Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

TECHNISCHE
UNIVERSITAT
WIEN

DIPLOMARBEIT

On the Physical Security of Falcon

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Markus Schonauer, BSc
Matrikelnummer 01605049

unter der Anleitung von

Associate Prof. Dipl.-Ing. Dr. Georg Fuchsbauer

ausgefithrt am
Institut fiir Logic and Computation

der Fakultat fur Informatik
der Technischen Universitat Wien

Markus Schonauer Georg Fuchsbauer



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Abstract

FALCON has been selected for standardization by NIST as a post-quantum digital signature scheme.
Although there have been several published attacks against FALCON that target vulnerabilities on the
implementation side, the physical security of the scheme has not been thoroughly studied yet. We present
a broad analysis of the physical security of the FALCON signature scheme that includes attacks from prior
publications as well as novel vulnerabilities and takes into account the mathematical foundations of the
scheme, such as the Fast Fourier Transform, discrete Gaussian distributions and a tower of fields.

Additionally, we closely investigate one of the new attack vectors, NarrowSampling. We simulate a
fault injection attack based on a parallelepiped learning technique applied to a signature distribution
with lowered standard deviation. Each individual phase of the attack is analyzed and the influence of the
most important attack parameters is measured and evaluated. For FALCON parameter sets with reduced
security we are able to fully recover the secret key.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Zusammenfassung

FALcON ist von NIST zur Standardisierung als Post-Quanten digitales Signaturverfahren ausgewéhlt
worden. Zwar sind bereits mehrere Angriffe auf FALCON publiziert worden, die auf Schwachstellen der
Implementierung abzielen, jedoch ist die physische Sicherheit des Verfahrens noch nicht allgemein un-
tersucht worden. Wir stellen eine Analyse der physischen Sicherheit des FALCON Signaturverfahrens
vor, die sowohl Angriffe aus fritheren Publikationen, als auch neue Schwachstellen enthédlt und in die
die mathematischen Grundlagen des Verfahrens (zum Beispiel die Fast Fourier Transformation, diskrete
Normalverteilungen und ein Turm von Koérpern) miteinflieBen.

Weiters betrachten wir einen der neuen Angriffsvektoren, NarrowSampling, genauer. Wir simulieren
einen Angriff, der auf einer Parallelepiped-Lernmethode aufbaut, die auf eine Signaturverteilung mit
veringerter Standardabweichung angewendet wird. Jede einzelne Phase des Angriffs wird analysiert und
der Einfluss der wichtigsten Angriffsparameter wird gemessen und evaluiert. Fiir FALCON Parametersets
mit reduzierter Sicherheit gelingt es uns, damit den vollstdndigen privaten Schliissel zu bestimmen.

ii



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Acknowledgments

I want to thank NXP, for the possibility to write this thesis with their collaboration. In particular my
supervisor Tobias Schneider, who always provided me with his expertise, helpful insights and discussions,
and who would put me back on track whenever I got lost in the details. T also thank my colleagues
Olivier Bronchain for helping me when the server did not do what I told it to, Thijs Laarhoven for when
I got stuck in the lattices, and Mohamed ElGhamrawy and Melissa Azouaoui for saving me from hours
of debugging.

I am especially thankful to Georg Fuchsbauer, my thesis supervisor. He provided a lot of valuable
feedback in all of our meetings and encouraged me on every step of the process.

Last but not least, thank you to my family and friends. Although a majority of them have no
background in mathematics or cryptography, I could always count on them for choosing tasteful color
palettes for figures that most of them did not understand and for all the emotional support on my “quest
to find the fuzzy shape”. And to all my maths-friends, I promise to stop talking about parallelepipeds
(for now).

iii



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

Eidesstattliche Erklarung

Ich erklare an Eides statt, dass ich die vorliegende Diplomarbeit selbststéandig und ohne fremde Hilfe ver-
fasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wortlich oder sinngeméf
entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am

Markus Schonauer

iv



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

Contents

[2.1.3 CDT-bampler| . .. ... .. ..

2.1. e ramework and Trapdoor Samplers| . . . . ... ... ... ... ... ...

P.I.5 The Algebraic Structure of FALCON| . . . o v vt oo e e e e e

[2.1.7  Babai’s Nearest Plane Algorithm|. . . . . ... ... ... ... ... .. ........
2.2 High-Level Overview of FALCON’s Main Algorithms|. . . . . . ... ... ... .. .. ....
2.2.1 escription of Keygen|. . . . . . . . L L
2.2.2 escription of Sign| . . . . . . L
[2.2.3  Description of Verify| . . . . . . . .

2.3 Specific Subroutines in Detail] . . . . . ...
[2.3.1 Description of NTRUGen and NTRUSolve| . . . ... ... ... ... ... ... ...
2.3.2  Description of fILDL™|. . . . . . . .. ...
2.3.3 escription o ampling and SamplerZ| . . . . . ... ... oo L.

[3__Sensitivity Analysis for FALCON Variables|

3.1 xplanation of Tables, Labels and Acronyms| . . . . . ... ... ... ... ... . ...
3.1.1 eneral Organization|. . . . . . . . . . . .
[3.1.2  SCA, Side-Channel Attacks| . . . .. ... ... . . ..
[3.1.3  FA, Fault Injection Attacks| . . . .. ... ... ... . . ..
B.14 Public Classificationl . . . . . . . . . o i i
[3.1.5  Scope of the Analysis|. . . ... ... ... ... oo oo

3.2  Sensitivity Analysis of Keygen| . . . . . . . . .
3.2.1 Basic Parametersl . . . . ... .. ...
[3.2.2  Sampling of Primary Secret Key Components| . . . . ... ... ... ... ......
[3.2.3  Side-Channel Analysis of Secret Key Components|. . . . ... .............
3.2.4 ault Attacks on Secret Key Components|. . . . ... ... ... .. .. ... .....

[3.2.7 PublicKey|l . . ... ... ..
3.3 Sensitivity Analysis of Sign[. . . . . . . . L
[3.3.1 Hashing the Challenge and Computing the Preimage|. . . . . ... ... . ... ...
[3-32 Trapdoor Samplilg] . . . « o o v v e e e e e
[3.3.3  Signature Post-Processing| . . . . .. .. ... .. o
3.4 Sensitivity Analysis of Gaussian Sampling]. . . . . . .. ... ... Lo L
[3.4.1  SamplerZ] . . . .
3.4.2  BaseSampler| . . ..
3.4.3 amplerZ, cont.| . . . . ..
3.4. erbxp and ApproxEXpl . . . . .. L L
3.5 Sensitivity Analysis of Verity| . . . . . . ..
B.6 Tust of Attacksl . . . . . . .
B.6.1  CDT-SPAL . . .




Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

3.6.2 HalfKey™|. . . . . . . . . 35
3.6.3 SmallLeaves””, NarrowSampling™| . . ... .. ... ... ... ... ... ... .... 36
3.6.4 BadDeterminism“', ConstantHash?| . . . ... ... ... ... ... ... . ...... 37
3.6.5  MultFETE] o o 37
3.6.6 RejectionLeakage™| . . . . ... 38
3.6.7 _CDTZero™ Al . . . . . 38
3.6.8 HalfGaussSign™™| . . . . . . . . . ... 38
3.6.9 HiddenSlice”*, HiddenHalfspace”™| . . . . . . .. ... ... ... ... .......... 39
3.6.10 GaussShift™ . . . . . .. 39
B.611 BEARZTl . . . oo 40
BOIZ SEAFAII. -« o o v oo et e e e 41
[3.6.13 Verification Attacks . . . . . . . . . ... 41

4 __Attack Analysis of NarrowSampling| 42
[T Uncovering a VUInerability] . . . . . o o v v v v e e e 42

[4.1. Point of Interestl . . . . . . . . . . . e 42
[4.1.2  Simulating Fault Injection| . . . . .. ... ... . o 42
[4.1.3  Consequences of Fault Injection|. . . . . ... ... ... ... ... .. ......... 44
4.2 Approximate Key Recovery via the Hidden Parallelepiped Problem| . . . . ... ... ... 44
2.1 e Hidden Parallelepiped Problem| . . . . .. .. ... ... ... ... ..... ... 45
(422 The Gradient Descent in Detaill . . . . . .. ... ... . . . . . .. .. ... 45
4.3 Full Key Recovery from Approximations|. . . . . . ... ... ... ... ... ... ... ... 46
4.3.1 The Error of Approximation|. . . . . . . . . . . . . 47
4.3.2 Measuring the Coeffient-Wisc Brror of Approximation] . . . . . . . . oo oo .. 47
4.3.3 Calculating the Brror of ApproXimation]. . . . . . v v v v v v e 48
[4.3.4  Full Key Recovery through Rounding| . . . ... ... ... ... ... ... ...... 48
[4.3.5  Recovering kquivalent Keys| . . . . . .. ... .. o o oo 49
4.4 Practical Considerations for the Attackl . . .. .. ... ... ... ... .. ... ..., 51
[M41 Tault Scenariol . . . . . . o o ot 51
[4.4.2  Scaling Factor for ¢ and Exact Fault Description| . . . . ... ... ... .. .... 51
[4.4.3 Memory Requirements| . . . . . . . . .. . ... 52
[4.4.4 Runtime of the Attackl . . . . .. ... ... 52
[4.4.5  Scaling the Attack to Practical Security Levels| . .. ... ... ... ... ... ... 53
4.5 Discussion of Countermeasuresl. . . . o v v v v v v e e e e e e e e e e e 53
6_Conclusion 54
.1 Open Questions and Future Work|. . . . . .. . .. ... .. . . 54
vi



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1 Introduction

Security is one of the most important aspects for the digital infrastructure in today’s world. Almost
every aspect of it relies, in some way or another, on the security of the underlying processes. In the past,
cryptographic standards were based on certain mathematical problems, for example integer factorization,
discrete logarithms or elliptic curve discrete logarithms. These problems are hard in the sense that it would
take a significant amount of computing power and/or time to find solutions, using today’s technology
and methods.

However, the advent of quantum computers threatens to break many cryptosystems that are widely
used today, by enabling new algorithms that can solve previously hard problems. A well-known example is
Shor’s algorithm for integer factorization [Sho97]. Its efficiency heavily relies on the specific properties of
quantum computers that simply cannot be replicated on any classical computer. At present, no quantum
computer exists that is capable of running Shor’s algorithm (or other, similar algorithms) with enough
qubits to actually pose a risk. But the continued efforts in this field mean that it might become a problem
in the future.

To prepare for this scenario, in 2016 the National Institute of Standards and Technology (NIST) has
called for new cryptographic constructions with two main properties: They should withstand attacks
even by quantum adversaries, but still be executable on classical, non-quantum machines. This field of
research is called Post-Quantum Cryptography (PQC). After a selection process spanning multiple rounds
and several years, the winners are: CYSTALS-Kyber [BDK"17] as key encapsulation mechanism (KEM)
on the one hand and CRYSTALS-Dilithium [DLL*17], FaLcoN [FHK*20] and SPHINCS+ [BHK*19)] as
digital signature schemes (DS) on the other hand.

Although all of these new cryptosystems are proven to be sufficiently secure in theory (under appro-
priate hardness assumptions), they can still be vulnerable to physical attacks. It has been shown that
it is possible to exploit features and properties of the physical implementation of post-quantum crypto-
graphic algorithms in order to break them. In general, there are two attacker models: an active and a
passive one. A passive adversary performs side-channel analysis (SCA), like measurements of power con-
sumption, runtime etc., to extract information about internal values. An active adversary influences the
actual computations, like skipping instructions or injecting faults into the processed data, with the goal
of altering the output or behavior of an algorithm. This is called fault injection attack (FA). After enough
information is obtained through either SCA or FA, a wide range of statistical and other mathematical
methods can be used to recover secret information and break the scheme.

Therefore it is of great importance to not only prove the security of new cryptosystems in the black-
box model, where an adversary can only observe the inputs and outputs, but also to study them under
the viewpoint of physical security, where it is possible to directly interact with the device that runs
the cryptographic calculations. From the NIST winners, CYSTALS-Kyber and CRYSTALS-Dilithium
have received the most attention in the community in this regard. There are a lot of publications that
describe a variety of attacks and suggest suitable counter-measures. In contrast, FALCON is rather less
well researched with regards to side-channel analysis and fault attacks and how to protect against them.
(See or for examples.) One of the reasons might be that FALcON differs from the
other standards in some major aspects. This is mostly due to two features. Firstly, the special algebraic
structure that FALCON heavily relies on for efficiency. It allows for a divide-and-conquer principle that is
used in most steps of the scheme, but can be tricky to analyze because of its recursive nature. Secondly,
FALCON is the only one of the NIST-winners that uses the Fast Fourier Transform (FFT) for many of its
calculations. Operations in the FFT domain necessitate the use of floating-point arithmetic, instead of
pure integer arithmetic. This creates new potential vulnerabilities, while at the same time significantly
limiting the use of standard counter-measures.

In summary, a detailed understanding of FALCON and its physical vulnerabilities is of great interest
for future research and of utmost importance for practical deployment.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.1 Goals and Results

In this thesis we want to contribute to this goal by providing a thorough sensitivity analysis of the full
FALCON cryptosystem, including key generation, signature generation and signature verification, together
with all relevant subroutines. The analysis is based in part on a literature study of attacks on FALCON
from prior publications. Additionally, we suggest multiple new attack vectors that have as of yet been
unexploited. For those we used simulations of faults and side-channel information to illustrate how an
attack could be mounted and estimate its plausibility. A complete summary of all vulnerabilities from
prior publications and newly found ones is presented in this thesis.

Our second contribution consists of an in-depth description of the “NarrowSampling” attack, which
exploits one of the novel attack vectors found during the vulnerability analysis. It is a fault attack
targeting the standard deviation of FALCON signatures. We take a combined approach of analyzing the
theoretical aspects of the attack, as well as running extensive tests and measurements for various attack
parameters. We demonstrate the practicability of full key recovery for reduced security levels of FALCON
and draw conclusions for FALCON’s real-world parameter sets.

1.2 Structure of the Thesis

This thesis is structured as follows: We start Section [2] with an introduction to the most important
theoretical concepts that are needed to understand FALCON itself, as well as many of the attacks in later
sections. We go over some basic mathematical definitions that many readers may already be familiar with
(such as lattices, the Fast Fourier Transform or the Gram-Schmidt orthogonalization), but are nonetheless
integral to a complete understanding of all subsequent sections. We also provide an overview of FALCON’s
algebraic structure and the divide-and-conquer principle that is based on it. In Section [2.2] we explain the
processes of key generation, signature generation and signature verification. Subsequently, in Section [2.3
we go through the main subroutines, where a lot of the mathematical details of FALCON come into play.

Then, in Section [3] we present the results of our sensitivity analysis. We categorize almost every
variable in FALCON as either public or sensitive and assess the possibilities of side-channel analysis and
fault attacks. Based on the analysis, we list all identified attack vectors in Section|3.6] This includes short
summaries of known attacks from prior literature, as well as high-level suggestions on how to potentially
exploit new vulnerabilities.

From the new attack vectors we choose one specific example, the fault attack NarrowSampling, for
an in-depth analysis in Section[d] We identify the point of interest for the fault injection, simulate faults,
show that they have a measurable effect on the signatures and analyze what information is leaked from
them (see Section. Next we describe the Hidden Parallelepiped Problem (HPP), which is the central
tool enabling the attack, and show how an adversary can learn an approximation of the secret key by
solving the HPP (see Section. Finally, in Section the full key is recovered from the approximation.
Throughout the attack analysis we use extensive simulations and tests to gain an understanding of how
different parameters affect the attack and how they can be tuned to allow a successful attack within
reasonable time and resource constraints. Although we mostly work with low-security parameters of
FALCON that are defined for testing purposes, we discuss the relevance of our results and how they might
generalize for the full parameter sets in Section [£:4] The last Section is dedicated to a brief discussion
of countermeasures against the NarrowSampling attack.

The overall conclusion of this thesis can be found in the Section [5] where we summarize our findings
and give an outlook on possible future research directions.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2 An Introduction to FALCON

The digital signature scheme FALCON is, in essence, a quantum-resistant instantiation of the GPV frame-
work for digital signatures over NTRU lattices that makes heavy use of the Fast Fourier Transform, with
a focus on compact signatures and keys. The acronym FALCON stands for FAst Fourier Lattice-based
COmpact signatures over NTRU. All of these concepts will be defined and explained in the following
sections.

2.1 Preliminaries and Theoretical Background
2.1.1 Notation

For the overview of the FALCON signature scheme we will follow the general notation and naming con-
ventions used in the official specification document [FHK*20], which we will refer to as the FALCON
specifications for short.

Scalars and polynomials are denoted with regular lower-case letters. For vectors, which are denoted
with bold lower-case letters, we exclusively use row-notation. Matrices are bold upper-case letters and
consist of row-vectors. Matrix-matrix and vector-matrix multiplication is usually written without an
operation symbol, but sometimes we will use - for clarity. The inner product of two vectors v and w is
denoted as (v,w), while the coefficient-wise product (also known as Hadamard product) is denoted as
VOw.

We write f;, z; and B;; for coefficients of polynomials and entries of vectors and matrices. All indices
start at zero, with only one exception: the two polynomials comprising a FALCON signature s = (s, $2).
This is to keep in line with the original notation.

If A is a statement that is either true or false, then P[A] is defined as the probability of A being true.
The expected value of a random variable X is denoted as E[X ] and V[X] is its variance. The normal
distribution on R with mean p and standard deviation o is denoted as N'(u, o).

We will reserve the notation log for the binary logarithm, while the natural logarithm will be denoted
as In.

A few variable names will have a fixed meaning throughout the whole thesis. Those are:
e The integer modulus ¢. It has a constant value of ¢ = 12289 for all security levels of FALCON.

e The cyclotomic polynomial ¢ used to define polynomial rings such as Z[z]/¢. It is always of the
form x™ + 1.

e The polynomial degree n. It exclusively refers to the degree of ¢ and subsequently is the number
of coefficients for most polynomials that we work with. Its value is always a power of two.

e The security level k. It defines the level of security of a specific FALCON instantiation, which goes
along with a specific set of parameters. It is directly related to n via n = 2. Security levels k = 9
and k = 10 are meant for practical use. They correspond to security levels I and V as defined
by NIST [NIST6]. Note that the official names of these two instantiations are FALCON-512 and
FALCON-1024, but we will usually give the x value as reference. For testing purposes the authors
of FALCON also define complete parameter sets for all lower security levels x € {1,...,8}. We list
them in Table [1

2.1.2 Basic Definitions

Lattice. The most general definition of a lattice A is that of a discrete subgroup of a finite-dimensional
Euclidean vector space. In the present setting we will only look at lattices with integer coefficients. For



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

this, let B e Z%F (with d < k) be a full rank matrix comprised of row vectors by, ...,bg_1 € ZF. Then the
lattice generated by B is defined as:

d-1
A(B):{xB:erd}:{Zmibi:xiez}7
i=0

which is the set of all integer linear combinations of the b;’s. If the basis is clear from context or not
important, we will simply write A instead of A(B). The dimension of the lattice is dim A(B) = d.

Just like the basis of a vector space, the basis of a lattice is generally not unique. Let C e Z%* be
another matrix, then the lattices A(B) and A(C) are the same, if and only if there exists a transformation
U e Z%? with:

UC=B and det(U) = +1.

It is important to note that U must have integer entries. This guarantees that each row of B is indeed
an integer linear combination of rows of C.

For a given lattice A generated by B € Z%* we can define the orthogonal lattice mod ¢ as:
1_ d. _
A;={xeZ%xB=0 mod q}.
This lattice has the additional property that ¢Z% c Aé c Z%. Any lattice with this property is called a
g-ary lattice.

NTRU Lattice. A special class of lattices are the NTRU lattices. Let f, g, F' and G be polynomials
in Z[x]/¢ that satisfy the so-called NTRU equation:

fG-Fg=gq, (1)

with ¢ (for arbitrary n) and g as defined above. If f is invertible as an element of Z,[x]/¢, we can define
another polynomial h € Z,[x]/¢ via h = f~'g mod q. Then the matrices A and A':

1 h ’ g
solon]owe[EE]

generate the same lattice A(A) = A(A’), since A = UA’ with:

U-= [ J_c; ?C ] and  det(U)=1.

We call this lattice an NTRU lattice.
NTRU lattices also come with a hardness assumption: Given only h, it is hard to find f and g, or
more generally any two polynomials f', ¢’ € Z[z]/¢ with small norm that satisfy (f’)"'¢’ =h mod gq.

Parallelepiped. A parallelepiped is the analogue of a parallelogram in an arbitrary dimension d. Let
B ¢ R be a matrix with row-vectors b;. We define the parallelepiped spanned by B as:

P(B) = {dil.’lilbz I € [—1, 1]}
=0

A parallelepiped can be scaled and translated, for example:
1 d-1

d-1
1IP(]B) + = Z bl = { Z ZL’ZbZ tx; € [0,1]},
2 2 =0 1=0

is a similar parallelepiped to the one above, but its sides are half the length and it is translated such that
one corner lies in the origin.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Gram-Schmidt Orthogonalization. This is a standard method in linear algebra for constructing an
orthogonal (or even orthonormal) basis of a vector space, given an arbitrary basis of the same space. It
comes up in FALCON itself and will also play an important role later in the analysis of one of the attacks,
so we want to give a brief description here. For our purposes it suffices to look at the version of the
procedure that produces an orthogonal basis (as opposed to an orthonormal one).

Let B e R™? be a full-rank matrix. We can interpret the row-vectors by, ..., bgy_1 as basis vectors of
the vector space R%. In general, the b;’s are not orthogonal to each other. If we define:

7bk, for1<i<d,

then the b,’s are a new basis of R? where (Bi,f)j) =0 for all 7 # j. The resulting vectors will be called
the Gram-Schmidt vectors of B and can be summarized as rows of an orthogonal matrix B. We will

sometimes also use GSO(B) to denote the Gram-Schmidt matrix of a matrix B.
(by,bi) ¢
<b by)
by bi. So by subtracting these terms for k < i from b;, we are left with a vector b; that is orthogonal to
all previous by’s. This can be shown formally with a simple calculation of (b“bk) 0.

Another useful property of the Gram-Schmidt process is the following. Define H; to be the subspace
spanned by the first i +1 row-vectors by, ..., b;. It can be shown that the first i +1 Gram-Schmidt vectors
by, ...,b; are an orthogonal basis of the same subspace H;.

Geometrically speaking, the term by describes the part of b; that lies in the subspace spanned

Gram-Schmidt Norm. Based on the Gram-Schmidt orthogonalization we can define a matrix norm
for full-rank square matrices. Let B € R®? be such a matrix and let b; be its Gram-Schmidt vectors.
Then the Gram-Schmidt norm of B is defined as the length of the longest Gram-Schmidt vector:

|Bllcs = max b,

Number Theoretic Transform. We define the number theoretic transform (NTT) in the context of
FALCON. Consider the polynomial ¢ = 2™ + 1 as an element of Z,[x] (instead of Z[x]). With the choice
of ¢ =12289, n = 2", and « < 10 it can be shown that ¢ has n distinct roots in Z,. Let (w;)o<icn be those
roots, then the NTT of a polynomial f € Z,[x]/¢ is defined as:

NTT(f) = (f(wi))ogkn’

i.e., the n-tuple of f evaluated at the roots w; in Z,. It can be shown that the NTT is a bijection between
Zy[z]/¢ and Zy.

One useful feature of the NTT is that it allows us to easily detect whether a polynomial is invertible
(as an element of Z,[x]/¢) or not. To see this, we use the fact that polynomial multiplication in Z,[z]/¢
maps to coefficient-wise multiplication in the NTT domain. Let f,g € Z,[x]/¢ and let fi,9: be their NTT
coeflicients. Then we have:

NTT(f-9) =NTT(f) ©NTT(g) = (fi - 3 )o<icn-

Now if we take g = f~! mod ¢ we get:
frg=1 = NTT(f-g)=NTT(1) = (fi-g)osien=(1,...,1) = §i=—.

So in order for the inverse f~! to exist, all fz must be invertible mod ¢. In other words, the NTT of f
must not contain any zeros.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Discrete Gaussian Distribution. An analogue of the normal distribution for the discrete set of
integers Z is the discrete Gaussian distribution. For this we define the function p, ,(2) = exp(-|z—p|*/20?)
for all z € Z. Now the discrete Gaussian distribution is defined via its probability mass function (PMF):

pmu(z)

Dzou(2) = —— -
! Ywez Po.u(T)

Similarly to the normal distribution, p and o are the mean and standard deviation of the discrete Gaussian
distribution.
We can also generalize this definition to a spherical discrete Gaussian distribution on a d-dimensional

lattice A:

—lz-pe)? Po,u(2)
pou(z) =€ 27, Drou(z) = o————-
* * erApa,M(X)

Here, z € A are points on the lattice, u € R? is the mean (note that the mean does not need to be a lattice
point itself), and o is again the standard deviation. When p =0 (or x = 0 in the one-dimensional case)
we say that the distribution is centered and may omit p (or u) in the notation, e.g., Dz .0 = Dz 0.

A related distribution is the discrete half-Gaussian distribution on the integers, D+ ,. It can be
thought of as the upper half of the “full” distribution Dz . The definition is similar, but the argument
z only ranges in the non-negative integers Z* = {0,1,2,...}. Note that o is not the standard deviation
of Dy+ », but rather the standard deviation of the corresponding full distribution Dy, ¢.

Chi-squared Distribution. Let Z;, 0 <i < d be d independent, identically distributed random vari-
ables with Z; ~ A(0,1). Define a random variable Q as:

d-1
Q=37
i=0
The resulting distribution is called the chi-squared distribution with d degrees of freedom, @ ~ x3.

2.1.3 CDT-Sampler

A CDT-sampler is a method to generate random samples by transforming uniform samples into other
distributions. This kind of sampler is used as part of FaLcoN [HPRRI19], [PRRI9] and some attacks
specifically target its functionality [KHIS]. It requires a precomputed table containing the values of a
cumulative distribution function (CDF), hence the name cumulative distribution table, CDT.

The theory behind CDT-samplers is called inverse transform sampling and is used to transform
samples from a uniform distribution (which is usually easy to sample from) into other, more complicated
distributions: Let X be a random variable following some distribution X with cumulative distribution
function F(z) =P[X < z] and let U ~U[0,1] be a uniform random variable on the closed unit interval.
It can be shown tha

FHU)~X,

meaning that the transformed U is distributed according to the distribution X of X. We can also apply
this to individual samples u of U and transform them into samples x from X via = F~!(u).

In FALCON, this method is slightly adapted to work with integer values only and to avoid evaluating the
inverse CDF explicitly. Suppose we want to generate samples from a discrete distribution on {0, ..., m}
given by its CDF F'(z). For this we prepare a table of values 1 — F'(i) with 0 <i <m. To avoid floating-
points we scale the values by some (sufficiently large) integer ¢ and round to integers: |c- (1 - F(4))].

INot all distributions have invertible CDFs. In these cases a generalized notion of inverse has to be used, which we will
not discuss here.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Now we can proceed as follows: Take a sample u from the discrete uniform distribution on [0,c-1]. Go
through the prepared list and increment a counter whenever u < |¢- (1 — F(i))]. The eventual value of
the counter is then returned.

It can be shown that this process yields samples that are distributed according to the distribution
specified by F'(z). Without going into detail it should be apparent that the scaling value ¢ and the exact
way of rounding |c- (1 - F(7))] effects how well the generated samples follow the target distribution.

2.1.4 The GPV Framework and Trapdoor Samplers

First introduced by Gentry, Peikert and Vaikuntanathan [GPVQT], the GPV framework is the blueprint
for a class of lattice-based signature schemes. Since FALCON is based on a specific instantiation of this
framework, we will give a short description of it.

The secret key B € Z;*™ and the public key A € ngm (with d < m) are matrices whose rows generate
two lattices A(B) and A(A), respectively. These matrices must meet the additional requirement that
the lattices are orthogonal mod ¢ to each other, i.e.:

Vx e A(B),Vy e A(A): (x,y) =0 mod g, or equivalently: BAT=0 modg.

This guarantees that for any point v € A(B) we have: vAT =0 mod ¢. To see this, note that the columns
of AT are just the rows of A, i.e., the vectors that span A(A). Let ag,...,a4s-1 be these row vectors,

then we have:
VAT = ((V7a0)a R (V7ad—1>) = (0, .. ,O) mod q.

All inner products vanish, because v € A(B) and a; € A(A).

A valid signature for a message m is defined as a short (i.e., shorter than some predetermined bound)
vector s € Zy" satisfying:
sAT = H(m), (2)

where H is a publicly specified, deterministic hash function.

To generate a signature for a given message m, it is first hashed to a point ¢ = H(m) ¢ ZZ. Then a
preimage ¢o € Z;" under AT is computed, such that cgAT = ¢, which can be done with standard linear
algebra. Note that cg will in general not be short enough to be used as a signature directly. This
is by design, since otherwise anyone who has knowledge of the public key could create signatures for
arbitrary messages. Instead we need to make use of a trapdoor, i.e., some additional information to make
a computationally hard problem practically solvable. In the present case the trapdoor is the secret matrix
B. It allows us to find some v € A(B) that is close to the preimage ¢g. (The exact method can vary and
will be explained later.) Once a suitable vector is found, we can shorten the preimage and define the
signature as the difference s = ¢o — v € Z". Since v is close to ¢, the signature is now a short vector.

Verification is then relatively straightforward. First, the verifier has to check that the received signa-
ture is indeed shorter than a set bound. Then the message is hashed to ¢ and Equation [2] can be verified
with the knowledge of the public key alone:

sAT=(co-Vv)AT=c)AT-vAT =c-0=H(m).

In the second to last equality vAT vanishes, because v is a point on A(B), the orthogonal lattice to A(A).

One important aspect when instantiating the GPV framework is the choice of the trapdoor sampler.
The term refers to the part of the scheme that performs the task of finding v as described above. A more
general definition is the following:

A function that takes a matrix A, a target ¢ and a trapdoor T as input and calculates either a short
vector s with sAT = ¢ or alternatively a vector v € A; close to c¢. Following our expositions, both of these
tasks are equivalent. Also note that the trapdoor does not need to be a matrix B like in the example
above. Rather it can be any information that makes the search for a suitable s or v computationally
feasible.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

The way in which the trapdoor sampler is instantiated can have a lot of influence on the overall
security of the scheme. It is possible that the signatures can leak information about the secret key if the
sampling is done improperly. We will explain this in more detail in later sections.

2.1.5 The Algebraic Structure of FALCON

There are two main algebraic concepts that FALCON is based on. The first one is a correspondence
between polynomials on the one hand and vectors and matrices on the other hand. The second one
concerns a tower of fields (rings, resp.), together with a chain of vector space isomorphisms (module
isomorphisms, resp.).

Polynomials, Vectors and Matrices. In the following we define the operators Mat and Vec that
allow us to switch between two viewpoints: polynomials on the one hand and matrices on the other hand.
Although they are never explained in detail in the original FALCON specifications [FHK*20], the two
viewpoints are prevalent throughout the document, so a formal definition seems useful.

Consider the field Q[z]/¢ and its subring Z[z]/¢, with ¢ = 2™ + 1 and n = 2" a power of two. These
are the main algebraic structures where most of the calculations in FALCON take place. Their elements
are polynomials of degree n — 1 with n rational (resp. integer) coefﬁcientsEl Per the usual definition, the
addition and multiplication in Q[z]/¢ are performed mod ¢, so we will omit this information from the
notation most of the time.

One of the main features of this field is that it allows us to identify polynomials with vectors and
matrices and translate addition and multiplication in Q[z]/¢ to corresponding operations involving ma-
trices and vectors. On the one hand, polynomials can be identified most naturally with their coefficient

vectors:
n—1

a= Z aimi € Q[CL‘]/(Z5 ~ VGC((Z) = (GOaala . '7an—1) € Qn
=0

On the other hand, there is no canonical way to map a polynomial to a matrix. For our purposes, the
most useful way to do this is as a Toeplitz matrix of the following form:

ao a1 R
n-1 ) —Qn-1 ao ai an-2
a= Y az'€Q[z]/¢p ~  Mat(a):= —ap-1 Ao : e QM.
i=0 : : - a
! —a2 vt TGp-1 Qo

If we define two operators Vec: Q[z]/¢ - Q™ and Mat : Q[z]/¢ - Q™™ that transform polynomials into
vectors and matrices according to the formulas above, we can make a few observations (which can all be
shown by direct calculations). Let a,b, ¢ be polynomials in Q[z]/¢, satisfying ab = ¢. Then we have:

Mat(a) - Mat(b) = Mat(¢) and  Vec(a)-Mat(b) = Vec(c).

This allows us to view most calculations in FALCON either in the context of polynomials or in that of
vectors and matrices.

An alternative definition (or rather a useful property) of the Mat operator comes from the following
fact:

n—1 n—-2
a= Z a;z' €Qz]/¢ ~  a-x=-ap1+ Z a;z" .
i=0 =0

2To be precise, the elements of Q[x]/¢ and Z[z]/¢ are equivalence classes which we identify with their respective unique
representative of that form. Going forward, this distinction is not too important and so we will regard the elements of these
fields and rings simply as polynomials.



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

In other words, when we multiply a polynomial ¢ with the polynomial 2 = 0+ 1x+ 0z +. .., all coefficients
are shifted up by one and the former highest coefficient is negated and becomes the constant coefficient.
This is a direct consequence of the equality 2" mod (2™ +1) = -1. We immediately see that the i-th row
of Mat(a) is just Vec(a- "), and so:

Vec(a)
Mat(a) = Vec(a - x)

Vec(a-z"1)

Adjoint Polynomials. In general, the adjoint polynomial a* of a € Q[x]/¢ is defined via some equality
involving the complex roots of the polynomial modulus ¢ and complex conjugation. For FALCON’s specific
choice of ¢ = 2™ + 1 and n a power of two, the definition simplifies to a formula that only permutes the
original coefficients and negates some of them:

n—-1 )
a =ag— Z a;x" "
i=1

Crucially, the coefficient vector of a* is exactly the first column of Mat(a) and thanks to its cyclical

structure we even have:
Mat(a*) = Mat(a)'.

Adjoining polynomials is compatible with polynomial operations as one would reasonably expect. In
particular, for any a,b € Q[z]/¢ we have:

(a+b) =a*+b*, (ab)*=a’b*, (a*)" =a.
All three properties can easily be derived from the definition itself and with the help of the Mat operator.
We can extend the definition of adjoint polynomials to matrices whose entries are polynomials of

Q[x]/#. For example, consider M € (Q[z]/¢)?*? consisting of four polynomials a, b, ¢, d. The adjoint M*
is defined as the transpose of the matrix with individually adjoint entries a*,b*,c*,d*:

a b o | ot
e[ ] e ]
If we extend the Mat operator in a similar way by defining Mat(M) as the application of Mat to each

entry of M, then those two extended definitions are compatible in the sense that:

[ Mat(a*) Mat(c*) ]
Mat(b*) Mat(d*)

[ Mat(a)™ Mat(c)" ]

Mat(M*)

Mat(b)" Mat(d)"

Mat(a) Mat(b) | ;
= | Mat(c) Mat(d) ] = Mat(M)".

Tower of Fields. Consider again the field of polynomials Q[x]/¢, with ¢ = 2™ + 1 and n a power of
two. The field Q[x]/¢’, with ¢’ = 22 + 1, contains polynomials with half the number of coefficients and
has a structure similar to the larger field. We can define an operator that maps elements of the larger
field to pairs of elements of the smaller one:

split:  Q[]/¢ ~ (Qlz]/¢'),
n/2-1 n/2-1

n-1 . ] )
f= Z(:)fﬂz'—’( Z(:) faiz!, ZE) f2¢+1$1):(f07f1)-



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

flx)=6—2x + 1x2 — 4x3
split merge
folx)=6+1x, fi(x)=—2—4x

Figure 1: Example for the split and merge operators between the fields Q[x]/(z*+1)
and Q[z]/(2? +1).

This operator splits a polynomial into two polynomials of lower degreeEl that contain the even and odd
coefficients, respectively. We can also define a reverse operator that recombines fy, and f; into f by
alternating their coefficients:

merge : (Q[z]/¢)° ~ Q[z]/0,
(fo, 1) = fo(2®) +xf1(2?) = f.

The substitution o ~ 2% spaces out the coefficients of fo resp. fi, multiplication of fi(z?) with x shifts
the (originally odd) coefficients one index over and addition combines them into the original f.

All of the above describes a connection between Q[x]/(2" +1) and Q[z]/(z™?+1). Since n is a power
of two, we can continue this chain down to smaller and smaller fields until we arrive at Q[x]/(z' +1) = Q,
a field containing only constant rational polynomials:

Q[z]/(z"+1) 2 Q[m]/(x"/2 +1)2--2 (@[:13]/(562 +1)2 Q[.’L‘]/(a’)l +1)2Q.

For every step in this tower of fields we can define analogues of split and merge. We will use the same
notation for all of these functions, regardless of the degree of the field they operate on.

Importantly, if we view these fields as vector spaces, then both split and merge are isomorphisms
between the respective spaces they connect. So we get this chain of space isomorphisms:

2 n/2 n
Qz]/(z"+1) = (Q[x]/(x”/2 + 1)) =R (Q[x]/(x2 + 1)) > (Q[x]/(xl + 1)) > Q".

Note that the same holds true for the integer ring Z[x]/¢ and its subrings, we only have to replace the
terms field with ring and vector space with module. This algebraic property of Q[x]/¢ and Z[z]/¢ gives
rise to a divide-and-conquer principle that FALCON uses extensively and that we will explore later on in
the description of the scheme (see Sections and [2.3).

It is also possible to describe the tower and the isomorphisms from the vector point of view. Let f
be a polynomial in Q[z]/¢ and let Vec(f) be is its coefficient vector. Now, Vec(split(f)) contains the
same coefficients, just in a different order (first the even coefficients, followed by the odd ones). Going
further down the tower, each step corresponds to a new permutation of the same original coefficients, see
Figure[2] Similarly, Mat(split(f)) will give a permuted version of Mat( f), where the specific permutation
is also determined by the position in the tower of fields (resp. rings). The Mat and Vec operators also
retain their properties of mapping polynomial arithmetic to matrix and vector operations. For a more
in-depth look at the interplay between the tower of fields and the polynomial /matrix duality see [DP15].

2.1.6 Fast Fourier Transform

In FALCON the Fast Fourier Transform (FFT) is used to represent polynomials in Q[z]/¢ as a vector of
complex numbers. The polynomial modulus ¢ = 2™ + 1 has n distinct roots in C. Let (; be these roots

3In order to keep in line with the notation from the original FALCON specifications, we use the notation fo and f; for
the split polynomials in this context. It should not be confused with the same notation for the coefficients of f with indices
0 and 1.

10



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

fx) =6 = 2x + 1x2 — 4x3 F8x* {85 HWBxs + 77
6 2 1 -43[855 7|
1888 [2 <87
6 8] [1 55| [-2 B [-4 7]

Figure 2: Example of repeated splitting of a polynomial in vector notation. Note that
one more additional split in the end would result in single-coefficient polynomials,
but not change the order of coefficients any more.

Vec (

split

split

and let f € Q[x]/¢ be another polynomial, then the FFT of f is defined as:

FET(f) = (£(¢)) gurns

i.e., the n-tuple of f evaluated at the roots (; in C. This is a very similar situation to the NTT and the
theory behind both transforms is closely related. We will, however, not go into detail about this relation.
To emphasize that a polynomial is in FFT representation, we will use * as notation. Note that this
notation is not consistent in the FALCON specification [FHK*20]. So a polynomial without * could either
be in coefficient or FFT representation. With the * however, it is always in the FFT domain.
The inverse of the FFT transform is denoted as:

invFFT(f) = f,

which is essentially a polynomial interpolation of the the points (Q, f (CZ))

One of the advantages of using FTT representation is the efficiency increase for multiplication and
division. Let f = (fo, e fn-1) and § = (go,.-.,0n-1) be two polynomials in FFT representation. From
(f-9)(@) = f(x)-g(z) we get FFT(f-g) = f ®§ and so the product f-g can be computed coefficient-wise:

fg=iInvFFT(FFT(f-g)) =invFFT(f © ) = invFFT(fo o, -- -, fu1 - Gn1)-

The same holds for division. Addition and Subtraction are also coefficient-wise, just like in coefficient
representation.

We will also use the FFT operator on vectors and matrices containing polynomials. Then it is under-
stood to operate on an entry-wise level.

The algebraic structure described in the previous Section[2.1.5 can be translated into the FFT domain.
For this we define two operators, called splitfft and mergefft, that perform the same task of splitting and
merging polynomials, but in FFT representationﬁ Importantly, they are compatible with split, merge
and FFT:

FFT(split(f)) = (fo, f1) = splitfrt(FFT(f)),
invFFT(mergefft(fo,fl)) =f= merge(invFFT(fo, fl))

Here, fo and fl denote the two output polynomials of split in the FFT domain, not the individual FFT
coefficients of f.

4An algorithmic definition is given in the FALCON specifications [FHK*20).

11



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

2.1.7 Babai’s Nearest Plane Algorithm

Say we have a full-rank matrix B € Z9¢ that generates the lattice A = A(B). We are also given a point
t € RY, the so-called target, which does not necessarily lie on the lattice A. The goal is to find a point
v € A that is close to the target. In other words, |v —t| should be small. For now, we omit a more formal
definition on what small means.

One solution to this problem is the Nearest Plane Algorithm, first described by Babai [Bab86]. Con-
sider the (d - 1)-dimensional hyperplane H; 1 spanned by the the first d — 1 rows of B. From the
Gram-Schmidt orthogonalization we know that the row-vectors by,...,bg_s of B = GSO(B) are an or-
thogonal basis of the same hyperplane Hy_;. The space R? can now be partitioned into disjoint, affine
copies of this hyperplane: B

Rd = U Hd_1 + /\bd—l-
AeR
The copies are offset from Hy 1 by some scalar multiple of the last Gram-Schmidt vector bg_1. The
idea now is to find the unique hyperplane (defined by the corresponding coefficient A) that contains the
target t. If we write down t as a linear combination of the b:’s we get:

d

1 ~- ~
(t.bi) ¢
0 (bi,b;)

t =

N

%

From this it is easy to see that the terms fori=0uptoi=d-2lie in Hy 1 (they are a linear combination
of by up to bg-2), so the last term for ¢ = d — 1 must be equal to Abgy_1, and we can set:

(ta E)d—1>
(bg-1,bg-1)

Unfortunately, A will usually not be an integer. But we can simply round X to get the closest hyperplane
that does contain lattice points.

Similar to how H;_1 contains a copy of the sublattice generated by by, ..., bg_2, the chosen hyperplane
contains a shifted version of this sublattice. We can repeat the procedure from above inside this hyper-
plane, always finding the closest integer-shifted subspace to t. Eventually we reach the 0-dimensional
case, i.e. a single point v, which will be the output of the algorithm.

The Nearest Plane algorithm has an interesting geometric property. Babai showed [Bab80| that for
a lattice A(B) and a target t, it holds that v — t lies in the parallelepiped $P(GSO(B)). Informally

speaking, this is because the coefficients of t are “rounded in the direction of the b.’s”.

2.2 High-Level Overview of FALCON’s Main Algorithms

Throughout the next three Sections[2.2.1] 2.2.2] and [2.2.3] we give an overview of the main components of
FALCON. As mentioned before, FALCON is an instantiation of the GPV framework and we will reference
how the steps in Keygen (Algorithm , Sign (Algorithm and Verify (Algorithm correspond to GPV
specifically.

2.2.1 Description of Keygen

In FALCON, the generation of a key pair starts with a call to NTRUGen, which produces the main
components of the secret key: four polynomials f,g, F,G € Z[x]/¢. The exact process is described in
Section In short, the two polynomials f and g are sampled randomly and f is checked to be
invertible mod ¢ (i.e., invertibility as an element of Z,[z]/¢). To complete the secret key, two more
polynomials F,G € Z[x]/¢ are calculated, such that the NTRU equation is satisfied:

fG-Fg=q mod ¢.

12



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

For this, a variant of the extended Euclidean algorithm is used that leverages the divide-and-conquer
principle of the ring Z[x]/¢.

Since f and g are generated first, we will sometimes refer to them as the primary key components,
while ' and G will be called the secondary key components. Together they make up the matrix B that
directly corresponds to the matrix of the same name in the GPV framework:

9 -f
B- [ s ] |
In FALCON however, this is not the complete secret key. For efficiency reasons it also contains a FALCON
tree T that encodes essentially the same information as B, but in a format that allows for faster signature
generation. The computation of the tree T will be explalned in Section [2.3:2} It is based on a recursive
LDL*-decomposition of the Gram matrix G = BB*, where B is the entry-wise FFT of B. After the
initial tree is computed, it is normalized using a parameter o. This is an essential step for the security
of the scheme, as o controls the distribution of the signatures that will be generated from the tree. Now
we can combine B and T into the secret key sk.
Lastly, the public key pk consists solely of the polynomial gf~' mod g = h € Z,[2]/¢. This calculation
is the reason why the invertibility of f had to be checked.

Note that in implementations, the memory requirements for the matrix B can be reduced by only
storing three polynomials and recomputing the fourth with polynomial arithmetic when needed. In Sec-
tion we will see that, in fact, the complete matrix can be recomputed from any single one of the
polynomials with additional knowledge of the public key. This could be used as an even more compact
secret key format, but it would be computationally inefficient as it would require to run NTRUSolve (see
Section again to unpack the full key.

It might not be immediately clear how FALCON’s public key corresponds to the public key from the
GPV framework. But using the polynomial i we can define the matrix:

A=[ 1 Je(zZlx]/9)

The following calculation shows that, indeed, BA* = 0 mod ¢, as is required by the GPV framework. For
this, we start with the NTRU equation, multiply it with f~ and consider the result mod ¢:

fG-Fg=q,

ffG-Fgft=q,
G-Fh=0 modq.

1x2

Additionally, from the definition of h we directly get g — fh = 0 mod gq. Now we write down the matrix

product explicitly:
* _ g _f 1 _ g_fh —
BA ‘[ G -F H h ]‘[ G-Fh ]‘0 mod g.

2.2.2 Description of Sign

Before going into detail, we will outline how the steps of Sign compare to the GPV framework. In Line 2
the message m (appended with a random bit-string r) is hashed to a polynomial ¢, corresponding to the
vector ¢ in GPV. The preimage calculation of ¢ under A is trivial with the choice of the FALCON public
matrix and we can simply set cg = (¢,0). It is easy to check that coA* = ¢. Next, the preimage t under
B is calculated in the FFT domain, which has no direct correspondence to GPV. In Line 6 an integer
point z that is close to t is computed. Here, ffSampling is the trapdoor sampler of FALCON and the
FALCON tree T is the trapdoor. Compared to GPV, tB and zB assume the roles of co and v respectively.

13



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Algorithm 1 Keygen(¢,q)

Require: A monic polynomial ¢ € Z[z], a modulus ¢
Ensure: A secret key sk, a public key pk
1: f,9,F,G < NTRUGen(¢, q)

ml|l 9 -/ . .
2: B G _F > Secret lattice basis
3: B« FFT(B)

4: G < BB~

5. T < ffLDL*(G) > Initial FALCON tree
6: for each leaf leaf of T do

7: leaf.value < o/V/leaf.value > Normalize tree
8: sk« (B,T)

9: h«<gf! modgq > Non-trivial part of public lattice basis
10: pk < h

11: return sk, pk

The difference (t —z)B = ¢y — v = s is the GPV signature (but in the FFT domain) and a candidate
for a FALCON signature. All subsequent checks and calculations are specific to FALCON and do not have
corresponding steps in GPV.

Before the message is hashed, it is combined with a random salt r, a bit-string of length 320. This
is done to add randomness to the hashing process of ¢, such that repeated hashing of the same message
will return different results each time (with negligible probability of collision).

The preimage is defined as t = (¢,0)B~!. One can check that the inverse of the secret matrix B is the
following:

a4 1| -F f 2x2
B 1 = —. € Q X .
A IARCE
Note that this matrix has rational coeflicients in general. We can write down the preimage calculation
explicitly to get:

t:(c,o)B-lz(c,o).;[ - g]:;(—cF,cf).

This is what is calculated in Line 3, albeit in the FFT domain. Since B™! has rational coefficients, the
preimage t will have rational coefficients as well.

Using ffSampling, a vector z € (Z[x]/¢)? is sampled in such a way that the calculation in Line 7 yields
signatures s € (Z[x]/¢)? that are distributed according to DA (By+(c,0),0,0- This is a spherical, discrete
Gaussian distribution on the shifted lattice A(B) + (¢,0) with standard deviation o and centered around
the origin. See Section [2.3:3] for details on the sampling process.

Only if the squared Euclidean length of s is shorter than the signature bound | 3% |, the post-processing
can begin. First s, which is still in FFT representation, is brought back into coefficient representation.
The first component polynomial s; can be calculated from public values alone (see verification) and can
therefore be omitted from the final output. The other component ss is compressed coefficient-wise using a
custom encoding. Only when all these steps result in a non-empty output, the bit-string s is concatenated
with the salt r and the final signature sig = (r,s) is returned.

2.2.3 Description of Verify

Signature verification is a relatively quick and straightforward process. We get a message m and a sig-
nature sig = (r,s), along with the public key pk and the signature bound |3?] as input. It starts with

14



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Algorithm 2 Sign(m, sk, | 5%])

Require: A message m, a secret key sk = (B, T) where B contains polynomials f7 g, 13', G,
a bound | 3?]
Ensure: A signature sig of m

1: r< {0,1}320

2: ¢ < HashToPoint(r|m,q,n) > Hash message to point
3t (- %FFT(C) oF, %FFT(C) o} f) > Calculate preimage
4: do

5: do

6: z « ffSampling,, (t,T) > Trapdoor sampling
7: s« (t-z)B > GPV signature
8:  while |s|? > |5?]

9: (s1,82) < invFFT(s)

10: s < Compress(sa, 8 - sbytelen — 328) > Short, compressed FALCON signature
11: whiles=1

12: return sig = (r,s)

the preparation of the polynomial ¢ as a hash from the salt r and the message m exactly as in Sign.
Then the signature component s is decompressed into the polynomial ss. If the decompression yields an
empty result (i.e., the compression is somehow invalid), we can immediately reject the signature. Else,
we compute the other signature polynomial s; according to s; = ¢ — sah and normalize the coefficients
mod ¢ to be between [-¢/2] and |q/2]. Now we check that s; and sy together are shorter than the bound
|3%]. If that is the case, we can accept the signature, otherwise we reject it.

The steps described here seem quite different from what the GPV framework would suggest. Remem-
ber that the verifier needs to check whether or not v (corresponding to zB) is a point on the lattice
generated by B. The trick is that the computation of s; (the “missing” part of the signature) replaces
the check on v. To see why, we can make the following calculations:

veA(B) < vA* =0 modq

‘:’((Cvo)—(sl,@))'[ }ll ]:0 mod ¢

< c—(s1+82h)=0 modq

< s1=c—Ssh mod q.

So by calculating s; from known values ¢, s; and h and comparing it to the original sy, the verifier
would be able to confirm the validity of v € A(B). Note, however, that a direct comparison of the
recreated s; to the original is not possible, since it was omitted from the signature. What the verifier
can do instead is look at the norm. If s; was not a valid signature for ¢, then c— soh would essentially be
a random polynomial and the combined (s1, $2) would be short only with negligible probability.

2.2.4 List of Parameters

We provide a list of the most important parameters for FALCON in Table |1} This includes the security
levels 9 and 10 recommended for practical usage (corresponding to the levels I and V as defined by
NIST [NISTI6]), as well as lower security levels k =1 to k = 8 for testing purposes.

15



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Algorithm 3 Verify(m, sig, pk, | 3?])

Require: A message m,
pk = h € Z,[x]/¢, a bound | 5?]
Ensure: Accept or reject

a signature sig

= (ns),

a public key

Table 1: Parameter sets of FALCON for security levels from x =1 to k = 10. The

1: ¢ < HashToPoint(r|m,q,n)

2: s9 < Decompress(s, 8 - shytelen — 328)

3: if s = 1 then

4 reject

5: 81 < ¢—ssh mod q > Calculate missing signature component

6: if H(81,82)|‘2 < I_ﬂzJ then

7 accept

8: else

9 reject
Koon=2%| og 0y o Omin | 52| sbytelen
1 64.9 144.8 1.117 101498 44
2 45.9 146.8 1.132 208714 47
3 324 148.8 1.148 428865 52
4 16 22.9 151.8 1.170 892039 63
5 32 16.2  154.7 1.193 1852696 82
6 64 11.5 157.5 1.214 3842630 122
7 128 8.1 160.3 1.236 7959734 200
8 256 5.7 163.0 1.257 16468416 356
9 512 4.1 165.7 1.278 34034726 666

10 1024 29 1684 1.298 70265242 1280

columns o o1, 0 and oyin have been rounded.

16



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Algorithm 4 NTRUGen(¢, q)

Require: A prime modulus ¢, a polynomial ¢ = 2" + 1 € Z[z] with n = 2%
Ensure: Polynomials f, g, F,G € Z[z]/¢ that verify fG - Fg=q

{19y < 1.17\/q/(2n)

fori=0,...,n-1do > Randomly generate f, g

fi =Dz,
9i < Dz.o;

<X fzml

g« % fiz'

if NTT(f) contains 0 as a coefficient then > Check invertibility of f
Restart

v < max{| (g, -

10: if v>1.17./q then

11: Restart

12: F,G < NTRUSolve(f, g) > Solve NTRU equation

13: if (F,G) =1 then

14: Restart

15: return f, g, F, G

N 75|} > Caleulate [Blas

2.3 Specific Subroutines in Detail

This section is dedicated to a more in-depth explanation of NTRUGen, NTRUSolve, flLDL*, SamplerZ
and ffSampling. These subroutines contain a lot of the more intricate aspects of FALCON and a thorough
understanding of them is necessary for the sensitivity analysis that follows in Section

2.3.1 Description of NTRUGen and NTRUSolve

These algorithms produce four polynomials f, g, F,G € Z[x]/¢ that make up a FALCON secret key. The
process starts by sampling the coefficients of f and g from the discrete Gaussian distribution Dz o, .. The
parameter oy oy sets the standard deviation of this distribution and its value depends on the polynomial

degree n:
O{fg} = 1.17\/(]/(211).

So for a higher degree, the coefficients of f and g are on average smaller in absolute values. This has the
effect that the pair (f,g) has a constant expected length, independent of the security level:

E[|(f,9)l] =117\/q.

For the calculation of the public key, f needs to be invertible as an element of Z,[x]/¢. This can be
checked by converting f into the NTT representation and checking that none of its coefficients are zero.
Otherwise, the process starts over with the sampling of new f and gEl

Another check follows to make sure that the average length of signatures that will be generated with
the secret key is short enough. The norm of signatures is proportional to the secret key’s Gram-Schmidt
norm |B|gs. As was shown that this value can be computed quite efficiently from f and g alone, without
knowing the other two polynomials in advance [DLP14]. Specifically, the value:

( af” ag” )}
f1*+99*" ff*+g9*

5Tt is not clear why g would need to be recomputed too if f fails the invertibility check. We suspect that it is, in fact,
not necessary. Note that the C reference implementation performs the various checks in a different order.

= .-

17



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

is calculated. It is the Gram-Schmidt norm of the secret basis and its value must not be greater than
1.17,/q in order to guarantee that the secret key will be able to generate sufficiently short signatures.

Now that f and g are generated and checked, the last step is to find suitable solutions F' and G with
integer coefficients to the NTRU equation fG — Fg = ¢ with NTRUSolve. Note that we cannot simply
pick an arbitrary F € Z[z]/¢ and then define G = (¢+ Fg)f™!, since f is only guaranteed to be invertible
in Z,[x]/¢. To overcome this problem, the divide-and-conquer principle of the ring Z[z]/¢ is leveraged:
We project the NTRU equation down into smaller rings until we reach Z, find a solution and lift it
back up into the original ring. The solution method used in FALCON was first proposed by Pornin and
Prest [PP19].

For the descent phase we use the field norm, which is usually defined in terms of field extensions and
Galois conjugates. In the context of FALCON its definition simplifies to the followinﬂ

N:Z[z]/¢ > Z[z]/¢'
f(@) = f(z)- f(-2) mod ¢,

where ¢ = 2™ +1 and ¢’ = 2/ + 1. To keep the notation simple, we will use N as the name for the field
norm between any two rings in the tower, regardless of the degree. Applying the field norm logn times
to f and g will result in two integers [, ¢’ € Z[z]/(z + 1) 2 Z. We are at the bottom of the tower, where
a solution can easily be found. Consider the equation:

uf' +vg' =1,

where integer solutions exist if and only if ged(f’,¢") = 1. Importantly, values for u and v can efficiently
be calculated with the extended Euclidean algorithm. If we define F' = —qv and G’ = qu, we get solutions
to the NTRU equation in Z:

['G'=F'g" = f'qu—-(—q)vg’ = q(uf" +vg") = q.

What follows is the ascent phase, where we iteratively lift this solution back up. We will only illustrate
the last step from Z[z]/¢" to Z[x]/®. All previous steps work equivalently.

Let N(f) = f" and N(g) = ¢’ for some polynomials f,g € Z[x]/¢ and say we have already found
F',G" € Z[x]]¢" that satisfy f'G' — F'g’ = ¢ in this smaller ring. To get F,G € Z[x]/®, such that
fG — Fg = q is satisfied in the larger ring, it suffices to choose:

F=F'(z*)g(-z) and G =G"(z*)f(-x).

A proof why these polynomials, together with f and g, form a valid solution can be found in [PP19], but
will be omitted here.

If we were to apply this lifting step as is, we would get polynomials F' and G with potentially very
large coefficients, which would be undesirable. To remedy this fact, we reduce (F,G) with respect to
(f,9g) after each step of the ascent phase. The exact details of this can also be found in [PP19].

Finally, note that the described procedure is successful in theory, as long as f and g are coprime.
Depending on the implementation, however, further conditions may have to be met.

2.3.2 Description of ffLDL*

This is the subroutine of Keygen that computes a FALCON tree from the secret key B in the form of
G = BB*. A straightforward calculation shows that G is self-adjoint, meaning that G* = G. For
matrices of this type, the so-called LDL*-decomposition can be defined: G = LDL*, with a lower unit

6The name field norm is justified, because we could define the same function for the field Q[z]/¢. Since we only ever
use it with integer polynomials in the context of NTRUSolve, we restrict its definition accordingly.

18



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Algorithm 5 SamplerZ(p,o0")

Require: Floating-point values i, 0’ € R with ¢’ € [0min, Omax ]
Ensure: An integer z € Z sampled from a distribution very close to Dz o,
Lo p— | > Fractional part of distribution center u
2: ¢ccs « Omin/o’
3: while True do
zo < BaseSampler() N O/
b < UniformBits(1)
z<b+(2:b-1)z >z~ BG

(z-r)? _ =3
202 202

4

5

6

7 T <«

8 max
9

Omax

if BerExp(z,ccs) =1 then
return z+ |y D> z~Dg o ry 2+ 1] ~ Dz oy

triangular matrix L and a diagonal matrix D. In the case of a 2 x 2-matrix, the LDL*-decomposition can
be explicitly written down as:

Goo Gou 1
G = ~r L =
[ G Gu ] [ G10/Goo

where Lig = G10/Goo is well defined, as long as G is not zero. This is always the case here, as Gy
essentially corresponds to the calculation (Vec(g,-f), Vec(g,—f)) = |Vec(g, - f)[?, which is non-negative
for any vector (resp. pair of polynomials) and zero only if the vector is zero.

Note that the format of L and D already determines Loy = L1; = 1 and Loy = D19 = Dg1 = 0. So we
are left with only three non-trivial entries Lig, Dgg, D11 that need to be stored. We could, for example,
store L1 in the root node of a tree and the two diagonal entries in a left and right child node respectively.
The divide-and-conquer principle in FALCON enables us to recursively split the leaves of such a tree. For
this, we split the diagonal elements via split(Dgg) = (doo, do1) and split(D11) = (d1o,d11). Then we define
two new, self-adjoint matrices:

0

1 0 | Gi1—LioLipGoo |’

0]’ D:[ Goo

doo dOl le dll
Gy = - , G = < .
’ [ dpy | doo ] ! [ diy | dio ]

Those can again be LDL*-decomposed and the resulting trees replace the leaves where Dyy and D1,
were previously stored. Remember that when Dgg and Dj; are polynomials in Q[z]/(z™ + 1), then the
d;;’s are elements of the smaller field Q[x]/(z"/? + 1). So, continuing this procedure eventually results
in a tree of heightm logn, where the leaves contain elements from Q[z]/(x! + 1), i.e. rational numbers.
If we count the layers, starting with 0 for the leaves, the nodes in the i-th layer contain polynomials
of degree 2° — 1 (i.e., polynomials with 2¢ coefficients). This structure is the FALCON tree of the origi-
nal matrix G. So in essence, a FALCON tree is a way to store a recursive LDL*-decomposition of a matrix.

In implementations the calculations presented above are performed completely in FFT representation
(using splitfft instead of split), hence the name ffLDL*. This improves the efficiency, because it greatly
simplifies the multiplications and divisions of polynomials.

2.3.3 Description of ffSampling and SamplerZ

The sampling of discrete Gaussian distributions is perhaps the most involved part of the whole scheme.
The method that is used in FALCON is based on many previous works, such as [DP15], [HPRR19]

"In graph theory, the height of a tree is usually defined as the maximum number of edges from the root node to one of
the leaves. So a height of logn means that there are 1 + logn layers of nodes.

19



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

and [PRRI9]. On a very high level, the subroutine SamplerZ is a function that generates individual
integer samples for a given distribution Dz, ,,. Then ffSampling takes those samples and combines them
into a vector z € (Z[x]/(2™ + 1))? that is close to the input point t € (Q[x]/(2™ + 1))?. It does so in a
secure way, meaning that no information about the secret key is leaked through the signatures. Just as
with NTRUSolve and ffLDL*, the divide-and-conquer principle is essential for ffSampling.

SamplerZ. We want to produce an integer sample from the discrete Gaussian distribution Dz o/ . A
useful property of such distributions is that the shape of their probability mass function (PMF) stays
the same for integer shifts of the mean. Specifically, if p, ,(z) and p, ,+x(z) are the PMFs of two
distributions Dy, ,, and Dz , ..+ with k € Z, then we have p, ,(z) = po p+r(x + k). So if we are able
to sample from distributions with means p € [0,1), then we can already sample from distributions with
arbitrary means p € R by applying integer shifts. This allows us to remove the integer part of the desired
distribution center p in Line 1 of Algorithm [p| take its fractional part r as the mean and to later add
back the integer part |u] in Line 9.

The function BaseSampler is a CDT-sampler that generates an integer zg € [0,1,...,18] according
to the half-Gaussian distribution Dz+ .. (Line 4). The CDT-table is provided as part of the FALCON
specifications. In Lines 5 and 6 we take a single random bit b € {0,1} and apply it to 2o, almost like a
sign-bit. If b =0, then z = -z and if b = 1, then z = 1 + zy. In effect, this “unfolds” the half-Gaussian
distribution. Note that the resulting distribution is, however, not exactly Dz, . . Instead, the upper
half of the PMF coming from z = 1+ 2y is shifted by one compared to the real Gaussian distribution. Let
us define the distribution of z as BG with:

Omax?

1
5D7+ o (=2),  2<0
_ 2 ;0max ’ ’
BG,,,..(2) { %thamax(z_l)’ z>0.

Now follows a rejection step, where samples are rejected in such a way that the final distribution
almost exactly matches the desired distribution specified by the inputs. We know that if we accept a
sample z with probability:

DZ,U’,T(Z)
BG,,.. . (2)’

then the resulting samples follow Dy o/ ,. A short calculation reveals that this acceptance probability is

equal to:
2 _ )2
exp (Zo . (zr)) — exp(1),

2 2
207 ax 20

with x the value calculated in Line 7. Lastly, the function BerExp returns 1 with probability exp(-z)
and 0 otherwise.

The variable ccs, calculated in Line 2 and used as second input to BerExp, is introduced for security
and serves to make the rejection isochronous with respect to p, ¢’ and z. This means that the runtime
of BerExp does not depend on the value of these variables and so no information can be obtained from
timing measurements. See [HPRR19] for details and the proof of isochrony.

ffSampling. The origin of the ffSampling subroutine is Babai’s Nearest Plane algorithm from Sec-
tion [2.1.7 There are essentially two steps of evolution between the two samplers: an adaptation to
FALCON’s algebraic structure that comes with an efficiency gain and a randomization that makes the
sampled points independent of the secret lattice basis. Interestingly, these two steps are more or less
independent. Applying a randomization to the Nearest Plane algorithm leads to Klein’s trapdoor sam-
pler [KIe00]. On the other hand, Ducas and Prest introduced Fast Fourier Nearest Plane [DP15] as a
version of Babai’s Nearest Plane that takes into account a divide-and-conquer principle similar to that
of FALCON. Finally, FALCON’s ffSampling can be viewed either as randomized Fast Fourier Nearest
Plane or as Klein’s sampler for lattices with a ring structure. In the following explanation we will fo-
cus on the randomization, as it directly relates to the security aspect and will play an important role

20



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

in the later sensitivity analysis in Section [3]and also in the NarrowSampling attack presented in Section [4]

Usually, Babai’s Nearest Plane algorithm runs deterministically, i.e., for a fixed lattice and target it
will output the same lattice point. The idea now is to replace the rounding that happens when determining
the closest hyperplane with random rounding according to a discrete Gaussian distribution.

More precisely, in the notation of Section [2.1.7} if A is the parameter determining the exact hyperplane
(in the first iteration of Nearest Plane), then we do not take | A] as our choice for the coefficient. Instead we
sample an integer from a discrete Gaussian distribution with center A and standard deviation proportional
to 1/ ba-1|. Subsequent iterations operate similarly in lower-dimensional hyperplanes.

Visually speaking, since the width of the coefficient-wise distributions are inversely proportional to
the lengths of the Gram-Schmidt vectors, the parallelepiped P(GSO(B)) from Babai’s Nearest Plane
algorithm is blurred into a spherical Gaussian distribution and therefore made unrecognizable. This
guarantees that no sensitive information about the secret matrix B is leaked through the signatures.

21



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3 Sensitivity Analysis for FALCON Variables

In this section, we present our analysis of the physical security of FALCON. We first define the categories
and labels that will be used in the rest of Section [J] and outline the scope of the analysis. Following
that we proceed with the analysis proper, going through Keygen (Section including NTRUGen),
Sign (Section with its subroutines in a dedicated Section and Verify (Section . We identify
possible vulnerabilities, including known attack vectors from prior works as well as vulnerabilities that
have remained unexploited to the best of our knowledge. All results are summarized in Tables A
and [0} Lastly, in Section [3.6] we compile a list of all attack vectors that we identified.

Note that in the scope of this thesis we did not perform physical experiments on actual hardware but
rather relied on simulations of attacks in code.

3.1 Explanation of Tables, Labels and Acronyms
3.1.1 General Organization

In the following tables we summarize every considered variable that occurs in the FALCON signature
scheme, from Keygen through Sign to Verify, roughly in the order they appear in. We also look at most
of the subroutines. Our notation is the same as used in the original FALCON specifications. This has
the effect that sometimes different variables have the same name. We try to avoid confusion by grouping
variables according to subroutines, separating them into different tables and adding short descriptions to
each variable.

On the other hand, some variables occur in more than one part of the scheme. For example, the secret
and public keys are generated in Keygen and later used in Sign and Verify respectively. In those cases
we list all occurrences of the variable and assess the sensitivity depending on the context. In particular,
attacks that target such a variable are always listed in the table corresponding to where in the scheme
the attack is happening.

Apart from the variable name and description, each table entry consists of three more columns: SCA,
FA and Public, which are explained hereafter. Most attacks that can be found in the literature either
have very generic names or no name at all. For easier reference within this thesis we will give each
attack a short and somewhat descriptive name. Additionally we cite the paper(s) they were presented or
improved in.

Sometimes a variable’s sensitivity is directly linked to that of another variable. In these cases we
will make references of the form “— Variable” in the tables. Similarly, when describing a vulnerability
in the text, we reference attacks that exploit that particular vulnerability via “(— Attack)”. A more
detailed description of these attacks can then be found in Section [3.6} To differentiate between attacks
from prior literature and novel ones we use the markers “Attack”” and “Attack™” respectively. When an
existing attack method or parts thereof are adapted to a different context we mark it as “Attack?”. For
readability we only use these markers in the references to the sensitivity tables, in the tables themselves
and in the subsection titles of the Section [B.6l

3.1.2 SCA, Side-Channel Attacks

The attacker model for a side-channel attack is a passive one. Through physical measurements the
adversary gains information about the internal state of the device that runs the cryptosystem that is
to be attacked. Examples of measurements include precise power consumption on the clock-cycle level,
timing attacks that measure the runtime of certain parts of the algorithm, or even electromagnetic
radiation that is emitted from the device. From this data, the adversary can then try to infer the value
of sensitive variables with a wide range of techniques, such as statistical analysis or approaches using
machine learning.

To simulate a side-channel attack in code, we simply print the value we are interested in either directly
to the console or store it in a file for later processing.

22



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

The column SCA in the following tables denotes the possibility of side-channel analysis to retrieve the
value of the variable. A dash means that no side-channel attack is known, or that such an attack does
not apply to the value in question (which is usually the case for public parameters). The designation
(potential) either means that no method to obtain the value is known but partial or full knowledge of it
could be used to decrease the security of the scheme or break it entirely, or when a connection to sensitive
values cannot definitively be ruled out.

3.1.3 FA, Fault Injection Attacks

The attacker model for a fault injection attack (or fault attack for short) is an active one. The adversary
can directly influence the execution of the cryptographic algorithm or corrupt the data stored on the
device. This is possible via laser pulses, electromagnetic fields or high voltage, among others. From the
public output (that is the result of a faulted execution) the adversary can again learn information about
sensitive internal values.

For our simulations we can alter the code (add or remove lines, change the value of parameters, etc.)
to behave in the way that we need for any given attack scenario.

In the following tables, the column FA provides a similar assessment for fault attacks as SCA does
for side-channel attacks. Here, the key word (potential) is used to note a measurable influence on public
values (e.g., the public key, signatures), but it is not clear how this can be used to gain knowledge of
secret values.

In this column we also differentiate between data faults DF (causing the value of a variable to be
changed) and control flow faults CFF (causing the algorithm to behave differently, for example skipping
instructions or aborting loops). Control flow faults target operations (loops, function calls, etc.) instead
of variables. However, they always have an effect on the immediate result of the targeted operation. The
result is again a variable and the attack is listed under this variable.

3.1.4 Public Classification

Lastly, in the column Public we explain whether and why a variable can be considered public. This is
most often the case for parameters that are part of the FALCON specifications, as well as parts of the
public key, the signature or the message. Note that for public variables we can automatically assign a
dash to SCA, since there is no need to use side-channel analysis to find a value that is publicly known.
Vice versa we can mark a variable as non-public (i.e., sensitive) if a side-channel attack is known. To
be on the safe side, we also assign a dash to variables that have a (potential) designation in the SCA
column. Importantly, fault attacks are not only possible for secret values but for public ones as well.
Both can have an influence on the execution of the scheme and reveal secret information through the
eventual public output.

3.1.5 Scope of the Analysis

In this thesis we only consider the current version v1.2 of the standard FALCON signature scheme [FHK"20).
No other modes (e.g., key-recovery mode) or variants (e.g., deterministic FALCON) will be considered.
We do, however, look at both FALCON-512 and FALCON-1024, as the analysis is identical up to the value
of some parameters.

As mentioned, we only examine vulnerabilities to side-channel and fault attacks with the goal of
partial or full key recovery. Fault attacks that cause a denial of service (DOS) are generally not part of
the analysis, because of the abundance of possibilities for them.

When the vulnerability of values depends on implementation specific details we will rely on the ref-
ererﬁ implementations in C and Python. They are provided by the authors of FALCON as open source
cod

Shttps://falcon-sign.info/

23


https://falcon-sign.info/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

There are also some aspects that we explicitly exclude from our analysis. They are the following:

3.2

The sampling of coefficients of f and g in NTRUGen. The process itself is not specified, but we
consider some attack scenarios.

Also in NTRUGen, the number theoretic transform NTT(f) and the subsequent check for zeros.
Similarly, the particular implementation of the FFT.

All polynomial arithmetic including adjoint polynomials, calculation of norms, splitting, merging,
etc.

The use of a Residue Number System (RNS) in NTRUSolve.
The subroutine Reduce in NTRUSolve.
The intermediate variables in flLDL*, but we consider its output T in detail.

Side-channel attacks on the subroutine HashToPoint. It operates on public values in a deterministic
fashion. We do, however, consider faults on the hash output c.

Similarly, Compress. Side-channel analysis does not apply and fault attacks can only cause a denial
of service.

Similarly, Decompress and sbytelen in Verify.

For efficiency reasons there are many values in the C reference implementation that are hard-coded,
like In2 etc. We only consider them in the case where they are explicitly declared as variables in
the specifications, e.g., the polynomial coefficients C' in ApproxExp.

Any auxiliary variables like loop counters, etc. Faulting them would be equivalent to control flow
faults, which we generally do consider.

Some variables, like ccs in SamplerZ, that are handed down as inputs to subroutines are only
considered in the top-most instance.

The final output of Verify, i.e., the information of whether a signature is accepted or rejected. It is
not declared as a variable in the specifications, side-channel attacks do not apply and a fault attack
(causing it to accept or alternatively reject every signature) would be trivial.

Sensitivity Analysis of Keygen

The results of this section are summarized in Table 2

3.2.1 Basic Parameters

The polynomial modulus ¢, its degree n and the integer modulus ¢ are public parameters of FALCON.
A fault attack is generally not possible, since the whole scheme depends on their specific values, even
when they are not referenced explicitly. For example, a function that transforms a polynomial in Z[x]/¢
into its FFT representation might never explicitly use ¢ as a value, but is still highly dependent on it
and its properties. The same analysis for ¢, n and ¢ also applies in the context of Sign, Verify and their
respective subroutines, which is why we will not list these variables later on.

24



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Variable Description SCA FA Public

¢ polynomial modulus - - parameter
q integer modulus - - parameter
n  degree of ¢ - - parameter
o(sqy standard deviation - - parameter
for secret key coeflicients
f, g secret key components |CDT—SPAr4 |HalfKey|N(CFF) -
F, G secret key components (potential) (potential) -
v secret key norm (potential) - -
B secret matrix (potential) - f,g,F,G -
G FALCON tree matrix (potential) - T -
T FALCON tree (potential) SmallLeavesl‘ (DF) -
o standard deviation - NarrowSamplingIN (DF) parameter
for signature coefficients
h  public key - - public key

Table 2: Sensitivity Table for FALCON Keygen, including NTRUGen.

3.2.2 Sampling of Primary Secret Key Components

The standard deviation oy 5y specifies the distribution for the coefficients of f and g. It is a public
parameter, so side-channel attacks do not apply. Depending on the implementation, the sampling of
coefficients of f and g might follow a range of different methods. For example, the Python reference
implementation uses SamplerZ with o ;3 as an input. On the other hand, the C implementation never
explicitly uses oy g1, but instead relies on a CDT-sampler with a precomputed table of values. Since
0(t,gy 18 a fixed parameter with a specific value for each security level, most practical implementations
will probably use the second option, making fault attacks quite unpractical.

Even if a given implementation allowed fault attacks, the effects would not be far-reaching. In the
FALCON specifications, the authors consider the possibility of so-called overstreched NTRU attacks, where
the coefficients of f and g are very small. They conclude that the choice of ¢ as the rather low value
of 12289 makes these kinds of attacks irrelevant. Faulting oy 4y in the other direction, increasing its
value, is also not very promising. The immediate effect would be larger polynomial coefficients for f and
g, making a direct attack via lattice reduction easier. However, a bound of 1.17,/q is enforced on the
Gram-Schmidt norm of B in NTRUGen, greatly restricting the average size of coefficients. On that note,
there are also restrictions on the encoding of key coefficients (at least in the C implementation), limiting
each individual coefficient to a certain bit-size.

Increasing oy 3 (and assuming that the key is not rejected in the process) would also have an effect
on the length of signatures. A larger key will produce longer signatures on average, which are theoretically
easier to forge. But there is another norm check in Sign that limits the length of signatures for exactly
this reason, preventing this attack vector too.

3.2.3 Side-Channel Analysis of Secret Key Components

The primary secret key components f and g together with the secondary secret key components F' and G
are probably the most vulnerable values of Keygen. Furthermore, all four polynomials are closely related.
The following equations show how to retrieve the full secret key (i.e., all four polynomials) if only one of

25



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

its components is known.
f ~ g=fh modgqg ~ (F,G) =NTRUSolve(f,g),
g ~ f=gh™ modq ~ (F,G)=NTRUSolve(f,g),
F ~ G=Fh modq ~ (g,f)=NTRUSolve(G,F),
G ~ F=Gh™ modq ~ (g,f)=NTRUSolve(G,F).

Note that the first equation in each line only holds mod ¢. The coefficients of all the polynomials follow
a discrete Gaussian distribution centered around 0, with a standard deviation much smaller than ¢. This
makes it easy to guess the correct representative, which is the one closest to 0. When f and g are
known, an attacker can simply use NTRUSolve to get I’ and G, exactly how they are calculated during
FarLcoN Keygen. Similarly (and perhaps surprisingly) NTRUSolve can also find f and g when F and
G are knownﬂ Note, however, that the order of inputs and outputs is reversed (e.g., (g, f) instead of
(f,g9)). Also note that in lines 2 and 4 (known g and known G respectively) we have to invert h, which
is not always possible. But given a random polynomial (h looks uniformly random according to FALCON
specifications and [SS13]) the probability of it being invertible are relatively highm

Now the question remains how to gain knowledge of one of the key components initially. Prior work
has shown that constant-time CDT-samplers are vulnerable to side-channel attacks [KHIS]. It is possible
to predict the exact output with high accuracy using a single power trace. When applied to the sampling
of f and g, this makes it almost trivial to recover both polynomials in full (= [CDT-SPA{'). On the
contrary, there are no published attacks revealing F' and G through side-channel analysis (during Key-
gen). But the explanations above show that they are still vulnerable targets, if such attacks are ever found.

Note that an adversary can theoretically only use single-trace attacks, because Keygen is only per-
formed once per key. Looking into the specific implementations, however, there could be more possibilities
for an attack. For example, the C reference code only stores the polynomials f,g and F' as the secret
key. The fourth component G is recomputed every time during Sign. These additional operations might
provide further opportunities for side-channel analysis.

3.2.4 Fault Attacks on Secret Key Components

Depending on when in Keygen a fault is injected to one or more key components, it can have varying
effects, due to how the fault propagates. There are essentially two scenarios: Firstly, faulting f or g during
or right after they are generated and secondly, faulting f, g, F or G during or right after NTRUSolve.

Faults before NTRUSolve. If an attacker is able to completely fault f or g to known values instead
of randomly sampling their coefficients, then they can, of course, work out the complete secret key.
But it is unlikely that such a strong attack is possible in practice. A simpler attacker model could, for
example, abort the sampling of f or g and cause the latter coefficients to be zero (depending on the
implementation). The reduced value space could be enough to calculate the other, unknown coefficients
using the relation with the public key, fh = g. However, experiments show that the probability that a
faulted f or g can still be made into a full valid key are lower, the more coefficients are faulted to zero,

see Figure 3| (— )

9The roles of the pairs (f,g) and (F,G) are symmetric in the context of the NTRU equation, so it is not surprising that
F and G can be calculated for given f and g. What is surprising, however, is that NTRUSolve can be used for this. It is
based on the extended Euclidean algorithm, which can generally not be inverted like that. Also, we do not claim that this
method will always work, but we have never observed a case for which the inverted NTRUSolve fails.

10This is easy to see if we consider the NTT representation of polynomials in Zg[z]/¢. There are ¢" polynomials in total,
(g—1)™ of which have only non-zero coefficients. Assuming that coefficients are distributed uniformly (as would be the case

n
for h), we expect a probability of % for h to be invertible. For security levels k =9 and « = 10 this evaluates to around

96% and 92% respectively. Experimental evidence closely matches these numbers.

26



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Faults after NTRUSolve. After all four secret key components are established, it is significantly
harder to fault them, because the adversary has to make sure that the NTRU equation is still satisfied.
A “broken” key is easy to detect (by simply checking the NTRU equation) and also signature generation
would be significantly restricted, if not completely impossible. In theory we can show that the solution to
the NTRU equation is not unique. If we have a valid secret key with fG - Fg = ¢, then for any k € C[x]/¢
the polynomials F' = F - kf and G’ = G - kg are also solutions:

fG'-F'g=f(G-kg)-(F-kf)g=fG-fkg-Fg+kfg=fG-Fg=q.

Similarly, when assuming fixed F' and G, alternative solutions for f and g can be constructed. So in
practice, whenever an adversary would want to fault any of the key components, they would need to fault
the others in a very precise way to retain the solution property. Furthermore, some implementations (like
the reference implementation in C) also enforce limitations on the size of coefficients, further limiting the
space of possible key faults. More research needs to be done to assess whether these restrictions are too
tight to be exploited into a full attack.

3.2.5 The Secret Matrix and Side-Channel Attacks on the Falcon Tree

The matrix B directly contains all four secret polynomials f, g, F' and G and is therefore highly sensitive.
The Gram matrix G is derived from G = BB*. In turn, the FALCON tree T is a recursive LDL*-
decomposition of G and it is possible to work out G from the tree T.

Fouque et al. present a method for full key recovery, given the exact values stored in the
leaves of T. They also point out that the diagonal part of the LDL*-decomposition of G directly contains
those values. However, the suggested way in which the values in the leaves of T are recovered is based
on a timing attack that is no longer applicable to the current version of FALCON. Furthermore, the
timing information only reveals approximations of the leaf values. This problem could be dealt with at
least in the original attack scenario targeting DLP [DLP14], which is another signature scheme
based on NTRU lattices. The adaptation to FALCON was deemed more complex and was left as an open
problem.

Fault attacks on G are believed to be equivalent to faulting the FALCON tree T. Since the matrix
is exclusively used to generate T, any fault would have an effect that could in theory be produced by
directly faulting T instead. Still, the possibility remains that certain (for an attacker desirable) effects
could be achieved more easily by faulting G.

The value v, computed in Line 9 of Algorithm [4] corresponds to the Gram-Schmidt norm of the
matrix B. Leveraging the underlying NTRU structure of B, 7 can be calculated as the maximum of
[bo|l and ||b,|, the lengths of the 0-th and n-th row vectors of GSO(B). Both of these norms can be
calculated from the key components f and g, without knowing the full matrix, as is done in FALCON
Keygen. Critically, these norms also occur as two of the leaf values in the FALCON tree T. Although we
think it to be very unlikely that parts of the secret key can be recovered from the knowledge of v alone,
we cannot definitively classify it as non-sensitive.

Fault attacks on 7 can either increase or decrease its value. An increase would lead to more rejections
(and subsequent recomputation) of otherwise valid keys, but would have no effect on the security of the
scheme. A decrease of v (or alternatively skipping the norm check that is associated with it) would mean
that a secret key with a Gram-Schmidt norm |B|gs > 1.17,/g could pass the check. Signatures produced
from this key would be longer on average, since their length is proportional to |B|gs. This would slow
down the generation of signatures, due to more rejections in Line 8 of Algorithm [2} Other than that the
signing process would not be effected and still function as intended, so no sensitive information would
be leaked. Furthermore, the key norm ~ is on average close to the intended bound, so the overall effect
would be rather limited.

27



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.2.6 Fault Attacks on the FALCON Tree

The tree T is used during Sign to create a spherical Gaussian distribution. Howe et al. [HPRRI9] point
out that mistakes in the implementation of the tree generation or in its use when signing can lead to a
defective distribution. It is not described in detail how to achieve such defects and whether they can leak
sensitive information. But this could be a possible attack vector for fault attacks.

Experiments show that changes to the values stored in the leaves of the FALCON tree do not hinder
the creation of valid signatures, as long as the set values do not significantly deviate from 1. In particular,
experiments show that larger values up to around 1.7 can still be used to successfully sign messages most
of the time. More interestingly, smaller values that approach zero can be used with almost no restriction.
Only the signing process takes longer the lower the value is. If an attacker is able to set the value of
all (or at least a significant number of) leaves to, say, 0.1 the effect would be a significantly decreased
standard deviation of ffSampling. This could create the possibility of parallelepiped learning attacks
a la [GMRR22]. But the practicability of such an attack is rather low, as the attacker would need to
inject a high number of faults to almost every leaf (— )

An easier way to achieve the same result is to fault o, which is used to normalize the leafs of the
FALCON tree. It subsequently controls the standard deviation of the signature coefficients via ffSampling.
The advantage of faulting o with the goal of influencing the standard deviation of ffSampling is that
only this one value needs to be changed, in comparison to each individual leaf value in the FALCON tree
(= [NarrowSamplingf").

It should be noted that the value of o exactly corresponds to the standard deviation of signature
coefficients (before rejection checks), as long as it is equal to or grater than the value prescribed in the
parameter sets (see Table . Due to technical reasons, faulting o to lower values will generally result in
a lower standard deviation, but the correspondence is not one-to-one in this case.

3.2.7 Public Key

Finally, the public key h is, as the name suggests, a public value. Its generation is the last step of Keygen
and so fault attacks cannot reveal any sensitive information at this point. For attacks on h in the context
of Verify, see Section [3.5]

3.3 Sensitivity Analysis of Sign

The results of this section are summarized in Table

3.3.1 Hashing the Challenge and Computing the Preimage

The salt r is a uniformly random bit-string of length 320 bits. It is part of the signature and therefore
public. A fault attack is possible, where r is faulted to a fixed value, removing some of the randomized
behavior of FALCON (- [BadDeterminismf*).

The message m is public under our assumptions.

Because the challenge polynomial ¢ is a deterministic hash value of (r|m), it can be calculated from
public information. Faulting ¢ to an arbitrary but fixed value would result in different signatures for the
same message hash. In theory, this could lead to a fault attack (— ). Such an attack is
easily detectable though: As c is recalculated during signature verification, the signature created with a
faulted ¢’ is not valid.

The polynomial f is the specific target in an attack, where side-channel analysis is applied to the

FEFT multiplication FFT(c)® f during the computation of the preimage t [KA21]. The same attack could
MultFF T

target FFT(c) @ F, retrieve F' and from there the full secret key (— ). An important part is
that one of the factors in the targeted multiplication must be known to the adversary (c in this case).
Since the other two secret polynomials g and G are never multiplied with any public values, they are safe
from this specific attack.

28



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

Variable Description SCA FA Public

rsalt - |BadDeterminism|A (DF) signature
component
m  message - - message
¢ challenge - (DF) deterministic
hash value
f, F secret key components MultFFTk RejectionLeakagelN(DF) -
t preimage vector HiddenSlicef", GaussShifth(DF) -
HiddenHalfspace|A

T FALCON tree (potential) |Sma11Leaves|“ (DF), -
FaultyTree (DF, CFF)

z  Gaussian sampled CDTZeroll , BEARZlP(DF/CFF), -
vector HalfGaussSi gan GaussShift{" (DF)
g, G secret key components | (potential) RejectionLeakagelN(DF) -
s signature - - signature
[ signature - - parameter
norm bound
sbytelen maximum compressed | - - parameter
signature length
s compressed signature | - - deterministic
compression

Table 3: Sensitivity Table for FALCON Sign, including its subroutine Compress.

29



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

For the preimage t no known side-channel attacks exist, but it is possible to recover f and F' from its
components due to:
_q'071t0:F7 q'ciltlzf;

and from either one of these the full secret key can be calculated. This relies on the invertibility of ¢, but
as mentioned earlier most random polynomials are invertible.

3.3.2 Trapdoor Sampling

To assess the possibility of fault attacks on t (as well as f and F, which are involved in the preimage
calculation) one has to consider the specific implementation of FALCON. On a high level the trapdoor
sampler ffSampling takes as input, among other values, a vector t and outputs a vector z that is close to
t. The parameters of the function are chosen in such a way that the difference between input and output
is small enough to guarantee that s = (t — z)B is a sufficiently short vector.

However, there is a crucial difference between the pseudocode and the reference implementation, both
in Python as well as in C. In code, the signature is calculated according to s = (¢,0) — zB, which is
mathematically equivalent to s = (t —z)B. A faulted t’ would not correspond to ¢ anymore. If the
difference to the original preimage t is significant, the resulting signature will very likely be longer than
the norm check allows and the attacker does not get any information because the signature would be
recomputed.

The possibility remains that faulting only a part of t might be enough to keep the signature short and
gain secret information from it. Experiments show that certain coefficients (of the FFT representation)
of t are more sensitive to faults in the sense that they more likely cause a denial of service than other
coefficients. Another possibility would be to fault all coefficients at once, but only by a very small amount.
Both of these approaches could be pursued in different directions and still need to be researched further.

One promising attack vector of the above kind are faults to t that add a known fault vector §, i.e.
t’ =t + 4. This causes the distribution of signatures to be shifted away from the origin by an error term
0B. Under the assumption that an adversary can finely tune § to suitable values, this reveals the full

secret key. Applying the same logic to z we get a similar attack (- |GaussShift|" ).

Another fault attack on z has already been successfully performed [MIS™19]. If the call to flSampling
is skipped at a specific point of the recursion or alternatively certain coefficients of z are set to 0,
then the adversary can recover F' using lattice reduction (— ) Furthermore, side-channel
attacks that recover the full secret key from partial knowledge of z have been performed (- P,
- ) These attacks essentially rely on the filtering of signatures that lie in certain regions
of space determined by parts of z. Due to zB = (¢,0) — s, the filtered signatures then reveal information
about the secret matrix B.

Similarly, although not tested in practice yet, knowledge of certain parts of t could also lead to full
key recovery via the relation tB = (c,0) (- [HiddenSlice*, - [HiddenHalfspacef*).

Faulting the secret key components g and G in the multiplication zB can result in a signature that
does not pass the norm check. If by chance, s is short enough, another problem arises, due to the
post-processing steps. When we write down the matrix multiplication explicitly we have:

(¢,0)—2zB = (¢c— 209 — 21G, 20f + 21 F) = (81, 82),

meaning that ¢ and G can only influence s;. But this signature component is discarded and omitted, and
only sy is part of the final output. So, faulting g and G either results in a DOS (the norm check never
passes) or in an unaltered output as if no fault was injected in the first place.

There is, however, one crucial step where altering a coefficient of the secret key polynomials could
reveal information. Experiments show that the probability of a successful norm check varies with the
size of the faulted coefficient. Say, for example, that an adversary can fault one coefficient of either f,
g, F or G to zero. If the original value was low to begin with, the fault does not make a big difference

30



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

and the resulting signature will most likely pass the norm check. If, on the other hand, the value of the
coefficient was larger, the change to zero has a bigger impact and the probability of a short signature is
lower. This means that at least some information is leaked that could theoretically be used for an attack
(= [RejectionLeakagef¥). Whether this is enough to break the scheme is unknown at the moment.

3.3.3 Signature Post-Processing

We refer to s as the signature, although only a compressed version of its second component sy will be part
of the output. The other component s; can be calculated from ss and additional public values, which is
done during verification. Any fault attack on s would only invalidate the signature and not reveal secret
information.

The signature norm bound £ is a public parameter that restricts the Euclidean length of s in order to
make it harder to forge signatures. Since s is the output of a mathematically secure trapdoor sampler,
it does not leak sensitive information, no matter its length. A fault that increases the value of 8 or
alternatively skips the norm check could create signatures that are valid, except for their length. But
since the norm check is also performed in the verification step, this does not pose a problem. Also, most
signatures already lie below this bound, so the probability of a longer than expected signature is quite
low. In the FALCON specifications [FHK*20), the following formula gives an upper bound on the rejection
probability:

B[[(s1.80) | > 8] < i - en 7).

The expression on the right evaluates to around 4.5-107° and 2.4-107Y for FALCON-512 and FALCON-1024
respectivelyﬂ

The public parameter sbytelen controls the bit-size of the compressed signature. Since the verifier and
the signer need to agree to the same value, a fault attack is not sensible.

The compressed signature s is the output of the deterministic (and invertible) function Compress.
Faulting it will only invalidate the signature.

3.4 Sensitivity Analysis of Gaussian Sampling

The results of this section are summarized in Tables [] and

3.4.1 SamplerZ

The function ffSampling takes the preimage t = (Zo,¢1) in FFT representation as input and recursively
splits it until elements of Q/(x! + 1) = Q are reached, i.e. single-coefficient constant polynomials. Note
that for polynomials of this kind, the FFT representation is equivalent to the coefficient representation.
So the values of p in the first two calls to SamplerZ are the unaltered last (i.e. highest-index) coefficients
of t;. After that however, the values of y are slightly shifted due to the computation ¢ = to+ (t1 —21) © £
between the first and second recursive call to ffSampling. Without additional knowledge it seems unlikely
to recover t from all the values of p alone. But they do describe a vector that is at least close to t and
therefore also close to z. Maybe this opens up the possibility for a viable attack.

Remember that the PDF p of a discrete Gaussian distribution with mean p € R and p’ with shifted
mean p+ k with k € Z satisty p’(z) = p(x — k). SamplerZ samples from D, , with r being the fractional
part of the target mean p and then simply adds |p| to the result. Faulting r to zero is equivalent to
faulting p to | ], meaning that the sampled values are slightly lower than expected. A negligible effect
on the resulting signatures is that their norm is very slightly increased. More importantly, if we take the
mean §; of the i-th coefficient of s and collect them into a vector of two polynomials we can observe a
systematic deviation from the expected (0,0). At the moment it is not clear what information can be
learned from this mean signature vector.

Similarly to how the values of i are probably not enough to learn any valuable information, we deem
it even more unlikely that an attacker can gain knowledge of secret values from r alone.

' The parameter 74 = 1.1 is fixed for all security levels.

31



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Variable Description ‘ SCA FA Public

input mean for SamplerZ | (potential) >t -
r  non-integer part of u (potential) (potential) -

o' input standard deviation | - T (leaf values) SmallLeaves* (DF) -
for SamplerZ

Omin lower bound for o’ - - ccs parameter

ccs  auxiliary variable to make | — o’ StdFault, -

SamplerZ time indepen-

dent of o’
u  random seed for - 20 -
BaseSampler
% BaseSampler output CDTZero, [CDT-SPAP'  [CDTZerof! (DF) -
b sign of zy HalfGaussSigEI‘ HalfGaussSigEP(DF) -
z  zg with applied sign b - 20,b - 20,b -
Omax upper bound for ¢’ - - parameter

r exponent difference be- | - zg,r StdFault, -

tween sampled Gaussian
and target Gaussian

Table 4: Sensitivity Table for SamplerZ with its subroutine BaseSampler.

The standard deviations ¢’ are just the values stored in the leaves of the FALCON tree. Faulting these
values in order to decrease them is equivalent to the Smalll.eaves attack in Keygen, with the exception
that the faults would need to be injected to every signature generation instead of once at the calculation
of the FALCON tree T. So, a high number of faults is necessary to decrease the standard deviation of
ffSampling every time, making this attack rather impractical. Whether a fault to a single call of SamplerZ
(per signature) is sufficient to mount an attack needs to be researched.

Since oy is a public parameter, side-channel attacks are no concern. The auxiliary variable ccs is
calculated as opmin/0’, so it contains the same information as o', i.e. the leaf values. Increasing ccs via
fault injection has the same effect as decreasing o’. It is not known at the moment whether the value
space of ccs is large enough to influence the standard deviation of SamplerZ in a meaningful way.

3.4.2 BaseSampler

The BaseSampler is a CDT-sampler that takes a uniformly random seed u and generates a half-Gaussian
sample zg from it using a cumulative distribution table. Any side-channel or fault attack targeting u would
only reveal information or influence the value of zy. As mentioned before, CDT-samplers are vulnerable to
single trace power analysis that can reveal the exact output with very high accuracy. Concrete examples
are the attacks by Guerreau et al. [GMRR22] and Zhang et al. (= |CDTZerof , —|CDT-SPAM).
In its original form it uses the knowledge of which calls to BaseSampler result in zy = 0 to filter signatures
accordingly. A variant of the attack injects faults to deliberately produce zg = 0.

Another attack, also presented by Zhang et al. [ZLYW23], targets the uniformly random sign bit b and
recovers its value to, again, sort signatures accordi). The variable z is calculated
as either z = —2zp or z = 29 + 1, depending on whether b =0 or b =1. Note that 2 € {0, ..., 18}, therefore
knowing z directly gives us zp and b: If 2 <0 we have zp = |z|,b=0 and if 2 >0 we get zo =2—-1,b=1.

The upper bound for ¢’ is 0.y, which is defined as the standard deviation of the BaseSampler. Note
that the BaseSampler uses a hard-coded CDT, so its standard deviation is fixed. Faulting oax can
therefore only effect x.

32



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Variable Description ‘ SCA FA Public

s integer part of logarithmic — x (SamplerZ) -z (SamplerZ) -
decomposition
r  non-integer part of — x (SamplerZ) — x (SamplerZ) -
logarithmic decomposition
z integer approximation — x (SamplerZ), StdFault, -
of 26%. ces - e7® - ccs (SamplerZ)
w auxiliary variable in BerExp | - StdFault| resampled
until w =1
C  polynomial coefficients - -y list of fixed
of approximation for e” coefficients
z auxiliary variable — 1 (BerExp), >y -
in ApproxExp — ccs (SamplerZ)
y integer approximation — 1 (BerExp), StdFault| -
of 263 . ces-e™" — ccs (SamplerZ)

Table 5: Sensitivity Table for BerExp (upper four items) and ApproxExp (lower three items).

3.4.3 SamplerZ, cont.

The variable x is used in rejection sampling to get from the unfolded BaseSampler distribution to the
target discrete Gaussian distribution. It is calculated as:

C(-r)? 2B

2072 202~
and describes the ratio of the initial to the target distribution. A change to the value of x will propagate
to the standard deviation of SamplerZ. However, more research needs to be done to study the exact
influence and assess the possibility for a fault attack.

Regarding side-channel analysis, tests show that there is at least a slight correlation between the value
of  and the BaseSampler output zg, where zg = 0 generally leads to lower values for x. So by gathering
enough traces of x, it might be possible for an adversary to distinguish zero from non-zero zy, which
would lead to a similar situation as in the CDTZero attack (- [CDTZero|").

Further tests show non-uniform patterns when plotting values of = against corresponding values of
r = —|p]. Whether this relation can be exploited into a full attack is left as an open question.

3.4.4 BerExp and ApproxExp

These two functions work together to generate a Bernoulli sample, i.e., a single bit, returning 1 with
probability ccs - e™*. ApproxExp simply calculates the value 253 - ccs - e as an integer approximation,
whereas BerExp does some pre-processing and then performs the actual sampling.

The input to BerExp is decomposed into s-In2+r. Any fault to s or r that does not result in a DOS
could alternatively be performed by altering x from SamplerZ. Similarly, knowledge of the two values only
reveals information about x.

The variable z (in BerExp) contains an integer approximation of 264 - ccs - e~
information about x and ccs.

The variable w is the eventual output of BerExp. A value of 1 prompts SamplerZ to return an output.
If, on the other hand w = 0, a new Gaussian sample is generated. A side-channel attack would not make
sense, as BerExp is called until its output is 1. This also means that when w is faulted to 1 on every

* so it could reveal

33



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Variable Description ‘ SCA FA Public
r salt - - signature
component
m  message - - message
¢ challenge - ZeroChallengef™ (DF/CFF)  deterministic
hash value
s compressed - - signature
signature component
sbytelen maximum compressed - - parameter
signature length
so  decompressed - - deterministic
signature decompression
h  public key - KeyReplacementh (DF) public key
s1 secondary  signature - ShortenedSignaturerV(DF) calculated from
component public values
B signature - LargerBound[" (DF), parameter
norm bound SkipCheck" (CFF)

Table 6: Sensitivity Table for FALCON Verify.

call, no rejection sampling is taking place in SamplerZ and its output corresponds to a bimodal Gaussian
distribution with standard deviation op.x. This alters the distribution of signatures, which could reveal
secret information.

The funtion ApproxExp works entirely with integer values. But since its inputs r and ccs are floating-
point values, they have to be converted into suitable integer representations first. The auxiliary variable
z in ApproxExp (not to be confused with the value from BerExp by the same name) serves the purpose of
storing those values: first [25% 7| and later |2°% - ccs|.

Similarly, the output y of ApproxExp only depends on r (from BerExp) and ccs and can therefore only
reveal information about these two values.

3.5 Sensitivity Analysis of Verify

The results of this section are summarized in Table

When verifying a signature we only deal with public values and parameters, or values that can be
derived from them. This means that side-channel attacks do not need to be considered as there are no
sensitive values to be revealed.

Fault attacks on r, m and ¢ would cause the re-calculated s; to have a large norm with very high
probability and therefore the signature would be rejected. Faulting s or sbytelen would most likely
invalidate the encoding and also lead to rejection. A faulty so or h will lead to a larger than expected s;
and again a rejected signature.

More interesting are fault attacks that lead to accepting signatures that would otherwise be rejected.
One possibility is to attack si, 5 or the norm check itself. If the norm check is skipped or f is faulted
to a very high value, then any arbitrary message-signature pair will be accepted (— ,
- ) Similarly, if s; is faulted to zero (or at least a very short polynomial), then any
signature with sufficiently short s, will be accepted (— [ShortenedSignaturef").

Another way to force a short signature is to chose s such that the decompressed ss is exactly zero and
then to fault the hashing of ¢ to also be zero. This leads to s; = ¢—s2h = 0 and so the norm check passes

34



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

and the signature is accepted (— [ZeroChallenger™ ).

Finally, the attacker could replace the verifier’s public key h with their own A’ and then sign any mes-
sage with the corresponding secret key (- [KeyReplacementfY), but this assumes a quite strong attacker
model.

3.6 List of Attacks

In this section we briefly describe each of the attacks from the tables above and, where possible, refer to
the publications where they were first presented or improved upon.

3.6.1 CDT-SPA“

Kim and Hong [KHI8] have shown that constant-time CDT-samplers are vulnerable to SPA. When using
such a sampler, a counter is incremented according to whether a uniformly random value is below (or
above, depending on implementation details) a comparison value from a precomputed table. (See Section
for more details.) Comparisons between the uniform sample and the values from the table are usually
implemented as subtraction. Different subtraction results can have varying Hamming weights, depending
on whether they are positive or negative. This has a measurable effect on the power consumption, making
it possible to count the number of increments and to reveal the final output of the sampler.

Applying this to Keygen, where the coefficients of f and g are sampled in this fashion, the full
polynomials could be revealed. Another application is the attack CDTZero where it is already enough to
differentiate zero from non-zero outputs of the BaseSampler, see Section [3.6.7]

3.6.2 HalfKeyV

This attack requires the adversary to inject two control flow faults into the sampling of coefficients for f
and g. For the example presented here, the goal is to abort the loop after exactly half of the coefficients
were sampled. Assuming that all coefficients are initialized with zero, we get:

F=fo+ fra+ e+ fupaa™? 0+ 40,

g:gO+glx+~--+gn/2_1x"/271+O+--~+O.

Let h be the corresponding public key, defined as usual via f g = h mod ¢. This relation can be rewritten
using the vector and matrix operators Vec and Mat discussed in Section For clarity we introduce

the notation:

Mar(h) <1 = | 0] Vel = (7,00, V(o) = (60

where the H;;’s are blocks of size n/2 xn/2, f" and ¢’ are the coefficient vectors of the non-zero parts of
f and g and 0 is the zero-vector of appropriate dimension. The relation fh = g mod ¢ (that follows from
the definition of h) can now be rewritten as a vector-matrix product:

/ Hy Ho1 |_,
(fa0)|: HlO Hll :|_(ga0) mOdQ-

Block-wise multiplication gives us two linear systems of equations:
fl*Hop=¢g modgq, f'-Hop=0 modq.

The second equation only contains f’ as unknown and can be solved using standard methods from linear
algebra. Since it is a homogeneous system and f’ is non-zero we expect a linear subspace of solutions.
The highly unlikely case that all of the sampled coefficients of f’ are also zero cannot happen, because
then f would not be invertible, which is a requirement.

Although we now have a number of possible solutions, we do know that the coefficients we are looking
for come from a Gaussian distribution centered around zero and they should therefore be small compared

35



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Number of 0-Coefficients in g

30 0 20 40 60 [ 25 50 75 100

5 10 10 20 125
Number of 0-Coefficients in f Number of 0-Coefficients in f Number of 0-Coefficients in f Number of 0-Coefficients in f

Figure 3: Probability of generating a full, valid secret key from polynomials f and
g, where leading coefficients have been faulted to zero. A darker color indicates a
lower probability. We expect that for higher security level x > 7, the region with
non-zero probability (in the top-left of the figures) will become even more restricted.

to g = 12289. Any reasonable solution for f’ can then be substituted into the other system of equations.
Solving for g’ we may also get multiple solutions. Finding the correct one is again only a matter of
choosing the solution with the smallest coefficients.

What this simple example does not take into account is the effect that zeroing coefficients has on the
Gram-Schmidt norm of the secret key. While f and g naturally get smaller, tests show that F and G,
on the other hand, have larger coefficients. In effect, this increases the overall Gram-Schmidt norm of
the key. So a higher number of zeros in f and g generally decreases the probability that the norm stays
below the bound that is required by the FALCON specifications (see Figure . In such a case, Keygen
would simply start over and generate completely new polynomials, rendering the injected faults useless.

This negatively effects the attack, since injecting fewer zeros (to try to keep the rejection probability
low) will lead to a system of equations that is harder to solve due to the higher number of unknown
variables. Nonetheless it might still be possible to deduce the secret key from the reduced value space.
One might compare this situation to a similar one proposed for LWE—problemﬂ where it is possible to
incorporate so-called hints, e.g., known coefficients, into the solution process. A detailed analysis of the
possibilities for this attack and of the connection to LWE with hints will be left as an open question.

3.6.3 SmallLeaves”, NarrowSampling”

According to the FALCON specifications [FHK*20], if the standard deviation of the trapdoor sampler
ffSampling is too low, it cannot be guaranteed that the sampler does not leak the secret basis. To see
this, consider an alternative signature scheme where ffSampling were replaced by a simpler calculation,
inspired by the round-off algorithm due to Babai [Bab86]:

z = ffSampling(t,T) ~ z=|t]= [(C,O)B’l].
The signatures derived from this have the form:
s=(t-z)B=(t-[t])B,

where the expression in the parenthesis evaluates to a vector with coefficients in [-1/2,1/2] and so
the signature lies in the parallelepiped %77(B)7 meaning that the distribution of sampled points is not
independent of the secret B.

2IWE (Learning With Errors) is a hard lattice problem that some PQC schemes (e.g., CRYSTALS-Dilithium) base their
security on. We will not discuss the details here, the interested reader is referred to the extensive literature on the topic.
For LWE with hints in particular, see [DSDGR20)

36



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Notably, the signature schemes GGH and NTRUSign use versions of this round-off method and they
were subsequently shown to be insecure by Nguyen and Regev [NROG|, where the full key was recovered
for several parameter sets.

To prevent this, FALCON uses the trapdoor sampler ffSampling that (among other improvements)
applies a spherical Gaussian distribution to the sampled signatures. This approach effectively hides the
parallelepiped as long as the standard deviation is high enough. If an injected fault now causes the
standard deviation to significantly decrease (either by setting the leaves in the FALCON tree to a low
value, or by directly faulting o), the Gaussian distribution loses its hiding property and the scheme
becomes vulnerable again.

3.6.4 BadDeterminism”, ConstantHash*

These are adaptations of an attack that was proposed for deterministic FALCON by Bauer et al. [BS23].
Deterministic FALCON removes the two sources of randomness in FALCON: the random salt r generated
before each signing and the non-deterministic parts of ffSampling. In the original attack by Bauer et al.,
randomness is reintroduced into ffSampling via faults and a fault attack is mounted.

In our context, the goal is to start with standard (non-deterministic) FALCON, remove the randomness
from the salt r, but leave ffSampling as is. This leads to different signatures s and s’ for the same hashed
message. With (¢,0) —s = zB and similarly (¢,0) — s’ = z’B, after some calculations we get:

s'-s=(z-72")B.

Now z -z’ is an integer vector and therefore s—s’ is a point in the lattice generated by the secret basis B.
With enough of these points it is possible to recover the secret basis using lattice reduction. Bauer et al.
also show a way to greatly reduce the complexity of the post-processing, but unfortunately this method
is not applicable to standard FALCON.

Note that faulting ¢ directly instead of r has to be done via data fault and can probably not be
achieved with a control flow fault. Even though it is theoretically possible to abort the hashing after the
first iteration, the attack described above only works if the challenges are exactly equal. The probability
for this to happen by chance (after successful loop abortion) are quite low with 1/¢ ~ 0.008%.

Another advantage of targeting r instead of ¢ is the following: Since r is part of the signature output
(s,r), the resulting challenge can be recalculated during signature verification without a problem. On the
other hand, a faulted ¢ cannot be reliably reproduced from public values and would very likely lead to a
rejected signature, making it quite easy to detect an attack.

3.6.5 MultFFT?

Karabulut and Aysu [KA21] present this attack on the multiplication in the FFT domain. The specific
target is FFT(c) ® f, where ¢ is a known polynomial (the message hash) and f is part of the secret key.
The multiplication in the FFT domain is performed on individual floating-point coefficients of FFT(c)
and f and consists of multiplication of the mantissas, addition of the exponents and handling of the signs.
All three of these components are targeted separately. The attack on the exponent and on the sign are
relatively straightforward, while the mantissa needs a more refined approach.

When the two mantissas are multiplied, they are first split into 27 high- and 25 low-order bits, A+ B
and C'+ D, corresponding to a single FF'T coefficient of ¢ and f respectively. The implemented multiplica-
tion follows the distributive law: (A+ B)(C+D) = AC+AD+ BD + BD. The immediate targets are now
the multiplications BD and AC. During this phase (the extend phase), false positives can occur when
guessing the value of C' and D from measurements. In the next phase (the prune phase), the additions
of the four parts are taken into account and false positives can be corrected.

Guerreau et al. further improved this attack [GMRR22]. First they take into account that the
recovered values represent floating-point coefficients of f. So, when applying the inverse transform,

37



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

f= FFT_l( f ), a slight error in the recovered values will result in non-integer polynomial coefficients of f.
As long as the error is not too high, simply rounding will still give the correct integer coefficients. This
reduces the necessary precision to less than 10 bits per FFT coefficient.

Two more improvements concern a redundancy in multiplication of complex numbers and noise mit-
igation by grouping measurements for similar values. In summary, the necessary number of traces could
be lowered with this improved attack approach.

3.6.6 RejectionLeakage’

In a very general sense the idea behind FALCON (as well as other signature algorithms) is to find a short
vector that satisfies certain conditions. The signer relies on information stored in the secret key to enable
the efficient search or generation of such short vectors. Faulting the secret key components f, g, F', and
G before or during signing therefore usually results in the inability to generate signatures. Sometimes a
small fault (for example setting a single coefficient to zero) only lowers the probability for finding a short
vector but does not make it entirely impossible.

In the case of FALCON, faults to a single coefficient of f, g, F' or G result in longer runtimes, because
more signatures have to be created until a sufficiently short one is found. The idea now is to measure
this timing information (or alternatively to count the number of rejections) and work out the faulted
coefficient from it. Initial tests show that when setting a coefficient to zero, there is indeed a correlation
between the absolute value of the original coefficient and the probability that a generated signature is
shorter than the prescribed threshold. Whether this timing information is enough to recover secret key
coefficients needs to be studied further.

3.6.7 CDTZero™4

This attack was originally discussed by Guerreau et al. [GMRR22] and further developed by Zhang et
al. [ZLYW?23]. Tt is a side-channel attack targeting the BaseSampler output zp. Using single-trace side-
channel analysis of the CDT-sampler an attacker can gain knowledge of zg with almost perfect accuracy.
When zg = 0, we know that SamplerZ will output either 0 or 1 for the corresponding coefficient of z.
Usually the value space would be much broader, with zy € [-18,19]. This then results in a limited range
for the signature s in the direction of the dimension where this output was produced.

The attacker can collect a number of signatures and group them according to which coefficient was
produced from a O-output of the BaseSampler. Geometrically speaking, the signatures in those groups are
restricted to slices of the usual spherical Gaussian distribution. Each slice is roughly orthogonal to one of
the row-vectors in B, the Gram-Schmidt orthogonalized secret basis. It is now possible to approximate
those vectors by solving a variant of the so-called Hidden Parallelepiped Problem. (We will define, solve
and use the original form of this problem ourselves in Section [4.2.1])

If the recovered vector is an approximation of Bo, it directly corresponds to the secret polynomials
(g,—f). Approximations of other rows, however, can also be used in further post-processing steps.

As an alternative, this attack could be realized as a fault attack, where an adversary would fault
the values 2y to zero and apply the same post-processing. Furthermore, Zhang et al. pointed out that a
combined attack with HalfGaussSign is possible, as described in the next section.

3.6.8 HalfGaussSign’4

This attack was first described by Zhang et al. [ZLYW23]. The idea is similar to that of CDTZero:
sorting signatures according to certain intermediate values in SamplerZ. The point of interest here is the
sign bit b, that gets applied to the output zg of the BaseSampler via:

z=b+(2b—1)~z0={ 0 Z

38



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Side-channel analysis can reveal whether b is zero or one. With this information, signatures can be sorted
into two disjoint half-spaces H* = {s: (s,bg) > 0} and H™ = {s : (s, bg) < 0}, where by is the first row
of the FALCON secret matrix B. Multiplying all signatures from one of these half-spaces with -1 moves
them to the other half-space. So, without loss of generality, all signatures now lie in H*.

The recovery of by is done in two steps. First, a rough approximation v of the direction of bg is found
via statistical methods. Now we filter signatures from the half-space H* by intersecting it with the slice
{s:|(s,v)| < a} for some threshold a > 0. A similar method to the HPP can be applied to learn by from
this collection of signatures.

Zhang et al. [ZLYW23] also present a combined approach of HalfGaussSign with the CDTZero attack.
Essentially, the side-channel information from the sign bit b and from the BaseSampler output zy can be
used to filter signatures from an even more restricted area of space. This increases the success probability
of the attack and lowers the number of necessary traces.

3.6.9 HiddenSlice”, HiddenHalfspace”
These attacks apply the post-processing of CDTZero [GMRR22], [ZLYW23] and HalfGaussSign [ZLYW23]

to partial knowledge of the preimage vector t instead of z. Whether the necessary information can be
obtained through side-channel analysis in practice is not known at the moment. Also, the application of
these methods to this new use case solely relies on the observation that the equations:

zB =(c,0)-s and tB=(c0),

contain public and secret values in the same configurations. The success of the attack might also depend
on the distributions of the variables involved and is uncertain for now.

3.6.10 GaussShift"

For this attack we assume that an adversary can control a fault vector § that gets added to z or t
respectively. In the first case, consider a faulted z’ = z + 8. A signature is derived in the usual way,
s’ = (t —z")B. After some rearranging we see that s’ is comprised of the unfaulted signature s and an
error term:

s'=(t-2z)B=(t-z-6)B=s-6B.

The usual approach would be to mount a differential fault attack, where the unfaulted signature s could
be used to calculate the error term as 6B = s —s’. However, the randomized setup of FALCON prevents
us from gaining knowledge of s. We can work around this problem by considering the distributions of
the values involved.

From the specifications we know that FALCON signatures are distributed according to a discrete Gaus-
sian distribution Dy (B)+(c,0),0,0 centered around the origin. If an attacker can repeatedly inject the same
fault vector, then the constant error term dB shifts the center of the distribution to D (B)+(c,0),,-5B
Now, from enough faulted signatures the center of the distribution can be calculated with relatively high
accuracy.

The question remains how to choose a suitable § = (dg,d1) in order to extract useful information. For
this we consider the vector-matrix product explicitly and in FFT representation:

Now an attacker can choose, for example, 6y = (1,...,1) and §; = (0,...,0) to directly reveal 6B = (g, ~f)

(see Figure. If we assume a less powerful attacker model that can only inject a single fault at a time, the
secret key can still be recovered, albeit one FFT coefficient after the other. A choice of §g = (1,0,...,0)

13 This is a distribution with the same support as before, but shifted center. It is not to be confused with D (B)+(c,0)-6B,0>
where the support is shifted, but not the center, which would still be 0.

39



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

® Signatures
X Distribution Center

400 A

200 A

—200 - i

—400 - °

-800 —600 —400 —200 0 200 400 600

Figure 4: Example of the GaussShift attack with x = 1, projected down from
four to two dimensions. We generated 2500 signatures with the fault vector
d =((1,1),(0,0)) added to z. The resulting distribution of signatures has an em-
pirical center of (-83.0376,73.6172,15.7484,-11.6612), which closely matches the
coefficients of the corresponding key components g = 83 — 72z and f = 22 - 11z, in
accordance with the theoretical calculations.

and 6y = (0,...,0) would reveal the first FFT coefficient of g, for example.

A variant of this attack injects the same fault, but on t instead of z. When calling ffSampling with
t’ = t+9 as input, the fault propagates to z’ and finally s” = (¢,0)-z'B. Here it is important to once again
note the actual signature calculation does not include t’, but the (in this context unfaulted) challenge c.
We have:
(c,0)B'=t=t'-6 = (c0)=t'B-6B.

And from this we get:
s'=(c,0)-z2B=t'B-dB-z'B=(t'-z")B-6B.

Recall that t" and z’ are an input-output pair of ffSampling, so the term (t'—z")B follows the distribution
DAB)+(c,0),0,0- We conclude that the signatures are distributed according to s’ ~ DB)+(c,0),0,-6B>
resulting in exactly the same situation as when faulting z.

3.6.11 BEARZ”

McCarthy et al. originally described this attack. The main idea for this attack is to force the
complete first and parts of the second polynomial in z = (2, z1) to be zero. If this is the case, the resulting
signature component s, generates a sub-lattice of the lattice generated by F'. From a few hundred faulty
signatures, F' can be recovered using lattice reduction, and from this an adversary can calculate the full
secret key.

In order to achieve the goal of zero-coefficients in z, different methods are proposed. First, the attacker
can abort the sampling of z in the top-level recursion after z; is sampled. This leaves zy unsampled,
i.e., all its coefficients are zero (assuming that it is initialized with zero-coefficients). Alternatively, it is
possible to overwrite the required coefficients with zero manually via a data fault attack. Another option
is to abort mid-recursion. However, then it is required to work out which coefficients are merged in the
recursion, so that the right ones in z are set to zero in the end.

Depending on the fault strategy, the number of forced zero-coefficients varies. The higher this number
the easier and faster the post-processing becomes. Additionally, the number of traces needed for a

40



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

successful attack goes down when more coefficients are set to zero. For a typical attack less than a few
hundred traces are needed to fully recover the secret key.

It has to be noted that this attack most likely requires an additional fault to skip the norm check
[(s1,82)|? < |B?] in Sign. Since the attacker changes z, its distance to the preimage t is generally
increased, making the resulting signature longer. Tests have shown that even a single faulted coefficient
of z can cause the signature to be above the required norm and therefore trigger recomputation. This
makes the attack less practical, as there are now at least two faults that need to be injected per signature.

3.6.12 StdFault

This is not an actual attack, but rather a reminder that the standard deviation of the Gaussian distribution
used in ffSampling is generally quite vulnerable. Since a wide range of variables is necessary to produce
the exact distribution, faults to any of them may influence the sampler output. Whether such an influence
can be leveraged in an attack is sometimes difficult to assess and strongly depends on the circumstances.
It is known that lowering the standard deviation below a certain point opens the possibility of attacks
like SmallL.eaves and NarrowSampling. However, it will be left as an open question if and how an attack
on the variables with the StdFault designation can be mounted.

3.6.13 Verification Attacks

The attacks that target Verify are all rather simple in concept, but we still include them for completeness.
ZeroChallenge, ShortenedSignature”™. The goal is to make s; as short as possible in order to
pass the norm check.

An adversary could choose s such that the decompressed sy is zero. To fault ¢ to zero, either a data
fault directly to ¢ or a control flow fault during the call to HashToPoint could be injected. When s;
is calculated with these faulted values it will result in zero as well, so the norm check passes and the
signature is accepted.

An alternative approach is to directly fault s; to zero or any other sufficiently short polynomial.

LargerBound”, SkipCheck”. Instead of forcing a short signature, one could raise the bound § or
skip the norm check entirely.

KeyReplacement”. An attacker generates their own key pair (sk’, h’) and signs an arbitrary message
with sk’. If they are then able to fault the verifier’s public key h to R/, the signature will be accepted.

41



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4 Attack Analysis of NarrowSampling

From the new vulnerabilities that we found in the previous Section [3] we choose the NarrowSampling
fault attack for a detailed analysis. Our choice is motivated by the belief that NarrowSampling is not
only one of the more promising attacks but also because the theory behind the different attack phases is
rather interesting and well worth presenting.

We structure the analysis into several subsections. First we locate the point of interest for the fault
injection, simulate a fault and verify experimentally that some information will be leaked by the faulted
signatures. Next, we explain the experimental results and find what information specifically we get from
the fault. Then we get to the post-processing, which is split into two distinct phases: approximate key
recovery, followed by a rounding step and finally full key recovery.

Whenever we perform experiments or simulations, we rely on the FALCON reference implementations
that are provided on the official Websitﬂ For quick tests and proofs-of-concept we use the Python
implementatiorﬂ as it is generally easier to work with and get quick initial results. On the other
hand, the C implementatiorm is much faster, which is an advantage when generating a large number of
signatures, and we believe that it is closer to what real-world applications of FALCON will be like, which
is why we use it for more involved tests.

4.1 Uncovering a Vulnerability

As stated before in Section [2.3.3] in contrast to other signature schemes such as GGH and NTRUSign,
regular FALCON signatures do not reveal secret information, thanks to a discrete Gaussian distribution
used in the trapdoor sampler ffSampling and its subroutine SamplerZ. The value range for the standard
deviation is finely tuned to be neither too low nor too high. If the standard deviation were to fall below a
certain bound (o, in the specifications, see Table , the distribution loses its hiding property and sig-
natures could potentially reveal secret information. And that is precisely the goal of the NarrowSampling
attack.

4.1.1 Point of Interest

Regular FALCON signatures are distributed according to Dj(B)+(c,0),s,» Where B is the secret basis, ¢ is
the hashed message and o is the standard deviation. The parameter o is never directly used in Sign, but
the FALCON tree T is normalized during Keygen by applying:

leaf.value < o/V/leaf.value,

on each leaf of the initial tree, see Lines 6 and 7 in Algorithm [I] This is a significant advantage for
an adversary, as they only need to inject a fault once during Keygen, altering the value of 0. As a
consequence, all leaf values of the tree will be effected and signatures sampled with the faulted tree will
exhibit the faulted distribution.

4.1.2 Simulating Fault Injection

In the Python reference code, fault injection is straightforward. The parameter ¢ can directly be set to
any arbitrary value and a key pair (including the tree T) can be generated.

As an initial test we want to compare the distributions of signatures for different values of o visually.
We set the security level to x = 1 in order to be able to reasonably plot the results. Then we generate
a regular key (]§, T) with the original ¢ ~ 144.8. From this we then generate faulted keys that have the
same matrix B, but where the trees are normalized with faulted o’ € {0.70,0.40,0.10}. Each of these

Mhttps://falcon-sign.info/
https://github.com/tprest/falcon.py
6https://falcon-sign.info/Falcon-impl-20211101.zip

42


https://falcon-sign.info/
https://github.com/tprest/falcon.py
https://falcon-sign.info/Falcon-impl-20211101.zip

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

Unfaulted

200 4

1001

+* |-100-

—200

—200 -100 [ 100 200 —-100 =50 0 50 100

Figure 5: Signatures generated from a regular FALCON key (left), together with
faulted signatures with o’ = 0.7¢ (middle left), o’ = 0.40 (middle right) and ¢’ =
0.10 (right). The corresponding key components are f = —46 + 53z, g = =52 — 45z,
F =33-63z, and G = -53 - 100z. Superimposed are the edges of the parallelepiped
(projected down from four to two dimensions) that the signatures approximate, see
Section The leftmost figure also illustrates that the signature distribution is
independent of the secret key coefficients in the unfaulted case.

keys is then used to sign a number of arbitrary messages. We make sure to skip the signature compression
(Algorithm 2| Line 10), since we want to plot the polynomial form of signatures.

In Figure p| the unfaulted signatures depict the expected spherical Gaussian distribution. The distri-
bution of faulted signatures start to approximate a parallelepiped (projected down to two dimensions for
plotting). For the lowest tested value of 0.1 ¢, the parallelepiped is already clearly visible.

Repeating the experiment with the C implementation we observe the same general results. However,
it is not as straightforward to reproduce the fault.

The C code provides a few options on how to handle floating point values and operations. Mainly,
there a two modes to chose from: FPNative and FPEmu. FPNative uses the native C data type double for
floating point arithmetic. On the other hand, FPEmu encodes floating point values into the C data type
uint64_t and performs calculations based on the integer types uint64_t and uint32_t. Independently
of the mode, FALCON reads the value of o from a hard-coded tableEl So in theory, it should not make
a difference whether emulated or actual floating point arithmetic is used, as we can inject a fault by
changing the value in either table. In practice, however, it turns out that the FPEmu mode is quite
susceptible to changes of parameters. This is because many of the custom subroutines written to handle
the encoded floating point values suffer from overflows and similar issues when called with inputs outside
of the intended value ranges.

An example of this is the function fpr_trunc used to round floating point values to integers. It is
called as a subroutine of BerExp, which in turn controls the rejection loop in SamplerZ. If ¢ is faulted to a
value below oy, then ces = 22 > 1. A specific line then calls fpr_trunc (fpr mul(ccs, fpr ptwo63)),
which roughly corresponds to the calculation |ccs-2%3|. The problem is that fpr_trunc only takes inputs
from the range [-253 + 1,253 — 1]. Since ccs is faulted to be greater than 1, the argument lies outside
the intended range. In the end, this leads to a situation where the rejection sampling step of SamplerZ
virtually always rejects and never produces an output.

This means that the FPEmu mode of FALCON already provides some protection against NarrowSam-
pling, in the sense that it denies service if an adversary attempts this attack. No sensitive information is
leaked, since no signatures are produced. Initial tests showed that the FPNative mode can still produce
signatures, even for very low values of o (with scaling factors as low as 0.1). This led us to using FPNative
to generate faulted signatures for all further simulations of NarrowSampling.

"Depending on the implementation, the table might contain 1/o to reduce the number of divisions, as is the case for the
C reference code. An attacker would need to take this into account when injecting a fault.

43



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.1.3 Consequences of Fault Injection

After successfully simulating a fault and showing that it has an effect on the distribution of signatures,
we still need to show that the altered distribution actually contains sensitive information which can be
exploited in an attack. The key to this lies in the shape that the faulted signatures approximate, which
is a parallelepiped spanned by a matrix closely related to the FALCON secret key B.

Consider FALCON’s trapdoor sampler ffSampling, which was first introduced by Ducas and Prest [DP15]
in a non-randomized variant. They show that when given a basis B and a target t, the sampler returns
a vector z close to t, such that:

V((z-t)B) e 3 -P(GSO(M(B))). (3)

Here, the operators V and M are permutations on coefficient vectors and matrices, which we will define
in the following.

Let p € Z[z]/¢ be an integer polynomial. From Section we already know that we can identify
p with its coefficient vector. In the same section we also introduced the split operator, that splits p into
polynomials pg and p; of half the degree, going down one step in the tower of rings. Repeated splitting
results in a permuted coefficient vector, as seen in the example in Figure 2l We define V(p) as the “fully
permuted” coefficient vector i.e., the end result of splitting when we reach the bottom of the tower. When
applying V to a vector of polynomials, as in Equation we just apply it to each entry separately (which,
importantly, is not the same as applying it to the combined coefficient vector).

The operator M can be derived from V:

V(a)
M) =| Y
V(z" 1a)

or in other words, we apply V to each row of Mat(a). Just like with V, when M is used on a matrix with
polynomials as entries, it is applied to each polynomial separately.

In the context of FALCON and the NarrowSampling attack, the conclusion is the following: By lowering
the value of ¢ through fault injection, the discrete Gaussian distribution that is used in ffSampling loses
its hiding property and the sampler starts to resemble its non-randomized version. Thus the signatures
approximate a parallelepiped as in Equation [3| and the matrix that spans it is derived from the secret
key matrix B. Crucially, the first row of M(B) directly contains (V(g),V(-f)):

Vi) VD)
) <[ M@ MEH ]| Vel V)

M(G) M(-F) |[T] V() V(-F)

V(@™'G) V(—a"'F)

Furthermore, the Gram-Schmidt orthogonalization preserves the first row vector, so (V(g),V(-f)) is
still the first row of GSO(M(B)). Therefore it seems plausible that an adversary can learn sensitive
information from analyzing the distribution of faulted signatures.

4.2 Approximate Key Recovery via the Hidden Parallelepiped Problem

After we established that faulted signatures leak sensitive information, we need to find a way to process
them. The situation is not unlike some other attacks from prior works, described in Section such
as [CDTZero| and [HalfGaussSignl In both those attacks, the adversary collects signatures and wants to
extract some geometric information from them. CDTZero in particular uses methods that were originally
presented by Nguyen and Regev [NRO6], which can be directly applied to the NarrowSampling attack.

44



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

4.2.1 The Hidden Parallelepiped Problem

Nguyen and Regev [NROG] introduced the so-called Hidden Parallelepiped Problem (HPP) and present
a solution method. The problem can be summarized as follows: Let V € GL4(R) be a full-rank, d x d-
matrix, with row vectors vy,...,v4 and let P(V) be the parallelepiped spanned by V. Now, given
samples z1,...,zy drawn uniformly from P(V), find an approximation of the rows +v;.

A solution to this problem can be obtained from the following steps. For a detailed explanation of
the process, including proofs and justifications of all statements, we refer to [NROG].

1. Compute an approximation of G = V'V,
It can be shown that E[z"z] = %VTV. This means that we can simply take the average of z]z; over
all samples and multiply by 3 to get an approximation of G.

2. Compute the Cholesky factorization of G = LL", where L is a lower triangular matrix.
Both the inverse of G and its Cholesky factorization can be found using standard linear algebra.

3. Multiply the samples with the Cholesky factor, yielding z;L.
This transforms the parallelepiped into a d-dimensional hypercube with sidelength 2 centered around
the origin. The matrix C = VL is then an orthogonal matrix in O4(R) and it spans this hypercube
P(C).

4. Compute approximations of rows ¢; of +C via gradient descent.
For this we define the k-th moment for an arbitrary, regular matrix M € GL4(R) at a point w € R?
as:
mompg,; (W) = E[(u, w)k] eR,

where u is a random vector uniformly distributed over P(M). The fourth moment of an orthogonal
matrix (like C) has a special property: Restricted to the unit sphere the global minimum of momc 4
has a value of 0.2, it is obtained at +c; and there are no other minima. Applying a standard gradient
descent method to this function will therefore give us an approximation of one row +c;. Repeated
descents with random starting points can result in the recovery of different rows.

5. Multiply the recovered rows with the inverse Cholesky factor: +v; = ¢;L 1.
This transforms the hypercube back into the original parallelepiped and the rows c¢; into +v;.

Instead of implementing an HPP solver from scratch, we rely in part on code provided by Guerreau

et al. [GMRR22] from their git repositorylﬂ The attack from that paper (- |[CDTZero) actually uses a

variant of the HPP, but its implementation contains functions and methods that can be used in other,
more general contexts. We take advantage of this by adapting their code to our needs.

4.2.2 The Gradient Descent in Detail

Before we investigate the output of the HPP solver, we take a closer look at the gradient descent phase
that looks for minima of the target function momc 4. It performs the following steps:

1. Choose a random starting point w on the unit sphere.
2. Evaluate momc 4(w).
3. Calculate the gradient Vmomc 4 at the point w.

4. From w take a step in the opposite direction of the gradient. The size of the step is determined by
the length of the gradient times some scaling factor. Normalize the result to get a point that lies
on the unit sphere again. Update w with this new point.

8https://github.com/mguerrea/FalconPowerAnalysis

45


https://github.com/mguerrea/FalconPowerAnalysis

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

0.32

030 \\\

o
N
©

Value of momc, 4
o
N
o
H

o
N
i

0.22 1

0 160 260 360 460 560

Number of Descent Steps
Figure 6: The progress of nine gradient descents with different random starting
points in the HPP solver. The z-axis shows the number of descent steps, the y-
axis shows the value of the target function momec 4, which we want to minimize.
The parameters for this specific test were x = 7, ¢’ = 0.150 and we used 100000
signatures.

5. Evaluate mome 4(w) with the updated point. If the target function has a lower value than before,
continue with step 3. If, on the other hand, the target function has a higher value, stop the descent
and return the previous point.

In order to abort descents that make little to no progress, we also return the current point if a specified
maximum number of descent steps have passed. Also note that the target function and its gradient can
only be approximated from the given samples (i.e., the faulted signatures) and not evaluated directly,
since we have to assume that the matrix C defining the function momc 4 is unknown to the adversary.

In Figure [ we depict several example descents for security level x = 7 and 100.000 signatures. We
see that, after some initial progress in the first few steps, the descents slow down. Only after a while,
some descents seem to find a minimum which they then quickly converge towards. After 500 steps, all
remaining descents are aborted.

Further tests revealed a significant influence of the number of signatures on the average number of
steps until a minimum is found. The relationship seems to be exponential, meaning that from k to x+ 1
around four times as many signatures are needed to keep the average number of descent steps constant.
This is an important factor when considering the total runtime of the attack (see also Section. Note
that these numbers are very rough estimates and only based on some rudimentary tests, so we cannot
say with certainty how descents behave for security levels upwards of x = 7.

Looking at the value of the target function at the returned points we can already be quite certain
that the actual minima are approximated reasonably well. From the theory we know that the minima of
momc 4 are exactly 0.2. Depending on the parameters of our tests we get quite close to this theoretical
value (compare Figure [6)). How well the HPP solver actually approximates rows of GSO(M(B)) will be
one of the central question in the next section.

4.3 Full Key Recovery from Approximations

The quality of the recovered, approximated rows is mostly controlled by one parameter, the sigma scaling
factor. It influences the values in the leaves of the FALCON tree, which in turn have an effect on the
distribution of faulted signatures. Since the tree generation and subsequent sampling are rather complex

46



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

and recursive processes, we split the analysis into two parts. First, how does the sigma scaling factor
influence the distribution of the error on a coefficient-wise level? For this we resort to empirical tests
and measurements. Second, how can we calculate the total error, given the error distribution on the
individual coefficients? Here we are able to derive exact formulas.

4.3.1 The Error of Approximation

As a first step we want to verify whether the faulted signatures actually approximate a parallelepiped
spanned by the rows of GSO(M(B)). To this end we conduct multiple experiments of the following
structure: We choose a security level k, a scaling factor for o and generate a faulty key pair. Using
the secret key we then sign a number of arbitrary messages. Next, we input the collected signatures
into the HPP solver and get some vector r = (rg,71) € (Z[x]/$)? as return, which we then permute
via V(r) = (V(r9),V(r1)). If our previous assumptions are correct, this should correspond to one row
of GSO(M(B)). Since we know the secret matrix B (which would not be the case in an actual attack
scenario), we can easily check this by comparing V(r) to every row of GSO(M(B)). Keep in mind that
the HPP solver can only find rows up to the sign, so when making the comparison we also always check
V(-r).

When using the Euclidean distance as a measure of closeness, we find that for every r we get from
the HPP solver, there is a row in GSO(M(B)) that is significantly closer to it than any other row. This
motivates the definition of the term error of approrimation:

Ea = min [V(+r) - GSO(M(B)),
0<i<2n
where GSO(M(B)); is the i-th row of the permuted, orthogonalized secret matrix B. The difference
between the recovered and the actual row, for which this minimum occurs will be denoted e and called
the error vector.

The error of approximation contains all the accumulated error up to this point in the attack, so the
lower the value, the shorter the error vector and the better the approximation. Most of the error comes
from the fact that o cannot be faulted to zero but must remain a positive value. This has the effect that
the signatures do not disclose the parallelepiped exactly and the approximation of the target function
momc 4 in the gradient descent phase is not precise. The numerical nature of the gradient descent method
itself also adds error, although only a negligible amount. Tests have shown that when two descents from
different starting points converge on the same minimum, the distance between the results is usually lower
than 107,

4.3.2 Measuring the Coeffient-Wise Error of Approximation

Although we are able to find approximations of every row of GSO(M(B)) via HPP, going forward we
are only interested in the first row of GSO(M(B)), since it contains the coefficients of the secret key
components f and g. It will be useful to know the coefficient-wise error of the approximation obtained
from the HPP. We already know that our solution method recovers one random row from GSO(M(B))
per descent but we have essentially no control which one is found. This forces us to adopt a brute-force
approach, where we run descents until the recovered row is closer to the first row of GSO(M(B)) than
any other. When that happens, we calculate the coefficient-wise differences and append them to a list
of samples. This way we get 2n samples per key, with n = 2" corresponding to the security level. We
repeat this with multiple keys until we have sufficiently many samples to make assumptions about the
error distribution.

From these measurements we initially examined the distribution of errors visually and formulated
the null-hypothesis stating that, for a fixed parameter set, the errors follow a centered normal distri-
bution with the sample standard deviation as parameter. We performed the Kolmogorov-Smirnov test
with significance level a = 0.05 for each parameter set and concluded that we could indeed model the

47



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

100k signatures 400k signatures 1.6M | 6.4M
" 0.10c 0.12¢0 0.150 0.200 | 0.100 0.120 0.150 0.200 | 0.100 | 0.100
2| 0481 0.629 1.235 3.521 | 0.280
3] 0456 0.581 0.988 2.332 | 0.282
4| 0437 0491 0.766 1.845 | 0.241 0.311 0.590 1.659 | 0.172
5| 0426 0479 0.615 1.406 | 0.230 0.274 0.438 1.176 | 0.149
6 | 0423 0461 0.568 1.119 | 0.222 0.273 0.333 0.944 | 0.118 | 0.074
7 0.217 0.236  0.307 0.762 | 0.110 | 0.073
8 0.229 0.233 0.115 | 0.064

Table 7: Measured standard deviation of single-coefficient error, rounded values.

coefficient-wise error as normal distributions[””] The corresponding standard deviations calculated from
our measurements are presented in Table

4.3.3 Calculating the Error of Approximation

Now that we know the distribution of single error coefficients, we can derive the distribution of the
quality of approximation, i.e., the length |e| of the error vector. To make things easier, we will find the
distribution of the squared length ||e||?>. We define a random error vector of dimension d as:

92(60,617...,601_1), with eiNN(070'e), iid7 (4)

where o, will be the empirically measured, coefficient-wise standard deviation from Table[7] Furthermore,
let Z; ~ N(0,1) be iid. random variables of the standard normal distribution. Then for the squared
Euclidean length of e we have:

d-1 d-1 d-1
Ej=lel*= Y e =3 (0c2:)* =0l 3 Z7 ~ 02X,
i=0 i=0 i=0

where XZ is the chi-squared distribution with d degrees of freedom. The resulting distribution describes
(the square of) the error of approximation.

Knowing this distribution, we can now make statements of the form “p percent of error vectors have
a maximum length of 7. For this we can simply use the cumulative distribution function of o2 XZ:

B[le] < 2] = Fua(2) = Fra ().

In the last equality we scaled the argument by a factor of 0—12 This is not strictly necessary for our
calculations, but can be useful when working with software f)ackages that only provide the standard
chi-squared distribution.

Finally, combining the measurements of the coefficient-wise error with the theoretical considerations
we get the values in Table

4.3.4 Full Key Recovery through Rounding

The results form our measurements and calculations in the previous section show clearly that the key
approximation increases in quality, when the sigma scaling factor goes down and the number of signatures

19The only instance where the p-value was below 0.05 was for & = 2, ¢/ = 0.100 and 100.000 signatures. However, this
single result is of little concern as we are mostly interested in higher security levels.

48



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

100k signatures 400k signatures 1.6M | 6.4M
" 0.10c 0.12¢0 0.150 0.200 | 0.10c 0.120 0.15¢ 0.200 | 0.100 | 0.100¢
2 | 1.757 2298 4.513 12.870 | 1.023
3| 2210 2819 4.795 11.316 | 1.369
4| 2853 3.202 4.996 12.041 | 1.575 2.032 3.853 10.829 | 1.120
5| 3.783 4254 5457 12485 | 2.043 2356 3.979 10.447 | 1.327
6 | 5.167 5.624 6.925 13.657 | 2.709 3.331 4.065 11.518 | 1.444 | 0.908
7 3.666 3.990 5.187 12.870 | 1.866 | 1.241
8 5.382 5.474 2.695 | 1.498

Table 8: 90%-percentiles for error of approximation. For a given security level x and
o scaling factor, 90% of error vectors are shorter than the provided values.

goes up. This can be explained geometrically, as both aspects result in a better defined parallelepiped
that the HPP solver can then pick up on. Interestingly, a higher security level also decreases the error.
The reason for this is that the coefficients of the key components f and g follow a discrete Gaussian

distribution:
fi,gi ~ DZ,O‘{f,g},Oa with J{f,g} = 117\/ q/(Qn )

where the standard deviation is dependent on n. (See also Table and Line 1 in Algorithm ) Therefore
the coefficients tend to cover a narrower value space for higher security levels and so the absolute error
gets smaller too. This effect gives the adversary an advantage when trying to mount the attack on the
practical parameter sets k =9 and « = 10.

Since the coefficients of key polynomials are integers, the simplest method of eliminating the error is
rounding. We already know the distribution of the coefficient-wise error (Table @ and so it is easy to
derive the probability for a successful full key recovery through rounding. For this, we use the notation
and definition of a random error vector from Equation [f] The probability for successful rounding is now
simply the following:

P[V0 <i<2n:-0.5<e; <0.5] = (P[-0.5 < eg < 0.5])*" = (Fl, (0.5) = Fuy (<0.5))™".

Here, F,, is the cumulative distribution function of the distribution ey ~ N(0,0.).

The calculations reveal that rounding can be a very successful strategy, given a sufficiently high
number of signatures (see Figure E[) For example, for security level £ = 8 and 1.6 million signatures,
rounding will give the correct secret key with a probability of around 99.3%. With 6.4 million signatures
it even increases to practically 1007@

Indeed, during our measurements for the coefficient-wise error (in Section we observed many
cases, where rounding would be sufficient to recover the correct secret key. This verifies our assumptions
and methods and shows the practicability of the NarrowSampling attack.

4.3.5 Recovering Equivalent Keys

Up to this point we analyzed the different aspects of the attack in a theoretical setting, where we always
had full access to every value, specifically the secret key polynomials f and g. This allowed us to directly
compare recovered rows from the HPP solver to the key. As a last step we propose a method of filtering
the row containing the coefficients of f and g, without knowledge of any secret values. The basic idea is

20The exact calculated value is 99.999999999784%

49



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

o < o Iy
> o © o
L | | |

o
N
L

Probability for Successful Rounding

SSRSES

o
o
|

o
>
=

100k 400k 1.6M
Number of Signatures

Figure 7: The probability that rounding results in a successful full key recovery, for
different security levels and numbers of faulted signatures, with fixed o’ =0.100.

to leave the question “Which row of GSO(M(B)) does the recovered row correspond to?” unanswered
and instead ask “Does the recovered row function as a valid secret key?”.

Say we have r = (g, 1) that is an approximation of an unknown row of GSO(M(B)). We also assume
that we used attack parameters that give us a sufficiently low error of approximation with high confidence,
i.e., if r were to correspond to (g,-f), rounding would be successful. After rounding and permuting we
get V(|rol,[r1]) = (¢',—f"), which we consider a secret key candidate. We now perform the checks in
NTRUGen (see Algorithm [4)) to make sure that the candidate is a valid FALCON key. This means we test
the invertibility of f’ as an element of Z,[z]/¢ and check whether the Gram-Schmidt norm defined in
Line 9 of Algorithm is at most 1.17,/q. If the key candidate passes both checks, we know that a valid
FaLCON key (including the other components F' and G as well as the tree T) can be produced from it.
Finally, we compare f’ and ¢’ to the public key h. If they verify f'h = ¢’, then we can be sure to have
found not just any secret key, but one that fits the known public key.

It is important to note that even after these tests, an attacker might not have recovered the original
secret key, but an equivalent one. It can be shown that for each key pair (sk, pk), FALCON permits at
least 2n -1 additional secret keys. They cannot be distinguished from the original sk with the public key
alone and therefore can be used interchangeably to generate signatures that pk will be able to verify. We
briefly describe this phenomenon in the following.

Let B be a secret FALCON basis containing the polynomials f, g, F, G € Z[x]/$. Now define the matrix:

k k
’_ gx ~fx
B _[ Gz —Fz7* ]’
where 0 < k < 2n. The polynomial entries of B satisfy the NTRU equation:

(fa*)(Ga™) = (Fa™*)(ga*) = a"a™" (G - Fg) = 4,

=1

and due to:

(fa*) M (ga®) = flaFga" = flg = h,
they have the same relation to the public key as the original f and g. A final calculation shows that B’
is orthogonal to A derived from the given public key:

N A L] [ " (g-r"gf) |_[O
BA‘[GM —ka]'[h]‘[ﬂ.(a—flng)]‘[o] mod g.

50



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

These three properties are sufficient to show that a signature generated from B’ is a valid FALCON
signature and verifiable with h. For k = 0 we simply get the original key B, but for 0 < k < 2n we get
2n — 1 different, equivalent FALCON keys.

In the context of the NarrowSampling attack this means that an adversary might recover a key that
is not the original, but can still be used in the same way, with the same public key. In this case we still
consider the attack successful, since valid signatures can be generated for arbitrary messages, and so the
scheme is fully broken.

4.4 Practical Considerations for the Attack

Here we discuss the practical aspects of NarrowSampling, including possible attack scenarios, a precise
fault description, time and memory requirements and scaling our simulations up to the full parameter
sets of FALCON.

4.4.1 Fault Scenario

The point of interest for the fault injection in NarrowSampling was specifically chosen to minimize the
necessary effort. A single fault to o before the FALCON tree is generated will alter every value in its leaves
and later the distribution of signatures. So once the key (and in particular the tree) is established, no
further faults are required and every signature can be used as part of the key recovery. If Keygen and
Sign closely resemble Algorithms [1| and [2| and in particular if the full FALCON tree is stored as part of
the secret key, then NarrowSampling can be executed as described. However, the tree requires a rather
large amount of memory (around 90 kB for x = 10 according to the FALCON specification document),
which is why the C reference implementation offers a mode of operation (that the specification document
specifically recommends) to build the tree dynamically for each individual signature. Crucially though,
this does not mean that the fault would need to be injected for every message that is signed. Since the
value of ¢ is a fixed parameter and not derived from other values during runtime, it still needs to be read
from a hard-coded table. So it suffices to change its value once as a so-called persistent fault (i.e., a fault
that stays present for multiple executions or even indefinitely).

In a real-world attack scenario this could be executed in the following way: Say a device can run
FALCON Sign for digital signatures. But rather than generating a secret key itself, it instead uses a
key that was precomputed during the fabrication and then loaded and stored onto the device. If an
attacker is able to inject a fault into the original execution of Keygen or alternatively fault the key that
is stored on the device, then all signatures will exhibit a faulted distribution and be vulnerable to the
NarrowSampling attack. Since the device cannot generate new key pairs on its own, the fault cannot be
repaired and persists throughout the operational lifetime of the device (assuming that there are no other
changes, e.g., updates to the device’s software).

4.4.2 Scaling Factor for ¢ and Exact Fault Description

Another question is the exact value that o is faulted to. For our tests we were able to freely chose almost
any value and simulate the fault. In practice we would have to take into account the actual representation
in register. The decimal values of 1/o for levels £ =9 and = 10 are:

k=9: 1/0=0.006033669 668157724103 166 806251 0953022,
k=10: 1/0=0.005938645309533115995025012433647 7482.

When using the FPNative option (as discussed in Section [4.1.2)) these numbers are represented by a
bit-string consisting of the sign-bit, followed by an 11-bit exponent and a 52-bit mantissa:

k=9: 0 01111110111 1000101101101100001011011110011001001100011111001010,
k=10: 0 01111110111 1000010100110001111011110110001100010001101011100011.

51



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

If an adversary chooses o’ = 0.10 0, as we did for many of our tests, they would need to fault the mantissa
(and possibly the exponent) to a completely different value. A more practical approach would be to only
fault certain bits of the exponent to cause a shift by a power of two. For example, scaling by a factor
of 8, i.e., 0/ =0.1250, could be achieved by flipping the three underlined bits:

k=9: 0 01111111010 1000101101101100001011011110011001001100011111001010,
k=10: 0 01111111010 1000010100110001111011110110001100010001101011100011.

A scaling factor of 8 might also be the only practical option. The next higher one is 0.25 ¢, which would
result in an increased error of approximation, making the attack less efficient or even impossible. On
the other hand, the next lower factor of 0.0625 ¢ significantly reduces the speed at which messages can
be signed, due to a higher rejection rate at the various checks in Sign. As long as there are no time
restrictions, this could still be an option and we expect a reduced number of necessary signatures for full
key recovery.

4.4.3 Memory Requirements

The collection of faulted signatures and the subsequent post-processing can be quite memory intensive.
As an example, say an adversary generates 6.4 million signatures for security level K = 9. For the key
recovery (in particular the HPP solver) the signatures must be decompressed via Decompress(s) = so and
the other component s; must be calculated. So a full signature consists of two polynomials, each with
n = 2" integer coeflicients. If we assume the usual 32-bit representation for integer values, this amounts

to a total of:
6.4-10°-2.2%.32 = 209, 715,200,000 bit = 26.2144 GB.

Instead of keeping all signatures in memory simultaneously, one could also read and/or decompress each
signature only when it is needed. However, the HPP solver that we use accesses every signature for
each step of the gradient descent to estimate the moment momc 4 as well as its gradient. The streamed
approach would therefore have a significant computational overhead.

4.4.4 Runtime of the Attack

The runtime of the attack (after enough faulty signatures are collected) is mostly determined by two
aspects: First the recomputation of the polynomials s; and s; from the compressed signature s. This
part can benefit greatly from parallelization, since signatures are naturally independent of each other. In
our tests the preparation of signatures never took longer than 30 minutes on a standard laptop using the
methods provided in the Python reference implementation. On a serveIF_Tl with 16 parallel processes it
took around 210 seconds to prepare 1.6 million signatures of level k = 8. For lower s and fewer signatures
the runtime will of course be even lower.

The most time-consuming step in the post-processing of NarrowSampling is the gradient descent phase
of the HPP solver. A typical, individual descent usually takes around 5 minutes on our hardware, for x = 8
with 1.6 million signatures and ¢’ = 0.1 o, but without parallelization. Of course, the runtime can vary in
either direction, depending on the security level, the number of signatures and the sigma scaling factor.
When implementing this process we can utilize parallelization again. The descents are independent of
each other and only need to access the signatures without altering them. We opted for a strategy where
we ran multiple descents simultaneously, collecting all their outputs. Then (for the measurements of the
coefficient-wise error of approximation in Section we tested if any of them corresponded to the first
row of GSO(M(B)). If the first row was not among the recovered rows, we would start another batch of
descents. The same parallelization can be used in an actual attack scenario, where the adversary runs
batches of descents until a valid secret key is found.

One aspect that we did not consider in detail is the fact that the number of rows of GSO(M(B))
increases exponentially with the security level, doubling from k to k + 1. So the probability that the

2L AMD Ryzen Threadripper PRO 5975WX 32-Cores

52



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

row which contains an approximation of the secret key is recovered by the HPP solver is lower for each
individual descent. The situation is similar to the so-called Coupon Collector Problem, a well-studied
problem in the field of probability theory. The interested reader is referred to the general mathematical
literature about this problem, but we will leave the analysis of the probabilistic aspects of row recovery
as an open question.

4.4.5 Scaling the Attack to Practical Security Levels

During our simulations we only ever considered security levels up to x = 8. The recommended security
levels k =9 and k = 10 (corresponding to the security levels I and V as defined by NIST [NIST6]) were left
out mostly due to the higher time and memory requirements. Throughout the analysis of NarrowSampling
however, we collected enough data and gained practical experience to give at least a rough suggestion for
suitable attack parameters.

From our measurements and calculations we estimate that not more than 10 million signatures with
o’ = 0.100 should be sufficient to recover the secret key for both x =9 and x = 10. This estimation is
mostly based on the numbers in Table[7] and Figure[7] We see that the standard deviation of the error of
approximation is already very low for levels x € {6,7,8} and as discussed in Section we expect it to
decrease even further for higher levels. More signatures could additionally speed up the gradient descent
if runtime is a limiting factor.

4.5 Discussion of Countermeasures

We briefly discuss countermeasures against the NarrowSampling attack.

A standard approach for fault attacks that target fixed parameters of an algorithm is to use check
sums over the values that need protection. In this case they would be applied to the entries of the table
containing the values of ¢ to make sure that no change occurred before the normalization of the FALCON
tree.

Another widely used protection against fault attacks is to run the verification right after a signature
is generated but before it is released. In certain cases this can prevent the release of faulty signatures
and in turn avoid the leakage of sensitive information. Importantly though, NarrowSampling operates
in a way that even faulted signatures are still valid. The presence of a fault cannot be observed on any
individual signature, since it influences only the overall distribution.

Other, novel methods to protect FALCON against NarrowSampling are left for future work.

53



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5 Conclusion

In this thesis we presented a comprehensive vulnerability analysis of the digital signature scheme FALCON.
This included a summary of known attacks as well as an assessment of the sensitivity of most variables
and values in Keygen, Sign, Verify and their subroutines. Our literature study showed that many attacks
from prior publications focus on the trapdoor sampler at the heart of FALCON Sign. This aligns with
previous observations that the sampling of signatures in FALCON is the most sensitive part of the scheme.
Furthermore we pointed out multiple, as of yet unexploited vulnerabilities and outlined possible attacks
based on them. This is highlighting once again that physical security is essential for the deployment of
FALCON specifically and for the adoption of post-quantum cryptographic algorithms in general.

For one vulnerability in particular (NarrowSampling) we demonstrated that a fault injected into
Keygen leads to a leakage of secret information through the distribution of signatures. We analyzed
the leaked information, derived a connection to the FALCON secret key and demonstrated that full key
recovery is practically possible for parameter sets with reduced security. After additional measurements,
simulations and tests, we are confident that our results will translate to the full parameter sets without
problem and that the NarrowSampling attack can reveal the secret key in those instances as well, given
sufficient computing resources.

5.1 Open Questions and Future Work

Further Sensitivity Analysis. Although this thesis provides the first systematic analysis of the phys-
ical security of FALCON that we know of, not every variable was conclusively categorized with regards
to its sensitivity (compare the list of exclusions from our analysis in Section as well as all variables
with a potential designation). More research needs to be done to further the understanding of possible
side-channel and fault attacks, as well as other categories of attacks that we did not consider for this
thesis. We strongly believe that there are still more vulnerabilities to be exploited. With a cryptographic
scheme as complex as FALCON, it is all but guaranteed that further attacks will be discovered and known
attacks will be improved in the future.

The NarrowSampling Attack in Practice. When considering the practicality of our attack in
Section [4.4} we could only make reasonable assumptions based on our simulations and extrapolate from
the gathered data. The obvious next step is to perform the attack in practice, on actual hardware and
for the full security levels kK =9 and x = 10 and verify our predictions.

Improving the NarrowSampling Attack. Closely related to the aspect of practicality, there are
various ways to making NarrowSampling more efficient. One example is the implementation of post-
processing. At the moment we use Python to decompress the signatures, where an implementation in C
would surely be faster. Then for the HPP solver we use C code via Cython. Here too, the execution time
could benefit from a native C version of the solver.

From a theoretical point of view the solution method to the HPP could also be improved. The choice
of the target function in the gradient descent phase, momc 4, was originally guided at least in part by
certain uniformity assumptions (see Section and [NROG]). The signatures that we collect from a
faulted key do not conform to these assumptions. So there might be other target functions that are
more stable in the presence of noise and therefore more suited to our situation. These could potentially
yield better approximations and allow for a relaxation of the attack parameters such as the sigma scaling
factor or the number of signatures. Nguyen and Regev [NR0O6] mention Independent Component Analysis
(ICA), which is a class of statistical methods, as a promising direction for future research.

Another approach to mitigating the noise would be to pre-process the signatures before feeding them
into the HPP solver. We suspect there are various methods to “sharpen” the parallelepiped, be that
through statistical, geometrical or other means.

54



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Countermeasures. One topic that we only briefly touched are countermeasures for NarrowSampling.
In general, the goal of investigating attacks is to find ways to thwart them. Since the focus of this
thesis lied more on pointing out vulnerabilities, a natural next step should be to protect FALCON against
NarrowSampling. This should include an analysis of possible countermeasures with regards to their
effectiveness and efficiency.

On a more general note, protection of other vulnerabilities that we found as part of our sensitivity
analysis in Section [3] will also be of high importance. Although standard countermeasures for many kinds
of attacks exist, it is often necessary to adapt them to specific use cases in order to make them practically
viable. This can have different reasons, such as limited computational resources on embedded devices,
among others.

Choice of Falcon Parameter o. The parameter sets for FALCON, and in particular the values that
govern signature generation, have been chosen on a theoretical basis that provably guarantees a certain
level of security. Our NarrowSampling attack can be viewed not only as a deliberate change of the o
parameter value, in order to deteriorate the security, but also as a method to verify the choice in the first
place. In this thesis we only worked with values in the range between 0.1 ¢ up to 0.2, but higher and
lower values are possible. As discussed, the closer the faulted o is to its original value, the less likely it is
for NarrowSampling to recover the secret key. In that sense our attack can provide practical verification
for the choice of o and act as a measure of security when defining possible alternative parameter sets for
different security requirements.

55



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

References

[Bab86]

[BDK*17]

[BHK*19]

[BS23]

[DLL*17]

[DLP14]

[DP15]

[DSDGR20]

[FHK*20]

[FKT*+20]

[GMRR22]

[GPV07]

[HPRR19]

[KA21]

Laszl6 Babai. On Lovasz’ lattice reduction and the nearest lattice point problem. Combi-
natorica, 6:1-13, 1986.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS — Kyber: a
CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Paper 2017/634, 2017.
https://eprint.iacr.org/2017/634.

Daniel J. Bernstein, Andreas Hiilsing, Stefan K&lbl, Ruben Niederhagen, Joost Rijneveld,
and Peter Schwabe. The SPHINCS+ signature framework. Cryptology ePrint Archive,
Paper 2019/1086, 2019. https://eprint.iacr.org/2019/1086!

Sven Bauer and Fabrizio De Santis. A differential fault attack against deterministic Falcon
signatures. TACR Cryptol. ePrint Arch., page 422, 2023.

Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehle. CRYSTALS — Dilithium: Digital signatures from module lattices. Cryptol-
ogy ePrint Archive, Paper 2017/633, 2017. https://eprint.iacr.org/2017/633.

Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption
over NTRU lattices. Cryptology ePrint Archive, Paper 2014/794, 2014. https://eprint.
iacr.org/2014/794.

Léo Ducas and Thomas Prest. Fast Fourier orthogonalization. Cryptology ePrint Archive,
Paper 2015/1014, 2015. https://eprint.iacr.org/2015/1014.

Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with side informa-
tion: Attacks and concrete security estimation. Cryptology ePrint Archive, Paper 2020,/292,
2020. https://eprint.iacr.org/2020/292.

Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.
Falcon: Fast-Fourier lattice-based compact signatures over NTRU - specifications v1.2 -
01/10/2020. https://falcon-sign.info/falcon.pdf}, 2020.

Pierre-Alain Fouque, Paul Kirchner, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Key
recovery from Gram-Schmidt norm leakage in hash-and-sign signatures over NTRU lattices.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020
Part III, volume 12107 of Lecture Notes in Computer Science, pages 34—63. Springer, 2020.

Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi. The hidden
parallelepiped is back again: Power analysis attacks on Falcon. [TACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(3):141-164, 2022.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. Cryptology ePrint Archive, Paper 2007/432, 2007.
https://eprint.iacr.org/2007/432.

James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous Gaussian
sampling: From inception to implementation. Cryptology ePrint Archive, Paper 2019/1411,
2019.

Emre Karabulut and Aydin Aysu. FALCON down: Breaking FALCON post-quantum sig-
nature scheme through side-channel attacks. In 58th ACM/IEEE Design Automation Con-
ference, DAC 2021, San Francisco, CA, USA, December 5-9, 2021, pages 691-696. IEEE,
2021.

56


https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2019/1086
https://eprint.iacr.org/2017/633
https://eprint.iacr.org/2014/794
https://eprint.iacr.org/2014/794
https://eprint.iacr.org/2015/1014
https://eprint.iacr.org/2020/292
https://falcon-sign.info/falcon.pdf

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

[KH18]

[K1e00]

[MHS*19]

[NTS16]

[NRO6]

[PP19)]

[PRR19]

[Sho97]

[SS13]

[ZLYW23]

Suhri Kim and Seokhie Hong. Single trace analysis on constant time CDT sampler and its
countermeasure. Applied Sciences, 8(10):1809, 2018.

Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In ACM-SIAM
Symposium on Discrete Algorithms, 2000.

Sarah McCarthy, James Howe, Neil Smyth, Séamus Brannigan, and Méire O’Neill. BEARZ
attack FALCON: Implementation attacks with countermeasures on the FALCON signature
scheme. In Mohammad S. Obaidat and Pierangela Samarati, editors, Proceedings of the
16th International Joint Conference on e-Business and Telecommunications, ICETE 2019 -
Volume 2: SECRYPT, Prague, Czech Republic, July 26-28, 2019, pages 61-71. SciTePress,
2019.

NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process, 2016. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography.

Phong Q Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. In Annual international conference on the theory and applications of
cryptographic techniques, pages 271-288. Springer, 2006.

Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU key generation
using the field norm. Cryptology ePrint Archive, Paper 2019/015, 2019. https://eprint.
iacr.org/2019/015,

Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Simple, fast and constant-time Gaussian
sampling over the integers for Falcon. 2019.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509, October 1997.

Damien Stehlé and Ron Steinfeld. Making NTRUEncrypt and NTRUSign as secure as stan-
dard worst-case problems over ideal lattices. Cryptology ePrint Archive, Paper 2013/004,
2013. https://eprint.iacr.org/2013/004.

Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved power analysis attacks
on Falcon. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EURO-
CRYPT 20283 - Part IV, volume 14007 of Lecture Notes in Computer Science, pages 565-595.
Springer, 2023.

57


https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2019/015
https://eprint.iacr.org/2019/015
https://eprint.iacr.org/2013/004

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hub

List of Tables

I FALCON parameter sets.|. . . . . . . . . o o oo o 16
12 Sensitivity Table for Keygen and NTRUGen|. . . . . . .. ..o 25
[3__ Sensitivity Table for Sign and Compress.| . . . . ... ... ... ... ... .. L. 29
4 ensitivity Table for SamplerZ and BaseSampler.| . . . . . . . ... 32
B ensitivity Table for BerbExp and ApproExp.| . . . . . . ... .. . o oL 33
16 Sensitivity Table for Verify.|. . . . . . ..o 34
|7 Single-coefhicient error, standard deviation.| . . . . .. ... ..o oL L. 48
18 Percentiles for error of approximation.| . . . . . ... ... 49

List of Algorithms

1 KEVEEN| . . o o o e e e e e e e 14
YT [ 15
3 genﬂ] ................................................... 16
ENTRUGEN . . . o oo e 17
................................................. 19

List of Figures
IL bixample for split and merge.| . . . . . ... ... Lo oo 10

[P~ Example for coefficient permutation due to polynomial spitting) . . . . . . . . . .. . ... 11

13 Probability heat map for HaltKey attack) . . . .. ... .. ... ... ... ... ...... 36

4 Signature distribution for GaussShitt attack. . . . .. ... ..o o000 40

5 Signature distribution for NarrowSampling attack with varying o scaling factor,. . . . .. 43

[ Examples of gradient descents in HPP. . . . ... ... 46

[T Success probability of rounding for NarrowSampling attack. . . . . . . . o v v v v v vt 50
58



	Introduction
	Goals and Results
	Structure of the Thesis

	An Introduction to Falcon
	Preliminaries and Theoretical Background
	Notation
	Basic Definitions
	CDT-Sampler
	The GPV Framework and Trapdoor Samplers
	The Algebraic Structure of Falcon
	Fast Fourier Transform
	Babai's Nearest Plane Algorithm

	High-Level Overview of Falcon's Main Algorithms
	Description of Keygen
	Description of Sign
	Description of Verify
	List of Parameters

	Specific Subroutines in Detail
	Description of NTRUGen and NTRUSolve
	Description of ffLDL
	Description of ffSampling and SamplerZ


	Sensitivity Analysis for Falcon Variables
	Explanation of Tables, Labels and Acronyms
	General Organization
	SCA, Side-Channel Attacks
	FA, Fault Injection Attacks
	Public Classification
	Scope of the Analysis

	Sensitivity Analysis of Keygen
	Basic Parameters
	Sampling of Primary Secret Key Components
	Side-Channel Analysis of Secret Key Components
	Fault Attacks on Secret Key Components
	The Secret Matrix and Side-Channel Attacks on the Falcon Tree
	Fault Attacks on the Falcon Tree
	Public Key

	Sensitivity Analysis of Sign
	Hashing the Challenge and Computing the Preimage
	Trapdoor Sampling
	Signature Post-Processing

	Sensitivity Analysis of Gaussian Sampling
	SamplerZ
	BaseSampler
	SamplerZ, cont.
	BerExp and ApproxExp

	Sensitivity Analysis of Verify
	List of Attacks
	CDT-SPAA
	HalfKeyN
	SmallLeavesN, NarrowSamplingN
	BadDeterminismA, ConstantHashA
	MultFFTP
	RejectionLeakageN
	CDTZeroP,A
	HalfGaussSignP,A
	HiddenSliceA, HiddenHalfspaceA
	GaussShiftN
	BEARZP
	StdFault
	Verification Attacks


	Attack Analysis of NarrowSampling
	Uncovering a Vulnerability
	Point of Interest
	Simulating Fault Injection
	Consequences of Fault Injection

	Approximate Key Recovery via the Hidden Parallelepiped Problem
	The Hidden Parallelepiped Problem
	The Gradient Descent in Detail

	Full Key Recovery from Approximations
	The Error of Approximation
	Measuring the Coeffient-Wise Error of Approximation
	Calculating the Error of Approximation
	Full Key Recovery through Rounding
	Recovering Equivalent Keys

	Practical Considerations for the Attack
	Fault Scenario
	Scaling Factor for  and Exact Fault Description
	Memory Requirements
	Runtime of the Attack
	Scaling the Attack to Practical Security Levels

	Discussion of Countermeasures

	Conclusion
	Open Questions and Future Work


