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Abstract

Patrolling with police vehicles is a common strategy for crime pre-

vention. During a patrol, so called points of interest are visited to

show police presence and discourage potential criminals. Those are

locations like parks, shops, bars and drug hotspots. However, patrols

need to be interrupted eventually if police presence is needed more

urgently elsewhere.

The influence of interruptions on patrolling vehicles is determined

to optimise the assignment of police resources and the execution of

patrols. The aim of this thesis is to target this Dynamic Vehicle

Routing Problem with time windows. For this purpose, quality criteria

for a patrol are defined, Monte Carlo Simulations are performed and

the quality criteria are evaluated.

Based on real street data from OpenStreetMap, a network graph

is created. Nodes of this network graph are defined as points of in-

terest which should be visited in certain time windows during patrols.

The routes are planned using the metaheuristic algorithms ”Guided

Local Search” and ”Simulated Annealing”. Patrol interruptions are

introduced to simulate the unpredictable occurrence of police opera-

tions. Finally, the influence on quality criteria for patrols is evaluated

statistically.
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Zusammenfassung

Das Patrouillieren mit Polizeifahrzeugen ist eine gängige Strate-

gie zur Verbrechensprävention. Während einer Patrouille werden so-

genannte
”
Points of Interest“ besucht, um Polizeipräsenz zu zeigen

und potenzielle Kriminelle abzuschrecken. Das sind Orte, die beson-

dere Aufmerksamkeit der Polizei bedürfen, wie zum Beispiel Parks,

Geschäfte, Lokale und Drogen-Hotspots. Die Patrouillen müssen aller-

dings unterbrochen werden, wenn die Polizei an anderen Orten drin-

gender eingesetzt werden muss.

Der Einfluss von Unterbrechungen auf die patrouillierenden Fahr-

zeuge wird untersucht, um den Einsatz von Polizei-Ressourcen und

die Durchführung von Patrouillen zu optimieren. Ziel dieser Arbeit

ist die Behandlung dieses dynamischen Fahrzeugrouten-Problems mit

Zeitfenstern. Hierfür werden Qualitätskriterien für eine Patrouille defi-

niert, Monte-Carlo-Simulationen durchgeführt und die Qualitäts-

kriterien abgeschätzt.

Basierend auf realen Straßendaten von OpenStreetMap wird ein

Netzwerkgraph erstellt. Knoten dieses Punktenetzes werden als

”
Points of Interest“ definiert und mit Zeitfenstern versehen, die im

Rahmen einer Patrouille besucht werden sollen. Die Routenplanung er-

folgt unter Verwendung von den metaheuristischen Algorithmen
”
Gui-

ded Local Search“ und
”
Simulated Annealing“ . Es werden Patrouillen-

Unterbrechungen angenommen, um Polizeieinsätze zu simulieren. Ab-

schließend wird der Einfluss auf die Qualitätskriterien für Patrouillen

statistisch ausgewertet.
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1 Introduction

Police work includes many different tasks. One of them is patrolling, which

aims to convey a feeling of security, prevent crime and to reduce emergency

response times. Patrolling is considered as an important part of police work

[1]. Crime is not uniformly distributed, as it is more frequent at certain times

and certain locations [2]. A trial in Minneapolis showed that patrolling at

crime hotspots could reduce the number of crimes by about 6% to 13%

[3]. However, measuring crime can be difficult and there can always be un-

recorded cases, see for example [4].

As a general rule, [2] points out that opportunities to commit crime should

be reduced. Even displaced crimes can be beneficial, as criminals cannot

attack their preferred targets. However, patrolling for too long at the same

hotspot yields less additional deterring effects [5] and police resources could

therefore be used more efficiently elsewhere.

The Police Patrol Routing Problem is a Dynamic Vehicle Routing Prob-

lem [6], [7]. Vehicle Routing Problems are most commonly researched for

vehicles with capacity constraints [8]. Dynamic Vehicle Routing Problems

are researched less frequently [8], especially those related to police patrols

[6].

The Vehicle Routing Problem can be seen as a generalisation of the Travel-

ling Salesperson Problem [9]. The Travelling Salesperson Problem, arguably

the simplest variant of the Vehicle Routing Problems, is an NP-hard problem

[10]. Therefore, a polynomial time algorithm to solve the problem does not

exist. The most common solution methods for Vehicle Routing Problems

can be categorised in exact methods, heuristic methods and metaheuristic

methods, with the latter two being the most common [8]. Heuristic and

metaheuristic methods are widely used because they are less computational

expensive [8], [11]. This is especially beneficial for dynamic routing, which

requires frequent recalculation of the routes.
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As analysed by [6], the Police Patrol Routing Problem differs from most other

Dynamic Vehicle Routing Problems: In case of an emergency, an instant re-

sponse is needed. As response times should be minimised [1], the routes are

changed immediately, which makes real time location information essential.

To gain insights into the Police Patrol Routing Problem, quality criteria

will be defined to quantify the influence of stochastic emergencies on pa-

trolling vehicles.

Real street data will be used to create a network graph and emergencies will

be simulated to create interruptions for patrolling vehicles. Points of interest

will be defined as potential patrol locations. The routes will be planned using

metaheuristics. A Monte Carlo Simulation will be performed to evaluate the

defined quality criteria statistically.

The upcoming chapters are structured as follows: In Chapter 2, the Po-

lice Patrol Routing Problem is introduced in a mathematical context. Also,

characteristics of the problem are described. Solving techniques are discussed

in Chapter 3. This chapter subdivides in exact, heuristic and metaheuristic

methods. The source of the data, OpenStreetMap, the used software, OSMnx

and OR-Tools, and Monte Carlo Simulations are discussed in Chapter 4. The

simulation model is explained in Chapter 5. This includes simplifications and

assumptions, data preparation, the structure of the actual simulation, model

validation and the definition of quality criteria. In Chapter 6, the results of

the simulations are discussed and quality criteria are compared for different

simulation settings with randomized emergencies. Finally, the main results

and an outlook are given in Chapter 7.
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2 Dynamic Vehicle Routing Problem

for Police Patrolling

The Travelling Salesperson Problem is described in Chapter 2.1, which serves

as a basis for routing problems. As generalisation of the Travelling Salesper-

son Problem, the Vehicle Routing Problem is discussed in Chapter 2.2 and a

brief overview of the many variants is given. In Chapter 2.3, the character-

istic features of the Police Patrol Routing Problem are discussed, which can

be seen as a dynamic version of the Vehicle Routing Problem.

2.1 Travelling Salesperson Problem

The Travelling Salesperson Problem, or Travelling Salesman Problem, can

be described as combinatorial optimisation problem, in which a hypothetical

salesperson wants to visit each city from a given list. All travel distances

between those cities are known. The shortest path to visit all cities once and

then return to the starting city needs to be found [9].

A mathematical formulation of the Travelling Salesperson Problem is

given by [9] and summarised in the following. Weights wij are defined as

the distance from the ith to the jth node. Each node represents a city. xij is

used as an indicator if the salesperson takes a certain route and is defined as

xij :=

�
1, the path from the ith to the jth node is on the route

0, otherwise
. (1)

The problem can be written as minimisation problem of the total distance

of the route:

min
xij

n�
i=1

n�
j=1,i �=j

wijxij (2)
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The constraints
n�

i=1,i �=j

xij = 1 for j = 1, . . . , n (3)

and
n�

j=1,i �=j

xij = 1 for i = 1, . . . , n (4)

ensure that the salesperson arrives in each city and leaves each city exactly

one time.

The problem can be displayed as a graph, where cities are represented

as nodes and roads are displayed as edges, which connect the nodes. An

example is visualised in Figure 1. However, when only using the Equations

2, 3 and 4, loops in the route are still possible. These loops are also called

subtours or subcycles. One possible solution allowed by the equations above

is marked in red in Figure 1.

Figure 1: Example network graph with 5 nodes, connecting edges and weights

wij. The routes in red are allowed if Equation 5 is not used.

11



To solve this issue, additional equations are needed. For this purpose, [9]

uses proper subsets of all cities S � {1, . . . , n} and defines their associated

cardinalities 
n := |S|. Notably, using a proper subset yields 
n < n. To ensure

that no loops exist, the following equations must be fulfilled:�
i∈S

�
j∈S,i �=j

xij ≤ 
n− 1 ∀ S with 
n ≥ 2 (5)

For each subset S, all edges which are part of the route and which connect

two nodes of the subset are counted. The equations enforce that at least one

edge needs to connect with a node outside of the subset.

As mentioned in [9], if there are n cities including the starting city, there

are n − 1 possibilities to choose the second city on the route. To connect

all n cities, there are (n − 1)! possible routes. If wij is equal to wji for all

i and j, there are half as many possible solutions (n−1)!
2

. It is easy to find

an arbitrary route that connects all cities. However, it becomes increasingly

difficult to find the optimal solution, due to increasing computational cost.

The Travelling Salesperson Problem is an example for an NP-hard problem

[10]. The class of NP-hard problems contains problems that cannot be solved

in polynomial time.

The Travelling Salesperson Problem can be varied by changing the equa-

tions above or by adding additional constraints. To give a few examples, the

survey [12] classifies the variants as follows:

• Profit oriented: Each visit yields a profit, but not every city needs to

be visited.

• Time windows: Cities can only be visited in certain time windows.

• Maximum oriented: To get the maximum possible distance travelled,

Equation 2 is maximised instead of minimised.

• Kinetic oriented: Linear movement of the target locations.

12



2.2 Vehicle Routing Problem

The Travelling Salesperson Problem can be generalised by replacing the trav-

eller with multiple vehicles and by replacing the starting city with a depot.

The cities can for example be replaced by customer locations. This gener-

alised problem is commonly referred to as Vehicle Routing Problem. It was

first discussed in 1959 under the name ”The Truck Dispatching Problem” to

find the best routes for delivery trucks [13] and is NP-hard [14]. In Figure

2, possible routes for three trucks, which start and return to a depot, are

illustrated.

Figure 2: Example routes for three vehicles. Each colour represents the route

of a vehicle. All vehicles start from and return to the square, which represents

a depot.

Similar to the Travelling Salesperson Problem, there are many different

variants of the Vehicle Routing Problem. The classification and review pa-

per [8] analysed 277 articles, including 327 variants from the years 2009 to

mid 2015. Out of 16 characteristics, the most popular models included the

following:

• Capacitated vehicles 90.52%

• Time windows 37.92% (about 30.58% strict time windows)

• Backhauls 18.65%
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• Heterogeneous vehicles 16.51%

• Multiple depots 11.01%

Dynamic requests were only considered in 2.45% of all Vehicle Routing Prob-

lems.

An example for a possible mathematical formulation for a Vehicle Rout-

ing Problem with time windows and capacity constraints [15] is given in the

following. Variables for this example are defined in Table 1.

C Set of customer nodes {1, . . . , n}
di Demand of the ith customer

N Set of all nodes {0, . . . , n+ 1}
V Set of vehicles

q Vehicle capacity

wij Travel cost for travelling from the ith to the jth node

tij Travel time for travelling from the ith to the jth node

sik Time when vehicle k starts service at the ith customer

[ai, bi] Time window in which the service at the ith customer can start

Table 1: Variables for a Vehicle Routing Problem with time windows.

The starting node is labelled as 0 and the final node as n + 1. Despite

having different indices, they can represent the same depot. Time windows

[a0, b0] and [an+1, bn+1] for the depot define the delivery time frame of the

vehicles. The requirement that each vehicle leaves the starting node and

arrives at the final node is expressed in the following formulas:�
j∈N

x0jk = 1 ∀ k ∈ V (6)

�
i∈N

xi,n+1,k = 1 ∀ k ∈ V (7)
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The indicator function in Equation 1 from the previous chapter can be

adapted by adding an index k, which represents a vehicle:

xijk :=

��
1, the path from the ith to the jth node

is on the route of vehicle k

0, otherwise

(8)

To calculate the total travel cost of all vehicles, the sum over all vehicles

needs to be added to Equation 2:

min
�
k∈V

�
i∈N

�
j∈N

wijxijk. (9)

The following equation ensures that each customer node is visited exactly

one time: �
k∈V

�
j∈N

xijk = 1 ∀ i ∈ C (10)

The equation �
i∈N

xihk −
�
j∈N

xhjk = 0 ∀ h ∈ C, ∀ k ∈ V (11)

counts if a vehicles arrives at a customer node and enforces that it leaves the

node again.

The service start time, or arrival time sjk, cannot be earlier than the ser-

vice start time of the previous customer sik, which is added to the travel

time tij. If a time duration for the service at the ith customer is needed, it

can be included in tij.

xijk(sik + tij − sjk) ≤ 0 ∀ i, j ∈ N, ∀ k ∈ V (12)
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Using the inequality in Equation 12 allows vehicle waiting times until the

time window of the jth customer opens. The service start time needs to be

in the time windows

ai ≤ sik ≤ bi ∀ i ∈ N, ∀ k ∈ V (13)

Moreover, capacity constraints for each vehicle can be implemented. The

demand of all customers of a vehicle cannot exceed the vehicle’s capacity.�
i∈C

di
�
j∈N

xijk ≤ q ∀ k ∈ V (14)

2.3 Police Patrol Routing Problem

The Police Patrol Routing Problem is a Dynamic Vehicle Routing Problem

[6] in which routes are changed while vehicles are still travelling [7]. For

example, a new customer request could require another stop, which is added

to an existing route. It is important to reduce response times in police pa-

trolling [1] and, therefore, the routes of police vehicles need to be modified

immediately after an emergency occurs. For this process, real time location

information of police vehicles is crucial.

Opportunities for committing crimes should be reduced by the police [2].

While patrolling is considered as a fundamental part of police work [1], pa-

trolling policemen cannot work on other tasks at the same time. The balance

between showing presence at the most impactful locations and reducing un-

necessary travel times is important to save personnel costs.

Most crimes happen in certain time windows [2] and in specific small ar-

eas [16] and are not uniformly distributed on a map. These areas are called

hotspots and need to be defined as potential patrol locations. To maximise
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the impact of police patrols, hotspots should be visited in suitable time win-

dows. However, police patrols should be unpredictable [17], which implies

that the time windows should not be too strict.

A study by [3] in Minneapolis showed that patrolling at hotspots could

reduce crime by 6% to 13%. The optimal patrol duration per hotspot was

determined to be about 12 minutes. Another study by [5] found that a patrol

duration of 14 to 15 minutes is optimal, as additional patrolling yields less

benefits.

As mathematical problem description, the formulation from Chapter 2.2

can be used. Equation 14 can be ignored for patrolling police vehicles, as no

goods are transported.
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3 Solving Techniques

To solve Dynamic Vehicle Routing Problems, routes of vehicles can be recal-

culated periodically or updated using information from previous calculations

[7]. The latter approach results in more complex implementations. This work

focuses on the first approach: Vehicle routes are recalculated if data changes

or if fixed time intervals pass. Thus, the Dynamic Vehicle Routing Problem

is reduced to many Vehicle Routing Problems.

There are various approaches to solve Vehicle Routing Problems. Many of

them do not aim to provide an optimal, but a feasible solution. In [8], the

most popular solution methods are split into exact, heuristic and metaheuris-

tic methods. The following chapters are each dedicated to one of the above

mentioned categories. However, due to the large scope of this topic and the

incredible amount of ways to find solutions, the following can only be con-

sidered as an excerpt.

3.1 Exact Methods

Vehicle Routing Problems can be solved with exact methods. While exact

methods can yield the optimal solution to a problem, they can also take a

long time to calculate for non-trivial problems [11].

Brute Force

The most basic approach to solve Vehicle Routing Problems is brute force.

Each route is calculated and the best, for example the shortest, is taken.

The simplest Vehicle Routing Problem with only one vehicle, the Travelling

Salesperson Problem, is already an NP-hard problem [10]. Thus, this ap-

proach is limited by problem size and computational power.

18



There are alternative exact methods to brute force, which attempt to

speed up the calculations. However, due to the NP-hardness of the problem,

the issue with potential long computation times persists.

The study [11] classifies exact methods as in the following:

• Constraint programming

• Dynamic programming

• Branch and bound/price/cut

These methods can be considered programming paradigms, as they are no

simple rules, which guarantee a good result, but rather techniques or pat-

terns, which can be used to approach a problem. Application examples can

be found in the study [11].

Constraint Programming

With constraint programming, variable constraints for a problem are de-

fined and the solution space is explored. Commonly, search strategies like

backtracking and constraint propagation [18] are used for exploring the so-

lution space. The approach is therefore well suited to situations in which

the generation of solutions is of greater importance than the identification of

an optimal solution. As constraint programming can include methods from

many fields in computer science, it is a very broad topic. Additional infor-

mation can be found for example in [18] or [19].

Dynamic Programming

Dynamic programming aims to find partial solutions of a problem and

expand these. If the problem structure does not provide the opportunities

to solve parts of the problem, this approach might not be very efficient. In

general, the number of partial solutions which need to be saved to memory

should be low for the approach to be efficient [20]. Further information can

be found in [20] or [21].
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Branch and Bound/Price/Cut

Branch and bound techniques and many of their variants are often used

for NP-hard optimisation problems [22]. The techniques can be interpreted

as the search in a decision tree, which describes the whole solution space.

Possible solutions or partial solutions are enumerated and the search space

is reduced by removing parts of the decision tree, which cannot yield bet-

ter solutions. More information on the topic can be found for example in [22].

For many problems, it is not necessary to find the optimal solution regard-

ing a predefined criterion. Often, it is sufficient to find a feasible solution in

a reasonable time. Thus, exact methods are less popular compared to heuris-

tics and metaheuristics [8], which are discussed in the following chapters.

3.2 Heuristic Methods

Heuristic methods can be distinguished into construction and improvement

heuristics [23]. While metaheuristic methods are sometimes considered as

third category (for example in [24]), they will be discussed separately in

Chapter 3.3. This chapter focuses on classic heuristic methods, which are

generally considered greedy [23].

Construction heuristics are used to build a solution from scratch. Improve-

ment heuristics are used to improve a solution, which might have been ob-

tained by using a construction heuristic. In many cases, the rules to construct

or improve a solution are relatively simple and yield the same result every

time they are applied to a problem.

3.2.1 Construction Heuristics

Construction heuristics can be viewed as rules or decisions for finding a so-

lution to a problem [23]. These rules can be very simple and, because of the

simplicity of many heuristics, solutions can often be built very fast. For many

applications, these solutions can be feasible, but depending on the problem

and the chosen heuristics, the found solution might not be optimal. In fact,

it might not even be a good solution.
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Solutions constructed using heuristic methods are often used as starting so-

lutions for further improvement with other heuristics or metaheuristics [25].

Also, solutions found by constraint programming methods, as discussed in

Chapter 3.1, can be used as starting solutions.

A few examples for construction heuristic algorithms are given in the follow-

ing. More examples can be found for example in [23], [24] and [25].

Nearest Neighbour Addition

The Nearest Neighbour Addition method describes an algorithm for build-

ing routes. A brief description for this method is given in [24]:

A route starts at a depot. The route is expanded by appending the closest

node if the addition does not violate any constraints. This procedure is re-

peated until all nodes are added. For problems with more than one vehicle,

the routes can be built one after another or simultaneously.

In the first case, nodes are always added to the same route until no more

additions are possible. Only then, a second vehicle and, therefore, a second

route is introduced. In the second case, the number of routes is predefined

and all routes are constructed at the same time. The node which is the clos-

est node to any of the routes is added if the constructed route is feasible.

Insertion Method

Using the previous method, a node is always appended at the end of a

route. An insertion method [24] inserts a node to any feasible position of the

partially constructed routes. Naturally, by adding more possible positions,

the heuristic becomes more computational expensive, but possibly also more

successful in satisfying constraints.

Clarke and Wright’s Savings Algorithm

The Clarke and Wright’s Savings algorithm [26] starts by defining separate

routes for each node. Then, the routes are merged to lower the overall cost.
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To decide which routes to merge, potential savings Sij for connecting the ith

and the jth node are calculated using

Sij := wi0 + w0j − wij, (15)

with the weights of the edges w. Index 0 marks the starting and end node

of all routes. All savings are sorted in descending order and the routes are

merged accordingly, starting with the largest saving. Notably, the nodes of

a route, which is going to be merged into another, are only inserted next

to node 0 and, therefore, the savings only need to be calculated once with

Equation 15.

Christofides Algorithm

The Christofides algorithm [27] approaches the problem from a graph the-

oretical and more technical point of view.

First, the minimum spanning tree of the graph is calculated. The minimum

spanning tree is the smallest possible subgraph regarding the total edge cost,

which still connects all nodes. In a finite graph, there is always an even

number of nodes with odd degree. The degree of a node is defined as the

number of connected edges.

In the next step, a perfect matching is found for the set of nodes with odd

degree in the minimum spanning tree subgraph. In other words, a subset

of edges is found in a way that each of these nodes is connected to exactly

one edge. The new edges are added to the previously calculated minimum

spanning tree. In this multigraph, two nodes can be connected by multiple

edges.

Now, each node has even degree, which guarantees the existence of an Euler

Circle, a tour which uses all edges of a graph exactly once and subsequently

returns to the starting node. If duplicated nodes are removed from the tour,

a Hamiltonian Circle is received. A Hamiltonian Circle is a route which visits

all nodes exactly once before returning to the starting node and, therefore,

is a constructed solution to the routing problem. [27] provides proofs and

additional information.
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3.2.2 Improvement Heuristics

An existing solution can be improved by so called improvement heuristics,

also known as classical improvement heuristics. For example, solutions can

be partly deconstructed and rebuilt again using a construction heuristic [23].

Broadly speaking, improvement heuristics are used for finding the best neigh-

bour solution of the current solution [24]. The neighbourhood N(S) of a

solution S is defined as the set of all solutions, which can be reached by

changing the solution S according to one or more rules. Rules, also called

moves, are changes to a solution and can be combined or restricted to define

different neighbourhoods.

For Vehicle Routing Problems with more than one vehicle, improvement

heuristics can be distinguished into intra-route and inter-route methods [24],

[25]. While intra-route methods only change the route of one vehicle, inter-

route methods change multiple routes at the same time.

A few examples are provided in the following. Additional information and

examples can be found for example in [24].

Relocating Nodes

For each node of the existing routes, the improvement is calculated if it

was relocated to another position. The best found move which still yields a

feasible solution is carried out. This can be repeated until no more improving

moves can be found.

Swapping of Nodes

Two nodes of the solution are swapped. This improvement heuristic can be

viewed as a subset of a heuristic which relocates two nodes at once, however,

with the restriction that one node’s starting position needs to be the target

position of the other.
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λ-Opt

The λ-opt improvement method [28] describes the generalised method of

replacing edges to gain better solutions. The amount of λ edges are removed

from the graph and the potential cost reduction is calculated if λ new edges

are added. The edges which yield the best saving are changed.

Additional information on popular improvement heuristics can be found

in [24] and [25]. As an alternative to classical improvement heuristics, meta-

heuristics can be used to improve solutions of the Vehicle Routing Problem.

3.3 Metaheuristic Methods

While many algorithms target a specific problem, metaheuristic methods

can be used for a wide range of problems [23]. Metaheuristics are generalised

methods or strategies that focus on parameters and not on the function F ,

which should be optimised. The balance between exploring the solution space

and locally improving a solution is a key element of metaheuristic methods

[29].

Despite often missing theoretical foundation [29], metaheuristic methods are

widely used and many variants exist. Compared to exact methods, they are

often less computationally expensive [8], [11]. Because of this and because of

their broad range of use cases, metaheuristic methods were the most popu-

lar techniques to approximate solutions of Vehicle Routing Problems in 2021

[11].

A metaheuristic algorithm can be applied to a random generated solution

or to a solution that was constructed using a heuristic. While there is no

guarantee to find an optimal solution, feasible solutions can be found for

many complex problems [23]. In the following, a selection of metaheuristic

methods is discussed. For each of the methods, many variants exist. More

information and historical context can be found in [23].
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3.3.1 Local Search

Simple Local Search algorithms are comparable with improvement heuristics

in Chapter 3.2.2. Similar to the previous chapter, Local Search algorithms

try to improve a given solution S by searching a local neighbourhood N(S)

of S [23]. The neighbourhood is defined as the set of all solutions that differ

from S by one or more moves. A move can, for example, be a simple per-

mutation, an insertion of a node into an existing route or a swap of nodes.

In contrast to classical improvement heuristics, the perspective changes for

metaheuristics, as the focus moves from problem specific neighbourhood op-

erators to generalised algorithms.

A very simple Local Search algorithm variant is described in Algorithm 1.

Algorithm 1 Local Search

1: Choose starting solution S

2: improving ← True

3:

4: while improving do

5: Select the best neighbour solution Snew ∈ N(S)

6: if F (Snew) < F (S) then

7: S ← Snew

8: else

9: improving ← False

10: end if

11: end while

12:

13: return S

First, a starting solution S is chosen, for example with a heuristic con-

struction method or at random. In each iteration of the algorithm, the

neighbourhood of the current best solution S is searched for better perform-

ing solutions. In this example, the best neighbour solution Snew is selected

to be solution S in the next iteration. As an alternative, the first better

solution - compared to S - can be taken. These steps are repeated until no
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better solution can be found that further lowers the cost F (Snew). The last

found solution, which is the best encountered, is returned.

Obviously, Algorithm 1 is a greedy algorithm and might get stuck in

a local minimum. A simple attempt to combat this issue is to repeat the

procedure multiple times for different starting solutions. [30] proves that S

converges against the global minimum, if the number of algorithm runs with

uniformly distributed starting solutions converges to infinity.

It is important to keep in mind that Local Search algorithms are searching

for better solutions in specific neighbourhoods of the current solution. A

found minimum regarding one neighbourhood and its set of allowed moves

might not be the global minimum. On the other hand, the global minimum

is a minimum in all neighbourhoods [23].

A strategy that utilises a set of different neighbourhoods is the Variable

Neighbourhood Search.

Variable Neighbourhood Search

In a Variable Neighbourhood Search [31], multiple different neighbour-

hoods Ni(S), 0 < i ≤ n, are defined. The pseudocode is presented in Algo-

rithm 2.

Beginning with a starting solution S, a random neighbour of the solution

is improved regarding a local neighbourhood, using Local Search. The ran-

dom choice, also called shaking [29], is added to avoid cycling solutions. If

no better solutions are found, the next neighbourhood is tried. If the current

solution is improved, the whole procedure starts at the first neighbourhood

again. The algorithm can be stopped if the improvement of the solution is

insufficient, a certain number of calculation cycles or a certain amount of

time has passed.

More information regarding the Variable Neighbourhood Search can be found

in [31] and [29].
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Algorithm 2 Variable Neighbourhood Search

1: Choose starting solution S

2:

3: while no stopping criteria is satisfied do

4: i ← 1

5: while i ≤ n do

6: Select random solution S � from Ni(S)

7: Snew ← LocalSearch(S �, Ni(S
�))

8: if F (S ��) < F (S) then

9: S ← S ��

10: i ← 1

11: else

12: i ← i+ 1

13: end if

14: end while

15: end while

16:

17: return S

27



3.3.2 Tabu Search

Tabu Search was created by Fred Glover in the 1980s [32] and is one of the

most popular metaheuristics [33]. In its basic form, it utilises memory but

no randomness. It is based on Local Search, but introduces a tabu list. The

purpose of a tabu list is to attempt escaping local extrema and to avoid cyclic

choosing of solutions. Depending on the implementation, the tabu list tem-

porarily logs former solutions or moves. A pseudocode for this metaheuristic

method is given in Algorithm 3.

Algorithm 3 Tabu Search

1: Choose starting solution S

2: Initialise empty tabu list TabuList ← {}
3:

4: while no stopping criteria is satisfied do

5: Select the best neighbour solution Snew ∈ N(S)

6: if Snew /∈ TabuList then

7: S ← Snew

8: end if

9: Update TabuList

10: end while

11:

12: return the best found solution

In each iteration, a Tabu Search algorithm chooses the best neighbour

solution that is not logged already in the tabu list. In some variants, reusing

solutions is punished but not totally forbidden. In these cases, some aspira-

tion criteria can be used to allow the reuse of solution despite being on the

tabu list.

Additional information for Tabu Search for Vehicle Routing Problems with

time windows can be found in [33].
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3.3.3 Guided Local Search

Guided Local Search [34] is another adaptation of the Local Search algorithm,

which is usable for many optimisation problems. Guided Local Search uses

information to guide the search in the solution space. For this purpose, the

method makes use of penalties, which contrasts to the strict tabu list in Tabu

Search that entirely forbids solutions.

A set of n problem dependent features fi, with 1 ≤ i ≤ n, needs to be de-

fined. As long as it is possible for solutions to have a feature or to not have

it, a feature can be almost anything. An example for a well defined feature

is the following: A solution includes a certain edge of the graph. The feature

”starting at the starting node” is not allowed, as all routes need to fulfill this

criterion anyways.

An indicator function is defined as

Ii(S) :=

�
1, if the solution S has feature fi

0, otherwise
. (16)

For each feature fi, a penalty parameter pi is defined. Initially, all pi will be

set to 0. Later, some of them will be incremented by 1 to count the times a

features gets punished.

The cost function is adapted to the so called augmented cost function


F (S) := F (S) + λ ·
n�

i=1

Ii(S) · pi. (17)

The parameter λ controls the influence of the second term in Equation 17 on
F . If λ is too small, the algorithm loses its ability to escape local minima. If

λ is too large, the penalty of a feature outweighs the original cost function F .

To compare the cost ci of a feature to the penalty parameter pi, an util-

ity function is defined as

u(S, i) := Ii(S)
ci

1 + pi
. (18)
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Algorithm 4 Guided Local Search

1: Choose starting solution S

2: Set penalties pi = 0 ∀i : 1 ≤ i ≤ n

3:

4: while no stopping criteria is satisfied do

5: Snew ← LocalSearch(S) using the augmented cost function 
F
6:

7: for i = 1, ..., n do

8: Calculate u(Snew, i)

9: end for

10: ĩ ← arg max
i,1≤i≤n

u(Snew, i)

11: pĩ ← pĩ + 1

12: end while

13:

14: return the best found solution

The pseudocode for the algorithm is given in Algorithm 4.

In each iteration of the algorithm, the feature with the highest utility gets

punished by incrementing pi, which increases 
F (S). Initially, costly features

are punished, but with increasing penalty parameter pi, the utility value

u(S, i) decreases and a high cost feature might get punished less often. The

chances of another feature being punished increases. More details can be

found in [34] and [29].

3.3.4 Simulated Annealing

Simulated Annealing uses a statistical mechanics approach to try to find a

good minimum, ideally the global minimum, of an optimisation problem.

The optimisation technique is described in [35] and a brief summary is given

in the following.
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Simulated Annealing is inspired by statistical mechanics. If a system is in an

equilibrium with a heat bath at a certain temperature T , the probability to

find the system in a certain state i is given by the Boltzmann distribution

Pi ∝ e−
Ei
kT , (19)

with the Boltzmann constant k, often written as kB, and the systems energy

Ei.

Defining ΔE := Ei − Ej and dividing Pi by Pj yields

Pi

Pj

= e−
ΔE
kT . (20)

The quotient of the probability of two states at a certain temperature de-

pends on the difference of energies.

The Simulated Annealing algorithm uses a variation of Equation 20. The

Boltzmann constant and the temperature can be summarised as new pa-

rameter T , which will still be called temperature, but is measured in the

unit of the cost function. The energy E is replaced by a cost function F ,

which depends on a solution S, for example a set of nodes to describe a route.

The new formula

P (ΔF, T ) = e−
ΔF
T (21)

is used to compare two solutions. It provides a guideline for accepting new so-

lutions for the Simulated Annealing algorithm: If ΔF = F (Snew)−F (Sold) ≤
0, and, therefore, the new solution is better than the old one, the new so-

lution is taken. For the second case ΔF > 0, [35] uses the new solution if

P (ΔF, T ) is larger than a random number between 0 and 1. This approach

allows a Simulated Annealing algorithm to sometimes escape local minima

by selecting worse solutions. The probability P (ΔF, T ) depends on ΔF and

T . If ΔF is large or T is small, the absolute value of the exponent in Equa-

tion 21 becomes large. Therefore, the algorithm becomes less likely to accept

a worse solution if the temperature T decreases.
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A pseudocode for a Simulated Annealing algorithm is given in Algorithm

5. In this example, the temperature is scaled by r at the end of the while-

loop. This cooling schedule simulates the system cooling down. However,

other cooling schedules can be used as well. In analogy to statistical me-

chanics, the for-loop is supposed to allow the system to reach an equilibrium

with the heat bath.

Additional information can be found in [35]. An example for the Simulated

Annealing algorithm for Vehicle Routing Problem with time windows can be

found in [36].

Algorithm 5 Simulated Annealing

1: Choose starting solution S

2: Initialise T ← T0

3:

4: while no stopping criteria is satisfied do

5: for i = 1, . . . , n do

6: Select a random neighbour Snew ∈ N(S)

7:

8: if F (Snew) ≤ F (Snew) then

9: S ← Snew

10: else if P (ΔF, T ) > random(0, 1) then

11: S ← Snew

12: end if

13: end for

14:

15: T ← r · T
16: end while

17:

18: return the best found solution
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3.3.5 Other Metaheuristics

The methods discussed so far are trajectory based metaheuristics. This

means, one solution is adapted iteratively [23]. Alternatively, population

based methods can be used. In the following, a few examples are given.

Evolutionary Algorithms

Evolutionary Algorithms [37] are inspired by nature. Similar to the theory

of evolution, solution candidates are evolved. These methods simulate trial

and error and natural selection by using probabilistic parameters.

A popular example for Evolutionary Algorithms is the Genetic Algorithm

[37]. In analogy to genes, possible solutions are encoded, often as bit strings.

A set of candidate solutions is rated by their fitness, which is their ability to

solve a problem. A higher fitness value yields a higher chance to reproduce

and pass on their genes. To create a new set of solutions, the reproduction

process uses the concepts of mutation, recombination and selection. Proba-

bilities are used in each step of the reproduction process, which allows more

diversity in the next generations.

More information on Evolutionary Algorithms can be found in [37].

Swarm Intelligence

Swarm Intelligence algorithms are inspired by animal swarms and flocks.

In swarms and flocks, the knowledge of one individual influences the be-

haviour of others. In the following, two examples are given.

The Ant Colony Optimisation algorithm [38] simulates ants on a network

graph. Pheromone values are assigned to each edge. A set of ants walks on

the graph and every single one of them builds a solution. Each ant decides

its route based on a probability function. The probability depends on the

pheromone values of the edges. Also, repeated nodes in their routes are pro-

hibited. This procedure is repeated, and after each iteration, the pheromone

values are adjusted.

33



A set of solutions can be viewed as a Particle Swarm [39]. In each iter-

ation, the location for each particle in the solution space is updated. To

update all particle locations, the particles use the knowledge of their current

location, their current velocity, their personal best solution and its respective

location, as well as the global best solution and its position.

An example for the Travelling Salesperson Problem is given in [40]. In the

example, swap operators are defined for the nodes of a solution. These per-

mutations are used to move in the solution space.

Also, hybridisations of solution methods are possible. Additional infor-

mation can be found in [25]. More information and additional examples for

metaheuristics can be found for instance in [29], [24] and [23].
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4 Methods and Materials

In this chapter, the source of geographical data, the used software frame-

works and the used methods are discussed. OpenStreetMap, a project which

provides free map data, is explained in Chapter 4.1. OSMnx, a software

to work with OpenStreetMap data and street network graphs, is discussed

in Chapter 4.2. A tool to solve the Vehicle Routing Problem, OR-Tools, is

discussed in Chapter 4.4. In Chapter 4.5, the Monte Carlo Simulations and

stopping rules are explained.

4.1 OpenStreetMap

OpenStreetMap [41] was founded in 2004 and is supported by the

OpenStreetMap Foundation [42]. The foundation aims to make geographical

data accessible for everyone. To do so, it supports OpenStreetMap as an in-

termediary for fundraising, provides infrastructure, supports working groups

and functions as a legal entity.

OpenStreetMap is organised as a community project. The OpenStreetMap

community collects geographical data from all over the world and maintains

it. The project has a remarkable user base, with 11 million registered users in

September 2023 [43]. Geographical data are provided for free as open data,

using the Open Data Commons Open Database License [44].

OpenStreetMap provides road map information, building information,

points of interest and associated metadata. In January 2022, the database

contained about 7.4 billion nodes [43].

OpenStreetMap data includes road connections, distances and speed limits.

Also, amenity data such as information about points of interest are available,

for example schools, restaurants, businesses and public transport.
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4.2 OSMnx

OSMnx [45] is a free software for working with street networks in Python.

The open source module is built on top of GeoPandas [46], Matplotlib [47]

and NetworkX [48]. It aims to make working with and analysing street

networks easy. Thus, many useful tools are included. For example, map

data and maps can easily be downloaded from OpenStreetMap by using city

names, bounding boxes, polygons, the distance around an address or coor-

dinates that define the area of the desired map. Downloaded networks are

automatically processed to simplify the topology of the network graphs.

OSMnx allows saving and loading several file formats and provides many

functions for working with street networks. Also, NetworkX’s functions can

be used directly. This includes algorithms and functions for network analysis,

network manipulation, shortest path algorithms and distances from coordi-

nates to edges or nodes. The used algorithm for finding the optimal path

with given weights in an network graph, Dijkstra’s Algorithm [49], is also

easily accessible through OSMnx and will be explained in Chapter 4.3.

Functions for visualising maps are already implemented in OSMnx and the

included Matplotlib package. They include marking nodes, edges and routes,

which makes visualisations easy.

4.3 Dijkstra’s Algorithm

Dijkstra’s Algorithm [49] is used for finding optimal paths in a network graph

with non-negative weights. Weights can for example be travel costs, distances

or travel times. The basic idea of the algorithm is to expand paths beginning

at a start node and to update the distances to other nodes.

A pseudocode is given in Algorithm 6. First, two dictionaries are initialised.

One for saving the distances from the start node to any other node, and a

second one for saving the previous node in the shortest known path. The

queue is used to keep track of nodes that need to be processed. The distance

to the start node is set to 0.

In the while-loop, the node with minimum distance is chosen from all nodes

in the queue. As the distance is already minimal, no shorter path to this node
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can be found. Two cases can occur: In the first case, the node is the end

node. The algorithm terminates and returns the distance and predecessor

dictionaries. In the second case, the node with minimum distance is not the

end node. Paths are expanded by exploring neighbours of the node and the

dictionaries are updated.

Alternatively, to find all distances and optimal paths from a given start node,

the return-statement can be moved to the end of the algorithm and the

if-statement in line twelve can be removed.

Algorithm 6 Dijkstra’s Algorithm

1: Searching for the optimal path from a start to an end node in a graph

2:

3: for node in graph do

4: distance[node] ← ∞
5: predecessor[node] ← None

6: add node to queue

7: end for

8: distance[start] ← 0

9:

10: while queue is not empty do

11: min node ← node in queue with minimum distance[node]

12: if min node equals end then

13: return distance, predecessor

14: end if

15: Remove min node from queue

16:

17: for neighbour of min node in queue do

18: new dist ← distance[min node] + weight(min node, neighbour)

19: if new dist < distance[neighbour] then

20: distance[neighbour] ← new dist

21: predecessor[neighbour] ← min node

22: end if

23: end for

24: end while
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4.4 OR-Tools

Operations Research Tools, or short OR-Tools [50], is developed by Google

for combinatorial optimisation. OR-Tools is an open-source software package

and distributed under the Apache License 2.0.

The software suite includes solvers for constraint programming, linear pro-

gramming, packing and Vehicle Routing Problems. Also, wrappers for both

open source and commercial solvers are available. Graph algorithms are in-

cluded for flow problems.

The software is written in C++, but can also be used through wrappers in

Python, Java and C#. Additional information can be found in [50].

For vehicle routing, many options are available: The classic Travelling

Salesperson Problem, Vehicle Routing Problems with capacity and time win-

dow constraints and also deliveries and pickups. It allows optimisation of dif-

ferent target dimensions, for example travel time, travel distance and trans-

ported weight. Options for vehicles to wait at a location, which could be

needed if time windows are restrictive, and a penalty for missed stops are

also available. Calculation time limits and solution limits can be set to con-

trol computational effort while searching for a solution.

OR-Tools provides various heuristics to create initial solutions and meta-

heuristic methods as improvement strategies. The heuristic methods avail-

able in OR-Tools include but are not limited to:

• Route expansion methods

• Insertion methods

• Clarke and Wright’s Savings Algorithm

• Sweep Algorithm

• Christofides Algorithm

Some of the heuristic methods above were previously explained in Chapter

3.2.1.
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Using the OR-Tools software, solutions found with heuristic methods can

be improved with following metaheuristics algorithms, which were discussed

in Chapter 3.3:

• Greedy Local Search

• Tabu Search

• Guided Local Search

• Simulated Annealing

A complete list of available options can be found in [50].

The metaheuristic improvement methods available in OR-Tools are adapted

for Vehicle Routing Problems. Also, parameters are already set to default

values that are suitable for many problems.

For example, for the Guided Local Search algorithm, the features are already

predefined as edges that a solution might include. In the following, the in-

dexing for the features fi, the respective penalty parameter pi and the travel

cost per edge cij is changed, compared to Chapter 3.3.3. To better associate

the indices with the nodes and edges, the index i is replaced by two node

indices i and j.

The second term of the augmented cost function in Equation 17 is changed

for the use in the OR-Tools software. The adapted formula includes the travel

cost per edge cij, as in


F (S) := F (S) + λ ·
n�

i,j=1

Iij(S) · pij · cij(S), (22)

with a default value λ = 0.1.
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4.5 Monte Carlo Simulations and Stopping Rules

The optimisation of a problem, for example a Vehicle Routing Problem, is

usually carried out on static input. Events like emergencies, which are in-

terruptions of patrolling police vehicles, are not predictable and, therefore,

cannot be assumed to be static. Probability distributions can be used to

model stochastic emergencies, for example with the Gaussian distribution.

In Chapter 5.2.2, modelling the emergencies will be explained in more detail.

Monte Carlo Simulations [51] are widely used for calculations that include

aspects of randomness. One simulation run can be very dependent on ran-

dom variables. With a computer, the simulation can be easily repeated a

lot of times to sample results. These results can be statistically evaluated to

gain insights into a problem.

As summarised in [51], Monte Carlo Simulations bring many benefits. They

can be applied easily and their use cases are very flexible, as simulation runs

can be conducted simultaneously with parallelisation.

Monte Carlo Simulations have many areas of application, which include for

example finance, physics, operations research and statistics.

As examined in [52], one of the challenges when using Monte Carlo Simu-

lations is the question: How many simulation runs are sufficient? Too many

simulation runs can be a waste of time and resources, while a too small sam-

ple size could yield unreliable results. Therefore, a stopping rule can be an

useful guideline to help deciding when to stop simulating.

For a random variable X, the expected value µ := E(X), the variance

σ2 := V(X) and the empiric mean XM :=
	M

i=1 Xi are defined. Xi, i ∈
N+, are considered to be independent and identically distributed random

variables.

A stopping rule can be written as a function

f : R+ × (0, 1)× N → R : (δabs, p,M) �→ f(δabs, p,M, ·), (23)

for which the implication

f(δabs, p,M, ·) ≥ 0 ⇒ P (µ ∈ [XM − δabs, XM + δabs]) ≥ p (24)
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holds. In other words, if f(δabs, p,M, ·) is 0 or positive, the probability to

find the expected value in the confidence interval defined by δabs is greater

than the confidence level p.

The stopping index Mstop is defined as the smallest M ∈ N+ with

f(δabs, p,M, ·) ≥ 0. Mstop can depend on other parameters.

Two rules are discussed in [52]: The Chebyshev stopping rule and the

Gaussian stopping rule. Both require bounded first and second moments for

the random variable X. The Chebyshev stopping rule is defined as

f(δabs, p,M, σ2) = (1− p)− σ2

M · δ2abs
(25)

and the second stopping rule, the Gaussian stopping rule, is defined as

f(δabs, p,M, σ2) = (1− p)− 2 · Φ
�
−
√
Mδabs√
σ2

�
, (26)

with the standard normal distribution Φ and a sufficiently large M . While

p and δabs can be chosen, the variance σ2 is still unknown. In [52], two

algorithms are discussed for finding Mstop. For one of them, a pseudocode is

given in Algorithm 7.

In the algorithm, the sample variance is used as an estimation for the real

variance and updated periodically. For this purpose, the sample variance is

transformed as follows:

s2N :=
1

N − 1
·

N�
i=1

(Xi −XN)
2 =

1

N − 1
·

N�
i=1

(X2
i − 2XiXN +X

2

N) (27)

∗
=

1

N − 1
(NX2

N − 2NX
2

N +NX
2

N) =
N

N − 1
· (X2

N −X
2

N) (28)

At the marked equal sign, the formula

X2
N =

1

N
·

N�
i=1

X2
i (29)

is used.
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To update the sample variance, the sample means X i and X2
i are updated

periodically with the formulas

X i =
i− 1

i
·X i−1 +

1

i
·Xi (30)

and

X2
i =

i− 1

i
·X2

i−1 +
1

i
·X2

i . (31)

As mentioned in [52], the estimation for the sample variance bears the risk of

underestimating Mstop. Additional information and derivations can be found

in [52].

Algorithm 7 Stopping Rule Algorithm

1: Choose a confidence level p ∈ (0, 1) and a confidence interval δabs > 0

2: Choose M0 large enough to avoid early termination of the algorithm

3:

4: X0 ← 0

5: X2
0 ← 0

6: for i ∈ N do

7: Xi ← Simulation()

8: X i ← i−1
i

·X i−1 +
1
i
·Xi

9: X2
i ← i−1

i
·X2

i−1 +
1
i
·X2

i

10:

11: if i > M0 then

12: s2i ← i
i−1

· (X2
i −X

2

i )

13: if f(δabs, p, i, s
2
i ) ≥ 0 then

14: Mstop ← i

15: return Mstop, X i

16: end if

17: end if

18: end for

42



5 Experimental Chapters

The process of preparing data, the implementation of the simulation and the

optimisations are lined out in Chapter 5.1 and Chapter 5.2. The tests for

validating the model are explained in Chapter 5.3. In Chapter 5.4.2, quality

criteria are introduced and their calculations are discussed. The code written

for this thesis is available on GitHub [53].

5.1 Data Preparation

The process of how map data for the simulation is retrieved and prepared is

explained in Chapter 5.1.1. Points of interests are defined in Chapter 5.1.2.

Both are based on data from OpenStreetMap, which was discussed in Chap-

ter 4.1.

5.1.1 Map Data

For this simulation, the map of the district Favoriten in Vienna is used. Out

of all of Vienna’s 23 districts, Favoriten is the district with the highest pop-

ulation, with about 212 000 residents in the year 2022 [54].

Compared to the other districts in Vienna, Favoriten has the highest absolute

number of registered crimes [55]. In 2021, about 17 500 crimes were regis-

tered, which corresponds to about 12.2% of all registered crimes in Vienna.

The average number of registered crimes per 100 000 residents was 7529 in

Vienna in the year 2021. In Favoriten, the crime rate was 8424, which was

higher than Vienna’s average.

Regarding the structure of Favoriten, the north can be described as densely

populated, while the south can be characterised as a wider and greener area

[54]. This structural difference is visible on the map, which is visualised in

Figure 3.
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Figure 3: Network graph of the district Favoriten in Vienna, with removed

nodes marked in red. (Map data © OpenStreetMap)
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Real street data are retrieved from OpenStreetMap using the OSMnx

Python module and saved as an OSM file. Coordinates and distances for each

edge in the street network are already available, provided by OpenStreetMap.

In most cases, speed limits are given as single values. For some edges in the

network graph they are missing. This is quite common for very short edges,

which for example occur in roundabouts. In these instances, speed limits of

30 kmh−1 are assumed. If more than one speed limit is given, for example

if the speed limit changes somewhere on the edge, the lowest is used. In the

street map data of the Viennese district Favoriten, speed limits were given as

single values 2638 times, 17 times as multiple values and 131 times no values

were assigned.

As approximation for the travel speed, the speed limit is used. The travel

time t in seconds for each edge is calculated using the travel speed v in kmh−1

and the travel distance d in meters with the formula

t = d/(v/3.6) . (32)

Travel times need to be rounded to integers to satisfy the OR-Tools’ require-

ments and are added to the network graph. The average edge length is about

117.5m and the average travel time is about 12.1 s.

The travel time matrix T consists of elements tij which are equal to the

time needed to travel from the ith node to the jth node. In analogy, the

distance matrix D is made up of distances dij. To obtain both matrices,

the fastest route from the ith node to the jth node is calculated with Di-

jkstra’s Algorithm, as explained in Chapter 4.3. The algorithm is already

implemented in NetworkX and can be used through OSMnx. Travel times

are used as weights. Using the fastest routes, travel times and travel dis-

tances are calculated by summing up the respective values for the edges on

the route. These values are saved in the matrices T and D. Due to one-way

streets, it is possible that tij �= tji and dij �= dji, meaning that the matrices

are asymmetrical.

In some cases, it is not possible to find a route. This is because of

one-way streets on the fringe of the map area. To guarantee for every node to

be reachable from any other node, some nodes are removed. Out of the orig-
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inal 1272 nodes in the street map of the district Favoriten, 28 are removed,

which are about 2.2% of total nodes. The removed nodes are visualised in

Figure 3. The final dimensions of both matrices for the Favoriten map are

1244×1244. The travel time matrix T , the distance matrix D and mappings

of the indices, linking the OpenStreetMap data and the matrices, are saved.

5.1.2 Points of Interest

To identify points of interest, amenity data are downloaded from

OpenStreetMap and saved as a CSV file for further processing. Points of in-

terest can be used to define police patrol locations. The full list of all amenity

tags in the map of Vienna’s district Favoriten and their associated frequen-

cies are displayed in Appendix A in the Tables 10 and 11. Amenity tags,

which are associated with a higher fluctuation of people or more nightlife,

are chosen as potential points of interest and are displayed in Table 2.

Amenity Tag Frequency

restaurant 151

fast food 113

cafe 97

place of worship 41

toilets 30

atm 28

bank 27

pub 20

community centre 12

social facility 12

bar 10

Amenity Tag Frequency

gambling 9

brothel 6

cinema 2

theatre 2

events venue 2

marketplace 2

biergarten 2

casino 1

food court 1

money transfer 1

internet cafe 1

Table 2: Used amenity tags of the Favoriten map with their associated fre-

quencies.
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In general, the found amenity coordinates are not located directly on

nodes of the street network graph. Also, the amenity coordinates are not

always given as single points, but also as coordinates of vertices of line seg-

ments, polygons or multiple polygons. As an approximation for the location

of the amenity object, average longitude and latitude values of the vertices

are calculated. An example for an amenity object with multiple polygons is

the layout of the Church of St. Francis de Sales, which has an inner yard and

a separated church tower. The church’s layout and the average coordinates

are visualised in Figure 4.

Figure 4: Example for multiple polygons: Church of St. Francis de Sales in

the district Favoriten in Vienna with inner yard and separated church tower.

The average coordinates are marked in red. (Map data © OpenStreetMap)

OSMnx is used to calculate the closest network nodes for all average

amenity coordinates. In the following chapters, network nodes are used as

mapping for amenities. All average amenity coordinates and the resulting

314 network nodes with mapped amenities are shown in Figure 5. Out of

these network nodes, a fixed random sample of 30 distinct network nodes is

chosen as patrol locations.

47



Figure 5: Network graph of the district Favoriten in Vienna with relevant

amenity locations in blue and mapped network nodes marked in red. (Map

data © OpenStreetMap)

There are seven police stations in the district Favoriten. Their locations

on the map can be found in Appendix A in Figure 24. To simplify the

simulation, the police station located at Van-der-Nüll-Gasse 11 is chosen as

the only start and end location for all patrolling police vehicles in the district.
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5.2 Simulation Model

The simulation can be understood as agent-based model [56]. Decisions are

made using simple rules. The sum of all decisions results in the state of

the simulation. A centralised approach with a mediator agent is used, as

described in [57]. The mediator agent coordinates all police vehicles.

In the following chapters, the central parts of the simulation are lined out.

Restrictions and assumptions are discussed in Chapter 5.2.1. In Chapter

5.2.2, the calculation of emergency data is explained. The importance and

usage of time windows and dummy nodes is discussed in Chapter 5.2.3. In

Chapter 5.2.4, the utilisation of OR-Tools is addressed. An overview over

the simulation algorithm is given in Chapter 5.2.5. Finally, in Chapter 5.2.6,

the acquired data are discussed. The full code written for the simulation can

be found on GitHub [53].

5.2.1 Restrictions and Assumptions

The restrictions and assumptions of this simulation can be split in four cat-

egories: police vehicles, patrols, emergencies and travel.

Police Vehicles

For simplicity, actual police jurisdictions are ignored and only one police

station is used for the whole district Favoriten. It is assumed that no vehicles

or teams of policemen or policewomen are assigned to active emergencies at

the start of the simulation. Thus, they are available to patrol. All vehicles

start at the police station and have to return to it at the end of the simulation.

Patrols

The chosen patrol locations are distinct and the police station cannot be

a patrol location. The patrol duration is assumed to be constant for all

locations. If a patrol location is visited for the defined patrolling time, it is

marked as visited. It is also marked as visited if a police vehicle is called to

an emergency at this very location or if the location is visited for a patrol

and, because of an emergency, the vehicle needs to leave. Just passing the

node is not enough. If the patrol location is not visited in the planned time

window, it will be saved as missed location.
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Emergencies

As a simplification, emergencies only occur at network nodes. Network

nodes are used as representative of their proximity. Notably, an emergency

can also happen at the node of the police station. The emergency duration is

assumed to be independent from the arrival time. Each emergency is assumed

to only require one police vehicle, which resumes patrolling immediately after.

Out of all vehicles which are currently not assigned to an emergency, the

vehicle with the fastest response time is sent to the emergency location. If

no patrolling vehicles are available, the emergency is saved for later analyses.

This data could be used for taking extra vehicles from other police stations

or extra teams into account, which are not assigned to patrol duty.

Travel

As discussed in in Chapter 5.1.1, the travel speed for each edge is assumed

to be the speed limit. The travel time matrix is assumed to be constant.

Changes in the travel speed caused by accidents, traffic and time to accel-

erate or break are not taken into account. Notably, the travel speed to an

emergency location is also the same as the values for the edges of the net-

work graph. It is also assumed that the police vehicles always take the fastest

route, which is calculated with Dijkstra’s Algorithm. Vehicles are only al-

lowed to change their direction at nodes. This assumption is practical for

dealing with one-way streets, but also realistic in a dense city setting, where

space to turn the vehicle could be sparse.

5.2.2 Emergency Data

As detailed historical emergency data are not accessible to the public, as-

sumptions need to be made for emergencies in the simulations. To create

an emergency, a start time, an emergency duration and a location are de-

termined. As location, a node is chosen out of all network nodes with equal

probability. The node functions as representative for the proximity of the

node itself. The start time of emergencies is assumed to be uniformly dis-

tributed in the simulation time span. The emergency duration is calculated

with a Gaussian distribution. If the obtained emergency duration is less than

a defined minimum duration threshold, it is recalculated. The total number
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of emergencies is calculated in an analog procedure, it is recalculated if less

than 0 is returned. Distribution parameters for emergencies are set in the

simulation configuration. Example probability density functions of the total

number of emergencies are shown in Figure 6.

Figure 6: Example probability density functions for the total number of

emergencies with different means µ and standard deviations σ.

Table 3 shows an example emergency data set with time values in seconds

and the emergency location given as an OpenStreetMap node ID. The values

displayed as ”None” in the table are calculated and added when a police

vehicle is assigned to the emergency.

start time 2034

duration 1189

arrival time None

end time None

assigned vehicle id None

location 84285756

Table 3: Example emergency data set.
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5.2.3 Time Windows and Dummy Nodes

All patrol locations, the police station and the current vehicle locations need

time windows. As the simulation time progresses, the time windows are

adapted gradually. The police station is an exception because it always

needs to be available for returning police vehicles. Therefore, the time win-

dow [0, 86400], which is equivalent to a full day, is used and never updated.

Each patrol location has its own time window, within which a police vehicle

can patrol. For example, at the simulation time of 100 seconds, the time

window [50, 200] is changed to [0, 100]. Time windows are also important

to enforce correct vehicle behaviour. In case of an emergency or a vehicle

returning from an emergency, the routes for all vehicles are calculated again.

In general, the position of patrolling vehicles could be anywhere on the net-

work graph when recalculating the routes, as the vehicles are in motion and

not necessarily on nodes. In this case, the upcoming network node on the

vehicle route is assigned as the new start point for the route calculation.

To avoid teleportation of the vehicles, the remaining travel time to the next

node on the route is used for both values in the time windows, for example

[20, 20] if the vehicle arrives in 20 seconds at the new starting node. In case

of patrolling vehicles, the time already spent for patrolling is subtracted from

the total patrol time per location, for example [260, 260] if the vehicle has

already patrolled 40 seconds out of total planned 300 seconds patrolling time.

Time windows determine when a vehicle leaves a node. Therefore, with

two or more vehicles at the same location, additional time windows are

needed. Dummy nodes are introduced to tackle this problem. A dummy

node is an exact copy of the original node, but has a different time window.

The travel time from a copied node to the original node is 0 seconds.
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5.2.4 Route Calculation

Patrol routes are calculated using OR-Tools [50]. The total travel time for

all vehicles is used as optimisation target for the calculated routes. To be

consistent with the defined quality criteria in Chapter 5.4.1, waiting times at

locations other than the police station are not allowed. A penalty of 86 400

seconds is defined for missed patrol locations, which is equivalent to one day.

The patrolling time per location is set to specify the time spent at patrol

locations.

A first solution strategy and a local search metaheuristic need to be chosen in

the simulation configuration file. Available methods were already discussed

in Chapter 4.4. Also, solution and time limits need to be given as termination

criteria for the local search algorithm.

Every time new routes are calculated, following data need to be prepared:

• Number of available police vehicles

• Location of the police station

• Start and end nodes for each police vehicle

• Travel time matrix for all used locations, including dummy locations

• Time windows for all used locations, including dummy locations

In the simulation, the calculation of new patrolling routes needs to be per-

formed up to twice the number of emergencies: Patrolling routes are calcu-

lated each time an emergency occurs and a police vehicle drives to the emer-

gency location, or an emergency ends and a police vehicle becomes available

for patrolling again.
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5.2.5 Simulation Algorithm

In the configuration file, the police station, the number of police vehicles,

their starting locations and the patrol locations with their related time win-

dows are defined. Emergency and route calculation configurations were al-

ready discussed in Chapter 5.2.2 and 5.2.4.

In Figure 7, the flow of a single simulation run is visualised. At the start

of the simulation, if not specified otherwise, the current time in nanoseconds

is used as seed and variables are initialised. The simulation time is set to 0.

All emergencies are created and copied to the event queue. The simulation

loops over all elements in the event queue.

At the start of each loop, the events in the event queue are sorted by occur-

rence. Using the current simulation time, the list of yet to be visited patrol

locations and their corresponding time windows are updated. If vehicles are

available, dummy locations and all time windows are adapted as described

in Chapter 5.2.3, and routes are calculated as described in Chapter 5.2.4. If

there are no events in the event queue and, therefore, the last event was the

end of an emergency, the results are saved and the simulation is terminated.

If there are more events left, the next one is taken and removed from the

queue. The current simulation time is set to the event time and all cur-

rent vehicle positions are calculated. Moreover, the list for already visited

patrol locations and the list for locations which have not yet been visited

are updated. If the event is the start of an emergency, the vehicle with the

fastest response time is chosen and removed from the list of patrolling vehi-

cles. The police vehicle’s route is adapted and a return event is added to the

event queue. If the event is the end of an emergency, the vehicle is marked as

available again. The simulation continues with the next iteration of the loop.

As each simulation run is independent, multiprocessing is implemented

to speed up the time it takes to run multiple simulations. The total num-

ber of simulation runs and the amount of parallel processes are set in the

configuration file. Also, a list with simulation seeds can be used to run the

simulation with the same emergencies but different configurations.
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Figure 7: Flowchart of a single simulation run.
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5.2.6 Collected Data

For each simulation run, a JSON file is saved when the simulation terminates.

JSON files are human-readable and can be processed for further analyses.

The following generated data is collected:

• Calculation time

• Vehicle information: ID of each attended emergency, old routes and

the final route

• All visited locations, including emergency locations

• Emergencies, including time stamps, location and assigned vehicle ID

• Missed emergencies, including start time and location

Moreover, configuration data are saved to some extent. This is helpful

for running plausibility tests which are discussed in Chapter 5.3.2, and to

carry out further analyses. Also, saved configuration data, especially the

random seed, ensure reproducibility of simulation results. Additional saved

data includes the following configuration information:

• Simulation seed

• Route calculation parameters: first solution strategy, local search meta-

heuristic, solution and time limits

• Location of the police station

• Patrol locations

• Patrolling time per patrol location
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5.3 Model Validation

To validate the model, two strategies are implemented. The first strategy is

unit tests for isolated functions which are discussed in Chapter 5.3.1. The

second strategy is about plausibility tests used to verify if the output is

in line with the assumptions and expectations, which is further explained

in Chapter 5.3.2. The full code for the model validation is available on

GitHub [53].

5.3.1 Unit Tests

Unit tests for isolated functions are conducted to track down bugs. They

allow to narrow down the search area for unwanted behaviour of the simu-

lation. This is especially useful if bugs occur after changes in the code were

made.

The practicability of simulation configuration data is validated and tests

are implemented for the following simulation steps:

• Creation of emergency data

• Creation of dummy locations and updated time windows

• Data preparation for the route calculation

• Updating the patrol location: removing visited locations and updating

time windows

• Updating the visited locations list

• Choosing the correct response vehicle

• Updating routes for each vehicle

• Updating the vehicle information, including positions, time to reach

the next location and time spent at the current location
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Unit tests are only as good as their test cases. Unfortunately, it is easy

to miss edge cases. To tackle this issue, complementary to the unit tests,

plausibility tests are conducted, which are discussed in the next chapter.

5.3.2 Plausibility Tests

The main goal of plausibility tests is to see if the output of the simulation

is valid. The approach can be simpler to implement than unit tests, where

the test case needs to be considered first. Furthermore, a huge number of

saved simulation data can be validated with plausibility tests. However, the

downside of this approach is that the origin of the bug cannot be narrowed

down. A wrong time window could result in wrong travel times, prolonged or

shortened stays at different locations and the absurdity of a vehicle leaving

a location before it has not even arrived. A bug related to dummy locations

could result in teleportation of vehicles.

To reduce the number of bugs, the following criteria are tested:

• The start time of an emergency is less than or equal the arrival time of

the police vehicle

• The end time of an emergency is equal to the emergency duration added

to the arrival time of the police vehicle

• Missed emergencies are tracked correctly

• Visited locations are tracked correctly

• The end node of each route is the police station

• The arrival time at a location is always less than or equal the departure

time

• All travel times are consistent with the map data

• Stays are only allowed at the following locations: police station, emer-

gency locations and patrol locations
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• The time spent at an emergency location is consistent with the emer-

gency duration

• Patrolling times are consistent with the defined patrolling time in the

simulation configuration, except when the vehicle is called to an emer-

gency while patrolling

5.4 Quality Criteria

As simulation targets or key performance indicators for police patrols, quality

criteria are defined. Quality criteria are defined in Chapter 5.4.1 and the

calculation is explained in Chapter 5.4.2.

5.4.1 Definition of Quality Criteria

Quality criteria aim to measure the quality of a patrol and the impact of

changes in the simulation settings. Some simulation settings like patrol lo-

cations or the number of patrolling vehicles can be changed by someone

planning a patrol, while settings like the map or emergencies are not control-

lable. However, settings that cannot be influenced may also be interesting to

explore, for example to understand the impact of more frequent emergencies.

To express different interests, the quality criteria can be split in three cate-

gories: emergencies, patrols and resources.

Emergencies

The number of emergencies cannot be influenced and needs to be mon-

itored. In the simulations, the number of emergencies is the only randomised

parameter and influences all other quality criteria.

Ideally, no emergency should be unanswered and, therefore, emergencies al-

ways have priority. The number of missed emergencies or, alternatively,

the number of additional vehicles needed can be used as quality criterion. If

no patrolling vehicle is available, another team needs to fill in. This means

that other tasks like office work need to be interrupted.
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Alternatively, another team needs to be requested from another police sta-

tion. This could potentially lead to increased response times.

The response time is also an important factor for police patrols, and should

be as low as possible [1]. In a real world setting, the response time could

make an important difference, for example, if a suspect is getting caught or

fleeing a crime scene. Potentially, a low response time could even save lives.

Patrols

Patrolling reduces the number of crimes [3]. Thus, it is important to show

presence and deter potential criminals [1]. Naturally, as many of the defined

patrol locations as possible should be visited and the number of visited

patrol locations should be high. Depending on the number of emergencies

and their locations, it is possible that not every patrol location can be vis-

ited. To keep route planning flexible and increase the chances of every patrol

location to be visited, time windows for patrol locations should be as large

as possible.

Also, as a quality measure of the shown presence, the map coverage of the

patrolling vehicles can be used.

Resources

Additional benefits of patrolling and showing presence decrease over time

[5]. Also, the investment of a police vehicle with an assigned team of police-

men yields cost. To measure cost and workload, the total travelled time

and the total travelled distance can be used.

While a lower number of emergencies cannot be forced, lowering the time

investment and the travelled times could free personnel resources for other

tasks. From a resource point of view, patrolling should be finished as soon

as possible.

Naturally, there is no solution that optimises all the categories at once,

and, obviously, due to different interests, some of the quality criteria are con-

tradictory.
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5.4.2 Calculation of Quality Criteria

To calculate the defined quality criteria, the data collected in the simulation

are used. Which data are collected was explained previously in Chapter 5.2.6.

Emergencies

The number of emergencies is calculated by counting the emergencies

from the emergency list, given by the simulation.

The number of missed emergencies can easily be calculated by counting

the elements of the missed emergency list, returned by the simulation.

For the response time, two cases need to be differentiated: attended and

missed emergencies.

The response times for attended emergencies can easily be calculated using

the saved time stamps in the output file with

response time = arrival time− start time. (33)

The format of the saved emergency data was shown in Table 3 in Chapter

5.2.2.

However, due to potentially missed emergencies, the list of response times is

not always complete. In this case, another vehicle with another team has to

step in and deal with the emergency. The new vehicle might not be ready

to leave or might be at another location, maybe even another district. To

take those response times into account, a penalty value is used for missed

emergencies.

The penalty value is defined as

max
s,e

min
x(s,e)

�
i,j

tij · xij, (34)

with x(s, e) being a route from a starting node s to an end node e. x is

defined as a set of indicators xij which equal 1 if the path from the ith to the

jth node is part of the route. The indicator function was defined previously

in Equation 1 in Chapter 2.1. tij are the travel times from the ith to the jth

node. Equation 34 yields the longest time a vehicle can travel between any
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two nodes of the graph, while still taking the fastest route.

Using the map of the district Favoriten in Vienna, as explained in Chapter

5.1.1, the penalty value is the maximum entry in the travel time matrix T .

It is determined as 1019 seconds, which equals 16.983 minutes.

A complete list of response times that takes every emergency into account

can be calculated with the penalty value. For easier visualisations, this list

can be averaged to a single average response time value.

Patrols

The number of visited patrol locations is calculated by counting the

patrol locations that are saved as visited locations in the output file.

The map coverage in percent can be calculated by adding the travelled dis-

tances dij for all traversed edges and dividing the sum by the total network

size:

map coverage =
unique travel distance

total network size
(35)

To calculate a map coverage which is between 0% and 100%, travelled dis-

tances are only added once, even if a segment is used multiple times in the

travelled routes. Some roads are one-way streets and others are not. Thus,

two-way roads are also only counted once for the unique travelled distance

and the total network size. The removed edges, as explained in Chapter 5.1,

are ignored.

Resources

Adding up the distances for all traversed edges including duplicates yields

the total travelled distance.

The total travelled time is calculated analogously to the distance, but also

the time spent at emergencies or patrolling is added. Notably, time spent at

the police station is not considered.
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5.5 Simulation Settings

In this chapter, the used settings for the simulations are summarised. As

explained in Chapter 5.1.2, a fixed set of 30 patrol locations is drawn ran-

domly from a list of relevant amenity nodes for all simulations. An image

of the map with the marked patrol locations and the used police station is

given in Figure 8. The available police stations and the chosen one were also

discussed in Chapter 5.1.2.

If real hotspot data are available, the nodes can simply be interchanged.

As reference for the settings in the configuration file of the simulation,

Table 4 can be used.

Heuristic Method Parallel Cheapest Insertion

Metaheuristic Method Guided Local Search

Solution Limit 106

Time Limit 4 s

Simulation Duration 10 800 s (= 3 h)

Number of Vehicles 4

Patrolling Time per Location 600 s (= 10min)

Number of Events µ 6

Number of Events σ 4

Earliest Starting Time of Emergency 0 s

Latest Starting Time of Emergency 10 800 s (= 3 h)

Minimum Event Duration 120 s (= 2min)

Event Duration µ 900 s (= 15min)

Event Duration σ 300 s (= 5min)

Table 4: Settings used for the simulations. If not stated otherwise, those

settings are used in Chapter 6.
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Figure 8: Network graph of the district Favoriten in Vienna, with patrol

locations marked in red and the police station marked in green. (Map data

© OpenStreetMap)

The first solution strategy, or construction heuristic, is an insertion method,

as described in Chapter 3.2.1. For improving the solution, a metaheuristic

algorithm is used. Metaheuristic algorithms were explained in Chapter 3.3.

Mainly Guided Local Search is used in the following, which was explained in

Chapter 3.3.3, but also Simulated Annealing is applied for some comparisons.

Simulated Annealing was discussed in Chapter 3.3.4.

The simulation duration is chosen to be 3 hours and sets an upper time limit

for the time windows of the patrolling locations. The patrol duration per
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patrolling location is chosen to be 10 minutes, similar to the values in the

literature [3], [5]. At the start of the simulation, all vehicles’ starting loca-

tions are set to the police station.

The parameters for generating emergencies are also listed in Table 4. They

were explained in Chapter 5.2.2. Those parameters can be replaced by real

historic data or by data given by an expert.

A list of OR-Tools search parameters is given in Appendix B.

In the following chapters, some parameters are varied. Those parameters

include the used metaheuristic method, the solution and time limit and the

number of vehicles. Also, many simulations are conducted with and with-

out patrolling locations. For the calculation of emergencies, seeds are used.

Thus, for better comparability of the results, the same emergencies are gen-

erated. In Chapter 6, the settings and the number of simulations are noted.

If not stated otherwise, the settings from Table 4 are used.
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6 Results

In the following chapters, results and insights are discussed. Guided Local

Search and Simulated Annealing are compared in Chapter 6.1. In Chapter

6.2, the quality criteria are analysed for different settings, showcasing the

practical usability of the implemented model. The performance of the simu-

lation is discussed in Chapter 6.3. The stopping rules and the quality criteria

as target parameters are discussed in Chapter 6.4.

6.1 Guided Local Search and Simulated Annealing

In this chapter, Guided Local Search and Simulated Annealing are compared

as solution methods for this simulation model. Notably, the final routes of

the vehicles are compared, as they are considered a result of the simulation.

The final routes include changes caused by emergencies.

The simulation is run for four vehicles and with different time limits for the

route calculations. For each time limit, a sample of n = 200 simulations is

calculated. For more comparability of the results, the same seeds and, there-

fore, the same emergencies are used for each set of calculations.

Results calculated with a solution limit of 109 and a time limit of 10 seconds

are used as a reference for comparison. The amount of simulation outputs

which are identical to the reference solutions are displayed in Table 5.

Solution Limit 1 106 109

Time Limit 1 s 1 s 2 s 3 s 4 s 5 s 6 s 8 s

Simulated Annealing 0 197 199 199 200

Guided Local Search 0 50 132 157 176 186 189 198

Table 5: Number of identical simulation results compared to the calculations,

with a time limit of 10 seconds and a solution limit of 109. The sample sizes

are n = 200 respectively.

The values which are set for the time limit are the limiting factor. Only

in the first case, the solution limit is set as low as possible to depict what

happens at the beginning of the simulation.
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In the time frame of the first second, most of the simulation results change if

the Simulated Annealing algorithm is used. In the following 9 seconds, only

three additional simulation results change. With the results already being

the same as the reference solutions, the calculations for the empty cells are

omitted. The simulation data collected with Guided Local Search change

more gradually.

So far, it is not clear which algorithm performs better than the other in

regards to the simulation. Due to having four vehicles available, barely any

patrol locations or emergencies are missed, independently of the algorithm.

To help deciding which metaheuristic algorithm will be used in the following,

one of the quality criteria in Chapter 5.4.1 is used, namely the total travelled

distance. The average total travelled distance over all 200 simulations should

be as low as possible and is displayed in Figure 9.

Figure 9: Average total travelled distances in kilometers for different time

limits. The sample sizes are n = 200 respectively.

Obviously, by generating many of the same routes, the simulations using

the Simulated Annealing metaheuristic yield almost the same average total

travelled distances for different time limits.
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As shown in Figure 9, the results calculated with the Guided Local Search

algorithm are lower. For example, for a time limit of 4 seconds, the average

total travelled distance is 66.61 km for Simulated Annealing and 62.47 km for

Guided Local Search, which is 6.2% less. The total travelled time is displayed

in Appendix A in Figure 25. The results are similar, but percentage-wise,

the differences are lower. The routes calculated for the special case with-

out emergencies do not change after a calculation time of one second. The

total travelled time and distance calculated with Guided Local Search are

20 399 seconds and 28.0 km, which are lower compared to 20 725 seconds and

32.6 km when using Simulated Annealing.

As the Guided Local Search metaheuristic with a time limit of 4 seconds

already calculates 88% of the simulation results received with 10 seconds,

those parameters will be used in the following.

6.2 Analyses of Quality Criteria

To showcase the simulation model and assess the usability of the defined

quality criteria, the simulation is conducted n = 2000 times, respectively for

one, two, three and four police vehicles with and without patrolling at the

previously defined patrolling locations. In the following, the special case of

no emergencies is also referred to. With the randomness of the emergencies

removed, only one simulation result is needed, which is already included in

the other simulations.

6.2.1 Number of Emergencies

As described in Chapter 5.2.2, the Gaussian distribution is used for creating

emergency data and if values below 0 appear, a new value is calculated. The

results are shown in Figure 10. They are calculated with the in Chapter 5.5

defined mean µ = 6 and standard deviations σ = 4. The average number of

calculated emergencies for the used seeds is 6.48 and the calculated standard

deviation is 3.60. As the same 2000 seeds are used for different settings –

different amount of vehicles with and without patrolling locations –, the same

sets of emergencies are created each time.
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Figure 10: Frequency of the number of emergencies with mean µ = 6 and

standard deviations σ = 4, with a sample size of n = 2000.

6.2.2 Number of Missed Emergencies

With the used seeds, emergencies appear as frequently as 20 times per sim-

ulation. Naturally, with less vehicles available, the number of missed emer-

gencies increases.

As shown in Table 6, removing a vehicle from the simulation increases the

number of missed emergencies significantly. Removing one vehicle after an-

other, starting with four, the average number of missed emergencies increases

by a factor of 5.15, 4.17 and 3.13, despite only removing 25%, 33.3% and

50% of vehicles.

If the number of vehicles is decreased, the standard deviation increases. Four

vehicles are always able to reach a minimum of 4 emergencies, even if they

occur at the same time. One vehicle can theoretically miss all emergen-

cies except one. Therefore, more variation in the results is plausible for a

lower number of vehicles. Also, the maximum value of missed emergencies

increases.
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Number of Missed Emergencies

Number of Vehicles Mean SD Maximum

1 2.690 2.346 14

2 0.859 1.257 9

3 0.206 0.563 5

4 0.040 0.224 3

Table 6: Number of missed emergencies with calculated mean and standard

deviation values for different numbers of patrolling vehicles. Also, the maxi-

mum occurred value is displayed.

The values are similar for the calculated simulation results without pa-

trolling locations, as shown in Table 7. While the differences might not be

significant, it is noticeable that all mean and standard deviation values are

slightly higher than their respective values in Table 6. This observation might

be explained by the following reasons: Without patrol locations, vehicles are

no longer forced to move around the map and are more likely to be clumped

together at or around the police station. Also, as shown previously in in

Figure 8 in Chapter 5.5, the police station is located very peripheral in the

north of the map.

Number of Missed Emergencies

Number of Vehicles Mean SD Maximum

1 2.716 2.361 14

2 0.900 1.291 9

3 0.229 0.603 6

4 0.045 0.246 3

Table 7: Number of missed emergencies with calculated mean and standard

deviation values for different numbers of patrolling vehicles. Also, the maxi-

mum occurred value is displayed. The vehicles are not patrolling.
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The impact of the number of emergencies on the number of missed emer-

gencies is shown in Figure 11. As already discussed, a greater number of

available vehicles decreases the number of missed emergencies. Figure 11

visualises that additional vehicles are especially beneficial for large numbers

of emergencies, which are more likely to overlap in time.

(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 11: Number of missed emergencies depending on the number of emer-

gencies. Displayed for one, two, three and four patrolling police vehicles.
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As shown by the colour grading used in Figure 11, markers with the

highest frequency are distributed around the average number of emergencies,

which is 6.48. Values marked in darker blue colour appear less often. While

the mean number of missed emergencies might be low, each missed emer-

gency represents an additionally needed vehicle. Therefore, from a practical

point of view, the maximum amount of missed emergencies might also be

important to consider.

6.2.3 Number of Visited Patrol Locations

The number of visited patrol locations is shown in Table 8. Obviously, more

vehicles are able to patrol more locations. On average, three vehicles already

reach 29.678 out of the total 30 patrol locations. While the calculated mean

is already almost at the maximum value, the fourth vehicle still increases the

minimum number.

Number of Visited Patrol Locations

Number of Vehicles Mean SD Minimum Maximum

1 11.503 2.315 4 17

2 24.549 3.376 13 30

3 29.678 0.868 23 30

4 29.992 0.095 28 30

Table 8: Number of visited patrol locations with calculated mean and stan-

dard deviation for different numbers of patrolling vehicles. Minimum and

maximum values are also displayed.

Figure 12 shows the number of visited patrol locations, depending on the

number of emergencies. If no emergency appears, one vehicle is able to visit

16 patrol locations, while two, three and four vehicles are able to patrol all.

Without emergencies, the maximum amount of two vehicles is sent patrolling

by the model. The remaining vehicles stay at the police station.
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(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 12: Number of visited patrol locations depending on the number of

emergencies. Displayed for different numbers of patrolling police vehicles.

In Table 8, the maximum number of visited patrol locations for one ve-

hicle is 17. Looking at Figure 12a, this maximum is reached in a simulation

with two emergencies. With the used assumptions, emergencies can be ad-

vantageous for the number of visited patrol locations. A location is marked

as patrolled, even if only a part of the total patrolling time is spent. Also,

emergencies can occur at patrol locations. For three and more vehicles, emer-

gencies can also be beneficial. As stated previously, at least two patrolling

vehicles are needed to patrol all locations if no emergencies occur. Emer-

gencies force vehicles to move to different positions on the map and occupy
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them for a certain amount of time. Depending on the state of the simula-

tion, another vehicle might be forced to leave the police station. After the

emergency is dealt with, it might not be optimal to drive back to the police

station, but to visit patrol locations instead.

6.2.4 Response Times

The average response times for each simulation are displayed with and with-

out penalty for missed emergencies in Figure 13.

(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 13: Average response times for each simulation depending on the

number of emergencies. Displayed for different numbers of police vehicles.
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The charts show the importance of the added penalty value in the calcu-

lation of average response times. Without penalty for missed emergencies,

less vehicles would barely yield worse response times, which is unrealistic.

With the penalty value, however, the impact of additional vehicles is clearly

visible. This also shows the importance of choosing a good penalty value.

The average response times for each simulation without patrolling is shown

in Figure 26 in Appendix A. The figure appears to be similar to Figure 13.

(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 14: Response times averaged for each number of emergencies. The

average is calculated for simulations with and without patrolling locations

and displayed depending on the number of emergencies for different numbers

of police vehicles.
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Notably, the values without patrolling points of interest are higher than

their counterparts with patrolling. Also, the response times without penalty

values appear to be almost constant. Thus, no significant impact on the

response times is suggested for emergencies that are not missed.

The response times averaged for each number of emergencies are displayed

in Figure 14. The values are calculated for the simulations with and without

patrolling and with and without penalty. As shown previously in Chapter

6.2.1 in Figure 10, only a few simulations were designed to generate high

numbers of emergencies. Therefore, higher numbers of emergencies have a

small sample size and the displayed values are less representative.

In Figure 15, the standard deviations are displayed for each number of

emergencies. With the exceptions of one and two vehicles with penalty, the

calculated values are again higher for simulations without patrolling, com-

pared to those with patrolling. Notably, the standard deviation only increases

significantly if a penalty value is used. This suggests that the response times

for emergencies do not spread significantly more if more emergencies occur.

Again, the smaller sample size for higher numbers of emergencies might re-

sult in less representative results.

To examine the influence of the number of emergencies on the response time

in greater detail, it might be beneficial to change the probability distribution.

For example, uniformly distributed numbers of emergencies could be used.
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(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 15: Standard deviations of the response times for each number of

emergencies. The standard deviation is calculated for simulations with and

without patrolling locations and displayed depending on the number of emer-

gencies for different numbers of police vehicles.
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6.2.5 Total Travelled Distance

The average total travelled distances and their associated standard deviations

are displayed in Figure 16.

Figure 16: Average total travelled distances with standard deviations in

kilometers for different numbers of police vehicles. Displayed for simulations

with and without patrolling locations and also without emergencies.

The case without emergencies is the simplest: As all randomness is re-

moved, all simulations calculate the same output, so only one simulation

(n = 1) is used. Increasing the number of available vehicles from one to two

increases the average total travelled distance from 8.716 km to 28.029 km.

Additional vehicles yield no further improvement, as only a maximum of two

vehicles is needed to visit all patrol locations.

Emergencies force more vehicles to travel. For the simulations with emer-

gencies, the average total travelled distances increase with the number of

available vehicles. Notably, not only the mean increases if more vehicles are

available. Also, the standard deviation increases with the number of vehicles.

As one vehicle is already used at full capacity, similar mean values are re-
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ceived with (22.416 km) and without patrolling (22.057 km). Adding a second

vehicle almost doubles the average total travelled distance with patrolling

(43.123 km). Without patrolling (32.689 km), the improvement is not as sig-

nificant. Four vehicles, however, reach almost always all 30 patrolling loca-

tions and rarely miss emergencies. With the additional capacities, the mean

total travelled distances increase to 63.443 km with and 37.899 km without

patrolling. Also, due to the additional capacities, the variance of emergencies

can be carried over to the total travelled distances.

The standard deviation is larger for simulations without patrolling locations,

compared to those with patrolling vehicles. This is expected, as patrolling

forces vehicles to travel, independent of emergencies. In a way, a lower bound

for the total travelled distances is established, while the simulation duration

provides an upper bound. Notably, the total travelled distance without emer-

gencies can theoretically be undershot, as vehicles can be forced to spend time

at emergencies instead of driving.

Figure 17 shows the total travelled distances for each simulation, broken

down for each number of emergencies. The impact of patrolling becomes

visible first for lower numbers of emergencies. Additional vehicles provide

capacities to set the two clouds of data points further apart.
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(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 17: Total travelled distances for each simulation depending on the

number of emergencies. Displayed for different numbers of police vehicles.

6.2.6 Map Coverage

With the map coverage being closely related to the total travelled distance,

the results are expected to behave in a similar way. However, as displayed

in Figure 18, there are notable differences. When increasing the number of

vehicles from three to four, there is a lack of improvement. As explained in

Chapter 5.4.2, edges are only counted once for calculating the map coverage.

While additional vehicles are able to travel more, the additional fourth police

vehicle is not very likely to drive on many new road segments.

80



Thus, the map coverage only improves from 17.56% to 17.63% with and

from 8.19% to 8.31% without patrolling.

Figure 18: Average map coverage in percent for different numbers of police

vehicles. Displayed for simulations with and without patrolling locations.

Standard deviations in percentage points are displayed as error bars.

Patrolling vehicles without emergencies follow a route, calculated with

the Guided Local Search algorithm. As this route is supposed to be an ap-

proximation of the fastest route possible, it is not expected to include many

duplicated edges. On average, simulations with emergencies and without

patrolling yield a greater total travelled distance for two and more vehicles,

compared to the reference case without emergencies. Therefore, the lack of

map coverage can be explained by the repeated use of the same roads of the

road network, when only driving to emergencies. Again, the map coverage is

constant for two and more vehicles if no emergencies appear.

Similar to the previous chapter, the standard deviation is smaller for pa-

trolling vehicles with emergencies, compared to the data from the simulations

in which patrolling is omitted.

81



In Figure 19, the influence of the number of emergencies on the map cov-

erage is displayed. Without patrolling and with few emergencies, the map

coverage is low and increases with the number of emergencies. Again, pa-

trolling enforces a lower bound and increases the map coverage. Hence, the

lower variance observed in Figure 18 can be explained.

(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 19: Map coverages for each simulation depending on the number of

emergencies. Displayed for different numbers of police vehicles.
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6.2.7 Total Travelled Time

The mean values and the standard deviations for the total travelled times

are displayed in Figure 20. Notably, waiting times at the police station is not

counted towards the total travelled time. Therefore, the simulations with-

out patrolling only collect time while responding to emergencies. This yields

lower average total travelled times.

Figure 20: Average total travelled times in seconds for different numbers of

police vehicles. Standard deviations are visualised with error bars. Displayed

for simulations with and without patrolling locations.

The small standard deviations for one and two vehicles with patrolling

locations can be explained by exhausted capacity. One vehicle travels on av-

erage 11 016 seconds which is equal to 3.06 hours. Two vehicles travel 21 804

seconds or 6.06 hours. The total patrolling time is set to 3 hours (10 800

seconds), but vehicles still have to return to the police station if time has run

out. Also, emergencies can last longer than the planned maximum patrolling

time.
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As shown in Figure 21, one and two vehicles reach their maximum ca-

pacity. Therefore, the total travelled times appear to be independent of the

number of emergencies. Three and especially four vehicles are still able to

deal with higher numbers of emergencies and, therefore, are able to invest

additional time.

(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 21: Total travelled times for each simulation depending on the number

of emergencies. Displayed for different numbers of police vehicles.

Comparing Figure 21b with the time frame of 3 hours, it appears as if with-

out patrolling, two vehicles still have additional time capacities. In fact, as

discussed previously in Chapter 6.2.2, similar amounts of emergencies are

missed. Therefore, the unused time capacities are spent waiting at the police

station.
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6.3 Performance of the Simulation Model

The simulations were performed using a computer with the following speci-

fications:

• Operating System: Ubuntu 20.04.6 LTS

• Processor: Intel® Core™ i7-4790 CPU @ 3.60GHz × 8

• RAM: 32 GB

• Python 3.7.6

The full list of used Python modules and their version numbers can be found

on GitHub [53].

The biggest amount of calculation time is spent for planning the routes.

In this step, time is invested until the solution limit or the time limit is

exceeded. Naturally, the question occurs, how often routes are calculated.

Routes can be calculated up to two times the number of emergencies. The

first time is when a police vehicle is sent to an emergency and the second

time is when it continues patrolling. However, there are two cases in which

recalculating the routes is not necessary: if no vehicles are available because

they are all at emergencies and if no more locations are left for patrolling.

The latter also includes exceeding the time windows of the patrol locations.

In this case, all vehicles take the fastest route to the police station.

In Figure 22, the calculation time is displayed depending on the number

of emergencies. A sample size of n = 200 simulations is used. In Figure 22a,

the regression lines are almost identical and the angle between them is only

0.7°. If the number of police vehicles is reduced to two, as shown in Figure

22b, less vehicles are available and less data points with high calculation time

can be found.
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(a) Four Vehicles (b) Two Vehicles

Figure 22: Comparison of the calculation times for simulations with two and

four vehicles. As less vehicles are available, less route planning is performed.

Therefore, less calculation time is needed.

For a calculation time of 4 seconds, a slope of up to 8 is expected. In

reality, the slopes of the regression lines are about 6.89 and 7.53 in Figure

22a. As expected, the slopes for two vehicles are even lower, with about 3.97

and 4.95 seconds per emergency, as shown in Figure 22b.

Simulations with no emergencies are calculated in about 4 seconds. In this

case, the routes are calculated exactly once. If no patrol locations are defined,

the calculations are even faster, as only the fastest route to an emergency

location or back to the police station is calculated.

In Figure 23, different time limits are used, each with a sample size of

n = 200 and four vehicles. The seeds for each set of simulations are the same

and, therefore, each set uses the same emergencies. The calculation time

divided by two times the average number of emergencies is expected to be

similar to the time limit and, therefore, estimated by the identity function.
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Figure 23: Comparison of the time limits and the calculation times divided

by two times the average number of emergencies.

As shown in Figure 23, for time limits lower than 2 seconds, the calcu-

lation time divided by two times the average number of emergencies can be

higher than the identity function. For higher calculation times, the identity

function serves as an upper bound.

6.4 Stopping Rules for Monte Carlo Simulations

As discussed in Chapter 4.5, stopping rules can be used for Monte Carlo Sim-

ulations. In this chapter, an adaptation of Algorithm 7 with the Chebyshev

stopping rule is used, which is defined in Formula 25. The simulations are

run beforehand and only the results are used in the algorithm. This approach

allows to use different quality criteria without the need of time-consuming

recalculations of the simulations.
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With a given confidence level p and an interval defined by δabs, an estimate

for the number of necessary simulations can be calculated. Upon reaching

this estimate, the real mean is determined to be inside the confidence inter-

val, with a probability of at least the confidence level.

In the following, the previously defined quality criteria are used to show a

few examples. The dataset with n = 2000, a time limit of four seconds, four

patrolling vehicles and the Guided Local Search metaheuristic is used. The

confidence level is assumed to be p = 0.95 in this chapter. δabs is dependent

on the target parameter and the chosen settings.

Most of the quality criteria, as defined in Chapter 5.4.1 and as calculated

in Chapter 5.4.2, can be used for calculating Mstop. Examples for the simu-

lation with four patrolling vehicles are displayed in Table 9.

δabs Mstop XMstop

Total

Travelled Time

450 s

(= 7min 30 s)
1591

27 783.79 s

(≈ 7 h 43min)

Total

Travelled Distance
2 km 1951 63.345 km

Map Coverage 0.5 p.p. 599 17.467%

Number of

Emergencies
0.5 1008 6.39

Number of

Missed Emergencies
0.05 492 0.043

Number of Visited

Patrol Locations
2.04 · 10−7 111 30 + 4 · 10−15

Table 9: Examples for the usage of stopping rules with confidence level p =

0.95 andM0 = 100. The sample calculated with four patrolling police vehicles

is used. δabs is chosen and defines the confidence interval. Algorithm 7

terminates at the stopping index Mstop and the calculated mean value XMstop

is returned.
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Most of the defined δabs in Table 9 appear to be intuitive. However, the

number of visited patrol location stands out with a very small δabs. The

calculated Mstop barely surpasses M0 = 100. In the chosen dataset with four

vehicles, almost always all 30 patrol locations are visited. Therefore, the

sample variance is very small. In Algorithm 7, the sample variance is used

as replacement for the real variance for the Chebyshev stopping rule. Thus,

for many chosen δabs, the algorithm terminates right after passing M0.

In practice, if the number of visited patrol locations is chosen as target pa-

rameter for the stopping rules, δabs can be unintuitive to define. This quality

criterion is very dependent on the used simulation settings.

For comparison, in simulations with only one vehicle, more emergencies are

missed and less patrol locations are visited on average. A confidence interval

can be defined by δabs = 0.3 for the number of visited patrol locations and

Mstop = 1161 and XMstop = 11.50 can be calculated.

To sum up, the variance of target parameters heavily impacts the outcome.

For practical use, it is important to be aware to not misinterpret results with

different settings.

The response time is the only quality criterion which is not mentioned

in Table 9. The response time, calculated as explained in Chapter 5.4.2, is

a list of values. The length of the list varies, depending on the number of

emergencies. Calculating the average response time for each simulation and

then averaging again, as it would be done in Algorithm 7, is problematic.

Single response times would not be weighted equally.

Theoretically, Algorithm 7 could be adapted and the response times could

be used individually for the calculations in the algorithm. However, in this

case, simulations with many emergencies would enter an over-proportional

amount of values.

Due to this difficulty, the average response time cannot be easily used as

target parameter in Algorithm 7 to calculate a corresponding Mstop.
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7 Conclusion and Outlook

To target the Police Patrolling Routing Problem, a simulation model was

built. The model uses real map data of the district Favoriten in Vienna. The

data were retrieved from OpenStreetMap and prepared to be used in the

simulation. With real amenity data, points of interest were defined. A sam-

ple of points of interest was chosen as patrol locations, which were supposed

to be visited in certain time windows. Emergency data were simulated and

used to create interruptions for patrolling vehicles.

The Dynamic Vehicle Routing Problem was reduced to the underlying Ve-

hicle Routing Problem, which is solved repeatedly if interruptions occur.

Metaheuristic algorithms were used to approximate solutions. Therefore,

OR-Tools, Google’s software suite for operations research, was integrated in

the simulation. Simulated Annealing was compared to Guided Local Search.

As Guided Local Search outperformed Simulated Annealing for the purpose

of this simulation and the used settings, Guided Local Search was used for

the majority of the simulations.

To retrieve results for statistical analyses, Monte Carlo Simulations were

performed. Quality criteria were defined as key performance indicators for a

patrol. The quality criteria include the number of missed emergencies, the

vehicle response time, the number of visited patrol locations, the map cover-

age, the total travelled time, the total travelled distance and the number of

emergencies.

With this simulation model, it was possible to calculate practical results

in a very reasonable runtime and to show the impact of changed simulation

settings, for example when removing the patrolling locations or varying the

number of patrolling vehicles from one to four. The quality criteria proved

to be useful to measure the influence of changed settings on the patrol. Also,

workload and capacity of the patrolling vehicles could be visualised. The im-

plemented simulation appears to be a promising tool for decision support in

police patrol planning by offering approximations of required resources and

expected benefits.
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It was found that the response time was more difficult to analyse than the

other quality criteria, especially when attempted to be used for stopping rules

for Monte Carlo Simulations.

The performance of the model with the used settings was very dependent

on the time limit of the OR-Tools solver. Therefore, an approach which con-

siders the problem size, namely the number of patrol locations, could improve

calculation times.

While the simulation model succeeded to deliver useful results, the Po-

lice Patrolling Routing Problem has many facets and is very comprehensive.

Therefore, the model which tries to depict the reality in a simplified form

can be further improved. For example, the simulated emergency data or the

patrolling locations can be replaced by data from real crime statistics or by

data given by an expert. Also, actual police practice can be incorporated

into the model. For example, emergencies that require more than one police

vehicle could be added to the model.
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A Additional Tables and Figures

Amenity Tag Frequency

bench 622

waste basket 430

parking 376

bicycle parking 229

recycling 194

restaurant 150

shelter 146

fast food 108

cafe 96

vending machine 94

parking entrance 84

kindergarten 61

telephone 61

drinking water 53

doctors 52

school 51

charging station 43

place of worship 41

post box 41

pharmacy 30

toilets 30

atm 28

Amenity Tag Frequency

bank 27

pub 20

fuel 19

fountain 18

dentist 16

bts 13

car wash 13

waste disposal 13

community centre 12

social facility 12

taxi 11

bar 10

post office 9

gambling 9

bicycle rental 9

parcel locker 9

police 7

parking space 7

driving school 6

brothel 6

childcare 6

veterinary 5

Table 10: Part 1 of amenity tags of the map of Vienna’s district Favoriten

with their associated frequencies.
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Amenity Tag Frequency

ice cream 5

clock 5

public bookcase 5

car rental 5

clinic 3

grit bin 3

library 3

university 3

cinema 2

theatre 2

bbq 2

hunting stand 2

public bath 2

vacuum cleaner 2

language school 2

events venue 2

fire station 2

marketplace 2

biergarten 2

casino 1

courthouse 1

prison 1

Amenity Tag Frequency

scale 1

dancing school 1

swingerclub 1

training 1

townhall 1

lost and found box 1

studio 1

bicycle repair station 1

food court 1

photo booth 1

motorcycle parking 1

game feeding 1

prep school 1

music school 1

money transfer 1

internet cafe 1

hospital 1

animal training 1

dojo 1

lockers 1

stage 1

bus station 1

Table 11: Part 2 of amenity tags of the map of Vienna’s district Favoriten

with their associated frequencies.
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Figure 24: Network graph of the district Favoriten in Vienna with the selected

police station marked in green. Other police stations are marked in red. (Map

data © OpenStreetMap)
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Figure 25: Average total travelled time in seconds for different time limits.

The sample sizes are n = 200 respectively.
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(a) One Police Vehicle (b) Two Police Vehicles

(c) Three Police Vehicles (d) Four Police Vehicles

Figure 26: Average response times for each simulation depending on the

number of emergencies. Displayed for different numbers of police vehicles.

The vehicles have no assigned patrol locations.
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B OR-Tools Search Parameters

first_solution_strategy: PARALLEL_CHEAPEST_INSERTION

local_search_operators {

use_relocate: BOOL_TRUE

use_relocate_pair: BOOL_TRUE

use_relocate_neighbors: BOOL_FALSE

use_exchange: BOOL_TRUE

use_cross: BOOL_TRUE

use_cross_exchange: BOOL_FALSE

use_two_opt: BOOL_TRUE

use_or_opt: BOOL_TRUE

use_lin_kernighan: BOOL_TRUE

use_tsp_opt: BOOL_FALSE

use_make_active: BOOL_TRUE

use_make_inactive: BOOL_TRUE

use_make_chain_inactive: BOOL_FALSE

use_swap_active: BOOL_TRUE

use_extended_swap_active: BOOL_FALSE

use_path_lns: BOOL_FALSE

use_full_path_lns: BOOL_FALSE

use_tsp_lns: BOOL_FALSE

use_inactive_lns: BOOL_FALSE

use_node_pair_swap_active: BOOL_TRUE

use_relocate_and_make_active: BOOL_FALSE

use_exchange_pair: BOOL_TRUE

use_relocate_expensive_chain: BOOL_TRUE

use_light_relocate_pair: BOOL_TRUE

use_relocate_subtrip: BOOL_TRUE

use_exchange_subtrip: BOOL_TRUE

use_global_cheapest_insertion_path_lns: BOOL_TRUE

use_local_cheapest_insertion_path_lns: BOOL_TRUE

use_global_cheapest_insertion_expensive_chain_lns: BOOL_FALSE

use_local_cheapest_insertion_expensive_chain_lns: BOOL_FALSE
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use_global_cheapest_insertion_close_nodes_lns: BOOL_FALSE

use_local_cheapest_insertion_close_nodes_lns: BOOL_FALSE

use_relocate_path_global_cheapest_insertion_insert_unperformed:

BOOL_TRUE

}

local_search_metaheuristic: GUIDED_LOCAL_SEARCH

guided_local_search_lambda_coefficient: 0.1

solution_limit: 1000000

time_limit {

seconds: 4

}

lns_time_limit {

nanos: 100000000

}

savings_neighbors_ratio: 1.0

number_of_solutions_to_collect: 1

savings_arc_coefficient: 1.0

relocate_expensive_chain_num_arcs_to_consider: 4

cheapest_insertion_first_solution_neighbors_ratio: 1.0

log_cost_scaling_factor: 1.0

savings_max_memory_usage_bytes: 6000000000.0

use_cp_sat: BOOL_FALSE

use_cp: BOOL_TRUE

cheapest_insertion_ls_operator_neighbors_ratio: 1.0

heuristic_expensive_chain_lns_num_arcs_to_consider: 4

continuous_scheduling_solver: GLOP

mixed_integer_scheduling_solver: CP_SAT

heuristic_close_nodes_lns_num_nodes: 5

multi_armed_bandit_compound_operator_memory_coefficient: 0.04

multi_armed_bandit_compound_operator_exploration_coefficient:

1000000000000.0
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