still recognisable.

All cases shown in Figure 5.7, for which the mesh was varied, have difficulties
recreating the turbulence intensity contours. At the exit of the bend at ϕ = 90◦,
the CFD results of cases Medium H, Fine H and Medium rM show a noticeably
better similarity to the experimental contours than the results of case Coarse H.
A mushroom-like structure extending from the inside wall to the centre of the pipe
appears downstream. This structure is prominent in cases Medium H and Fine H
and less in case Medium rM. It is invisible in case Coarse H. The most recognisable
difference between experiments and simulation is a red ring close to the wall at
station z/d = 5 in the simulation results. This red ring contour only appears in a
thin annulus beside the wall. It comes from the correctly predicted high values of
the turbulence intensity in the turbulent boundary layer. In the experiments, this
ring of high It was most likely present as well, but not visually captured by the
applied measurement techniques; therefore, it was not visible in the contour plots.

When comparing the plots with the different turbulence models employed in Fig-
ure 5.8, the velocity contours at station ϕ = 90◦ show the distorted velocity contours
on the inside of the bend to a reasonable extent. This distortion is somewhat less
pronounced in the case using the kE model than in the SST or Reynolds stress model
cases. Another phenomenon that occurs predominantly in the kE and EARSM
cases is the distinctively low velocity gradient at the outside of the bend. For the
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Figure 5.7: Contour plots of normalised streamwise velocity cs/cs,ref (upper half)
and turbulence intensity It (lower half) at several stations downstream
the bend compared to experimental results from Sudo et al. [104].

kE model case, this gradient may be caused by the overproduction of turbulent
kinetic energy at the outside of the bend, resulting in high turbulent viscosity values
and increased velocity mixing.
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Figure 5.8: Contour plots of normalised streamwise velocity cs/cs,ref (upper half)
and turbulence intensity It (lower half) at several stations downstream
the bend compared to experimental results from Sudo et al. [104].

At station z/d = 1, all turbulence model cases reproduce the experimental flow field
reasonably well. A detailed examination of the plots of the SST models and the
Reynolds stress model at this station reveals that the mushroom-shaped contour in
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5. Comparison to experimental data

the centre of the pipe is more prominent than in the experiments. This mushroom-
shaped structure is also visible in the turbulence intensity plots of the corresponding
cases. Generally, all turbulence model cases encounter issues correctly predicting
all details of the turbulence intensity fields. Thus, a higher uncertainty for any
turbulence-related quantity has to be considered.

At station z/d = 5, all turbulence models again reproduce the experimental flow
field reasonably well. This time, the cases using the SST y+ = 1 and SSTCC
models show a small zone with a pronounced velocity deficit off the centreline.
The turbulence intensity plots of all eddy viscosity models and the Reynolds stress
model show a much better agreement with their experimental counterparts than at
the stations upstream. Nevertheless, assessing the detailed contour bands reveals
that all models still have issues closely reproducing the values of the experiment.

5.2 Configuration B - Shiraishi
While Sudo et al. [104] focused on the flow through a 90◦ pipe bend with large
curvature radius (R/D = 2) at a low Reynolds number of 6.0 · 104, the experiments
of Shiraishi et al. [92] allow for validation of pressure losses and local flow velocities
in a 90◦ pipe bend with small curvature radius (R/D ∼= 1) at a wide range of
Reynolds numbers (3.2 · 105 to 3.7 · 106).

5.2.1 Test configuration - B
The test rig of Shiraishi et al. [92] is sketched in Figure 5.9. From a pressurised
rectifying tank (1), the flow (working fluid: water) passes the bellmouth (2) into the
upstream tangent (3). This design provides a uniform velocity distribution upstream
of the sharp bend (4). The bend is followed by a downstream tangent (5). Local flow
velocities were evaluated by laser Doppler velocimeters upstream (I - 2.77d) and
downstream (II - 0.18d, III - 0.62d and IV - 1.12d) the bend. Pressure transducers
were located at several stations upstream, in and downstream of the bend; relevant
stations for this thesis are B, D and L.

5.2.2 Investigated cases - B
In the first series of simulations, different meshes (Coarse H, Medium H and Fine H
with hexahedral cells and Medium rM with both hexahedral and tetrahedral cells)
were tested with the k-ω Shear Stress Transport turbulence model and in a second
series of simulations, the same four turbulence models (kE, SST, SSTCC and
EARSM) as in Section 5.1, were investigated. If not specified explicitly, again, all
of these simulations were run with the Medium H mesh5.

A detailed description of all cases and the relevant numerical settings for modelling
the flow as steady, incompressible and isothermal is presented in Appendix C.2.1.
5For the kE model cases, the boundary layer resolution was adjusted to meet the requirements of
the wall function approach, resulting in mesh Fine H kE.
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from [92]. 1 Rectifying tank, 2 Bellmouth, 3 Upstream tangent,
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5.2.3 Losses
Total pressure losses

The flow in a 90◦ pipe bend can be classified into three regimes according to their
Reynolds number [38]:

a) Subcritical regime for Re < 1 · 105

b) Transition regime for 1 · 105 < Re < 2 · 105

c) Postcritical regime for Re > 2 · 105

This classification is connected with a strong dependency of the total pressure loss
coefficient on the Reynolds number, exemplarily shown in Figure 5.10.

In the subcritical regime, the boundary layer is laminar. Thus, the flow separates
early after the entrance in the bend (low values of the separation angle αsep) and
forms the large separation zone (biggest height hsep). Moreover, the flow takes a
long distance lsep to reattach6. Consequently, the total pressure loss coefficient is
significantly higher than in the other regimes.

In the transition regime, the boundary layer becomes turbulent; thereby, its thick-
ness is reduced, and the effective flow channel becomes less restricted. This results
6The length of the separation zone lsep can thus also be interpreted as a reattachment length.
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Figure 5.10: Total pressure loss coefficients against the Reynolds number evalu-
ated for the case with mesh Medium H and SST y+ = 1 turbulence
model compared to the experimental values of Shiraishi et al. in [92]
and Idelchik in [38].

in a sharp decline of the total pressure losses7 that, in pipe flows, occurs typically
between 1 · 105 < Re < 2 · 105. The Reynolds number, at which this sudden drop of
the losses starts, is defined as the critical Reynolds number Recrit and the Reynolds
number at which the losses level off is defined as the turbulent Reynolds number
Returb [38]. In the case of a 90◦ pipe bend, assuming a critical Reynolds number of
around 1 · 105 and a turbulent Reynolds number of around 2 · 105 is plausible.

In the postcritical regime, the boundary layer has become fully turbulent. The
separation starts at the highest values of the separation angle αsep, and the sepa-
ration zone is the smallest. The loss coefficient stays roughly constant for a wide
range of Reynolds numbers, with a tendency to decrease slightly at higher Reynolds
numbers Re > 1 · 106. Shiraishi et al. [92] explain this as a direct result of two
simultaneous effects: the declining friction in the boundary layer of a hydraulically
smooth pipe and the effect of separation in the elbow.

Idelchik [38] points out that the phenomena described above are similar to those of
a flow around a cylinder or a sphere, where a sudden drop of the drag coefficient
is observed at similar Reynolds numbers [6]. The selected simulation methods

7Idelchik [38] calls this decline "resistance crisis".
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Figure 5.11: Total pressure loss coefficients for four Reynolds numbers and four
meshes compared to the experimental of Shiraishi et al. [92].

Appendix C.2.1 are most suited for computing flow in the postcritical regime.

In Figure 5.10, experimental data from Idelchik [38] and Shiraishi et al. [92]
is compared to simulation results for cases with mesh Medium H and the SST
turbulence model. In this figure, the total pressure loss coefficient in the form of
Equation (3.11) is evaluated between the inlet and station L (ζp,ts|Linlet) and stations
B and D (ζp,ts|DB). As described by Shiraishi et al. [92], the values of

ζp,ts|DB = ζp,ts|Linlet − 1 − λ ·


Lup + 0.5Rπ + Ldown

d


(5.2)

were achieved by subtracting the exit and friction losses from ζp,ts|Linlet.

The comparison of the total pressure loss curves evaluated from the inlet to station L
in Figure 5.10 shows that the CFD simulations can capture the friction effect in the
boundary layer very well. As the absolute differences between the simulated values
of ζp,ts|Linlet and the corresponding experimental values are almost the same as the
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Figure 5.12: Total pressure loss coefficients for four Reynolds numbers and
four turbulence models compared to the experimental values of
Shiraishi et al. [92].

differences between the simulated values of ζp,ts|DB and the respective experimental
values, the deviation between the simulation results and the experimental data can
be entirely attributed to the uncertainty in the prediction of the flow separation in
the elbow.

A direct comparison of the loss coefficients predicted in cases with four different
meshes is plotted in Figure 5.11 for the Reynolds numbers8 3.2 ·105, 1.2 ·106, 2.8 ·106

and 3.7 · 106. While all meshes except Coarse H deliver similar results, only for
the lowest Reynolds number 3.2 · 105, the values predicted by simulation lie within
the margin of error of the experimental values. Again, this discrepancy arises from
uncertainty in predicting the flow separation in the elbow at high Reynolds numbers.

The impact of a variation of the turbulence model on the loss coefficients is evaluated
8These four Reynolds numbers were selected because experimental data of the velocity plots is
given for these exact Reynolds numbers.
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Parameter Meshes a) Turb.
models

b)

a0 -0.0075 0.0000 -0.0016 -0.0039
a1 0.8829 0.8734 0.7849 0.8522
R2 0.9734 0.9994 0.6856 0.9732

Table 5.1: Offset a0, gradient a1, and coefficient of determination R2 of the linear
trend lines. a) = Data points with mesh Fine rM only; b) = Turbulence
models without kE.

in Figure 5.12. All four turbulence models deliver very similar results for the cases
with high Reynolds numbers. Only in the case of the lowest Reynolds number are
all turbulence models able to match the experiment within the margin of error.
However, the variation in the predicted loss coefficients is also the highest for
the low Reynolds number. At this Reynolds number, the kE model using wall
functions9 shows the lowest deviation from the experiments and the SSTCC model
with activated curvature correction the highest.

Dissipation

In this subsection, the different techniques for loss accounting are compared, and
the second law analysis method introduced in Section 3.3.2 is verified against
the classical approach presented in Section 3.3.1. Therefore, the resulting values
for the dissipation power coefficient ζΦ|LA, computed by the second law analysis
method using Equation (3.23) are benchmarked against the values of the power
loss coefficient ζP mT E|LA, computed by the classical approach using Equation (3.14).

Part a) of Figure 5.13 compares the results of four different meshes and part b)
compares the results of four different turbulence models. When evaluated between
stations A and L, the dissipation power coefficient is lower than the corresponding
power loss coefficient. Thus, all data points lie below the 45◦ line, indicating
equality between the coefficients ζΦ|LA and ζP mT E|LA. The cases with the Coarse H
mesh and the kE turbulence model especially underpredict the dissipation and thus
achieve lower dissipation power coefficients. The linear trend lines10 y = a0 + a1x
calculated from the numerical data points show an offset to the 45◦ line that declines
with increasing Reynolds number (towards the lower left corner of the diagrams).
The red trend lines were calculated using all data points. Because of the outliers
from the kE model case, this results in a low coefficient of determination R2 for
the cases with varying turbulence models. Therefore, a second trend line (green)
was computed, where the data points from the kE model were excluded. This
trend line fits the presented data very well. The coefficient a0, which symbolises
the offset from the vertical axis, is almost zero, which matches the expectation.
If only data points from the cases with the Fine rM mesh (for which the SST
turbulence model with y+ = 1 was employed) are considered for the trend line
9The area average of y+ is about 153 in this case.
10The procedure to calculate trend lines is explained in Appendix A.2.
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and a zero offset from the vertical axis is enforced, the slope coefficient a1 be-
comes 0.8734. This configuration would be the closest match to the eventually
chosen setup of the AxFeeder. All trend line coefficients are summarised in Table 5.1.

To quantify the differences between the dissipation power coefficient ζΦ|LA and the
power loss coefficient ζP mT E|LA, in Figure 5.14, the deviations of each case averaged
over all tested Reynolds numbers is plotted. The corresponding standard deviations
indicate the measure of uncertainty. For most models, the ratio ζΦ|LA / ζP mT E|LA lies
between 0.8 and 0.9, whereas for cases with refined mesh, the deviation becomes
smaller, thus the ratio becomes closer to unity. The case with mesh Coarse H is
slightly below the previously stated range, but the case with the kE model falls off
drastically. This fall-off can be explained by the observation of Kock and Herwig
[48, 49], that both the viscous and turbulent entropy production peak close to
the wall. Melzer et al. [60] emphasise that the peak in entropy production is
underestimated, especially when wall functions are used or the wall layers are not
sufficiently resolved. This is the case with the kE model and when the mesh is not
refined sufficiently. The low uncertainty indicates that the ratio of power coefficients
is changing marginally with the Reynolds number. To further elaborate on this
observation, both coefficients were plotted together with their ratio ζΦ|LA / ζP mT E|LA
against the Reynolds number in Figure 5.15. Analogously to the total pressure
loss coefficients in Figure 5.10, there is a steep decline at low Reynolds numbers,
which levels off when the boundary layer has become fully turbulent. Then, there
is a moderate decline of ζP mT E|LA and ζΦ|LA, whereas the ratio ζΦ|LA / ζP mT E|LA stays
almost constant at around 0.84. It decreases only marginally with increasing
Reynolds number.
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The main discrepancy between the two methods of loss accounting in pipe flows
shall be explained exemplary by the case of Re = 1.2 · 106, mesh Fine H and SST
turbulence model11.

At first, in part a) of Figure 5.16, the longitudinal distribution of the mass average
total pressure is plotted against the streamwise coordinate. The total pressure
is normalised by the total pressure in station A, which is the beginning of the
domain of interest for this comparison. In section AB and far downstream the
bend12, the pressure curve approaches a tangent with gradient −λ, the pipe friction

11To allow for precise evaluation of the effects in the downstream tangent, the domain was extended
to well over 50d downstream the bend. To comply with the configuration of Shiraishi et al. [92],
the upstream tangent was not altered.

12In both zones, the wall friction is the dominating effect.

60



5. Comparison to experimental data

0.0

0.2

0.4

0.6

0.8

1.0

−1
0

·∂
p t

/∂
(s

/d
)·

1/
p d

y
n

,A

−2 0 2 4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

1.0
∂pt

∂(s/d)
pdyn,A

= −λ

λ
A B D L

ζ p
,t

s/d

p t
/p

t,
A

pt/pt,A −10 · ∂pt/∂ (s/d) · 1/pdyn,A

a) Total pressure

0.0

0.2

0.4

0.6

0.8

1.0

Φ̂
V

is
/Φ̂

,Φ̂
T

u
r
b
/Φ̂

−2 0 2 4 6 8 10 12 14 16
0.0

1.0

2.0

3.0

4.0

5.0

ζΦ

A B D L

s/d

Φ̂
∗ V

is
,Φ̂

∗ T
u

r
b
,Φ̂

∗

Φ̂∗
V is Φ̂∗

T urb Φ̂∗ = Φ̂∗
V is + Φ̂∗

T urb

Φ̂V is/Φ̂ Φ̂T urb/Φ̂

b) Dissipation

Figure 5.16: Longitudinal distribution of mass average total pressure and area-
integrated dissipation for a case with Re = 1.2 · 106, mesh Fine H
and SST turbulence model. ∗ = Φ̂i/Φ̂fr

coefficient. The effect of the change of flow direction in the bend between stations
B and D can be seen in the sharp decline of the pressure curve downstream the
bend, approximately in section DL. Most of the pressure losses induced by the
bend, around 80 %, occur in this section. In contrast, the majority of other losses
occur between stations B and D. Upstream station B, the entrance to the bend,
the effect of the bend is hardly recognisable in the pressure distribution. These
observations are underlined by the longitudinal evolution of the total pressure
derivative, ∂pt/∂ (s/d). It is normalised by the dynamic pressure at station A,
pdyn,A, such that far upstream and downstream the bend, where all effects from
the change of flow direction dissipated, the derivative becomes equal to the pipe
friction coefficient λ of a straight pipe at this Reynolds number. The losses ζp,t

induced by the 90◦ pipe bend can, therefore, be interpreted as the vertical distance
between the two blue dash-dotted tangents with gradient −λ.
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5. Comparison to experimental data

In part b) of the same figure, the longitudinal distribution of the cross-section
integrated dissipation Φ̂ (defined in Equations (3.27) and (3.28)) is shown. Addi-
tionally, the individual contributions from the turbulent dissipation Φ̂T urb and the
viscous dissipation Φ̂V is are plotted. All of them were normalised by the background
dissipation

Φ̂fr = ṁ · pdyn

ρ
· λ

d
= ρd2πcs,ref

4 · c2
s,ref

2 · λ · 1
d

=
ρdπλc3

s,ref

8 (5.3)

that arises from the friction in a straight pipe flow [50]. As for the pressure losses,
most of the kinetic energy is dissipated in section DL downstream of the bend.
However, significant dissipation occurs in the bend between stations B and D,
upstream of the bend, and, most importantly, downstream of station L. Therefore,
the lengths of influence, where Φ̂/Φ̂fr > 1, are much longer than the distances from
A to B (upstream tangent) and from D to L (downstream tangent). Schmandt and
Herwig point out [84] that due to the asymptotic decay of the additional entropy
generation, the upstream and downstream lengths of influence would be infinitely
large. In a real-world scenario, this is not possible. Due to the constraint of the
configuration of Shiraishi et al. [92], the upstream length was set from A to B, but
the downstream length was increased from D up to station Z13. The integration
of the dissipation was therefore executed from A to Z, and the area under the
Φ̂∗ - curve (shaded in red) can be interpreted as the losses ζΦ.

In Table 5.2, the procedure to calculate the loss coefficients from the relations
shown in the diagrams of Figure 5.16 is illustrated. To arrive at the dissipation
power coefficients ζΦ, first, the turbulent and viscous dissipations ΦT urb and ΦV is

are integrated within each section, AB, BD, and DZ. This gives the powers of
turbulent and viscous dissipation PT urb and PV is, which, added together, form the
power of dissipation PΦ. The power from the background dissipation Pfr = Φ̂fr · Li

has to be subtracted from PΦ to achieve only that part of the power losses Pcd,
which were induced by the change of direction. These powers are finally normalised
by the power of kinetic energy ṁc2

s,ref/2 of the flow.
The procedure to calculate the total pressure loss coefficients14 ζp,t is similar. From
the total pressure losses Δpt in every section, the friction losses Δpt,fr need to be sub-
tracted to achieve the pressure losses Δpt,cd from the change of direction. These are
normalised by the dynamic pressure ρc2

s,ref/2 at the reference location to achieve ζp,t.

A detailed comparison of the techniques for loss accounting reveals that both loss
coefficients are almost equal when evaluated between stations A to B and A to Z.
Significant differences occur in section BD, where the losses from dissipation are less
than half of the pressure losses. This deficit is compensated in section DZ, where
the losses from dissipation are about 10 % higher than the pressure losses. This
13Station Z is located 50d downstream station A, the beginning of the domain of interest. For

reasons of space, station Z is not shown in Figure 5.9 nor Figure 5.16.
14For ease of comparison, the total pressure loss coefficient ζp,t was picked here instead of the

power loss coefficient ζP mT E . For the case of a single pipe without branches and junctions, it
was shown in Equation (3.15) that ζP mT E can be reduced to ζp,t.
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Variable AB BD DZ AZ Explanation

Li m 1.22 0.67 18.75 20.64
PT urb W 28.54 21.64 523.34 573.52

�
V ΦT urb dV

PV is W 15.12 10.39 225.82 251.34
�

V ΦV is dV

PΦ W 43.66 32.04 749.17 824.86 PT urb + PV is

Pfr W 39.19 21.32 601.23 661.75 λ·Li/d·ṁ·c2
s,ref/2

Pcd W 4.46 10.71 147.94 163.11 PΦ − Pfr

ζΦ 1 0.004 0.009 0.125 0.138 2Pcd/(ṁc2
s,ref )

Δpt Pa 126 138 2190 2454
Δpt,fr Pa 118 64 1803 1984 λ · l/d · ρc2

s,ref/2
Δpt,cd Pa 9 74 387 470 Δpt − Δpt,fr

ζp,t 1 0.003 0.022 0.114 0.139 2Δpt,cd/(ρc2
s,ref )

Table 5.2: Exemplary calculation of the loss coefficients for Re =1.2 · 106.

finding underlines the observations in Figure 5.16 that additional entropy generated
due to the change of flow direction in the bend has a much longer-lasting effect in
the downstream tangent. If, e.g. the evaluation was conducted from A to L, as
shown in Figure 5.14, then not all of the additionally generated entropy would have
been considered. Thus, the discrepancies between ζp,t and ζΦ that appear in this
section and the diagrams of the parametric study of the AxFeeder can be explained.

A further finding is that for the undisturbed flow, the ratio of turbulent dissipation
ΦT urb to viscous dissipation ΦV is is approximately 2:1. At the peak of the dissipation
curve just downstream station D, this ratio becomes around 7:1.

5.2.4 Velocity distributions
The distributions of the normalised local streamwise velocity15 cs/cs,ref from the
inside wall (2r/d = −1) to the outside wall (2r/d = 1) of the bend were evaluated
at stations I to IV for four different Reynolds numbers, 3.2 · 105, 1.2 · 106, 2.8 · 106

and 3.7 · 106 and compared against experimental data from Shiraishi et al. [92].
The influence of grid size is discussed with the mesh study in Appendices C.2.2
and C.2.3. The influence of turbulence modelling is assessed from Figure 5.17.

All turbulence models where the wall layer was fully resolved, SST y+ = 1, SSTCC
and EARSM, replicate the measured velocity distributions reasonably well. There
are only minor differences between simulations and experiments for the cases with
the lowest Reynolds number, particularly in the flow separation region in station II

15The reference velocities correspond to the mean velocities calculated from the Reynolds numbers
of the related cases.
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Figure 5.17: Streamwise velocity distribution at four stations for four Reynolds
numbers using different turbulence models.

and the low-velocity region in station III close to the inside wall. A significant
discrepancy between the CFD results and the experimental data is shown in the
kE model case, where the velocity deficit caused by the flow separation at the inside
of the bend cannot be captured precisely. A closer look at the profiles in this zone
reveals that especially for Re ⩾ 1.2 · 106, the predictions of the SSTCC and the
EARSM model match the experimental data better than those of the SST model.
It is expected that for the parametric study of the AxFeeder16, the benefits of the
SSTCC or the EARSM model at high Reynolds numbers do not outweigh the extra
computation effort (Table C.7) and the SST model will perform reliably.

16The AxFeeder was projected for a Reynolds number range from 2.0 · 105 to 2.0 · 106, with a
focus on the design point equivalent to Re = 1 · 106
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5. Comparison to experimental data

5.3 Analysis of the secondary flow in
configurations A and B

In Chapter 2, the secondary velocity ratio φII was determined as a variable of the
highest significance to quantify the flow disturbances in Pelton turbine distributor
systems. Therefore, φII was chosen as one of the quantities evaluating the designs
in the parametric study of the AxFeeder in Chapter 6. In this section, for the
90◦ pipe bends of Sudo et al. [104] and Shiraishi et al. [92], the sensitivity of the
secondary velocity ratio to mesh refinement and the choice of turbulence model
was evaluated at three stations, ϕ = 90◦, z/d = 1, and z/d = 5. Tables C.4, C.5,
C.11 and C.12 give an overview of the computed values for all cases with differ-
ent meshes and different turbulence models for the two 90◦ pipe bend configurations.

For both configurations, the structure of the secondary velocity, a pair of counter-
rotating Dean vortices [13], is correctly predicted in all combinations of meshes and
turbulence models (see Figure 5.19). The choice of the turbulence model and the
wall layer resolution significantly affect the secondary velocity ratios downstream
of the bend. Typically, cases with the kE turbulence model under-predict the
secondary flow velocity magnitudes, especially in regions close to the inside wall of
the bend. This effect, which is exemplarily shown for Re = 1.2 · 106 in Figure 5.19
is more pronounced at stations closer to the bend at and at high Reynolds number.
Generally, the SST model tends to estimate higher values of the secondary velocity
ratio than the EARSM or kE model cases.

The effect of the Reynolds number on the secondary velocity ratio φII is presented in
Figure 5.18. The three curves by Shiraishi et al. [92] show a gradual decline of φII

with increasing Reynolds number17. With an increasing Reynolds number, the
turbulent structures in the flow increase. Thus, the turbulent kinetic energy and the
turbulent viscosity increase, and the secondary flow structures become less dominant.
Because of the smaller curvature radius in the bend of Shiraishi et al. [92], φII at
station ϕ = 90◦ is about a third higher than in the bend of Sudo et al. [104]. For
stations further downstream, the secondary flow structures in the configuration
of Sudo et al. [104] appear to be longer lasting. Thus, in station z/d = 1, φII is
about the same for both bends. In station z/d = 5 of Sudo et al. [104], φII is even
higher than φII by Shiraishi et al. [92]. The contour plots in Figure 5.19 underline
this observation. In the case of Shiraishi et al. [92], due to the small curvature
radius, the secondary flow at ϕ = 90◦ is primarily determined by the change of
flow direction in the bend, resulting in secondary velocity vectors pointing to the
outer wall of the bend. It takes several stations downstream the bend exit until
the characteristic Dean vortices become visible. At the station z/d = 1, φII has its
maxima close to the inside wall and at the core of the separation zone, where both
vortices meet. As the flow moves to station z/d = 5, this region of high secondary
velocity becomes more prominent and moves towards the bend centre. In turn, the
magnitude of the secondary velocity dissipates.

17Thereby, the patterns of the secondary flow do not change. They stay the same as depicted in
Figure 5.18. Only the magnitude of the secondary flow decreases.
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CHAPTER 6
Distributor systems with axial

inflow

This chapter thoroughly investigates design concepts for a Pelton turbine distributor
system with axial inflow and discusses the results of an extensive parametric study.
The content of this chapter represents a comprehensive supplement and a significant
expansion of a prior publication of mine, Numerical Investigation of Pelton Turbine
Distributors Systems with Axial Inflow [30].

6.1 Introduction to the concept
6.1.1 The AxFeeder
In contrast to conventional Pelton turbine distributor systems, this new approach
of a Pelton turbine distributor system with axial inflow1, deemed AxFeeder, shows
some significant differences that shall be explained by the universal sketch depicted
in Figure 6.1. In flow direction, the penstock line with diameter D1 is directly
connected to the manifold element, where the incoming flow is divided into n equal
streams. Thereby, as few losses and secondary flows as possible shall be induced.
Station 1 is located three diameters upstream of the beginning of the manifold, and
station 2 is located at the beginning of the manifold element.

Unlike in conventional distributor systems, where one branch line at a time separates
from the main line, in the case of the AxFeeder, all branch lines2 separate from
the manifold from the same streamwise location. The n branch lines, ranging from
station 51 (5i) to station 101 (10i), are connected to the manifold head at the
deviation hole circle diameter Dhc and the deviation angle δ. The last branch line
component is the injector bend, ranging from stations 81 (8i) to 101 (10i). It is
pivoted relative to the branch line by the angle γ. The exact value of γ can be
adjusted according to the runner’s pitch cycle diameter Dp. In theory, the number

1Such a system was first described in the patent of Erlach and Staubli from 2008 [21].
2The index i = 1 : n indicates the branch line number.
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Figure 6.1: Generic sketch of the AxFeeder with the individual components and

evaluation stations 1 to 101.

of branch lines is limited only by the space at the manifold head3. With Pelton
turbines, for practical reasons and due to symmetry constraints, the number of
branch lines lies between three and six. The branch lines are labelled such that
the last digit is defined by the branch line index i, and the digits before the last
denote the station in ascending order. For example, station 83 is the station at the
beginning of the injector bend of branch line i = 3.

6.1.2 Four core designs
By its configuration, the AxFeeder should be compact and deliver excellent jet
quality [30]. Indeed, a compact design contributes directly to the distributor’s
materials and manufacturing costs and the turbine hall’s construction costs (see also
Sections 2.3 and 2.4). Excellent jet quality is necessary as the jets affect not only
the turbine efficiency (see Section 2.1) but also the distribution of mechanical loads
on the runner and the turbine shaft assembly [14]. The literature in Section 2.2
emphasised a direct correlation4 between the flow quality at the stations upstream of
the injector and the jet quality. This allows the omission of the injectors and the jets
from the simulations, making studying many hundreds of design variations possible
in the first place5. Thus, one main goal of the parameter study was to evaluate
the effects of different designs on the flow quality at the interface to the injector
(stations 10i). Another primary goal was to evaluate the effects of different design
modifications on the power losses of the AxFeeder. The quantities of interest for the
parameter study (= flow quality criteria) are thus: the power loss coefficient ζP mT E,
the dissipation power coefficient ζΦ, and the secondary velocity ratio φII .
3The space at the manifold head is determined as a combination of the deviation hole circle
diameter Dhc and the deviation angle δ.

4Semlitsch [89] found this correlation to hold for conventional Pelton turbine distributor systems.
5For a topologically similar case of a conventional distributor with two injectors, omitting the
injectors allowed for a reduction of computation time of almost 80 %.
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Therefore, four different core designs of the distributor system with axial inflow
were investigated. Mid-section cuts are shown in Figure 6.2. Starting from the basic
model of Figure 6.2 a) that was inspired by the patent of Erlach and Staubli [21],
these four designs can be mainly distinguished by the shape of the manifold and the
connection of the manifold to the branch lines. While the designs in Figure 6.2 a)
and b) have a diffuser-shaped manifold, designs c) and d) have spherical and
cylindrical manifold bodies. Except for the basic model a), which does not provide
enough space to place a frustum, the first branch line section in variants b) to d)
between diameters D41 and D51 is shaped as a conical frustum. The frustum allows
for a smoother and more even transition between the manifold and the branch
lines. While the diffuser-shaped manifold in designs a) and b) decelerates the flow
continuously before dividing it into n = 6 equal streams, the diffuser increases
the overall lengths of these designs drastically. For a more compact overall size
of the AxFeeder, the diffuser is replaced by a spherical manifold, Figure 6.2 c),
or completely excluded, leading to the cylindrical manifold variant, Figure 6.2 d).
The manifold becomes significantly shorter in these cases than in designs a) and
b). However, the AxFeeder is typically larger than a conventional Pelton turbine
distributor system. This fact is discussed in detail in Appendix D.1.

6.2 Verification

6.2.1 Computational domain and simulation setup
The parametric study of the AxFeeder examines the effects of geometric changes
on the flow quality in the manifold and the branch lines. Thus, the injectors were
not considered in the domain. Instead of the injectors, an outlet body was fitted
at the downstream end of each branch line. The length of the outlet body was
determined by investigating its effect on the power loss coefficient, the dissipation
power coefficient and the secondary flow ratio. To ensure a developed inflow, the
inlet pipe was extended ten times its diameter upstream of station 1. The complete
model with six branch lines was tested in the grid refinement and iteration number
studies. A possible use of geometric symmetry was tested in the symmetry study.
The effects of wall resolution and domain length downstream of the outlet were also
investigated in their respective studies. The basic model with the diffuser-shaped
manifold as presented in Figure 6.2 a) was employed for all these studies. The
computational domain is sketched fully in Figure 6.3.

The flow is assumed to be single-phase, steady, incompressible and isothermal. The
density and dynamic viscosity of water at 25 ◦C were set to ρ = 997 kg/m3 and
µ = 8.899 ·10−4 Pa s. A top hat velocity profile corresponding to a Reynolds number
of 106 was specified at the inlet of all cases presented in this section. The Reynolds
number was changed only for the cases presented in Section 6.3.2. The pressure
boundary condition was set to 1 bar at the outlet. A turbulence intensity of It = 5%
together with a turbulent length scale corresponding to the hydraulic diameter of
station 1 was set as turbulence boundary conditions at the inlet. A no-slip boundary
condition was employed at all walls. They were set to be hydraulically smooth.
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Following the results of the comparison of different modelling approaches for the
90◦ bends of Sudo et al. [104], Section 5.1, and Shiraishi et al. [92], Section 5.2, the
k-ω SST model [61] was employed as turbulence closure. The advection terms were
solved using the high-resolution scheme, a second-order scheme that automatically
blends to a first-order formulation if stability issues arise [3]. The advection of
turbulence was discretised by a first-order upwind scheme. These settings were kept
the same for all cases within Chapter 6 except for the change of the inflow Reynolds
number in Section 6.3.2. Identical setups were determined to be trustworthy by
Hahn et al. [30, 31].

6.2.2 Estimation of individual errors
Error from spatial discretisation

To estimate the discretisation error, a grid resolution study was performed following
the procedure of Celik et al. [11], introduced in Section 4.4. In the studies of the
90◦ bends of Sudo et al. [104], Section 5.1, and Shiraishi et al. [92], Section 5.2, a
mixed element type meshing approach proved to be a viable compromise between
reliable, trustworthy simulation results and meshing effort. Therefore, for the
grid study of the AxFeeder, three meshes were created that were composed of
hexahedral elements for all pipe segments (including the diffuser) and tetrahedral
elements in the manifold head (grey shaded area between stations 3 and 51 in
Figure 6.3). This mixed element type meshing approach was maintained for all
subsequent simulations of the AxFeeder. The three meshes consisted of 3.2 · 106,
7.7 · 106 and 18.7 · 106 elements. The maximum y+ value at the walls was below 1
for all investigated cases. The uncertainties caused by spatial discretisation were
computed for the power loss coefficients ζP mT E and the dissipation power coef-
ficients ζΦ between stations 1 to 50, 50 to 100 and 1 to 100, and the secondary
velocity ratios φII at stations 50, 80 and 100. The uncertainties were also computed
for the normalised magnitudes of the local flow velocities ||⃗c|| at stations 76 and 101.

A comprehensive list of data of the meshes is given in Table D.1.
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Figure 6.4: Velocity profiles including the extrapolated curves (Extr.) and the
discretisation errors at stations 76 and 101.

The fine-grid convergence indices for the power loss coefficients are in the low
single-digit percentage range, and the apparent order of the method lies between
1.5 and 3.7. Although the grid convergence is satisfactorily low, the value of Roc

indicates the divergence of the method. A possible explanation for this behaviour
is that the numerical values of ζP mT E for the three grids lie very close together.
Hence, their differences are marginally small. Celik et al. [11] point out that the
procedure outlined in Section 4.4 does not work in such a situation. This might be
the case in the present study.

The dissipation power coefficients react much more sensitively to mesh refinements,
thus yielding a fine-grid convergence index of 14.6% when evaluated between sta-
tions 1 and 100. A closer look at the data reveals that this high value can be
traced back to the part of the domain between stations 1 and 50, where GCI21

fine is
over 44 %. Generally, the convergence for the loss coefficients is significantly better
in the domain between stations 50 and 100 than between stations 1 and 50. This is
most likely caused by the local flow separations when the flow leaves the manifold
and enters the branch lines6.

The grid convergence procedure yields low, single-digit percentage values for the
secondary velocity ratio φII at stations 50 and 80 with apparent orders of around 4.7
and 1.5, respectively. The secondary velocity ratio φII at station 100 reacts much
more sensitively to a change of the mesh size resulting in a fine-grid convergence
index of almost 14 %. One reason for the higher value of GCI21

fine of the secondary
flow ratio at station 100 can be seen in part b) of Figure 6.4, in which the normalised

6The transition from the manifold to the branch lines was identified as a weakness of core design a).

72



6. Distributor systems with axial inflow

velocity magnitude7 at a horizontal line (z-direction) in station 101 is plotted for
the three meshes. At this station directly downstream of the injector bend, there is
a velocity deficit at the inside wall of the bend. The exact prediction of this deficit
poses an inherent challenge for RANS modelling. Therefore, the local GCI21

fine

values close to this velocity deficit, indicated by the error bars in Figure 6.4, are
significantly larger than at the rest of the profile. While the mean value of the
fine-grid convergence index is just over 3 %, the corresponding maximum reaches
almost 80 %. When evaluated at station 76, the local maximum of the grid con-
vergence index is less than 10 % and the mean value less than 1 %. The velocity
curves of that respective station are plotted in Figure 6.4 a). The mean value of
the apparent order of the method poa lies above three for both velocity curves. The
rate of oscillatory convergence is around 75 % for both velocity curves.

The settings of the medium mesh were chosen for all subsequent simulations to
maintain an adequate balance between computational times (listed in Table D.1)
and numerical accuracy. The relative number and average size of the mesh el-
ements of the AxFeeder medium mesh correspond to that of the fine meshes of
the Sudo et al. [104] and Shiraishi et al. [92] validation cases presented in Chapter 5.

Further results of the grid study are listed in Table D.2 for the loss coefficients, in
Table D.3 for the velocity magnitudes at stations 76 and 101 and in Table D.4 for
the secondary velocity ratios.

Iteration number study

As raised earlier in this study, to handle the vast number of computations needed
for the parametric study, the focus after the mesh study was to find additional
potential for time savings in each simulation run. Therefore, it was investigated
how the quantities of interest, the loss coefficients and the secondary flow velocity
ratio are affected by a reduction of iteration steps. Table 6.1 lists the differences of
these quantities when calculated with a reduced iteration number to their respective
values at 1000 iterations. For all quantities, the differences are well below 1 %,
meaning the error induced by halving the iteration number is less than the error
induced by the spatial resolution of the domain. From residuals, the turbulent
kinetic energy equation did not completely converge after 250 iterations. Hence, for
the parametric study, the iteration count was set to 500, which implies a slightly
more considerable uncertainty for the secondary velocity ratio but ensures a fully
converged solution.

Symmetry study

All core designs of the AxFeeder are n-fold rotational symmetric by the z-axis, in
the most typical case with six branch lines, n = 6. The simulations were chosen
such that the boundary conditions allow for a symmetric flow as well. Thus, in
7The reference velocities correspond to the mean velocities calculated from the Reynolds numbers
at the specified station. Since the diameters and therefore the mean velocities are equal for
stations 76 and 101, cs,101 is employed as a reference for both stations.

73



6. Distributor systems with axial inflow

Iterations ζP mT E|100
1 ζΦ|100

1 φII,100

250 0.05 0.15 0.13
500 0.00 0.09 0.27
750 0.00 -0.02 -0.02

Table 6.1: Differences in % of loss coefficients and the secondary velocity ratio
to their respective values after 1000 iterations, for cases with reduced
iteration number.

this subsection, it is tested if the domain can be reduced to a 360◦/n = 60◦ sector
model of the manifold part and only one branch line. The differences in the loss
coefficients evaluated between stations 1 and 101 were 0.4 % for ζP mT E|101

1 , and
−0.5 % for ζP hi|101

1 . With the symmetric model, the secondary velocity ratio at
station 101 is slightly under-predicted compared to the full model. The difference
is 5.3 %, which is still only a third of the uncertainty from the spatial discretisation.
However, using symmetry allowed for the computation time to be greatly reduced
(see also Table D.1). Thus, rotational symmetry was employed in all simulations of
Sections 6.3.2, 6.4 and 6.5 as well as for the wall resolution study and the outlet
length study.

Wall resolution study

A potential to further reduce the computational costs of each case is offered
by adjusting the mesh close to the walls to enforce the use of wall functions.
Consequently, on the symmetric model, it was investigated how much the flow
quality criteria were affected by a reduced mesh resolution at the walls. While the
power loss coefficient almost stayed constant and the secondary velocity ratio only
changed by around 0.7 %, even if the wall resolution was changed such that y+ > 30,
the dissipation power coefficient reacted much more sensitively. A change of over
36 % was observed for this quantity. Such a sensitive reaction of the dissipation
power coefficient was already witnessed in the validation of the method against the
experiments from Sudo et al. [104] and Shiraishi et al. [92] and encourages keeping
a satisfactory mesh resolution such that a maximum value of y+ < 1 is ensured at
all walls.

Outlet length study

As previously addressed, the injectors were not included in the parametric study of
the AxFeeder. Instead, to provide sufficient distance from the evaluation stations
to the boundary of the fluid domain, a cylindrical outlet body was attached to the
branch line downstream of the injector bend. Table 6.2 shows the deviation of the
loss coefficients and the secondary flow ratio from the mean value for four different
lengths Lout of the outlet body. The outlet body’s length has a negligible effect on
the power loss and dissipation power coefficients. Again, the ratio of secondary
velocity responds more sensitively, with a maximum deviation of around 1.5 % and
no clear trend of whether a longer or shorter outlet body is favourable. As the
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Lout/D101 ζP mT E|100
1 ζΦ|100

1 φII,100

3 0.00 0.05 0.24
6 -0.12 -0.28 0.29
9 -0.02 0.01 -1.54
12 0.14 0.23 1.01

Table 6.2: Deviations of the loss coefficients and the secondary velocity ratios to
their mean value in % for four different outlet body lengths.

impact of the outlet body length is still relatively small compared to the influence
of the mesh on the flow quality indicators, a value of Lout = 6 · D101 was selected for
all simulations unless specified otherwise. This choice allowed the outlet boundary
conditions to be sufficiently far downstream of the last evaluation station 101 and
allowed for no overlap of the outlet bodies in simulations of the entire model with
six branch lines.

The length of the inlet body Lin may also have a non-negligible effect on the flow
in the manifold. However, a fixed value of ten diameters was set for Lin to achieve
comparable inflow conditions for all cases of the parameter study, to be identical
with the inflow length of the projected test rig.

6.2.3 Compound simulation error
For the three main quantities of interest, the power loss coefficient between stations 1
and 100 (101 respectively), ζP mT E,1011, the dissipation power coefficient ζΦ, and
the secondary velocity ratio at stations 100 (101 respectively), φII,101, a compound
simulation error composed of the five main modelling assumptions (spatial dis-
cretisation, iteration number, symmetry, wall resolution and length of the outlet
body) was computed. The procedure to calculate the compound simulation er-
rors as a root-sum-square URSS, and the mean value of the individual errors as a
root-mean-squares URMS of each quantity of interest from the individual errors uR

is thoroughly explained in Appendix A.3.3. The results of the computations are
summarised in Table 6.3.

The primary source of error for all three quantities of interest is the spatial discreti-
sation, i.e. the grid size. In fact, for both loss coefficients, ζP mT E,1011 and ζΦ, the
root-sum-square is almost entirely contributed by the spatial discretisation and the
other sources of error are negligible. It could be expected that the uncertainty URSS

of the power loss coefficient is the lowest as this quantity is driven mainly by the
pressures within the system and, as shown in Chapter 5, pressure-related quantities
were the least sensitive to the modelling assumptions made within this thesis. It
was also shown in Chapter 5 and in Section 6.2.2 that both the dissipation power
coefficient and the secondary velocity ratio react much more sensitively to a change
in grid size. In the case of ζΦ, the increased uncertainty is attributed to the local flow
separations at the sharp transition of the manifold to the branch lines. In the case
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Source of error uR

ζP mT E,1011 ζΦ φII,101

Spatial discretisation 2.41 14.64 13.65
Iteration number 0.00 0.09 0.27
Symmetry 0.40 0.50 5.3
Wall resolution 0.00 0.00 0.00
Outlet length 0.12 0.28 0.29

URSS 2.45 14.65 14.65
URMS 1.22 7.33 7.32

Table 6.3: Compound errors of the CFD simulation for loss coefficients and sec-
ondary velocity ratio in %.

of φII,101, it was shown for the 90◦ pipe bends in Appendices C.1.2 and C.2.2, and
for the AxFeeder, especially in Figure 6.4, that there is an adverse pressure gradient
decelerating the flow at the inside of the bends. This gradient and the change in
the flow direction induce swirling flow with an increased secondary velocity ratio
and distorted velocity contours. These phenomena can only be captured in all
preciseness by scale-resolving simulations.

Only for the secondary velocity ratio, with the influence of symmetry, does a
different source of error than spatial discretisation play a role. The errors to due
wall resolution were set to zero because, to resolve the flow close to the walls suffi-
ciently and thus accurately compute dissipation in the boundary layer, a very fine
mesh resolution with maximum values of y+ < 1 for all walls was needed in any case.

The values of URSS were taken as the widths of the error bands in the operating
charts of Figure 6.6.

The primary sources of error not accounted for in this study were the temporal dis-
cretisation, as a steady-state flow was assumed for all cases and the impact of turbu-
lence modelling, as the k-ω SST model was employed for all cases. These two choices
were justifiable, following the extensive comparison of CFD results achieved by se-
tups relying on the steady-state flow assumption and the k-ω SST model against the
experimental data of the 90◦ pipe bends of Sudo et al. [104] and Shiraishi et al. [92]
that was presented in Sections 5.1 and 5.2.

6.3 Designated operating regime
The operating regime chosen for the AxFeeder was derived from a) the planned
application of the AxFeeder in small hydropower plant projects and b) typical
flow velocities in pressure pipelines, penstocks and turbine lines found in technical
literature.
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6.3.1 Selection of design parameters
With a typical maximum rated power output P = 10 MW in small hydropower
plants, combinations of the volumetric flow rate Q and the geodetic head8 H can
be calculated by

P = ρgQH . (6.1)

A schematic overview of computed flow rates Q for several fixed values of the head H
and the power output P is listed in Table 6.4. The colour code indicates sets of H,
P and Q that appear to be a suitable parameter combination for employing a Pelton
turbine in general, and the AxFeeder in particular, by a green background. The
areas of application for water turbines shown by Giesecke, Mosonyi and Heimerl [25]
suggest that volumetric flow rates of less than 50 L/s are outside the range of classical
water turbine types. Therefore, these data points were given a grey background. If
either the head becomes too low or the flow rate too high to use a Pelton turbine,
then the data point was given a red background. The set of P = 10 000 kW and
H = 500 m requires the use of a gear unit to match the speeds of turbine and
generator to be sensible for the application of a Pelton turbine. However, a gear
unit is not always a preferred option with hydraulic turbines; therefore, this set is
marked by a yellow background.

Q in L/s H in m
P in kW 50 100 250 500 1000

50 102 51 20 10 5
100 204 102 41 20 10
250 511 256 102 51 26
500 1022 511 204 102 51

1000 2045 1022 409 204 102
2500 5112 2556 1022 511 256
5000 10224 5112 2045 1022 511

10000 20449 10224 4090 2045 1022

Table 6.4: Volumetric flow rates Q of small hydropower plants suitable for the
installation of a Pelton turbine.

Reference values for typical mean flow velocities in pressure pipelines, penstocks
and turbine lines taken from literature lie between 1 m/s and 7 m/s. For short pipes
with a diameter D1 between 0.6 m and 4 m, a length less than 300 m, and low heads
of less than 90 m, Nechleba [66] suggests the empiric correlation

c̄s,max = 4.3 − 0.5 · D1 (6.2)

to estimate the upper limit for the mean flow velocity in a pipe with diameter D1.
The evaluation of this equation results in recommended mean flow velocities of
8For simplicity, the difference between geodetic head and net head shall not be considered here,
as it is irrelevant for the generality of the statement made.
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around 2 m/s to 4 m/s. A summary of recommended flow velocities from different
authors is listed in Table 6.5. The authors seem to focus their recommendations
of c̄s around 3 m/s to 4 m/s. Because for a fully developed, turbulent pipe flow, a
lower velocity is generally associated with lower friction losses and less dissipation,
within this thesis, the projected velocity at the inlet of the AxFeeder was set to
3 m/s for the reference design point.

Combining these two approaches, where sensible flow rates are derived from the
desired small hydro installations and sensible flow velocities are taken from literature
recommendations, it is possible to estimate the size of the AxFeeder, expressed by
the diameter of the penstock line D1, through

D1 =
#

4Q

πc̄s

. (6.3)

For a range of flow velocities from 3 m/s to 5 m/s, and flow rates Q1 of 50 L/s
to 1000 L/s (shaded green area in part a) of Figure 6.5), a diameter range D1 of
150 mm to 650 mm follows.
Equally, the Reynolds number of this flow is evaluated by

Re1 = 4Q

D1πν
, (6.4)

which, for the same range of flow rates as before and diameters as calculated by
Equation (6.3), gives Reynolds numbers from around 5 · 105 to 2 · 106.

Following this derivation, the limits of Reynolds numbers to be investigated in
Section 6.3.2 were set to 2 ·105 and 2 ·106(shaded green area in part b) of Figure 6.5).
The lower limit of the Reynolds number range was chosen less than the estimated
5 · 105 because when the turbine is operated at part-load, the flow rate and, thus,
the Reynolds number in the pipe is significantly lower. Therefore, it is of interest if,
in any part of the relevant operating range of the AxFeeder, any of the applied flow
quality criteria, especially the power losses, show a similar transition regime with a
sudden fall or rise (of the losses), like it was observed in Figure 5.10. A range of
penstock line diameters D1 from 100 mm to 500 mm was chosen to accommodate
a wide variety of small hydro Pelton turbine designs. With a target value as

Author c̄s,min c̄s,max Application

Giesecke, Mosonyi and
Heimerl [25]

1 7 Penstock

Horlacher [37] 1 6 General hydropower, turbine lines
Nechleba [66] 3 4 Penstock
Mosonyi [64] 3 5 Penstock, properly settled water

Table 6.5: Recommended mean flow velocities in m/s for pressure pipelines, pen-
stocks and turbine lines.
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Figure 6.5: Charts of a) volumetric flow rate Q1 and b) Reynolds number Re1
plotted against the mean flow velocity c̄s,1 for pipes with diameter D1.

mentioned above of 3 m/s for the inlet velocity at the reference design point and a
choice of 300 mm for the diameter of the pipe, the corresponding Reynolds number
becomes 1 · 106 and the corresponding volumetric flow rate becomes 210 L/s. This
choice of D1 = 300 mm and Re1 = 1 · 106 was made with respect to suitable test rig
sizes for the experimental testing planned within the scope of the project AxFeeder
(FO999888084) and a possible use of the test rig design in a future small hydro field
application. In combination with an assumed head of 125 m, the turbine could be
rated at a power of around 250 kW. For reference, a suitable runner diameter Dp

for such a turbine size would lie at around 340 mm.

So far, all the numbers given relate to reference station 1. With the split of the
flow path into n branch lines, the flow quantities can be expressed with respect to
the diameter of a station within the branch line, e.g. station 51 with D51. The
volumetric flow rate Q51 is thus

Q51 = D2
51π

4 · c̄s,51 = Q1

n
= D2

1π · c̄s,1

4 · n
, (6.5)

and the mean flow velocity c̄s,51 becomes

c̄s,51 = 4Q51

D2
51π

= 4Q1

D2
51π · n

=


D1

D51

2
· c̄s,1

n
. (6.6)

Finally, the Reynolds number in station 51 is achieved with

Re51 = c̄s,51 · D51

ν
=


D1

D51

2
· c̄s,1

n
· D51

ν
= D1

D51
· Re1

n
. (6.7)

With the AxFeeder, the diameter ratio D1/D51 ranges from 2.07 to 3.50 and with
n = 6 branch lines, Re51 lies between 0.34 and 0.58 · Re1. For the commonly used
diameter ratio D1/D51 = 2.5, Re51/Re1 amounts to around 0.42.
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6. Distributor systems with axial inflow

6.3.2 Operating regime of the diffuser manifold design
The designated operating regime covers a wide range of pipe diameters D1, from
100 mm to 500 mm, and Reynolds numbers Re1, from 2 · 105 to 2 · 106, which are
suitable for many possible Pelton turbine layouts in small hydro applications. The
diffuser manifold design (basic model) as sketched in part a) of Figure 6.2 was
selected for the investigation of the operating regime because the verification of the
CFD process was conducted on this design. Thus, possible uncertainties of the CFD
simulations were the most well-known for this model. Altogether, 50 simulations
were executed in diameter steps of 100 mm and in Reynolds number steps of 2 · 105.
To automatise the simulation process, the diffuser manifold design model was fully
parameterised such that all geometric quantities scale with the diameter D1 of
the penstock line. Therefore, the design and the operating point were entirely
determined by one geometric parameter, the diameter D1, and one flow parameter,
the Reynolds number Re1. All other quantities, e.g. dimensions and flow velocities,
were derived from these two parameters.

The resulting operating charts for the loss coefficients and the secondary velocity
ratio at station 101 are presented in Figure 6.6, where each set of data points for
one diameter is given a unique symbol and color. In addition to the data points,
for each quantity of interest, a fit function in the form y(Re1) = k · Rea

1 with
y ∈ (ζP mT E,1011, ζΦ, φII,101) and k, a = const. was computed. The exponents of the
fit function can be nicely expressed when substituting a = −1/b, such that b, when
rounded to the nearest integer, becomes 9 for the power loss coefficient, 8 for the
dissipation power coefficient and 16 for the secondary velocity ratio. All coefficients
k and a of the fit functions are listed in Table 6.6.

In part a) of Figure 6.6, the loss coefficients, ζP mT E,1011 and ζΦ, show a gradual
decline with increasing Reynolds number. The decline levels off for very high
Reynolds numbers. Both loss coefficients are very insensitive to a change of the
diameter D1 and thus the size of the AxFeeder. The variation due to different
D1 is significantly smaller than the calculated compound simulation error. This
compound simulation error is indicated by the area shaded in grey. The width
of this area is defined such that the distances between the fit curve and its offset
curves equal the root-sum-square URSS of the individual errors.

Parameter ζP mT E,1011 ζΦ φII,101

k 2.938 2.962 0.101
a -0.111 -0.129 -0.063

b = −1/a 9.0 7.8 15.9
R2 0.993 0.991 0.558

Table 6.6: Parameters k, a and b and coefficient of determination R2 of the power
function fit curves.
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Figure 6.6: Operating charts of the AxFeeder with diffuser manifold (basic model)
showing the loss coefficients and the secondary velocity ratio at station
101 (including their error bands) against the Reynolds number Re1
for penstock line diameters D1 ranging from 100 mm to 500 mm.

The secondary velocity ratio at station 101, depicted in part b) of Figure 6.6
also declines gradually towards higher Reynolds numbers and levels off for high
Reynolds numbers at a value of φII,101 around 0.4. The secondary velocity ratio’s
decline rate is less steep than the loss coefficients. The difference between φII,101 at
Re1 = 2 · 105 and Re1 = 2 · 106 is less than 14 % compared to about 25 % for the
loss coefficients9. However, the scatter of the data points of different diameters D1
is much more prominent. Thus the coefficient of determination, R2, of the fit curve
for φII,101 is over 40 % lower than that of ζP mT E,1011 and ζΦ. This observation again
underlines that the secondary velocity and its underlying swirl phenomena are
9The pipe friction factor λ calculated with the correlation of Nikuradse [67], which is specified in
Equation (6.10) (taken from Bohl and Elmendorf [6]), decreases by roughly a third in the very
same Reynolds number range. For the AxFeeder, this hints that if the friction losses decrease
steeper than the power losses, the local resistance of the individual components (e.g. bends,
diffusers and confusers), the shape resistance, must increase slightly with the Reynolds number.
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much more sensitive to any changes within the simulation (e.g. design size) and less
sensitive to Reynolds number effects (e.g. boundary layer thickness)10. It indicates
the limits of the selected steady-state simulation approach as well. However, the
resulting variation in the data of the secondary velocity ratio is still clearly within
the root-sum-square error band (values listed in Table 6.3); therefore, the observed
trend of φII,101 was deemed plausible.

As stated in Section 6.3.1, the reference design point, for which all subsequent
parametric investigations presented in this chapter were executed, was chosen as
D1 = 300 mm and Re1 = 1 · 106 with Q1 = 210 L/s. The reference velocities
calculated from the Reynolds number were cs,1 = 2.975 m/s for the penstock line
and cs,101 = 3.099 m/s for a typical branch line at station 101 with D101 = 120 mm.
Reference velocities different from these values are explained if relevant. These
choices were deemed reasonable for the targeted application of the AxFeeder as
a laboratory test rig and in a small hydropower plant because none of the three
main quantities of interest, ζP mT E,1011, ζΦ and φII,101 showed rapid changes, but a
smooth and steady trend within the wide range of investigated Reynolds numbers.

Further, similar to the approach presented by Hahn et al. [30], the values of the loss
coefficients ζP mT E,1011 = 0.6291 and ζΦ = 0.4837 as well as the secondary velocity
ratio φII,101 = 0.0426 at this operating point were used as reference values for
normalising the variables whenever appropriate, e.g. Equations (6.21) and (6.22)
and Figure 6.42.

6.4 Parametric investigation
In this section, the effect of variations of relevant geometric parameters on the
quantities of interest, the power loss coefficient ζP mT E, the dissipation power coeffi-
cient ζΦ, and the secondary velocity ratio φII , is studied for each of the four core
manifold designs.

Table 6.7 provides an overview of the parameters varied for the four core design
concepts and in which figures the corresponding results are presented. These results
are shown in the form of 2-D line plots that are grouped such that the upper
plot shows the loss coefficients ζP mT E,1011 and ζΦ and the lower plot shows the
secondary velocity ratio φII,101 against the selected design parameter. In each of
these plots, dark-grey lines (full stroke for ζP mT E,1011 and φII,101, dashed for ζΦ)
indicate the corresponding reference values acquired by the investigation of the op-
erating regime (Section 6.3.2). Small vertical bars to either the right or left of these
reference lines shall provide a benchmark for a change of ±5 % of the reference value.

If not stated otherwise, all simulations in this section were conducted using the
symmetric models.

10A detailed analysis of the cause of this behaviour will have to be subject to future studies.
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ID Manifold type Design parameters Shown in

a) Diffuser manifold
(basic model)

diameter ratio D51/D1, throat radius
R41/D51, diffuser angle β

Figures 6.7
to 6.14

b) Diffuser m. with
conical frustum

frustum diameter ratio D41/D51, devia-
tion angle δ, horizontal pivot angle ϕ

Figures 6.15
to 6.22

c) Spherical m. sphere radius SR40/D1, deviation
angle δ, frustum diameter ratio D41/D51

Figures 6.23
to 6.27

d) Cylindrical m. axial position T4/D51, deviation angle δ,
throat radius R41/D51

Figures 6.28
to 6.32

Table 6.7: Overview of core designs and varied design parameters.

6.4.1 Diffuser manifold (basic model)
While in Figure 6.2, a comparison of all four core designs of the AxFeeder is shown,
the parameters varied for the study of the diffuser manifold design presented in
this subsection are highlighted in Figure 6.7. Here, it was chosen to investigate the
effects of a change of the branch line diameter D51, the throat radius R41 and the
diffuser angle β on the flow in the manifold and the branch lines.
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Figure 6.7: Sketch of the diffuser manifold design with dimensions relevant to the
parametric study highlighted in blue.

Diameter ratio

An appropriate selection of the branch line diameters depends on several considera-
tions: 1) From a manufacturing point of view, choosing the diameters so standard
pipes can be used is desired; 2) From a design point of view, a smooth connection
from the manifold to the branch lines is required; 3) From a hydraulic machinery
point of view, minimal losses and limited secondary flow are needed for high ef-
ficiencies. Due to the early research stage on Pelton turbine distributor systems
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6. Distributor systems with axial inflow

with axial inflow, demand 1) was given the least priority in this thesis. Instead, the
diameter ratio D51/D1, within constraints of the restricted space at the manifold
head, was varied from very small to very large diameters D51 until demand 3) was
not fulfilled anymore. Demand 2) is addressed in subsequent paragraphs elaborating
on the throat radius.

The results of the variation of the branch line diameter are depicted in Figure 6.8,
where the loss coefficients ζP mT E,1011 and ζΦ are plotted in part a) and the secondary
velocity ratio φII,101 is plotted in part b) of this figure. The loss curves and the
secondary velocity ratio curve show opposing trends. A smaller branch line diameter
causes a larger restriction as the flow transits through the head of the manifold
into the branch line. Also, the resulting transport velocity in the principal flow
direction and the Reynolds number (computed by Equation (6.7)) in the branch line
increase. The plots reveal that between 0.36 < D51/D1 < 0.4, there is an optimum,
where the losses are relatively low, but the secondary velocity ratio has not yet
risen steeply. Therefore, if not stated otherwise, a diameter ratio of D51/D1 = 0.4
was selected for further investigation within this subsection.

The reaction of the loss coefficients to a change in the branch line diameter can
be explained by the following analytical model: Assuming a fully turbulent flow of
a fluid with density ρ and a mean velocity cs in a hydraulically smooth, straight,
circular pipe with diameter d, the total pressure loss11 Δpt occurring along the
length l is defined as

Δpt = λ · l

d
· ρ

c2
s

2 . (6.8)

If the velocity is expressed by the constant volumetric flow rate Q = cs · d2π/4,
Equation (6.8) can be rewritten as

Δpt = λ · l

d
· ρ

2 ·
 4Q

d2π

2
= λ

d5 ·


8 · l · Q2 ρ

π2


� �� �

const.

∼ const. · λ · 1
d5 . (6.9)

The total pressure loss Δpt depends only on the pipe friction factor λ = f(Re)
and the inverse of the fifth power of the pipe diameter. The pipe friction factor
for a hydraulically smooth pipe depends only on the Reynolds number of the flow
and can be estimated by the correlation of Nikuradse [67] (taken from Bohl and
Elmendorf [6]),

λ(Re) = 0.0032 + 0.221 · Re−0.237 , (6.10)
which is valid in the range of 1 · 105 < Re < 5 · 106. Given that

Re = csd

ν
= 4Q

dπν
∼ const. · d−1 , (6.11)

thus λ ∼ d0.237 and finally Δpt ∼ 1/d4.763, it was proved that the total pressure loss,
being inversely proportional to the pipe diameter risen by a constant value greater
than 4, is dominated by the pipe diameter.
11A detailed derivation of this equation is given in [6, 36, 38].
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Figure 6.8: Line plots of the loss coefficients and secondary velocity ratios of
the diffuser manifold design (basic model) against the diameter
ratio D51/D1.

So, for two pipes A and B with same length and flow rate, the constants cancel
out, and the total pressure losses relate to each other as follows

Kana := Δpt,A

Δpt,B

= λA

λB

·


dB

dA

5

∼


dB

dA

4.763

. (6.12)

Similarly, the power losses and dissipation power of the AxFeeder evaluated for
different diameter ratios D51/D1 can be compared,

KP mT E := ζP mT E,1011(D51/D1)
ζP mT E,1011(D51/D1 = 0.4) and KΦ := ζΦ(D51/D1)

ζΦ(D51/D1 = 0.4) , (6.13)

where ζP mT E,1011(D51/D1 = 0.4) and ζΦ(D51/D1 = 0.4) were taken as the reference
points. This comparison is plotted in Figure 6.9 together with the relative differences

ΔKP mT E := KP mT E − Kana

Kana

and ΔKΦ := KΦ − Kana

Kana

(6.14)
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Figure 6.9: Comparison of the normalised loss coefficients against the analytical
correlation. ∗) = 5.5 · 105

between the analytical relation of Equation (6.12) and the CFD results acquired by
Equation (6.13).

The relative differences between KP mT E and Kana are less than 5 % for all data
points except for the smallest and the largest diameter ratio. The relative differences
between KΦ and Kana are slightly bigger. This observation proves a satisfactory
agreement between the analytical correlation of Equation (6.12) and the simulation
data of both loss coefficients. Further, it is proved that the choice of the size of the
branch line has a major influence on the losses of the AxFeeder.

Throat radius

Rounding of the transition from the manifold head to the branch line offers great
potential to reduce the flow losses. However, as Figure 6.10 reveals, the loss curves
and the secondary velocity ratio again show opposing trends. With the configuration
with sharp transition (R41/D51 = 0) as a reference, a rounded throat allows for a
possible loss reduction of over a third. In turn, unfortunately, the secondary flow
ratio at station 101 rises by almost 50 %. The sharp decline of the losses can be
compared to the correlation of the loss coefficient for a rounded contraction. To
model this, Idelchik [38] recommends

ζ = ζ
′ ·

:=a� �� �
Asmall

Abig

(3/4)

� �� �
Contraction

+ ζfr����
Straight pipe

= ζ
′ · a + ζfr (6.15)

with the factor a accounting for the cross-section change. In the case of the AxFeeder,
it is assumed that Asmall corresponds to the cross-section of a single branch line
and Abig corresponds to the n = 6th part of the manifold cross-section. This gives
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Figure 6.10: Line plots of the loss coefficients and secondary velocity ratios
of the diffuser manifold design (basic model) against the throat
radius R41/D51.

a value of almost exactly 0.7 for the factor a. The resistance coefficient ζ
′ can be

modelled as a special case of a circular bellmouth inlet. For this case, Idelchik [38]
gives a correlation depending of the relative throat radius r/D

ζ
′ = 0.03 + 0.47 · 10−7.7· r

D (6.16)

which can be plugged into Equation (6.15), so that the correlation for the loss
coefficient of a rounded contraction becomes

ζ = 0.7 ·

0.03 + 0.47 · 10−7.7· r

D


+ ζfr . (6.17)

To compare Equation (6.17) to the decline of the power loss coefficient ∂ζP mT E,1011

∂


R41
D51


and the decline of the dissipation power coefficient ∂ζΦ

∂


R41
D51

 , the first derivative

∂ζ

∂


r
D

 = 0.7 · ∂ζ
′

∂


r
D

 = −5.858 · 10−7.7· r
D (6.18)
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Figure 6.11: Rate of change of the loss coefficients ζP mT E,1011 and ζΦ compared
to the analytical correlation.

of ζ is used and plotted against the relative throat radius R41/D51 in Figure 6.11.
This figure shows that the rates of change of the loss coefficients largely agree with
the analytical correlation, barring the outlier for very small throat radii. These
outliers result from the fact that at very small throat radii, an even more refined
mesh would be needed to capture the flow in all detail. The computational effort
for this is unreasonable with the presented parametric study, as the general trend
holds regardless of the outliers. Further, both Figures 6.10 and 6.11 display that
the loss coefficients and the secondary velocity ratio level off at a relative throat
radius of around 0.1 to 0.2, where the effect of rounding the throat diminishes.

Diffuser angle

In core design a) of the AxFeeder, a conical diffuser allows for the increase in pipe
diameter from the manifold neck (D1) to the manifold head (D4). In the case of
the AxFeeder, the area ratio

AR = A2

A1
=


D2

D1

2
AxFeeder=====⇒ AR =


D4

D1

2
= 2.56 (6.19)

is fixed at 2.56, because D1 and D4 were fixed to allow for sufficient space at the
manifold head for the connection to the branch lines. This situation resembles one
of the optimum problems of Kline et al. [47], where the task was to find a suitable
length and opening angle for a diffuser of fixed area ratio to achieve maximum
pressure recovery. Prechter [73] advises that for such a problem, under steady flow
conditions, any length is suitable as long as the opening angle stays below the
limiting line a-a of the diffuser chart, Figure 6.12. So, for the parameter study of
the AxFeeder, to keep the design as compact as possible (see [30] and Section 6.1.2),
it is of particular interest to find a minimum length (in other words, a maximum
diffuser angle β), for which a steady flow without separation and stall, yet at the
same time with the least amount of losses and secondary flows, can be achieved.
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Figure 6.12: Flow regimes of conical diffusers recreated and modified from
Prechter [73] as cited in Bohl and Elmendorf [6]. Strictly valid
for L/R1 > 4.

As stated by Sovran and Klomp [96], two parameters completely define the ge-
ometries of straight-walled and conical diffusers. These parameters are the area
ratio AR and the non-dimensional lengths L/W1 or L/R1, respectively12. There-
fore, because the area ratio was already set, the only independent parameter left
is the diffuser half angle β/2 and, related to it, the axial length L14. The diffuser
half-angle was varied in steps of 2◦ from 2◦ to 24◦. Thus, the range of tested
diffuser angles β was from 4◦ to 48◦ with corresponding non-dimensional lengths
L14/R1 from 17.18 to 1.35. All design points tested are indicated by the blue cross
markers in Figure 6.12. Because of the fixed area ratio, these points lie on a straight
line in the double-logarithmic plot of the flow regions. In this plot, which was
recreated and modified from Prechter [73] as cited in Bohl and Elmendorf [6], the
flow regimes of a conical diffuser with straight walls are shown13. A steady flow
12While in many publications, e.g. [59, 74, 96], the axial length of the diffuser (equivalent to the

height of the frustum) is labelled by the letter N and the slant height is labelled by the letter L,
for compliance with the nomenclature of the AxFeeder, in this thesis, the axial length is denoted
by the letter L, e.g. L14.

13A similar version of this plot was already shown by Kline et al. [47]. Kline [47] and Prechter [73]
point out that this plot was created for plane-wall two-dimensional subsonic diffusers but can
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Figure 6.13: Line plots of the loss coefficients and secondary velocity ratios of the
diffuser manifold design (basic model) against the diffuser angle β.
i) - Data points with are discussed in Figure 6.14.

without appreciable stall can be expected for short diffusers with small angles β. If
a certain threshold is passed (indicated by line a-a), a large transitory stall occurs.
According to Reneau et al. [74], this regime is characterised by stall regions that
constantly form in, and are then washed out of the diffuser. Following McDonald
and Fox [59], the curve of maximum pressure recovery Cp,max = (p2 − p1) /pdyn,1 for
conical diffusers at constant length ratio lies in the steady flow regime. However,
Kline et al. [47], Prechter [73] and Reneau et al. [74] show the Cp,max curve, de-
picted in red in Figure 6.12, just above line a-a, already in the transitory stall regime.

In the case of the AxFeeder, where minimal losses14 and secondary flows are desired,
design points with signs of stall are not favourable. Coming from line a-a and

also be applied to conical diffusers.
14Reneau et al. [74] showed for plane diffusers that the minimum pressure loss occurs at

lower opening angles than the maximum effectiveness and the maximum of the pressure
recovery, Cp,max.
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the corresponding equation β = 34.0 ·


L
R1

−0.483
, such a critical angle would be

between 16◦ and 20◦ for the area ratio of the AxFeeder of AR = 2.56. The plots
in Figure 6.13 indicate that the onset of stall occurs at probably around 20◦, as
the loss coefficients show a gradual increase from this angle to the right and the
secondary velocity ratio rises sharply as well.

An even more precise picture of the flow is given in Figure 6.14, where contour plots
of the cases with β = 16◦, 20◦ and 24◦ are analysed. The plots in the y-z plane show
the velocity component w in the z-direction normalised by the mean streamwise
velocity cs,101 in station 101. While the plots generally appear very similar to each
other, a closer look reveals that the zone with low or even negative velocity w at
the outer wall of the diffuser has become more prominent for the case with the
biggest diffuser angle β = 24◦. The contour plots of station 4 show that the flow
is symmetric for the cases with β = 16◦ and β = 20◦, but shifted to the negative
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x-direction for β = 24◦. In this case, the secondary flow becomes asymmetric, which
indicates stall in the diffuser. Further, the asymmetric secondary flow contour
indicates that the symmetry modelling assumption is no longer valid. Thus, all
values for the loss coefficients and the secondary velocity ratio in the transitory stall
region must be treated cautiously and consequently are greyed out in Figure 6.13.
The contours of the secondary velocity ratio φII in station 101 are plotted on the
right of Figure 6.14. While for all cases with β ⩽ 20◦, the distinctive reverse S-shape
pattern appears, the apparent stall in the diffuser when β > 20◦ leads to a distorted
spiral-like pattern of the secondary flow at this station and consequently to an
unmistakable rise in φII,101 (part b) of Figure 6.13. Thus, diffuser opening angles
of β ⩾ 20◦ must be avoided strictly. In order to avoid flow separation and stall
securely, the angle β should not exceed 16◦ [30].

6.4.2 Diffuser manifold with conical frustum
The diffuser manifold (basic model) a) had little flexibility in the position of the first
branch line segment. The tight space at the manifold head prohibited a significant
variation of the deviation angle α. To overcome this, core design b), the diffuser
manifold with conical frustum was established. Here, the first upward-curved seg-
ment of the branch line was removed. Instead, a straight conical frustum with base
diameter D41, top diameter D51 and constant length L41 = 5/3 · D101 was applied
as the connecting segment between the manifold head and the branch lines. This
measure made it possible to reduce the double deflection of the diffuser manifold
(basic model), first by the angle α and then by the angle δ to a single deflection by
the angle δ only. Further, increasing the base diameter D41 of the frustum allowed
to lessen the restriction when the flow enters the branch line.
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An interesting design option arises if the deviation angle δ is set to 90◦. Then, the
pivot angle γ of the injector bend can be set to zero, and instead, the branch line
is rotated at the connecting flange (station 51) to the manifold by an angle ϕ to
provide sufficient room for the runner. This is sketched in the detail of Figure 6.15
as well as in Figure 6.20 and intensively discussed in conjunction with Figures 6.21
and 6.22. If not stated explicitly, however, the standard branch line angles15 were
γ = 9.3◦ and ϕ = 0◦.

Following the findings of Section 6.4.1 on the selection of the diffuser angle, if
not stated otherwise, for all configurations with the diffuser manifold design with
conical frustum, a diffuser angle β of 14◦ was chosen.

Frustum diameter and deviation angle

The effect of a variation of the frustum diameter ratio D41/D51 on the loss coef-
ficients ζP mT E,1011 and ζΦ is plotted in part a) of Figure 6.16 for five deviation
angles of the branch line ranging from 50◦ to 90◦. For all investigated combinations
of the frustum diameter ratio and the deviation angle, the clear trend of rapidly
decreasing losses with increasing diameter ratio becomes evident. The minimum
values of the losses for diameter ratios between D41/D51 = 1.6 to 1.8 (depending
on the deviation angle) are almost 50 % lower than the corresponding maximum
value for the configuration without a frustum (D41/D51 = 1.0). If the diameter
ratio becomes too large, then a slight increase in the loss coefficients is observed.
This global increase can be attributed to the increase in local losses when the flow
exits the frustum and enters the cylindrical part of the branch line at station 51.
A minor rise in the loss coefficients was also observed if the deviation angle was
increased. This increase can be explained by the general trend that the losses in a
pipe correlate with the deflection of the flow (e.g. [38]).

The contour plots of the viscous dissipation ΦV is (upper row) and turbulent dis-
sipation ΦT urb (lower row) in Figure 6.17 allow for more in-depth analysis of the
change of losses in cases where a conical frustum is applied. In this figure, two
distinct cases with a branch line deviation angle of 90◦, one without a frustum,
D41/D51 = 1.0, and one with a frustum of D41/D51 = 1.6, are compared.
On average, the viscous dissipation is almost an order of magnitude lower than
the turbulent dissipation. Roughly, four-fifths of the global dissipation losses are
caused by turbulent dissipation ΦT urb and only one-fifth is caused by viscous dissi-
pation ΦV is. Irrespective of this, both viscous and turbulent dissipation have their
maximum values in the wall boundary layer as well as at the sharp transition edge
from the manifold neck to the frustum16. This transition from the manifold neck
to the frustum is paramount, as most losses originate from that location. In the
case without a frustum, the flow is restricted too much and forms a considerable
separation zone that blocks the flow and affects the entire first part branch line
15These values were chosen in accordance with the designated design parameters and planned

operating regime. For details, refer to Section 6.3.
16Great care is therefore required when selecting the turbulence model and the mesh resolution

close to the walls. This issue was addressed in detail in Section 5.2.
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Figure 6.16: Line plots of the loss coefficients and secondary velocity ratios of the
diffuser manifold design with conical frustum against the frustum
diameter ratio D41/D51 for different deviation angles δ. i) - Data
points with are shown in Figure 6.17. ii) - Data points with are
shown in Figure 6.18 and in Figure 6.19 (only D41/D51 = 1.4 and
δ = 90◦).

up to around the horizontal part between stations 71 and 81. A high amount
of turbulent kinetic energy is produced in that process and, due to the direct
correlation between the turbulent kinetic energy k and the turbulent dissipation
ΦT urb (see Equation (3.26)), the dissipation at that location is high. The larger
opening of the frustum (see plots on the right of Figure 6.17) allows the flow to more
evenly change its direction and enter the branch line, so that the local acceleration
and deceleration of the flow is lower. Also, less turbulence is produced, and, overall,
the dissipation in that zone is significantly lower.

The effect of the separation zone is even better illustrated by the contour plots of the
normalised velocity in station 51, Figure 6.17, where, for the case without a frustum,
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D41/D51 = 1.6. Contours of the normalised velocity magnitude in
station 51.

a massive difference between the low velocity area at the inside (low z coordinate) of
the station and the high velocity area at the outside (high z coordinate) is observed.
This difference in velocity is mixed out downstream and causes additional mixing
losses. In the case with the frustum, the differences between the velocity maxima
and minima are around 50 % lower than in the configuration without frustum and
thus also the mixing losses and the turbulent dissipation downstream are much less.

In contrast to the clear trends shown by both loss coefficients, the picture of the
secondary velocity ratio appears more complex. For a wide range of frustum diame-
ter ratios, namely 1.2 < D41/D51 < 1.7, the secondary velocity ratio at station 101,
φII,101, is largely unaffected by the diameter ratio, but decreases with an increase of
the deviation angle δ (see part b) of Figure 6.16). This results in a minimum of the
secondary velocity ratio for a steep deviation angle of 90◦ and a medium frustum
diameter ratio of 1.4. Compared to the case with δ = 70◦ and D41/D51 = 1.0, which
has a similarly low secondary velocity ratio, this configuration with δ = 90◦ and
D41/D51 = 1.4 exhibits better overall performance, because it excels at both quality
criteria, showing low losses and little secondary flows at the same time. A more
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Figure 6.18: Comparison of the velocity magnitude ||⃗c||/cs,101 and the sec-
ondary velocity ratio φII in station 101 for deviation angles
δ = 50◦, 70◦ and 90◦ of a case with a frustum diameter ratio of
D41/D51 = 1.4.

in-depth picture of the secondary flow in station 101 is presented in Figure 6.18,
where, for a constant frustum diameter ratio of D41/D51 = 1.4, the contours of
the normalised velocity magnitude ||⃗c||/cs,101 and the secondary velocity ratio φII

for three deviation angles δ = 50◦, 70◦ and 90◦ are compared. All three contour
plots of the normalised velocity magnitude show a distinct velocity deficit close to
the inside of the bend (low z-axis position), with the velocity core shifting towards
the outside (high z-axis position). The velocity deficit is the most pronounced
for the case with the obtuse branch line angle δ = 50◦ and gradually smaller if δ
increases. Also, if δ increases, the velocity deficit becomes more (axi-)symmetric,
but still with the core shifted towards the high z-axis position. Because of the pivot
of the injector bend by the angle γ, the symmetry line is rotated away from the
z-axis by 3◦ to 5◦, which amounts to roughly one-third to one-half of the value of
the pivot angle γ. When comparing the plots of the velocity magnitude and the
plots of the secondary velocity ratio, there is a clear correlation between even and
(axi-)symmetric velocity contours and low magnitudes of the secondary velocity.
In contrast, the general reverse S-shape pattern with two smaller vortices and the
inside of the bend does not change if the deviation angle is increased.

The distinct reverse S-shape pattern forms from a combination of superposed effects
in the manifold and the branch lines. In general, the flow is subjected to a series
of turns in multiple directions, and each time, there is a short straight section
between the turns. At first, when the branch line is connected to the manifold head,
the flow has to turn by an angle δ towards the y-axis (away from the manifold
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for a design with a deviation angle δ = 90◦ and a frustum diameter
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centreline). This turn is followed by a straight section (insert) of varying length17

between stations 51 and 61 and another turn by the angle δ, this time in the
opposite direction18 (stations 61 to 71). After a short straight insert (stations 71
to 81) of length L71/D101 = 1.25, the injector bend turns the flow by 90◦ towards
the negative y-direction and, at the same time, by the pivot angle γ in the positive
x-direction.

The first turn from the manifold head until the top of the frustum at station 51
induces a pair of strong counter-rotating vortices. This vortex pair is called Dean
vortex19 [13] and is very well visible in Figure 6.19. These vortices are advected with
the flow along the entire branch line, and their effect also contributes to the reverse
S-shape pattern in station 101. The sense of rotation of the vortices in station 51
is such that along the centerline (z-axis), the secondary flow moves in positive
z-direction towards the outside of the branch line. To preserve continuity, the fluid
is transported in negative z-direction along the outer wall back to the inside of the
branch line. This movement contributes to the distinct shift of the core of the flow
towards the positive z-direction seen in the velocity magnitude plot of station 51.
As the flow is convected in the vertical tangent from station 51 to 61, the movement
mentioned above shifts the centre of the velocity magnitude (= the core of the
flow) even more towards the outside wall in positive z-direction. Likewise, the core
of high secondary velocity magnitude has moved closer to the centre of the pipe.
For the next bend, between stations 61 to 71, the maximum velocity is close to
what has now become the inside of the bend. Following Idelchik [38], this situation

17For a deviation angle δ of 50◦, the length of the insert is around L51/D51 = 6.2. This value
reduces gradually to L51/D51 = 2.6 for δ = 90◦.

18Such a configuration is called ’gooseneck’ [38].
19For further discussion, see also Section 6.5.3.
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has positive effects on the resistance coefficient as the losses associated with the
secondary excitation of transverse circulation are smaller than in the case of uniform
velocity distribution20. The flow leaves this ’gooseneck’ type configuration, and
when it reaches station 81, the velocity profile appears as several layers, stacked and
rotated by a certain angle. The same angle is visible in the next station, 101, after
the injector bend. It is about a third to a half of the pivot angle γ. The impact
of the last bend can also be seen on the right (inside with respect to the injector
bend, here the negative y position) of both contours in station 81, wherein the
plot of the velocity magnitude, a small beak appears. This beak can be associated
with two small vortices seen in the plot of the secondary velocity ratio. Again, the
vortices are of Dean-type and form in station 81 because of the upstream effect
of the subsequent injector bend between stations 81 and 91. A unique feature
of the injector bend is the simultaneous deflection in two directions. The rather
conventional deflection turns in the negative y-direction by an angle of 90◦, and
the second deflection comes from the rotation by the pivot angle γ = 9.3◦. While
the major deflection is associated with the two aforementioned small Dean vor-
tices, the minor deflection causes the rotation of the velocity profile and the twist
in the vortices such that in station 101, the distinct reverse S-shape pattern appears.

Further investigations on the flow structures in the manifold and the branch lines of
multifurcations were conducted by Semlitsch [29, 88]. There, it was shown by LES
simulations that the temporal evolution of the vortical structures in the AxFeeder
is highly chaotic and dependent on the exact operation conditions, especially the
number of active branch lines. However, the time-averaged velocities, secondary
velocities, and primary flow structures correlate well with the RANS modelling
approach chosen in this thesis. This issue is further addressed in Appendix D.3.

Finally, two general statements can be made: First, a steeper deviation angle of
the branch line (δ closer towards 90◦) results in up to 10 % higher loss coefficients
compared to configurations with less steep deviation angles. However, this adverse
effect of steep deviation angles is outweighed by the reduction of the secondary
flow ratio and can be more than compensated by increasing the frustum diameter
ratio. Second, compared to the effects of other design parameters, the frustum, as a
connecting part between the manifold and the branch lines, has the most significant
potential to reduce the losses [30].

Pivot angle

Pivoting the entire branch line was investigated for two designs with a deviation
angle δ of 90◦ and frustum diameter ratios D41/D51 from 1.0 to 1.9. Figure 6.20
highlights the major geometric differences between these two configurations. In
the rather ’conventional’ diffuser manifold design with the standard branch line,
only the last part of the branch line, the injector bend, is rotated by an angle γ,
with the rotation taking place at station 81. Contrary, in the variant with γ = 0◦,
20Idelchik [38] also comments extensively on the effect of the length of the insert between the two

bends of the ’gooseneck’, where a length of L/D ∼ 11 allows for a resistance coefficient of the
’gooseneck’ being approximately equal to that of one isolated bend.
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Figure 6.20: Comparative sketch of a diffuser manifold with pivoted branch line
against a diffuser manifold with standard branch line.

the rotation of the branch line occurs much earlier in flow direction, at station 61,
where the pivot angle ϕ is applied. To allow for a fair comparison of these two
concepts (= using a runner with the same pitch cycle diameter ∅Dp), the angle
pair (γ, ϕ) was either set to (9.3◦, 0◦) or (0◦, 15◦)21.

Apart from the differences highlighted above, all parts of the manifold and the
branch lines were the same. Also, the change in the length of the mean streamline
was marginal. Consequently, the power loss coefficient ζP mT E,1011 and the dissipa-
tion power coefficient ζΦ, which are plotted in part a) of Figure 6.21, were virtually
unaffected by the variation of the pivot angles.

The secondary velocity ratio φII,101 at station 101, which is plotted against the
frustum diameter ratio D41/D51 in part b) of Figure 6.21, is significantly impacted
by the different pivot angles. The general trend is that when the branch line is
already rotated at station 61 by the pivot angle ϕ = 15◦, the secondary velocity
ratio at station 101 is around 25 % to 30 % higher than for the designs with ϕ = 0◦.
Interestingly, the data points with D41/D51 = 1.0 (no frustum) are the only ex-
ceptions of that trend. Additionally, the data points almost coincide in the cases
without frustum. Moreover, these two data points also have a very similar value for
φII,101 as the case with D41/D51 = 1.4 and ϕ = 15◦.

Putting this finding under a lens, the flow features of these four cases (highlighted
by the in Figure 6.21) are plotted in Figure 6.22. This figure displays the contours
of the normalised velocity magnitude ||⃗c||/cs,101 and the secondary velocity ratio φII

at stations 51 (after the frustum), 61 (before the first bend of the branch line),
21The exact value of ϕ would be 15.116◦. However, for the sake of better readability, in the rest

of this thesis, the integer value of ϕ = 15◦ will be used.

99



6. Distributor systems with axial inflow

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
2.0
3.0
4.0
5.0
6.0
7.0
8.0 ·10−1

D41/D51

ζ P
m

T
E

,1
01

1,
ζ Φ

ζP mT E,1011: ϕ = 0◦ 15◦

ζΦ: ϕ = 0◦ 15◦

a) Loss coefficients

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
2.0
3.0
4.0
5.0
6.0
7.0
8.0 ·10−2

i)

D41/D51

φ
I
I
,1

01

ϕ = 0◦ 15◦

b) Secondary velocity ratio

Figure 6.21: Line plots of the loss coefficients and secondary velocity ratios of the
diffuser manifold design with conical frustum against the frustum
diameter ratio D41/D51 for two horizontal pivot angles ϕ. The
deviation angle for both configurations was δ = 90◦. i) - Data points
with are compared in Figure 6.22.

81 (before the injector bend) and 101 (after the injector bend).
Thereby, the following observations were made and explanations derived:

Station 51: Both the velocity magnitude ||⃗c||/cs,101 and the secondary velocity
ratio φII are not affected significantly by the change of the pivot angles. In cases
with the frustum, the velocity is more evenly distributed across the station, and a
beak located at the inside of the bend (towards the negative z-coordinate) becomes
visible in the secondary flow plots.

Station 61: Again, the velocity is mostly unaffected by the variation of the pivot
angles but becomes more evenly distributed for the cases with the frustum22. The
22The reason for this is that the frustum acts as a nozzle and nozzles equalise the flow, whereas
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plots of the secondary velocity ratio look almost identical, with the only difference
being that in cases with ϕ = 15◦, the vortex pair is already slightly rotated by
around ϕ/2 in the direction of the pivoted branch line.

Station 81: At this station, the flow-equalising effect of the frustum (nozzle) becomes
prominent. The more even distribution of the velocity in station 61 for the cases
with the frustum results in less distortion of the flow in the bend between station 61
and 71 and ultimately delivers the ’layered’ velocity profile (indicated by the dashed
lines in Figure 6.22 with its core shifted towards the inside (negative y-coordinate)
of the following injector bend. The secondary velocity contours are again affected
mainly by the pivot of the branch line. The two primary vortices appear to be
rotated by approximately the same angle ϕ as the branch line itself. For the cases
with the frustum, two small vortices rotating against the direction of rotation of the
primary vortex pair emerge at the inside of the injector bend (negative y-coordinate).

Station 101: Direct effects of the frustum can no longer be observed at this station.
Instead, for the cases with the pivoted branch line, as a direct result of the pivot
angle ϕ = 15◦, the vortical structures have become distorted and twisted by roughly
two to three times the pivot angle ϕ. Also, the distinct reverse S-shape cannot be
identified.

To ultimately explain why the configuration with D41/D51 = 1.4 and ϕ = 0◦ delivers
a 25 % lower secondary velocity ratio at station 101, and the other configurations
do not, it is helpful to look at the individual shortcomings of the three designs
with high φII . In the cases without frustum, the ’layered’ velocity profile with
its maximum values close to the inside of the injector bend does not appear in
station 81 upstream of the injector bend. However, Idelchik [38] stated that in
such a situation, where the velocity has its maximum near the inner corner of the
turn, the losses in a curved channel can become smaller than in the case with
uniform velocity distribution. The extent of losses in curved channels is usually
associated with the amount of transverse circulation (e.g. secondary flow) and
mixing in the flow. Thus, minimal secondary flows downstream of the injector bend
can only be achieved when the ’layered’ velocity profile with its maximum values
close to the inside of a bend is present upstream of the bend. This is not the case
with the configurations without frustum, and thus, these configurations show a
higher secondary velocity ratio in station 101. While the case with D41/D51 = 1.4
and ϕ = 15◦ also exhibits the ’layered’ velocity profile in station 81, the main
shortcoming of this configuration is the twisted vortices caused by the pivot of
the branch line in station 61 and the consequently higher secondary velocities in
station 101.

The presented illustrations can only qualitatively explain the differences in the flow
structures that lead to the observed results for the secondary velocity ratio. Further
research is needed to thoroughly understand how the observed effects interfere,
amplify or cancel each other in the AxFeeder.

diffusers increase a velocity non-uniformity [26].
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6.4.3 Spherical manifold

L71

L
o
u

t
L

91

R
80

δ

z

R81/
D81

L 51

∗)

SR40∅
D

1

L1

∅D
41

∅D
51

y

x

Figure 6.23: Sketch of the spherical manifold design. Dimensions relevant to the
parametric study are highlighted in blue. ∗) = L41.

The demand for a more compact manifold requires the replacement of the lengthy
diffuser section with a shorter component. Given the demand for sufficient space
at the manifold head for the connections to the branch lines, it becomes evident
that a spherical shape fulfils both demands, that of a short component and that of
sufficient space for the connections. Moreover, in guidelines and books for pressure
vessel design, it was proved analytically that a spherical shape allows for the best
utilisation of the material23 [99]. This is especially true for the head of a pressure
vessel and thus, to some extent, applies to the head of the AxFeeder manifold as
well. In hydraulic engineering and hydropower plant construction, spherical shapes
are used in junctions of the penstock lines [25, 64]. Often, the spherical parts act
as a self-supporting shell that supports the pressure forces from the hydraulic head
and in the inside of this shell, a thinner interior shell acting as a flow guiding device
is embedded [25].

These arguments make an application of a spherical manifold with the AxFeeder
appear plausible as long as the spherical shape of the manifold does not adversely
affect the flow quality [30]. The implementation of the sphere is sketched in Fig-
ure 6.23. There, also all varied parameters, namely the radius SR40 of the sphere,
the deviation angle δ and the frustum diameter ratio D51/D41, are highlighted in
blue. Internal secondary shells for better flow guidance were not used because this
study concentrated on finding parameter combinations that do not need additional
measures to function appropriately (assuming such parameter combinations exist).

As a consequence, at first, combinations of the sphere radius SR40 and the deviation
angle δ were investigated (see Figure 6.24). The sphere radius was increased from
23Roloff/Matek [99] states that under the same conditions, the necessary thickness of a spherical

wall is only half of the thickness of an equivalent cylindrical wall.
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Figure 6.24: Line plots of the loss coefficients and secondary velocity ratios of the
spherical manifold design (no frustum) against the deviation angle
δ for different sphere radii SR40/D1. i) - Data points with are
compared in Figure 6.25.

the geometrically smallest possible value of 0.533 up to very large spheres with
radii of SR40/D1 = 1.000. The deviation angle was varied from 30◦ to 75◦. In
a second series depicted in Figure 6.26, for spherical manifolds all with radius
SR40/D1 = 0.600, the effect of applying a conical frustum as the first part of the
branch line was studied as well. The frustum ratio was varied from D41/D51 = 1.1
to the maximum possible frustum base diameter of D41/D51 = 1.4.

The plot of the loss coefficients, part a) in Figure 6.24, reveals that for large sphere
radii, especially SR40/D1 = 0.833 and 1.000, the losses are already disproportion-
ately high when compared to the other cases, but do increase even further when
the deviation angle of the branch line becomes steeper. When only sphere radii
equal to or less than 0.667 are considered, then there is the trend that with steeper
deviation angles δ ⩾ 55◦ a moderate sphere radius of SR40/D1 = 0.600 allows for

104



6. Distributor systems with axial inflow

the lowest losses. This trend can be explained by two facts: First, the smaller
sphere with SR40/D1 = 0.533 has higher average flow velocities in the manifold
and thus higher losses. Second, the bigger sphere with SR40/D1 = 0.667 is almost
too big, so flow separations appear in the plenum. These are not dramatic and
still allow the assumption of steady flow to hold, but the tendency of the flow to
become unstable is already present. The reason why this is less problematic with
the lowest deviation angle δ = 45◦ is that this separation does not affect the flow
in the branch lines as much when the branch lines are attached more towards the
axial direction (z-coordinate), rather than the radial direction (x-coordinate).

The plot of the loss coefficients in part a) of Figure 6.24 also shows that for suitable
sphere radii (here, especially 0.533 and 0.600), the losses are largely independent of
the deviation angle δ. On the contrary, it is precisely the opposite for the secondary
velocity ratio φII,101 in station 101. There is a relatively clear linear trend that a
steeper deviation angle leads to lower φII,101, but the sphere radii have only little
effect. The main exception is the cases with the large sphere radii, SR40/D1 = 0.833
and 1.000. Here, a massive flow separation occurs in the sphere, leading to an
inherently unsteady generation of vortices. The vortices get transported through
the branch lines to station 101 and further. Semlitsch [88] showed that in multifur-
cations, these phenomena are highly unsteady, as these vortices are created in the
manifold, then transported through the branch lines, but also tend to collapse after
some time and later form again. With the steady-state simulation approach chosen
in this thesis, capturing such phenomena in all detail is impossible. Only a rough ap-
proximation can be gained then. Such an approximation, though, is sufficient for the
parametric study because, as pointed out in the opening paragraph of this section,
only properly functioning parameter combinations are relevant for an eventual field
application of the AxFeeder. The results of the cases with SR40/D1 = 0.833 and
1.000 are displayed in slightly greyed out colours in Figure 6.24 to avoid confusion
with the results of the cases without significant separation in the spherical part.

A more in-depth understanding of the phenomena in the sphere that lead to the
behaviour of the flow quality criteria plots can be gained from Figure 6.25, where a
case with an appropriately big sphere radius of SR40/D1 = 0.600 and a case with
extensive separation in the sphere with SR40/D1 = 0.833 are compared. These
cases illustrate the flow behaviour for all similar cases where the plenum of the
manifold is either sized appropriately (plots in the left column) or when the plenum
is way too large (plots in the right column). The plots in the right column with
SR40/D1 = 0.833 prove that in the case of an oversized sphere, the flow starts to
separate at the connecting edge of the penstock and the spherical manifold. This
massive separation zone, illustrated by the velocity contours in the first row of
the plots, is associated with a strong vortex that effectively blocks the core flow
from entering the branch line smoothly. Instead, the core flow deviates to the right
and enters the branch line from the opposite side compared to the configuration
with SR40/D1 = 0.600. Therefore, for the case with the oversized plenum and the
massive separation zone, in the first part of the branch line, the separation zone
occurs on the outside (towards higher values of the z-coordinate) and shifts the core
of the flow more towards the centre of the branch line. This shift, unfortunately,
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Figure 6.25: Impact of the sphere diameter on the velocity magnitude ||⃗c||/cs,101,
and the local losses expressed by the viscous dissipation ΦV is and
the turbulent dissipation ΦT urb in the y-z plane. Both variants have
a deviation angle δ of 75◦.

adversely affects the flow when going through the bends, and after the last bend in
the branch line, the separation of the flow on the inside is thus more prominent.
The contour plots with the viscous dissipation ΦV is and the turbulent dissipation
ΦT urb in the second and third row of the plots allow to explicitly identify these
separation zones as the sources for the increased losses.

Unsteady behaviour associated with flow separations in spherical-shaped penstock
junctions was also observed by Ruprecht et al. [78] and Kirschner et al. [46]. Both
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Figure 6.26: Line plots of the loss coefficients and secondary velocity ratios of the
spherical manifold design (SR40/D1 = 0.600) against the frustum
diameter D41/D51 for different deviation angles δ. i) - Data points
with are compared in Figure 6.27.

analysed a trifurcation and found that the flow separates in the sphere, vortices
are created and tend to block the flow in the branches, which causes mass flow
and pressure fluctuations. They came to the same conclusion as presented in this
section. Reducing the volume of the sphere, and thus the space in which the flow
might separate, and vortices could form is the most effective way to allow for evenly
distributed, smooth flow in the branch lines.

For such a smaller sphere, with SR40/D1 = 0.600, the effect of applying a frustum
as the first part of the branch line was investigated for several deviation angles δ.
The loss coefficients are plotted in part a) of Figure 6.26, and the secondary velocity
ratio is given in part b) of this figure. Similar to the experiences from the diffuser
manifold, the following observations were made: First, using a frustum allows for a
reduction of the losses but has only a minor effect on the secondary velocity ratio
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in station 101. Second, a steeper deviation angle causes a minor increase in the
loss coefficients but a much more prominent decrease of the secondary velocity
ratio φII,101 in station 101.

The effects caused by the variation of the deviation angle δ are discussed under
consideration of Figure 6.27, where the velocity fields of two cases, one with δ = 65◦

and one with δ = 85◦ are analysed. The top plots show the normalised velocity
magnitude ||⃗c||/cs,101 in the y-z plane. At the transition from the penstock line to
the sphere, the flow separates and forms a region with a low velocity that blocks
the main flow. The core flow is thus shifted to the right of the branch line and stays
there until after the first bend. Both cases deliver very similar flow in the first part
until station 61, whereas the core shift towards the right side of the first tangent
of the branch line is more pronounced for the case with the steeper deviation
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6. Distributor systems with axial inflow

angle. This effect, however, which becomes apparent in the velocity contour plots
of station 81, positively affects the flow through the two bends. In station 81, the
velocity contours of the case with δ = 65◦ still have a very pronounced horseshoe
shape. Such a horseshoe can hardly be identified in the same plots of the case
with δ = 85◦. However, instead, the contours appear to look more similar to the
layered profile witnessed already for configurations of the diffuser manifold with
δ = 90◦ (e.g. in Figure 6.19). This layered profile type is much more favourable
for the flow in the injector bend. Thus, the contours of the velocity magnitude
in station 101 are much more symmetric for the case with the steeper deviation
angle of 85◦. The concomitant effect is seen in the plots of the secondary velocity
ratio φII in station 101, where the flow structure is the same for both deviation
angles. However, the magnitude of the secondary velocity, and thus φII , is much
lower when the deviation angle is closer to 90◦.

These observations solidify the findings of the previous studies with the diffuser
manifold. They underline that a combination of the manifold shape and size,
a frustum and a steep deviation angle close to 90◦ are essential for the flow in the
branch line leaning towards the outer side of the first straight section of the branch
line as this appears to be the most favourable condition for the successive bends in
terms of limited secondary flow in station 101.

6.4.4 Cylindrical manifold
The studies of the previous core manifold designs proved that the shape of the
manifold itself serves two primary purposes. One is to provide sufficient space for
all branch lines to connect smoothly, and the other is to allow for a flow transition
into the branch line such that the core of the flow is leaning towards the inner side
of the subsequent bends.
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Figure 6.28: Sketch of the cylindrical manifold design. Dimensions relevant to
the parametric study are highlighted in blue.
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Figure 6.29: Line plots of the loss coefficients and secondary velocity ratios of the
cylindrical manifold design against the deviation angle δ for different
axial position T4/D51 of the flat cap. i) - Data points with are
compared in Figure 6.30.

Given the demand for simple designs and thus a possibility for cost-effective manu-
facturing, understanding the effects of using a plain cylindrical pipe as the manifold
was highly interesting. Such a cylindrical manifold is sketched in Figure 6.28 with
the parameters discussed in this section highlighted in blue. These parameters
were the axial position T4/D51 of the manifold head, the deviation angle δ and the
throat radius R41/D51. The cylindrical manifold design is the shortest of the four
core designs, consisting of mainly simple cylindrical components.

Using a conical frustum as the first part of the branch line proved beneficial for
reducing the losses once again. However, due to the tight space of the lateral surface
of the cylinder, the maximum frustum diameter was limited to D41/D51 = 1.2. This
frustum diameter was, therefore, selected for all cases discussed in this section.
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Figure 6.30: Viscous dissipation ΦV is and turbulent dissipation ΦT urb in the
y-z plane for three deviation angles. All variants have the same axial
position of the manifold head, T4/D51 = 0.250.

In the first series of simulations, the effects of a change of the deviation angle δ
and the axial position of the manifold head T4/D51 were tested. The impact of
a variation of these two parameters on the flow quality criteria is plotted in Fig-
ure 6.29. Two trends can be identified: First, the axial position of the manifold head
has minimal impact on both loss coefficients and the secondary velocity ratio at
station 101. Second, however, increasing the deviation angle δ towards its maximum
of 90◦ causes a roughly linear decline of the secondary velocity ratio, which levels off
at δ ≈ 80◦. On the contrary, the curves of the loss coefficients are of parabolic shape.
They decrease between δ = 30◦ and δ = 60◦, where they achieve their minima.
Then, from δ = 60◦ to δ = 90◦, an increase in the losses can be observed. This
behaviour is investigated in detail with the help of the contour plots of the viscous
dissipation ΦV is and the turbulent dissipation ΦT urb depicted in Figure 6.30. This
figure compares three configurations with T4/D51 = 0.250. The overall length and
the branch line length decrease with an increase of the deviation angle δ. Therefore,
the maximum of the losses at δ = 30◦ can be explained by considering two aspects:
the significantly longer branch line and the major separation resulting from the
sharp edge at the outside (high z-position) of the branch line. At the inside of the
branch line, the flow benefits from the flat deviation angle of only 30◦, and thus, the
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Figure 6.31: Line plots of the loss coefficients and secondary velocity ratios of
the cylindrical manifold design against the throat radius R41/D51
for different deviation angles δ. Same axial position T4/D51 = 0.250
for all cases. i) - Data points with are compared in Figure 6.32.

separation is less pronounced. The other extreme is given by the case with δ = 90◦,
where major separations occur at the inside (low z-position) of the first part of the
branch line that in the case of the cylindrical manifold can only be mitigated to
a minor extent by the conical frustum, because of the limited size of the frustum.
The case in the middle, with δ = 60◦, shows approximately equally sized separation
zones at both the inside and the outside of the first branch line tangent. While this
is not ideal, it is the best combination for the cylindrical manifold when considering
losses.

The contour plots of Figure 6.30 highlighted the weak spot of the cylindrical mani-
fold design, namely the transition from the cylindrical manifold into the conical
frustum. To compensate for this weakness and given the significant potential of
reducing flow losses by rounding the transition from the manifold to the branch line,
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and one with a large throat radius R41/D51 = 0.20.

a rounded throat was also investigated for the cylindrical manifold. However, with
the knowledge from Section 6.4.1, this time, the throat radius R41/D51 was only
varied between 0.0 to 0.2, as the plots of Figure 6.10 demonstrated, that an increase
of the throat radius beyond those values would not lead to further improvements of
the flow quality criteria.

A quick analysis of Figure 6.31 underlines what was already found in [30] and in
Section 6.4.1, namely that the losses are reduced by rounding the throat at the cost
of increased secondary velocity ratios. The reason why applying a radius worsens
the secondary velocity ratio at a station far downstream of the throat section is
explained by the contour plots of Figure 6.32. It was already discussed with the
diffuser manifold in Figures 6.19 and 6.22 and the spherical manifold in Figure 6.27
that the shape of the velocity profile in station 81 upstream the injector bend has
a significant impact on the contours and strength of the secondary velocities in
station 101. The velocity profile in station 81 is heavily influenced by how the flow
transitions from the manifold to the branch line. With the sharp edge at the throat,
the flow separates at a distinct position when it enters the frustum section of the
branch line. At the inside of the frustum, a spacious separation zone forms that
pushes the core of the flow to the right side of the branch line (high z-position).
This shift of the velocity core positively affects the flow through both bends of the
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branch line. Ultimately, the magnitude of the secondary velocity in station 101 is
low, and the reverse S-shape flow pattern appears. With the configuration using
a round throat, the effects and processes in the flow are similar to those in the
configuration with the sharp edge. However, when the flow enters the frustum part,
due to the rounded throat, the separation zone becomes less pronounced, and the
flow aligns more to the centre of the branch line. Therefore, the flow enters and exits
the first bend before station 81 in a less favourable condition. The velocity profile
takes the shape of a horseshoe, and the differences between contours with higher
velocities and contours with lower velocities become more prominent. Consequently,
in station 101, after the flow has moved through the injector bend, the magnitude
of the secondary velocity has increased significantly compared to the case with a
sharp-edged throat, and the reverse S-shape is more easily recognisable.

6.5 Influence studies
This section focused on three critical areas of piping systems design. The first
focused on how a steady reduction of the branch line diameter at different positions
in the branch line affects the flow. A second aspect considered was the possible flow
changes when installing segmented bends instead of smooth bends. Third, internal
structures acting as flow-guiding devices were investigated.

The following influence studies were all conducted on the diffuser manifold design
with conical frustum (design b) in Figure 6.2). The most important common
dimensions were: the diffuser angle β = 14◦, the deviation angle δ = 90◦, the base
diameter of the frustum D41/D101 = 1.624 and its length L41/D101 = 5/3. A throat
radius was not applied to either of the designs in this section.

6.5.1 Influence of converging branch lines
The driving factor behind this study was that a continuous (confuser-type) reduction
of the branch line diameter at a suitable position would simultaneously reduce flow
losses and velocity non-uniformities.

Regarding losses, Section 6.4.1 showcased an analytical correlation linking the total
pressure loss Δpt and the diameter d for a straight pipe flow. Specifically, this
derivation, culminating in Equation (6.9), highlighted that the losses are inversely
proportional to the fifth power of the diameter. It was also proved that this conclu-
sion holds if the Reynolds number dependency of the pipe friction factor is included
in the model. For the study of the converging branch line, it has to be considered
that the increase of the pipe diameter will only be effective for parts of the branch
line, and, depending on the design variant A, B or C sketched in Figure 6.33, a
change of the relative curvature radii of the bends might obstruct the benefits of
the increased diameter.

24In the cases without a convergent branch line, this dimension would be equal to frustum diameter
ratio D41/D51 = 1.6.
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Regarding velocity non-uniformities, Greitzer et al. [26] and Sigloch [94] explain
that in channels with decreasing width (e.g. nozzles and confusers), the non-
uniformity of the streamwise velocity component decreases. Greitzer et al. [26]
showed by the example of linear shear flow in a two-dimensional channel (with
station 1 upstream and station 2 downstream a diffuser or nozzle) that the velocity
gradient in station 2 is the same as in station 1. However, the velocity differences
at station 2 are greater than at station 1 for a diffuser (AR > 1) and less than
station 1 for a nozzle (AR < 1) [26]. Employing vortex theory, Greitzer et al. [26]
also proved that nozzles tend to increase the uniformity of the flow concerning swirl
angularity25, while diffusers tend to worsen it [26]. The previous statements can be
summarised by

(cs,max − cs,min)2
(cs,max − cs,min)1

= AR

����
> 1 . . . Diffuser
= 1 . . . Straight pipe
< 1 . . . Nozzle

, (6.20)

where AR = A2/A1 is the area ratio of the diffuser or the nozzle.

In order to determine what type of convergent branch line has the most significant ef-
fect on the losses and the secondary flow of the AxFeeder, three variants were tested.
In the first two variants, A and B, the injector bend between stations 81 and 91
was the convergent bend. In the third variant, C, the first bend between stations 61
and 71 was the convergent bend. A branch line equipped with a convergent bend
is sketched in Figure 6.33, displaying all dimensions and stations relevant to the
current study.

For all cases of variant A, the absolute values of the curvature radii R61 and R81,
as well as the distance between the two bends, L71, were fixed. That means, by
increasing the pipe diameter between stations 51 and 81, upstream of the converging
bend, the relative curvature radii of the two bends, R61/D61 and R81/D81 as well
as the relative length L71/D71 decrease. With this approach, the overall size of
the AxFeeder stays the same because the radius R80 and the axial length zA do
not change. For the cases with variant B, the relative curvature radii of the two
bends, R61/D61 and R81/D81 and the relative length L71/D71 was fixed such that
the absolute values of the curvature radii R61 and R81, and the length L71 increases
with the pipe diameter at these stations. The relative curvature radii being fixed
effectively leads to a slight scaling of the AxFeeder such that the external dimensions,
here expressed by the radius R80 and the axial length zB, increase fractionally26.
To keep the runner pitch cycle diameter Dp the same, the pivot angle γ of the
injector bend needs to be adjusted by a few tenths of a degree according to the
change of R80. The same approach as for variant B was chosen for the cases with
variant C, except for the diameter reduction in the first bend instead of the second.

25The swirl angle is defined as the ratio of the circumferential velocity (swirl velocity) ω · r to the
streamwise velocity. A detailed explanation is presented in Section 3.4.3.

26The increase of R80 is approximately proportional to (D51/D101) 1
4 .
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and green for variants A and B, and red for variant C.

As presented in [30], the diameter ratios D51/D101 (for variants A and B) and
D51/D71 (for variant C) were varied between 1.0 (no converging bend) and 1.6
(no frustum). In cases where the diameter ratio of the converging bend is smaller
than 1.6, there is a first reduction of the branch line diameter in the frustum from
D41 to D51, and a second diameter reduction in the converging bend from D51 to
D101 (variants A and B) or D71 (variants C).

The resulting values of the loss coefficients and the secondary velocity ratio in
station 101 are plotted in Figure 6.34. All three variants have markedly low
loss coefficients, which are sufficiently low that the reference line is no longer in-
cluded. The losses for variants A and B decrease from 1.0 ⩽ D51/D101 ⩽ 1.4. For
D51/D101 > 1.4, a minor increase is observed. Variant C shows a similar behaviour,
with two exceptions. One is the roughly 10 % to 30 % higher losses and the other
one is that the minimum of the loss coefficients appears at a lower diameter ratio
D51/D71 = 1.3. The higher losses are attributed to a smaller portion of the branch
line being subjected to the larger diameters before the converging bend in variant C.
The increase of the loss coefficients for large values of the converging bend diameter
ratio can be explained by the corresponding change of the frustum diameter ratio
D41/D51. If the diameter ratio of the converging bend increases, the diameter
ratio of the frustum becomes smaller until there is only a straight pipe section left,
when D51/D101 = 1.6. However, as plot a) of Figure 6.16 illustrates for the diffuser
manifold design with conical frustum, reducing the frustum diameter increases the
losses. This is the case here as well. The absence of the frustum results in a much
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Figure 6.34: Line plots of the loss coefficients and secondary velocity ratios of the
diffuser manifold design with conical frustum against the taper ratios
D51/D71 (Variant C) and D51/D101 (Variants A and B). i) - Data
points with are compared in Figure 6.35.

larger separation zone in the pipe section between stations 51 and 61 and, in turn,
negatively affects the flow through the first bend. However, the increase in the
losses is much less pronounced here and the positive effect due to the increased
branch line diameter still dominates. The ratio between the dissipation power
coefficient and the power loss coefficient ζΦ/ζP mT E,1011 lies between 0.85 to 0.89,
with an average value of 0.8721. This value is almost the same as the value of 0.8734
achieved by the mixed-element type mesh Fine rM in combination with the SST
turbulence model with y+ = 1 for the same ratio when analysing the 90◦ pipe bend
of Shiraishi et al. [92] (which is discussed in Section 5.2.3, especially Figures 5.13
and 5.14 and Table 5.1).

The plot of the secondary velocity ratio φII,101 in part b) of Figure 6.34 reveals that
implementing a convergent part in the branch line is treacherous. In Variant A,
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variant B.

φII,101 shows a slight decline for bend diameter ratios less than 1.2. As the diame-
ter ratio becomes larger and thus the relative curvature radii become smaller, a
significant increase of the secondary flow in station 101 is observed. This increase
is associated with the decrease of the relative curvature radius of both bends as the
flow is subjected to sharper turns and becomes more prone to flow separations. In
variant C, there is a minor but steady increase of the secondary velocity ratio when
the diameter ratio D51/D71 of the convergent bend rises. Here, the effect of the
changes in flow directions in the injector bend dominates over the effects resulting
from the reduction of the channel diameter in the bend before.

The most remarkable observation is delivered by variant B, where the secondary
velocity ratio goes down for small diameter ratios D51/D101, then levels off around
D51/D101 = 1.2 to 1.3 before it rises again with increasing values of D51/D101. As
proved by the contour plots of the velocity magnitude ||⃗c||/cs,101 in station 101,
provided in Figure 6.35, the velocity becomes more uniform, if the contraction
of the injector bend is larger. Interestingly, though, the secondary velocity ratio
at the same station does not only change in magnitude, but also, the vortex pat-
tern becomes different. The reverse S-shape structure, which was commonly seen
in many designs presented in Sections 6.4.2 to 6.4.4 as well as in this figure in
the case D51/D101 = 1.0, vanishes for the other two cases, D51/D101 = 1.3 and
D51/D101 = 1.6 respectively. Instead, for these two cases, two counter-rotating
vortices become dominant. This vortex-pair grows when the contraction in the
converging bend increases and eventually pushes the smaller vortices, which are

118



6. Distributor systems with axial inflow

seen in case D51/D101 = 1.3, to the right (high z-position) until some are eliminated.
This behaviour is a highly complex superposition of the effects induced by the
frustum that heavily impacts how the flow enters the branch line and goes through
all parts upstream of the converging injector bend and the effects of the contraction
in the injector bend. Additionally, the ’gooseneck’ type of the first part of the
branch line between stations 51 and 81 and the double deflection in the injector
bend play an important role here too. Moreover, if the diameter of the branch line
upstream the injector bend is higher, the Reynolds number becomes smaller and,
as explained in Figure 5.18, the secondary flow ratio increases as well.

Therefore, at the current state of this research, parameter combinations exist where
the effects mentioned above are combined very favourably, and both quality criteria,
the loss coefficients and the secondary velocity ratio reach unmatched minima.
Unfortunately, due to the highly complex nature of all effects, it is impossible to
isolate the individual effects and their impact on the flow.

6.5.2 Influence of segmented bends
For pipe sections in hydraulic turbines (e.g. pressure lines, distributor systems,
spiral casings, draft tubes), it is common practice that changes in the flow direction
are made in segmented elbow bends of rectangular or circular cross-sections. This
technique allows for greater flexibility and simpler manufacturing of the individual
components of the pipe sections compared to being made of one piece. Still, it
may be too costly for small hydropower projects, where using standardised parts
as often as possible is desired to keep investment costs low. With that in mind,
the parametric investigations presented in Section 6.4 were conducted on branch
line designs equipped with smooth bends. However, with converging branch lines
appearing beneficial to the flow quality but difficult to manufacture, segmented
bends have become an option for the AxFeeder. These segmented bends allow for
simpler manufacturing of the branch line, particularly the convergent injector bend.
Therefore, this section compares the flow in a branch line with smooth bends to
that in a branch line with segmented bends.

All configurations in this subsection were designed with a convergent injector bend
(diameter reduction from station 81 to 91 as in variant B) of Section 6.5.1. Four
cases were compared altogether, where the first case (oo) was equipped with smooth
bends entirely, the second case (xo) had a segmented bend in the first part and a
smooth bend in the second part of the line, the third case had a smooth bend in the
first part and a segmented bend in the second part of the line and the fourth case
(xx) had two segmented bends. A comparison of these two approaches is sketched
in Figure 6.36, where the segmented bend design (dashed blue lines) was overlayed
to the smooth bend design (solid black lines). The segmented bends were composed
of six elements, where the first and last elements showed a direction change of 9◦

and the four mid elements a direction change of 18◦. The relatively high number
of six elements was chosen following suggestions from Bohl and Elmendorf [6] and
Idelchik [38] that the flow resistance of segmented bends decreases and the flow
turns smoother if the number of segments is increased.
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Figure 6.37 compares the flow quality criteria of these four bend configurations
in part a) and highlights the differences between these configurations in part b).
All three quality criteria showed a continuous increase if segmented bends were
used. However, the increase of both, the power losses ζP mT E,1011 and the secondary
velocity ratio φII,101 amount to only slightly more than 5 % compared to the con-
figuration with smooth bends. Moreover, the flow structure stays the same. This
observation is underlined by the plots of the secondary velocity ratio in station 101
as depicted in Figure 6.36, where the pattern of the contours does not change. Only
the magnitude of the secondary velocity ratio appears to be higher with the config-
uration xx with segmented bends. Interestingly, the dissipation power coefficient ζΦ
does only change marginally by less than 0.5 %. The effect of segmented bends on
the turbulent flow structures seems negligible. Thus, the change of the turbulent
dissipation and the associated losses might have only been captured partially in
this simulation.

Therefore, it is concluded that both variants, smooth bends and segmented bends,
show a similar flow behaviour and are both viable design options for the AxFeeder.

6.5.3 Influence of simple internals
The task to reduce flow losses and secondary flows eventually leads to a point where
changes in the outer contour of the manifold and branch lines are no longer worth
the effort. Idelchik [38] points out the potential of installing turning vanes in pipe
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elbows and bends by elaborating on the beneficial effects on pressure losses and
uniformity of the velocity distribution of several types of guide vane configura-
tions. While the common goal of all types of flow guiding devices is to eliminate
the eddy zone at the inner wall of the channel [38], guide vanes prove to be es-
pecially helpful for tight elbows with a curvature radius R/D less than 0.9 to 1.0 [38].

In all configurations that are not stated otherwise, the branch lines of the AxFeeder
have a curvature radius of R61/D61 = R81/D81 = 2. This decision was inspired
by the investigation of Ito [39] on pressure losses in various types of smooth pipe
bends. Ito [39] stated that minimal pressure losses would occur at R/D = 2.5 for
90◦ bends at Re = 2 · 105 and emphasised this by a diagram indicating minimal
losses between 2 < R/D < 3. Given the importance of a compact design of the
AxFeeder, the value of R/D = 2 was selected for the branch lines. This number
is greater than the limit of the curvature radius of around 0.9 to 1.0 below which
the installation of guide vanes is usually recommended. Therefore, unlike stated by
Idelchik [38], for the AxFeeder, guide vanes in the branch lines might not only show
positive effects but instead, an increase in losses is expected.

With that in mind, guide vanes were tested at two positions in the AxFeeder27. In
one case, the "vanes" were installed as an annular guide ring between stations 3
and 4 (GR34). In the second case, one thin guide vane follows a 90◦ arc between
stations 81 and 91 (GV89). The guide ring and the guide vane have an elliptical
leading and trailing edge with length D51/10. In addition to the traditional guide
vanes, the effect of a conical intrusion body (CIB) located at the bottom of the
manifold (similar to the "Verdrängungskörper" envisioned by Erlach [20, 21]) was
tested as well. Details of the shape and the position of these simple internals are
sketched in Figure 6.38.
27Convergent bends were not used in this study.
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In Figure 6.39, part a) compares the absolute values of the flow quality criteria,
ζP mT E,1011, ζΦ and φII,101 whereas part b) highlights the relative changes compared
to a configuration without any additional internal flow guiding device. The conical
intrusion body positioned at the bottom of the manifold does not alter the quality
criteria by much. While the CIB helps to reduce the losses slightly, it has almost no
noticeable effect on the secondary velocity ratio in station 101. This observation is
underlined by Figure 6.40, which shows that the flow structure in the branch lines
of the design with the CIB is very similar to the flow structure of the configuration
without internals. Both cases have a dominant reverse S-shaped secondary velocity
pattern and two minor counter-rotating vortices towards the inner side of the bend
(in negative z-direction).

The two guide vane configurations have a much more pronounced effect on the
manifold and branch line flow. As Figure 6.40 shows, GR34 suppresses the creation
of the vortical structures in the branch line that lead to the characteristic S-shaped
secondary flow pattern in station 101. Instead, the two counter-rotating vortices
form a secondary flow pattern in this station similar to a deformed Dean circu-
lation28. Furthermore, the patterns of the magnitude of velocity ||⃗c|| and of the
secondary velocity ratio φII,101 look identical to the patterns of the 90◦ pipe bend
cases of Sudo et al. [104] and Shirashi et al. [92] discussed in Sections 5.1 and 5.2,
in particular Figures 5.8 and 5.19. However, the removal of the reverse S-shape
comes at the cost of drastically increased losses of around 20 % and swirl strength,

28Dean vortices are a pair of counter-rotating vortices that appear in a curved pipe. Dean [13]
was the first to find a solution to the corresponding equations. Sudo et al. [105] studied the
secondary flow in curved circular pipes and found five characteristic patterns of secondary flows.
The deformed Dean circulation in the branch line of the AxFeeder can be classified as type II of
the five types of Sudo et al. [105].

122



6. Distributor systems with axial inflow

No CIB GR34 GV89
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

a)

ζP mT E,1011 ζΦ 10φII,101

CIB GR34 GV89
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

b)

x
i

x
n

o
−

1

x: ζP mT E,1011 ζΦ φII,101

Figure 6.39: Flow quality criteria of AxFeeder designs with simple internals.
a) absolute values of the quality criterita; b) change relative to an
AxFeeder without internals.

z

x
No internals CIB

wake zonereverse S-shape ∗)

GR34 GV89

||⃗c
||/

c s
,1

01
φ

I
I

1.2

0.0

0.2

0.0

∗)

Figure 6.40: Plots of normalised velocity magnitude ||⃗c||/cs,101 and secondary
velocity ratio φII at station 101 for the four cases with different
internals. The same coordinates account for all plots.

hence the almost 70 % higher secondary velocity ratio φII,101. Therefore, installing
a guiding device in the manifold is not recommended, as the effort to make such a
device work exceeds the potential gains.

On the contrary, a guide vane installed in the injector bend (GV89) showed rather
promising results. While the power losses increased by just over 19 %, the secondary
velocity ratio decreased by the same amount. Also, the secondary flow pattern stays
similar to that of the case without internals (see plots on the right of Figure 6.40).
The reverse S-shape and the two minor vortices can be recognised, albeit the
magnitude of the secondary velocity is much weaker. Also, the contours of the
velocity magnitude allow for identifying the wake of the guide vane.
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Thus, regarding the application of guide vanes in a Pelton turbine distributor
system, two design philosophies can be pursued: a) minimising the losses (when
no guide vanes are used) at the expense of higher secondary flow velocities or b) if
guide vanes were installed, minimising the amount of secondary flow at the cost of
higher losses. The research of Semlitsch [89] emphasises the effect of secondary flow
structures upstream of the injectors on the formation of the water jet. Further, the
practical examples of [56, 70] prove that for conventional distributor systems, in
cases where minimising the secondary flow was given priority, flow calming devices
like guide vanes upstream the injectors were a go-to solution in past Pelton power
plant (refurbishment) projects. Therefore, it is safe to conclude that using guide
vanes will also be viable for the AxFeeder.

6.6 Comparison of design concepts
Finally, the interesting question is: Which design has the lowest losses and the least
amount of secondary flow and is thus the most favourable for hydropower plant
applications?

To answer this question, the individual core designs of the AxFeeder are compared in
this section. As defined in Section 6.3.2, the loss coefficients and the secondary flow
ratio of the diffuser manifold design (basic model) computed for an inlet diameter of
D1 = 300 mm and an inflow Reynolds number of Re1 = 1 · 106 were chosen as the ref-
erence. These values were: power loss coefficient ζP mT E,1011,ref = 0.6291, dissipation
power coefficient ζΦ,ref = 0.4837, and secondary velocity ratio φII,101,ref = 0.0426.

The normalised loss coefficients are then defined as

ζP mT E,norm = ζP mT E,1011

ζP mT E,1011,ref

and ζΦ,norm = ζΦ

ζΦ,ref

, (6.21)

and the normalised secondary velocity ratio as

φII,norm = φII,101

φII,101,ref

. (6.22)

With these normalised coefficients, it is possible to compare the best variants for
every varied parameter of the four core designs. However, before that, it has to be
decided how to merge both quality criteria into a compound quantity suitable to
rank the individual configurations. As raised by Hahn et al. [30], in the design of
Pelton turbine distributor systems, one target is to achieve minimal flow losses, and
another is to have a low level of secondary flow. The results from the parametric
investigation (Section 6.4) showed that these two targets are often contrary, see for
example Figure 6.31. Hence, in this thesis, as in [30], it is assumed that both criteria
are equally important. Then, the normalised quantities can be added geometrically

rζφ =
"

(ζP mT E,norm)2 + (φII,norm)2 =

%&&$
ζP mT E,1011

ζP mT E,1011,ref

2

+


φII,101

φII,101,ref

2

(6.23)
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ID Manifold type Design parameters

a1
Diffuser manifold
(basic model)

D51/D1 = 0.40, R41/D51 = 0.000, β = 14◦

a2 D51/D1 = 0.40, R41/D51 = 0.025, β = 14◦

a3 D51/D1 = 0.40, R41/D51 = 0.000, β = 8◦

b1 Diffuser manifold
with conical frustum

D41/D51 = 1.6, δ = 90◦, ϕ = 0◦

b2 D41/D51 = 1.6, δ = 90◦, ϕ = 15◦

b3 Convergent branch line Variant B, D41/D51 = 1.3
b4 Segmented bend xx
b5 Simple internals GV89
c1

Spherical manifold
SR40/D1 = 0.533, δ = 75◦, D41/D51 = 1.00

c2 SR40/D1 = 0.600, δ = 85◦, D41/D51 = 1.30

d1
Cylindrical manifold

T4/D51 = 0.500, δ = 70◦, R41/D51 = 0.00

d2 T4/D51 = 0.250, δ = 90◦, R41/D51 = 0.10

Table 6.8: Explanation of abbreviations used in Figure 6.41. Parameters, which
were varied in the relevant study series, are underlined.

to achieve a single value rζφ, the compound quality coefficient for each case to
quantify the overall quality. The value of rζφ can be interpreted as the distance
of a data point plotted in a φII,norm - ζP mT E,norm coordinate system to the centre
point (0, 0). Then, rζφ corresponds to the radius of a circle, for which all data
points of a variant lie either outside or on the circle, and no data point of this
variant lies inside. The approach above was used to determine the best variants
presented in Figure 6.41 and Table 6.8. The rζφ-concept is utilised in the scatter
plot of all variants, Figure 6.42, and the summary of the best configuration of the
four manifold types, Table 6.9.

In Figure 6.41, bar charts of the normalised loss coefficients ζP mT E,norm and ζΦ,norm

as well as the normalised secondary velocity ratio φII,norm are plotted for all man-
ifold types and the most relevant parameter combinations. An overview of the
parameter combinations and an explanation of the abbreviations used in this figure
is presented in Table 6.8. The analysis of Figure 6.41 reveals that for all core
designs, except for the cylindrical manifold29, the normalised loss coefficients are
lower than the normalised secondary velocity ratio. Further, the minimum value
of the normalised losses is at around 0.4, whereas the minimum of the normalised
secondary velocity ratio lies just below 0.7. These observations indicate that for
complex piping systems such as the AxFeeder, reducing pressure losses and dissi-
pation is more straightforward than improving the secondary flow. It was proved
in Sections 6.4.2 and 6.4.3 that using a conical frustum is especially beneficial for

29And except for case c1 with a spherical manifold.
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Figure 6.41: Normalised quality criteria for the best case of every varied parameter
of the four core designs. Abbreviations are explained in Table 6.8.

reducing the flow losses, as cases b1 to b5 and c2 underline. In these six cases,
where the frustum was installed, the power and dissipation losses, with normalised
power loss coefficients of less than 0.7 and normalised dissipation power coefficients
of less than 0.75 for all of the six, were consistently lower than for designs without
the frustum.

Another takeaway from Figure 6.41 is that all configurations of core design b)
with the diffuser manifold and the conical frustum, except for case b2 with the
branch line pivoted by the angle ϕ = 15◦, have comparably low normalised quality
criteria. Their normalised power loss coefficients and the normalised dissipation
power coefficients are lower than those of any other design. Comparing cases b1 and
b2 (both without the convergent bend) to cases b3 and b4 (both with converging
injector bend), it becomes evident what an efficient measure a convergent injector
bend is to reduce both quality criteria simultaneously. A closer look at cases b3, b4
(both with the converging injector bend but no guide vanes) and b5 (no convergent
branch line but guide vane in the injector bend) shows that all three cases achieve
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a similar value of the secondary velocity ratio. However, the two cases with the
convergent branch lines, b3 and b4, have drastically lower losses. From a fluidic
point of view, employing a convergent bend is thus favourable over installing a
guide vane.

The scatter plot in Figure 6.42 intends to give a more detailed view of where the
individual configurations rank amongst each other in terms of power losses and
secondary flows. Therefore, the resulting quality criteria of around 180 cases are
plotted in the φII,norm - ζP mT E,norm plane. All cases with the diffuser manifold (basic
model), a1 to a3, are given blue markers; the cases with the diffuser manifold with
conical frustum, b1 to b5, have green markers; those with the spherical manifold,
c1 and c2, use red markers and those with the cylindrical manifold, d1 and d2
are shown by cyan coloured markers. For each manifold type, data points with
the same marker type belong to the same study series, explained in Table 6.8,
e.g. red circles indicate the study series c2 with the spherical manifold, where
the frustum diameter was varied. The configurations with the best (= lowest)
compound quality coefficient rζφ of each core design are denoted by enlarged, filled
markers. The quality criteria of these four cases are summarised in Table 6.9, which
also shows the relative distances

Δrζφ = 1 − rζφ(b, c, d)
rζφ(a) (6.24)

between these four cases. This quantity can also be read as a measure of how much
the compound quality coefficient of a design was improved over the reference case.

Notably, the blue and red markers are widespread, mainly towards the plane’s
upper and right half, thus showing unfavourably high secondary velocity ratios
and power losses [30]. The cyan data points are centred around the middle of
the φII,norm - ζP mT E,norm plane with a minor concentration of points at very low
secondary velocity ratios of φII,norm between 0.6 to 0.7. These values are even lower
than the best configuration of the cylindrical manifold type and the overall best
configuration of the diffuser manifold type with a conical frustum and a converging
injector bend30. Unfortunately, the corresponding power losses and, thus, the
compound quality coefficients are high.

The data points of core design b) are clustered towards the left side of the plane.
This clustering, again, is a direct consequence of the conical frustum employed for
most cases of this design type, which leads to lower losses and the shift to the left.
The losses of most cases of type b) are lower than those of the other three types31.
However, the data points of type b) are spread along a considerable segment of the
vertical axis, emphasising that only a few carefully selected geometry combinations
serve both purposes, reducing losses and secondary flows simultaneously. The most
30Therefore, these cases are called non-dominated configurations.
31These cases are also non-dominated configurations. In an optimisation context, all these non-

dominated configurations form the Pareto front [44, 107], which is also drawn in Figure 6.42.
The ’horizontal leg’ of the Pareto front consists of cases with very low secondary velocity ratios,
and the ’vertical leg’ consists of cases with very low power loss coefficients.
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Figure 6.42: Scatter plot of normalised quality criteria for all cases presented in
Sections 6.4 and 6.5. Abbreviations are explained in Table 6.8. Data
of the best configurations are summarised in Table 6.9.

suitable design of the AxFeeder with the lowest compound quality coefficient of
rζφ = 0.8 is of type b3, with a diffuser with a conical frustum and converging injector
bend. This case is indicated by a large, green-filled triangular marker in Figure 6.42.

When comparing the four manifold types, it stands out that most configurations of
types b) and d) are better in terms of rζφ than the diffuser manifold (basic model)
of type a). Interestingly, most configurations of type c), the spherical manifold,
are worse than the best of type a). Only a few selected cases of type c) have a
lower compound quality coefficient. Especially the cases with a conical frustum
and the branch line deviation angles close to 90◦ perform better than the other
designs with a spherical manifold. The best configuration of the spherical manifold
performs even better than the best configuration of the cylindrical manifold. Here,
it is worth reminding that the cylindrical manifolds lack space for an adequately
sized conical frustum and, thus, are subject to higher losses during the transition of
the flow from the manifold to the branch lines.
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ID Manifold type a) φII,101 b) c) rζφ Δrζφ (%)

a2 Diffuser man.
(basic model)

0.6223 0.0432 0.989 1.015 1.417 0

b3 ∗) 0.2519 0.0295 0.400 0.692 0.800 43.5
c2 Spherical man. 0.4401 0.0348 0.700 0.818 1.076 23.9
d2 Cylindrical man. 0.5442 0.0302 0.865 0.710 1.119 20.9

Table 6.9: Summary of the quality criteria of the best configuration of each
manifold type shown in Figure 6.42. ∗) - Diffuser manifold with the
conical frustum and convergent branch line variant B. a) - ζP mT E,1011,
b) - ζP mT E,norm, c) - φII,norm.

The list of the four best cases, given in Table 6.9, strengthens these observations
by translating the improvement of the best cases of the four manifold types into
numerical values. For type a), the diffuser manifold (basic model), finding a design
that performs better than the reference was impossible. On the contrary, the overall
best of type b), the diffuser with conical frustum, a deviation angle δ = 90◦ and
converging injector bend, achieves an improvement of almost 44 %.

129





CHAPTER 7
Conclusion

This thesis investigated the flow in a novel Pelton turbine distributor system with
axial inflow, the AxFeeder, using incompressible, steady-state CFD simulations.
The most relevant findings, discoveries and recommendations for future research
are presented in this final chapter.

7.1 Summary
Four core designs of Pelton turbine distributor systems with axial inflow were
conceptualised to evaluate the effects of different configurations on the flow quality
criteria, the power loss coefficient ζP mT E, the dissipation power coefficient ζΦ, and
the secondary velocity ratio φII . The study included around 180 geometric varia-
tions of the core designs, the diffuser manifold (basic model), the diffuser manifold
with conical frustum, the spherical manifold and the cylindrical manifold. Addition-
ally, the effects of converging branch lines, segmented bends and simple internals
were explored.

Variations of the diffuser angle and the sphere radius proved it is of the highest
importance to avoid stall and any form of distinct flow separation in the manifold.
Also, the transition from the manifold head to the branch line must be designed
carefully. All flow quality criteria were significantly improved by applying an ap-
propriately sized conical frustum as the first element of the branch line. Combined
with a steep deviation angle close to 90◦, a separation zone at the inside of the
first turn shifted the core of the flow towards the outside of the first straight
segment of the branch lines. This shift positively affected the flow through the
first bend. It facilitated a layered velocity profile upstream of the injector bend,
where the highest velocities were located towards the inner side of the injector bend.
The layered velocity profile positively affected the flow through the injector bend.
The velocity profiles upstream of the injector position at station 101 appeared to
be much more symmetric, and the magnitude of the secondary flow was much
less. The reverse S-shape pattern of the secondary velocity ratio in that station
was commonly seen with all designs where the phenomena described above occurred.

131



7. Conclusion

All flow quality criteria were improved simultaneously by using a convergent injec-
tor bend. A guide vane in the injector bend increased the losses but reduced the
secondary velocity ratio at about the same rate. Segmented bends were found to
have slightly higher losses and secondary flow ratios than smooth bends.

The comparison of all cases in Section 6.6 revealed that the overall best configuration
in terms of flow quality criteria was the AxFeeder equipped with a diffuser-shaped
manifold, conical frustum and a converging branch line of a deviation angle of 90◦.

7.2 Answers to research questions
In the course of this dissertation, several answers to the initial research questions
emerged:

1. What potential Pelton turbine distributor system designs allow axial inflow
and outflow tangential to the runner?
Four core designs were introduced where the flow enters the manifold in the
axial direction and is turned towards the radial direction at the transition of
the manifold and the branch lines. The branch lines are routed such that the
flow leaves the branch lines in a direction tangential to the runner.

2. Is a steady-state simulation approach feasible to accurately predict the flow
in such a Pelton turbine distributor system?
The comparison to 90◦ pipe bend cases proved that a steady-state simulation
approach is feasible to predict power losses, dissipation and secondary flows
accurately and reproducibly, providing for an adequately sized mesh with
sufficient wall resolution in combination with the k-ω SST turbulence model.
At the benefit of low computational costs for each case, this approach has the
acceptable drawback of slightly increased uncertainty for predicting vortical
structures and, thus, secondary flow.

3. How does the operating regime of such a Pelton turbine distributor system
in the context of small hydropower plants look like, and what is a realistic
design case?
In the Reynolds number range typical for a Pelton turbine distributor system,
the operating charts showed continuously declining curves for the power
losses, the dissipation power and the secondary velocity ratio with increasing
Reynolds number. Thus, a realistic design case of a small hydropower plant
projected a Pelton turbine with a rated power of around 250 kW, at an
assumed head of 125 m. The corresponding volumetric flow rate became
210 L/s, which, with a suitable penstock diameter of 300 mm, resulted in a
corresponding Reynolds number of 1 · 106.

4. How does the flow behave in a Pelton turbine distributor system with axial
inflow, and what components significantly influence the flow quality?
The four areas found to be most important for achieving high-quality flow
were the rate of expansion of the manifold, i.e. the diffuser angle and the
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sphere diameter, the transition from the manifold to the branch line by a
conical frustum, a steep deviation angle of the branch line close to 90◦ and
a converging injector bend. When all components of the distributor system
were well harmonised, the secondary flow showed a distinct reverse S-shape
pattern in station 101 with an average magnitude of less than the 90◦ pipe
bend cases. The explanation found was that in such a manifold-branch line
combination, when entering the branch line through the conical frustum, the
core of the flow was shifted favourably towards the inside of the two bends in
the branch line.

5. Which combination of geometric parameters is favourable?
The most favourable configuration of the AxFeeder was equipped with a
diffuser-shaped manifold with an opening angle β = 14◦, a conical frustum with
base diameter D41/D101 = 1.6, a branch line with a deviation angle δ = 90◦

and a converging injector bend with a diameter ratio of D51/D101 = 1.30.
The compound quality coefficient rζφ of this configuration was almost 44 %
less than that of the reference.

7.3 Future research
This thesis contributed to understanding the flow in Pelton turbine distributor
systems with axial inflow, the AxFeeder. Building on this contribution, further
research effort would benefit the future potential contributions of this dissertation.

One of the most pressing questions outside the scope of this thesis is how the
AxFeeder performs under different operation conditions. Here, it is of special
interest if the flow structures stay the same when only one, two or three of the six
branch lines are active and the others are shut down. Recently, Semlitsch [88] has
conducted numerical studies on that matter. Parallel to these numerical studies, as
part of the project AxFeeder1, in the hydraulic laboratory of the Institute of Energy
Systems and Thermodynamics at TU Wien a test rig is under construction. When
fully commissioned, measurements of the flow in the manifold, the branch lines,
and the jets will allow for deeper insight into the flow phenomena of the AxFeeder
and possible correlations between the flow in the distributor system and the jets.

The reverse S-shape secondary flow pattern of the AxFeeder was not seen before
with conventional distributor systems. Therefore, it is recommended that the flow
structure upstream of the injector be investigated to determine how this type of flow
structure affects the formation of the jet in the nozzle and, thus, the jet shape and
orientation. After-effects on the jet bucket interactions need to be considered as well.

With potential small hydro applications of the AxFeeder, close attention will be paid
to manufacturing complexity, costs and scalability. Once the flow in the AxFeeder
is fully understood, a study of the economics of the Pelton turbine distributor with
axial inflow is of high practical relevance and, thus, warmly recommended.
1FFG project number: FO999888084
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APPENDIX A
Statistical definitions

This chapter summarises the statistical terms and definitions used in this dissertation
in compact form from the relevant standard literature.

A.1 Basic definitions
All definitions and explanations in this section are taken from Kirkup et al. [45]:

A.1.1 Mean
The mean value1 x̄ of n measurements of a quantity x is defined as

x̄ = 1
n

n'
i=1

xi . (A.1)

A.1.2 Standard deviation
The standard deviation (of the population) u(x) is defined as

u(x) =

%&&$(n
i=1 (xi − x̄)2

n − 1 , (A.2)

and can be interpreted as a measure of the spread of values. Kirkup et al. [45]
propose root-mean-square or rms residual as alternative names2 for u(x). According
to Kirkup et al. [45], in certain subjects, e.g. meteorology, the standard deviation
is interpreted as a measure of the uncertainty of a quantity. Following the idea
of uncertainty and in agreement with Appendix A.3, within this thesis, the stan-
dard deviation shall be treated and understood as an uncertainty in the sense of
Kirkup et al. [45].
1The mean value is also referred to as arithmetic average.
2Consequently, in the context of CFD results, the symbol uRMS is used when talking about
root-mean-square values.
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A.2 Regression analysis
The definitions and explanations of this section are summarised from Brauch et al. [9].

A.2.1 Linear regression
Given a set of data points Pi(xi, yi), we assume these points do not fulfil the linear
function

y = a0 + a1x (A.3)

exactly. The differences ei = a0 + a1xi − yi are called errors. The coefficients a0
and a1 shall be calculated such that the sum of squares of the errors

f(a0, a1) =
n'

i=1
e2

i =
n'

i=1
(a0 + a1xi − yi)2 = Minimum (A.4)

becomes a minimum (= method of least squares estimation). Therefore, the partial
derivatives of f must vanish

∂f(a0, a1)
∂aj

= 2
n'

i=1
(a0 + a1xi − yi)xj

i = 0 . (A.5)

This gives the normal equations

na0 + a1
'

xi − '
yi = 0 (A.6)

a0
'

xi + a1
'

x2
i − '

xiyi = 0 (A.7)

with the solution

a0 =
(

x2
i

(
yi − (

xi
(

xiyi

n
(

x2
i − ((

xi)2 and a1 = n
(

xiyi
(

yi − (
xi

(
yi

n
(

x2
i − ((

xi)2 (A.8)

A.2.2 Non-linear regression
In case of an exponential regression function v = Aeku, the natural logarithm needs
to be taken, such that the resulting linear function ln(v) = ln(A) + ku can be
substituted according to y = ln(v) and x = u with the coefficients a0 = ln(A) and
a1 = k. Then, the procedure of Appendix A.2.1 can be employed accordingly.

A.2.3 Coefficient of determination
The coefficient of determination [108] is defined as

R2 = 1 −
(n

i=1 e2
i(n

i=1 (yi − ȳ)2 (A.9)

and can be interpreted as an indication of how well the regression function fits the
data set.
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A.3 Expanded uncertainty
The combined standard uncertainty uR of a result R = f(Xi) depending on its
parameters Xi, which are assumed to be mutually uncorrelated, is defined following
[4, 15] as

uR =

%&&$ I'
i=1


∂R(Xi)

∂Xi

�2

· u2 (Xi) =

%&&$ I'
i=1

[ci · u (Xi)]2 , (A.10)

where ci := ∂R(Xi)/∂Xi is the sensitivity coefficient and u(Xi) the (measurement)
uncertainty of a parameter Xi. The expanded uncertainty in the result at approxi-
mately 95 % confidence is given by UR,95 = 2uR. Thus, with 95 % confidence, the
true result should lie in the interval R ± UR,95 [4].

A.3.1 Expanded uncertainty for the velocity ratio
The combined standard uncertainty uR(c/cs,ref ) of the normalised velocity c/cs,ref

is computed as

uR


c

cs,ref


=

%&&&&$
∂


c

cs,ref


∂c


2

· u2(c) +

∂


c
cs,ref


∂cs,ref


2

· u2(cs,ref ) . (A.11)

Inserting the sensitivity coefficients

∂


c
cs,ref


∂c

= 1
cs,ref

and
∂


c

cs,ref


∂cs,ref

= − c

c2
s,ref

(A.12)

into Equation (A.11) the expanded uncertainty finally becomes

UR,95


c

cs,ref


= 2

cs,ref

·
%&&$u2(c) +


c

cs,ref

2

· u2(cs,ref ) . (A.13)

A.3.2 Expanded uncertainty for the turbulence intensity
The combined standard uncertainty uR(It) of the turbulence intensity It is computed
as

uR(It) =

%&&$
∂It

∂ka

2

· u2(ka) . (A.14)

With
∂It

∂ka

= 1
3 ·


2ka

3

−1/2

, (A.15)

Equation (A.14) becomes

uR(It) = 1
3 ·

#
3

2ka

· u(ka) = u(ka)
3
√

It

, (A.16)
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and the expanded uncertainty evaluates to

UR,95(It) = 2u(ka)
3
√

It

. (A.17)

Table A.1 lists the calculated minimum, maximum and mean relative values of the
expanded uncertainties for the normalised velocity UR,95


c

cs,ref


and the turbulence

intensity UR,95 (It).

% min max mean
UR,95 (c/cs,ref ) 3.07 3.08 3.08
UR,95 (It) 11.9 14.0 12.8

Table A.1: Minimum, maximum and mean value of the expanded uncertainties for
the normalised velocity and the turbulence intensity. Values calculated
from measurement errors given by Sudo et al. [104].

A.3.3 Expanded uncertainty for CFD results
In CFD simulations, it is of general interest to assess the errors3 made by, e.g. spatial
and temporal discretisation, turbulence modelling, multiphase modelling, wall reso-
lution, use of symmetries, and other modelling choices. Combining these individually
computed errors is required to achieve an overall error (= expanded uncertainty)
of the simulation [5, 72, 120] when following the concept of expanded measurement
uncertainties. If we assume that the overall error of a CFD simulation is some
appropriate sum of the individual errors induced by the modelling choices made by
the user, we can deduce from Kirkup et al. [45]) that the uncertainty coefficients ci

become one for all i and Equation (A.10) simplifies to

URSS := uR(ci=1,...I = 1) =

%&&$ I'
i=1

u2 (Xi) , (A.18)

where URSS is known as the root-sum-square of the individual errors. This root-
sum-square can be geometrically interpreted as the radius of the hull of a volume
in an I-dimensional space with the CFD result as the centre point and the hull’s
volume as the uncertainty space where the actual value of the result could be located
anywhere within this volume. The root-mean-square of the individual uncertainties
is achieved by

URMS :=
#(I

i=1 u2 (Xi)
I − 1 , (A.19)

and, in this context, indicates some mean value of the individual errors.

3When discussing CFD, using the word ’error’ seems more common than the use of ’uncertainty’.
However, when mathematically analysing errors/uncertainties, this specific choice of words does
not make a difference.
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APPENDIX B
Scripts

B.1 Script for creating secondary flow variables
in CFD-Post

The code snippet in Listing B.1 displays a minimum working example of an algorithm
to compute secondary velocities introduced in Section 3.4 in the post-processing
utility CFD-Post. The code was tested with CFD-Post 19.2 and CFD-Post 2022 R1.
This snippet was also published in a prior publication of mine, [30].

Listing B.1: Minimal working example for secondary flow variables in CFD-Post
# Definition of Perl variables
! @Coordinates = (’X’,’Y’,’Z’);
! @VelocityComponents = (’u’,’v’,’w’);

# Create expressions
LIBRARY:

CEL:
EXPRESSIONS:

Velocity projected to surf normal = Velocity u * Normal X +
�→ Velocity v * Normal Y +Velocity w * Normal Z

# Loop through every member of @Coordinates
! for ($i=0; $i<@Coordinates; $i++) {

Primary Flow Velocity $Coordinates[$i] = Velocity projected
�→ to surf normal* Normal $Coordinates[$i]

Secondary Flow Velocity $Coordinates[$i] = Velocity
�→ $VelocityComponents[$i] - Primary Flow Velocity
�→ $Coordinates[$i]

!}
END

END
END
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# Create user vector variables
USER VECTOR VARIABLE: V Primary Flow Velocity

Boundary Values = Conservative
Calculate Global Range = On
Recipe = Expression
Variable to Copy = Pressure
Variable to Gradient = Pressure
X Expression = Primary Flow Velocity X
Y Expression = Primary Flow Velocity Y
Z Expression = Primary Flow Velocity Z

END
USER VECTOR VARIABLE: V Secondary Flow Velocity

Boundary Values = Conservative
Calculate Global Range = On
Recipe = Expression
Variable to Copy = Pressure
Variable to Gradient = Pressure
X Expression = Secondary Flow Velocity X
Y Expression = Secondary Flow Velocity Y
Z Expression = Secondary Flow Velocity Z

END
# End of script
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APPENDIX C
Additional data of Chapter 5

C.1 Data of Section 5.1
C.1.1 Overview of cases and numerical settings - A
The flow in the 90◦ pipe bend is assumed steady, incompressible, and isothermal.
The density and dynamic viscosity of the working fluid were set to ρ = 997 kg/m3

and µ = 8.899 · 10−4 Pa s. This data corresponds to the physical properties of water
at 25 ◦C. A bulk velocity corresponding to a Reynolds number of 6.0 · 104 was
specified at the outlet. A total pressure condition with the relative pressure set to
0 Pa was defined at the inlet. A turbulence intensity of It = 5 % and a turbulent
length scale corresponding to the pipe diameter were set as turbulence boundary
conditions at the inlet. A no-slip boundary condition was employed at all walls.
They were set to be hydraulically smooth. The advection terms were solved using
the high-resolution scheme, a second-order scheme that automatically blends to a
first-order formulation if stability issues arise [3]. The advection of turbulence was
discretised by a first-order upwind scheme. These settings were kept the same for
all cases within Section 5.1.

Four meshes were tested to understand the impact of different meshing approaches
on the quantities of interest. Three were made up entirely of hexahedral cells (indi-

ID Name Nm/∗) Type h/hMediumH a) b)

1 Coarse H 0.49 H 1.27 8.0 · 10−6 0.49
2 Medium H 1.00 H 1.00 4.0 · 10−8 1.00
3 Medium rM 1.19 M 0.94 7.0 · 10−8 1.16
4 Fine H 2.54 H 0.73 6.0 · 10−8 2.68

Table C.1: Cases of the mesh study. a) - RMS Residuals of the momen-
tum equation after 1000 iterations. b) - Relative compute time.
∗) = Nm,MediumH
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ID Name a) y+
ave y+

max b) c)

1 kE y+ = 77 kE 77 117 1.0·10−10 0.31
2 SST y+ = 1 SST 0.22 0.43 4.0 · 10−8 1.00
3 SST CC SSTCC 0.22 0.43 5.3 · 10−8 1.05
4 EARSM EARSM 0.22 0.43 3.8 · 10−8 1.21

Table C.2: Cases of the turbulence model study. a) - Turbulence model (abbre-
viation). b) - RMS Residuals of the momentum equation after 1000
iterations. c) - Relative compute time.

cated by a trailing H), sizing from coarse to fine. One was made of a combination of
hexahedral elements in the straight pipe sections and refined tetrahedral elements
in the bend (indicated by the letters rM). All cases for which the meshes were varied
were run with the k-ω Shear Stress Transport (SST) turbulence model. Table C.1
summarises the mesh data and the computational effort of these cases.

Four different turbulence closures were employed to test the sensitivity of the
local and integral flow variables on the turbulence model: the k-ε model (kE)
of Launder and Spalding [53] with the scalable wall function approach [3]; the
k-ω Shear Stress Transport model of Menter [61] with automatic wall treatment for
ω-based models [3]; further, the SST model activated curvature correction (SSTCC)
and the Baseline-Explicit Algebraic Reynolds Stress model (EARSM) of Menter,
Garbaruk and Egorov [62]. Unless explicitly stated otherwise, all cases for which
the turbulence models were varied were run with mesh Medium H and a maximum
value of y+ < 1. For case 1 with the kE turbulence model, the wall resolution was
adjusted for the use of wall functions. A summary of the cases is listed in Table C.2.

C.1.2 Estimation of discretisation error - A
The Grid Convergence Method1 introduced by Celik et al. [11] was employed to
assess the uncertainty of the presented results due to spatial discretisation. The grid
study used the hexahedral element meshes: Coarse H, Medium H, and Fine H. The
pressure coefficient Cp, the intensity of secondary flow Is, the turbulence intensity It,
as well as the local flow velocities cs and cθ were selected as quantities of interest.

In Figure C.1, the longitudinal distributions of Cp, Is and It, as well as their
respective extrapolated values, are plotted against the normalised streamwise
coordinate. The discretisation error is also shown as error bars to the extrapolated
curves. The variation between the results from the three meshes is almost negligible
for the pressure coefficients and the intensity of secondary flow.
Accordingly, the maximum values for the grid convergence indices are less or around
2 % and the corresponding mean values are less than 0.5 % (Table C.3). The low
level of dependencies of Cp and Is on the mesh size is confirmed by the high values
of the apparent order poa. Oscillatory convergence occurs at 14 % to 42 % of the
1The general procedure of this method is explained in Section 4.4.
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Figure C.1: Longitudinal distributions of Cp, Is and It including the extrapolated
curves (Extr.) and the discretisation errors.

points for Cp and almost 50 % of the points for Is. The turbulence intensity reacts
more sensitively to a change in the mesh size. The results for It start to vary at

153



C. Additional data of Chapter 5

0.2 0.4 0.6 0.8 1.0 1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0Outside

θ = 90◦

Inside
θ = −90◦

cs/cs,ref

2r
/d

Extr. Coarse H
Medium H Fine H 0.6 0.8 1.0 1.2 1.4

0.0
0.2
0.4
0.6
0.8
1.0

Bottom
θ = 0◦

cs/cs,ref

2r
/d

−0.4 −0.2 0.0 0.2 0.4

0.0
0.2
0.4
0.6
0.8
1.0

Bottom
θ = 0◦

cθ/cs,ref
2r

/d

Figure C.2: Velocity profiles including the extrapolated curves (Extr.) and the
discretisation errors at station ϕ = 90◦.

about s/d ∼ 2, which is close to station ϕ = 60◦, where, in the velocity plots,
e.g. Figures 5.5 and 5.6, the flow shows tendencies to separate from the inside wall
of the bend. This higher variance results in an average grid convergence index
of 2 %, with a maximum of just under 5 %. Similarly, the apparent order of 2.5 is
much less than those of Cp and Is. Oscillatory convergence does not occur for It.

The effect of a change of the mesh size on the local flow velocities was studied for
three stations: ϕ = 60◦ because there, the flow starts to separate; ϕ = 90◦ because
the velocity deficit is most prominent at this station; and z/d = 1.0, because in
the AxFeeder application the injector will be placed approximately one diameter
downstream the last bend. The velocity profiles for the three meshes and the
extrapolated profiles together with the discretisation errors are exemplarily depicted
at station ϕ = 90◦ in Figure C.2, the resulting uncertainties for all three stations
are summarised in Table C.3. While for most of the domain, the profiles overlap
almost perfectly, close to the inside wall of the bend, between −0.8 < r/d < −0.2,
the correct prediction of the velocity deficit poses an inherent challenge to the
simulation model. Thus, the curves of the streamwise velocity in the horizontal
plane vary significantly in this area. Not unexpectedly, the mean values of the grid
convergence index are up to 3 %, and the maxima are well over 10 %. The mean
order of accuracy lies between 3 and 7, and oscillatory convergence occurs at about
a quarter of the data points.
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Station Location Quantity a) b) poa,mean Roc (%)

Streamlines
along the
wall

Inside Sl.∗
Cp

1.34 0.22 5.21 20.9
Bottom Sl. 2.18 0.42 4.05 41.8
Outside Sl. 0.58 0.14 4.49 14.3

Is 0.71 0.14 7.63 47.1All stations between
−1 ⩽ s/d ⩽ 13 It 4.83 2.04 2.48 0.0

horz. plane cs/cs,ref 4.43 0.32 4.59 16.5
vert. plane cs/cs,ref 0.06 0.01 6.96 41.3ϕ = 60◦

vert. plane cθ/cs,ref 3.52 0.32 5.86 35.8
horz. plane cs/cs,ref 13.06 2.45 3.22 11.9
vert. plane cs/cs,ref 0.33 0.13 3.49 29.4ϕ = 90◦

vert. plane cθ/cs,ref 18.38 1.32 5.08 43.1
horz. plane cs/cs,ref 9.41 1.93 4.36 1.8
vert. plane cs/cs,ref 2.09 0.54 4.45 29.4z/d = 1.0
vert. plane cθ/cs,ref 11.38 2.87 5.04 29.4

Table C.3: Maximum and mean values of the grid convergence indices,
a) - GCI21

fine,max (%), b) - GCI21
fine,mean (%), mean value of the ap-

parent order poa of the numerical method and ratio of data points with
oscillatory convergence Roc for several quantities. Sl.∗ = Streamline.

C.1.3 Secondary velocity ratio - A
The grid convergence indices GCI21

fine for the secondary velocity ratio φII are almost
zero at all stations except for those affected by the distorted velocity profiles at
the inside of the bend. The distortion zone starts to take effect on the local grid
convergence approximately between stations ϕ = 90◦ and z/d = 1, resulting in a
maximum fine-grid convergence index of over 7 %. At these locations, the apparent
order poa of the method is close to or even below one, indicating difficult conditions
to achieve grid convergence. At all other stations, poa is greater than two. At the
stations upstream of the bend, the solutions from the three grids are almost equal.
Hence, their difference is close to zero, such that the procedure of Celik et al. [11],
summarised in Section 4.4, does not work in its strict sense but instead indicates
that either oscillatory convergence occurs or the exact solution is already obtained.

The following tables, Tables C.4 and C.5, list the computed values for the secondary
velocity ratio φII , the respective mean values φ̄II , the uncertainties u(φII) and the
normalised uncertainties u(φII)/φ̄II for four meshes and four turbulence models.
The cases with the different meshes were all run with the SST y+ = 1 turbulence
model, and the cases with the various turbulence models were run with mesh
Medium H, whereby for the kE model case, the boundary layer resolution was
adjusted. For the cases with different meshes, only the magnitudes of the secondary
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Case ϕ = 90◦ z/d = 1 z/d = 5
Coarse H 17.05 12.26 8.61
Medium H 17.01 12.27 9.08
Fine H 16.94 12.19 9.08
Medium rM 16.76 12.16 8.36

φ̄II 16.94 12.22 8.78
u(φII) 0.13 0.05 0.36

u(φII)/φ̄II 0.75 0.44 4.11

Table C.4: Secondary velocity ratio φII in % for four meshes evaluated at three
stations.

Case ϕ = 90◦ z/d = 1 z/d = 5
kE y+ = 77 16.33 12.04 6.45
SST y+ = 1 17.01 12.27 9.08
SSTCC 16.74 12.05 9.44
EARSM 15.64 10.97 7.33

φ̄II 16.43 11.83 8.08
u(φII) 0.60 0.59 1.42

u(φII)/φ̄II 3.64 4.96 17.62

Table C.5: Secondary velocity ratio φII in % for four turbulence models at three
different stations.

velocities vary to a minor extent. Thus, the relative uncertainties u(φII)/φ̄II of the
investigated cases are very low as well. Changing the turbulence model and the wall
layer resolution has a much more significant effect on the secondary velocity ratios
downstream of the bend. The uncertainties from the turbulence model cases are
about an order of magnitude higher than those of the cases with different meshes.
A comparison against the secondary velocity ratios computed for the 90◦ pipe bend
of Shiraishi et al. [92] is presented in Section 5.3.

C.2 Data of Section 5.2
C.2.1 Overview of cases and numerical settings - B
The measurements of Shiraishi et al. [92] have shown flow separations at the
inside wall of the bend, causing unsteady fluctuations in the pressure signals. This
behaviour indicates the need for unsteady, possibly scale-resolving flow simulations.
However, for the parametric study of the AxFeeder, presented in Section 6.4, the
emphasis lies on using a reliable and efficient numerical setup. Hence, unsteady
simulations are ruled out as being too costly. Consequently, the computations of
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ID Name Nm/∗) Type h/hMediumH a) b)

1 Coarse H 0.46 H 1.30 6.6 · 10−6 0.45
2 Medium H kE 0.55 H 1.22 1.0 · 10−12 0.13
3 Medium H 1.00 H 1.00 2.0 · 10−6 1.00
4 Fine H 1.83 H 0.82 8.0 · 10−5 1.86
5 Fine rM 2.48 M 0.74 2.2 · 10−6 2.32

Table C.6: Cases for the mesh study. a) - RMS Residuals of the momentum
equation after 1000 iterations. b) - Relative compute time. For case 2,
convergence was achieved after 239 iterations. ∗) = Nm,MediumH

Section 5.2 were executed using steady-state RANS simulations to test the accuracy
and applicability of the RANS approach for the flow in a sharply turning bend.

Like in Appendix C.1.1, the flow was further assumed incompressible and isothermal.
The density and dynamic viscosity of the working fluid (water at 25 ◦C) were set
to ρ = 997 kg/m3 and µ = 8.899 · 10−4 Pa s. A total pressure condition with the
relative pressure set to 0 Pa was defined at the inlet. A turbulence intensity of
It = 5 % and a turbulent length scale corresponding to the pipe diameter were
set as turbulence boundary conditions at the inlet. A no-slip boundary condition
was employed at all walls, and all walls were set to be hydraulically smooth2. At
the outlet, a bulk velocity perpendicular to the boundary region was specified to
achieve the desired Reynolds number for the case. All solver settings were the same
as in Appendix C.1.1.

Based on the experiences in Section 5.1, five different meshes were employed to
analyse the sensitivity of the predicted losses and velocity profiles on the mesh sizes.
Four meshes with different average cell sizes were made entirely from hexahedral
elements (Coarse H, Medium H kE, Medium H and Fine H). In one mesh (Fine rM),
the bend is discretised by tetrahedrons, and only the upstream and downstream
tangents are built from hexahedrons. For all meshes except for Medium H kE, the
boundary layer was fully resolved, such that the wall-adjacent node lay in the vis-
cous sublayer region of the boundary layer. For the case with mesh Medium H kE,
the grid resolution is such that the wall-adjacent mesh node lies within the log-law
region of the boundary layer. All cases for which the meshes were varied were run
with the k-ω Shear Stress Transport (SST) turbulence model. Table C.6 gives an
overview of the mesh data and the computational effort of these cases.

The same four turbulence models as in Section 5.1 were tested to determine the
sensitivity of the flow variables on the turbulence model. All of theses cases were
run with mesh Fine H and a maximum value of y+ ∼ 1, except for the case with
the k-ε model. In this case, mesh medium H kE was used, and the area average of
y+ was about 153. An overview of the resulting cases is depicted in Table C.7.
2This agrees with the information provided by Shiraishi et al. [92] because the simulations are
compared to experimental data acquired under hydraulically smooth pipe conditions.
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ID Name a) y+
ave y+

max b) c)

1 kE y+ = 153 kE 153 232 1.0·10−12 0.07
2 SST y+ = 1 SST 0.67 1.18 8.0 · 10−5 1.00
3 SST CC SSTCC 0.67 1.18 7.6 · 10−5 1.03
4 EARSM EARSM 0.67 1.20 2.0 · 10−6 1.18

Table C.7: Cases for the turbulence model study. a) - Turbulence model (abbre-
viation). b) - RMS Residuals of the momentum equation after 1000
iterations. c) - Relative compute time. For case 1, convergence was
achieved after 239 iterations.

C.2.2 Estimation of discretisation error - B
As in Appendix C.1.2, a grid study was conducted with meshes Coarse H, Medium H
and Fine H, for all loss coefficients, the streamwise velocity distributions and the
secondary velocity ratios at three stations downstream of the bend.

Most investigated quantities show excellent convergence towards their fine-grid
solutions. For the total pressure loss coefficients and the power loss coefficients, the
grid convergence index is significantly less than 0.5 % for all Reynolds numbers,
and the apparent order of the numerical method is well above 6 for all tested cases.
The numerical uncertainty of the dissipation power coefficient is observably higher
but still less than 5 % for all Reynolds numbers, and the apparent order is at least
3.5 for the worst case, but over 5 for all the other cases.

The grid convergence of the streamwise velocity was evaluated at stations II, III
and IV, downstream of the bend, for all four Reynolds numbers. The mean values
of the grid convergence index are in the order of 1 % for all cases, and the apparent
order consequently is very high, the minimum of poa being over 7. Most cases show
a significant amount of oscillatory convergence, with Roc ranging from 10 % to 80 %.
These quantitative observations are underlined by the plots of Figure C.3, where the
solutions for the three grids and the extrapolated velocity curves are depicted. The
solution of mesh Coarse H falls off, but the curves for meshes Medium H, Fine H
and the extrapolated curve are very close. Therefore, the high local maxima of
GCI21

fine shown in Table C.9 at stations II and II for Re = 3.2 · 105 are local effects
that do not deteriorate the numerical predictions overall.

The secondary velocity ratio φII converges well towards the fine grid solution. The
exceptions are the high Reynolds number cases (Re = 2.8·106 and 3.7·106) at station
z/d = 1. The separation in the bend affects the flow the most at this location.
Thus, the high errors of the method and the apparent order at Re = 2.8 · 106 below
one indicate divergence. The steady-state modelling approach reaches its limits
in such situations, and unsteady or scale-resolving CFD methods are expected to
perform better. However, the achieved contours for the secondary flows downstream
of the bend in Figure 5.19 appear trustworthy. Therefore, the chosen grid resolution
was sufficient to capture the effects discussed in Section 5.2.
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Figure C.3: Velocity profiles including the extrapolated curves (Extr.) and the
discretisation errors at stations II and III.

Detailed results of the grid study are listed in Table C.8 for the loss coefficients, in
Table C.9 for the streamwise velocity and in Table C.10 for the secondary velocity
ratio.

Quantity Re GCI21
fine (%) poa Roc

3.2 · 105 0.00 16.46 0
1.2 · 106 0.01 12.36 1
2.8 · 106 0.04 8.67 1

ζp,ts|Linlet

3.7 · 106 0.05 7.99 1
3.2 · 105 0.31 6.77 0
1.2 · 106 0.06 11.86 1
2.8 · 106 0.10 10.59 1

ζP mT E|LA
3.7 · 106 0.12 10.06 1
3.2 · 105 4.40 3.57 0
1.2 · 106 2.10 5.41 0
2.8 · 106 1.56 5.69 0

ζΦ|LA
3.7 · 106 1.89 5.26 0

Table C.8: Grid convergence index GCI21
fine (%), apparent order poa of the nu-

merical method and indicator of oscillatory convergence Roc for the
different formulations of loss coefficients.
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Station Re a) b) poa Roc

3.2 · 105 36.39 1.17 7.14 9.8
1.2 · 106 3.32 0.16 12.90 25.6
2.8 · 106 2.22 0.17 14.67 35.4

II

3.7 · 106 5.79 0.33 12.07 30.5
3.2 · 105 13.15 1.12 7.26 19.5
1.2 · 106 1.94 0.25 12.50 39.0
2.8 · 106 1.09 0.13 14.83 63.4

III

3.7 · 106 1.61 0.20 11.69 41.5
3.2 · 105 1.85 0.28 8.61 32.9
1.2 · 106 0.90 0.19 10.15 76.8
2.8 · 106 1.29 0.17 9.43 80.5

IV

3.7 · 106 1.06 0.14 10.09 78.0

Table C.9: Maximum and mean values of the grid convergence indices,
a) - GCI21

fine,max (%), b) - GCI21
fine,mean (%), mean value of the ap-

parent order poa of the numerical method and ratio of data points
with oscillatory convergence Roc for the normalised streamwise velocity
cs/cs,ref at stations II, III and IV.

Station Re GCI21
fine (%) poa Roc

3.2 · 105 0.18 7.26 0
1.2 · 106 0.04 12.17 0
2.8 · 106 0.00 19.40 0

z/d = 0

3.7 · 106 0.01 14.82 0
3.2 · 105 0.87 6.69 0
1.2 · 106 0.28 11.78 1
2.8 · 106 35.27 0.34 1

z/d = 1

3.7 · 106 9.76 1.10 1
3.2 · 105 0.68 9.41 0
1.2 · 106 1.82 6.45 1
2.8 · 106 0.18 12.11 1

z/d = 5

3.7 · 106 0.32 13.90 1

Table C.10: Grid convergence index GCI21
fine (%), apparent order poa of the

method and indicator of oscillatory convergence Roc for the sec-
ondary velocity ratio φII at stations z/d = 0, z/d = 1, and z/d = 5.
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C.2.3 Further velocity profiles

The velocity plots of Figure C.4 underline that all meshes except Coarse H, including
mesh Fine rM with the mixed element type approach, can qualitatively replicate
the measured velocity distributions. There are minor discrepancies at the inner
wall of the bend at stations II and II for all Reynolds numbers due to the flow
separation zone and the resulting velocity deficit. However, this deficit occurs to a
similar extent in all three cases, Medium H, Fine H, and Fine rM.

In Figure C.5, the streamwise velocity distribution for the four Reynolds numbers in
stations II and III is shown for the case with mesh Fine H and the SST turbulence
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Figure C.4: Streamwise velocity distribution at four stations for four Reynolds
numbers using different meshes.
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Figure C.5: Influence of the Reynolds number on the streamwise velocity distri-
bution for a case with mesh Fine H and the SST turbulence model.

model. Shiraishi et al. [92] pointed out that, in the postcritical regime, the flow
pattern in the bend was independent of the Reynolds number[92]. This Reynolds
independence comes from the fact that the velocity profiles are determined mainly
by the extent of the separation zone, which, as Idelchik [38] discussed, for flows in
the postcritical regime does not change its size significantly. Thus, the separation
zone and the flow pattern become independent of the Reynolds number. Therefore,
in this thesis, the experimental velocity profiles shown in Figures 5.17, C.4 and C.5
are identical for all four Reynolds numbers3. The CFD results do not exhibit such
independence for all Reynolds numbers. However, with increasing Reynolds number,
the profiles become more and more alike, and especially for Re = 2.8 · 106 and
Re = 3.7 · 106, they look almost identical.

C.2.4 Secondary velocity ratio - B
As in Appendix C.1.3, the secondary velocity ratio φII is evaluated at three stations
downstream the bend, namely ϕ = 90◦, z/d = 1 and z/d = 5. The computed values
for the secondary velocity ratio at these stations are listed in Table C.11 for the
cases with different meshes and in Table C.12 for the cases with different turbulence
models, each for all of the four Reynolds numbers 3.2 · 105, 1.2 · 106, 2.8 · 106 and
3.7 · 106. Additionally, the respective mean values φ̄II , the uncertainties u(φII) and
the normalised uncertainties u(φII)/φ̄II are plotted for each Reynolds number. The
procedure for calculating the mean values and the uncertainties is explained in
Appendices A.1.1 and A.1.2.

3Shiraishi et al. [92] showed four different curves, one for each Reynolds number. However, these
curves were so closely together that a clear distinction was invisible to the naked eye.
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Case Re = 3.2 · 105 Re = 1.2 · 106

ϕ = 90◦ z/d = 1 z/d = 5 ϕ = 90◦ z/d = 1 z/d = 5
Coarse H 24.28 11.34 6.61 21.40 9.96 6.07
Medium H 25.16 11.44 6.67 23.15 9.92 5.98
Fine H 25.28 11.67 6.88 23.22 10.14 6.22
Fine rM 25.26 12.04 7.18 23.14 10.42 6.46

φ̄II 24.99 11.62 6.84 22.73 10.11 6.18
u(φII) 0.41 0.27 0.23 0.77 0.20 0.18

u(φII)/φ̄II 1.65 2.33 3.30 3.38 1.94 2.97

Case Re = 2.8 · 106 Re = 3.7 · 106

ϕ = 90◦ z/d = 1 z/d = 5 ϕ = 90◦ z/d = 1 z/d = 5
Coarse H 20.14 9.11 5.55 19.76 8.86 5.39
Medium H 21.73 8.94 5.51 21.23 8.64 5.36
Fine H 21.74 9.12 5.74 21.26 8.81 5.58
Fine rM 21.64 9.34 5.95 21.17 8.99 5.77

φ̄II 21.31 9.13 5.69 20.85 8.82 5.53
u(φII) 0.68 0.14 0.17 0.63 0.13 0.16

u(φII)/φ̄II 3.19 1.52 3.03 3.04 1.45 2.97

Table C.11: Secondary velocity ratio φII in % for four meshes evaluated at three
stations.

The cases with the different meshes were all run with the SST y+ = 1 turbulence
model, and the cases with the different turbulence models were run with mesh
Medium H, whereby for the kE model case, the boundary layer resolution was ad-
justed. A detailed discussion of the results and a comparison against the secondary
velocity ratios computed for the 90◦ pipe bend of Sudo et al. [104] is presented in
Section 5.3.

With peak values ranging from 18 % to 25 %, the secondary velocity ratios are the
highest directly at the exit of the bend at station ϕ = 90◦. At station z/d = 1 one
diameter downstream, the secondary velocity ratios were more than halved and
naturally decreased even more as the flow moved further downstream. Tables C.11
and C.12 indicate that the uncertainties contributed by the spatial discretisation lie
at around 3 % regardless of the Reynolds number. Thereby they are significantly
less than the uncertainties resulting from turbulence modelling, which lie at around
4 % to 8 % at station ϕ = 90◦ directly at the bend exit and increase to 16 % to
24 % at station z/d = 5. Generally, the uncertainty grows with increasing Reynolds
number for the cases with different turbulence models.
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Case Re = 3.2 · 105 Re = 1.2 · 106

ϕ = 90◦ z/d = 1 z/d = 5 ϕ = 90◦ z/d = 1 z/d = 5
kE high Re 22.72 9.69 4.54 20.1 7.83 3.53
SST y+1 25.28 11.67 6.88 23.22 10.14 6.22
SSTCC 25.44 11.32 6.77 23.84 9.89 6.01
EARSM 24.66 10.42 5.59 22.89 8.8 4.77

φ̄II 24.53 10.77 5.95 22.51 9.16 5.13
u(φII) 1.08 0.78 0.96 1.43 0.92 1.08

u(φII)/φ̄II 4.42 7.21 16.08 6.37 10.02 20.99

Case Re = 2.8 · 106 Re = 3.7 · 106

ϕ = 90◦ z/d = 1 z/d = 5 ϕ = 90◦ z/d = 1 z/d = 5
kE high Re 18.62 6.93 3.06 18.09 6.62 2.92
SST y+1 21.74 9.12 5.74 21.26 8.81 5.58
SSTCC 22.61 8.96 5.52 22.2 8.66 5.37
EARSM 21.65 7.76 4.25 21.23 7.45 4.09

φ̄II 21.15 8.19 4.64 20.7 7.88 4.49
u(φII) 1.51 0.9 1.08 1.55 0.9 1.07

u(φII)/φ̄II 7.14 11 23.15 7.51 11.41 23.86

Table C.12: Secondary velocity ratio φII in % for four turbulence models evaluated
at three stations.
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APPENDIX D
Additional data of Chapter 6

D.1 Comparison of the AxFeeder concept to a
conventional distributor system

In hydropower projects, the space needed for the Pelton turbine and its components
(including the distributor system) significantly influences the layout of the turbine
hall and, thus, the scope of excavation works and overall construction costs. Hence,
this influence is one of the decisive factors in the project’s early layout and design
phase. Therefore, comparing the new AxFeeder concept to a conventional distrib-
utor system is of great interest. For the AxFeeder, a configuration with diffuser
manifold, conical frustum and a 90◦ deviation angle of the branch lines as introduced
in part b) of Figure 6.2 was chosen for comparison. This type of AxFeeder was
comprehensively studied in Sections 6.4.2 and 6.5 and was eventually selected for
the experimental testing planned in the project AxFeeder (FO999888084). For
the conventional distributor line, a design suitable for the same head, flow rate
(and thus the same Reynolds number range) and runner size was selected. This
conventional distributor was thoroughly investigated by Hahn et al. [31] and by
Semlitsch [89].

The two concepts are directly compared in Figure D.1 with the AxFeeder in grey and
the conventional distributor in blue. The external dimensions of the AxFeeder in
radial direction (expressed by R80) are roughly 10 % to 20 % larger than those of the
conventional distributor (RKV T L). The larger dimensions are owed to maximising
the curvature radius of the bends in the branch lines of the AxFeeder. Naturally, this
comes with additional manufacturing and material costs for the AxFeeder concept
but minimises losses and secondary flows. Maximising the curvature radius could
have been done for the conventional distributor, too, but during its design phase,
the emphasis lay on finding a very compact yet well-performing distributor. The
comparison of the two concepts also reveals that the conventional distributor line is
much more slender in the z-direction and allows the position of the turbine shaft
with the generator unit on both sides of the distributor, where for the AxFeeder,
the generator must be positioned on the opposite side of the manifold.
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Figure D.1: Size comparison of the AxFeeder design with diffuser manifold and
conical frustum (grey) to a conventional distributor system (blue)
for the same designated operating data. a = 1.1 to 1.2.

In summary, this comparison of the two concepts underlines that additional focus
on further reducing the overall size and complexity of the AxFeeder must be paid to
pose a cost-effective and compact alternative to the conventional distributor system
for Pelton turbines.

D.2 Data of Section 6.2
A detailed discussion of the grid resolution study for the cases of the AxFeeder was
presented in Section 6.2.2.

D.2.1 Mesh data - AxFeeder
The most relevant features of the investigated meshes are listed in Table D.1.

ID Name Nm/∗) h/hMediumH a) b) c) d)

1 Coarse 0.42 1.33 1.8 · 10−4 0.25 0.93 0.23
2 Medium 1.00 1.00 1.6 · 10−4 0.25 1.00 1.00
3 Fine 2.43 0.74 1.2 · 10−4 1.00 2.22 2.22
4 Symmetric 0.21 0.93 1.2 · 10−4 1.00 0.55 0.14

Table D.1: Meshes for the verification studies of the AxFeeder. a) - RMS Resid-
uals of the momentum equation after 1000 iterations. b) - Relative
number of processor cores used. c) - Relative compute time for each
case. d) - Product of relative core number and relative compute time.
∗) = Nm,MediumH
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D.2.2 Spatial discretisation error - AxFeeder
Tables D.2 to D.4 summarise the computed values for the fine-grid convergence
GCI21

fine, the apparent order of the numerical method poa and the ratio of oscillatory
convergence Roc for the power loss coefficients, the dissipation power coefficient,
the local velocities and the secondary velocity ratio.

Quantity Stations GCI21
fine (%) poa Roc

ζP mT E|50
1 1-50 2.41 1.52 -1.58

ζP mT E|100
50 50-100 0.11 3.64 -3.00

ζP mT E|100
1 1-100 1.05 1.79 -1.71

ζΦ|50
1 1-50 44.49 0.53 0.88

ζΦ|100
50 50-100 3.08 1.40 0.68

ζΦ|100
1 1-100 14.64 0.78 0.82

Table D.2: Grid convergence index GCI21
fine (%), apparent order poa of the numer-

ical method and indicator of oscillatory convergence Roc for the loss
coefficients.

Station a) b) poa Roc

71 9.47 0.96 3.72 75.2
101 79.94 3.39 3.29 74.4

Table D.3: Maximum and mean values of the grid convergence indices,
a) - GCI21

fine,max (%), b) - GCI21
fine,mean (%), mean value of the ap-

parent order poa of the numerical method and ratio of data points
with oscillatory convergence Roc for the normalised velocity ||⃗c||/cs,ref

at stations 76 and 101.

Quantity Station GCI21
fine (%) poa Roc

φII,50 50 1.19 4.71 -4.15
φII,80 80 2.13 1.47 -0.65
φII,100 100 13.65 1.38 -1.51

Table D.4: Grid convergence index GCI21
fine (%), apparent order poa of the nu-

merical method and indicator of oscillatory convergence Roc for the
secondary velocity ratio φII at three stations z/d = 0, z/d = 1, and
z/d = 5.
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D.3 Comparison to Large Eddy Simulation
results

In [29, 88], Semlitsch investigated the generation of large-scale vortical flow struc-
tures for several operating conditions of the AxFeeder. Thereby, among other
things, Semlitsch [29, 88] compared the time-averaged velocity magnitudes ||⃗c||/cs,1
from Large Eddy Simulations (LES) to those predicted by Reynolds-Averaged
Navier-Stokes (RANS) simulations for an operating point with one active injec-
tor. This operating condition was of particular interest for the project AxFeeder
(FO999888084) and thus selected for in-depth flow analysis.

The results of Semlitsch [29, 88] shall now serve as a reference to the results ob-
tained from the parametric investigation (Section 6.4) and the influence studies
(Section 6.5). Therefore, in Figure D.2, the normalised velocity contours in the
y-z plane are plotted for four cases, where case a) shows the temporal average of
the flow velocity of the LES approach and cases b) to d) show flow velocity from
RANS computations1. Cases a) and b), which were executed by Semlitsch [29, 88]
using OpenFOAMv2312, employed already a slightly scaled-down configuration
of the AxFeeder as this smaller variant was deemed more suitable for comparison
with eventual experiments. However, all cases were set up such that the inflow
Reynolds number of 1 · 106 was the same. A detailed comparison of all commons
and differences of these four cases is given in Table D.5.

The time-averaged velocity contours are very similar for all cases shown in Fig-
ure D.2, regardless of the solver or modelling details. The main difference between
the RANS results using OpenFOAM, case b) and CFX, cases c) and d), lies in
the prediction of the flow separation in the branch line. This separation is slightly
more pronounced in the horizontal pipe section (between stations 71 and 81) on
the inside after the first bend for the OpenFOAM cases. On the contrary, the
separations on the outside of the first bend of the branch line are more prominent
in the CFX cases. While all RANS cases predict an almost perfectly symmetric
flow field, in case a) with the LES results, a minor asymmetry can be detected in
the diffuser and the frustum parts. At the base of the frustum, where the branch
lines are attached to the manifold, the flow separation zone is significantly wider
than that of the RANS cases and gets smaller towards the top end.

An even more in-depth comparison between the two main CFD modelling strategies,
LES and RANS, is presented in Figure D.3, where, for four cases, the secondary
velocity ratio φII is plotted in station 101. The LES approach is shown in the top
row of this figure, case a). The contour on the very left depicts the time-averaged
secondary velocity ratio, whereas the three plots next to this contour illustrate the
instantaneous values at three points in time. The lower row of Figure D.3 displays
φII for three different RANS cases. Interestingly, the (time-averaged) contours
of the LES and the RANS cases a) and b) (both with one active branch line)

1The truncated view of the branch lines in case a) is a result of a viewing error not within my
area of responsibility. The geometries of cases a) and b) were identical, though.
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Figure D.2: Comparison of the time-averaged velocity contours ||⃗c||/cs,1 predicted
by the LES and RANS approaches. Parts a) and b) recreated and
modified with kind permission of Semlitsch [29, 88].

Case a) b) c) d)

Solver OpenFOAM v2312 CFX 19.2
Type LES RANS
Scale 0.868 1
Symmetry no yes
Bends segmented smooth segmented

Table D.5: Characteristics of the four cases (all with Re1 = 1 · 106, six active
branch lines) compared in Figure D.2.

appear very similar. The beak at the inside (negative z-direction) from the LES
flow field is more prominent and shifted to the positive x-direction. The beak of
the corresponding RANS plot appears less pronounced and relatively symmetric.
The lesser extent of the beak is presumably related to the fact that the RANS
code cannot resolve the larger vortical scales, but the LES code can. However, the
prediction of the secondary flows by the RANS method is sufficiently similar in the
four discussed cases, regardless of the differences in the modelling and setup. The
main characteristics of the cases are summarised in Table D.5.

One effect that has to be addressed is the difference in the Reynolds numbers
between cases a) and b), where only one branch line was activated, and cases c)
and d), where all six branch lines were activated. Therefore, the mass flow and the
Reynolds number in the manifold are higher in these cases. The flow structures
stay comparable in all four cases, except for the beak, which is hardly visible in
cases c) and d). The magnitude of the secondary velocity and, hence, the secondary
velocity ratio is lower in cases c) and d). This observation agrees with the trend
observed in Figure 6.6, where the secondary velocity ratio in station 101 decreases
with around the −1/16th power of the Reynolds number.
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Figure D.3: Comparison of the secondary velocity ratio φII in station 101 pre-

dicted by the LES and RANS approaches. Parts a) to c) recreated
and modified with kind permission of Semlitsch [29].

Case a) b) c) d)

Solver OpenFOAM v2312 CFX 19.2
Type LES RANS
Scale 0.868 1
∗) 1 6
Re1 2 · 105 1 · 106

Symmetry no yes

Table D.6: Characteristics of the four cases (all with segmented bends) compared
in Figure D.3. ∗) = Active branch lines

Overall, the agreement between the different modelling methodologies is quite
satisfactory, and further validates the applicability of the RANS approach chosen
for the simulations conducted within this thesis.
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