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Kurzfassung

Datensätze mit wiederholten Messungen treten in vielen unterschiedlichen Bereichen auf,
beispielsweise in der medizinischen Forschung, in wirtschaftlichen Anwendungen oder in den
Materialwissenschaften. Während die statistische Analyse solcher Datensätze aufgrund ihrer
komplexen Abhängigkeitsstrukturen herausfordernd sein kann, bieten sie auch Möglichkeiten
für ein genaueres Verständnis der Beziehungen und zeitlichen Entwicklung sowohl zwischen
als auch innerhalb von Beobachtungseinheiten. In der statistischen Literatur gibt es fundierte
Methoden für die Analyse von Daten mit wiederholten Messungen.

Daten aus der realen Welt enthalten jedoch häufig Ausreißer oder ungewöhnliche Beobach-
tungen. Werden solche Abweichungen nicht berücksichtigt, können sie die Genauigkeit der
statistischen Analysen erheblich beeinträchtigen und die Ergebnisse verfälschen oder sogar
ungültig machen. Die Identifikation der abweichenden Beobachtungen ist wichtig und kann
zu einem tieferen Verständnis der Daten und zugrunde liegenden Strukturen beitragen. Ins-
besondere bei langen Beobachtungszeiträumen können außerdem Veränderungen im Umfeld
oder strukturelle Schocks die Beziehungen innerhalb der Beobachtungszeitreihen oder die
Modellparameter verändern. Herkömmliche Modelle mit zeitkonstanten Parametern sind in
diesen Fällen nicht geeignet, und es wird notwendig, die Variation der Parameter innerhalb
des Modells zu berücksichtigen. Die Analyse der sich daraus ergebenden Parameterdynamik
kann wertvolle Einblicke in die strukturellen Veränderungen liefern, die im Laufe der Zeit
auftreten.

Diese Arbeit adressiert die oben genannten Problemen, indem sie Modelle entwickelt, die
auf verschiedene Arten von Daten mit wiederholten Messungen zugeschnitten sind: mul-
tivariate Zeitreihen und (funktionale) Longitudinaldaten. Wir schlagen ein multivariates
Regressionsmodell mit zeitvariablen Parametermatrizen von reduziertem Rang, eine ro-
buste Schätzmethode für lineare Mixed-Effects-Modelle mit Ausreißern in der Zielvariable
oder den erklärenden Variablesn, sowie einen robusten Schätzalgorithmus für die marginale
Hauptkomponentenanalyse von longitudinalen Funktionaldaten vor. Die Wirksamkeit der
entwickelten Modelle und Schätzmethoden wird in Simulationsstudien demonstriert. Darüber
hinaus werden die drei Methoden in realen Datenanwendungen aus verschiedenen Bereichen
illustriert.





Abstract

Repeated measurements data are commonly encountered in numerous fields, including
medical research, economics, material science, and engineering. While the statistical analysis
of such datasets poses challenges due to their complex dependency structures, they also offer
opportunities for more detailed understanding of relationships and temporal development
both between and within observational units. There are well-founded statistical methods for
the analysis of repeated measurements data in the statistical literature.

However, real-world data often contain outlying or unusual observations that do not align with
the imposed model structure. If not properly accounted for, such deviations can significantly
impact the accuracy of statistical analyses, bias or invalidate the results. Identifying
the outlying observations is important and can contribute to a deeper understanding of
the data and underlying structures. Furthermore, particularly in long observation periods,
changes in the environment or structural shocks can alter model parameters and relationships.
Traditional models with fixed parameters may therefore no longer be suitable, and it becomes
necessary to account for parameter variation within the model. Analyzing the resulting
parameter dynamics can yield valuable insights into the structural changes that occur over
time.

This thesis addresses the issues mentioned above by developing models tailored to different
types of repeated measurements data: multivariate time series and longitudinal (functional)
data. We propose a time-varying parameter reduced-rank regression model for multivariate
time series regression, a robust estimation method for mixed effects models in the presence of
outlying responses and predictors, and a robust estimation algorithm for marginal principal
components analysis of longitudinally observed functional datasets. The effectiveness of
the developed models and estimation methods is demonstrated through simulation studies.
Furthermore, the three methods are illustrated in real-world data applications from various
fields.
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1 Introduction

1.1. Preliminaries

A common assumption in statistical analysis and modeling is that the data are independently
and identically distributed (i.i.d.). However, in practice there are many data structures
that do not fulfill this assumption. This thesis is concerned with datasets that have special
dependency structures due to repeated measurements on different observational units. Such
observational units can, among many other possibilities, be the subjects in a clinical study,
machine parts subject to regular inspection, but also other entities such as countries or
stock indices that are observed over time. Repeated measurements datasets arise in many
different fields, including medical and biological science, material science and economics.
The analysis of repeated measurements is complicated due to the complex dependency
structures within and between the measurements from the different observational units.
Especially in regression tasks, not accounting for such dependencies can result in correlated
error structures and bias the results of the analysis (Fahrmeir et al. 2013, Ch. 7). However,
sampling on multiple observational units also increases the total number of data points. This
can lead to more accurate inference, and findings beyond those that can be obtained from
taking measurements only on a single observational unit. Repeated measurements allow to
simultaneously investigate global and individual changes along time (Singer and Andrade
2000). If the observed data series are correlated with each other, information can be reused
across series. This can lead to overall improved models and forecasts, also for observational
units with an initially limited number of available samples or missing values.

Assuming we have observed data from g observational units, the datasets of interest consist
of measurements zij which are organized as follows,

( z11, z12, · · · , z1n1 )
( z21, z22, · · · , z2n2 )

...
...

...
...

( zg1, zg2, · · · , zgng ),

(1.1)

where zij describes the j’th measurement for the i’th observational unit. For unit i, we
observe ni samples, where the ni are not necessarily equal for all units. Each observation is
associated with a measurement time point tij with tij < ti(j+1), thus the samples are assumed
to have an inherent ordering in time. The samples zij can be of different shapes: They
can represent simple scalar values, pairs of response and predictor variables in regression
settings such that zij = (yij ,x

′
ij)

′ ∈ Rp+1, or functional observations zij = zij(s), s ∈ S,

1
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( z11, z12, · · · , z1n1 )
( z21, z22, · · · , z2n2 )
...

...
...

...
( zg1, zg2, · · · , zgng )

(a) Multivariate time series measurement

( z11, z12, · · · , z1n1 )
( z21, z22, · · · , z2n2 )

...
...

...
...

( zg1, zg2, · · · , zgng ),

(b) Longitudinal observation

Figure 1.1.: “Vertical” (left) and “horizontal” (right) measurements in the data structure
(1.1), yielding multivariate time series or longitudinal measurements.

where zij : S → R is a real-valued function for each pair i, j.

If ni = T for all i = 1, ..., g and the samples are observed on a regular grid in time, they
form a multivariate time series dataset. Commonly, the measurements in (1.1) are then
represented “vertically” by a g-dimensional vector for each sampling time point t, denoted by

yt = (y1t, ..., ygt)
′ ∈ Rg for t = 1, ..., T,

(also see left panel in Figure 1.1). In multivariate time series analysis, it is of interest to
study the dynamic (cross-)relationships between the observed series yit and yjs, and using
this knowledge to improve the accuracy of prediction for future values of the series yt+h,
h ≥ 1 (Tsay 2014).

Another interpretation of (1.1) is that of longitudinal data, sometimes also referred to as
panel data (Hsiao 2014). Here, the sampling points yij are not necessarily sampled on a
regular grid, missing values are common. We usually observe multiple, rather short series of
measurements on different observational units (Singer and Andrade 2000). In the setting
of (1.1), the samples can be interpreted “horizontally”, i.e. we denote the i’th vector of
observations by

yi = (yi1, ..., yini)
′ ∈ Rni for i = 1, ..., g,

(also see right panel in Figure 1.1). In longitudinal data analysis, we aim to understand
global patterns of change as well as individual-specific effects over time.

There are also other types of datasets that can be analyzed in the context of repeated
measurements, beyond ordering in time. One common application is grouped data, where
multiple samples are taken from different clusters. An example is sampling of multiple
students from different schools. In this setting, a cluster structure is introduced since the data
from the students from one school might be correlated. Another possibility is longitudinal
data that is observed along another axis than time, e.g. in a spatial setting. However, we
limit the following exposition to dependency in time, while keeping in mind that some of
the proposed methodology is also applicable to other settings.

This thesis is concerned with the development of new methods to model and analyze complex
longitudinal and multivariate time series data. We focus on methodology that can deal

2



1.1. Preliminaries

with deviations from the assumptions of the “traditional” parametric models in classical
statistics – on the one hand by the potential occurrence of structural breaks and changes in
the relationships within the data of interest, on the other hand by the presence of outlying
values in the datasets used for model fitting.

1.1.1. Structural breaks and time-varying parameter models

In classical multivariate time series analysis, the relationships within and between the time
series are assumed to be constant. Usually, it is assumed that the mean and the variance and
(auto)covariance structure of the time series do not change with time. This assumption is
called stationarity. However, in practice we are often confronted with time series that cover a
rather long time span or can be exposed to sudden shocks. In that case, there is a likelihood
that the dynamics within and between the time series change over time. Examples for this
can be climate data, where climate change slowly alters, e.g., the expected temperatures
and amount of rainfall as well as their relationship; or economic data, where changes in
government policies can cause changes in key variables such as unemployment and inflation
rates. Furthermore, sudden shocks can cause structural breaks in the time series, thinking,
for example, of the Covid crisis in 2020. Such structural changes can be addressed in the
modeling process by applying so-called time-varying parameter models. Such models allow
to incorporate gradual and sudden structural changes by not assuming a static relationship
between the variables, but by allowing the model parameters to vary. This can lead to
increased forecasting performance and a better understanding of the dynamics. There is a
vast amount of literature on time-varying parameter models, both in theory and application.
Early reviews of the relevant literature can already be found in Rosenberg (1973) and Beck
(1983). The growing empirical evidence of parameter instability in economic applications led
to wide recognition of the importance of time-varying coefficient models in the econometrics
literature (Fu et al. 2023).

Time-variation can be modeled in many different ways. Commonly, the time-varying
parameters are assumed to follow stochastic processes, usually random walks. In this case,
the models can be parameterized using state-space representations, where the time-varying
parameters are treated as latent, unobservable states driving the dynamics of the system
(see e.g. Durbin and Koopman 2012, Ch. 6; Lubik and Matthes 2016). Another possibility
is to treat the parameter dynamics as deterministic, e.g. through switching regression and
smooth-transition models. Here, the model parameters change their regime as a function of
certain covariates (see e.g. Hubrich and Teräsvirta 2013 for an overview).

1.1.2. The need for robust statistics

In any real-life application, there is the possibility of outlying samples within the set of
observed values. Such observations can both be caused by measurement error (e.g. because
of miscalibrated measurement devices) or occur naturally if the observation does not follow
the structure imposed by the statistical model used. In classical statistical analysis, even

3
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Without outlier With outlier

-2 -1 0 1 2 3 -2 -1 0 1 2 3

0
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y

least squares rank-based estimate true relationship

Figure 1.2.: Comparison of a non-robust (least-squares) estimate and a robust estimate
(rank-based regression, R-estimate) in the presence of an outlying observation
(marked by ×). True relationship: y = 2 + 1 ·X + ε, ε ∼ N (0, 0.25).

single outlying values can cause the results of the analysis to be biased. A good introduction
to the effects of outliers on statistical analyses is given in Maronna (2019, Ch. 1). However,
the outliers are not just “bad” data points, but can also contain valuable information that
we can learn from. It is desirable to identify outliers using proper model diagnostic tools.
However, when applying such methods to non-robust model fits, outlying values can easily
be masked.

The field of robust statistics aims to address these issues. Early developments in this field
go back to Tukey (1960), Huber (1964) and Hampel (1968). An important contribution
of robust statistics is the recognition that all statistical models and methods are only an
approximation of the truth. While classical statistics often rely on models that are optimal
under certain strong assumptions (such as Gaussianity), their performance can deteriorate
drastically if those assumptions are not fulfilled. In this case, the goal in robust statistics is
to find estimators that are not affected by slight deviations from the assumptions and still
provide reliable results in the presence of outlying or unusual observations. An example is
displayed in Figure 1.2. It shows a simple regression setting where we have introduced one
outlier to the response variable y. When comparing the setting with and without outliers,
it is clearly visible how the outlying observation compromises the estimated regression
relationship in the case of a non-robust model (red). Opposed to that, the robust (in this
case rank-based) regression estimate (blue) is not affected by the outlying value.

The usual assumption in robust statistics is that the majority of the observations (at least
roughly) follows the imposed model structure and assumptions, while there can be a small
proportion of data points that deviate from those assumptions. There are various approaches
to obtain robust estimates, which can be applied in different contexts: estimation of uni-

4



1.1. Preliminaries

and multivariate location and scatter parameters, as well as the estimation of regression
parameters. There are three main types of estimators in robust statistics: maximum
likelihood type estimators (M-estimators), estimators based on linear combinations of order
statistics (L-estimators), and estimators based on rank statistics (R-estimators). Some basic
robustness properties of M-, L-, and R-estimators are outlined in Chapter 3 of Huber (1981,
Ch. 3) and in Jurečková (1984).

M-estimators are a generalization of maximum likelihood estimation. By replacing the
likelihood function in an ML estimator by a suitable loss function, commonly denoted by ρ,
the influence of extreme or unusual observations (or residuals, in the case of regression) can
be bounded. Common ρ-functions include the Huber loss ρk(x) = x21{|x| ≤ k}+ (2k|x| −
k2)1{|x| > k} and the biweight loss ρk(x) = [1− (1− x

k )
2]31{|x| ≤ k}+ 1{|x| > k} for some

cutoff k. It is treated as a tuning parameter and regulates the trade-off between efficiency
and robustness (Maronna 2019, Ch. 1). Commonly used in regression models are S- and
τ -scale estimators, which minimize the residual scale using concepts from M-estimation,
and MM-estimators, which combine M- and S-estimators to achieve high robustness while
maintaining a high efficiency (Yohai 1987).

L-estimators are obtained from order statistics of the observations. In the simplest case,
the resulting estimators are trimmed or winsorized means and standard deviations, or
quantiles such as the median. For regression, a corresponding estimator is given by the least
trimmed squares (LTS) estimator (Rousseeuw 1984). For multivariate data, the concept of
L-estimators can be generalized to estimators that look for in some sense optimal subsets
of the observations to calculate the estimate. One example is the minimum covariance
determinant (MCD) estimator. It provides a robust estimate of the covariance matrix
based on the subset of observations whose covariance matrix has the smallest determinant
(Rousseeuw 1985; Rousseeuw and Driessen 1999).

The third class is given by R-estimators. Those estimators are based on score functions
that utilize the ranks of the observations instead of the observations themselves. Precisely,
R-estimators are derived from rank tests. Examples of such estimators include the (one-
and two-sample) Hodges-Lehmann estimator of location (Hodges and Lehmann 1963) and
the rank-based regression methods introduced later in this chapter. A unified overview of
robust R-estimation in different contexts is given in Hettmansperger and McKean (2011).

1.1.3. Outline of the thesis

This thesis develops statistical models for complex longitudinal and multivariate time series
data in the presence of outliers and structural changes. It is structured into three main
chapters, each of them based on a separate article. Chapter 2 presents an approach to
multivariate time series regression. It incorporates time-variation into the parameter matrices
of the reduced-rank regression model. The following two chapters introduce and extend
robust modeling approaches for longitudinal datasets. Chapter 3 presents a rank-based
estimation method for linear mixed effects regression models. In Chapter 4, a model for
repeated measurements functional data is presented and a robust estimation method is

5



1. Introduction

proposed. Both methods provide reliable estimates in the presence of outlying observations
and allow to identify outliers and analyze their causes. Finally, in Chapter 5, we summarize
the contributions and discuss directions and topics for future research.

In the remainder of this chapter, important concepts and model classes relevant to this
thesis are introduced. The three sections are oriented along the three data types analyzed:
Multivariate time series, classic longitudinal data and repeated measurements functional
data.

1.2. Modeling multivariate time series data

1.2.1. Definition and classification

Assume we observe a dataset consisting of measurements yit, i = 1, .., p,1 collected at different
(usually equidistant) time points t according to the order of time. They can be written as
a vector yt = (y1t, ..., y1p), where yit describes the i’th component variable at time t. The
series y1,y2, ... of p-variate observations is then called a multivariate or vector time series.
The fundamental trait of such data is that there can be dependency structures both within
the same component at different time points s and t, but also between different components
i and j at different time points s and t. Capturing those complex dependency structures is
one of the main topics in the analysis of multivariate time series.

For illustration, consider the time series of daily closing prices for seven stock indices: DAX
Performance Index (DAX), Dow Jones Industrial Average (DJI), Hang Seng Index (HSI),
Nikkei 225 (N225), NASDAQ Composite (NASDAQ), S+P 500 (S+P 500) and TSEC
Weighted Index (TWII).2 The time series are displayed in Figure 1.3 for the time period
between June 1st, 2007 to June 1st, 2009. In this case, the index i corresponds to the stock
index, while t represents the date the measurement was taken. Each index can be interpreted
as an observational unit from which we take measurements on a regular grid in time. As can
be seen, the indices differ in magnitude or level, but at the same time show interdependency
structures: The courses of the time series are similar. Especially, all series show effects of
the Great Recession in 2008. It can be assumed that the value of one stock index can (at
least partly) be explained by the values of the other time series. A more detailed analysis of
this dataset is given in Section 2.4 of Chapter 2, p. 49f.

Multivariate time series are characterized through their mean and covariance structure. A
goal is often to build forecasting models that predict future values of the time series. We
especially focus on two aspects:

(1) Building a model that represents the multivariate time series data as a (linear) function
of its lagged values.

1While the number of observational units was denoted by g in Equation (1.1), we denote it by p in this
section to avoid confusion in Chapter 2 which builds on this subsection.

2All time series retrieved from https://finance.yahoo.com/, accessed March 01, 2021.
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Figure 1.3.: Multivariate time series of daily closing prices for DAX Performance Index
(DAX), Dow Jones Industrial Average (DJI), Hang Seng Index (HSI), Nikkei
225 (N225), NASDAQ Composite (NASDAQ), S+P 500 (S+P 500) and TSEC
Weighted Index (TWII) from June 1st, 2007 to June 1st, 2009.

(2) Performing dimension reduction, since the number of parameters for the relevant model
classes increases with p2 for a p-dimensional time series.

In order to be able to form meaningful predictive models, a common assumption is stationarity.
We call a p-dimensional time series stationary in its first and second moment, if

E(yt) = µ = (µ1, ..., µp) ∀t, and
Cov (yt,yt+s) = E

�
(yt − µ)(yt+s − µ)′

�
= Γ(s) ∀t, s.

Γ(s) is a matrix with entries γij(s) = E((yit−µi)(yj(t+s)−µj)) for i, j = 1, ..., p. Stationarity
means that the mean of the time series is time constant, and that the cross covariances
at times t and t + s are functions only of the time differences s. Thus, the relationships
between the observations do not change over time (Lütkepohl 2005, Ch. 2).

A general linear time series regression model Given a multivariate time series yt ∈ Rp

and a set of explanatory time series xt ∈ Rq, a general linear time series regression model is
given by

yt = Cxt + εt (1.2)

where C ∈ Rp×q is a coefficient matrix and εt are independent and centered error terms.
The predictor series xt can consist of lagged values of yt, e.g. xt = yt−1, but also of external
variables. Those can be observable or unobservable. Due to the dependencies on time, the
time series regression model needs to be set up carefully to account for potential trends and
seasonalities, autocorrelation, non-stationarity and heteroscedasticity in the time series. The
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1. Introduction

models presented in the following subsection place different assumptions on the coefficient
matrices C and observed or unobservable predictor time series xt.

1.2.2. Model classes of interest

In the following, we present different parameterizations of the linear time series regression
model (1.2) that are relevant to this thesis. The presented model classes are commonly used
in time series analysis and aim to provide accurate predictions while, if possible, reducing
the number of model parameters. For simplicity of the exposition, we assume E(yt) = 0 for
all t = 1, ..., T .

The Vector Autoregressive (VAR) model A p-dimensional vector autoregressive process
or model of order m, also written as VAR(m), is given by

yt = A1yt−1 + ...+Amyt−m + εt (1.3)

where εt is a p-dimensional white noise process (Wei 2019, Ch. 2). The matrices Aj ∈
Rp×p, j = 1, ..,m are coefficient matrices that reflect the relationships between the current
observation yt and its lags yt−1, ...,yt−m. For this thesis, the VAR(1) model

yt = A1yt−1 + εt (1.4)

will be of special interest.

The model parameters in (1.3) can be estimated by multivariate ordinary least squares
(OLS). However, under the assumption that the parameter matrices in the VAR model (1.3)
and the general time series regression model (1.2) are of full rank, classic OLS estimation
applied separately to the p equations in the models yields the same results as multivariate
least squares and we can gain no further insight by estimating the equations jointly (Izen-
man 1975). Furthermore, due to the large number of parameters, VAR models are often
overparameterized. We outline some common approaches to introduce more structure to the
models (1.2), (1.3) and (1.4) in the following paragraphs.

Dimension reduction through reduced-rank regression An approach to reduce the number
of parameters in multivariate regression models is offered by reduced-rank regression (Izenman
1975). For the general time series regression model (1.2), it is assumed that the coefficient
matrix C ∈ Rp×q is of reduced rank d < min{p, q}. This implies that C decomposes as
the product of two rank d matrices α ∈ Rp×d and β ∈ Rq×d such that model (1.2) can be
written as

yt = αβ′xt + εt.
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1.2. Modeling multivariate time series data

In the special case of a VAR(1) model as in (1.4), the model equation is then given by

yt = αβ′yt−1 + εt

(Velu et al. 1986). Instead of fitting separate regression models for each component of yt as in
(1.2) and (1.3), the dimension is reduced by the assumption that the yit can be explained by a
total of d linear combinations of the explanatory series xt. Thus, this formulation introduces
linear restrictions into the multivariate regression model. Solutions to the reduced-rank
regression problem can be obtained by minimizing a criterion of form

E(tr(Γ1/2(yt −αβ′xt)(yt −αβ′xt)
′Γ1/2),

where Γ is a positive definite and symmetric matrix with matrix square root Γ1/2. Depending
on the choice of Γ, the solutions are closely related to other well-known concepts from
multivariate statistics, e.g. principal component analysis (Γ = Ip×p) or canonical correlation
analysis (Γ = Cov(yt,yt)

−1). Note that the decomposition into α and β is not unique, since
for any non-singular (d× d)-matrix H, we have

C = αβ′ = (αH)(H−1β′).

A detailed introduction to reduced rank-regression and its applications in multivariate time
series analysis can be found in the book by Reinsel and Velu (1998).

Factor models for multivariate time series analysis Another important approach to
dimension reduction in multivariate time series analysis is that of factor analysis. Here, we
assume that the dynamics of yt are driven by a few, latent factors. Thus, we can define a
model

yt = Lft + εt, (1.5)

where ft ∈ Rk, k ≪ p, are the latent factors and L ∈ Rp×k is the matrix of loadings that
maps the factors to each of the time series in yt. εt is the error term.

There are different approaches to the estimation of such models. One possibility for estimation
of L and the factors ft is using principal component analysis, and letting ft consist of the
first k ≪ p principal components of the series yt. By assuming the errors and factors follow a
normal distribution, we can also use maximum likelihood estimation to estimate L. A third
commonly observed situation is the case where the factors are observable. E.g., in economic
studies macroeconomic variables such as inflation rate, employment and unemployment rates
can be considered as factors driving an economic time series of interest. If the time series of
factors are observable, estimating the loadings L comes down to a multivariate regression
problem where L is the unknown coefficient matrix and the factors ft form the predictors.
A detailed introduction to factor models for multivariate time series is given in Chapter 5 of
Wei (2019).

The factor model in (1.5) does not impose a time-dependent structure on the factors. A
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1. Introduction

natural extension to this model is to assume that the factors follow a time series model.
Such models are called dynamic factor models (DFM), and were first proposed and applied
in Geweke (1977) and Sargent and Sims (1977). An example of a simple dynamic factor
model is

yt = Lft + εt

ft = Φft−1 + ut,
(1.6)

where the factors ft are assumed to follow a VAR(1) model. In this case, the two model
equations form a state-space system (see Section 1.2.3) where the factors are considered as
the latent states driving the model. An introduction to DFMs can be found in Stock and
Watson (2012).

In the stock index example (Figure 1.3), the observed time series exhibit very similar shapes,
although at different magnitudes. Thus, they can likely be assumed to be driven by common
factors. However, they are obviously non-stationary and exhibit trends. Thus, a more
sophisticated model might be necessary.

Cointegration and the vector error correction model Oftentimes, the time series of
interest are non-stationary, e.g. because they exhibit a trend, and thus a varying mean. A
common approach to address this type of non-stationarity is to take the first differences of
the time series, denoted by

∆yt = yt − yt−1.

In the case of a trend in the mean, the first differences ∆yt are stationary. Such time series
are sometimes called integrated at order 1 (or I(1), see Hamilton 1994, Ch. 15). However, in
the case of multivariate time series, a commonly observed phenomenon is cointegration of
the time series. In this case, there exist linear combinations

pt = y1t − β1y2t − ...− βp−1ypt (1.7)

of the components (y1t, .., ypt)
′ that are stationary. Although the processes yit might be

individually non-stationary, they move together such that their linear combination pt forms
a stationary time series. This is the case if the time series are driven by a common stochastic
trend. The coefficient vector β = (β1, ..., βp−1)

′ in (1.7) describes a so-called cointegrating
relationship or relation. There can also exist multiple cointegrating relationships.

The vector error correction model (VECM) uses the information from the cointegrating
relations to improve the forecasting performance and gain a more accurate model for the
time series. The model equation is set up as

∆yt = αβ′yt−1 +

m&
ℓ=1

Γℓ∆yt−ℓ + εt,

where the matrix β ∈ Rp×d contains the d cointegrating relationships. α ∈ Rp×d maps the
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1.2. Modeling multivariate time series data

zt−1 zt zt+1 latent states

yt−1 yt yt+1 measurements

Figure 1.4.: State-space system: Latent states zt influencing the measurements yt

cointegrating relationships back to the first differences ∆yt. The matrices Γℓ are coefficient
matrices for the further lags of ∆yt. There are different estimation approaches for VECM,
e.g. using least squares or maximum likelihood. The VECM can also be interpreted as a
special case of reduced-rank regression as introduced above. A detailed introduction to
the concept of cointegration and to vector error correction models is given in Part II of
Lütkepohl (2005).

1.2.3. Models with time-varying parameters (TVP)

Classical time series analysis usually assumes that the relationships and parameter matrices
are constant over time. Especially when the time series cover a long time span, this might
not be realistic. For example, in the case of the Great Recession in 2008 seen in the stock
index example (Figure 1.3), the relationships and time dynamics have likely changed during
that time period.

This problem can be addressed by employing a time series regression model with time-varying
parameters (TVP). Extending the model presented in Equation (1.2) with a time-varying
coefficient matrix yields a model of form

yt = Ctxt + εt. (1.8)

As already outlined in Section 1.1.1, there are many ways to parameterize the variation in
Ct. We focus on the representation through state-space models.

State-space models State-space models can be seen as generalizations to regular time
series models. They are used extensively in physical sciences and engineering, but are
also very useful in the analysis of multivariate time series. In state-space modeling, the
idea is that an observed multivariate time series y1, ...,yT depends on a series of possibly
unobserved states, denoted by zt, t = 1, .., T (see Figure 1.4). The model formulation was
initially developed in the setting of spacecraft tracking. The exact location of the spacecraft,
represented by the latent state zt, is inferred from measurable quantities such as the velocity
and azimuth of the spacecraft or its distance to certain reference points in space, represented
by yt (Shumway and Stoffer 2017, Ch. 6). Applications of state-space models can be found
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in many different fields, including navigation, aerospace engineering, telecommunications,
finance, medical, etc. (Särkkä 2013, Ch. 1). Detailed introductions to state-space models
can e.g. be found in Lütkepohl (2005, Ch. 18), Shumway and Stoffer (2017, Ch. 6) and the
book by Särkkä (2013).

We are concerned with linear Gaussian state-space models. In this case, the evolution of the
states and their influence on the observed time series are structured into an equation system
of the form

yt = Htzt + vt (1.9)
zt = Bt−1zt−1 +wt−1. (1.10)

Equation (1.9) is called measurement equation and defines how the observed time series
evolves from the unobserved states. Equation (1.10) describes how the states evolve in time
and is commonly called state equation. The transition or coefficient matrices Ht and Bt can
be dependent on time. The error terms vt and wt are assumed to be uncorrelated Gaussian
white noise processes, with potentially time-varying covariance matrices. For simplicity, we
assume the covariance matrices to be time constant, yielding

vt ∼ N (0,R), and wt ∼ N (0,Q). (1.11)

The time-varying parameter model (1.8) can be represented as a state-space system as
follows:

yt = Ctxt + εt = (x′
t ⊗ Ip×p) vec(Ct) + εt (1.12)

vec(Ct) = A vec(Ct−1) + vt−1. (1.13)

vec(·) describes the vectorization operator which stacks the entries of the matrix columnwise
into a vector. Thus, the state equation (1.13) describes how the (vectorized) coefficient
matrices Ct evolve over time (in this case as an AR(1) process with coefficient matrix
A ∈ Rpq×pq), and the measurement equation (1.12) connects the states with the observed
data. The predictors xt correspond to the matrices Ht in (1.9).

Other applications of state-space models in time series analysis include dynamic factor
models as in Equation (1.6). Here, the factors ft can be treated as the latent states driving
the observations.

State estimation through the Kalman filter The primary goal in the analysis of state-space
models is to derive predictions of the latent states from the observed data. The Kalman
filter offers the linear predictions of the state at time t with minimum mean squared error
among all linear predictions, given the information up to time s ≤ t. In the case of Gaussian
errors, those predictions correspond to the expected values

zs
t = E(zt|yt, ...,ys).
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1.2. Modeling multivariate time series data

The filter also provides estimates of the error covariances, i.e. the uncertainty about the
state at a given time t:

P s
t = Cov(zt|yt, ...,ys).

What makes the Kalman filter special is its ability to account for measurement errors. It
uses a “feedback loop” based on the following two steps, denoted as prediction step and
updating step:

Prediction step Based on the current estimate of the state and the state equation, a one-step
ahead prediction of the state is obtained as zt−1

t . It is accompanied by an uncertainty
estimate, given by the corresponding covariance matrix P t−1

t .

Updating step The predicted state from the prediction step is updated with the new
measurement yt to obtain zt

t . The crucial information for the update is captured by
the so-called Kalman gain, commonly denoted by Kt. It is based on the uncertainty
about the state estimate and the current measurement and thus determines how much
the state prediction needs to be corrected given the current observation.

Given starting values z0
0 and P 0

0 , we can obtain a series of estimated states zt
t and covariances

P t
t by iterating between updating and predicting for each t.

Especially if the state-space system includes unknown parameters, e.g. the error covariance
matrices R and Q for the terms vt and wt or the matrices Ht−1 and Bt in the system (1.9)
and (1.10), estimates of the states given the complete time series can be of interest. For
this, the Kalman smoother can be employed, providing estimates of

zT
t = E(zt|yt, ...,yT ) and P T

t = Cov(zt|yt, ...,yT ).

Those are obtained by processing the data backward in time to improve and smooth the
estimated states obtained from processing the data forward with the Kalman filter. For
details on both Kalman filter and smoother, see Shumway and Stoffer (2017, Ch. 6).

The state space systems considered in this section are assumed to be linear and Gaussian.
However, there also exist extensions with non-linear state and measurement equations. For
those, we can employ techniques such as the extended Kalman filter or simulation-based
particle filters to estimate the latent states. A detailed overview can be found in Särkkä
(2013).

Estimation of unknown parameters In the previous paragraph, we have introduced the
Kalman filter and smoother as tools to derive predictions of the latent states given the
observations. However, the state estimates also depend on the parameters of the state-space
system – the transition matrices Bt and Ht, as well as the error covariances R and Q in
(1.11). Given the normality assumption, the unknown parameters can be estimated using
ML estimation. One possibility is to directly maximize the log-likelihood of the innovations
εt−1
t = yt − Htz

t−1
t . Their likelihood is a complex, non-linear function of the unknown

parameters. It can be optimized by employing a Newton-Raphson algorithm. A numerically
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easier approach is provided by the Expectation-Maximization (EM) algorithm (Dempster
et al. 1977). It is designed to obtain ML estimates in the presence of missing data. In our
case, the latent states can be treated as missing data and we optimize the joint log-likelihood
of the latent states z0, z1, ..., zT and the observations y1, ...,yT . The EM algorithm consists
of two estimation steps, the E-step and the M-step.

E-step In the E-step, we calculate the expected value of the log-likelihood with respect to
the latent states, given the observed data and the current parameters.

M-step In the M-step, the parameter estimates are updated by maximizing the expected
log-likelihood with respect to the unknown parameters.

By iterating between those two steps until convergence, we obtain estimates of the unknown
parameters. The EM algorithm has optimality properties. It is guaranteed to increase the
log-likelihood with every iteration. However, it cannot be guaranteed to converge to the ML
estimate and might return a local optimum if the log-likelihood is not convex. In this case,
it can be useful to restart the EM algorithm multiple times with different starting values.
More information and technical details on the EM algorithm for linear state-space models,
(1.9) and (1.10), can be found in Shumway and Stoffer (2017, Ch. 6).

1.3. Mixed effects models for longitudinal data

1.3.1. Definition and classification

Opposed to the multivariate time series data described in the previous section, “classic”
longitudinal data can be characterized in a slightly more general way. Given a set of
observational units or subjects i = 1, ...g, we repeatedly observe each subject i at time points
tij , j = 1, ...ni, yielding a time series of observations for each of them. The sampling time
points tij and the number of samples per subject ni can differ from subject to subject. Thus,
the designs can be unbalanced, on irregular grids, or datasets can be partially incomplete.
As in the case of multivariate time series datasets, we have dependencies within each of the
observational units, but also some general effects driving the measurements for all subjects.
Often, such datasets are analyzed in a regression context, however, they can also be analyzed
in other settings or with different goals in mind (e.g., see Section 1.4.3 for a description of
methodology to analyze longitudinally sampled functional data). A closely related situation
is sampling from clusters or groups. Here, analogous data structures are introduced through
similarities within observations of the same cluster or group. Examples for such datasets
are samples of groups of patients from different hospitals, or students within classes from
different school. In this case, the index ij corresponds to the j’th sample taken from the i’th
cluster. However, for simplicity, we limit our exposition here to datasets with an inherent
ordering in time.

Throughout this section, we assume a longitudinal dataset consists of measurements (yij ,x′
ij)

′,
yij ∈ R, xij ∈ Rp for g units i = 1, ..., g with observations j = 1, ..., ni at measurement time
points ti1, ..., tini for unit i. The goal is to describe the target variable yij as a function
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Figure 1.5.: Example for a longitudinal dataset: Average reaction times of 18 subjects
after up to 10 days of sleep deprivation. Five randomly selected subjects are
highlighted for clarity.

of the p-dimensional predictors xij while accounting for the dependencies induced by the
grouped structure of the data.

For illustration, consider the sleepstudy dataset (Belenky et al. 2003). The data were
collected in a study about sleep deprivation. The subjects in the study were allowed to sleep
only for a certain number of hours every night, and had to complete a reaction test every
day. The reaction times for the different subjects were recorded. A subset of this dataset is
displayed in Figure 1.5. The subjects react differently to the sleep deprivation, and also the
baseline reaction time differs from subject to subject. In this case, yij is the j’th reaction
time for the i’th subject, and xij ∈ R is the number of days of exposure corresponding to
this measurement. If we fitted a simple linear model to explain the average reaction time by
the number of days of sleep deprivation, we would end up with systematically correlated
errors for the different subjects of the study. A more detailed analysis of this dataset is
given in Section 3.5 of Chapter 3, p. 72f.

Mixed effects models

To address the shortcomings of simple linear models in the presence of correlated errors,
regression problems in longitudinal datasets are commonly solved using mixed effects models.
The predictors x′

ijβ in the standard linear regression model

yij = x′
ijβ + εij , i = 1, ..., n, j = 1, ..., ni,

are amended to form a mixed predictor x′
ijβ + z′

ijbi, resulting in a model equation

yij = x′
ijβ + z′

ijbi + εij , i = 1, ..., n, j = 1, ..., ni.
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The predictors zij ∈ Rk are usually a sub-vector of the covariates xij , and the coefficients
bi describe the subject-specific effects for subject i. While those can be modeled as fixed
predictors, this can quickly lead to a very large number of parameters that need to be
estimated. Alternatively, the coefficients bi can be assumed to be realizations of a random
variable b. Commonly, we assume b ∼ N (0,Σ). Instead of having to estimate each of
the effects bi separately, we only need to estimate Σ. This saves parameters and allows
to account for the information about the between-subject variation. This can especially
be beneficial if the number of available samples per subject is small. The distributional
assumptions for the random effects induce a certain regularization. Another useful aspect is
that the random effects allow to correct for unobserved heterogeneity which can be induced
by omitted covariates, and can absorb unexplained effects to a certain extent. Mixed effects
models can handle balanced as well as unbalanced datasets. Thus, it is not necessary to
observe the same number of samples per subject (Fahrmeir et al. 2013, Ch. 7).

For subject i, the resulting model equation is given by

yi = Xiβ +Zibi + εi, i = 1, ..., n, (1.14)

where Xi ∈ Rni×p is referred to as the fixed effects design matrix and Zi ∈ Rni×k as the
random effects design matrix. β ∈ Rp are called the global regression coefficients or fixed
effects, while bi ∈ Rk are the random effects, centered and with variance-covariance matrix
Σ. The error terms εi are assumed to be centered with variance-covariance matrix Vi and
independent of the random effects bi. The matrices Vi are usually assumed to depend
on i only through their dimension, e.g. by letting Vi = σ2Ini , where Ini is the ni × ni

dimensional identity matrix. Commonly, Σ and Vi are parameterized as functions of a
common parameter (vector) θ and denoted by Σ(θ) and Vi(θ). If zij = 1 for all i = 1, ..., n
and j = 1, ..., ni, we call b ∈ R a random intercept. If zij (additionally) contains other,
real-valued predictors, we talk about random slopes. Chapter 7 in Fahrmeir et al. (2013)
gives a good introduction to different specifications of mixed effects models. Other standard
references include Pinheiro and Bates (2000) and Davis (2003).

The model formulation presented in (1.14) is the simplest form of a mixed effects model
where just one grouping factor is involved. If the observations are grouped by multiple
factors, more complex types of models can be involved. Two types of effects are commonly
analyzed: nested effects, where groups are formed within groups (e.g. classes within schools),
and crossed effects, where multiple factors can be crossed. Crossed effects occur when all
levels of one factor co-occur with the levels of a second factor. In both cases, the specification
of the random effects and their covariances are more complex. Such models are out of scope
for this work.

1.3.2. Estimation approaches

In this subsection, we will discuss some estimation approaches for mixed effects models.
Opposed to the classic linear model, where we estimate the regression coefficients β and the
error variance σ2, the mixed effect model additionally requires estimation of the variance
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parameters in θ.

Estimation under the assumption of Gaussianity

The most common assumption is that the random effects b and the independent error terms
ε follow normal distributions, i.e.

b ∼ N (0,Σ(θ)), and ε ∼ N (0,V (θ)). (1.15)

Under Gaussianity, we thus have

y ∼ N (Xβ,ZΣ(θ)Z ′ + V (θ)), and (1.16)
y|b ∼ N (Xβ +Zb,V (θ)), (1.17)

respectively. For notational clarity, we have dropped the subject index i in Equations
(1.15)–(1.17).

There are different ways of estimating the unknown parameters β and θ as well as predictors
b̂i of the random effects in the mixed effects model (1.14) under Gaussianity. The three
most commonly used methods are maximum likelihood (ML), restricted maximum likelihood
(REML), and Henderson’s mixed model equations. ML and REML optimize the joint log-
likelihood of the marginal model (1.16) for the covariance parameter θ. This can either
be achieved by direct optimization through profiling of β (ML), or by integrating β out of
the likelihood (REML). REML has the advantage of achieving unbiased estimates of the
variance components. However, ML estimates can have some advantages when it comes
to hypothesis testing. In both cases, estimates of the random effects can be obtained by
calculating posterior estimates. An overview of ML and REML is given in Chapter 7 of
Fahrmeir et al. (2013). Another detailed reference, especially outlining the computational
details of both ML and REML, is Chapter 3 in Pinheiro and Bates (2000). A third possibility
is estimation based on Henderson’s mixed model equations, where β and the random effects
bi are estimated jointly from maximizing the joint log-likelihood of the conditional model
(1.17) and of b in (1.15). A detailed description is given in Searle et al. (1992, Ch. 7.6).

Robust modeling approaches

While the methodology based on the assumption of Gaussianity performs well in the case
of clean, approximately normally distributed data, the results can be strongly affected by
outlying observations (Pinheiro, Liu, et al. 2001). Thus, different methods to estimate mixed
effects models robustly have been proposed in literature.

Estimation using rank-based regression In this thesis, we estimate mixed effects models
using a notion of non-parametric regression, precisely rank-based regression models. For a
regression model y = Xβ + ε with y ∈ Rn, X ∈ Rn×p, β ∈ Rp and centered error term ε,
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the least squares estimate is the solution to the minimization problem

β̂LS = arg min
β∈Rp

||y −Xβ||2 = arg min
β∈Rp

n&
i=1

(yi − x′
iβ)

2,

where || · || denotes the Euclidean norm. By replacing the Euclidean norm by a loss function
based on the ranks of the residuals from the regression, we can obtain an R-estimate of β as

β̂φ = arg min
β∈Rp

||y −Xβ||φ = arg min
β∈Rp

n&
j=1

a[R(yi − x′
iβ)](yi − x′

iβ). (1.18)

R(rj) denotes the rank of the residual rj = yi − x′
iβ among the components r1, ..., rn of

the residual vector (r1, ..., rn)
′. The function a is defined by a[t] = φ(t/(n + 1)), where

φ(u) is a non-decreasing, bounded and square-integrable function such that
'

t a[t] = 0.
Popular choices for φ(·) are the Wilcoxon score φ(u) =

√
12



u− 1

2

�
, and the sign score

ϕ(u) = sgn
�
u− 1

2

�
. || · ||φ in (1.18) can be shown to be a pseudo-norm and was proposed in

Jureckova (1971). It is also referred to as Jaeckel’s dispersion function after Jaeckel (1972).
The R-estimator in (1.18) considers the signs of the residuals and implicitly tries to balance
the number of positive and negative residuals. Thus, the influence the outliers can have
on the resulting estimate is limited. This is also illustrated in Figure 1.2 in Section 1.1,
where the regression line obtained from (1.18) is not affected by the outlying observation.
Rank-based regression estimates based on the Wilcoxon score are almost as efficient as LS
under normality (see Section 2.2 in McKean 2004), and can be a lot more efficient in cases
where the data deviates from normality. A detailed introduction to rank-based regression
in different contexts is given in the book by Hettmansperger and McKean (2011). A more
compact overview can be found in McKean (2004).

While initially proposed to estimate classic linear models, the concept of rank-based regression
has been extended to account for the more complex structures in mixed effects models as in
Equation (1.14). Kloke et al. (2009) present an extension to models with random intercepts.
Those approaches are further extended to accommodate nested effects (i.e. multiple levels of
random intercepts) in the PhD thesis by Bilgic (2012). The author studies different methods
to fit mixed effects models with nested effects. One approach is obtained by adapting
concepts from iteratively reweighted least squares, and estimating the regression coefficients
and variance components in an iterative manner. However, the presented methodology
is also limited to models with random intercepts. Models with random slopes cannot be
estimated in those frameworks. In Chapter 3, we introduce a novel algorithm to fit mixed
effects models using rank-based regression. The proposed methodology can be applied in
the presence of random slopes and is robust against outlying responses yij and predictor
values xij and zij , respectively.

Other approaches In addition to the methodology based on rank-based regression outlined
in the previous paragraph, other ways to obtain robust estimates of the parameters in mixed
effects models have been proposed in the literature. One stream are modeling approaches
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based on the concepts of M-, S- and τ -scale estimation. Copt and Victoria-Feser (2006)
estimate the mixed effects model using high-breakdown S-estimators to obtain the covariance
matrices. Koller (2013) proposes the SMDM estimator which is based on robust adaptations
of Henderson’s estimating equations using ρ-functions. A third estimation method is given
in Agostinelli and Yohai (2016) and based on τ -scale estimators. It is not only robust to
contamination of whole observations, but also to cellwise contamination where the different
cells of an observational unit may be independently contaminated.

Another way to robustify the estimates is to replace the normal distributions in (1.15) by
heavy-tailed distributions. Such distributions are more likely to incorporate extreme values
due to their heavy tails, and can thus serve as an alternative to model extreme residuals and
random effects. Pinheiro, Liu, et al. (2001) propose an efficient estimation procedure based
on the multivariate t-distribution with νi degrees of freedom for subject i. Model estimation
can be achieved by different EM algorithms that treat the random effects and the unknown
degrees of freedom νi as missing data.

1.4. Functional data analysis and models for longitudinal
functional data

This subsection starts by introducing the basic concepts of functional data analysis and
functional principal components analysis in Section 1.4.1 and 1.4.2, respectively. Then,
specific models for longitudinally observed functional datasets are introduced in Section
1.4.3.

1.4.1. Definition and classification

Functional data analysis (FDA) is the field of statistics that deals with data that appear
in the form of functions, images and shapes, or even more general objects (Wang, Chiou,
et al. 2016). In this thesis, we assume we observe a random sample of real-valued functions
X1(s), ..., Xm(s) for s ∈ S, where S is a compact subset of the real line. Each random
function Xi(s) is assumed to be a realization of a univariate stochastic process

X : Ω → L2(S). (1.19)

L2(S) denotes the space of all square-integrable processes, i.e. those with E

�

S X2(s)ds
�
< ∞.

The space L2(S) is a Hilbert space with inner product

⟨f, g⟩S =

�
S
f(s)g(s)ds

(Kokoszka and Reimherr 2017, Ch. 11). The analysis of functional data poses challenges,
since the underlying data structure is inherently infinite-dimensional. However, in real
data applications the functions usually cannot be observed continuously. Instead, they will
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Figure 1.6.: Example for a functional dataset: Mortality rates for Austria (left) and (Western)
Germany (right) between 1960 and 2020.

be observed on some discrete grid, denoted by si1, ..., siri for observation i, i = 1, ...,m.
Depending on the application, this grid can be dense or sparse, regular or irregular. The
number of sampling points ri may be different for each curve.

Some examples of functional observations are displayed in Figure 1.6. It shows the mortality
rate as a function of age in the time for Austria (left) and Germany (right). Each curve
corresponds to a year between 1960 and 2020.3 The curves can be considered as realizations
of a process like the one in (1.19). The sampling grid is discretized, each age j corresponds
to a point sij on the sampling grid for the i’th curve. The displayed data are a subset of a
larger dataset which contains mortality curves for 36 countries. It is analyzed in detail in
Section 4.6 of Chapter 4, p. 95f.

The processes X in (1.19) are characterized by their mean function and covariance function.
The mean function of X is the expected value of the processes, i.e.

µ(s) = E(X(s)) ∀s ∈ S. (1.20)

The covariance function of X is defined as a function c : S × S → R such that

c(s, t) = Cov(X(s), X(t))

= E[(X(s)− µ(s))(X(t)− µ(t))].
(1.21)

3Data obtained from the Human Mortality Database. Max Planck Institute for Demographic Research
(Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies
(France). Available at www.mortality.org (data downloaded on June 07, 2024).
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1.4. Functional data analysis and models for longitudinal functional data

Given a smooth representation of the samples, the above quantities can be estimated by

µ̂(s) =
1

m

m&
i=1

Xi(s), and ĉ(s, t) =
1

m

m&
i=1

(Xi(s)− µ̂(s))(Xi(t)− µ̂(t)), (1.22)

as described in Kokoszka and Reimherr (2017, Ch. 12). The estimators in (1.22) can be
applied readily if the sampled data is available on a dense and regular grid. In cases where
the samples are very sparse and irregular, we need to resort to more sophisticated estimation
techniques and reuse information across the samples, for example by applying local linear
smoothing estimators or bivariate smoothing algorithms [see for example Yao et al. (2005),
Cai and Yuan (2011), Xiao et al. (2018), Boente and Salibián-Barrera (2021)].

1.4.2. Functional principal component analysis

Functional principal component analysis (FPCA) is one of the most prevalent tools in
functional data analysis. It extends principal component analysis from multivariate data to
functional data. It is a powerful tool to reduce the dimensionality of the infinite-dimensional
functional observations. At the same time it captures the most significant features of the
data.

The dimension reduction is achieved by an expansion of the random trajectories Xi(s) into a
functional basis that consists of the eigenfunctions of the covariance operator of the process
X. Given the covariance function c as defined in Equation (1.21), the covariance operator is
the kernel operator C : L2(S) → L2(S), ψ → Cψ, where

Cψ =

�
S
c(s, t)ψ(s)ds

for any ψ ∈ L2(S). C is continuous and a compact Hilbert-Schmidt operator (Wang, Chiou,
et al. 2016). Since it is symmetric and non-negative definite, it has real valued, non-negative
eigenvalues, denoted by λk. Under mild conditions, Mercer’s theorem (see e.g. Corrollary
10.4.1 in Kokoszka and Reimherr 2017) implies that spectral decomposition of C allows to
represent the covariance function c as

c(s, t) =

∞&
k=1

λkϕk(s)ϕk(t),

where {λk}k are the eigenvalues, and {ϕk(·)}k the corresponding orthonormal eigenfunctions
of C. In 1946, Karhunen and Loève independently discovered the Karhunen-Loève (KL)
expansion which allows to represent the processes Xi(·) as

Xi(s) = µ(s) +
∞&
k=1

αikψk(s), (1.23)

where ψk(·) for k = 1, 2, ... are the functional principal components (FPCs) and αik are the
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corresponding scores for sample i. The scores are given by

αik = ⟨Xi − µ, ϕk⟩S =

�
S
(Xi(s)− µ(s))ϕk(s)ds. (1.24)

Their expectation and variance are

E(αik) = 0, and Var(αik) = λk.

Furthermore, they are uncorrelated across k and independent across i (Wang, Chiou, et al.
2016; Kokoszka and Reimherr 2017, Ch. 11.4). By truncating the representation (1.23) to
the first K ≪ ∞ components we can achieve dimension reduction and reduce the infinite-
dimensional processes Xi(s) to a finite-dimensional vector of scores for further analysis. The
resulting decomposition is then given by

Xi(s) ≈ µ(s) +
K&
k=1

αikψk(s). (1.25)

Such dimension reduction can also be achieved by projecting onto other orthogonal basis
functions such as B-splines or Fourier basis functions (see e.g. Chapter 3 in Ramsay and
Silverman 2005). However, FPCA offers the best finite rank approximation of the functional
data in terms of minimizing the mean squared error. The functional principal components
(FPCs) explain the most variance among all finite-dimensional approximations of the
processes. The number of components K can be chosen in different ways, usually by
considering the sequence of eigenvalues {λk}k. One possibility is the scree plot of the
eigenvalues against the index. Another option is to analyze the proportion of variance
explained (pve) and select components such that, e.g., 90% of the variance of the process
are explained. The pve can be calculated from the cumulative sum of the eigenvalues λk,
since by Parseval’s identity, we have

E
�||X − µ,X − µ||2S

�
= E (⟨X − µ,X − µ⟩S) =

∞&
k=1

λk,

i.e. the variance of the process X equals the sum of the variances of the projections of X
onto the eigenfunctions or FPCs ψk (Kokoszka and Reimherr 2017, Ch. 11.4).

The estimation of (1.25) is achieved in two steps: From an estimate of the mean function
µ(s) and the covariance function c(s, t), we can obtain the spectral decomposition of the
covariance operator by evaluating c(s, t) on a fine grid and performing a standard spectral
analysis of the resulting matrix. This gives us the eigenfunctions ψk(s), k = 1, ...,K.
Depending on the sampling grid, estimating the corresponding scores αik is non-trivial, since
it requires approximation of the integral in (1.24). This can be achieved easily if the functions
Xi(s) are available on a dense grid, however, if the functional data is sampled sparsely, the
approximation is less straight forward. An alternative method that can be applied for both
sparse and dense data is the conditional expectation method (PACE) proposed in Yao et al.
(2005). Under the assumption of Gaussianity of the scores, the best linear prediction of the
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1.4. Functional data analysis and models for longitudinal functional data

scores is given by

α̃ik = E(αik|Xi(·)) = λkψ
′
ikΣ

−1
X̃i

(X̃i − µi), (1.26)

where X̃i = (Xi(si1), ..., Xi(siri))
′, µi = (µ(si1), ..., µ(siri))

′, ψik = (ψk(si1), ..., ψk(siri))
′

and ΣX̃i
= Cov(X̃i, X̃i). Estimates of the scores can be obtained by replacing the theoretical

quantities in (1.26) by suitable estimators. Boente and Salibián-Barrera (2021) extend this
result to the more general case of elliptical distributions.

1.4.3. Second-generation functional data

While classic FDA is concerned with the analysis of independently sampled functions, there
are also more complex forms of functional data. Data can be collected as multivariate
functional data or longitudinal functional data, but also in spatial and time series designs.
Such samples require specific methodology to account for the more complex dependency
structures in the data while at the same time keeping the computations feasible. Koner and
Staicu (2023) call this type of functional data second-generation functional data, as opposed
to the i.i.d. sampled first-generation functional data described in the previous subsection.
We will focus on functional data from longitudinal designs in the following.

Longitudinal or repeated measurements functional data

Oftentimes, longitudinal studies do not collect data where the basic measurement is scalar
or multivariate, but where it is a function instead. This procedure gives rise to what we call
longitudinal functional data.

Formally, longitudinal functional data can be interpreted as realizations of bivariate stochastic
processes. Opposed to the one-dimensional process in (1.19), we are concerned with random
processes

Y : Ω → L2(S × T ), (1.27)

where S denotes the functional or spatial domain and T the time domain. Another
interpretation is to see Y as a function Y : T → L2(S), S, T ⊂ R, where a realization of
Y at fixed time t is denoted by Y (·, t). Compared to the mean and covariance function in
(1.20) and (1.21), the mean and covariance function of the bivariate process Y in (1.27) are
more complex. They are given by

E(Y (s, t)) = µ(s, t), and

Cov(Y (s, t), Y (s′, t′)) = c({s, t}, {s′, t′})
= E[(Y (s, t)− µ(s, t))(Y (s′, t′)− µ(s′, t′))].

(1.28)

Thus, the mean function is bivariate and the covariance function has four arguments. This
underlines the increased complexity related to this type of data.
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Consider observed data from n observational units.4 For each subject i, i = 1, ..., n, we
observe curves Yi(·, tij) in ni random time points tij ∈ T , j = 1, ..., ni. The sampling time
points are assumed to be uniformly distributed on the interval T and may be sparse. Since
in practice the functional observations cannot be observed continuously, they are observed
on a finite grid s1, ..., sR. For simplicity, we assume this grid is the same for all functions.
The whole dataset is then denoted by

[{(tij , Yi(sr, tij)), r = 1, ..., R} , j = 1, ..., ni]i=1,...,n .

The mortality data shown in Figure 1.6 can be interpreted as a longitudinal dataset. Each
country corresponds to an observational unit i, and the sampling time points tij correspond
to the years in which the curves were recorded. The age r corresponds to the index sr+1,
r = 0, .., 86. The mortality profile of country i for a fixed year tij is then given by the
realization Yi(·, tij).

Goals of modeling and some example parameterizations

The analysis of longitudinal functional data can be focused on different aspects. First and
foremost, the goal is to understand and parameterize the longitudinal dynamics of the
trajectories. In the mortality data example (Figure 1.6), a question that can be asked could
be: “What are the differences in development of the mortality curves over time between
different European countries?”. Similarly, in the analysis of medical data, one could be
interested in the differences between a treatment and a control group. Especially for processes
that are observed on irregular grids, an aim is to fill in the missing time points and obtain
predictions for the whole trajectories of the processes, also in time points t where data was
not measured initially. Answers to those questions can be obtained by parameterizing the
processes in a suitable way. In the following, we present different models that can be applied
to answer these questions.

Since the processes (1.27) are bivariate, we can look at the multivariate KL expansion, given
by

Y (s, t) = µ(s, t) +

∞&
k=1

αkγk(s, t).

Here, {γk(s, t)}k is the orthonormal basis obtained from the spectral decomposition of
the covariance operator induced by the covariance function (1.28) (Chen, Delicado, et al.
2017). This parameterization treats the dynamics in S and T symmetrically and does
not allow for separate interpretation of the arguments. Instead, it requires the analysis of
bivariate surfaces. However, often we are interested in a characterization that is more easily
interpretable.

Greven et al. (2010) suggest to parameterize processes of form (1.27) in a functional mixed

4The index g in the overall data structure (1.1) is replaced by n in order to ensure consistency with the
notation in Chapter 4.
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1.4. Functional data analysis and models for longitudinal functional data

effects model. In its easiest form, it is given by

Yi(s, t) = µ(s, t) + Zi,0(s) + Zi,1(s) · t+ Ei(s, t),

where Zi,0(s) and Zi,1(s) are uncorrelated random processes and Ei(s, t) contains smooth and
white noise error terms. In this model, the processes Yi(s, t) are assumed to evolve linearly
in t, thus reducing the variation to univariate processes Zi,j(s), i = 1, ..., n, j = 0, 1. The
model estimation is carried out using what they call longitudinal FPCA. Each component
Zi,p(s),, i = 1, ..., n, p = 0, 1, is represented by its own KL expansion, while allowing for
correlations between the two processes. The model can also be generalized to allow for more
complicated structures and additional linear covariates.

Chen and Müller (2012) offer another approach to obtain a more parsimonious and inter-
pretable parameterization. They represent the processes Yi(s, t) as Yi(s|t), thus conditional
on the measurement time. A model is set up using a double FPCA method. This yields the
following representation of the processes

Yi(s|t) = µ(s|t) +
∞&
k=1

ξik(t)ϕk(s|t)

= µ(s|t) +
∞&
k=1

∞&
p=1

ζikpψkp(t)ϕk(s|t)

= µ(s|t) +
∞&
k=1

∞&
p=1

ζikpφk(s|t),

where φk(s|t) = ψkp(t)ϕk(s|t) and i = 1, ...n. This decomposition requires a separate set
of eigenfunctions at each measurement time point t and is thus computationally quite
demanding. The surfaces ϕk(s|t) are assumed to be smooth in both s and t.

An even more parsimonious parameterization is offered by Chen, Delicado, et al. (2017)
and Park and Staicu (2015). Instead of estimating eigensurfaces as functions s and t, they
separate the dynamics s and t in the decomposition of the process, yielding the representation

Yi(s, t) = µ(s, t) +
∞&
k=1

ξik(t)ϕk(s)

= µ(s, t) +

∞&
k=1

∞&
ℓ=1

ζikℓψkℓ(t)ϕk(s),

(1.29)

where the dynamics in s and t are separated, i = 1, ..., n. The representation (1.29) is purely
data-driven and can be fit to datasets that are sampled on both sparse and dense grids
in S and T . This model will be referred to as marginal FPCA in the following, and is
topic of Chapter 4 of this thesis, where we propose a robust algorithm to estimate above
decomposition.
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1.5. Overview of the three main chapters

In the following, we give a short description of the content and novelty of the three main
chapters of the thesis.

1.5.1. Chapter 2: Time-Varying Reduced Rank Regression

The chapter is based on the article B. Brune, W. Scherrer, et al. (2022). “A State-Space
Approach to Time-Varying Reduced-Rank Regression”. In: Econometric Reviews 41.8,
pp. 895–917. doi: 10.1080/07474938.2022.2073743.

In the paper, a new approach to reduced-rank regression that allows for time-variation in the
regression coefficients is introduced. Reduced-rank regression is a straight-forward way to
reduce the number of parameters in multivariate regression models in an interpretable manner:
The multivariate time series can be explained by a lower number of linear combinations of
the predictor series. Reduced-rank regression contains useful model classes for multivariate
time series as special cases, e.g. vector error correction models and special cases of (dynamic)
factor models. We propose an algorithm for the regression model yt = Ctxt + εt, where the
time-varying parameter matrices Ct ∈ Rp×q are assumed to decompose into two lower-rank
matrices parameterized as either (A) Ct = αtβ

′ or (B) Ct = αβ′
t. Thus, time-variation is

either in the “reductions” of the predictor series β′
txt−1, or in the way the reduced series

β′xt−1 are mapped onto the observed time series xt through the coefficient matrices αt.
The model is set up as a Gaussian state-space system where the time-varying parameter
matrices are assumed to follow a random walk, and their covariances are specified in a way
that incorporates the fact that the matrices α and β are only identifiable up to rotations.
In doing so, we resolve potential contradictions in the rotation-invariance of the imposed
covariance structure for the time varying parameters pointed out in Yang and Bauwens
(2018). The assumption of Gaussianity allows to use the well-established Kalman filter to
estimate the time-varying parameter matrices. The unknown parameters of the system
are estimated using an EM algorithm with closed-form updates. This closes a gap in the
literature, since this is, to the best of our knowledge, the first method for time-varying
reduced-rank regression that does not require knowledge of the unknown parameters of the
state-space system, and can thus be fit to real datasets. We illustrate the proposed method
with simulation studies and two real-data applications.

Contribution: B. Brune participated in discussions with the co-authors to come up with
the initial ideas, came up with the EM-algorithm, implemented the methodology and carried
out the simulation studies, and wrote the initial draft of the manuscript.

1.5.2. Chapter 3: Rank-Based Estimation of Mixed Effects Models

The chapter is based on the article B. Brune, I. Ortner, and P. Filzmoser (2024). A
Rank-Based Estimation Method for Mixed Effects Models in the Presence of Outlying Data.
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1.5. Overview of the three main chapters

Conditionally accepted for publication in: Journal of Data Science, Statistics, and Visual-
ization.

In the paper, we present a novel approach to the rank-based estimation of mixed effects
models. While the existing methodology is limited to models with random intercepts, we
propose an algorithm that furthermore allows to estimate random effects structures that
contain random slope coefficients. Outlying observations can occur both in the response
variables yij (response outliers) and the vectors of predictors xij and zij (leverage points).
The proposed algorithm offers robustness against both types of outliers. This is achieved by
adapting the GR procedure proposed in Bilgic (2012), and introducing a weighting procedure
that limits the influence of the outliers. The proposed algorithm leverages the advantages of
rank-based estimation in that it is (almost) tuning-parameter free and computationally very
efficient. We propose different diagnostic tools and plots which allow for model diagnostics
and especially help with identification of outlying observations or groups in the data. We
study the performance of our estimators in extensive simulation studies, and the methodology
is illustrated in three data applications.

Contribution: B. Brune came up with the initial idea, developed the methodology and
algorithm, implemented the method and carried out the simulation studies, and wrote the
initial draft of the manuscript.

1.5.3. Chapter 4: Robust modeling of longitudinal functional data

This chapter is based on joint work with Una Radojičić, Sonja Greven and Peter Filzmoser.

Longitudinal or repeated measurements functional data add a layer of complexity to standard
i.i.d. functional data by introducing dependencies not only in terms of the functional argument
s, but also between the realizations of the functions in different time points t. A common
method to reduce the dimension of functional datasets and to understand the driving
sources of variation is to apply functional principal component analysis (FPCA). Different
parameterizations of FPCA models for functional data with longitudinal structure have
been introduced in the literature. However, there is a lack of robust methodology to fit such
models to observed datasets, although in practice, the observed data can be contaminated
by erroneous observations or outliers. This paper proposes a robust estimation algorithm for
the marginal FPCA model (1.29). It replaces the non-robust components of the algorithms
proposed in Park and Staicu (2015) and Chen, Delicado, et al. (2017) by robust counterparts.
Furthermore, we develop methodology to detect outlying observations on two levels: as single
curves within an observational unit, and whole outlying observational units that do not
follow the structure imposed by the model. The simulation studies presented in the paper
show that the algorithm has excellent robustness properties and reliably detects outlying
curves. Furthermore, it leads to interesting insights when applied to real datasets.

Contribution: B. Brune came up with the initial idea, developed the methodology and
algorithm, implemented the method and carried out the simulation studies, and wrote the
initial draft of the paper. The proofs were provided by U. Radojičić.
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1.6. Related software packages

Implementations of the methodology for the three articles are available as R-Code from B.
Brune’s GitHub account (https://github.com/b-brune). The corresponding repositories
are listed in the following:

tvRRR implements the methodology for time-varying reduced rank regression models as
proposed in Chapter 2.

rankLME implements the rank-based mixed effects model from Chapter 3.

robLFDA contains code to fit the robust model for longitudinal functional data proposed in
Chapter 4.
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2 A State-Space Approach
to Time-Varying
Reduced-Rank Regression

This chapter is joint work with Wolfgang Scherrer and Efstathia Bura and was published as B.
Brune, W. Scherrer, et al. (2022). “A State-Space Approach to Time-Varying Reduced-Rank
Regression”. In: Econometric Reviews 41.8, pp. 895–917. doi: 10.1080/07474938.2022.
2073743. The supplemental material can be found in Appendix A, p. 117ff.

2.1. Introduction

The simultaneous modeling and fitting of p time series when p is large is a challenging
task as the number of parameters grows with p2 and can often exceed the number of
observations. Five main approaches to reduce the number of parameters in multivariate
time series models have been proposed: (1) reduced-rank vector autoregressive (VAR) and
multivariate autoregressive index models (MAI) models (Velu et al. 1986; Ahn and Reinsel
1988; Carriero et al. 2016), where the parameter matrix is assumed to have a lower rank
structure; (2) shrinkage Bayesian VAR with shrinking prior distributions for controlling the
number of parameters (Litterman 1986; Sims and Zha 1998; Ghosh et al. 2019); (3) sparse
VAR estimation, where a low-dimensional analysis of groups of series is first carried out to
identify rows and columns of parameter matrices that can be assumed to have zero values,
as in Davis et al. (2016); (4) regularized estimation, where a penalty term is included in the
estimation objective function (see, e.g., Nicholson et al. (2017) and Song and Bickel (2011));
and (5) the popular dynamic factor model (DFM), introduced by Geweke (1977) and Sargent
and Sims (1977). Using the idea of risk diversification discussed in Chamberlain (1983), the
so called generalized dynamic factor models (GDFM) have been introduced, extensively
studied and developed by many researchers [see, e.g., Stock and Watson (2002), Stock and
Watson (2005), Bai and Ng (2002), Forni, Hallin, Lippi, and Reichlin (2000), Forni, Hallin,
Lippi, and Reichlin (2005), Forni, Hallin, Lippi, and Zaffaroni (2015), Peña and Yohai (2016),
and Anderson and Deistler (2008)]. In GDFMs, the number of parameters typically grows
linearly with the number of time series. A recent review of these five approaches can be
found in Peña and Tsay (2020).

Classical linear time series models assume that the (auto-) covariance structure and hence

29

https://doi.org/10.1080/07474938.2022.2073743
https://doi.org/10.1080/07474938.2022.2073743


2. A State-Space Approach to Time-Varying Reduced-Rank Regression

the serial (linear) dependency structure of the data is constant. This may not be a realistic
assumption in many applications. For example, many economic data sets show significant
structural changes.

Vector-autoregressive (VAR) models with time-varying parameters (TVP) form an important
line of research for TVP time series models. They have been successfully applied to model
time-varying relationships between multiple economic time series (e.g. in Lubik and Matthes
2016). Stock and Watson (2009) and Breitung and Eickmeier (2011) found empirical evidence
of temporal instability of coefficients in dynamic factor models for large panels of economic
data. DFMs that are able to deal with time-dependent parameters have been suggested in
Del Negro and Otrok (2008) and Su and Wang (2017). Time-variation may also arise in
the cointegrating parameter matrix of a vector error-correction model [see, e.g., Bierens and
Martins (2010)].

Time-varying parameter is a special case of stochastic parameter models. An indication of
the extent of interest in such models is the fact that reviews of related literature appeared as
early as 1973 in Rosenberg (1973) followed by Johnson (1977). The estimation of TVP models
for time series has been approached from different perspectives. Frequentist methodology
includes state-space modeling [see e.g. Chapter 18 in Lütkepohl (2005), Eickmeier et al.
(2015) and Chapter 13 of Hamilton (1994)] and non-parametric approaches [see e.g. Bierens
and Martins (2010), Su and Wang (2017) or Coulombe (2021)]. Another research direction
follows Bayesian estimation, often also in combination with state-space modeling [see, among
many others, Doan et al. (1984), Primiceri (2005), Del Negro and Otrok (2008), Lubik and
Matthes (2016) and Baştürk et al. (2017)].

Since its introduction by Izenman (1975), reduced-rank regression (RRR) has been success-
fully applied in multivariate regression modeling, mostly to independent and identically
distributed (i.i.d.) data. In this paper, we model a vector of series jointly using reduced-rank
regression with dynamics in the parameter matrix and apply classical tools from state-space
models. The time-varying parameters are considered as latent states in a Gaussian state-
space system. This modeling approach has been used successfully to fit multivariate time
series models with time-varying coefficients [see, e.g., Hamilton (1994, Chapter 13); Durbin
and Koopman (2012, Section 6.3.1); Guo (1990); Kilian and Lütkepohl (2017, Chapter 18);
Lütkepohl (2005, Chapter 18)].

We model different types of temporal instability by decomposing the reduced-rank coefficient
matrix in the multivariate time series regression model as the product of two full-rank
time-varying matrices. To the best of our knowledge, the only paper presenting a similar
methodology is Yang and Bauwens (2018), who assume the time-varying coefficient matrices
live on the Stiefel manifold, the space of semi-orthogonal matrices (see e.g. Chikuse 2003).
Yang and Bauwens (2018)’s approach does not lead to an estimate of all model parameters.
In a different context, state-space models with states on the Stiefel manifold were considered
by Tompkins and Wolfe (2007) and Bordin and Bruno (2019), where estimation was again
not resolved. This restriction appears to impede the development of a feasible estimation
algorithm for the parameters, and in consequence, prediction of the responses.

In our Gaussian state-space formulation, the time-varying coefficient matrices live in a
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Euclidean space instead, which allows for evaluation of the likelihood via the Kalman filter
(Shumway and Stoffer 2017, Ch. 6). Maximum likelihood estimation of all parameters is
carried out using an EM-algorithm with closed form updates. We refer to this model, to-
gether with the corresponding estimation algorithm, as time-varying reduced-rank regression
(tvRRR).

The rest of this paper is organized as follows. We review time-constant and time-varying
reduced-rank regression in Section 2.2. We specify our models in Section 2.2.1 and present
our estimation and model fitting algorithm in Section 2.2.2. In Section 2.2.3, we define the
BIC criterion we use to estimate the rank of the parameter matrix. Section 2.3 contains
our simulation studies and results, which confirm the usefulness of tvRRR in accurately
modeling time series data whose relationship changes over time. There, we also show it
is particularly robust to structural breaks in the coefficients. In Section 2.4, we showcase
the adaptability of our model by analyzing two data sets. The first consists of seven
financial indices, which are considered during two time periods, when international markets
experienced extreme stress: the Great Recession in 2008 and the Covid-19 crisis of 2020.
Here, we fit vector error correction models (VECM) with time-varying cointegrating relations.
As a second example, we consider the number of weekly Covid-19 cases in 12 European
countries and fit a TVP-VAR(1) with a reduced-rank coefficient matrix. Section 2.5 contains
our concluding remarks.

2.2. Time-varying reduced-rank regression

The general reduced-rank regression (RRR) model is given by

yt = Cxt + Γut + εt, t = 1, . . . , T, . . . , (2.1)

where yt ∈ Rp is a p-dimensional target vector, xt ∈ Rq is a q-dimensional predictor, and
C ∈ Rp×q is a matrix with rank(C) = d ≤ min(p, q). The latter implies that C can be
decomposed as the product of two rank d matrices α ∈ Rp×d and β ∈ Rq×d such that
C = αβ′. The errors εt are normal white noise with covariance Ω. The vector ut ∈ Rk

contains additional explanatory variables with unrestricted coefficient matrix Γ ∈ Rp×k.
Both xt and ut are observable. Throughout, we use boldfaced letters and symbols to denote
vectors or matrices and non-boldfaced for scalars. A′ denotes the transpose of a matrix A
and Is stands for the (s× s) identity matrix.

Velu et al. (1986) were the first to use RRR in vector autoregressive (VAR) models. In
a VAR(m) model, the explanatory variables xt are lags of the target variable yt, xt =
(y′

t−1, ...,y
′
t−m)′ ∈ Rmp. While fitting full rank VAR models requires estimation of a large

number of parameters if the number of time series p is large, RRR introduces sparsity
in the relationship between the lagged variables and the response by assuming that the
coefficient matrix C ∈ Rp×mp has rank d ≪ p. Cointegration models are another popular
application of RRR in the time series context. In the vector error correction model (VECM),
the cointegrating relations of multiple non-stationary time series are represented by a
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2. A State-Space Approach to Time-Varying Reduced-Rank Regression

reduced-rank matrix [see e.g. Lütkepohl (2005), Part II].

RRR may also be simply used as a tool for constructing approximate yet parsimonious
regression models. Reinsel and Velu (1998) provide a comprehensive review of reduced-
rank regression models and their applications in both i.i.d. and time-series settings. The
principle of RRR underlies several methods in sufficient dimension reduction based on inverse
regression (Bura and Cook 2003). For example, parametric inverse regression (Bura and Cook
2001) and principal fitted components (Cook and Forzani 2008) rely on RRR methodology.

The most relevant interpretation to our development is of RRR as a factor model. Specifically,
yt = αβ′xt + εt can be interpreted as a factor model with factors ft = β′xt and factor
loadings α, with the distinguishing feature that the factors, for given β, are observable, as
opposed to latent in “standard” factor models. The factors summarise all the information in
xt that is necessary for approximating yt. If xt = yt−1, the model can be interpreted as
a simple dynamic factor model, where the factors ft have a VAR(1) dynamic (Peña and
Poncela 2006).

We incorporate time variation in the coefficients of model (2.1) by writing,

yt = Ctxt + Γut + εt. (2.2)

We assume that the rank d < min(p, q) of Ct is fixed and we model the time dependence of
Ct as

(A) Ct = αtβ
′, where αt ∈ Rp×d, β ∈ Rq×d (2.3)

(B) Ct = αβ′
t, where α ∈ Rp×d, βt ∈ Rq×d (2.4)

(C) Ct = αtβ
′
t, where αt ∈ Rp×d, βt ∈ Rq×d. (2.5)

In all three, the component matrices in the decomposition are of full rank d. In (A) and (B),
one of the two factors in the decomposition of Ct is assumed to be constant. Hence, the
time-variation is attributed to the other. This simplifies the interpretation and estimation
of the resulting model.

In model (A), it is assumed that the relevant information contained in xt may by extracted
by non time-varying linear combinations of the regressors xt. However, the coefficients of
the regression of yt on β′xt may vary with time. In this case the row space of Ct, i.e. the
row space of β′, is independent of time. The case of the column space of Ct being constant
is modeled by (B) with an analogous interpretation. In model (C), both the column and the
row space of Ct are allowed to be time dependent.

Both matrices in the decompositions (A), (B) and (C) can only be identified up to invertible
transformations. For model (C), the relation αtβ

′
t = αtHtH

−1
t β′

t holds for any invertible
Ht ∈ Rd×d, so that each pair αt, βt can only be identified up to right multiplication with a
non-singular matrix.

In models (A) and (B), the transformation Ht = H has to be independent of time. For
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2.2. Time-varying reduced-rank regression

example, in model (A),

Ct = αtβ
′ = α̃tβ̃

′ ⇐⇒ α̃t = αtH and β̃t = βt(H
−1)′. (2.6)

Ensuring identifiability requires additional restrictions, such as fixing a d× d dimensional
sub-matrix of β to the identity matrix. We demonstrate at the end of this section that the
estimates of the proposed algorithm are invariant to transformations as in (2.6).

In addition to the ambiguity of the component matrices introduced by the time-specific
transformations Ht, the observations yt in model (C) are a non-linear function of αt and
β′
t, rendering model fitting and parameter estimation non-trivial. This model cannot be

represented as a linear state-space system and one would need to resort to non-linear
filtering methods, such as the extended Kalman filter or particle filters, for estimation of
the time-varying parameters αt and βt (see e.g. Särkkä 2013). On the other hand, models
(A) and (B) are sufficiently flexible to capture various types of time-variation. A possible
interpretation of model (A) could be a factor model with time-varying factor loadings: The
factor composition remains constant, even though the factors’ influence on different response
variables can vary over time. With model (B), we can, among other applications, model
time-varying cointegration spaces in vector error correction models. Moreover, time-varying
factor compositions are covered by this formulation. We focus on models (A) and (B) in the
rest of the paper.

2.2.1. Model specification

The reduced-rank regression model (2.2) with time-varying parameters Ct as defined in (2.3)
and (2.4), can be written as

(A) yt = αtβ
′xt + Γut + εt

= (x′
tβ ⊗ Ip) vec(αt) + Γut + εt,

(B) yt = αβ′
txt + Γut + εt

= (x′
t ⊗α) vec(βt) + Γut + εt,

where the errors are i.i.d. with E(εt) = 0 and Cov(εt) = Ω. Both are regression models,
where some of the coefficients are time-dependent. These time-varying parameters are
modeled as (latent) states in a state space system, as in, e.g., Hamilton (1994).

Both cases (A) and (B) can be treated similarly. We therefore outline the estimation
procedure in detail only for model (A). The derivation for model (B) is analogous. In
order to simplify the exposition, we let Γ = 0. However, the inclusion of this term is
straightforward.

In absence of specific prior knowledge of the dynamics of the time-varying parameters,
we assume that they follow a random walk. The time-varying parameters, i.e. states, are
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2. A State-Space Approach to Time-Varying Reduced-Rank Regression

assumed to evolve according to some density f that is centered at the previous state,

vec(αt+1) ∼ f(vec(αt)), (2.7)

as in, for example, Del Negro and Otrok (2008), Eickmeier et al. (2015) and Yang and
Bauwens (2018).

A common approach is to let f be a multivariate normal density,

vec(αt+1) ∼ N (vec(αt),Σ). (2.8)

The number of parameters pd(pd+ 1)/2 in the state covariance matrix Σ is prohibitive for
estimation, even for moderate sized models. This fact necessitates the imposition of further
structure on Σ. As has been noted by Yang and Bauwens (2018), this structure should be
compatible with the inherent non-identifiability of the factorisation (2.6). For example, the
widely used simplification of a diagonal Σ is not preserved under invertible transformations,
since the transformed states αtH evolve as vec(αt+1H) ∼ N (vec(αtH), (H ′⊗I)Σ(H⊗I)).
In this case, the covariance matrix is non-diagonal in general.

To bypass this limitation and facilitate identifiability of the parameter matrices, Yang and
Bauwens (2018) propose a non-linear state space model on the set of all semi-orthogonal
matrices, the Stiefel manifold

Vp,d = {A ∈ Rp×d : A′A = Id}. (2.9)

In their specification, the state matrices αt perform a random walk on the space (2.9) by
requiring f in (2.7) to be the density of a matrix Langevin (or von Mises-Fisher) distribution.
This distribution derives from restricting a specific matrix normal distribution to orthogonal
matrices (see e.g. Chikuse 2003, Ch. 2). Although Yang and Bauwens (2018) derive closed
form solutions for the predicted and updated states, the resulting posterior likelihoods involve
intractable normalizing constants that depend on the model’s time-constant parameters. This
renders parameter estimation hard, as reflected in the absence of an estimation procedure.
The model cannot be fitted to observed data and filtering the states is only possible if the
unknown parameters are given a priori.

We do not require the time-varying parameter matrices αt be semi-orthogonal, but allow
them to vary freely in Rp×d, which results in more flexible parameter estimates. We maintain
the multivariate normality assumption (2.8) and further assume that the covariance matrix
Σ is separable; i.e., Σ = Σc ⊗Σr with Σc ∈ Rd×d, Σr ∈ Rp×p. This Kronecker product
structure is invariant to transformations αt → αtH, since

Cov (vec(αtH)) = Cov
�
(H ′ ⊗ Ip) vec(αt)

�
= (H ′ΣcH)⊗Σr.

Furthermore, this structure reduces the number of parameters from pd(pd+ 1)/2 to at most
(p(p+1)+ d(d+1))/2− 1. The decomposition Σ = Σc ⊗Σr corresponds to the assumption
that the states follow a (p× d)-dimensional matrix normal distribution (Gupta and Nagar
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2.2. Time-varying reduced-rank regression

2000),

αt ∼ Np×d(αt−1;Σr,Σc),

which agrees with the interpretation of the time-varying coefficients as rank d-matrices.

A further reduction of the number of parameters that need to be estimated is achieved by
setting Σr = Ip, which further relieves the computational burden for large datasets. Due to
this assumption the (changes of the) rows of αt are independent and identically distributed,
so that we only need to estimate d(d+ 1)/2 parameters, a computationally non-prohibitive
number when the rank of the matrix is small. The same applies to model (B). The limitation
to this form of matrix normal distribution complies with the matrix Langevin distribution
used in Yang and Bauwens (2018), as the latter derives from a matrix normal distribution
with the above covariance structure (Chikuse 2003).

The resulting state-space model for model (A) is thus given by

vec(αt+1) = vec(αt) + ηt

yt = (x′
tβ ⊗ Ip) vec(αt) + Γut + εt,

(2.10)

where εt ∼ N (0,Ω) and ηt ∼ N (0,Σc ⊗ Ip) are independent i.i.d. sequences. Analogously,
model (B) is of the form

vec(β′
t+1) = vec(β′

t) + ζt

yt = (x′
t ⊗α) vec(β′

t) + Γut + εt
(2.11)

with ζt ∼ N (0, Iq ⊗Σc).

2.2.2. State estimation and model fitting

The regressors xt,ut, t = 1, . . . , T , are understood as functions of explanatory variables zt
and lagged dependent variables. That is,

(x′
t,u

′
t)
′ = g(zt,yt−1, ...,yt−m).

We let Fs denote the sigma-algebra generated by all the exogenous variables zt and the
observed target variables up to time s, Fs = σ(z1, ..., zT ,y−m+1, ...,y0,y1, ...,ys). This
setting includes as special cases VAR(m), VARX(m) and VECM(m) models, in which the
predictors are either functions of the lagged variables, or of the exogenous variables, or both.

The time-varying parameters αt and βt in models (2.10), resp. (2.11), can be inferred using
the Kalman filter. Again, we outline the procedure in detail only for model (A). Following
Shumway and Stoffer (2017, Ch. 6), we use the following notation for the filtered and
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smoothed coefficient matrices and the corresponding covariances:

αs
t = E(αt | Fs)

P s
t = Cov(vec(αt) | Fs)

P s
t,t−1 = Cov(vec(αt), vec(αt−1) | Fs).

(2.12)

In addition, we assume the noise vectors are jointly normally distributed with�
εt
ηt

�
i.i.d.∼ N

��
0
0

�
,

�
Ω 0
0 Σc ⊗ Ip

��
and independent of F0 and the initial state α0. Then, the conditional expectations
and covariances in (2.12) can be computed by the usual Kalman filtering and smooth-
ing recursions (Shumway and Stoffer 2017, Ch. 6). For the initial state, we assume
vec(α0) | F0 ∼ N (vec(a0),Ψ0),1 providing the starting values α0

0 = a0 and P 0
0 = Ψ0

for the Kalman filter and smoother.

The estimated states and the corresponding covariance matrices in (2.12) depend on the
initial values a0, Ψ0 and the unknown parameters in system (2.10). We denote this set by2

Θ = ΘA = {a0,Ψ0,β,Ω,Σc,Γ}. (2.13)

The negative log-likelihood of Y = {y1, ...,yT } conditional on F0 is (up to constants) given
by

−2 log(LY (Θ)) =
T&
t=1

log |Σt|+

T&
t=1

(yt −αt−1
t β′xt − Γut)Σ

−1
t (yt −αt−1

t β′xt − Γut).

(2.14)

where Σt = (x′
tβ⊗ Ip)P

t−1
t (x′

tβ⊗ Ip) +Ω (Gibson and Ninness 2005; Shumway and Stoffer
2017). The log-likelihood (2.14) is a highly non-linear function of the parameters (2.13).
We bypass its direct minimization using the expectation-maximization (EM) algorithm.
Optimization is based on the (conditional) joint likelihood of the data Y and the states
A = (α0, ...,αT ), denoted by LY ,A(Θ).

Given a set of initial values Θ(0) for the model parameters (2.13), the EM-algorithm consists
of two steps that are iterated in turn until certain stopping criteria are met.

E-Step: Evaluate the conditional expectation of the joint log-likelihood given FT as a

1Analogously, we let vec(β0
′) | F0 ∼ N (vec(b′0),Ψ0) for model (B).

2For model (B), ΘB = {b0,Ψ0,α,Ω,Σc,Γ}
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function of the parameters Θ, while assuming Θ(j) are the “true” parameters:

Q(Θ|Θ(j)) = EΘ(j)

�
− 2 ln(LY ,A(Θ))

)))FT

�
. (2.15)

M-Step: Minimize the expected negative log-likelihood in Θ, i.e. find

Θ(j+1) = argmin
Θ

Q(Θ|Θ(j)).

The E-step includes smoothing of the latent states given the current set of parameters and
starting values. The expected log-likelihood (2.15) for model (A) is given by

Q(Θ|Θ(j)) = ln |Ψ0|+ tr
�
Ψ−1

0 [P T
0 + vec(αT

0 − a0) vec(α
T
0 − a0)

′]
�
+

Tp ln |Σc|+ tr

�
(Σc ⊗ Ip)

−1
T&
t=1

�
vec(αT

t ) vec(α
T
t )

′ + P T
t +

vec(αT
t−1) vec(α

T
t−1)

′ + P T
t−1 −

�
vec(αT

t ) vec(α
T
t−1)

′ + P T
t,t−1

�−�
vec(αT

t−1) vec(α
T
t )

′ + P T
t−1,t

� ��
+ T ln |Ω|+

tr

�
Ω−1

T&
t=1

(yty
′
t − ytx

′
tβα

T
t
′ −αT

t β
′xty

′
t+

(x′
tβ ⊗ Ip)(vec(α

T
t ) vec(α

T
t )

′ + P T
t )(x′

tβ ⊗ Ip)
′)
�
.

(2.16)

The smoothed states αT
t and the covariance matrices P T

t and P T
t,t−1 in (2.16) depend on

the current set of parameters Θ(j). However, for better readability, this dependence is not
reflected in the notation.

For the M-step we use a simple iterative scheme, where we, in turn, compute the minimizer of
the expected log-likelihood with respect to one of the parameters from (2.13) while keeping
the others fixed. The minimizers for a0, Ψ0 and Σc are independent of the other parameters.
Inspection of (2.16) reveals that, for model (A), the updates for β, Ω and, if included, Γ,
depend on each other. Nevertheless, it is straightforward to compute the minimizer for one
of these parameters while keeping the other two fixed. The explicit formulas for the above
minimizers are given in Table 2.1. The updates within each M-step are iterated until the
changes of the parameter matrices are negligible, which is achieved fast in our simulations.
The EM-algorithm terminates if either the change in the parameter estimates, or the relative
change in the data log-likelihood (2.14) is negligible.
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Table 2.1.: Parameter updates for models (A) and (B), given all other parameters and the
smoothed states and covariances. For better readability the notation does not
show dependence on the current parameter estimates Θ(j). In the update for β′,
the subscript i : j, k : l is used to refer to a submatrix with rows i to j and columns
k to l. unvec denotes the inverse vec operation, i.e. a = vec(A) ⇔ A = unvec(a).

(A)

a0 ← αT
0

Ψ0 ← P T
0

Σc ← 1

T · p
rank(C)�

i=1

σiU
′
iUi

where C =
T�

t=1

�
vec(αT

t ) vec(α
T
t )

′ + P T
t + vec(αT

t−1) vec(α
T
t−1)

′ + P T
t−1−�

vec(αT
t ) vec(α

T
t−1)

′ + P T
t,t−1

	− �
vec(αT

t−1) vec(α
T
t−1)

′ + P T
t−1,t

	 �
=

rank(C)�
i=1

σiuiu
′
i and vec(Ui) = ui, Ui ∈ Rp×d

β′ ← unvec

��
T�

t=1

(xtx
′
t ⊗αT

t
′
Ω−1αT

t ) + (xtx
′
t ⊗ P̄t)

�−1 � T�
t=1

vec(αT
t
′
Ω−1(yt − Γut)x

′
t)

��
where P̄t ∈ Rp×p with P̄t,ij = tr

�
Ω−1(PT

t )((i−1)p+1):(ip),((j−1)p+1):(jp)

	
Ω ← T−1

T�
t=1

(yt −αT
t β

′xt − Γut)(yt −αT
t β

′xt − Γut)
′ + (x′

tβ ⊗ Ip)P
T
t (x′

tβ ⊗ Ip)
′

Γ ←
�

T�
t=1

�
yt −αT

t β
′xt

	
u′

t


�
T�

t=1

utu
′
t


−1

(B)

b0 ← βT
0

Ψ0 ← P T
0

Σc ← 1

T · q
rank(C)�

i=1

σiU
′
iUi

where C =
T�

t=1

�
vec((βT

t )
′) vec((βT

t )
′)′ + P T

t + vec((βT
t−1)

′) vec((βT
t−1)

′)′ + P T
t−1−�

vec((βT
t )

′) vec((βT
t−1)

′)′ + P T
t,t−1

	− �
vec((βT

t−1)
′) vec((βT

t−1)
′)′ + P T

t−1,t

	 �
=

rank(C)�
i=1

σiuiu
′
i and vec(Ui) = ui, Ui ∈ Rd×q

α ←
�

T�
t=1

(yt − Γut)x
′
tβ

T
t


�
T�

t=1

(βT
t )

′xtx
′
tβ

T
t + (x′

t ⊗ Id)P
T
t (xt ⊗ Id)


−1

Ω ← T−1
T�

t=1

(yt −α(βT
t )

′xt − Γut)(yt −α(βT
t )

′xt − Γut)
′ + (x′

t ⊗α)PT
t (x′

t ⊗α)′

Γ ←
�

T�
t=1

�
yt −α(βT

t )
′xt

	
u′

t


�
T�

t=1

utu
′
t


−1
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2.2. Time-varying reduced-rank regression

By construction, the EM-algorithm is guaranteed to increase the data likelihood in every
step of the estimation procedure (see e.g. Casella and Berger 2002, Thm. 7.2.20.). If it
converges, it reaches a stationary point; i.e., a local maximum of the data likelihood.

The non-identifiability of the decompositions (A) and (B) in (2.6) does not interfere with the
estimation algorithm in the sense that the estimates for the matrices Ct and the predictions
for yt+1 do not depend on the chosen factorization. For example, consider model (A) and
an arbitrary non-singular matrix H and define α̃t = αtH and β̃ = βH−1′. Then, the
corresponding state-space system

vec(α̃t+1) = vec(α̃t) + η̃t

yt = (x′
tβ̃ ⊗ Ip) vec(α̃t) + εt

(2.17)

is equivalent to the (original) state space system (2.10) if we transform the noise covariances
and the starting values for the Kalman filter correspondingly. This means that the filtered and
smoothed states and the corresponding covariances of these two systems are related to each
other by the same transformation. That is, α̃s

t = αs
tH and P̃ s

t = (H ′ ⊗ Ip)P
s
t (H ⊗ Ip) for

s ∈ {t−1, t, T} and all t = 1, . . . , T . This observation also carries over to the EM-updates in
Table 2.1. For example, the relationships β̃(j) = β(j)H−1′, Σ̃(j)

c = H ′Σc
(j)H, and Ω̃(j) =

Ω(j) hold for the estimates of models (2.17) and (2.10).

Choice of starting values

The choice of starting values Θ(0) used for numerical optimization of the likelihood can have
a strong influence on the resulting model fit due to local optima. However, our EM-algorithm
is robust to the choice of starting values in our experiments.

We start with the initialization of the coefficient matrices a0 and β for model (A), and
respectively α and b0 for model (B). We denote the starting values for both cases by α(0) and
β(0), and determine them by time-constant RRR, as follows. We let α(0) = αRR, and β(0) =
βRR where αRR and βRR are minimizers of the criterion

min
α,β

T&
t=1

(yt −αβ′xt)
′W (yt −αβ′xt) (2.18)

for any positive definite, symmetric matrix W . The solutions to (2.18) give a rank d-
approximation of the ordinary least squares (OLS) regression matrix �COLS (Reinsel and
Velu 1998, Ch. 2). A close look at the OLS estimate reveals why the above starting values
are reasonable. Assuming that E(εt |x1, . . . ,xT ) = 0, the conditional expectation of the
OLS estimate given the predictors is

C̃ = E( �COLS|x1, ...,xT ) =
T&
t=1

Ct xtx
′
t

�
T&
t=1

xtx
′
t

�−1

. (2.19)
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2. A State-Space Approach to Time-Varying Reduced-Rank Regression

This conditional expectation is a weighted average of the time-varying matrices Ct. Thus,
its reduced-rank decomposition yields “averages” of the time-varying coefficients αt (resp.
βt). In particular, for model (B), span(Ct) = span(α) and thus also span(C̃) = span(α) ≈
span(αRR), hinting that αRR is a reasonable starting value for α. If pronounced time-
variation is suspected, it may be advisable to obtain starting values from a reduced-rank
regression that only uses the first τ < T observations of the time series.

The initial value for the error covariance Ω is set to the residual covariance of the time-
constant RRR,

Ω(0) = T−1
T&
t=1

(yt −α(0)β(0)′xt)(yt −α(0)β(0)′xt)
′.

If the number of parameters is large compared to the sample size, it can be restricted to be
diagonal or to be a multiple of the identity Ω = σ2

εIp. The updates for the EM-algorithm
can be adjusted accordingly. Simulations imply that assuming a diagonal covariance matrix
does not necessarily decrease the accuracy of the estimation of the states and the prediction
performance of the model. If we wish to include additional predictors ut, the starting values
for Γ and correspondingly adjusted starting values for α, β and Ω can be obtained from
reduced-rank regression with an additional full rank coefficient matrix as derived in Reinsel
and Velu (1998, Ch. 3). In our simulations, the choice of W in (2.18) did not have a strong
influence on the parameter estimates. We used either the identity Ip or the least squares
residual covariance.

The uncertainty about the initial states α0, resp. β0, is represented in the choice of the
initial covariance matrix Ψ0: The larger the covariance, the more flexibility and uncertainty
about the initial state is allowed for.

Finally, there is no obvious choice for starting values of the state covariance matrix Σc.
Generally, the magnitude of the entries of Σc governs the flexibility of the resulting state
estimates – the basic paths of the states will be similar regardless of the magnitude of Σc.
Our simulation studies indicate that different starting values for Σc only marginally influence
the value of the likelihood and the residual variance at the time of convergence. Nevertheless,
it is advisable to try different values and check for stability of the resulting estimates.

2.2.3. Rank selection

Rank selection for the tvRRR model can be achieved by information criteria. We use the
Bayesian information criterion (BIC), first introduced by Schwarz (1978), and given by

BIC(d) = −2 log(LY ( �Θ)) + log(T )Kd, (2.20)

where �Θ denotes the maximum likelihood estimates (computed with the EM algorithm) and
Kd is the number of free parameters of the model. The estimate for the rank is the minimizer
of this BIC criterion (2.20). For model (A), Σc has d(d+ 1)/2 free parameters, and β has
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q ·d free parameters, so that we set Kd = d(d+1)/2+ q ·d. Similarly, Kd = d(d+1)/2+p ·d
for model (B). We do not count the parameters in the matrices Ω and Γ, since the dimension
of these matrices does not depend on d. We also do not count the parameters for the
distribution of the initial state a0 (resp. b0) and Ψ0.

Another popular criterion for model selection is Akaike’s information criterion (AIC, Akaike
1973), where log(T ) in (2.20) is replaced by 2. However, it has been shown in similar,
time-constant settings [e.g. Aznar and Salvador (2002) for the choice of the cointegrating
rank in vector error correction models; Bai and Ng (2002) for the number of factors in
dynamic factor models] that AIC results in inconsistent rank estimates as the penalty term
needs to tend to infinity at a certain rate to achieve consistency. Our simulation studies
indicate that AIC does not lead to consistent estimates in our model. Specifically, its
performance deteriorates with increasing sample size.

2.3. Simulation studies

In this section, we illustrate the filter performance via a toy example, and demonstrate the
flexibility and usefulness of tvRRR in different settings in a simulation study.

2.3.1. Illustration of filter performance

We generate data yt from a five-dimensional VAR(1)-model with rank d = 2 coefficient
matrix,

yt = αtβ
′yt−1 + εt, where αt =

�
α1, for t ≤ 50

α2 for t > 50
, εt ∼ N5(0, I5), (2.21)

where α1, α2 and β are random orthonormal matrices. Model (2.21) represents a structural
break at time t = 50. The realizations of the five time series are displayed in the top panel
of Figure 2.1. The structural break at time t = 50 induces a considerable change in the
autocovariance structure of the time series.

We fit a tvRRR model using the estimation procedure in Section 2.2.2. The estimated
coefficient matrices are compared to those obtained from time-constant RRR and “oracle”
RRR . For the latter, we assume the location of the structural break is known and fit two
separate RRR models. We assess the accuracy of the estimate �Ct = αt

t
�β′ of the coefficient

matrix Ct = αtβ
′ with the normalized Frobenius norm of the estimation error,

errCt :=
||Ct − �Ct||F

||Ct||F . (2.22)

Its values are displayed in the bottom panel of Figure 2.1. The tvRRR coefficient estimates
(– –) are very close to those of oracle RRR ( ). At the structural break, the error jumps
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Figure 2.1.: The top panel(s) show a trajectory of the five time series (yit), i = 1, . . . , 5
generated by the VAR(1) model (2.21) with a structural break of the coefficient
matrix at t = 50. The bottom panel shows the corresponding estimation error
errCt = ∥Ct − Ĉt∥F /∥Ct∥F for the three estimates considered: oracle RRR,
time-constant RRR and tvRRR .

up rapidly, yet the coefficient estimates quickly recover and roughly line up with those of
oracle RRR. As expected, time-constant RRR errors (- - -) are the largest as the method
simply averages over the two matrices α1 and α2 (as can be seen from Equation (2.19)).
This toy example also indicates the EM-algorithm we use to fit tvRRR is robust to the
choice of the starting values, which were obtained from RRR, thus far from the truth.
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2.3.2. Simulation

The data for our simulation study are drawn from the model equations

(A) yt = αtβ
′xt + εt, and (B) yt = αβ′

txt + εt. (2.23)

The predictors xt ∈ Rq are specified as exogenous predictors, drawn from q independent
MA(2) processes. The errors εt are normally distributed with mean zero and diagonal
covariance matrix Ω. The diagonal entries of Ω are drawn from the uniform distribution on
the interval [0.5, 1.5]. Starting values for the EM-algorithm are obtained from time-constant
reduced-rank regression as described in Section 2.2.2. The weight matrix W in (2.18) is
selected as the residual covariance from the ordinary least squares regression of yt on xt.
The initial state covariance Ψ0 is set to Ψ0 = 1000 · Ipd for model (A), and Ψ0 = 1000 · Iqd
for model (B). The large variances reflect the uncertainty about the initial values used for
the Kalman filter. We also conducted experiments where the data follow a VAR(1) process
with time-varying coefficients, i.e. we set xt = yt−1 in (2.23). Due to the random walk
generation of the coefficient matrices, the time series often diverge. For this reason, we only
report results for exogenous xt. However, when the VAR time series remain bounded, our
method performs well.

To study the ability of the proposed method to capture different types of time variation, we
generate datasets under three different types of time-varying coefficients. They are displayed
in Table 2.2. The notation α ∼ UStiefel(p, d) indicates that α is drawn from the uniform
distribution on the Stiefel manifold Vp,d (see (2.9)) as defined in Chikuse (2003).

The fixed scenario was included in order to evaluate the robustness of tvRRR in the case of
a true RRR model with time-invariant parameters. The deterministic transition produces
a gradual change of the parameters from the starting to the terminal coefficient matrix.
The random walk agrees with the modeling assumption that underlies our procedure and
represents random fluctuations in the coefficients. The matrices Σd depend on the state
dimension d and are selected as multiples of the matrices at the bottom of Table 2.2.

The dimension of the target time series vector takes values p ∈ {5, 10, 20}, the predictors
are generated with dimension q ∈ {5, 10, 20}, and the rank takes values d ∈ {1, 2, 3}. Each
time series has length T = 200. The validation time series of length τ = 200 is generated by
extrapolating the data generating processes in Table 2.2. For each combination of parameters,
we draw 10 sets of coefficient matrices, and repeat the model fitting procedure 10 times,
resulting in a total of 10 · 10 = 100 simulation runs per setting.

The in-sample MSE for model (A) in (2.10) is

MSEis =
1

Tp

T&
t=1

(yt −αt
t
�β′xt)

′(yt −αt
t
�β′xt). (2.24)

The corresponding out-of-sample MSE is obtained from one-step-ahead predictions for the
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Table 2.2.: Coefficient matrices in the simulation studies for models (A) and (B). The time-
constant parts are drawn as β ∼ UStiefel(q, d), resp. α ∼ UStiefel(p, d).

Name Model Specification of matrices Parameters

Fixed A αt ≡ α ∀ t = 1, ..., T
α ∼ UStiefel(p, d)

–

B βt ≡ β ∀ t = 1, ..., T ,
β ∼ UStiefel(q, d)

–

Deterministic A Deterministic linear transition between
two matrices α1, α2 ∼ UStiefel(p, d) such
that

αt = s
T − t

T − 1
α1 + s

t− 1

T − 1
α2

shift s ∈ {1, 1.5, 2}

B Deterministic linear transition between
two matrices β1, β2 ∼ UStiefel(q, d) such
that

βt = s
T − t

T − 1
β1 + s

t− 1

T − 1
β2

shift s ∈ {1, 1.5, 2}

Random walk A Matrices follow a random walk, i.e.

αt ∼ Np,d(αt−1; Ip,Σc)

Σc = s · Σd where s ∈ {0.1, 1, 2}

B Matrices follow a random walk, i.e.

βt ∼ Nq,d(βt−1; Iq,Σc)

Σc = s · Σd where s ∈ {0.1, 1, 2}

where

Σ1 = 0.005, Σ2 =

�
0.005 0.0025
0.0025 0.005

�
, Σ3 =

 0.005 0.0025 0.00125
0.0025 0.005 0.0025
0.00125 0.0025 0.005



validation data using the Kalman filter and the fitted parameter matrices,

MSEoos =
1

τp

T+τ&
t=T+1

(yt −αt−1
t

�β′xt)
′(yt −αt−1

t
�β′xt). (2.25)

We assess the accuracy of the estimate �Ct = αt
t
�β′ with the normalized Frobenius distances

of the estimated coefficient matrices in (2.22). For model (B), these criteria are defined in
an analogous manner. Throughout the simulation study, the performance is juxtaposed to
that of the regular reduced-rank regression reference model.
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Results

We report results for p = q = 10. The respective tables for other pairs of p and q are
comparable and can be found in the supplementary material.

First, we present results for the fixed data generating process. Table 2.3 reports the in-
and out-of-sample MSE in (2.24) and (2.25), respectively, and relative estimation errors
(2.22) for RRR and tvRRR in models (A) and (B). Under this setting, simple RRR is
more appropriate than tvRRR . This results in larger relative estimation errors errCt even
though it seems that forecasting precision is only mildly affected. The in-sample MSE of
tvRRR is smaller whereas the out-of-sample MSE is slightly larger than the respective
MSEs of RRR in both models. tvRRR is more flexible than the time-constant RRR. As
a consequence, it tends to slightly overfit the training data, resulting in a lower in-sample
MSE and a higher out-of-sample MSE in the validation data.

Table 2.3.: Average MSE and relative parameter estimation error for fixed setting and
p = q = 10 with exogenous predictors, standard deviation in parentheses.

d MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)

A

1 in sample 0.9731 (0.0467) 0.9194 (0.0502) 0.0461 (0.0067) 0.1445 (0.0124)
out of sample 1.0112 (0.0527) 1.0269 (0.0507) - -

2 in sample 0.9815 (0.1201) 0.8802 (0.1162) 0.0383 (0.0080) 0.1231 (0.0138)
out of sample 1.0419 (0.1401) 1.0736 (0.1408) - -

3 in sample 0.9224 (0.1054) 0.7973 (0.0983) 0.0386 (0.0091) 0.1189 (0.0172)
out of sample 0.9919 (0.1105) 1.0316 (0.1144) - -

B

1 in sample 1.0077 (0.0758) 0.9749 (0.0750) 0.0408 (0.0070) 0.1571 (0.0153)
out of sample 1.0386 (0.0786) 1.0567 (0.0799) - -

2 in sample 0.9855 (0.0912) 0.9234 (0.0911) 0.0392 (0.0057) 0.1319 (0.0082)
out of sample 1.0408 (0.0997) 1.0725 (0.0991) - -

3 in sample 0.9998 (0.0755) 0.9014 (0.0706) 0.0402 (0.0046) 0.1394 (0.0094)
out of sample 1.0666 (0.0816) 1.1142 (0.0822) - -

Next, we report the simulation results for the deterministic transition of the coefficients as
specified in Table 2.2. The shift (s) is set to 1 (“small”), 1.5 (“medium”) and 2 (“large”). As
can be seen in Table 2.4, this setting incurs a significant loss in estimation precision for RRR
with increasing variation of the parameter matrices. While the in-sample fit is not much
affected, out-of-sample prediction fails. In contrast, tvRRR is uniformly better than RRR.
It has slightly worse out-of sample than in-sample MSE, while both remain roughly stable
across all setting combinations. Moreover, the coefficient estimation accuracy of tvRRR
improves as the shift between the starting and final coefficient matrices increases. This effect
is probably partly due to the relative error criterion. The estimation accuracy of RRR stays
roughly the same across all settings.
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Table 2.4.: Average MSE and relative parameter estimation error for deterministic coefficient
transition and p = q = 10 with external predictors, standard deviation in
parentheses.

s d MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)

1 1 in sample 1.0096 (0.1119) 0.9151 (0.1028) 0.3793 (0.1383) 0.2894 (0.0879)
out of sample 1.6575 (0.2608) 1.0450 (0.1115) - -

2 in sample 1.0801 (0.0607) 0.8848 (0.0680) 0.3770 (0.1202) 0.2831 (0.0741)
out of sample 2.3940 (0.3604) 1.1295 (0.0783) - -

3 in sample 1.0660 (0.0779) 0.8049 (0.0634) 0.3351 (0.0531) 0.2548 (0.0329)
out of sample 2.9252 (0.4102) 1.1117 (0.0980) - -

1.5 1 in sample 1.1022 (0.1054) 0.9334 (0.0590) 0.2608 (0.1483) 0.1502 (0.0646)
out of sample 2.1126 (0.4480) 1.0875 (0.0734) - -

A 2 in sample 1.0666 (0.1011) 0.7717 (0.0777) 0.2096 (0.0474) 0.1141 (0.0163)
out of sample 3.4841 (0.6698) 1.0365 (0.0978) - -

3 in sample 1.2539 (0.0764) 0.7955 (0.0802) 0.2670 (0.0665) 0.1405 (0.0246)
out of sample 4.6271 (0.7045) 1.1954 (0.1063) - -

2 1 in sample 1.0805 (0.0891) 0.8659 (0.0791) 0.1671 (0.0493) 0.0785 (0.0180)
out of sample 2.4777 (0.4529) 1.0386 (0.0855) - -

2 in sample 1.3422 (0.1467) 0.8173 (0.0909) 0.2651 (0.0767) 0.0975 (0.0170)
out of sample 6.3858 (1.0800) 1.1556 (0.1121) - -

3 in sample 1.4983 (0.1434) 0.7842 (0.0646) 0.2706 (0.0411) 0.1079 (0.0150)
out of sample 8.3580 (1.3044) 1.2588 (0.0982) - -

1 1 in sample 1.0672 (0.0998) 0.9962 (0.0904) 0.4490 (0.1771) 0.3457 (0.1020)
out of sample 1.6924 (0.3180) 1.0948 (0.0925) - -

2 in sample 1.0602 (0.0793) 0.9215 (0.0789) 0.3635 (0.0786) 0.2677 (0.0284)
out of sample 2.1380 (0.2809) 1.1122 (0.0917) - -

3 in sample 1.0636 (0.1344) 0.8826 (0.1219) 0.3315 (0.0644) 0.2677 (0.0467)
out of sample 2.8633 (0.2484) 1.1558 (0.1437) - -

1.5 1 in sample 1.0876 (0.0913) 0.9661 (0.0662) 0.3587 (0.2036) 0.2154 (0.1228)
out of sample 2.4989 (0.8415) 1.0957 (0.0808) - -

B 2 in sample 1.1106 (0.1144) 0.8594 (0.0984) 0.3262 (0.0976) 0.1807 (0.0381)
out of sample 3.9858 (0.7443) 1.0933 (0.1091) - -

3 in sample 1.2790 (0.0800) 0.8965 (0.0693) 0.3382 (0.0807) 0.1842 (0.0315)
out of sample 5.3404 (0.7817) 1.2561 (0.0886) - -

2 1 in sample 1.0893 (0.0906) 0.9098 (0.0762) 0.3070 (0.1289) 0.1582 (0.0455)
out of sample 3.6538 (0.8978) 1.0592 (0.0930) - -

2 in sample 1.2554 (0.0794) 0.8661 (0.0715) 0.3119 (0.0762) 0.1303 (0.0258)
out of sample 6.5400 (1.0845) 1.1381 (0.0772) - -

3 in sample 1.3520 (0.0754) 0.8032 (0.0271) 0.2873 (0.0534) 0.1235 (0.0191)
out of sample 8.3886 (1.5862) 1.2044 (0.0295) - -

The difference in performance between RRR and tvRRR can be explained by considering
the errors of the coefficient matrix estimates over time in Figure 2.2. RRR averages over
the coefficient matrices (see also the discussion on the starting values, Equation (2.19)),
and thus the smallest distance is achieved at approximately T/2. This estimate is far off
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for time points that are closer to the start and end of the time series, and deviate even
further for the validation data set t = 201, . . . , 400. On the other hand, the estimation
errors of tvRRR are consistently small throughout the time range. In particular, since the
RRR estimates serve as starting values for the EM-algorithm, this further illustrates the
robustness of tvRRR to “wrong” starting values.
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Figure 2.2.: errCt for ten simulation runs with the same set of coefficient matrices from
the deterministic setting, RRR in orange (dashed), tvRRR in teal (solid),
p = q = 10, d = 1, large variation, model A.

Table 2.5 displays the respective results for the random walk coefficient evolution in Table
2.2. Even for the low variation random walk, we observe the failure of RRR both in terms of
MSE and of estimation accuracy. Both in- and out-of-sample MSEs are significantly larger
than the corresponding values for tvRRR. As in the deterministic setting, tvRRR gains
from increasing variation in the coefficients.
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Table 2.5.: Average MSE and relative parameter estimation error for random walk coefficient
transition and p = q = 10 with external predictors, standard deviation in
parentheses.

s d MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)

0.1 1 in sample 0.9975 (0.0615) 0.9196 (0.0566) 1.8192 (0.5351) 0.7513 (0.2070)
out of sample 1.2201 (0.1253) 1.0250 (0.0757) - -

2 in sample 1.0620 (0.0877) 0.9199 (0.0906) 1.6212 (0.5203) 0.6609 (0.0871)
out of sample 1.5204 (0.2758) 1.1018 (0.0931) - -

3 in sample 1.0747 (0.1133) 0.8781 (0.1097) 1.6104 (0.3326) 0.6695 (0.0921)
out of sample 1.7913 (0.2968) 1.1720 (0.1390) - -

1.0 1 in sample 1.3507 (0.1150) 0.9233 (0.0829) 1.4125 (0.5407) 0.2529 (0.0693)
out of sample 3.3552 (0.8473) 1.1837 (0.0850) - -

A 2 in sample 1.7951 (0.2495) 0.7577 (0.0864) 1.2498 (0.2394) 0.2539 (0.0379)
out of sample 7.0220 (2.6184) 1.2433 (0.1087) - -

3 in sample 2.0290 (0.2905) 0.7326 (0.0562) 1.3983 (0.4371) 0.2747 (0.0488)
out of sample 6.9571 (1.2448) 1.3938 (0.0802) - -

2.0 1 in sample 1.8004 (0.3165) 0.8448 (0.0962) 1.5344 (0.5307) 0.2084 (0.0364)
out of sample 5.3302 (2.1873) 1.2026 (0.1306) - -

2 in sample 2.6983 (0.5685) 0.7524 (0.0735) 1.4511 (0.3304) 0.2181 (0.0594)
out of sample 10.9765 (3.4839) 1.4067 (0.1048) - -

3 in sample 3.3075 (0.5509) 0.6729 (0.0930) 1.3349 (0.3448) 0.2017 (0.0280)
out of sample 13.6254 (2.7399) 1.6052 (0.1727) - -

0.1 1 in sample 0.9685 (0.0723) 0.9237 (0.0742) 1.7297 (0.5701) 0.8691 (0.3079)
out of sample 1.1945 (0.1383) 1.0065 (0.0724) - -

2 in sample 1.0795 (0.1078) 0.9768 (0.1124) 1.8046 (0.3527) 0.7927 (0.0845)
out of sample 1.5048 (0.2448) 1.1534 (0.1363) - -

3 in sample 1.1224 (0.0787) 0.9658 (0.0802) 1.6299 (0.3092) 0.7298 (0.0844)
out of sample 1.8261 (0.3654) 1.2150 (0.0818) - -

1.0 1 in sample 1.3784 (0.1782) 0.9559 (0.0780) 1.3746 (0.4419) 0.4623 (0.1249)
out of sample 3.0428 (0.8102) 1.1735 (0.0669) - -

B 2 in sample 1.8141 (0.1512) 0.9056 (0.0599) 1.5669 (0.5451) 0.4259 (0.0524)
out of sample 5.4969 (1.0081) 1.3393 (0.0796) - -

3 in sample 1.9853 (0.2120) 0.8129 (0.0800) 1.4505 (0.3965) 0.4080 (0.0772)
out of sample 8.4159 (3.2621) 1.4182 (0.1275) - -

2.0 1 in sample 1.6238 (0.2489) 0.9216 (0.0840) 1.9476 (0.8077) 0.4498 (0.1199)
out of sample 6.0949 (2.0447) 1.2117 (0.1063) - -

2 in sample 2.5481 (0.4328) 0.8555 (0.1051) 1.6949 (0.4620) 0.3317 (0.0482)
out of sample 10.5402 (2.9861) 1.4310 (0.1299) - -

3 in sample 2.9481 (0.7160) 0.8241 (0.0856) 1.4663 (0.5431) 0.3842 (0.0687)
out of sample 16.7759 (4.4155) 1.6799 (0.1570) - -

2.3.3. Rank selection

We assess the performance of the BIC criterion (2.20) for rank selection in both models (A)
and (B) and three scenarios for time varying parameters. In addition to the deterministic
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transition (with s = 1) and the random walk transition (with s = 0.1), as defined in Table 2.2,
we also consider a structural break setting similar to (2.21): For model (A), we draw two
coefficient matrices α1,α2 ∼ UStiefel(p, d) and let αt = α1 for t ≤ T

2 and αt = α2 for t > T
2 .

For model (B) we proceed analogously. We look at time series of length T ∈ {100, 200, 300}
and the same sets of values for p, q and d as before. Again, we carry out 10 · 10 = 100
repetitions of each setting.

The simulation results indicate that the BIC criterion is not sensitive to the coefficient
transitions we consider. Table 2.6 reports the fraction of simulation runs where the rank was
correctly estimated in both models for p = q = 10. Results for other combinations of p and
q are comparable and can be found in the supplement. BIC rarely overestimates the true
rank. For smaller samples, it frequently underestimates the rank, but drastically improves as
the sample size increases. Rank estimation seems to be the least successful for the random
walk coefficient transition, where the tendency to underestimate the rank of the model is the
strongest. However, the performance of the criterion also in this scenario markedly improves
with increasing the length of the time series.

Table 2.6.: Results of rank selection via BIC criterion for p = q = 10 and three different
coefficient transitions, 10 ·10 = 100 repetitions each. “=” is the fraction of correct
rank estimation, and “<” the fraction of underestimated ranks.

deterministic random walk str. break
Model (A) Model (B) Model (A) Model (B) Model (A) Model (B)

d T = < = < = < = < = < = <

1 100 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -
1 200 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -
1 300 1.000 - 1.000 - 1.000 - 1.000 - 1.000 - 1.000 -
2 100 0.890 0.110 0.750 0.250 0.020 0.980 0.040 0.960 0.810 0.190 0.870 0.130
2 200 0.990 0.010 1.000 - 0.570 0.430 0.480 0.520 1.000 - 1.000 -
2 300 1.000 - 1.000 - 0.968 0.031 1.000 - 1.000 - 1.000 -
3 100 0.430 0.570 0.250 0.750 - 1.000 - 1.000 0.570 0.430 0.580 0.420
3 200 0.980 0.020 0.970 0.030 0.110 0.890 0.110 0.890 1.000 - 1.000 -
3 300 1.000 - 1.000 - 0.710 0.290 0.787 0.212 1.000 - 1.000 -

2.4. Data examples

We apply tvRRR and an adaptive version of RRR that we define in this section on two
data sets. The first consists of seven main stock indices, and the second contains Covid-19
cases for 12 European countries.

2.4.1. Stock index data

We perform an out-of-sample forecasting experiment with stock index data. We retrieved
closing prices for DAX Performance Index (DAX), Dow Jones Industrial Average (DJI),
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Hang Seng Index (HSI), Nikkei 225 (N225), NASDAQ Composite (NASDAQ), and S+P
500 (S+P 500) and TSEC Weighted Index (TWII) for two different time periods.3 The first
period ranges from January 15, 2008 to May 18, 2009, and the second from June 05, 2019
to October 05, 2020. Both time series include abrupt changes in global economy. The first
period contains the Great Recession and the second the Covid-19 pandemic. While it is
thought that stock index data are cointegrated, the relationships of the time series might
have changed during both crises, possibly due to markets recovering from the shocks at
different rates.

We fit a lag-1 vector error correction model (VECM) with possibly time-varying cointegrating
relations β′

tyt−1,

∆yt = αβ′
tyt−1 + Γ∆yt−1 + εt.

Prior to the analysis, the stock index time series are logarithmized, centered and scaled
so that the sample mean equals zero and the variance is equal to one in the training data
set. Missing values are imputed using na_kalman from the imputeTS R-package (Moritz and
Bartz-Beielstein 2017). We fit the models to the first 150 observations of the time series,
and, using the estimated coefficients, predict the following 200 observations.

We compare the following three model fitting approaches: tvRRR, time-constant RRR
and time-constant updated RRR. For tvRRR, we compute the one-step ahead predictions
with the Kalman filter. However, for the estimation of the model parameters, we only use
the training data. These predictions are compared to two versions of the time-constant
VECM. For the first, we fit the model to the first 150 observations and obtain predictions
for the following 200 data points using the estimated coefficients (time-constant RRR). The
second, fairer comparison model is a VECM that is refitted with every new observation of
the prediction period to include all the past information in the prediction (updated RRR).

The MSEs from in-sample and out-of-sample prediction of the time series are reported
relative to benchmark (“naive”) predictions obtained from the assumption that stock index
data follow a random walk (Kendall 1953; Fama 1965):

�yt+1 = yt and �∆yt+1 = �yt+1 − yt = 0. (2.26)

We start with the analysis of the 2008 data. The seven time series before and after scaling
are displayed in the left top and bottom panels of Figure 2.3. The structural break in
September 2008 is evident in both, with the scaled data capturing it better. The decline of
the prices was also accompanied by an increased volatility, which can be clearly seen in the
plots of the returns (log first differences). The training period is January 15, 2008 to August
11, 2008. When fitting the tvRRR model, the rank selected by the BIC criterion is d = 2.
The EM-algorithm converges after 54 iterations, and the likelihood reaches a plateau fairly
quickly.

The relative in- and out-of-sample MSEs for both versions of time-constant RRR and

3All time series retrieved from https://finance.yahoo.com/, accessed March 01, 2021.
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2.4. Data examples

tvRRR are reported in the top panel of Table 2.7. The performance of RRR and tvRRR
is comparable in-sample. However, we are more interested in the out-of-sample performance
of the methods. We thus have applied the (modified) Diebold-Mariano test (Harvey et al.
1997) to check, whether there are significant differences in the forecasting performance of the
naive method, updated RRR and tvRRR. For the 2008 data, tvRRR yields significantly
better predictions than the naive prediction in four cases, and it beats updated RRR for
three series. Conversely, the prediction performance of tvRRR is never significantly worse
than that of the competitors. Its capability to adapt even to abrupt changes in the coefficient
estimates while retaining estimation precision when the parameters are constant pays off:
The coefficient estimates adapt to the structural break.
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Figure 2.3.: 2008 stock index data before (top left) and after (bottom left) scaling and
centering with values from the training period. The right panels show the
corresponding log first-differences. The vertical dashed lines mark the end of
the training period.

As expected, RRR fails completely at prediction. The different behavior of the methods
may also be seen in the plot of the d = 2 estimated cointegrating relationships β′

1tyt−1

and β′
2tyt−1 in Figure 2.4, where β′

it denotes the ith row of β′
t. The RRR components

(top) show a trending behavior. In contrast, the cointegrating relationships inferred using
tvRRR (middle) only vary around zero, but they clearly display the increased volatility
during the crisis. Compare also the plot of the log first-differences.
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2. A State-Space Approach to Time-Varying Reduced-Rank Regression

Table 2.7.: In- and out-of-sample MSEs of tvRRR, RRR and updated RRR for the 2008
and 2020 stock data sets, relative to the MSEs for the naive predictions evolv-
ing from the random walk assumption (2.26). For the out-of-sample MSEs,
boldface numbers indicate significantly better prediction performance than the
naive predictions according to the Diebold-Mariano test, and numbers in italics
indicate significantly better performance of tvRRR than updated RRR at 0.05
significance level.

2008

DJI DAX HSI N 225 NASDAQ S+P 500 TWII

in-sample tvRRR 0.9424 0.6555 0.4442 0.4641 0.9599 0.9509 0.6941
RRR 0.8018 0.7035 0.5301 0.4938 0.8142 0.8101 0.7216

out-of-sample
tvRRR 0.9439 1.0503 1.0691 0.6923 0.9444 0.9517 0.9265

RRR 3.3134 1.6374 2.0129 2.2012 3.8061 3.3488 1.6735
RRR (upd.) 1.1229 1.0970 1.0014 0.6980 1.1339 1.1090 0.8960

2020

DJI DAX HSI N 225 NASDAQ S+P 500 TWII

in-sample tvRRR 0.8861 0.9691 0.7350 0.3340 0.7729 0.7269 0.5940
RRR 0.8092 0.8819 0.8156 0.5048 0.7986 0.7749 0.6649

out-of-sample
tvRRR 0.9733 0.9997 1.0711 0.8085 0.9555 0.9648 0.9423

RRR 1.9315 2.3440 3.5379 4.4262 2.4440 2.4903 2.5606
RRR (upd.) 1.3869 1.4096 1.3999 1.1272 1.3891 1.4010 1.0368

updated RRR 1 updated RRR 2

tvRRR 1 tvRRR 2
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Figure 2.4.: Data reductions / stationary linear combinations of the time series β′
tyt−1 ∈ R2,

inferred from the three competing models for the 2008 data. The vertical dashed
lines mark the end of the training period.
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2.4. Data examples

We next analyze the 2020 data. The corresponding time series are displayed in Figure 2.5.
Here, the structural break is even more abrupt. Whereas the time series decreased slowly in
2008, the 2020 series exhibit a sudden drop around March 2020, with a fairly quick global
recovery. The training period ranges from June 6, 2020 to December 30, 2020. When fitting
tvRRR, the BIC criterion again selects d = 2 as the order of the model. The EM-algorithm
converges after 104 iterations.

The corresponding MSEs are displayed in the bottom panel of Table 2.7. We observe a
similar pattern as for the 2008 data set as regards the in-sample performance. Acccording
to the Diebold-Mariano test, the forecasting performance of tvRRR is significantly better
than that of the naive prediction in one of the cases, and it is significantly better than
updated RRR in three cases. In contrast, the forecasting performance of tvRRR is never
significantly worse than that of the naive predictions and of updated RRR. Hence, also for
the 2020 data, tvRRR shows significant performance improvement.

The cointegrating relations β′
tyt−1 exhibit a similar pattern as those for 2008 shown in

Figure 2.4. Therefore we do not include a corresponding figure for the 2020 data.

8.0

8.5

9.0

9.5

10.0

2019-07 2020-01 2020-07

y t

TWII

N225 NASDAQ S+P 500

DJI GDAXI HSI

20
19
-0
7

20
20
-0
1

20
20
-0
7

20
19
-0
7

20
20
-0
1

20
20
-0
7

20
19
-0
7

20
20
-0
1

20
20
-0
7

-0.15
-0.10
-0.05
0.00
0.05
0.10

-0.15
-0.10
-0.05
0.00
0.05
0.10

-0.15
-0.10
-0.05
0.00
0.05
0.10

∆
y t

-10

-5

0

5

10

2019-07 2020-01 2020-07

Date

y t

DAX DJI HSI N 225 NASDAQ S+P 500 TWII

TWII

N 225 NASDAQ S+P 500

DAX DJI HSI

20
19
-0
7

20
20
-0
1

20
20
-0
7

20
19
-0
7

20
20
-0
1

20
20
-0
7

20
19
-0
7

20
20
-0
1

20
20
-0
7

-5.0

-2.5

0.0

2.5

-5.0

-2.5

0.0

2.5

-5.0

-2.5

0.0

2.5

Date

∆
y t

Figure 2.5.: 2020 stock index data before (top left) and after (bottom left) scaling and
centering with values from the training period. The right panels show the
corresponding log first-differences. The vertical dashed lines mark the end of
the training period.
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2. A State-Space Approach to Time-Varying Reduced-Rank Regression

2.4.2. Covid-19 data

We analyze weekly Covid-19 cases per 100 000 capita for 12 European countries, namely
Austria, Belgium, Czech Republic, France, Germany, Greece, Italy, Netherlands, Poland,
Portugal, Sweden and Switzerland.4 Due to their proximity and frequent border crossings,
the data can be assumed to be strongly correlated. Nevertheless, the relationships of the
time series are likely to have changed during the pandemic.

We fit a time-varying VAR(1) model with reduced rank coefficient matrix of type (A),

yt = αtβ
′yt−1 + εt.

We do not preprocess the data. We fit the model starting at the end of March 2020 until
February 2021, and predict the remaining values of the time series up to mid-November
2021, using tvRRR and updated RRR, as described in Section 2.4.1. More precisely, for
updated RRR we use a time-constant model for the estimation period which is then refitted
with every new observation in the validation period. The data were roughly split in two
halves. The training and prediction period consist of 50 and 40 observations, respectively.
Both models use latent rank d = 2.

The time series and the corresponding predictions are displayed in Figure 2.6. During the
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Figure 2.6.: Weekly Covid-19 cases during the pandemic for 12 European countries (—),
with predictions obtained from tvRRR (– –) and updated RRR (· · · ). The
vertical dashed lines mark the end of the training period.

4Data retrieved from https://www.ecdc.europa.eu/en/publications-data/data-national-14-day-
notification-rate-covid-19, accessed December 5, 2021.
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2.5. Conclusions

model fitting period, tvRRR captures the first and second wave of the pandemic nearly
perfectly. For updated RRR, we can again observe the effect of averaging: The second peak
leads to overestimation of the starting period. In the validation period from February 2021
to November 2021, the one-step-ahead predictions of tvRRR closely track the progression
of the number of Covid-19 cases in all countries. In contrast, the updated RRR performs
badly in the validation period. This can also be seen from the mean squared prediction
errors shown in Figure 2.7. The overall MSE of tvRRR in the prediction period is less than
one quarter of the MSE of updated RRR (3873 vs. 16761). The Diebold-Mariano test finds
statistically significantly better prediction performance of tvRRR for all countries except
for the Netherlands.
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Figure 2.7.: Cumulative mean squared prediction errors MSEs =
's

t=1(yt−ŷt)
′(yt−ŷt)/12s,

s = 1, ..., 90, (over all countries up to time s) for the weekly Covid-19 case data.
The reported models are tvRRR (– –) and updated RRR (· · · ). The vertical
dashed line marks the end of the training period.

We also tried model (B) for this data set. However, its performance is far worse than that
of model (A), indicating that the time-invariant linear combinations β′yt contain essential
information for prediction. However, these linear combinations have a time-varying effect αt

on the Covid-19 cases in the different countries.

2.5. Conclusions

Reduced-rank regression forms the basis for various models frequently used in applications,
such as multivariate time-series regressions, cointegration models and methods for sufficient
dimension reduction based on inverse regression. We propose a new time-varying coefficient
reduced-rank regression modeling approach (tvRRR) by modeling the dynamics of the
observations and the time-varying coefficients as a Gaussian linear state-space system. The
estimation algorithm relies on classical methods from state-space modeling. We estimate
the time-varying parameters using the Kalman filter, and fit the model to observed data
using an EM-algorithm which relies on analytic updates and is numerically stable. Our
EM-algorithm converges quickly most of the time. It needs on average 40 iterations in
our simulation studies. It takes longer to reach convergence in real data applications, as
expected. With respect to computer time, the estimation of the model for the Covid data
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2. A State-Space Approach to Time-Varying Reduced-Rank Regression

takes about 10 seconds on a standard laptop with an Intel(R) i5 processor with 16 GB RAM.
We use BIC to estimate the rank of the coefficient matrices with highly accurate results.

Our simulation studies and the data applications show the adaptive capabilities of the
algorithm. It exhibits high estimation accuracy across different patterns of time-variation,
as it accommodates both abrupt structural breaks and gradual changes in the time-varying
coefficients. Moreover, tvRRR exhibits robustness to time-constant coefficients. An R-
implementation of the model fitting algorithm is available on GitHub (https://github.com/
b-brune/tvRRR). Additional simulation results are provided in the supplementary material.
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3 Rank-Based Estimation
of Mixed Effects Models

This chapter is based on joint work with Irene Ortner and Peter Filzmoser and is conditionally
accepted as A Robust Rank-Based Estimation Method For Mixed Effects Models in the
Presence of Outlying Data in the Journal of Data Science, Statistics, and Visualization
(https://jdssv.org/index.php/jdssv/index). Supplemental information for this chapter
can be found in Appendix B, p. 133ff.

3.1. Introduction

The mixed effects model is a popular extension of the standard linear regression model. It
is able to deal with clustered error structures, e.g. in cases where multiple measurements
are made on the same subject. In this case, the error terms are no longer independent and
identically distributed.

In general, the model equation for a standard linear mixed effects model is given by

y = Xβ +Zb+ ε,

where β are the so-called fixed effects, b are the individual- or group-specific random effects,
and ε are the independent errors. X and Z are matrices of predictors and y is the response.
If Z is the vector of ones, the associated random effect is called a random intercept, otherwise
we speak about random slopes. In the classical parametric setting, it is assumed that both
the errors and random effects are homoscedastic and follow a normal distribution. Based on
this assumption, the standard approaches of estimation are maximum likelihood (ML) and
restricted maximum likelihood (REML). Pinheiro and Bates (2000) provide a comprehensive
overview of both approaches.

In practice, we are often confronted with data that do not comply with the normality
assumption imposed by the standard estimation approaches mentioned above. The data
may contain measurement errors or unusual observations (so-called outliers) and the error
distributions might be non-symmetric or heavy-tailed. Such deviations can cause the
standard parametric estimation procedures to break down, resulting in heavily distorted
coefficient estimates. The contaminated estimates make it difficult to identify the outlying
observations which can be masked by wrong fits.
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3. Rank-Based Estimation of Mixed Effects Models

The fields of non-parametric and robust statistics aim to develop methodology that does not
rely (or relies far less) on distributional assumptions and is not distorted by the presence of
unusual measurements. Different approaches to estimate mixed effects models in a robust
manner have been proposed in the literature. Various methods are based on down-weighing
observations, i.e. M- or S-estimation (see e.g. Copt and Victoria-Feser 2006; Koller 2013;
Agostinelli and Yohai 2016). These methods are often computationally very expensive.
Other methods replace the normality assumption for the error term and the random effects
with more heavy-tailed distributions such as the t-distribution (Pinheiro, Liu, et al. 2001). A
further line of robust and non-parametric estimation methods is provided in the framework
of rank-based regression (see e.g. Kloke et al. 2009; Bilgic 2012; Jung and Ying 2003;
Wang and Zhu 2006; Wang and Zhao 2008). These methods have the advantage of being
computationally cheap, robust against outlying responses and efficient, even if the modeling
assumptions for ML and REML as mentioned above are violated.

There are two main shortcomings of the existing rank-based methods for the estimation of
linear mixed effects models: (1) In the setting of experiments that are not designed, some of
the predictors included in X or Z might be unusual or outlying (e.g. due to measurement
errors). Such leverage points can still distort the coefficient estimates obtained from the
existing models. (2) To the best of our knowledge, there does not exist a rank-based
estimation method that is able to deal with more complex random effects structures: All
rank-based methods are designed for random intercepts, but cannot account for random
slopes of any type. However, we often do not want to limit our model estimates to random
intercepts. Instead, we might be interested in the individual-specific response to a treatment,
not only with regard to changes in the average response, but also regarding the slope in a
certain covariate.

The present work extends the rank-based estimation approaches presented in Kloke et
al. (2009) and Bilgic (2012) to allow for model structures that include random slopes.
Furthermore, a weighting procedure is introduced that protects the estimates against the
effects of leverage points. The results allow for model diagnostics both for the whole sample
and on group-level. Unusual groups and observations can be identified, aiding interpretation
and deeper understanding of the modeled data.

3.2. Preliminaries

3.2.1. Rank-based regression

Given a regular regression model

y = α1N +Xβ + e

with y ∈ RN , X ∈ RN×p, intercept parameter α ∈ R, regression coefficients β ∈ Rp and
1N the N -dimensional all-ones vector, where N describes the number of observations. The
error term e ∈ RN is assumed to be generated by a continuous distribution with a positive
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definite covariance matrix given by σ2
eIN with variance parameter 0 < σ2

e < ∞. IN is the
N -dimensional identity matrix.

A robust rank-based estimate of the regression coefficients β can be obtained by minimizing
a pseudo norm of the form

||r||φ =
N&
j=1

a[R(rj)]rj (3.1)

in the residuals r = y − α1N −Xβ ∈ RN . Here, R(rj) denotes the rank of the residual
rj among the components r1, ..., rN of the residual vector r. The scores are given by
a[t] = φ(t/(N + 1)) where φ(u) is a non-decreasing, bounded and square-integrable function
such that

'
t a[t] = 0. Proposed in Jureckova (1971), the pseudo norm (3.1) is also called

Jaeckel’s dispersion function after Jaeckel (1972). The score function φ(·) can be specified
in various ways. We use the Wilcoxon score

φ(u) =
√
12

�
u− 1

2


,

which provides a good trade-off between efficiency and robustness, if the error term e is not
normally distributed (McKean 2004). With this score function, the norm can be written
equivalently as a scaled sum of pairwise differences (see McKean 2004):

||r||φ =

√
3(N + 1)

2

N&
j=1

N&
k=1

|rj − rk| (3.2)

The ordinary rank-based regression estimate is then given by

β̂φ = argmin
β

||y −Xβ||φ. (3.3)

The criterion (3.3) does not allow to estimate the intercept parameter α directly, because the
ranks of the residuals are invariant to shifts by a constant. The intercept can be estimated by
applying a robust estimator of location T : RN → R to the vector of residuals r̃ = y−Xβ̂φ:

α̂ = T(y −Xβ̂φ) = T(r̃).

The error variance σ2
e is estimated by applying a robust scale estimator, denoted by S : RN →

R+, to the resulting vector of residuals r = y−Xβ̂φ − α̂. We suggest using the one-sample
Hodges-Lehmann estimator (Hodges and Lehmann 1963) for intercept estimation, and the
Qn estimator of scale (Rousseeuw and Croux 1993) to estimate the error variance. These
two estimators provide a good trade-off between robustness and efficiency. Other possible
choices for T (·) and S(·) are e.g. the sample median and the median absolute deviation
(MAD)

There is no closed form solution for the minimizer β̂φ in (3.3). However, the optimization
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problem is convex and can be solved efficiently using numerical optimization techniques.
Useful starting values for the optimization can be obtained from an initial ordinary least
squares (OLS) fit or, if we suspect outlying values, from least trimmed squares (LTS,
Rousseeuw and Van Driessen 2006).

A thorough overview of the theory regarding the rank-based regression model may be found
in Chapter 3 of Hettmansperger and McKean (2011).

3.2.2. Terminology of mixed effects models

Given are multiple measurements from g independent groups. Then, for the ni-dimensional
response vector yi from group i, i = 1, ..., g, we aim to fit a model of the form

yi = α1ni +Xiβ + ai1ni +Zibi + εi (3.4)

where N =
'g

i=1 ni is the total sample size.

We call the coefficients α and β that are shared by all groups the fixed effects. Xi ∈ Rni×(p−1)

contains the predictors associated with the fixed effects.

The group-specific random effects ai ∈ R and bi ∈ Rk−1 are treated as realizations of a
centered random variable (a, b′)′ ∈ Rk with positive definite covariance matrix Σ(θ) ∈ Rk×k

that is parametrized by a coefficient vector θ. We assume Σ(θ) is a diagonal matrix, and
θ ∈ Rk contains the random effects’ standard deviations. More generally, Σ(θ) could also be
specified as compound symmetric or unstructured with a θ of suitable length. Zi ∈ Rni×(k−1)

is a matrix of predictors corresponding to the random slope(s) bi. The matrices Zi can be
subsets of the columns of the matrices Xi, but also contain further external predictors.

The errors εi are assumed to follow a distribution with finite second moment and covariance
matrix σ2

εIni . In addition, the errors and the random effects are independent from each
other. The coefficients σε and θ are also referred to as variance components.

Given estimators α̂, β̂ and âi, b̂i, i = 1, ..., g, respectively, we denote the marginal and
conditional residuals by

ri,marg = yi − 1niα̂−Xiβ̂, and

ri,cond = yi − 1niα̂−Xiβ̂ − 1ni âi −Zib̂i,

accordingly. For ML and REML estimation (Pinheiro and Bates 2000), the random effects
and the errors are assumed to be centered, independent and normally distributed.

3.2.3. Rank-based regression for dependent data

Kloke et al. (2009) extend the methodology of rank-based regression with independent errors
to estimate simple mixed effects models with random intercept terms. Their methodology
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is further extended by Bilgic (2012) to allow for nested random intercepts of arbitrary
depth. Both methods rely on a two-step estimation procedure, where the fixed effects are
estimated in the first step. The residuals from this first regression are then used to derive
the random effects and the variance components. The authors give asymptotic properties of
their estimators and use them to draw inference on the fixed effects.

Other rank-based estimation methods for repeated measurements data include the method
proposed in Jung and Ying (2003), and its extensions in Wang and Zhu (2006) and Wang
and Zhao (2008). Those methods follow a different model formulation and do not explicitly
specify the dependency structure of the data beforehand. The authors consider a simple
linear regression model for repeated measurements data, and propose estimation methods
that are able to deal with possible dependencies and heteroscedasticity. Similarly, Abebe
et al. (2016) present rank-based fits for generalized estimating equations.

All of the above mentioned papers focus on drawing inference on the fixed effects in the
model. Contrarily, we focus on the accurate estimation of fixed and random effects in the
presence of outliers. This especially allows for model diagnostics and identification of unusual
(groups of) observations as well as interpretation of the realizations of the random effects.
We do not consider inference for the parameters.

3.3. Methodology

In the following, we use the formulation of the mixed effects model as presented in Section
3.2.2. The proposed estimation procedure relies on the rank-based regression presented in
Section 3.2.1.

3.3.1. Rank-based estimation of mixed effects models with random slopes

For simplicity of the exposition and without loss of generality, we drop the intercept terms α
and ai, i = 1, ..., g, from model (3.4). Details for the estimation with intercept can be found
in Algorithm 3.1.

By ignoring the dependency structure induced by the random effects, we can obtain an
initial estimate β̂(0) of β from a rank-based regression of the stacked models (3.4)�y1

...
yg

� =

�X1
...

Xg

�β + ẽ. (3.5)

The random effect structure is absorbed into the error term ẽ ∈ RN . Then, we calculate the
marginal residuals as

r
(0)
i,marg = yi −Xiβ̂

(0) ≈ Zibi + εi. (3.6)
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for each i = 1, ..., g, This gives us g further regression problems that can be solved for the
most likely realizations of the random effects bi:

b̂
(0)
i = argmin

b
||r(0)i,marg −Zib||φ. (3.7)

We obtain estimates of the variance components as σ̂(0)
ε and θ̂(0) by applying the Qn estimator

to the conditional residuals

r
(0)
i,cond = yi −Xiβ̂

(0) −Zib̂
(0)
i , (3.8)

and the estimated random effects b̂
(0)
i .

This set of initial estimates β̂(0), b̂
(0)
i , σ̂

(0)
ε and θ̂(0) can now be improved using a reweighting

scheme in the manner of iteratively reweighted least squares. Similar methodology for the
random intercept model is proposed as the generalized rank procedure in Bilgic (2012).

The basic idea is the following: From the model equation (3.4), we can directly obtain the
covariance of each vector yi, i = 1, ..., g. It is given by

Σyi =Σyi(σε,θ) = Cov(yi |Xi,Zi) = σ2
εIni +ZiΣ(θ)Z ′

i

and can be robustly estimated by plugging in the variance component estimates:

�Σ(0)
yi = Σyi(σ̂

(0)
ε , θ̂(0)).

By multiplying the system of regression equations (3.5) with Σ
−1/2
yi , the errors ẽ are

transformed to be homoscedastic and uncorrelated. One can then solve the rescaled equation
system(s)

�Σ(0)
yi

−1/2yi = �Σ(0)
yi

−1/2Xiβ + �Σ(0)
yi

−1/2ẽi (3.9)

to achieve a better, more efficient estimate of β.

However, this rescaling step can impose problems in the presence of outlying predictors or
responses. If observations do not follow the regression line, the rotation (3.9) can amplify
their influence: Due to the linear combinations built in the multiplication with the estimated
covariance matrix, one outlying observation or predictor in group i is able to contaminate
the whole group.

This can be circumvented by a preceding reweighting step: Based on the conditional residuals
(3.8), we define outlyingness weights

ν
(0)
ij = min

1,
c · σ̂(0)

ε

|r(0)ij,cond|

 , (3.10)

for i = 1, .., g, j = 1, .., ni, where r
(0)
ij,cond are the elements of the conditional residuals in
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(3.8). The tuning parameter c is the cutoff value that is used to classify the residuals as
outlying. As it is a common choice in the literature we set c = 2. We reweigh the regression
equations as follows,

diag
�
ν(0)

��y1
...
yg

� = diag
�
ν(0)

��X1
...

Xg

�β + ˜̃e,

where ν(0) =
�
ν
(0)
11 , ..., ν

(0)
gng

�′
are the stacked weights. We then proceed with the rescaling

step as described in Equation (3.9) and re-estimate β. The new estimate can then be used
to recalculate the residuals ri,marg as in (3.6), and improve the random effects estimates b̂i
as in (3.7). We iterate between these steps until the estimates stabilize.

For error variance estimation, we suggest to correct for the degrees of freedom lost through
the separate fitting of the g regression models that estimate the random effects. Thus, we
apply the following finite-sample correction to the Qn estimator of scale:

Qn,corr(r) =

!
N

N − (p+ g)
Qn(r).

This correction gives good results in simulation studies.

The model fitting procedure is summarized in Algorithm 3.1. In all our simulation experi-
ments, the algorithm converged in less than 5 iterations.

Algorithm 3.1 (Rank-based fitting of mixed effects models with random slopes). Starting
with l = 0, the l’th iteration of the algorithm is the following:

1. Let

Σ̂
(l)
yi =

�
Ini , if l = 0

Σyi(σ̂
(l−1)
ε , θ̂

(l−1)
b ), else,

and

ν(l) =

1N , if l = 0�
ν
(l−1)
11 , ..., ν

(l−1)
gng

�′
, else.

Obtain β̂(l) as a solution to the rank-based regression of

y
(l)
∗ = (Σ̂

(l)
yi )

− 1
2 diag

�
ν(l)

�
y on X

(l)
∗ = (Σ̂

(l)
yi )

− 1
2 diag

�
ν(l)

�
X.

If the model has an intercept α, estimate

α̂(l) = T (y −Xβ̂(l)).
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Otherwise, α̂(l) = 0

2. Calculate the marginal residuals

r
(l)
i,marg = yi −Xiβ̂

(l) − α̂(l)1ni .

3. Use r
(l)
i,marg to obtain predictions b̂

(l)
i for the random effects bi from (3.7).

If the model has random intercepts ai, estimate

â
(l)
i = T (r

(l)
i,marg −Zb̂

(l)
i ).

Otherwise, â(l)i = 0.

4. Obtain conditional residuals

r
(l)
i,cond = yi − α̂(l)1ni −Xiβ̂

(l) − â
(l)
i 1ni −Zib̂

(l)
i .

5. Use the r
(l)
i,cond and the realizations â

(l)
i , b̂

(l)
i to estimate the variance components θ(l)

and σ
(l)
ε with the Qn estimator (Rousseeuw and Croux 1993, see).

6. Determine the outlyingness weights ν
(l)
ij from the conditional residuals using (3.10).

7. If l > 0, check for convergence using the criteria

||β̂(l) − β̂(l−1)||2
||β̂(l−1)||2

< tol, and
||(σ̂(l)

ε , θ̂
(l)
b )′ − (σ̂

(l−1)
ε , θ̂

(l−1)
b )′||2

||(σ̂(l−1)
ε , θ̂

(l−1)
b )′||2

< tol

for a prescribed tolerance tol.

If above criteria are not fulfilled or l = 0, increase l by one and return to step 1.

3.3.2. Further robustification against leverage points

The proposed method is robust against outlying values in the response space (y-outliers),
but can be heavily affected by outliers in the predictor space (X-outliers, leverage points).

McKean (2004) suggests a method that additionally robustifies the rank-based regression
against leverage points. This is achieved by introducing robustness weights to the Wilcoxon
norm as given in (3.2). The weights are determined such that influential and outlying
observations, either in terms of leverage (predictor space) or in terms of unusual responses,
are downweighted.

To estimate mixed effects model (3.4) with a rank-based approach that is robust against both
outliers in response and predictor space, we replace the two regression steps in Algorithm
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3.1 points 1. and 3. by weighted versions. A weighted estimator for the fixed effects β is
given by

β̂w = argmin
β

||W (y −Xβ)||φ,

where W = diag(w11, ...., wgng) ∈ RN×N is a diagonal matrix of weights wij , i = 1, ..., g,
j = 1, ...ni. Analogously, the weighted estimates of the random effects are given by

b̂i,w = argmin
b

||W̃i(ri,marg −Zib)||φ (3.11)

where W̃i = diag(w̃i1, ..., w̃ini) is a matrix of group specific robustness weights.

The weights wij can be specified in different ways. We robustify the estimates against
leverage points and downweigh observations that are associated with influential predictors.
The weights are determined based on a robust estimate of leverage. Let

wik = min

�
1,

cp
νik

�
, where νik = (xik − vc)

′V −1(xik − vc), (3.12)

for i = 1, ..., g and k = 1, ..., ni. The cutoff cp is selected as the 95%-quantile of the χ2(p−1)-
distribution, where p− 1 is the number of columns of X. V and vc are robust estimates of
the covariance and mean of the predictor matrix X. We use the (fast) minimum covariance
determinant estimator (MCD, Hubert, Debruyne, et al. 2018). The robustification against
leverage points using the MCD estimator assumes that the predictors are continuous and
roughly elliptically distributed. In the case that the predictor matrices include dummy
variables, an alternative way to construct weights is offered based on the hat matrix, see
e.g. Cantoni and Ronchetti (2001). A short discussion can be found in Section B.5 of the
supplement.

For the group-specific weights in (3.11), we proceed analogously, and calculate the leverage
based on the matrices Zi. Note that the matrix W needs to be recalculated based on the
rescaled observations in every iteration. The group-specific weights in W̃i only need to be
determined once, as the matrices Zi are not modified in the iteration steps. The detailed
estimation procedure is given in Algorithm 3.2.

Algorithm 3.2 (Rank-based fitting of mixed effects models with random slopes and leverage
weights). Starting with l = 0, the l’th iteration of the algorithm is the following:

1. Calculate the group-specific matrices of robustness weights

W̃i = diag(w̃i1, ..., w̃ini)

by applying (3.12) to the matrices Zi, i = 1, ..., g. These weights only need to be
determined once.
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2. Let

Σ̂
(l)
yi =

�
Ini , if l = 0

Σyi(σ̂
(l−1)
ε , θ̂

(l−1)
b ), else,

and

ν(l) =

1N , if l = 0,�
ν
(l−1)
11 , ..., ν

(l−1)
gng

�′
else.

Determine the matrix of weights W (l) as in (3.12) based on the rescaled matrix of
covariates

X
(l)
∗ = (Σ̂

(l)
yi )

− 1
2 diag

�
ν(l)

�
X.

Obtain β̂
(l)
w as a solution to the rank-based regression of

y
(l)
∗,w = W (l)(Σ̂

(l)
yi )

− 1
2 diag

�
ν(l)

�
y

on
X

(l)
∗,w = W (l)(Σ̂

(l)
yi )

− 1
2 diag

�
ν(l)

�
X.

If the model has an intercept α, estimate

α̂(l) = T (y −Xβ̂(l)
w ).

otherwise, α̂(l) = 0.

3. Calculate the marginal residuals

r
(l)
i,marg = yi −Xiβ̂

(l)
w − α̂(l)1ni .

4. Use r
(l)
i,marg to obtain predictions b̂

(l)
i,w for the random effects bi from (3.11) using the

weight matrices W̃i.

If the model has intercepts ai, estimate

â
(l)
i = T (r

(l)
i,marg −Zb̂

(l)
i,w).

otherwise, â(l)i = 0

5. Obtain the final (conditional) residuals

r
(l)
i,cond = yi − α̂(l)1ni −Xiβ̂

(l)
w − â

(l)
i 1ni −Zib̂

(l)
i,w.

6. Use the r
(l)
i,cond and the realizations b̂

(l)
i to estimate the variance components θ(l) and
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σ
(l)
ε with the Qn estimator (see Rousseeuw and Croux 1993).

7. Determine the outlyingness weights ν
(l)
ij from the conditional residuals using (3.10).

8. If l > 0, check for convergence using the criteria

||β̂(l)
w − β̂

(l−1)
w ||2

||β̂(l−1)
w ||2

< tol, and
||(σ̂(l)

ε , θ̂
(l)
b )′ − (σ̂

(l−1)
ε , θ̂

(l−1)
b )′||2

||(σ̂(l−1)
ε , θ̂

(l−1)
b )′||2

< tol

for a prescribed tolerance tol.

If above criteria are not fulfilled or l = 0, increase l by one and return to step 2.

9. Given the final estimates β̂w and b̂i,w, i = 1, ..., g, and if Zi is a subset of Xi, perform
the adjustment step.

The approach of downweighting data points with high leverage can cause a loss of efficiency,
as “good” leverage points might receive the same weights as “bad” leverage points. To further
improve estimation, McKean (2004) suggests to use the so-called Wilcoxon high-breakdown
(HBR) estimator as an alternative. Based on an initial least trimmed squares (LTS) fit, it
determines weights that account for outlyingness in both predictor- and response space. The
extension of our methodology to this estimator is straightforward.

3.4. Simulation

In the following, we assess the statistical properties and robustness of our two rank-based
procedures in simulation studies. We refer to the estimator without additional leverage
weights (Algorithm 3.1) as Rank, and to the estimator with leverage weights (Algorithm
3.2) as Weighted Rank. The proposed procedures are implemented in the package rankLME
which is available on GitHub (Brune 2024). For comparison, we consider the classic REML
estimator as implemented in the R-package lme4 (Bates et al. 2015). Also, we compare with
the SMDM estimator proposed by Koller (2013). This estimator is based on a different
robustness concept, namely MM-estimation, and implemented in the R-package robustlmm
(Koller 2016). All simulations are carried out on a Linux server using R, version 3.6.3 (R
Core Team 2020). Replication files for the simulation studies can be found in the GitHub
repository (Brune 2024).

For the simulation study, we start by generating an uncontaminated dataset according to
model equation (3.4). The entries of the predictor matrices Xi ∈ Rni×(p−1) are drawn from
the N (0, 4) distribution, and the random slope matrices Zi ∈ Rni×(k−1) contain the first
(k − 1) columns of Xi. We add a fixed intercept α and set (α,β′)′ = 1p; also random
intercepts ai, i = 1, ..., g are included. The random effects are distributed as (a, b′)′ ∼
N (0, 0.52Ik). We limit the analysis to p = 4 and k = 2. Thus, we have regression coefficients
(α,β′)′ = (α, β1, β2, β3) and random effects (a, b1) with scale parameters θ = (θ0, θ1). The
errors are drawn as εi ∼ N (0, Ini).
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3. Rank-Based Estimation of Mixed Effects Models

In the next step, up to 50% of the observations are contaminated with one of the following
outlier types:

• y- or response outliers: Observations yij are modified as either yij + s (additive) or
yij · s (multiplicative) for different outlier sizes s

• leverage points or outlying predictors : Rows of the predictor matrices are modified as
xij+ℓ (additive) or xij ·ℓ (multiplicative) where xij = (xij,1, ..., xij,p−1) ∈ Rp−1 denotes
the j’th row of the matrix Xi, and ℓ is the leverage coefficient. The corresponding
rows of the matrices Zi are adjusted accordingly.

The outlying observations can either be spread randomly over the g groups, or be located
sequentially. In the sequential case, one observation at a time is replaced and we achieve
groupwise contamination.

Each setting is repeated for R = 200 replications. We report the MSE of the estimates:

MSE(β̂i) =
1

R

R&
r=1

(β̂
(r)
i − 1)2,

where β(r)
i is the the estimate of the i’th component of the coefficient vector β, i = 0, ..., p−1,

obtained in the r’th simulation run, r = 1, ..., R. β0 corresponds to the intercept parameter
α.

In the interest of clarity, we only report results for randomly located multiplicative y-outliers
and leverage points. Further simulation results for additive and sequentially located outliers
can be found in the supplemental material (Sections B.3 and B.4).

3.4.1. Bias of the estimates

To explore the bias of the proposed estimators, we repeatedly draw datasets from the null
model (i.e. without outliers), and fit the rank-based mixed effects model as described in
Section 3.3.

The top row of Figure 3.1 shows boxplots of the coefficient estimates for different group sizes
ni = ñ, i = 1, ..., g, and numbers of groups g. The boxplots are symmetrical and centered
around the true values of the coefficients α = β1 = β2 = β3 = 1. Even for small total sample
sizes, the estimates give no evidence for a bias, the median estimate resembles the true
value. Increasing the number of groups g causes a decrease in the estimates’ variance. The
effect of increasing group sizes ni is less pronounced. Having many groups seems to be more
important than large groups. We observe a higher variance for the coefficients that are
associated with random effects (α and β1). This is the case as the same predictors are used
for estimation of both the fixed and the random effects. Therefore, higher uncertainty is
introduced to the estimation.

The respective estimates of the variance coefficients (or rather standard deviations) are
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Figure 3.1.: Boxplots of regression coefficient and variance component estimates obtained
from the rank-based estimator for different combinations of group sizes ni and
number of groups g (total sample size: N = g · ni)

displayed in the bottom row of Figure 3.1. The number of groups g and the number of
observations per group ni both have strong influence on the accuracy of the estimates. The
number of groups g guides the variation of the coefficient estimates. The larger g, the more
random effects are available for variance estimation, and thus the variation of the estimates
decreases. Our method overestimates θ0 and θ1 if the group sizes ni are small. Due to the
two-stage approach for estimation, our method cannot make use of the self-regularizing
properties that evolve from direct likelihood-based estimation of the variance parameters
(with REML). Especially for small groups, the ratio of observations to parameters for the
regression is comparably small. Thus, we tend to overfit the groups and the variance of
the estimated random effects bi, i = 1, ..., g, is overestimated. The contrary effect can be
observed for the scale parameter of the errors, σ, which tends to be underestimated: The
good fit in each group can reduce the variance of the conditional residuals. The larger the
groups, the more degrees of freedom remain, and thus the better the variance is conserved.

However, our methodology yields accurate estimates of the random effects. These can help
with the interpretation of the model and the identification of unusual observations. This is
especially helpful if we want to run model diagnostics and interpret the realizations of the
random effects (also see the applications in Section 3.5). As soon as ni is large enough (this
study indicates ni ≥ 20), all estimates seem to be consistent, regardless of the number of
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3. Rank-Based Estimation of Mixed Effects Models

groups g.

The results for the weighted rank-based estimator are similar and provided in the supple-
mental material (Section B.1).

3.4.2. Validity of the updating step and efficiency

It is well-known that non-parametric methods are outperformed by parametric methods if
the sample sizes are very small and the assumptions of the parametric approaches are valid.

Table 3.1 reports the relative efficiency (Serfling 1980) of our rank-based estimator as opposed
to the baseline REML, the SMDM and the weighted rank-based estimator, as well as the
efficiency of the rank-based estimator to that of its initial value (i.e. the estimate β(0)

obtained before iteration).

Table 3.1.: Efficiency of the rank-based estimator vs. the initial value, REML, SMDM and
Weighted Rank for g, ni ∈ {5, 20, 50}

g ni initial value REML SMDM Weighted Rank

5 5 0.858 1.159 1.112 0.978
5 20 0.730 1.048 1.046 0.994
5 50 0.712 1.085 1.048 1.003

20 5 0.821 1.134 1.084 0.966
20 20 0.728 1.041 1.017 0.987
20 50 0.726 1.080 1.013 0.988

50 5 0.796 1.163 1.097 0.969
50 20 0.718 1.068 1.031 0.985
50 50 0.768 1.084 1.021 1.000

The rank-based estimator is slightly less efficient than REML and SMDM, but its efficiency
approaches that of REML (and SMDM) with increasing total sample size N . The weighted
version of our estimator is slightly less efficient due to possible downweighting of useful
observations / leverage points. The updating procedure yields a considerable improvement
over the initial value. Further simulation studies shown in the supplemental material (Section
B.2) confirm that the improvement induced by the updating step is even more pronounced
in the presence of outliers.

3.4.3. Behavior in the presence of outliers

In the following, we examine the behavior of the estimates under contamination with
randomly located multiplicative response outliers and leverage points. We limit our analyses
to the setting with g = 20 and ni = 20. Further simulation results are reported in the
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Figure 3.2.: MSE (log-scale) of the SMDM, REML, Rank and Weighted Rank estimators for a
10% proportion of multiplicative response outliers of increasing size, ni = g = 20.
The curves for Rank and Weighted Rank are overplotted.

supplemental material.

Response outliers

Figure 3.2 shows the MSEs of the four estimators for the situation of 10% response outliers
of increasing size s. The MSEs of the two rank-based estimators and SMDM are fairly
constant with increasing outlier size. However, SMDM seems to require a certain outlier
size to make sure they are recognized and accounted for by the algorithm (explaining the
higher error at medium outlier sizes. At the same time, the REML estimates are severely
affected by even small contaminations. Thus, as soon as we suspect outliers to be present in
the samples, it is definitely worth applying a robust estimator.

Figure B.3 in the supplemental material examines how the estimator reacts to an increasing
proportion of response outliers of size s = 1000.The estimates of α and β provided by the
SMDM estimator break down at an outlier proportion larger than 20%. The estimates
from the rank-based and weighted rank-based estimator stay stable longer (up to 30%
contamination).
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Figure 3.3.: MSE of the SMDM, REML, Rank and Weighted Rank estimators for a 10%
proportion of multiplicative leverage points of increasing size, g = ni = 20

Outlying predictors

The MSEs for the coefficient estimates under 10% contamination with leverage points are
reported in Figure 3.3. This setting clearly shows the advantage of the leverage weighted
rank-based estimator: While REML, SMDM and the non-weighted rank-estimator are
severely distorted by the leverage points, the weighted rank-based estimator remains largely
unaffected. Its coefficient estimates remain constant with increasing outlier size ℓ.

Figure B.7 in the supplemental material examines how the estimator reacts to an increasing
proportion of leverage points with ℓ = 100. The estimates of the leverage weighted estimator
are stable up to an outlier proportion of at least 20%, while the other three estimators are
distorted even for small outlier proportions.

3.5. Applications

In the following section we illustrate the performance of the (weighted) rank-based estimation
method in three different applications, parts of which are mixtures of real data analysis and
introduction of artificial outliers. Especially, we illustrate different diagnostic tools that may
help with identifying outliers or outlying / unusual groups in the data. Replication files for
the data analyses can be found in the GitHub repository (Brune 2024).
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3.5.1. Sleepstudy data

We analyze the sleepstudy dataset (Belenky et al. 2003) as included in the lme4 R-package
(Bates et al. 2015). It consists of data from 18 subjects that were exposed to sleep deprivation
and had to complete a reaction test each day. Thus, we expect the average reaction time to
decrease throughout the experiment, but each subject might react differently to the sleep
deprivation.

We fit a mixed effects model with both random and fixed intercept and slope in time. The
model equation for the reaction time of subject i (i = 1, ..., 18) after t (t = 0, ..., 9) days of
sleep deprivation is given by

Reactioni,t = α+ β1 · t+ ai + bi · t+ εi,t (3.13)

We contaminate the dataset in two different ways:

1. Modify the third observation of each individual by multiplying the reaction times by
three (outlying observations). Outliers like this could e.g. be caused by an error in the
measurement instrument that was used on that day.

2. Modify the first group (individual ‘308’) by multiplying the reaction times by three
(outlying group). The subject here could happen to be very slow, but this fact should
not affect the population average (i.e. fixed effects) too strongly.

Since the predictor in model (3.13) is exposure time, we do not expect leverage points. Thus,
we compare the estimates from our procedure without leverage weights (rank, Algorithm
3.1) to the standard REML estimator. The original coefficient estimates and their ratios
to the estimates from the two contamination settings are displayed in Table 3.2. For the
rank-based model, the estimates of α and β1 remain stable in all contamination settings,
they deviate by at most 2% from the baseline estimates.

Table 3.2.: Coefficients estimated by REML and the rank-based estimator for the unmodified
sleepstudy data and the ratio to coefficient estimates for the two outlier settings;
boldface numbers indicate a relative change of more than 10%

Setting Method α β1 θ0 θ1 σ

baseline rank 252.10 10.63 31.28 6.56 16.56
REML 251.41 10.47 25.05 5.99 25.57

1. rank 1.02 0.99 1.07 1.23 1.26
REML 1.29 0.67 - - 7.14

2. rank 1.01 1.01 1.20 1.00 1.06
REML 1.11 1.23 4.78 2.39 1.59

REML returns a singular fit in the outlying observations setting, the imposed random effects
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Figure 3.4.: Conditional residuals for the sleepstudy example in the outlying observations
setting; REML and rank-based estimator

structure cannot be fitted with lme4. As a consequence, the error variance σ is overestimated.
The estimate returned by the rank-based method remains more stable. The residuals from
REML are strongly skewed (see Figure 3.4). Due to the outlying observations in each group,
the REML regression lines are shifted upwards and a majority of the residuals is less than
zero. Two of the outlying values are not recognized as such and fall within the cutoff of 2.
For the rank-based method, the residuals are still centered around zero. The outlying values
are recognized correctly. A few more observations are marked as conspicuous and could
require further attention. However, they already fell outside of the cutoff area without the
artificial outliers.

In the outlying group setting, we observe problems with the variance structure imposed
by the model: REML severely overestimates the variance components due to the outlying
random effect. As an indicator whether the imposed variance structure, i.e. the random
effects structure, is reasonable, Lesaffre and Verbeke (1998) suggest to report the following
norm

di =
))))Ini − Σ̂

−1/2
yi ri,margr

′
i,margΣ̂

−1/2
yi

))))2 (3.14)

for i = 1, ..., g. di may be interpreted as a residual which measures how well the covariance
structure of the observations yi is captured by the model. Thus, di should be small if the
variance structure is captured well, and should produce large values if the variance structure
in one of the groups does not match that imposed by the model. A plot of the group
index against the variance diagnostic (3.14) yields Figure 3.5. The outlying group cannot
be recognized in the case of REML, the magnitudes of the di’s are all fairly similar. The
outlying individual (308) does not stand out. The di’s calculated from the rank-based fit
clearly capture the outlying group.

The examples of contamination here show that outlying values can be masked by the outcome
of the standard REML estimation approach. The standard diagnostic methods fail in this
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Figure 3.5.: Variance diagnostic (3.14) for the sleepstudy example in the outlying group
setting; REML and rank-based estimator

case. We cannot reliably detect the outlying observations or groups. Opposed to this, our
robust rank-based estimation method allows to clearly identify the unusual observations and
thus enables further analysis.

3.5.2. Accelerated aging experiments for photovolatic module data

The ADVANCE! project analyzes the aging behavior of photovoltaic (PV) modules (Berger et
al. 2021). Different modules were exposed to various climatic conditions in accelerated aging
experiments. Such experiments are used as the real-time assessment of material degradation
is not possible due to the long time frames in real life. Throughout the experiments, chemical
and electric measurements were taken. We’re especially interested in modeling the power at
maximum power point (PMPP) over time, and as a function of other degradation indicators.
The goal is to identify degradation pathways and understand the influence of treatment with
different climatic settings on changes in material and power loss.

Pairwise comparison of degradation rates

We compare the results from the two climatic settings Moderate 2 and Moderate 5. In both
settings three modules were treated with damp-heat (i.e. high temperature and humidity)
and irradiance for 1 200 hours. The modules in the Moderate 5-group were additionally
exposed to temperature cycles. We fit the following model:

(PMPP)it = 1 + β1 · Ramp(t) + β2 · t2 + β3 · t2 · 1{Moderate 5}+ bi · t2 + εi,t.
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Figure 3.6.: Data and fitted values for pairwise comparison of the Moderate 2 and Moderate
5 aging settings

β1 captures an initial power increase, β2 the overall aging, and β3 the additional aging
induced by the treatment with temperature cycles. The intercept / initial power is fixed at
1. The random effects bi account for the module specific degradation rates over time.

As can be seen from Figure 3.6, one module broke during the aging procedure. Thus we
expect the REML estimate of β3 to be biased downwards trying to account for the strong
power loss of the faulty module. Since we are interested in modeling the continuous material
wear, and not the abrupt degradation caused by material failures, the robust estimate gives
a more reliable characterization of the degradation rate.

The resulting estimates for (β1, β2, β3)
′ are (0.022,−0.014,−0.022)′ for the rank-based

method, and (0.022,−0.013,−0.031)′ for REML. Thus, the degradation for Moderate 5
captured in β3 is estimated to be about 40% larger by REML than by the rank-based
method.

Degradation modeling with spectral measurements

In this analysis, we connect the power loss in PMPP with the material aging measured using
fitted spectra obtained from Fourier-transform infrared (FTIR) spectroscopy. The changes
in the spectra over time indicate changes in the chemical composition of the materials.
The spectral measurements are observed as functions which are fitted automatically to
locate peaks and calculate their area. These fits can go wrong, causing outlying predictors
/ leverage points in the resulting data points. We model the degradation for two different
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Figure 3.7.: Peaks from FTIR spectra and PMPP for aging settings Tropical 1 and Tropical
2; points with leverage weight (3.12) < 1 are marked by ×

climatic settings: Tropical 1 and Tropical 2 treated with 85°C / 90°C and 85% / 90%
humidity respectively. We aim to explain the power loss over time caused by the treatment
with higher temperature and humidity for the Tropical 2-modules through the changes in
three peaks areas extracted from the spectral measurements, namely those at wavenumbers
(WN) 795, 872 and 3426 cm−1. The standardized peaks and PMPP are shown in Figure 3.7.
As can be seen, the peak areas tend to increase with increasing exposition time. Thus, their
influence on the decreasing PMPP should be negative. We fit the model

(PMPP)it = 1 + β1 · Ramp(t) + β2 · WN 795it + β3 · WN 872it+

β4 · WN 3426it + bi · t2 + εit

using REML and our two rank-based methods. The observations that are downweighted by
the weighted rank-based estimator are marked as crosses in Figure 3.7. Hence, the algorithm
successfully recognizes the outlying predictors, especially for the peak area at wavenumber
3426 cm−1.

The fitted coefficients (β1, β2, β3, β4)
′ are (0.0428, 0.0006,−0.0051, 0.0007)′ for REML and

(0.0324,−0.0004,−0.0028,−0.0023)′ for the weighted rank-based method. The signs of the
estimates for β2 and β4 differ between the two estimation methods. The sign is positive for
REML, but negative for our weighted rank-based method. As noticed before, the shapes
of the curves indicate that a negative sign might be more realistic. For β4, this change
in sign is probably caused by the module marked by dashed lines in the WN 3426 cm−1

series. The large leverage points lead the non-robust model to believe the peak has positive
influence on the degradation. Accounting for the leverage points with additional weights as
we propose for the weighted rank-based procedure is essential. Our rank-based procedure
without weights has similar problems as REML.
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3.6. Summary and outlook

The present work proposes a new approach to the rank-based estimation of mixed effects
models. It extends existing methodology for mixed effects models with random intercepts with
the possibility to model random slopes. The estimates obtained from the rank-based method
are insensitive against outlying response values. In addition, the proposed method yields
robustness in the presence of leverage points in the fixed or random effects predictor matrices.
Our algorithm converges fast and can be implemented efficiently. An implementation in R
is available on GitHub (Brune 2024).

The results of our simulation studies indicate that the bias of the estimates is insignificant:
The estimates of the regression coefficients show no evidence of being biased. For small
sample sizes, the variance of the random effects, especially of the random intercepts, tends
to be slightly overestimated. This is inherent to the iterative nature of the algorithm. A
possible mitigation is the derivation of correction factors for the estimation of the random
intercepts. We plan to explore this in detail in future research.

Under normality, the estimates obtained from our methodology compare well with those
obtained from the classic REML estimation. At the same time, the rank-based approach
has advantages in situations where the error- or random effects distributions deviate from
normality. Although we fit more parameters than for the standard estimation approaches
based on REML, we still gain in efficiency due to our updating procedure. Accounting for the
covariance structure reduces the variance of the fixed effects estimator β̂. The applications
show that the resulting estimates enable model diagnostics and help with the identification
of unusual observations or groups in the data.

There are different lines of research that can be pursued from this point. One is to explore
the consistency and asymptotic distribution of our estimators in theory. This would allow
for formal inference on the fixed effects estimates. As the methodology is not yet able
to estimate more complex random effects structures such as nested and crossed effects, it
would be interesting to extend the model in this direction. An alternative to the rank-based
estimators based on Jaeckel’s dispersion function applied in this work could be offered
by maximum rank correlation estimators, first proposed by Han (1987). The robustness
properties of these estimators have been examined in detail in Alfons et al. (2017).
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4 Robust modeling of
repeated functional
measurements

This chapter is based on joint work with Una Radojičić, Sonja Greven and Peter Filzmoser.
Supplemental information to this chapter can be found in Appendix C, p. 145ff.

4.1. Introduction

Classical functional data analysis (FDA) is concerned with the study of independently
sampled random functions. However, there are various settings where functional data is
sampled under assumptions that deviate from this independence, e.g. functional time series
and longitudinal functional data. Koner and Staicu (2023) provide a comprehensive overview
of the methodology for what they refer to as second-generation functional data.

This work is concerned with functional data sampled in longitudinal or repeated measurement
designs, i.e. the functions are repeatedly observed on different observational units. Examples
of such datasets include fertility or mortality curves for different countries over time (Chen
and Müller 2012), spectral measurements capturing the aging of materials for different
samples (Brune, Ortner, Eder, et al. 2023), but also various types of functional data gathered
in medical studies over time (Greven et al. 2010). A specific trait of this type of data is
that, while each function is usually sampled on a dense grid, the time component might
be sampled sparsely and irregularly. An example of a longitudinal functional observation
is given in Figure 4.1. It showcases the mortality rate as a function of age for Portugal
from 1953 to 2023 (in 5-year steps). All curves show an inherent structure with increased
mortality of infants and elderly people. The overall mortality rates show a clear trend and
decrease with time.

This form of functional data can be interpreted as realization of a bivariate stochastic process
X(s, t), s ∈ S, t ∈ T , S, T ⊂ R. For the sake of interpretability, we can also think of X as a
function X : T → L2(S), where the fixed realization of X at time t is denoted by X(·, t) and
is a square-integrable random function, element of the set of all square-integrable functions
L2(S) on S. We assume the process X has a mean function µ : S × T → R and covariance
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Figure 4.1.: Yearly age-specific mortality rates for Portugal between 1953 and 2023, ages 0
to 86.

function

c({s, t}, {s′, t′}) = E(X(s, t)X(s′, t′))− µ(s, t)µ(s′, t′). (4.1)

In the example in Figure 4.1, s would correspont to age, and t to the year.

Due to the infinite-dimensional nature of functional data, one of the primary goals in FDA is
to represent the functional data in a lower-dimensional space. A common approach to achieve
this is functional principal component analysis (FPCA, see e.g. Ramsay and Silverman 2005).
FPCA leverages the Karhunen-Loève (KL) expansion, which allows the decomposition of
the stochastic process into projections onto orthonormal basis functions. The KL expansion
is particularly valuable because it offers the best finite rank approximation of the functional
data in terms of minimizing the mean squared error. This optimality property makes the
KL expansion a powerful tool for capturing the most significant features of the data while
reducing dimensionality.

For two-dimensional processes, the KL expansion is given by

X(s, t) =
∞&
r=1

αrγr(s, t).

The bivariate functions {γr}r≥1 are the eigenfunctions of the covariance operator of X, and
form an orthonormal basis of L2(S × T ). {αr}r≥1 are uncorrelated random scores given by
αr =

�
S
�
T γr(s, t)X(s, t)dtds for r ≥ 1. A downside of this two-dimensional representation

is that it treats the dynamics in s and t symmetrically, and doesn’t allow for separate
analysis of the two domains. Furthermore, it requires estimation of the four-dimensional
covariance surface (4.1), which is computationally very demanding.
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4.2. Methodology

Different approaches to avoid this complex parameterization have been proposed in the
literature. Greven et al. (2010) propose a parameterization based on a longitudinally varying
functional mixed model (longitudinal FPCA). Here, the dynamics in T are treated as linear.
Chen and Müller (2012) expand X using two layers of KL expansions (double FPCA) to
allow for non-linearities in T . This approach requires estimating the covariance functions
c({s, t}, {s′, t}) in (4.1) for each t and can become computationally intensive as well. In order
to overcome the computational limitations, Park and Staicu (2015) and Chen, Delicado,
et al. (2017) propose to instead project the process X onto a basis that is invariant in T .
This results in a decomposition of the form

X(s, t)− µ(s, t) =
∞&
k=1

ξk(t)ϕk(s). (4.2)

While being easier to handle from a computational point of view, this representation also offers
advantages regarding interpretation. Instead of requiring the analysis of two-dimensional
surfaces, it allows for a separate treatment and analysis of the dynamics in S and T . At the
same time, many optimality traits of the standard KL expansion are preserved. Both Park
and Staicu (2015) and Chen, Delicado, et al. (2017) provide an estimation method to fit the
model under different assumptions about the error structure of the observed data.

In any real-world data collection, there is a possibility of encountering outlying values. These
outliers may arise due to measurement errors, such as miscalibrated devices, or from atypical
events, like unusual time periods (e.g., wars or crises). In robust statistics, a goal is to
derive estimators that are insensitive to outlying observations in the data. The resulting
estimates should also allow to identify and analyze the outliers. This paper aims to fill a
gap in the literature by proposing a robust estimation method for longitudinal FDA based
on the model (4.2). The method aims to reliably represent the data despite outliers, while
also identifying outlying curves and subjects for further analysis. The resulting diagnostic
plots help interpret the results and can provide valuable insights. The flexible estimation
framework allows to incorporate prior structural knowledge into the analysis.

The paper is structured as follows: Section 4.2 introduces the methodology and provides
an overview of the parameter estimation procedure. The details on the robust parameter
estimation are given in Section 4.3. Section 4.4 introduces tools for outlier diagnostics. A
performance evaluation of the proposed methodology is shown in simulations (Section 4.5)
and in examples (Section 4.6), and the final Section 4.7 concludes.

4.2. Methodology

4.2.1. Marginal functional principal component analysis

Given S, T ⊂ R, X : T → L2(S) is a stochastic process, where the value at time t is denoted
by X(·, t) and is a function of s ∈ S. We refer to S as spatial domain and to T as time
domain. As X will be later used to model deviations from the overall mean, we assume X
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to have mean zero and continuous covariance function

c({s, t}, {s′, t′}) = E(X(s, t)X(s′, t′)). (4.3)

As a reminder, following Chen, Delicado, et al. (2017), the process X is represented by
a decomposition X(s, t) =

'∞
k=1 ξk(t)ϕk(s). The basis functions ϕk capture the dynamics

in the frequency domain S and are obtained from an eigendecomposition of the marginal
covariance function

Σ(s, s′) =
�
T
c({s, t}, {s′, t})dt. (4.4)

The resulting eigenpairs {λk, ϕk}k are later referred to as marginal eigenvalues and functional
principal components. They are optimal in the sense that they minimize the mean squared
average reconstruction error, where the averaging is with respect to the time domain, i.e.

E

��
T
∥X(·, t)−

K&
k=1

⟨X(·, t), ϕk⟩Sϕk∥2Sdt
�
.

⟨·, ·⟩S denotes the inner product in L2(s) (see Theorem 1 in Chen, Delicado, et al. 2017).

The time-dynamics are captured by functions {ξk}k, formed by the scores on the correspond-
ing components:

ξk(t) = ⟨X(·, t), ϕk⟩S =

�
S
ϕk(s)X(s, t)ds. (4.5)

Especially, the score functions ξk fulfill

E(ξk(t)) = 0 ∀ t ∈ T , and E(⟨ξk, ξℓ⟩T ) =
�
T
ξk(t)ξℓ(t)dt = λkδkℓ. (4.6)

The score functions are random functions and thus can be treated as functional data as well.
We denote their covariance functions by

γk(t, t
′) = E(ξk(t)ξk(t′)), for k ≥ 1,

with corresponding eigenpairs {ηkℓ, ψkℓ}ℓ for each k ≥ 1. The continuity of the covariance
function c in (4.3) implies continuity of γk, k ≥ 1. Thus, the score functions ξk admit KL
expansions

ξk(t) =

∞&
k=1

ζkℓψkℓ(t), for k ≥ 1.
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4.2.2. Model estimation

Without loss of generality, let S = T = [0, 1]. Consider observed data from n subjects.
For each subject i, i = 1, ..., n, we observe ni functions at random time points tij ∈ T ,
j = 1, ..., ni. The sampling time points are assumed to be uniformly distributed on the
interval T = [0, 1] and may be sparse. Each of the ni functions is observed on a finite,
high-resoluted grid s1, ..., sR. The whole data set is then

[{(tij , Yi(sr, tij)), r = 1, ..., R} , j = 1, ..., ni]i=1,...,n .

For simplicity of notation, we drop the index r from the frequency domain. Each functional
observation Yi(·, tij) is represented as

Yi(s, tij) = µ(s, tij) +Xi(s, tij),

where µ : [0, 1]2 → R is a fixed mean function and Xi is a realization of the (centered)
process as in Section 4.2.1.

We aim to fit a decomposition of form (4.2) to the processes Yi. In practice, the decomposition
(4.2) is truncated to K components, resulting in the representation

Yi(s, tij) ≈ µ(s, tij) +
K&
k=1

ξik(tij)ϕk(s). (4.7)

The cutoff K for the number of components in (4.7) can, e.g., be determined based on the
proportion of variance explained (pve). Similar to the estimation procedures in Park and
Staicu (2015) and Chen, Delicado, et al. (2017), the model estimation is performed in three
steps:

Step 1 Estimation of the mean function µ by employing a bivariate smoothing algorithm.

Step 2 Estimation of the marginal covariance function (4.4) and the eigenpairs {λk, ϕk}k.
Step 3 Estimation of the scores ξik(tij), followed by smoothing to obtain estimates of the

score functions ξik(t) at all points t ∈ T (non-parametrically or parametrically).

In order to achieve a robust estimate, we propose to replace the estimation components
suggested in Park and Staicu (2015) and Chen, Delicado, et al. (2017) by robust counterparts.
The proposed estimation procedure is presented in detail in the following Section 4.3.

4.3. Robust estimation procedure

This section outlines the novel robust model estimation procedure for steps 1–3 in detail.
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4.3.1. Estimation of the mean function

The estimation of the mean function µ is not the main focus of the paper. The algorithm
that can be employed is strongly dependent on the available data, on potential covariates,
and the specified structure of the mean. Examples for specifications include

(1) µ(s, t) = δ(s) for a smooth function δ(s), i.e. the mean function is independent of the
longitudinal dynamics.

(2) µ(s, t) = ν(s)+δ(t) where ν(·) and δ(·) are smooth univariate functions. This structure
implies that the dynamics in s and t are separable.

(3) When lacking any further structural assumptions, the mean function can be fit using a
bivariate smoothing algorithm,

(see also Koner and Staicu 2023). For the data applications in this paper, we use the
parameterizations (1) and (2), i.e. additive models. An algorithm to estimate such models
robustly from all observations under a working independence assumption is presented in
Boente, Martínez, et al. (2017). For more complex mean functions requiring a bivariate fit,
robust models like quantile smoothing splines (Koenker et al. 1994) or robust thin-plate
splines (Kalogridis 2023) can be used.

Using the resulting estimate µ̂, we can center the samples Yi(·, tij). The resulting centered
observations are denoted by

Y C
i (s, tij) = Yi(s, tij)− µ̂(s, tij), i = 1, ..., n, j = 1, ..., ni, (4.8)

and are used in the further steps of the algorithm.

4.3.2. Estimation of the marginal covariance function and raw scores

Park and Staicu (2015) and Chen, Delicado, et al. (2017) estimate the marginal covariance
function based on the sample covariance from all observed functions Yi(·, tij) for i =
1, . . . , n, j = 1, . . . , ni, treating them as if they were i.i.d. data. As the sample covariance is
prone to outliers, a robust alternative should be used in order to estimate the model in a
way that is insensitive to outliers. Due to the functional form of the data, the estimator
needs to be applicable in a high-dimensional setting.

The estimator of choice is the newly proposed Minimum Regularized Covariance Trace
(MRCT) estimator which Oguamalam et al. (2024) designed primarily for the dense functional
data. The MRCT covariance estimator is essentially a trimmed covariance estimator that
favors subsets of fixed size h that are the most central w.r.t. the corresponding covariance.
The centrality of the point is measured by the α-Mahalanobis distance, a generalization of the
Mahalanobis distance to the L2-space introduced by Berrendero et al. 2020. The approach
results in a concentration-step (Rousseeuw and Driessen 1999) type algorithm, in which the
traditional Mahalanobis distance is replaced by the α-Mahalanobis distance. Additionally, as
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α-Mahalanobis distance is defined as the reproducing kernel Hilbert space (RKHS) distance
between the smooth RKHS representatives of the given observation and the corresponding
mean, a certain amount of internal smoothing defined by a regularization parameter α > 0
is integrated within the procedure. Therefore, the estimator successfully handles datasets
with a high number of observed time points without data preprocessing. This is particularly
important in this context, since preprocessing via smoothing can mask the effect of outliers;
for more details, see, e.g., Hubert, Rousseeuw, et al. 2015. For more details on the MRCT
covariance estimator and the subsequent outlier detection, see Oguamalam et al. 2024.

Alternatives to MRCT include, among others, the minimum regularized covariance determi-
nant estimator (MRCD, Boudt et al. 2020), or the pairwise spatial sign (PASS) covariance
as suggested in Wang, Liu, et al. (2022). However, in an extensive simulation study from
Oguamalam et al. 2024, both methods performed inferiorly to MRCT. Alternatively, an
option is to use the estimator proposed in Boente and Salibián-Barrera (2021), which is
also applied in step (3) of our estimation algorithm. However, this comes with a very high
computational cost in high dimensions.

We denote the estimated marginal covariance function at the observed grid points by
Σ̂(sr, sr′), r, r′ = 1, ..., R. Estimates of the marginal functional principal components
{λk, ϕk}k, denoted by {λ̂k, ϕ̂k}k, can then be obtained using standard methods for dense
functional data (Ramsay and Silverman 2005).

4.3.3. Smoothing the score functions

Estimates of the scores are obtained by approximating the integral in (4.5). Since the index
s is sampled densely, it is justified to use a mean as an approximation:

ξ̃k,ij =
1

R

R&
r=1

Y C
i (sr, tij)ϕ̂k(sr). (4.9)

We refer to those as raw scores in the following. The goal is to obtain robust estimates of
the score functions from the raw scores. Outliers in the score functions can occur in two
forms, as

(A) outlying subjects , where the score functions ξk for the respective individual will deviate
from the majority, and in the form of

(B) partial contamination, where outlying observations cause spikes and structural devia-
tions that differ from the actual functional form of the underlying ξk.

Partial contamination can be interpreted as a notion of cellwise outliers (Raymaekers and
Rousseeuw 2024). The smoothing method that yields the score functions ξ̂ik from the raw
scores ξ̃k,ij should be robust against both outlier types (A) and (B).

Together with their measurement time points tij , the raw scores form a dataset of (potentially
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sparse and irregularly sampled) functional data

{(tij , ξ̃k,ij); j = 1, ..., ni}i=1,...,n,

with covariance function γk, k = 1, ...,K. As outlined in Section 3.3, a non-parametric model
can be obtained by representing the smooth score functions by truncated KL expansions.
For k = 1, ...,K and each subject i = 1, .., n,

ξ̂ik(t) =

Lk&
ℓ=1

ζ̂i,kℓψ̂kℓ(t), (4.10)

where the cutoff Lk can again be selected using pve. In order to estimate the eigenfunctions
and scores in (4.10) in a way that is insensitive to outliers of both type (A) and (B), while
at the same time able to deal with sparse and irregular sampling grids, we apply a modified
version of the estimation method proposed in Boente and Salibián-Barrera (2021). By
construction the method is robust to outliers of type (A). By introducing a spike detection
step and weights, we additionally robustify it against cellwise outlying scores ξ̃k,ij , i.e. outliers
of type (B). The methodology relies on Proposition 1 in their work (given as Proposition C.1
in Supplement C.1.1). Under the assumption that the score functions ξik are realizations of
an elliptically distributed process ξk : Ω → L2(T ), the proposition establishes the following
relationship:

E(ξk(t)|ξk(t′)) = γk(t, t
′)

γk(t′, t′)
ξk(t

′) =: βk(t, t
′)ξk(t′). (4.11)

Thus, the conditional expectation of ξk(t) given ξk(t
′) is a linear function of ξk(t′), and the

coefficient of this regression is defined by the covariance function. This serves as as basis for
a robust estimation method. It proceeds in two steps for each k = 1, ...,K:

Step 3.1 Estimate the diagonal of the covariance function as γ̂k(t, t) for each t on a grid
{t1, ..., tT } ⊂ T using a robust M-scale estimator for the variances of the raw scores
ξ̃k,ij , i = 1, ..., n, j = 1, ..., ni.

Step 3.2 Estimate the off-diagonal elements as γ̂k(t, t
′) for t′ ̸= t, t, t′ ∈ {t1, ..., tT } ⊂ T ,

using locally weighted M-regressions that estimate the coefficients βk(t, t
′) in (4.11)

by β̂k(t, t
′). The off-diagonal elements are then given by γ̂k(t, t

′) = β̂k(t, t
′)γ̂k(t′, t′).

Symmetry of the resulting estimated covariance function is ensured by averaging over
γ̂k(t, t

′) and γ̂k(t
′, t) for each pair t ̸= t′.

Both estimation steps rely on local smoothing involving a bandwidth parameter h. In
practice, h can be selected by cross-validation. The detailed estimation algorithm is described
in Supplement C.1.1. We can then obtain estimates of the eigenfunctions ψkℓ in (4.10)
using standard eigenanalysis of the estimated covariance functions γ̂k. Estimates of the
corresponding scores ζi,kℓ are then given by the best linear unbiased prediction estimator
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based on Proposition C.1(c). We let

ζ̂i,kℓ = η̂kℓψ̂
′
i,kℓ(Γi,k + ρIni)

−1Wi,kξi,k, (4.12)

where η̂kℓ is the ℓ’th eigenvalue of the k’th estimated covariance function, ψ̂i,kℓ = (ψ̂kℓ(ti1),

..., ψ̂kℓ(tini))
′, Γi,k is a matrix with (j, p) element γ̂k(tij , tip), and ρ is a small regularization

constant ensuring non-singularity of the covariance function (see Equation (10) in Boente
and Salibián-Barrera 2021). ξik = (ξ̃k,i1, ..., ξ̃k,ini

)′ is the vector of raw scores for subject i.
In contrast to Boente and Salibián-Barrera (2021), we additionally include weights Wi,k =
diag(wk,i1, ..., wk,ini

), wk,ini
∈ {0, 1}, to ensure that outlying observations do not compromise

the reconstruction of the score functions. If outlying curves within partially contaminated
individuals are not downweighted, the estimated reconstruction can be influenced by the
outliers although the covariance function estimate itself is robust against outliers. An
additional robustification against outliers of type (A) is not necessary, since the reconstruction
will still match the observed values, e.g. at a different magnitude, and not be drawn away
from the majority of data points on the curve by a single outlying raw score. Mechanisms
to recognize outliers of type (A) in the aftermath are proposed in Section 4.4. The weights
are determined as follows: From (4.11), define residuals

rk,i(tij , tip) = ξ̃k,ij − β̂k(tij , tip)ξ̃k,ip.

Standardization with their estimated variance (see Supplement C.1.2) then gives the stan-
dardized residuals

r̃k,i(tij , tip) :=
|rk,i(tij , tip)| 

γ̂k(tij , tij)− γ̂k(tij ,tip)2

γ̂k(tip,tip)

. (4.13)

For fixed k and i and a pair of time points tij and tip, (4.13) measures how well the score at
time tij can be predicted from the score tip. If ξ̃k,ij or ξ̃k,ip are outlying, the residual will be
large. Taking the median of the standardized residuals over all p ≠ j, we then obtain the
“measure of outlyingness” at time tij for the i’th observation in the k’th score:

o(ξ̃k,ij) = med(r̃k,i(tij , tip), p ̸= j). (4.14)

The weights in Wi,k in (4.12) are defined based on comparing the expression in (4.14) to a
fixed cutoff c, yielding

wk,ij =

�
1, if o(ξ̃k,ij) ≤ c,

0, else.
(4.15)

The cutoff c is a tuning parameter. A good choice is c = 2, as is commonly used as a cutoff
for standardized residuals in regression settings. An intuition on the construction of the
outlier detection procedure is given in Supplement C.1.3.

If the number of available observations per subject is not sufficient to apply the methodology
described above and estimate an expansion of form (4.10), a possible alternative is to smooth
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4. Robust modeling of repeated functional measurements

using parametric approaches. One possibility is to impose a random effects model structure,
for example a linear model

ξik(t) = bik,0 + bik,1 · t+ ηikt,

for each subject i, where bik,0 and bik,1 are normally distributed, and ηikt ⊥⊥ bik,0, bik,1 is an
error term. More complex functional forms are also easily implementable, e.g. polynomial
structures. Such models can be fitted robustly using robust estimation approaches for mixed
effects models, e.g. using the methodology proposed in Koller (2013) or Brune, Ortner, and
Filzmoser (2024). Since such models are prone to numerical problems, especially in cases
with only very few available observations, the model can also be fitted using simple robust
linear models with separate coefficients for each subject. An example for this is shown in
the photovoltaic (PV) data application in Section 4.6.

4.3.4. Summary of the estimation procedure

The estimation procedure is summarized in the following Algorithm 4.1.

Algorithm 4.1 (Robust marginal FPCA). Given the dataset

[{(tij , Yi(sr, tij)), r = 1, ..., R} , j = 1, ..., ni]i=1,...,n ,

the estimation procedure consists of the following steps:

1. Obtain estimated mean function µ̂(s, t) following Section 4.3.1.

2. Obtain centered observations Y C
i (s, t) as in (4.8).

3. Obtain estimated marginal covariance function Σ̂(sr, sr′), r, r′ = 1, ..., R, following
Section 4.3.2.

4. Eigenanalysis of Σ̂(sr, sr′), r, r′ = 1, ..., R, yielding {λ̂k, ϕ̂k(sr) : r = 1, ..., R}k=1,...,K .

5. Calculate raw scores from (4.9), yielding datasets {(tij , ξ̃k,ij); j = 1, ..., ni}i=1,...,n for
k = 1, ...,K.

6. For each k = 1, ...,K:

a) Non-parametric approach: If enough observations (e.g. > 5) are available for
each subject, fit the truncated KL expansion ξ̂ik(t) =

'Lk
ℓ=1 ζ̂i,kℓψ̂kℓ(t) as described

in Section 4.3.3.

b) Parametric approach: If not enough observations are available, approximate
ξik(t) by a parametric function of t as described in Section 4.3.3.

7. Reconstruct trajectories for any s, t by Ŷi(s, t) = µ(s, t) +
'K

k=1 ξ̂ik(tij)ϕ̂k(s).
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4.4. Methods for outlier analysis

In this section, we propose outlier detection methods for both partial contamination (B)
and contamination of whole subjects (A).

4.4.1. Detecting outlying subjects

In order to detect outlying individuals, we construct distance measures that measure, on the
one hand, how well the score functions are reconstructed in the estimated decomposition,
and, on the other hand, if their shape and size match those of the other score functions. We
define the score distance SDi and the orthogonal distance ODi as

SDi =
K&
k=1

∥ξ̂ik(·)∥2T
λ̂k

, and ODi =
K&
k=1

))))))ξ̂k,ij − Lk&
ℓ=1

ζ̂i,kℓψ̂kℓ(·)
))))))2
T
, (4.16)

respectively. For more details on the score and orthogonal distance see e.g. Liu et al. 2013.
The standardization of the score distance SDi ensures that outliers in all components receive
the same weight. Otherwise, the distribution of SDi will be dominated by the first few
components with high variance and deviations or outliers in the later components might be
overlooked. Lemma 4.2 establishes theoretical properties of the above quantities under the
assumption of Gaussianity. It allows for the construction of a cutoff value that can be used
for the detection of outliers with respect to the score functions ξk.

Lemma 4.2. Assume that for every k = 1, . . . ,K, the k’th score function ξk is a Gaussian
random process. Denote by ηkℓ the ℓ’th eigenvalue of the covariance of ξk, and by ψkℓ the
corresponding ℓ’th eigenfunction. Then, for every k = 1, . . . ,K, the following holds:

(i) ξk(t) ∼ N (0, σk(t)), and σk(t) =
'∞

ℓ=1 ηkℓψ
2
kℓ(t),

(ii)
))))))ξk(·)))))))2T ∼ '∞

ℓ=1 ηkℓykℓ, where the ykℓ, ℓ ≥ 1, are mutually independent χ2(1) random
variables,

(iii)
))))))'Lk

ℓ=1 ζkℓψkℓ(·)
))))))2
T
∼ 'Lk

ℓ=1 ηkℓykℓ, and
))))))ξk(·)−'Lk

ℓ=1 ζkℓψkℓ(·)
))))))2
T
∼ '∞

ℓ=Lk+1 ηkℓykℓ,

where the ykℓ, ℓ ≥ 1, are mutually independent χ2(1) random variables.

Proof. Assuming that the k’th score function ξk is a Gaussian random process, ξk admits
a Karhunen-Loève expansion ξk(t) =

'∞
ℓ=1 ζkℓψkℓ(t), where the scores ζkℓ ∼ N (0, ηkℓ) are

mutually independent for ℓ ≥ 1 and the corresponding principal curves ψkℓ are orthonormal
for ℓ ≥ 1. From this, the claim (i) directly follows. Parseval’s identity now implies that

∥ξk∥2T =

∞&
ℓ=1

ζ2kℓ =

∞&
ℓ=1

ηkℓ

�
ζkℓ√
ηkℓ

�2

=
∞&
ℓ=1

ηkℓykℓ,

89



4. Robust modeling of repeated functional measurements

where

ykℓ :=

�
ζkℓ√
ηkℓ

�2

∼ χ2(1).

Additionally, ζk1, ζk2, . . . are mutually uncorrelated as PC scores and are normally distributed,
making them independent. Thus, yk1, yk2, . . . are independent as well, proving the claim
(ii). (iii) follows directly from (ii).

The distribution of SDi and ODi in (4.16) as the sum of the norms of multiple score functions
cannot be directly obtained since we cannot guarantee even uncorrelatedness of the score
functions ξk(t) across k; see Chen, Delicado, et al. (2017, p. 181). However, Lemma 4.2
allows for the construction of upper bounds for the quantiles of the distance measures given
in (4.16). The approach for constructing the cutoffs for both distance measures in (4.16),
again under the assumption of Gaussianity, is summarized in the following Corollary 4.3.

Corollary 4.3. Assume that for every k = 1, . . . ,K, the k’th score function ξk is a Gaussian
random process, and let the score distance SD(X) and orthogonal distance OD(X) be as
defined in (4.16). For p ∈ (0, 1) let qSD(1− p) and qOD(1− p) be (1− p)’th quantiles of the
distributions of SD(X) and OD(X), respectively. For k = 1, . . . ,K, let further λkq̄k > 0 and
q̃k be (1 − p/K)’th quantiles of

'∞
ℓ=1 ηkℓykℓ and

'∞
ℓ=Lk+1 ηkℓykℓ, respectively, determined

using Lemma 4.2. Then the following bounds hold:

qSD(1− p) ≤
K&
k=1

q̄k, and qOD(1− p) ≤
K&
k=1

q̃k.

Proof. We begin by proving the bound for the quantiles of the distribution of SD(X). Based
on Lemma 4.2, let q̄k, k = 1, . . . ,K, be such that , such that P(∥ξk(t)∥2T /λk > q̄k) ≤ p/K,
k = 1, . . . ,K. Then,

P

�
SD(X) ≤

K&
k=1

q̄k

�
≥ P

�∥ξ1(t)∥2T
λ1

≤ q̄1, . . . ,
∥ξK(t)∥2T

λK
≤ q̄K

�
= 1− P

��∥ξ1(t)∥2T
λ1

> q̄1

�(
· · ·

(�∥ξK(t)∥2T
λK

> q̄K

��
≥ 1−

K&
k=1

P
�∥ξk(t)∥2T

λk
> q̄k

�
≥ 1− p,

giving that

P

�
SD(X) >

K&
k=1

q̄k

�
≤ p,

and implying that
'K

k=1 q̄k ≥ qSD(1− p) is a conservative p-value cutoff for score distance
(4.16), under the assumption of Gaussianity. Observe that q̄k, k = 1, . . . ,K, can be also
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chosen in a more general way:

P(∥ξk(t)∥2T /λk > q̄k) ≤ pk, k = 1, . . . ,K, for
K&
k=1

pk ≤ p.

The bound for the quantile of the distribution of orthogonal distance is proven analogously.

The bounds given in Corollary 4.3 can be thought of as a Bonferroni-type correction of
the significance level for multiple hypothesis testing, where the hypotheses correspond to
the individual scores exceeding the cutoff under Gaussianity, and can thus become very
conservative if K is large. Alternatively, more sophisticated techniques from multiple testing
can be employed to determine the outlying score functions.

4.4.2. Detecting partial contamination

In the case of non-parametric smoothing, single outlying curves within an individual are
flagged based on the outlyingness (4.14). An overall outlyingness of individual i at time tij
can be calculated by averaging o(ξ̃k,ij) over the number of components K,

o(Yi(·, tij)) = 1

K

K&
k=1

o(ξ̃k,ij), (4.17)

and comparing the value to the cutoff value c as in (4.15).

If the score functions are estimated parametrically, standard outlier detection methods for
parametric models can be used. A standard approach to identify outlying observations are
standardized residuals. Outlying observational units can be identified using e.g. the variance
diagnostics suggested in Lesaffre and Verbeke (1998).

4.5. Simulation

In the following, we assess the performance of the proposed robust estimation method and
outlier detection framework in an extensive simulation study. The results are compared
to those from a non-robust method which replaces the proposed robust components from
our procedure by non-robust counterparts (see the description in Supplement C.2.1). The
experiments are performed on a Windows Server in R, Version 3.4.1., using the batchtools
framework (Lang et al. 2017). R-code implementing the method is made available on
GitHub1.

1https://github.com/b-brune/robLFDA
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4. Robust modeling of repeated functional measurements

4.5.1. Description of data generating settings

(Partly) following Park and Staicu (2015), the raw data for the simulation is generated as
follows: The number of functional principal components with smooth score functions ξk is
fixed at K = 2. In order to make the model estimation harder, we additionally include 8
more components with non-smooth score functions which are generated as Gaussian white
noise with a low variance. They can be considered as smooth error terms. The basis functions
ϕk are created from a Fourier basis with 11 basis functions, where the first basis function
(ϕ0(s) ≡ 1) is dropped. The score functions for the meaningful components are given by

ξik(t) = ζi,k1
√
2 cos(2πt) + ζi,k2

√
2 sin(2πt), k = 1, 2, i = 1, ..., n, (4.18)

with ζi,k1 ∼ N(0, 3
k2
) and ζi,k2 ∼ N(0, 1.5

k2
), k = 1, 2. The non-smooth score functions are

generated as normal white noise:

ξik(t) ∼ N (0, 0.052) ∀t ∈ T , k ≥ 3, i = 1, ..., n.

The mean function µ is assumed to be zero, and its estimation was deliberately excluded
from the simulation study so that the performance of the latter (novel) steps of the algorithm
can be assessed more clearly. It should be noted that the robust mean estimation is not the
main contribution of the paper, while the possible uncertainty involved with it is propagated
further through the procedure, thus clouding the effect of the outliers on the outcome of the
procedure.

The curves used in the simulation study are then constructed as

Yi(s, t) =
10&
k=1

ξik(t)ϕk(s), i = 1, ...n.

Each Yi is evaluated on a fine grid in (sr, tl), r, l = 1, . . . , R = 101 such that sr = tr =
0.01(r − 1) for r = 1, . . . , R, further giving the sample of discretely observed functions

{Yi(sr, tl) : r, l = 1, . . . , R}i=1,...,n.

For each i = 1, . . . , n, we then uniformly draw ni time points tij ∈ {t1, . . . , tR}, j = 1, . . . , ni,
such that the subsample {Yi(sr, tij) : r = 1 . . . , R , j = 1, . . . , ni}i=1,...,n is used for model
training. The remaining subset serves for out-of-sample model validation.

We consider three outlier generation settings (OS) in which samples are contaminated such
that a proportion c1 of the data Yi(s, tij), i = 1, . . . , n, is replaced by:

OS1 Full amplitude outliers, such that

Ỹi(sr, tij) = b · Yi(sr, tij)

for an amplitude parameter b and for every j = 1, . . . , ni, r = 1, . . . , R.
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OS2 Partial amplitude outliers, such that

Ỹi(sr, tij) = b · Yi(sr, tij)I(tij ∈ Ti,out) + Yi(sr, tij)I(tij /∈ Ti,out),

for r = 1, . . . , R, j = 1, . . . , ni, where Ti,out ⊂ {ti1, . . . , tini} consists of time points
tij with P(tij ∈ Ti,out) = c2 for j = 1, ..., ni, specifying the outlying curves within the
contaminated individual, and I(tij ∈ Ti,out) = 1 if tij ∈ Ti,out, and 0 otherwise.

OS3 Shape (structural) outliers, such that

Ỹi(sr, tij) =
10&
k=1

ξ̄ik(t)ϕk(sr),

where the structured score functions ξik in (4.18) are replaced by ξ̄ik(t)
i.i.d.∼ N (0, 32) ∀t ∈

T , for k = 1, 2, j = 1 . . . , ni.

Some examples of the generated data and the effects of the three outlier generating settings
are given in Supplement C.2.2. The performance of the proposed method is evaluated
using the following metrics: The root mean squared curvewise reconstruction error for fixed
t ∈ {t1, ..., tR} is defined as

�RMSE(Yi(·, t)) =
$%%# 1

R

R&
r=1

(Yi(sr, t)− Ŷi(sr, t))2. (4.19)

It can be evaluated in- and out-of-sample by either looking at t ∈ {tij , j = 1, ..., ni}
(observed time points) or at t /∈ {tij , j = 1, ..., ni} (non-observed time points) for each
subject i = 1, ..., n. The reconstruction error for the score functions is measured by

�RMSE(ξik, ξ̂ik) =

$%%# 1

R

R&
l=1

(ξik(tl)− ξ̂ik(tl))2. (4.20)

The performance of the outlier detection mechanisms on both subject and curve level is
evaluated with the true positive rate (TPR = TP

TP+FN ), false positive rate (FPR = FP
FP+TN )

and F1 score (F1 = 2TP
2TP+FP+FN ), where TP denotes the number of correctly detected

outliers, FN the number of outliers that were not detected, FP the number of falsely
detected outliers, and TN the number of correctly recognized non-outlying observations.

Each experiment is replicated 100 times for

• sample sizes n ∈ {50, 100},
• numbers of curves ni uniformly drawn from {5, 6, ..., 15} (very sparse setting) and
{15, 16, ..., 30} (sparse setting),

• outlying subject proportions c1 ∈ {0.05, 0.1, 0.2},

93



4. Robust modeling of repeated functional measurements

• outlying curve proportions c2 ∈ {0.1, 0.2} (for OS2), and

• amplitude parameters b ∈ {5, 10, 20}.
The bandwidth parameter for the non-parametric smoothing of the score functions described
in Section 4.3.3 is fixed at h = 0.1 in all experiments.

For the sake of simplicity, we only report the findings from OS1 and OS2 for n = 100 in
the sparse setting. Results for OS3 can be found in Supplement C.2. Generally, decreasing
the number of available samples by decreasing n or ni leads to slightly higher errors and
variances of the estimates (see the results in Supplement C.2).

4.5.2. Contamination with amplitude outliers

Results for full contamination (OS1) Figure 4.2 (top) shows the in- and out-of-sample
reconstruction errors (4.19) for n = 100 subjects with 15 to 30 randomly sampled measure-
ments per subject, where a certain proportion of subjects is contaminated by amplitude
outliers of increasing size. While the errors of the non-robust method increase with in-
creasing outlier size, the errors of the robust method stay stable, even for large amounts of
contamination. The corresponding reconstruction errors (4.20) for the score functions of the
non-outlying subjects behave similarly (also see Figure C.8 in Supplement C.2). Finally,
Figure 4.2 (bottom) shows TPR, FPR and F1 score for the outlying subject detection using
the proposed Bonferroni-type procedure based on the score distance SDi in (4.16). The
procedure reliably detects most outlying subjects while keeping the nominal level α = 0.05.
The detection performance increases with increasing sample size and decreases with increas-
ing total number of outlying subjects. An analogous plot for the orthogonal distance ODi

can be found in Figure C.13 in Supplement C.2. However, SDi outperforms ODi in OS1,
since the altered amplitude of the outlying observations only affects the magnitude of the
reconstructed score functions, and not the accuracy of the reconstruction itself.

Results for partial contamination (OS2) Figure 4.3 (top) shows the reconstruction errors
(4.19) for partially contaminated subjects (right) and non-contaminated ones (left). The
error rates stay stable for the non-contaminated samples. For the contaminated ones, the
error variance increases with increasing outlier magnitude, but the median errors are still low
even for large b. The errors of the non-robust method are affected for both contaminated and
non-contaminated subjects. The corresponding reconstruction errors for the score functions,
see Figure C.9 in Supplement C.2, are constant for the non-contaminated samples. For the
contaminated samples, the median error stays low with increasing the outlier magnitude,
but the error variance increases.

Finally, the results for the outlier detection in case of c1 = 10% of partially contaminated
observations are displayed in Figure 4.3 (bottom), and indicate that the procedure reliably
detects the outlying curves with a FPR below 5%.
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Figure 4.2.: Top: RMSE (4.19) for OS1 with b ∈ {3, 5, 10, 20}. Sample size n = 100, sparse
setting, c1 ∈ {0.05, 0.1, 0.2}. Bottom: Left to right: TPR, FPR, and F1 score for
outlier detection based on the score distance SDi with α = 0.05 in (4.16) in OS1
with b ∈ {3, 5, 10, 20} for sample size n = 100, sparse setting, c1 ∈{0.05,0.1,0.2}.

4.6. Real data applications

In the following, we show two data applications which illustrate different advantages of the
proposed methodology. The first example is concerned with the analysis of mortality data
profiles over time for different countries, with a focus on outlier detection and analysis. The
second example provides a robust approach to dimension reduction for data on material
degradation of photovoltaic module encapsulant materials.
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Figure 4.3.: Top: RMSE (4.19) for OS2 with b ∈ {3, 5, 10, 20}. Sample size n = 100, sparse
setting, c1 = c2 = 0.1. Separated by contaminated (right) and non-contaminated
(left) subjects. Bottom: Left to right: TPR, FPR, and F1 score for outlier
detection based on (4.17) in OS2 with b ∈ {3, 5, 10, 20} for sample size n = 100,
c1 = 0.1, sparse setting, c2 ∈ {0.1, 0.2}.

4.6.1. Robust analysis of mortality data

To illustrate the outlier detection capabilities of the proposed methodology, we analyze
mortality data from the Human Mortality Database (www.mortality.org2). The dataset of

2HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University
of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at
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interest consists of age-specific mortality rates for 36 countries from 1953 to 2023, for ages 0
to 86. Age-specific mortality is calculated as the ratio of death counts to population exposure
for a given year and age. For illustration, the mortality curves for Austria, Germany, Japan,
and Russia are displayed in the following Figure 4.4 (top).
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Figure 4.4.: Mortality curves for Austria, Russia, (Western) Germany and Japan from 1953
to 2023 (every fourth year). Raw data (top) and logarithmized data (bottom).

We aim to quantify the differences between the mortality profiles and detect outlying countries
and time periods. For that, we fit the robust marginal FPCA model with non-parametric
smoothing. Positivity of the estimates is ensured by working with the logarithmized mortality
rates (see bottom panel of Figure 4.4).

The model is formulated as

log(Yij(s) + 0.1) = log(Yi(s, tij) + 0.1) = µ(s, tij) +

K&
k=1

ξik(t)ϕk(s),

and we choose K = 3 marginal principal components. The data is centered using the
robust backfitting algorithm from Boente, Martínez, et al. (2017) with additive effects in s
and t, such that µ(s, t) = µ0 + ν(s) + δ(t), with bandwidths 0.1 for age and 0.15 for time,
respectively. Due to the high computational complexity, the mean function is estimated
from a subsample of the whole dataset. The resulting spline functions ν(s) and δ(t) are
displayed in Figure C.14 in Supplement C.3.1. The three FPCs obtained from the marginal
covariance matrix (estimated by MRCT) explain approximately 87% of the variance. The

www.mortality.org (data downloaded on June 07, 2024).
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effects of the marginal eigenfunctions ϕk(s) on the component ν(s) of the mean function
are displayed in Figure 4.5 (see Figure C.15 in Supplement C.3.1 for the raw marginal
eigenfunctions). The first eigenfunction, ϕ1 represents the differences in mortality for people
above 30. ϕ2 measures increased and decreased mortality of younger people (up to age
60). The third eigenfunction ϕ3 mainly focuses on the infant mortality. Non-parametric
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Figure 4.5.: Estimated age-wise average ν(s) from the additive model µ(s, t) = µ0+ν(s)+δ(t)
plus/ minus the estimated marginal eigenfunctions (ν(s)± ϕk(s), k = 1, 2, 3)
for the mortality dataset.

smoothing of the raw scores (calculated from the marginal eigenfunctions using (4.9)) with
bandwidth h = 0.03 then yields the corresponding models for the time dynamics. The raw
scores and the fitted score functions ξ̂ik for the four countries from Figure 4.4 and Portugal
are displayed in Figure 4.6. The years for which the mortality curves are flagged as outliers
based on the weights (4.15) are marked in red. Furthermore, the countries that were flagged
as outlying based on score distance and orthogonal distance using the cutoffs defined in
Corollary 4.3 are displayed in a distance-distance (SDi vs. ODi) plot in Figure 4.7. Russia
is flagged based on score distance and orthogonal distance, while the other outliers are
only flagged based on the orthogonal distance ODi. For illustration, we will interpret the
outliers for two countries. For Russia, both the first and the second score function strongly
deviate from the other countries displayed and show a large number of outlying scores. In
contrast to most other countries, component ξ1 seems to be decreasing for Russia, indicating
an increase in overall mortality with time. At the same time, high positive values of the
second component indicate that the mortality of the population below 60 years is higher
than average. While the corresponding score functions of most inlying countries do not
increase much, the fitted curve is very steep for Russia. The flagged outlying curves indicate
a structural break in components 1 and 2 (also see C.16 in Supplement C.3.1). There seems
to be a structural change in the mortality curves after 1990. Similar patterns can also
be observed for the other former USSR countries. For Portugal we can observe a strong
outlyingness in ξ3, indicating that the infant mortality was unusually high in Portugal until
the 1980s.

Concluding, we compare the 20% trimmed mean squared reconstruction errors for the
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Figure 4.6.: Raw scores (points) and fitted score functions ξ̂ik, k = 1, 2, 3, from the mortality
dataset (solid lines), for Austria, (Western) Germany, Japan, Portugal and
Russia. Scores that are flagged as outlying based on the outlyingness (4.14) are
marked in red.

mortality profiles of the robust model, and those of a corresponding non-robust fit (also
see the country-wise errors in Figure C.17 in Supplement C.3.1). Use of the trimmed
mean accounts for the potential outliers in the data. The robust estimates yield an overall
reconstruction error of 0.0065, while the corresponding value for the classic estimate is 0.0078
and thus about 20% larger.

4.6.2. Dimension reduction for UV-F spectra from PV modules

We analyze data from accelerated aging experiments in material science for photovoltaic
(PV) modules (Knoebl et al. 2024). In the accelerated aging experiments, the modules are
exposed to different climatic stresses in a climate chamber.

The analyzed dataset consists of UV-F spectra measured on the modules’ encapsulant (i.e.
top) material after exposure to up to 3 000 hours of 5 different climatic stresses (listed in
Table C.2 in Supplement C.3.2). In total, data from 18 modules with 4 – 8 measurements
each are available. Thus, this dataset poses an example of sparsely and irregularly sampled
longitudinal functional data. Examples of the spectral measurements are shown in Figure
4.8. With increasing exposure time, the spectra form two peaks. The goal of the analysis is

99



4. Robust modeling of repeated functional measurements

BGR

BLR

EST

HUN

JPN
LVA

PRT

RUS

UKR

0.00

0.02

0.04

0.06

0 1 2 3

Score distance SDi

O
rt
h
og

on
al

d
is
ta
n
ce

O
D

i

Figure 4.7.: Distance-distance plot of score distance SDi vs. orthogonal distance ODi from
(4.16) for all countries in the mortality analysis.

to differentiate between the effects of the climatic stresses on the module materials. The
dataset is known to contain some erroneous measurements caused by experimental problems
(see Brune, Ortner, Eder, et al. 2023).

The spectra are again centered using the method from Boente, Martínez, et al. 2017, where
we assume µ(s, t) = µ0 + ν(s) (bandwidth 0.1 for the frequency domain; see Figure C.18 in
Supplement C.3.2). We fit K = 2 marginal FPCs, explaining 97% of the variance in the data.
The marginal eigenfunctions are displayed in Figures C.19 and C.20 in Supplement C.3.2.
The first eigenfunction ϕ1 captures the forming of the two peaks. The second component ϕ2

allows to differentiate between the two peaks. Due to the low number of available samples
in the time domain, the score functions are fitted parametrically using a robust linear model
(function lmrob from R-package robustbase, Maechler et al. 2024) with separate intercepts
and slopes in squared time for each module i and k = 1, 2, with model equation

ξik(t) = αk · Ramp(t) + β0,ki + β1,ki · t2.

It consists of a squared slope in time and the coefficient Ramp(t) = t
0.2I(t ≤ 0.2)+ I(t > 0.2)

accounting for an initial material change, where I is the indicator function. The fitted
score functions for the two FPCs are shown in Figure 4.9. The “average curve” for each
climate setting is highlighted. For ξ̂i1 (Figure 4.9, left), the curves cluster clearly by climate
setting, showing that there indeed are large differences between them. For ξ̂i2 (Figure 4.9,
right), the structure is less pronounced. However, we can again observe trends: The score
functions in the settings with strong irradiance (Arid 1 and Moderate 1) decrease with
exposure time, while those with no / only little exposure to irradiance (Alpin 1, Moderate 5,
Tropical 2) show a positive trend. Thus, for Arid 1 and Moderate 1, the first peak increases
more strongly than the second peak. In contrast, for Alpin 1, Moderate 5 and Tropical 2,
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Figure 4.8.: Examples of UV-F spectra from modules exposed to the five climate settings.

the second peak increases relative to the first peak. The robust regression model provides
weights for the outlyingness of each observed spectrum. In total, five curves are flagged as
outlying based on the robustness weights returned by the function: Three from Moderate 5
aging action, and two from Tropical 2.

The 10% trimmed root mean squared reconstruction errors for the UV-F spectra are 0.736
for the robust model, and 0.786 for the corresponding non-robust fit.

4.7. Discussion and conclusions

In this paper, we propose a robust estimation approach for marginal functional principal
component analysis, designed for functional data obtained in longitudinal or repeated
measurements designs. The estimation algorithm consists of three steps, namely (1) mean
function estimation, (2) estimation of the marginal covariance function, and (3) estimation
of the smooth score functions. The algorithm is modular and built on a plug-in principle.
Thus, it is very flexible and allows to replace components of the algorithm with suitable
alternatives to the suggested robust estimators. Especially, steps (1) and (3) also allow to
include prior knowledge into the estimation, e.g. in the specification of the functional forms
of the mean function or parametrically smoothed score functions, or by letting those depend
on additional covariates. We expect the approach of marginal FPCA to generalize to more
complex longitudinal data, such as multivariate longitudinal data (Verbeke et al. 2014) or
longitudinal image data (e.g. fMRI, Bowman et al. 2007), and plan to explore this in future
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research.

Our simulation studies show that the robust procedure is stable with increasing outlier
size and proportions. The proposed outlier detection techniques and theoretical cutoffs
reliably identify outliers, both in the case of partial contamination (single curves within
an individual), and in the case of whole outlying individuals. The data examples show
two applications of the model and estimation algorithm. The identified outliers can give
interesting insights into the data structure. At the same time, the models can reduce the
dimension of the complex longitudinal functional datasets for further analysis.

The algorithm is designed to work with irregular and potentially sparse sampling grids for
the repeated measurements (in the time domain), as well as with varying numbers of samples.
However, by using a robust covariance estimation method for sparse functional data in
Section 4.3.2, analogous to that applied to estimate the covariance functions of the scores,
the proposed approach could be modified to accommodate sparse and irregularly observed
data in the spatial domain as well. While the proposed non-parametric method to smooth
the score functions works well in the presence of enough data points, it can be infeasible
if the number of samples is very low. In this case, the parametric estimation provides a
feasible alternative. However, reconstructing the score functions in very sparse settings
can pose challenges that are even more pronounced when robust methods are employed.
Although the pooling of information across subjects facilitates the model estimation, a very
low number of available samples can be challenging for the robust models. Thus, in practice
the parametric model (and robust algorithm) should be selected carefully.
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5 Conclusions and
Discussion

In this thesis, we have presented three different modeling approaches for complex (functional)
longitudinal and multivariate time series data. The proposed models and algorithms incor-
porate deviations from the standard assumptions in terms of stability and time-invariance
of model parameters and the potential presence of outliers.

Chapter 2 presents an approach to time-varying reduced rank regression for multivariate
time series regressions. The model is set up as a Gaussian linear state-space system. This
allows to use well-established tools to estimate the model. We apply the Kalman filter and
smoother together with an EM algorithm with analytic closed-form updates. The reduced
rank of the coefficient matrices is selected with high accuracy using a Bayesian information
criterion (BIC). The variation of the coefficient matrices is parameterized as a random
walk which yields high flexibility and is able to deal with different types of time variation –
gradual transitions of the parameters as well as abrupt structural breaks. At the same time,
the algorithm gives reasonable results in the presence of time-constant coefficients..

One of the main motivations for the chosen approach was to develop a reduced-rank regression
model with time-varying parameters which is relatively easy to understand and to handle.
To achieve this, we introduced a number of simplifications which address the issues that were
pointed out in the literature (e.g. in Yang and Bauwens 2018). The advantage of the derived
model is that it can be handled with computationally efficient and well developed methods.
The model may be generalized in many directions, e.g. by introducing time-variation to
the error covariances. This comes with cost of significant extra efforts for estimation. An
obvious question that could be asked is why we limited our analyses to what we refer to
models (A) and (B) (see Equations (2.3) and (2.4), p. 32) and do not analyze model (C)
more closely (see Equation (2.5), p. 32). In model (C), both of the parameter matrices in the
decomposition of the regression coefficient matrix Ct vary in time. In this case, in addition
to losing the linearity of the corresponding state-space system, the likelihood can no longer
be computed analytically. Instead it can only be approximated by numerically intensive
schemes (e.g. particle filtering), and we lose the possibility to apply the EM algorithm.

While allowing for time-variation can be considered as a “special case” of robustness, we
should also consider the effect that single outlying observations can have on the algorithm.
While the time-varying coefficients and updates should be able to at least partly absorb single
outliers, the parameter estimation in the EM algorithm, which is based on least squares,
could be strongly affected. Thus, an interesting topic for future research is to robustify the
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5. Conclusions and Discussion

proposed EM algorithm towards outlying response values, e.g. by modifying the updates in
the EM algorithm as presented in Table 2.1 on p. 38. In the literature, different approaches
to robust filtering in state-space models have been proposed, e.g. Meinhold and Singpurwalla
(1989), where the normal densities are replaced by densities of t-distributions, or Cipra and
Romera (1991), where concepts of M-estimation are applied. However, any modifications
in this direction will again cause loss of the easy and straightforward techniques for model
estimation.

Further topics for future research could include inference for the model. Although we have
shown that the proposed model is rather robust in the case where no time-variation is
present (see Table 2.3, p. 45), it could be of interest to formally test for the presence of
time-variation in the parameters. The proposed rank detection procedure based on the
Bayesian information criterion (see Section 2.2.3, p. 40f.) reliably detects the rank of the
coefficient matrices and rarely overestimates the true rank (see Table 2.6, p. 49). In the
context of time-varying relationships, another setting that could occur in practice is a
change of the rank of the coefficient matrix. This would again render the proposed model
formulation infeasible. However, it would be interesting to analyze the effects of changing
ranks on the model estimation and rank selection.

In Chapter 3, we present an algorithm to fit mixed effects models using estimation
techniques from rank-based regression (R-estimators). The proposed algorithm extends the
existing methodology from Kloke et al. (2009) and Bilgic (2012) to incorporate random
slope parameters. Furthermore, by introducing two types of weights, we ensure robustness
of the algorithm in the presence of outlying observations and leverage points, respectively.
An advantage of the proposed estimates towards other competing methods is that they can
be computed very efficiently.

However, the two-stage iterative algorithm still poses some challenges. As can be seen in
the analysis of the bias of the estimates (see Section 3.4.1, p. 68f), for small group sizes ni,
the error and random effects variances are under- and overestimated, respectively. It seems
that we are overfitting the observations in each group. This effect is caused by the iterative
construction of the algorithm. A similar effect can be observed if we replace the robust
rank-based estimators by regular least squares estimation of the regression coefficients. The
two-stage estimation method requires fitting a separate regression model to each of the
groups or clusters, and the separate intercept estimation step (see Equation 3.2.1, p. 59)
ensures the observations are centered exactly in each group. This is where our approach
deviates from the classic estimation methods based on the assumption of Gaussianity and
(restricted) maximum likelihood. Here, the distributional assumptions allow to circumvent
the direct estimation of the regression coefficients and the random effects, and instead
directly optimize for the variance parameters. Estimates of the regression parameters can
then be obtained as posterior estimates given the observations and the estimated variances.
This implicitly introduces a regularization into the estimates, described as a “shrinkage
factor” in Fahrmeir et al. (2013, Ch. 7.1, p. 373f.). The larger the group sizes ni, the lower
the shrinkage and the closer the estimates are to those obtained without regularization.
In this spirit, a potential solution for the overfitting problem could be offered by deriving
analogous shrinkage or correction factors.
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Generally, studying the asymptotic distributions of the proposed estimators by similar
methodology as that of Bilgic (2012), or Chapter 3 in Hettmansperger and McKean (2011),
could lead to new insights and allow for formal inference on the regression coefficients.

The leverage weights as proposed in Section 3.3.2, p. 64f, reliably robustify the proposed
estimator against leverage points. However, downweighting leverage points can also cause
losses in efficiency, since relevant or helpful data points might mistakenly be identified
as outlying [see e.g. the example depicted in Figure 2 in McKean (2004)]. There is a
differentiation between “good” and “bad” leverage points – while good leverage points are
consistent with the regression line (but far away from the center of the data), bad leverage
points are outliers that deviate from the actual regression relationship (Wilcox and Xu 2022).
The Wilcoxon high-breakdown estimator described in McKean (2004) can lead to further
improvements. Not only accounting for the distance in the predictor space, it also considers
residual information when determining the weights for the observations. Furthermore, as
discussed briefly in Section 3.3.2, the leverage weights in Equation (3.12) on p. 65 are based
on the assumption that the predictors are continuously distributed. However, there could also
be situations where we encounter dummy or discrete predictors. In those cases, the minimum
covariance determinant estimator cannot be applied. Other approaches to downweighting
could be based on estimates of leverage obtained from the hat-matrix. However, the naive
weights we have explored so far (see Section B.5 in the appendix, p. 144) only offer a certain
degree of protection against leverage points. They are not robust in the sense that a single
observation can still contaminate the estimated leverage of the other observations. Exploring
more robust alternatives in the presence of non-elliptical predictors could lead to an even
more versatile estimator.

Finally, Chapter 4 introduces a robust estimation algorithm for marginal functional
principal component analysis as proposed in Park and Staicu (2015) and Chen, Delicado,
et al. (2017). Marginal FPCA provides an interpretable, Karhunen-Loève type expansion for
repeated functional measurements or longitudinally observed functional data. Data collected
in such designs pose challenges since they exhibit complex dependency structures in the
functional and the time domain. In practice, the marginal FPCA model can be fit to an
observed dataset in three estimation steps: (1) mean function estimation, (2) estimation of
the marginal eigenfunctions, and (3) smoothing of the score functions. The presented method
is a robust estimation algorithm that is insensitive to outlying observations, both for single
curves that are outlying within an observational unit, and whole observational units that
behave differently from the majority of observations. The proposed outlier detection methods
reliably identify the outlying curves and lead to interesting insights in the data applications.
The estimation algorithm is modular and based on a plug-in principle that replaces the
non-robust estimators from the initial papers by robust ones. This approach offers great
flexibility and allows to incorporate prior knowledge into the model. The proposed extension
of the method from Boente and Salibián-Barrera (2021) to robustify against spikes and
cellwise outliers in the functional observations based on the “measure of outlyingness” in
(4.14) on p. 87 could also prove useful in settings that require robust smoothing of functions
or spike detection.

Within the reported simulation studies, we only considered outliers in the score functions:
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Either in the form of whole outlying score functions (scenarios OS1 and OS3, see p. 91f), or
as single curves within an observational unit (scenario OS2, see p. 91f). Obviously, those
outlier settings are not exhaustive. One setting worth discussing is that of structural outliers
which evolve from a model with modified marginal functional principal components. In this
case, use of MRCT covariance estimator ensures that we still obtain a reliable estimate of the
marginal covariance function. An outlier detection procedure based on the α-Malahanobis
distance will flag the unusual observations (see simulation study in Oguamalam et al. 2024).
Another situation that could be encountered is that of outlying cells sr within a functional
observation {Yi(sr, t), r = 1, ..., R} for fixed t. This can be considered as a setting with
spikes or cellwise outliers, similar to the outliers of type (B) described in Section 4.3.3, p.
85f. In this case, again, MRCT can be expected to provide at least a certain degree of
robustness against the outlying cells. Another option could be to apply a cellwise outlier
detection method such as DDC (Raymaekers and Rousseeuw 2024) for high-dimensional
data to identify and smooth out the spikes before further processing the curves.

Throughout the paper, we have assumed that the functions are observed without error terms.
However, in our simulation study we have included (orthogonal) smooth error terms into
the model, which does not seem to affect the performance of the proposed methodology in
practice. Similarly, we do not expect cases where the datasets are observed with white-noise
type errors to drastically affect the model estimation performance. If the sampling grid
s1, ..., sR is sparse or irregular, our method can be adapted by replacing the MRCT estimator
by the robust method for sparse functional data also applied in Step 3 of our estimation
algorithm (see Section 4.3.3, p. 85f). However, since this cellwise robust method is based on
solving many local regressions, the computational complexity will become prohibitive in the
case of high-dimensional sampling grids.

The approach of (robust) marginal FPCA could be generalized to even more complex
longitudinal data such as multivariate functional longitudinal data (Verbeke et al. 2014),
spatial functional data (Ramsay, Ramsay, et al. 2011), or longitudinal image data (Bowman
et al. 2007).

Concluding, this thesis addresses a broad range of problems in the modeling of repeated
measurements data. The three methods that we have developed deal with various challenges
in the statistical modeling of complex multivariate and longitudinal functional data. As
described, all three papers leave open interesting questions that could be addressed in future
research.
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A Supplement: Chapter 2

Description of the content:

This appendix contains supplementary tables with additional simulation results for Chapter
2. Additional results for the rank-selection procedure based on BIC are given in Section
A.1. We report the estimation performance for the fixed coefficients in Section A.2, for
deterministic coefficient transitions in A.3, and for the random walk coefficient evolution in
A.4. The material was published as a supplement to Brune, Scherrer, et al. (2022).

A.1. Rank selection

Table A.1.: Results of rank selection via BIC criterion for different combinations of p and q
and the deterministic coefficient transition, 10 · 10 = 100 repetitions each. “=” is
the fraction of correct rank estimation, and “<” the fraction of underestimated
ranks, and analogously “>” the fraction of overestimated ranks.

Model (A) Model (B)
p d q t = < > = < >

10 1 5 100 1.000 0.000 0.000 1.000 0.000 0.000
10 1 5 200 0.950 0.000 0.050 1.000 0.000 0.000
10 1 5 300 0.939 0.000 0.061 1.000 0.000 0.000
10 2 5 100 0.970 0.030 0.000 0.700 0.300 0.000
10 2 5 200 0.980 0.000 0.020 1.000 0.000 0.000
10 2 5 300 0.889 0.000 0.111 1.000 0.000 0.000
10 1 10 100 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 200 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 300 1.000 0.000 0.000 1.000 0.000 0.000
10 2 10 100 0.890 0.110 0.000 0.750 0.250 0.000
10 2 10 200 0.990 0.010 0.000 1.000 0.000 0.000
10 2 10 300 1.000 0.000 0.000 1.000 0.000 0.000
10 3 10 100 0.430 0.570 0.000 0.250 0.750 0.000
10 3 10 200 0.980 0.020 0.000 0.970 0.030 0.000
10 3 10 300 1.000 0.000 0.000 1.000 0.000 0.000
20 1 10 100 0.990 0.000 0.010 1.000 0.000 0.000
20 1 10 200 0.990 0.000 0.010 1.000 0.000 0.000
20 1 10 300 0.988 0.000 0.012 1.000 0.000 0.000
20 2 10 100 0.940 0.060 0.000 0.590 0.410 0.000
20 2 10 200 0.970 0.000 0.030 0.990 0.010 0.000
20 2 10 300 0.927 0.000 0.073 1.000 0.000 0.000
20 3 10 100 0.650 0.340 0.010 0.290 0.710 0.000
20 3 10 200 0.970 0.010 0.020 0.914 0.086 0.000
20 3 10 300 0.802 0.000 0.198 1.000 0.000 0.000
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Table A.2.: Results of rank selection via BIC criterion for different combinations of p and q
and the random walk coefficient transition, 10 · 10 = 100 repetitions each. “=” is
the fraction of correct rank estimation, and “<” the fraction of underestimated
ranks, and analogously “>” the fraction of overestimated ranks.

Model (A) Model (B)
p d q t = < > = < >

10 1 5 100 1.000 0.000 0.000 1.000 0.000 0.000
10 1 5 200 1.000 0.000 0.000 1.000 0.000 0.000
10 1 5 300 0.990 0.000 0.010 1.000 0.000 0.000
10 2 5 100 0.140 0.860 0.000 0.000 1.000 0.000
10 2 5 200 0.830 0.170 0.000 0.130 0.870 0.000
10 2 5 300 1.000 0.000 0.000 0.490 0.510 0.000
10 1 10 100 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 200 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 300 1.000 0.000 0.000 1.000 0.000 0.000
10 2 10 100 0.020 0.980 0.000 0.040 0.960 0.000
10 2 10 200 0.570 0.430 0.000 0.480 0.520 0.000
10 2 10 300 0.969 0.031 0.000 1.000 0.000 0.000
10 3 10 100 0.000 1.000 0.000 0.000 1.000 0.000
10 3 10 200 0.110 0.890 0.000 0.110 0.890 0.000
10 3 10 300 0.710 0.290 0.000 0.788 0.212 0.000
20 1 10 100 1.000 0.000 0.000 1.000 0.000 0.000
20 1 10 200 1.000 0.000 0.000 1.000 0.000 0.000
20 1 10 300 1.000 0.000 0.000 1.000 0.000 0.000
20 2 10 100 0.440 0.560 0.000 0.010 0.990 0.000
20 2 10 200 1.000 0.000 0.000 0.406 0.594 0.000
20 2 10 300 1.000 0.000 0.000 0.900 0.100 0.000
20 3 10 100 0.000 1.000 0.000 0.000 1.000 0.000
20 3 10 200 0.860 0.140 0.000 0.100 0.900 0.000
20 3 10 300 0.990 0.010 0.000 0.640 0.360 0.000
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Table A.3.: Results of rank selection via BIC criterion for different combinations of p and q
and the structural break coefficient transition, 10 · 10 = 100 repetitions each. “=”
is the fraction of correct rank estimation, and “<” the fraction of underestimated
ranks, and analogously “>” the fraction of overestimated ranks.

Model (A) Model (B)
p d q t = < > = < >

10 1 5 100 1.000 0.000 0.000 1.000 0.000 0.000
10 1 5 200 1.000 0.000 0.000 1.000 0.000 0.000
10 1 5 300 0.990 0.000 0.010 1.000 0.000 0.000
10 2 5 100 1.000 0.000 0.000 0.850 0.150 0.000
10 2 5 200 1.000 0.000 0.000 1.000 0.000 0.000
10 2 5 300 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 100 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 200 1.000 0.000 0.000 1.000 0.000 0.000
10 1 10 300 1.000 0.000 0.000 1.000 0.000 0.000
10 2 10 100 0.810 0.190 0.000 0.870 0.130 0.000
10 2 10 200 1.000 0.000 0.000 1.000 0.000 0.000
10 2 10 300 1.000 0.000 0.000 1.000 0.000 0.000
10 3 10 100 0.570 0.430 0.000 0.580 0.420 0.000
10 3 10 200 1.000 0.000 0.000 1.000 0.000 0.000
10 3 10 300 1.000 0.000 0.000 1.000 0.000 0.000
20 1 10 100 1.000 0.000 0.000 1.000 0.000 0.000
20 1 10 200 0.990 0.000 0.010 1.000 0.000 0.000
20 1 10 300 1.000 0.000 0.000 1.000 0.000 0.000
20 2 10 100 0.980 0.020 0.000 0.880 0.120 0.000
20 2 10 200 0.990 0.000 0.010 1.000 0.000 0.000
20 2 10 300 0.990 0.000 0.010 1.000 0.000 0.000
20 3 10 100 0.860 0.140 0.000 0.730 0.270 0.000
20 3 10 200 1.000 0.000 0.000 1.000 0.000 0.000
20 3 10 300 0.990 0.000 0.010 1.000 0.000 0.000
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A.2. Simulation results for fixed coefficients

Table A.4.: Average MSE and relative parameter estimation error for fixed coefficient setting
in model A with exogenous predictors, standard deviation in parentheses.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 0.9807 (0.1102) 0.9046 (0.1052) 0.0214 (0.0038) 0.0887 (0.0111)
5 5 1 out of sample 1.0154 (0.0987) 1.0391 (0.1018)
5 5 2 in sample 1.0056 (0.1438) 0.8734 (0.1251) 0.0161 (0.0021) 0.0760 (0.0085)
5 5 2 out of sample 1.0442 (0.1506) 1.0857 (0.1506)
5 5 3 in sample 0.9019 (0.1379) 0.7525 (0.1154) 0.0140 (0.0034) 0.0638 (0.0154)
5 5 3 out of sample 0.9550 (0.1429) 1.0132 (0.1512)
5 10 1 in sample 1.0764 (0.1131) 0.9941 (0.1080) 0.0329 (0.0069) 0.1016 (0.0176)
5 10 1 out of sample 1.1098 (0.1173) 1.1326 (0.1194)
5 10 2 in sample 1.0119 (0.1637) 0.8833 (0.1494) 0.0311 (0.0061) 0.0910 (0.0142)
5 10 2 out of sample 1.0913 (0.1648) 1.1338 (0.1689)
5 10 3 in sample 1.0225 (0.1632) 0.8527 (0.1346) 0.0296 (0.0052) 0.0871 (0.0131)
5 10 3 out of sample 1.1185 (0.1820) 1.1754 (0.1907)

10 5 1 in sample 0.9769 (0.0887) 0.9190 (0.0852) 0.0272 (0.0057) 0.1219 (0.0269)
10 5 1 out of sample 0.9977 (0.0960) 1.0146 (0.0968)
10 5 2 in sample 0.9666 (0.0704) 0.8699 (0.0657) 0.0267 (0.0029) 0.1110 (0.0102)
10 5 2 out of sample 0.9969 (0.0655) 1.0294 (0.0674)
10 5 3 in sample 0.9858 (0.1042) 0.8540 (0.0942) 0.0263 (0.0047) 0.1064 (0.0093)
10 5 3 out of sample 1.0363 (0.1047) 1.0805 (0.1086)
10 10 1 in sample 0.9731 (0.0467) 0.9194 (0.0502) 0.0461 (0.0067) 0.1445 (0.0124)
10 10 1 out of sample 1.0112 (0.0527) 1.0269 (0.0507)
10 10 2 in sample 0.9815 (0.1201) 0.8802 (0.1162) 0.0383 (0.0080) 0.1231 (0.0138)
10 10 2 out of sample 1.0419 (0.1401) 1.0736 (0.1408)
10 10 3 in sample 0.9224 (0.1054) 0.7973 (0.0983) 0.0386 (0.0091) 0.1189 (0.0172)
10 10 3 out of sample 0.9919 (0.1105) 1.0316 (0.1144)
10 20 1 in sample 0.9946 (0.0715) 0.9402 (0.0699) 0.0820 (0.0144) 0.1763 (0.0193)
10 20 1 out of sample 1.0328 (0.0741) 1.0462 (0.0741)
10 20 2 in sample 0.9969 (0.1004) 0.8957 (0.0962) 0.0812 (0.0178) 0.1737 (0.0206)
10 20 2 out of sample 1.0801 (0.1078) 1.1067 (0.1055)
10 20 3 in sample 0.9829 (0.0697) 0.8472 (0.0628) 0.0727 (0.0064) 0.1625 (0.0100)
10 20 3 out of sample 1.0924 (0.0752) 1.1332 (0.0756)
20 10 1 in sample 0.9906 (0.0570) 0.9529 (0.0587) 0.0645 (0.0087) 0.1831 (0.0173)
20 10 1 out of sample 1.0145 (0.0545) 1.0228 (0.0538)
20 10 2 in sample 1.0100 (0.0628) 0.9398 (0.0601) 0.0638 (0.0084) 0.1811 (0.0110)
20 10 2 out of sample 1.0559 (0.0638) 1.0753 (0.0645)
20 10 3 in sample 0.9525 (0.0787) 0.8568 (0.0781) 0.0613 (0.0093) 0.1719 (0.0160)
20 10 3 out of sample 1.0025 (0.0849) 1.0281 (0.0853)
20 20 1 in sample 0.9734 (0.0402) 0.9362 (0.0384) 0.1003 (0.0149) 0.2172 (0.0295)
20 20 1 out of sample 1.0059 (0.0349) 1.0129 (0.0347)
20 20 2 in sample 0.9629 (0.0446) 0.8942 (0.0428) 0.0972 (0.0097) 0.2143 (0.0181)
20 20 2 out of sample 1.0231 (0.0521) 1.0406 (0.0528)
20 20 3 in sample 0.9673 (0.0424) 0.8689 (0.0434) 0.1028 (0.0107) 0.2220 (0.0150)
20 20 3 out of sample 1.0475 (0.0501) 1.0723 (0.0500)
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Table A.5.: Average MSE and relative parameter estimation error for fixed coefficient setting
in model B with exogenous predictors, standard deviation in parentheses.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 0.9322 (0.0981) 0.8761 (0.0973) 0.0181 (0.0049) 0.0838 (0.0139)
5 5 1 out of sample 0.9558 (0.0870) 0.9812 (0.0882)
5 5 2 in sample 0.9768 (0.1332) 0.8748 (0.1229) 0.0166 (0.0039) 0.0748 (0.0109)
5 5 2 out of sample 1.0050 (0.1364) 1.0478 (0.1422)
5 5 3 in sample 0.9998 (0.0821) 0.8479 (0.0719) 0.0149 (0.0028) 0.0700 (0.0080)
5 5 3 out of sample 1.0538 (0.0971) 1.1161 (0.1029)
5 10 1 in sample 0.9147 (0.1456) 0.8498 (0.1397) 0.0312 (0.0060) 0.1286 (0.0121)
5 10 1 out of sample 0.9493 (0.1446) 0.9794 (0.1452)
5 10 2 in sample 0.9719 (0.1170) 0.8505 (0.1048) 0.0295 (0.0062) 0.1162 (0.0131)
5 10 2 out of sample 1.0313 (0.1144) 1.0828 (0.1125)
5 10 3 in sample 0.9267 (0.1084) 0.7477 (0.0898) 0.0290 (0.0043) 0.1067 (0.0145)
5 10 3 out of sample 1.0271 (0.1250) 1.0987 (0.1289)

10 5 1 in sample 0.9615 (0.0995) 0.9346 (0.0990) 0.0289 (0.0064) 0.1108 (0.0122)
10 5 1 out of sample 0.9895 (0.1006) 1.0018 (0.0993)
10 5 2 in sample 0.9917 (0.0430) 0.9367 (0.0435) 0.0235 (0.0038) 0.0938 (0.0088)
10 5 2 out of sample 1.0285 (0.0443) 1.0542 (0.0420)
10 5 3 in sample 0.9602 (0.1073) 0.8849 (0.1039) 0.0251 (0.0038) 0.0901 (0.0081)
10 5 3 out of sample 1.0070 (0.1096) 1.0417 (0.1074)
10 10 1 in sample 1.0077 (0.0758) 0.9749 (0.0750) 0.0408 (0.0070) 0.1571 (0.0153)
10 10 1 out of sample 1.0386 (0.0786) 1.0567 (0.0799)
10 10 2 in sample 0.9855 (0.0912) 0.9234 (0.0911) 0.0392 (0.0057) 0.1319 (0.0082)
10 10 2 out of sample 1.0408 (0.0997) 1.0725 (0.0991)
10 10 3 in sample 0.9998 (0.0755) 0.9014 (0.0706) 0.0402 (0.0046) 0.1394 (0.0094)
10 10 3 out of sample 1.0666 (0.0816) 1.1142 (0.0822)
10 20 1 in sample 0.9586 (0.1177) 0.9223 (0.1135) 0.0816 (0.0182) 0.2489 (0.0163)
10 20 1 out of sample 1.0072 (0.1329) 1.0253 (0.1303)
10 20 2 in sample 1.0131 (0.0666) 0.9392 (0.0649) 0.0828 (0.0095) 0.2190 (0.0125)
10 20 2 out of sample 1.1058 (0.0745) 1.1392 (0.0752)
10 20 3 in sample 0.9393 (0.0745) 0.8349 (0.0710) 0.0764 (0.0073) 0.2101 (0.0149)
10 20 3 out of sample 1.0543 (0.0984) 1.1045 (0.0950)
20 10 1 in sample 0.9733 (0.0682) 0.9573 (0.0675) 0.0641 (0.0169) 0.1827 (0.0155)
20 10 1 out of sample 1.0003 (0.0681) 1.0071 (0.0692)
20 10 2 in sample 0.9662 (0.0779) 0.9337 (0.0757) 0.0602 (0.0096) 0.1595 (0.0125)
20 10 2 out of sample 1.0033 (0.0792) 1.0144 (0.0799)
20 10 3 in sample 0.9528 (0.0598) 0.9034 (0.0586) 0.0577 (0.0060) 0.1558 (0.0086)
20 10 3 out of sample 1.0090 (0.0593) 1.0299 (0.0597)
20 20 1 in sample 0.9642 (0.0576) 0.9492 (0.0565) 0.0986 (0.0175) 0.2397 (0.0271)
20 20 1 out of sample 0.9902 (0.0568) 0.9951 (0.0567)
20 20 2 in sample 0.9337 (0.0657) 0.9002 (0.0641) 0.1000 (0.0094) 0.2278 (0.0060)
20 20 2 out of sample 0.9932 (0.0666) 1.0023 (0.0663)
20 20 3 in sample 0.9416 (0.0486) 0.8900 (0.0459) 0.0998 (0.0080) 0.2197 (0.0190)
20 20 3 out of sample 1.0232 (0.0523) 1.0361 (0.0489)

121



A. Supplement: Chapter 2

A.3. Simulation results for deterministic coefficient transition

Table A.6.: Average MSE and relative parameter estimation error for deterministic coefficient
transition in model A with external predictors, standard deviation in parentheses,
small variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.0936 (0.0969) 0.9411 (0.0873) 0.2499 (0.1343) 0.1500 (0.0624)
5 5 1 out of sample 2.0812 (0.5109) 1.0764 (0.0827)
5 5 2 in sample 1.1393 (0.1511) 0.8599 (0.1491) 0.3098 (0.1405) 0.1627 (0.0460)
5 5 2 out of sample 3.9652 (1.2012) 1.1188 (0.1750)
5 5 3 in sample 1.2447 (0.1305) 0.8087 (0.0938) 0.3033 (0.1080) 0.1573 (0.0462)
5 5 3 out of sample 5.3751 (1.6562) 1.1696 (0.1236)
5 10 1 in sample 1.0708 (0.1526) 0.9137 (0.1463) 0.3100 (0.1491) 0.1713 (0.0548)
5 10 1 out of sample 2.2180 (0.5064) 1.0837 (0.1664)
5 10 2 in sample 1.0479 (0.1605) 0.7916 (0.1300) 0.2385 (0.1167) 0.1470 (0.0439)
5 10 2 out of sample 2.8148 (0.3714) 1.1358 (0.1697)
5 10 3 in sample 1.2430 (0.1272) 0.7986 (0.0954) 0.3827 (0.1238) 0.1954 (0.0509)
5 10 3 out of sample 5.1495 (1.1131) 1.2845 (0.1850)

10 5 1 in sample 1.0480 (0.1213) 0.9585 (0.1260) 0.3616 (0.1435) 0.2692 (0.0920)
10 5 1 out of sample 1.7730 (0.3276) 1.0632 (0.1308)
10 5 2 in sample 1.0839 (0.1430) 0.8955 (0.1320) 0.3058 (0.0814) 0.2204 (0.0478)
10 5 2 out of sample 2.2815 (0.3659) 1.0926 (0.1573)
10 5 3 in sample 1.1193 (0.0942) 0.8451 (0.0856) 0.3044 (0.0719) 0.2123 (0.0407)
10 5 3 out of sample 2.9828 (0.3925) 1.1154 (0.0972)
10 10 1 in sample 1.0096 (0.1119) 0.9151 (0.1028) 0.3793 (0.1383) 0.2894 (0.0879)
10 10 1 out of sample 1.6575 (0.2608) 1.0450 (0.1115)
10 10 2 in sample 1.0801 (0.0607) 0.8848 (0.0680) 0.3770 (0.1202) 0.2831 (0.0741)
10 10 2 out of sample 2.3940 (0.3604) 1.1295 (0.0783)
10 10 3 in sample 1.0660 (0.0779) 0.8049 (0.0634) 0.3351 (0.0531) 0.2548 (0.0329)
10 10 3 out of sample 2.9252 (0.4102) 1.1117 (0.0980)
10 20 1 in sample 0.9990 (0.0816) 0.9031 (0.0779) 0.3973 (0.1661) 0.3078 (0.0777)
10 20 1 out of sample 1.5679 (0.2783) 1.0685 (0.0846)
10 20 2 in sample 1.0702 (0.1208) 0.8903 (0.1033) 0.3550 (0.0922) 0.2944 (0.0529)
10 20 2 out of sample 2.2421 (0.5078) 1.2079 (0.1526)
10 20 3 in sample 1.0417 (0.1175) 0.7850 (0.1013) 0.4278 (0.1180) 0.3143 (0.0601)
10 20 3 out of sample 3.1284 (0.6008) 1.2371 (0.1716)
20 10 1 in sample 1.0057 (0.0442) 0.9574 (0.0407) 0.3783 (0.0598) 0.3493 (0.0413)
20 10 1 out of sample 1.3823 (0.0875) 1.0393 (0.0448)
20 10 2 in sample 1.0413 (0.0576) 0.9351 (0.0534) 0.3365 (0.0370) 0.3028 (0.0401)
20 10 2 out of sample 1.7926 (0.1430) 1.0933 (0.0692)
20 10 3 in sample 1.0674 (0.0541) 0.9057 (0.0634) 0.3569 (0.0603) 0.3175 (0.0351)
20 10 3 out of sample 2.0777 (0.2764) 1.1366 (0.0677)
20 20 1 in sample 0.9987 (0.0778) 0.9531 (0.0780) 0.4110 (0.1420) 0.3772 (0.0807)
20 20 1 out of sample 1.3770 (0.1701) 1.0590 (0.0829)
20 20 2 in sample 1.0036 (0.0722) 0.8974 (0.0556) 0.3968 (0.0877) 0.3636 (0.0464)
20 20 2 out of sample 1.6642 (0.2339) 1.0875 (0.0687)
20 20 3 in sample 1.0271 (0.0662) 0.8900 (0.0640) 0.3861 (0.0700) 0.3615 (0.0556)
20 20 3 out of sample 1.9989 (0.2183) 1.1689 (0.0876)
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Table A.7.: Average MSE and relative parameter estimation error for deterministic coefficient
transition in model A with external predictors, standard deviation in parentheses,
medium variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.1343 (0.1569) 0.8354 (0.1029) 0.2830 (0.2234) 0.0957 0.0571
5 5 1 out of sample 3.6796 (1.6489) 1.0202 (0.1195)
5 5 2 in sample 1.2982 (0.1990) 0.8209 (0.1132) 0.2213 (0.1081) 0.0869 (0.0392)
5 5 2 out of sample 5.8776 (2.3212) 1.1471 (0.1668)
5 5 3 in sample 1.4735 (0.2213) 0.6840 (0.0838) 0.2587 (0.1225) 0.0937 (0.0344)
5 5 3 out of sample 8.5910 (2.9719) 1.1278 (0.1342)
5 10 1 in sample 1.1823 (0.1574) 0.9014 (0.1197) 0.3290 (0.1958) 0.1298 (0.0686)
5 10 1 out of sample 3.4023 (0.8751) 1.1421 (0.1557)
5 10 2 in sample 1.2753 (0.0950) 0.8443 (0.0652) 0.1988 (0.0842) 0.0901 (0.0197)
5 10 2 out of sample 5.1298 (1.7455) 1.2300 (0.0747)
5 10 3 in sample 1.5778 (0.2242) 0.7198 (0.0987) 0.3552 (0.1421) 0.1205 (0.0373)
5 10 3 out of sample 10.4495 (3.6514) 1.3272 (0.1795)

10 5 1 in sample 1.0954 (0.0901) 0.9357 (0.0816) 0.2403 (0.0830) 0.1292 (0.0322)
10 5 1 out of sample 2.3112 (0.3045) 1.0850 (0.0891)
10 5 2 in sample 1.1775 (0.1014) 0.8603 (0.0686) 0.2490 (0.0468) 0.1229 (0.0141)
10 5 2 out of sample 3.9848 (0.8962) 1.1184 (0.0843)
10 5 3 in sample 1.2008 (0.0725) 0.7804 (0.0484) 0.2227 (0.0331) 0.1198 (0.0120)
10 5 3 out of sample 4.5429 (0.6976) 1.1182 (0.0607)
10 10 1 in sample 1.1022 (0.1054) 0.9334 (0.0590) 0.2608 (0.1483) 0.1502 (0.0646)
10 10 1 out of sample 2.1126 (0.4480) 1.0875 (0.0734)
10 10 2 in sample 1.0666 (0.1011) 0.7717 (0.0777) 0.2096 (0.0474) 0.1141 (0.0163)
10 10 2 out of sample 3.4841 (0.6698) 1.0365 (0.0978)
10 10 3 in sample 1.2539 (0.0764) 0.7955 (0.0802) 0.2670 (0.0665) 0.1405 (0.0246)
10 10 3 out of sample 4.6271 (0.7045) 1.1954 (0.1063)
10 20 1 in sample 1.0905 (0.0650) 0.9275 (0.0600) 0.3264 (0.0996) 0.1754 (0.0276)
10 20 1 out of sample 2.7496 (0.5880) 1.1409 (0.0686)
10 20 2 in sample 1.1496 (0.0659) 0.8517 (0.0646) 0.2913 (0.0938) 0.1738 (0.0299)
10 20 2 out of sample 3.8083 (0.7630) 1.2286 (0.0749)
10 20 3 in sample 1.2298 (0.1100) 0.7976 (0.0806) 0.3352 (0.0683) 0.1937 (0.0311)
10 20 3 out of sample 5.4292 (1.1519) 1.3674 (0.1649)
20 10 1 in sample 0.9958 (0.0606) 0.8988 (0.0469) 0.3256 (0.0785) 0.2257 (0.0472)
20 10 1 out of sample 1.7255 (0.0962) 1.0114 (0.0527)
20 10 2 in sample 1.0557 (0.0917) 0.8777 (0.0696) 0.2780 (0.0508) 0.1976 (0.0262)
20 10 2 out of sample 2.3299 (0.3639) 1.0775 (0.0867)
20 10 3 in sample 1.1001 (0.0441) 0.8310 (0.0540) 0.2913 (0.0477) 0.2121 (0.0336)
20 10 3 out of sample 3.1460 (0.5151) 1.1107 (0.0609)
20 20 1 in sample 1.0105 (0.0607) 0.9106 (0.0661) 0.3197 (0.0846) 0.2316 (0.0452)
20 20 1 out of sample 1.6623 (0.2273) 1.0423 (0.0689)
20 20 2 in sample 1.0808 (0.0567) 0.8985 (0.0557) 0.2753 (0.0287) 0.2210 (0.0189)
20 20 2 out of sample 2.3861 (0.4300) 1.1432 (0.0643)
20 20 3 in sample 1.0953 (0.0500) 0.8156 (0.0526) 0.2943 (0.0557) 0.2139 (0.0306)
20 20 3 out of sample 2.9818 (0.4579) 1.1651 (0.0541)
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Table A.8.: Average MSE and relative parameter estimation error for deterministic coefficient
transition in model A with external predictors, standard deviation in parentheses,
large variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.2952 (0.1756) 0.8317 (0.1322) 0.2475 (0.1078) 0.0619 (0.0222)
5 5 1 out of sample 4.9838 (1.4438) 1.0411 (0.1542)
5 5 2 in sample 1.7864 (0.2795) 0.8333 (0.1117) 0.2758 (0.1011) 0.0671 (0.0143)
5 5 2 out of sample 12.1038 (2.7089) 1.2426 (0.1461)
5 5 3 in sample 1.8064 (0.2215) 0.7037 (0.1205) 0.2218 (0.0831) 0.0601 (0.0173)
5 5 3 out of sample 14.8445 (4.5543) 1.1984 (0.1656)
5 10 1 in sample 1.3251 (0.2550) 0.8211 (0.0684) 0.3076 (0.1781) 0.0795 (0.0317)
5 10 1 out of sample 6.7647 (3.4244) 1.0707 (0.1048)
5 10 2 in sample 1.6996 (0.2718) 0.8105 (0.1042) 0.2763 (0.0816) 0.0723 (0.0193)
5 10 2 out of sample 11.0841 (3.6273) 1.2997 (0.1388)
5 10 3 in sample 2.0122 (0.3715) 0.6394 (0.0952) 0.3229 (0.1074) 0.0738 (0.0221)
5 10 3 out of sample 16.6818 (4.0634) 1.2642 (0.1600)

10 5 1 in sample 1.1279 (0.0683) 0.9207 (0.0484) 0.2057 (0.1011) 0.0971 (0.0245)
10 5 1 out of sample 3.2885 (1.2664) 1.0842 (0.0596)
10 5 2 in sample 1.2791 (0.1982) 0.7959 (0.0934) 0.2130 (0.0617) 0.0815 (0.0156)
10 5 2 out of sample 5.7660 (1.7668) 1.0879 (0.1150)
10 5 3 in sample 1.5001 (0.1213) 0.7761 (0.0569) 0.2642 (0.0693) 0.0991 (0.0269)
10 5 3 out of sample 8.3358 (1.4290) 1.2053 (0.0661)
10 10 1 in sample 1.0805 (0.0891) 0.8659 (0.0791) 0.1671 (0.0493) 0.0785 (0.0180)
10 10 1 out of sample 2.4777 (0.4529) 1.0386 (0.0855)
10 10 2 in sample 1.3422 (0.1467) 0.8173 (0.0909) 0.2651 (0.0767) 0.0975 (0.0170)
10 10 2 out of sample 6.3858 (1.0800) 1.1556 (0.1121)
10 10 3 in sample 1.4983 (0.1434) 0.7842 (0.0646) 0.2706 (0.0411) 0.1079 (0.0150)
10 10 3 out of sample 8.3580 (1.3044) 1.2588 (0.0982)
10 20 1 in sample 1.1499 (0.0660) 0.8691 (0.0862) 0.2663 (0.0888) 0.1125 (0.0247)
10 20 1 out of sample 3.4584 (0.7170) 1.0957 (0.0847)
10 20 2 in sample 1.2210 (0.1714) 0.8044 (0.1002) 0.2318 (0.0727) 0.1055 (0.0241)
10 20 2 out of sample 5.3014 (1.2006) 1.2073 (0.1615)
10 20 3 in sample 1.3910 (0.1351) 0.7163 (0.0505) 0.2490 (0.0862) 0.1070 (0.0212)
10 20 3 out of sample 7.6330 (2.0372) 1.2914 (0.0817)
20 10 1 in sample 1.0838 (0.0824) 0.9299 (0.0751) 0.2483 (0.0339) 0.1413 (0.0130)
20 10 1 out of sample 2.2113 (0.2005) 1.0595 (0.0775)
20 10 2 in sample 1.1964 (0.0979) 0.8523 (0.0663) 0.2685 (0.0547) 0.1387 (0.0204)
20 10 2 out of sample 3.5534 (0.4233) 1.1133 (0.0812)
20 10 3 in sample 1.2257 (0.0932) 0.7898 (0.0701) 0.2764 (0.0498) 0.1438 (0.0191)
20 10 3 out of sample 4.6792 (0.7400) 1.1398 (0.0811)
20 20 1 in sample 1.0737 (0.1029) 0.9252 (0.0845) 0.2753 (0.0852) 0.1641 (0.0356)
20 20 1 out of sample 2.2222 (0.2929) 1.0819 (0.0855)
20 20 2 in sample 1.1406 (0.0904) 0.8463 (0.0490) 0.2735 (0.0632) 0.1552 (0.0192)
20 20 2 out of sample 3.3837 (0.6633) 1.1411 (0.0786)
20 20 3 in sample 1.2113 (0.0740) 0.8042 (0.0509) 0.2862 (0.0508) 0.1639 (0.0174)
20 20 3 out of sample 5.1578 (0.7888) 1.2183 (0.0725)
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Table A.9.: Average MSE and relative parameter estimation error for deterministic coefficient
transition in model B with external predictors, standard deviation in parentheses,
small variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.1030 (0.1463) 0.9465 (0.1337) 0.4224 (0.1488) 0.2542 (0.0978)
5 5 1 out of sample 2.7040 (0.7976) 1.0989 (0.1579)
5 5 2 in sample 1.1219 (0.1003) 0.8553 (0.0553) 0.2596 (0.1098) 0.1565 (0.0434)
5 5 2 out of sample 3.3282 (0.8737) 1.0903 (0.0573)
5 5 3 in sample 1.2616 (0.1569) 0.8451 (0.1425) 0.3378 (0.1431) 0.1822 (0.0533)
5 5 3 out of sample 4.6659 (1.1897) 1.1927 (0.1827)

10 10 1 in sample 1.0672 (0.0998) 0.9962 (0.0904) 0.4490 (0.1771) 0.3457 (0.1020)
10 10 1 out of sample 1.6924 (0.3180) 1.0948 (0.0925)
10 10 2 in sample 1.0602 (0.0793) 0.9215 (0.0789) 0.3635 (0.0786) 0.2677 (0.0284)
10 10 2 out of sample 2.1380 (0.2809) 1.1122 (0.0917)
10 10 3 in sample 1.0636 (0.1344) 0.8826 (0.1219) 0.3315 (0.0644) 0.2677 (0.0467)
10 10 3 out of sample 2.8633 (0.2484) 1.1558 (0.1437)
20 20 1 in sample 1.0211 (0.0505) 0.9942 (0.0536) 0.5173 (0.1666) 0.4357 (0.0610)
20 20 1 out of sample 1.3302 (0.0856) 1.0667 (0.0543)
20 20 2 in sample 1.0024 (0.0827) 0.9437 (0.0818) 0.5441 (0.0689) 0.4839 (0.0632)
20 20 2 out of sample 1.7334 (0.1324) 1.1010 (0.0870)
20 20 3 in sample 1.0378 (0.0508) 0.9469 (0.0549) 0.5035 (0.0634) 0.4513 (0.0314)
20 20 3 out of sample 2.0718 (0.2278) 1.1828 (0.0579)

Table A.10.: Average MSE and relative parameter estimation error for deterministic coef-
ficient transition in model B with external predictors, standard deviation in
parentheses, medium variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.1470 (0.1150) 0.8717 (0.1123) 0.3743 (0.1790) 0.1481 (0.0674)
5 5 1 out of sample 4.5132 (1.9689) 1.0350 (0.1192)
5 5 2 in sample 1.2694 (0.1339) 0.8424 (0.0954) 0.2102 (0.0991) 0.0865 (0.0259)
5 5 2 out of sample 5.0793 (1.7092) 1.1315 (0.1062)
5 5 3 in sample 1.5243 (0.2413) 0.7433 (0.1257) 0.3128 (0.0941) 0.1122 (0.0354)
5 5 3 out of sample 10.6418 (3.0691) 1.1761 (0.1744)

10 10 1 in sample 1.0876 (0.0913) 0.9661 (0.0662) 0.3587 (0.2036) 0.2154 (0.1228)
10 10 1 out of sample 2.4989 (0.8415) 1.0957 (0.0808)
10 10 2 in sample 1.1106 (0.1144) 0.8594 (0.0984) 0.3262 (0.0976) 0.1807 (0.0381)
10 10 2 out of sample 3.9858 (0.7443) 1.0933 (0.1091)
10 10 3 in sample 1.2790 (0.0800) 0.8965 (0.0693) 0.3382 (0.0807) 0.1842 (0.0315)
10 10 3 out of sample 5.3404 (0.7817) 1.2561 (0.0886)
20 20 1 in sample 1.0176 (0.0385) 0.9664 (0.0467) 0.3788 (0.1662) 0.3127 (0.0854)
20 20 1 out of sample 1.6726 (0.2232) 1.0524 (0.0420)
20 20 2 in sample 1.0470 (0.0695) 0.9395 (0.0612) 0.3948 (0.0734) 0.2901 (0.0396)
20 20 2 out of sample 2.4409 (0.2605) 1.1176 (0.0749)
20 20 3 in sample 1.0460 (0.0693) 0.8840 (0.0663) 0.4067 (0.0542) 0.2971 (0.0366)
20 20 3 out of sample 3.2673 (0.2981) 1.1514 (0.0823)
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Table A.11.: Average MSE and relative parameter estimation error for deterministic coef-
ficient transition in model B with external predictors, standard deviation in
parentheses, large variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.3742 (0.2608) 0.9036 (0.1409) 0.3370 (0.1794) 0.0929 (0.0425)
5 5 1 out of sample 6.6529 (2.6617) 1.1056 (0.1709)
5 5 2 in sample 1.4422 (0.1903) 0.8151 (0.1309) 0.1873 (0.0742) 0.0546 (0.0124)
5 5 2 out of sample 7.9805 (2.5363) 1.1356 (0.1565)
5 5 3 in sample 1.7888 (0.2922) 0.7745 (0.1095) 0.2385 (0.0712) 0.0630 (0.0153)
5 5 3 out of sample 15.840 (4.3341) 1.2641 (0.1621)

10 10 1 in sample 1.0893 (0.0906) 0.9098 (0.0762) 0.3070 (0.1289) 0.1582 (0.0455)
10 10 1 out of sample 3.6538 (0.8978) 1.0592 (0.0930)
10 10 2 in sample 1.2554 (0.0794) 0.8661 (0.0715) 0.3119 (0.0762) 0.1303 (0.0258)
10 10 2 out of sample 6.5400 (1.0845) 1.1381 (0.0772)
10 10 3 in sample 1.3520 (0.0754) 0.8032 (0.0271) 0.2873 (0.0534) 0.1235 (0.0191)
10 10 3 out of sample 8.3886 (1.5862) 1.2044 (0.0295)
20 20 1 in sample 1.0352 (0.0333) 0.9527 (0.0397) 0.3668 (0.1727) 0.2464 (0.0732)
20 20 1 out of sample 2.2384 (0.3899) 1.0558 (0.0394)
20 20 2 in sample 1.0759 (0.1096) 0.9162 (0.0990) 0.3853 (0.0931) 0.2306 (0.0275)
20 20 2 out of sample 3.5873 (0.5231) 1.1134 (0.0962)
20 20 3 in sample 1.1378 (0.0705) 0.8859 (0.0563) 0.3694 (0.0566) 0.2176 (0.0240)
20 20 3 out of sample 4.7772 (0.5271) 1.1842 (0.0623)
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A.4. Simulation results for random walk coefficient evolution

Table A.12.: Average MSE and relative parameter estimation error for random walk coef-
ficient transition in model A with external predictors, standard deviation in
parentheses, small variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.0539 (0.1546) 0.9869 (0.1507) 2.4283 (1.9799) 1.1320 (0.6406)
5 5 1 out of sample 1.3649 (0.2601) 1.1091 (0.1791)
5 5 2 in sample 1.0995 (0.1422) 0.9582 (0.1251) 1.8945 (1.0490) 0.6964 (0.1696)
5 5 2 out of sample 1.4891 (0.2288) 1.1509 (0.1245)
5 5 3 in sample 1.0443 (0.1307) 0.8509 (0.1221) 1.7470 (0.5805) 0.7164 (0.1534)
5 5 3 out of sample 1.7224 (0.2929) 1.1063 (0.1597)
5 10 1 in sample 1.0697 (0.1282) 0.9921 (0.1185) 2.6767 (1.3680) 1.1640 (0.4239)
5 10 1 out of sample 1.3000 (0.1903) 1.1347 (0.1418)
5 10 2 in sample 1.1088 (0.1749) 0.9679 (0.1734) 1.9995 (0.7037) 1.1870 (0.4516)
5 10 2 out of sample 1.6299 (0.2570) 1.2448 (0.2099)
5 10 3 in sample 1.0346 (0.1432) 0.8323 (0.1072) 2.0970 (0.8251) 0.7475 (0.1425)
5 10 3 out of sample 1.7264 (0.3992) 1.1619 (0.1456)

10 5 1 in sample 1.0045 (0.1110) 0.9425 (0.1133) 1.6369 (0.7760) 0.6471 (0.1688)
10 5 1 out of sample 1.2141 (0.1394) 1.0259 (0.1104)
10 5 2 in sample 1.0843 (0.1325) 0.9287 (0.1215) 1.6102 (0.5515) 0.5984 (0.1478)
10 5 2 out of sample 1.5914 (0.2140) 1.1032 (0.1255)
10 5 3 in sample 1.0618 (0.0597) 0.8468 (0.0437) 1.5831 (0.3825) 0.5521 (0.0892)
10 5 3 out of sample 1.7090 (0.2221) 1.0928 (0.0583)
10 10 1 in sample 0.9975 (0.0615) 0.9196 (0.0566) 1.8192 (0.5351) 0.7513 (0.2070)
10 10 1 out of sample 1.2201 (0.1253) 1.0250 (0.0757)
10 10 2 in sample 1.0620 (0.0877) 0.9199 (0.0906) 1.6212 (0.5203) 0.6609 (0.0871)
10 10 2 out of sample 1.5204 (0.2758) 1.1018 (0.0931)
10 10 3 in sample 1.0747 (0.1133) 0.8781 (0.1097) 1.6104 (0.3326) 0.6695 (0.0921)
10 10 3 out of sample 1.7913 (0.2968) 1.1720 (0.1390)
10 20 1 in sample 1.0114 (0.1091) 0.9391 (0.0994) 1.8115 (0.8649) 0.7763 (0.3395)
10 20 1 out of sample 1.2476 (0.1567) 1.0779 (0.1171)
10 20 2 in sample 1.0341 (0.0677) 0.9197 (0.0714) 1.8680 (0.5941) 0.8219 (0.1309)
10 20 2 out of sample 1.5405 (0.1146) 1.1835 (0.0764)
10 20 3 in sample 1.0702 (0.1080) 0.8785 (0.0869) 1.9953 (0.3921) 0.8410 (0.1694)
10 20 3 out of sample 1.8800 (0.2707) 1.2606 (0.1253)
20 10 1 in sample 1.0253 (0.0643) 0.9553 (0.0656) 1.5031 (0.4612) 0.5988 (0.1096)
20 10 1 out of sample 1.2339 (0.0823) 1.0440 (0.0672)
20 10 2 in sample 1.0676 (0.0752) 0.9232 (0.0558) 1.6542 (0.2843) 0.5555 (0.0965)
20 10 2 out of sample 1.4691 (0.1260) 1.0906 (0.0624)
20 10 3 in sample 1.1017 (0.0836) 0.9078 (0.0856) 1.4174 (0.2580) 0.5726 (0.0694)
20 10 3 out of sample 1.8446 (0.2607) 1.1505 (0.1006)
20 20 1 in sample 0.9993 (0.0864) 0.9390 (0.0858) 1.6709 (0.3452) 0.6744 (0.1478)
20 20 1 out of sample 1.2383 (0.0680) 1.0424 (0.0899)
20 20 2 in sample 1.0496 (0.0783) 0.9319 (0.0653) 1.6315 (0.3272) 0.6871 (0.1074)
20 20 2 out of sample 1.5233 (0.1032) 1.1388 (0.0778)
20 20 3 in sample 1.0576 (0.0695) 0.8710 (0.0592) 1.6133 (0.2372) 0.6748 (0.1026)
20 20 3 out of sample 1.7590 (0.1888) 1.1677 (0.0586)
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Table A.13.: Average MSE and relative parameter estimation error for random walk coef-
ficient transition in model A with external predictors, standard deviation in
parentheses, medium variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.3669 (0.1697) 0.8967 (0.1157) 1.4812 (0.7012) 0.3540 (0.0907)
5 5 1 out of sample 3.1365 (1.0535) 1.1623 (0.1355)
5 5 2 in sample 1.6731 (0.2722) 0.7884 (0.1157) 1.9553 (0.9240) 0.3501 (0.0889)
5 5 2 out of sample 5.1565 (0.6617) 1.2420 (0.1303)
5 5 3 in sample 1.9745 (0.2988) 0.7768 (0.1786) 1.3501 (0.6374) 0.2929 (0.1100)
5 5 3 out of sample 7.3190 (1.7056) 1.4499 (0.2607)
5 10 1 in sample 1.3963 (0.2224) 0.8853 (0.1352) 2.1986 (2.4737) 0.3667 (0.1710)
5 10 1 out of sample 3.2028 (1.4025) 1.1729 (0.1542)
5 10 2 in sample 1.7664 (0.4040) 0.8092 (0.1299) 1.6501 (1.0556) 0.2909 (0.0843)
5 10 2 out of sample 5.3507 (1.6193) 1.3593 (0.2073)
5 10 3 in sample 2.1557 (0.3924) 0.7516 (0.1114) 1.5262 (0.3978) 0.3072 (0.0655)
5 10 3 out of sample 7.8642 (2.8489) 1.5255 (0.1195)

10 5 1 in sample 1.3369 (0.1455) 0.8486 (0.0711) 1.2695 (0.3697) 0.2803 (0.0697)
10 5 1 out of sample 3.6856 (1.2229) 1.0993 (0.0774)
10 5 2 in sample 1.7392 (0.1862) 0.7967 (0.0751) 1.3309 (0.2026) 0.2509 (0.0271)
10 5 2 out of sample 4.9991 (1.0956) 1.2319 (0.1210)
10 5 3 in sample 2.0173 (0.2060) 0.7345 (0.0678) 1.1314 (0.2074) 0.2730 (0.0376)
10 5 3 out of sample 8.5322 (2.6074) 1.3581 (0.1015)
10 10 1 in sample 1.3507 (0.1150) 0.9233 (0.0829) 1.4125 (0.5407) 0.2529 (0.0693)
10 10 1 out of sample 3.3552 (0.8473) 1.1837 (0.0850)
10 10 2 in sample 1.7951 (0.2495) 0.7577 (0.0864) 1.2498 (0.2394) 0.2539 (0.0379)
10 10 2 out of sample 7.0220 (2.6184) 1.2433 (0.1087)
10 10 3 in sample 2.0290 (0.2905) 0.7326 (0.0562) 1.3983 (0.4371) 0.2747 (0.0488)
10 10 3 out of sample 6.9571 (1.2448) 1.3938 (0.0802)
10 20 1 in sample 1.5157 (0.2531) 0.9163 (0.0869) 1.5040 (0.5882) 0.2835 (0.1102)
10 20 1 out of sample 4.0216 (2.1033) 1.2409 (0.1196)
10 20 2 in sample 1.7604 (0.3734) 0.7628 (0.0878) 1.6929 (0.4878) 0.2868 (0.0481)
10 20 2 out of sample 6.4552 (2.3907) 1.3305 (0.1457)
10 20 3 in sample 1.9559 (0.3004) 0.7467 (0.0801) 1.3369 (0.3375) 0.3146 (0.0785)
10 20 3 out of sample 9.8396 (3.2152) 1.6262 (0.1126)
20 10 1 in sample 1.4719 (0.1672) 0.8942 (0.0489) 1.4273 (0.5991) 0.2388 (0.0379)
20 10 1 out of sample 3.5353 (0.8641) 1.1543 (0.0762)
20 10 2 in sample 1.8681 (0.2062) 0.7693 (0.0661) 1.5382 (0.3870) 0.2499 (0.0437)
20 10 2 out of sample 5.2747 (1.2133) 1.2100 (0.0777)
20 10 3 in sample 2.1182 (0.2297) 0.7557 (0.0509) 1.3481 (0.2755) 0.2820 (0.0416)
20 10 3 out of sample 7.7612 (1.4595) 1.3835 (0.0518)
20 20 1 in sample 1.4249 (0.1612) 0.8807 (0.0827) 1.2623 (0.4461) 0.2532 (0.0734)
20 20 1 out of sample 3.7199 (0.4589) 1.1664 (0.0935)
20 20 2 in sample 1.7322 (0.2236) 0.7584 (0.0530) 1.3397 (0.2835) 0.2595 (0.0325)
20 20 2 out of sample 6.0643 (1.7542) 1.2454 (0.0510)
20 20 3 in sample 2.0681 (0.1870) 0.7117 (0.0536) 1.4485 (0.2529) 0.2662 (0.0247)
20 20 3 out of sample 8.5483 (2.1350) 1.4063 (0.0884)
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Table A.14.: Average MSE and relative parameter estimation error for random walk coef-
ficient transition in model A with external predictors, standard deviation in
parentheses, large variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 2.3211 (1.3090) 0.8759 (0.0760) 2.6296 (1.8870) 0.2361 (0.0624)
5 5 1 out of sample 6.2194 (2.9533) 1.2429 (0.0821)
5 5 2 in sample 2.4354 (0.5644) 0.7419 (0.1089) 1.6546 (0.6157) 0.2439 (0.0591)
5 5 2 out of sample 9.4583 (2.9142) 1.3573 (0.1524)
5 5 3 in sample 3.5668 (0.6869) 0.6458 (0.0538) 1.8362 (0.5219) 0.2510 (0.0779)
5 5 3 out of sample 14.3819 (4.3991) 1.5452 (0.0931)
5 10 1 in sample 1.8814 (0.2726) 0.8518 (0.1365) 2.7981 (3.1109) 0.2438 (0.1028)
5 10 1 out of sample 5.8419 (2.2981) 1.2294 (0.1705)
5 10 2 in sample 2.8181 (0.7857) 0.7165 (0.0668) 1.6196 (0.6079) 0.2063 (0.0624)
5 10 2 out of sample 10.9122 (3.7625) 1.4300 (0.1396)
5 10 3 in sample 3.5889 (0.9440) 0.6868 (0.0989) 1.7693 (0.6088) 0.2284 (0.0364)
5 10 3 out of sample 17.0521 (7.2372) 1.7260 (0.2001)

10 5 1 in sample 1.8902 (0.2606) 0.8392 (0.0625) 1.5804 (0.6751) 0.1881 (0.0375)
10 5 1 out of sample 5.4851 (1.9907) 1.1729 (0.0697)
10 5 2 in sample 2.4918 (0.2224) 0.7178 (0.0579) 1.3377 (0.6522) 0.2243 (0.0629)
10 5 2 out of sample 12.7689 (4.5673) 1.3380 (0.0920)
10 5 3 in sample 3.1672 (0.7496) 0.6462 (0.0709) 1.4068 (0.3606) 0.2200 (0.0433)
10 5 3 out of sample 12.2643 (2.4434) 1.4750 (0.1189)
10 10 1 in sample 1.8004 (0.3165) 0.8448 (0.0962) 1.5344 (0.5307) 0.2084 (0.0364)
10 10 1 out of sample 5.3302 (2.1873) 1.2026 (0.1306)
10 10 2 in sample 2.6983 (0.5685) 0.7524 (0.0735) 1.4511 (0.3304) 0.2181 (0.0594)
10 10 2 out of sample 10.9765 (3.4839) 1.4067 (0.1048)
10 10 3 in sample 3.3075 (0.5509) 0.6729 (0.0930) 1.3349 (0.3448) 0.2017 (0.0280)
10 10 3 out of sample 13.6254 (2.7399) 1.6052 (0.1727)
10 20 1 in sample 1.6889 (0.2083) 0.8108 (0.0827) 1.5183 (0.4267) 0.1905 (0.0592)
10 20 1 out of sample 5.1668 (1.5427) 1.1996 (0.0952)
10 20 2 in sample 2.4415 (0.3291) 0.7320 (0.1134) 1.2787 (0.3346) 0.2209 (0.0623)
10 20 2 out of sample 10.0634 (3.7046) 1.4560 (0.1899)
10 20 3 in sample 2.9957 (0.4276) 0.6730 (0.0379) 1.2617 (0.3351) 0.2194 (0.0234)
10 20 3 out of sample 18.0626 (4.3625) 1.7634 (0.1117)
20 10 1 in sample 1.7784 (0.2071) 0.8427 (0.0752) 1.2749 (0.4641) 0.1730 (0.0262)
20 10 1 out of sample 5.2187 (1.4097) 1.1824 (0.0906)
20 10 2 in sample 2.4532 (0.3831) 0.7805 (0.0424) 1.2460 (0.3767) 0.2110 (0.0294)
20 10 2 out of sample 9.6725 (1.5779) 1.3876 (0.0886)
20 10 3 in sample 3.2687 (0.5620) 0.6788 (0.0788) 1.3616 (0.2344) 0.2172 (0.0308)
20 10 3 out of sample 15.5335 (2.1083) 1.5651 (0.1086)
20 20 1 in sample 1.8687 (0.4042) 0.8284 (0.0589) 1.5159 (0.3020) 0.2221 (0.0400)
20 20 1 out of sample 6.6437 (1.7356) 1.1951 (0.0599)
20 20 2 in sample 2.7774 (0.4800) 0.7350 (0.0596) 1.3589 (0.4956) 0.1882 (0.0531)
20 20 2 out of sample 10.4826 (3.2061) 1.4019 (0.0877)
20 20 3 in sample 3.1220 (0.2329) 0.6758 (0.0509) 1.3100 (0.2280) 0.2017 (0.0368)
20 20 3 out of sample 16.2295 (3.9574) 1.6078 (0.0592)
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Table A.15.: Average MSE and relative parameter estimation error for random walk coef-
ficient transition in model B with external predictors, standard deviation in
parentheses, small variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.0064 (0.1417) 0.9342 (0.1314) 2.9536 (1.6543) 1.0042 (0.3259)
5 5 1 out of sample 1.3150 (0.2196) 1.0429 (0.1323)
5 5 2 in sample 1.0012 (0.1765) 0.8788 (0.1965) 1.7646 (0.6746) 0.7847 (0.2087)
5 5 2 out of sample 1.3787 (0.1650) 1.0431 (0.2053)
5 5 3 in sample 1.1455 (0.1473) 0.9488 (0.1312) 1.7889 (0.6811) 0.6967 (0.1198)
5 5 3 out of sample 1.6290 (0.2167) 1.1858 (0.1637)

10 10 1 in sample 0.9685 (0.0723) 0.9237 (0.0742) 1.7297 (0.5701) 0.8691 (0.3079)
10 10 1 out of sample 1.1945 (0.1383) 1.0065 (0.0724)
10 10 2 in sample 1.0795 (0.1078) 0.9768 (0.1124) 1.8046 (0.3527) 0.7927 (0.0845)
10 10 2 out of sample 1.5048 (0.2448) 1.1534 (0.1363)
10 10 3 in sample 1.1224 (0.0787) 0.9658 (0.0802) 1.6299 (0.3092) 0.7298 (0.0844)
10 10 3 out of sample 1.8261 (0.3654) 1.2150 (0.0818)
20 20 1 in sample 1.0237 (0.0589) 0.9790 (0.0573) 1.9142 (0.6377) 0.8414 (0.1741)
20 20 1 out of sample 1.2945 (0.0562) 1.0671 (0.0613)
20 20 2 in sample 1.0373 (0.0453) 0.9522 (0.0385) 1.8169 (0.2573) 0.7664 (0.0697)
20 20 2 out of sample 1.5086 (0.2695) 1.1113 (0.0512)
20 20 3 in sample 1.0303 (0.0706) 0.9024 (0.0565) 1.8530 (0.2539) 0.8192 (0.0856)
20 20 3 out of sample 1.7465 (0.2695) 1.1267 (0.0593)

Table A.16.: Average MSE and relative parameter estimation error for random walk coef-
ficient transition in model B with external predictors, standard deviation in
parentheses, medium variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.3363 (0.1509) 0.9500 (0.1121) 1.6290 (0.7477) 0.5007(0.1919)
5 5 1 out of sample 3.6626 (0.9100) 1.2015 (0.1235)
5 5 2 in sample 2.0930 (0.3999) 0.8867 (0.1271) 2.8817 (1.7713) 0.4459(0.1370)
5 5 2 out of sample 5.7967 (2.2031) 1.3335 (0.1502)
5 5 3 in sample 2.1292 (0.2600) 0.8026 (0.1014) 1.7387 (0.7621) 0.3605(0.0607)
5 5 3 out of sample 8.5882 (2.8413) 1.4776 (0.1423)

10 10 1 in sample 1.3784 (0.1782) 0.9559 (0.0780) 1.3746 (0.4419) 0.4623(0.1249)
10 10 1 out of sample 3.0428 (0.8102) 1.1735 (0.0669)
10 10 2 in sample 1.8141 (0.1512) 0.9056 (0.0599) 1.5669 (0.5451) 0.4259(0.0524)
10 10 2 out of sample 5.4969 (1.0081) 1.3393 (0.0796)
10 10 3 in sample 1.9853 (0.2120) 0.8129 (0.0800) 1.4505 (0.3965) 0.4080(0.0772)
10 10 3 out of sample 8.4159 (3.2621) 1.4182 (0.1275)
20 20 1 in sample 1.2823 (0.0900) 0.9620 (0.0456) 1.7533 (0.4822) 0.6138(0.1004)
20 20 1 out of sample 3.1985 (0.5285) 1.1805 (0.0511)
20 20 2 in sample 1.5838 (0.2335) 0.9258 (0.0615) 1.6260 (0.3685) 0.5311(0.0721)
20 20 2 out of sample 6.4650 (2.2359) 1.3605 (0.0936)
20 20 3 in sample 1.8476 (0.2129) 0.8613 (0.0480) 1.5922 (0.3344) 0.4968(0.0497)
20 20 3 out of sample 8.8800 (1.5822) 1.5001 (0.0825)
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Table A.17.: Average MSE and relative parameter estimation error for random walk coef-
ficient transition in model B with external predictors, standard deviation in
parentheses, large variation.

p q d sample MSE (RRR) MSE (tvRRR) errCt (RRR) errCt (tvRRR)
5 5 1 in sample 1.9329 (0.5040) 0.9212 (0.1006) 2.7399 (1.1504) 0.4462 (0.2486)
5 5 1 out of sample 7.2173 (3.4577) 1.2282 (0.1121)
5 5 2 in sample 2.1966 (0.4289) 0.7486 (0.1361) 1.3992 (0.7226) 0.2954 (0.0658)
5 5 2 out of sample 9.9445 (6.3352) 1.2755 (0.1653)
5 5 3 in sample 3.4337 (0.6240) 0.7216 (0.1260) 1.5591 (0.3090) 0.2815 (0.0766)
5 5 3 out of sample 16.3863 (5.2964) 1.5432 (0.2162)

10 10 1 in sample 1.6238 (0.2489) 0.9216 (0.0840) 1.9476 (0.8077) 0.4498 (0.1199)
10 10 1 out of sample 6.0949 (2.0447) 1.2117 (0.1063)
10 10 2 in sample 2.5481 (0.4328) 0.8555 (0.1051) 1.6949 (0.4620) 0.3317 (0.0482)
10 10 2 out of sample 10.5402 (2.9861) 1.4310 (0.1299)
10 10 3 in sample 2.9481 (0.7160) 0.8241 (0.0856) 1.4663 (0.5431) 0.3842 (0.0687)
10 10 3 out of sample 16.7759 (4.4155) 1.6799 (0.1570)
20 20 1 in sample 1.4902 (0.0963) 0.9457 (0.0644) 1.4790 (0.3645) 0.4713 (0.0899)
20 20 1 out of sample 5.9178 (1.2608) 1.2828 (0.0871)
20 20 2 in sample 2.1843 (0.1778) 0.8896 (0.0610) 1.7265 (0.4388) 0.4839 (0.0483)
20 20 2 out of sample 10.9872 (3.0140) 1.5191 (0.0777)
20 20 3 in sample 2.5651 (0.2805) 0.8773 (0.0898) 1.6148 (0.3205) 0.4851 (0.0461)
20 20 3 out of sample 15.1047 (3.5140) 1.8201 (0.1070)
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Description of the content:

This appendix contains supplementary material for Chapter 3. We provide visualizations
of the bias for the weighted rank-based estimator in Section B.1 and the improvements
of the estimates due to the iterations in the algorithm in Section B.2. Sections B.3 and
B.4 visualize the behavior of the proposed estimators under various contamination settings.
Finally, Section B.5 contains a short discussion of alternatives to the proposed leverage
weights.
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B.1. Bias of the weighted rank-based estimator
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Figure B.1.: Boxplots of regression coefficient and variance component estimates obtained
from the leverage-weighted rank-based estimator for different combinations of
group sizes ni and number of groups g (total sample size: N = g · ni).
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B.2. Validity of the updating step
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Figure B.2.: MSE of the initial and final coefficient estimates obtained from the rank-
based estimator for 5% and 10% of multiplicative y-outliers of increasing size,
ni = g = 20.
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B.3. Response outliers

B.3.1. Breakdown point under randomly located multiplicative outliers
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Figure B.3.: MSE (log-scale) of the SMDM, REML, Rank and Weighted Rank estimators
for an increasing proportion of multiplicative response outliers of size 1 000,
ni = g = 20
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B.3. Response outliers

B.3.2. Contamination with randomly located additive outliers
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Figure B.4.: MSE (log-scale) of the SMDM, REML, Rank and Weighted Rank estimators
for a ten percent proportion of randomly located additive response outliers
of increasing size (top) and for an increasing proportion of randomly located
additive response outliers of size 1 000 (bottom), ni = g = 20.
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B.3.3. Groupwise contamination

Multiplicative outliers

α β1 β2 β3

0

10
0

20
0

30
0 0

10
0

20
0

30
0 0

10
0

20
0

30
0 0

10
0

20
0

30
0

0.001

0.010

0.100

1.000

10.000

Outlier size

M
S
E

(l
og

-s
ca
le
)

σ θ0 θ1

0

10
0

20
0

30
0 0

10
0

20
0

30
0 0

10
0

20
0

30
0

0.001

0.010

0.100

1.000

10.000

Outlier size

M
S
E

(l
og

-s
ca
le
)

REML Rank SMDM Weighted Rank

1e-01

1e+02

1e+05

1e-01

1e+02

1e+05

1e-01

1e+01

1e+03

1e+05

α β1 β2 β3

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

1e-01

1e+01

1e+03

1e+05

Outlier proportion

M
S
E

(l
og
-s
ca
le
)

1e+00

1e+03

1e+06

1e+00

1e+03

1e+06
σ θ0 θ1

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

1e-01

1e+02

1e+05

Outlier proportion

M
S
E

(l
og
-s
ca
le
)

REML Rank SMDM Weighted Rank

Figure B.5.: MSE (log-scale) of the SMDM, REML, Rank and Weighted Rank estimators for
a ten percent proportion of sequentially located multiplicative response outliers
of increasing size (top) and for an increasing proportion of sequentially located
multiplicative response outliers of size 1 000 (bottom), ni = g = 20.
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Figure B.6.: MSE (log-scale) of the SMDM, REML, Rank and Weighted Rank estimators
for a ten percent proportion of sequentially located additive response outliers
of increasing size (top) and for an increasing proportion of sequentially located
additive response outliers of size 1 000 (bottom), ni = g = 20.
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B.4. Outlying predictors

B.4.1. Breakdown point under randomly located multiplicative leverage points
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Figure B.7.: MSE of SMDM, REML, Rank and Weighted Rank estimators for an increasing
proportion of multiplicative leverage points of size 100, g = ni = 20
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B.4.2. Contamination with randomly located additive leverage points
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Figure B.8.: MSE of the SMDM, REML, Rank and Weighted Rank estimators for a ten
percent proportion of randomly located additive leverage points of increasing
size (top) and for an increasing proportion of randomly located additive leverage
points of size 100 (bottom), ni = g = 20.
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Figure B.9.: MSE of the SMDM, REML, Rank and Weighted Rank estimators for a ten
percent proportion of sequentially located multiplicative leverage points of
increasing size (top) and for an increasing proportion of sequentially located
multiplicative leverage points of size 100 (bottom), ni = g = 20.
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Figure B.10.: MSE of the SMDM, REML, Rank and Weighted Rank estimators for a ten
percent proportion of sequentially located additive leverage points of increasing
size (top) and for an increasing proportion of sequentially located additive
leverage points of size 100 (bottom), ni = g = 20.
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B.5. Leverage weights in the presence of dummy variables

The leverage weights in Equation (23) require an estimate of the Malahanobis distance.
However, in the presence of discrete or dummy predictors, we can instead use weigths based
on the hat-matrix that do not place assumptions on the distribution of the predictors. A
possibility is given as follows: Given the hat matrix X(X ′X)−1X ′, its diagonal elements,
denoted by h11, h12, ..., h1ni , h21, ..., hgng , are a measure of the leverage of each observation
xik. Common cutoffs to flag leverage points are 2 · p

n and 3 · p
n . Thus, following the approach

used in (23), we can define weights

wik = min

�
1,

3 p
n

hik

�
(B.1)

Alternatively, Cantoni and Ronchetti 2001 suggest weight

w̃ik =
"
1− hik.

However, weights based on the hat-matrix are not necessarily robust, since an outlying
observation can “contaminate” the leverage of the other observations. This can also be seen
in Figure B.11 – the weights (B.1) offer some protection against the leverage points, but do
not protect fully.
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Figure B.11.: MSE of the SMDM, REML, Rank, Weighted Rank and Hat-weighted Rank
(with weights (B.1)) estimators for a ten percent proportion of randomly
located multiplicative leverage points of increasing size, ni = 10, g = 20.
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Description of the content:

This appendix contains supplemental material to Chapter 4. Section C.1 gives details on the
estimation procedure, especially on the algorithm from Boente and Salibián-Barrera (2021)
and our extension to robustify against cellwise outliers. Section C.2 contains additional
material for the simulation studies: We provide a description of the non-robust method used
for comparison, a visualization of the data and outlier scenarios, and additional simulation
results complementing those reported in the paper. Finally, Section C.3 provides additional
plots and tables for the data examples.

C.1. Details on estimation procedure

C.1.1. Estimation algorithm from Boente and Salibián-Barrera (2021)

The estimation algorithm in Boente and Salibián-Barrera (2021) is based on the following
proposition, which especially establishes a linear relationship between different points ξ(s)
and ξ(t) under the assumption of an elliptical distribution for the process ξ (see part (b));
for more details on elliptical processes see Boente and Salibián-Barrera (2021). In addition,
it provides a way to estimate the scores of the KL decomposition without having to rely on
integral approximation. This is especially useful in the case of sparsely observed functions.

Proposition C.1 (Boente and Salibián-Barrera 2021, Prop. 1). Let ξ ∼ E(ν,Γ, φ) be a
random element on L2(T ) with T ⊂ R, and assume that the kernel γ associated with Γ is
continuous. Let η1 ≥ η2 ≥ ... be the non-null eigenvalues of Γ and ψℓ the eigenfunction of Γ
associated with ηℓ, chosen so that the set {ψℓ, ℓ ∈ N} is an orthonormal set in L2(T ). Then

(a) For any fixed m and t1, ..., tm in T , the random vector ξm = (ξ(t1), ..., ξ(tm))′ has an
elliptical distribution in Rm with location νm = (ν(t1), ..., ν(tm))′ and scatter matrix Σ
with elements Σℓ,j = γ(tℓ, tj), 1 ≤ ℓ, j ≤ m.

(b) For any t′ ̸= t ∈ T , we have that ξ(t)|ξ(t′) ∼ E(νt|t′ , σt|t′ , φt′∗) where the conditional
location is given by

νt|t′ = ν(t) +
γ(t, t′)
γ(t′, t′)

(ξ(t′)− ν(t′)).

(c) For any fixed m and t1, ..., tm ∈ T , let ξm = (ξ(t1), ..., ξ(tm))′. We have that ζℓ|ξm ∼
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E(νℓ, σℓ, ϕ∗
Xm

) where
νℓ = ηℓψ

′
ℓ,mΣ−1

ξm
(ξm − νm)

with ψℓ,m = (ψℓ(t1), ..., ψℓ(tm))′, νm = (ν(t1), ..., ν(tm))′ and the (p, j) element of Σξm

equals γ(tp, tj).

Given an observed data set {ξ̃k,ij , tij}i=1,..,n;j=1,...,ni;k=1,...,K obtained from estimation step
2, Equation (4.9), we aim to obtain a representation for the score functions ξi,k of form
(4.10) for each k = 1, ...,K. Due to (4.6), we assume the estimates to be centered.

Boente and Salibián-Barrera (2021) propose the following estimation algorithm for the
covariance functions γk, k = 1, ...,K, based on Proposition C.1. Since the estimates are
centered, the first step in their algorithm, the estimation of the mean function ν(t) can be
skipped.

Diagonal of the covariance function In the first step of the algorithm, the diagonal of the
covariance function γk(t, t) is estimated using a robust M-scale estimator. Let ρ̃ : R → R be
a bounded ρ-function such that supt ρ̃(t) = 1. Furthermore, let b ∈ (0, 1) and define weights

wk,ij(t) = κ

�
tij − t

h

�
n&

i=1

ni&
j=1

κ

�
tij − t

h

�
−1

.

κ : R → R is a kernel function (e.g. Epanechnikov kernel) that assigns higher weight to
observations close to t and h is a bandwidth parameter. In practice, it can e.g. be chosen by
cross-validation. The estimate is then obtained by solving

n&
i=1

ni&
j=1

wk,ij(t)ρ̃

�
ξ̃k,ij

γ̂k(t, t)

�
= b

for γ̂k(t, t), where t are selected to form a fine grid in T . Boente and Salibián-Barrera
(2021) set b = 1/2, ensuring consistency and maximum breakdown point in the case of i.i.d.
observations with Gaussian error.

Estimation of the off-diagonal elements Relationship (4.11) implies that the conditional
mean of ξk(t) given ξk(t

′) is a linear function of ξk(t′). The slope in this linear relationship
is given by γk(t, t

′)/γk(t′, t′). Thus, the off-diagonal elements of the covariance function can
be estimated using a local M-regression estimator.

β̂k(t, t
′) = argmin

β∈R

n&
i=1

&
j ̸=p

ρ

�
ξ̃k,ij − βξ̃k,ip

ŝk(t, t′)

�
κ

�
tij − t

h

�
κ

�
tip − t′

h

�
, (C.1)
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and letting

γ̃k(t, t
′) = γ̂k(t

′, t′) · β̂k(t′, t).

In (C.1), ŝ(t, t′) is an initial robust scale estimator and ρ is a bounded ρ function. The
implementation uses Tukey’s biweight function. Following Boente and Salibián-Barrera
(2021), ŝ(t, t′) is obtained as the local MAD of the residuals from an initial robust estimator.
Namely, let

β̃k(t, t
′) = med|tij−t|≤h,|til−t′|≤h

ξ̃k,ij

ξ̃k,il
,

and let ŝk(t, t
′) be the MAD of the residuals ri,k(t, t

′) = ξ̃k,ij − β̃k(t, t
′)ξ̃k,il, i.e.

ŝk(t, t
′) = med|tij−t|≤h,|til−t′|≤h |ri,k(t, t′)−mk(t, t

′)|,

where mk(t, t
′) = med|tij−t|≤h,|til−t′|≤h ri,k(t, t

′).

Postprocessing In order to ensure that the estimated covariance function γ̂(·, ·) is smooth
and symmetric, β̂k(t′, t) is calculated as well. A bivariate smoother (e.g. bivariate B-spline
smoother) is applied to both of the estimated covariance surfaces, yielding ˜̃γk(t, t

′) and
˜̃γk(t

′, t), and the final estimated covariance function is obtained as

γ̂(t, t′) = (˜̃γk(t, t
′) + ˜̃γk(t

′, t))/2 (C.2)

The eigenfunction-eigenvalue pairs, denoted by {η̂k,ℓ, ψ̂k,ℓ(·)}ℓ can be calculated by applying
standard FPCA to the estimated covariance surface. If (C.2) is not positive definite, we set
γ̂k(s, t) =

'
ℓ:η̂kℓ≥0 η̂kℓψ̂kℓ(s)ψ̂kℓ(t).

C.1.2. Variance of the standardized residuals

For ξk(t
′) and ξk(t), Proposition C.1 allows to calculate the theoretical variance of the

residuals rk,i(tij , tip) = ξ̃k,ij − β̂(tij , tip) as follows. For two time points t, t′ ∈ T , we have:

Var(ξk(t)− βk(t, t
′)ξk(t′)) =Var(ξk(t)) + Var(βk(t, t′)ξk(t′))− 2 ˙Cov(ξk(t), βk(t, t′)ξk(t′))

=γk(t, t) +

�
γk(t, t

′)
γk(t′, t′)

�2

γk(t
′, t′)− 2

γk(t, t
′)

γk(t′, t′)
γk(t, t

′)

=γk(t, t)− γk(t, t
′)2

γk(t′, t′)
,

making use of βk(t, t
′) = γk(t,t

′)
γk(t′,t′)

. An estimate is obtained by replacing the theoretical
quantities with their corresponding estimators.
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C.1.3. Intuition for the robustification against cellwise outliers

In the following, we give a short intuition for our robustification of the methodology in
Boente and Salibián-Barrera (2021) against “cellwise” outliers. For this, we have a realization
of a curve from the process

X(t) = ζi1
√
2 cos(2πt) + ζi2 sin(2πt), (C.3)

where ζi1 ∼ N (0, 3) and ζi2 ∼ N (0, 1.5). The theoretical covariance function is given by

γ(s, t) = 6 cos(2πt) cos(2πs) + 3 sin(2πt) sin(2πs).

We now contaminate our observation with 3 outliers by adding or subtracting a shift of size
s = 3 to a few points. This yields the contaminated observation visualized in Figure C.1.

-2

0

2

0.00 0.25 0.50 0.75 1.00

t

ξ(
t)

Figure C.1.: Contaminated functional observation from the process (C.3).

Now we can calculate the standardized residuals as in (4.13), given by

r̃k,i(t, t
′) :=

|rk,i(t, t′)| 
γ̂k(t, t)− γ̂k(t,t′)2

γ̂k(t′,t′)

(C.4)

for any pair t, t′. The results can be visualized in a matrix as displayed in C.2
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Figure C.2.: Standardized residuals (C.4) for the observation displayed in Figure C.1. The
three outlying cells are marked by dotted lines.

The residuals for the outlying observations are very large. At the same time, the residuals
of the neighboring, highly correlated observations are also high, since they are calculated in
comparison with the outlying value. If we now construct a measure of “overall outlyingness”
for each observed point t, an obvious solution is to average over the individual outlyingness
of each data point. However, the estimator used for averaging should be robust to ensure
that the time points highly correlated with the outlying ones are not accidentally flagged as
outlying as well. Suitable choices are trimmed means and the median, as we use in Equation
(4.14). The resulting average outlyingness for the standard mean (left) and the median
(right) is depicted in Figure C.3. The mean outlyingness of the observations that are highly
correlated with the outliers is drawn upwards. At the same time, median outlyingness of
those observations remains largely unaffected.
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Figure C.3.: Mean and median standardized residuals calculated from the residuals C.2. The
three outlying points are marked by dotted lines. The dashed red line depicts
the recommended cutoff c = 2.

The cutoff c is a tuning parameter.

C.2. Additional material for the simulation studies

C.2.1. Description of the non-robust estimation method

The non-robust estimates in the simulation study are calculated using a method that replaces
the proposed robust components with non-robust ones.

Estimation of marginal covariance function The marginal covariance function is obtained
using the estimator used in Park and Staicu (2015) and Chen, Delicado, et al. (2017), i.e.

Σ̂classic(sr, sr′) =
1

(
'n

i=1 ni)− 1

n&
i=1

ni&
j=1

Y C
i (sr, tij)Y

C
i (sr′ , tij).

We do not apply any smoothing to the raw covariance matrix and calculate the eigenfunctions
and corresponding eigenvalues using a standard spectral decomposition of the matrix Σ̂classic
evaluated in all combinations sr, sr′ , r, r′ ∈ {1, ..., R}.

Estimation of the score functions The score functions are estimated using the PACE
method (Yao et al. 2005) implemented in fpca.sc()) from the refund package (Goldsmith
et al. 2024) with the default parameter choices.
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C.2.2. Illustration of data in the simulation study

The following Figure C.4 displays a functional observation generated in the simulation
study. The top-left panel shows a raw observation without outliers. The corresponding
score functions are displayed in Figure C.5. The eight unstructured eigenfunction cause
the “wigglyness” of the raw observation. This observation is modified in three ways to
visualize the effects of the three outlier settings: For OS1 (top-right panel), the scale of
all observations is increased, while the structure stays the same. For OS2 (bottom-left
panel), there is one curve that deviates from the majority. For OS3 (bottom-right panel),
no structure can be observed.
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Figure C.4.: Visualization of the raw data and the three outlier types in the simulation
study.

151



C. Supplement: Chapter 4

-2

-1

0

1

2

0.00 0.25 0.50 0.75 1.00

t

ξ k
(t
)

Figure C.5.: Score functions for the observation displayed in top-left panel of Figure C.4.

C.2.3. Additional simulation results

Simulation results for OS3

In the setting with shape or structural outliers OS3, the reconstruction errors for the robust
method are unaffected by the outlying score functions, as shown in Figure C.6. The RMSE
(4.19) stays stable with increasing proportion of contaminated subjects. The outlier detection
based on the orthogonal distance ODi in (4.16) reliably detects all outlying individuals
(TPR=1) while preserving a false positive rate below 5%. In outlier setting OS3, score
distance SDi in (4.16) completely fails to recognize the outliers, as expected. However, it
also keeps the nominal level of α = 0.05.
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Figure C.6.: Comparison of RMSE (4.19) in OS3 for sample size n = 100, sparse setting,
c1 ∈ {0.05, 0.1, 0.2}.
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Figure C.7.: Left to right: TPR, FPR, and F1 score for outlier detection based on the score
distance SDi (left panel) orthogonal distance ODi (right panel) in (4.16) in
OS3 with b ∈ {3, 5, 10, 20} for sample size n = 100, c1 = 0.1, sparse setting.

Reconstruction errors in OS1 and OS2

Figures C.8 and C.9 show boxplots of the reconstruction errors for the score functions ξik,
for outlier settings OS1 and OS2, respectively. The reconstruction error is stable for the
robust method, but strongly affected by the outlying values for the non-robust method.
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Figure C.8.: RMSE (4.20) in OS1 with b ∈ {3, 5, 10, 20} for n = 100, sparse setting, c1 = 0.1
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Figure C.9.: RMSE (4.20) for OS2 with b ∈ {3, 5, 10, 20} for n = 100, sparse setting,
c1 = c2 = 0.1. Separated by non-contaminated (left) and contaminated (right)
subjects.

The following Figures C.10 and C.11 visualize the effect of decreasing the number of
observational units or subjects n or and the number of curves ni in outlier setting OS1,
respectively. As expected, increasing the sample size in terms of n or ni reduces the overall
reconstruction errors (4.19) as well as their variances. The estimates stabilize with increasing
number of available samples.
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Figure C.10.: Comparison of RMSE (4.19) for n ∈ {50, 100} in OS1, c1 = 0.1, sparse setting.
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Figure C.11.: Comparison of RMSE (4.19) for sparse and very sparse setting in OS1, n = 100,
c1 = 0.1.

Furthermore, we compare the RMSE (4.19) in outlier setting OS2 for different proportions of
outlying curves c2 ∈ {0.1, 0.2}. The proportion of contaminated curves within the samples
affects the reconstruction errors within the partially contaminated subjects. However, the
errors stay stable within the non-contaminated subjects.
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Figure C.12.: Comparison of RMSE (4.19) for proportions of contamination c2 ∈ {0.1, 0.2}
in OS2, n = 100, c1 = 0.1, sparse setting.

Outlier analysis results for OS1 and OS2

Figure C.13 shows the TPR, FPR and F1 score for outlier detection based on the orthogonal
distance in (4.16). As expected, orthogonal distance does not recognize the amplitude
outliers if they are small, however, if they are large enough, both orthogonal and score
distance give reasonable results.
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Figure C.13.: Left to right: TPR, FPR, and F1 score for outlier detection based on the
orthogonal distance ODi in (4.16) in OS1 with b ∈ {3, 5, 10, 20} for sample
size n = 100, c1 = 0.1, sparse setting.
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C.3. Additional material for the data examples

C.3.1. Analysis of mortality data

Table C.1.: Overview of countries and corresponding codes.

Code Country Code Country

AUS Australia GBR-NP United Kingdom
AUT Austria GBR-SCO Scotland
BGR Bulgaria HUN Hungary
BLR Belarus IRL Ireland
CAN Canada ISL Iceland
CHE Switzerland ITA Italy
CZE Czechia JPN Japan
DEUTE East Germany LTU Lithuania
DEUTW West Germany LVA Latvia
DNK Denmark NLD Netherlands
ESP Spain NOR Norway
EST Estonia POL Poland
FIN Finland PRT Portugal
FRACNP France (civilian) RUS Russia
FRATNP France (total) SVK Slovakia
GBRCENW England and Wales (civilian) SWE Sweden
GBRTENW England and Wales (total) UKR Ukraine
GBR-NIR Northern Ireland USA United States of America
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Figure C.14.: Components of the estimated mean function for the mortality dataset,
parametrized as µ(s, t) = µ0 + ν(s) + δ(t).
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Figure C.15.: Estimated marginal eigenfunctions ϕk(s), k = 1, ..., 3, for the mortality dataset.
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Figure C.16.: Outlyingness (4.17) by year for the 36 countries in the mortality data analysis.
The subjects flagged by SDi or ODi using the Bonferroni procedure (Corollary
4.3) are marked by red dashed lines.
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Figure C.17.: Comparison of 20% trimmed mean squared reconstruction errors on the test
data; mortality dataset. The average error across all countries is represented
by the dashed lines.

C.3.2. Analysis of UV-F spectra
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Figure C.18.: Estimated mean function for the UV-F dataset, parametrized as µ(s, t) =
µ0 + ν(s).
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Figure C.19.: Estimated mean function ν(s) plus and minus the estimated marginal eigen-
functions (ν(s)± ϕk(s), k = 1, 2) for the UV-F dataset.
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Figure C.20.: Marginal eigenfunctions ϕk(s), k = 1, 2 for the UV-F dataset.
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Table C.2.: Aging settings considered in the analysis of photovoltaic material degradation data. The module temperature and

humidity differ from the climate chamber temperature and humidity in the presence of irradiance and are reported in
parentheses. DML = Dynamic mechanical load (simulation of wind), TC = Temperature cycles

Setting Total Cycle Duration Temperature Humidity Irradiance DML TC Number of modules
Moderate 1 1000 h 1 1000 h 85 ◦C (113 ◦C) 85% (30.4%) 1000 W/m2 - - 3
Alpin 1 2000 h 1 250 h 85 ◦C 85% - - -

2 250 h 85 ◦C (119 ◦C) 85% 1200 W/m2 - - 3
3 24 h - - - 1000 c -

Arid 1 1200 h 1 1200 h 95 ◦C (129 ◦C) 50% (15.7%) 1200 W/m2 - - 3
Moderate 5 3000 h 1 48 h 60 ◦C (78 ◦C) 40% (18.1%) 1000 W/m2 - -

2 96 h 85 ◦C 85% - - - 3
3 300 h -40/85 ◦C - - - 50

Tropical 2 3000 h 1 3000 h 90 ◦C 90% - - - 6
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