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Kurzfassung

In den letzten Jahren (oder eher Jahrzehnten) gewinnen neuronale Netze als zentraler
Bestandteil vieler moderner Ansätze für maschinelles Lernen immer mehr an Bedeutung,
nicht nur in der IT-bezogenen Forschung, sondern auch in Anwendungen aus der realen
Welt. Graph Neural Networks (GNNs) sind in der Öffentlichkeit weniger bekannt, werden
jedoch nicht nur in vielen modernen Anwendungsfeldern wie Natural Language Processing
oder Visual Computing verwendet, sondern können auch auf klassische Graphenprobleme
wie das Problem des Handelsreisenden angewandt werden.

In sogenannten End-to-end Learning Ansätzen wird ein neuronales Netz mit dem Ziel
trainiert, mit nur minimalen weiteren algorithmischen Hilfestellungen Näherungslösungen
für kombinatorische Optimierungsprobleme zu liefern. Trotz ausgefeilter Techniken bleibt
die Qualität solcher Lösungen häufig immer noch weit hinter jenen klassischer Optimie-
rungsalgorithmen zurück. In dieser Arbeit beschäftigen wir uns damit, die Ausgabe eines
solchen GNNs zu verwenden, um die Performance eines klassischen metaheuristischen
Ansatzes, der Adaptive Large Neighborhood Search (ALNS), auf dem eigentlichen Pro-
blem zu verbessern. Eine ALNS besteht aus Destroy- und Repair-Methoden, die auf
einer temporären Lösung des Problems agieren. Zunächst entwickeln und testen wir
traditionelle Methoden. Danach werden Destroy-Methoden entwickelt, die die Ausgabe
des GNNs verwenden, und wir vergleichen die beiden Ansätze.

Dies wird anhand des Weighted Total Domination Problem (WTDP) demonstriert, ein
klassisches Graphenproblem, das das bekannte (Total) Dominating Set Problem um eine
Zielfunktion erweitert, die Gewichte auf Knoten und Kanten des Graphen miteinbezieht.
Im Zuge der Arbeit werden für dieses Problem auch Regeln zur Vorbehandlung der
Probleminstanzen, ein neuartiger Ansatz für eine “abstimmungsbasierte” ALNS-Methode,
sowie die Berechnung von Features zum Trainieren des GNNs vorgestellt.

Unsere Ergebnisse zeigen, dass ein Mix aus traditionellen ALNS Methoden, zusammen
mit den vom GNN unterstützten Methoden, im Allgemeinen bessere Lösungen liefern als
die traditionellen Methoden alleine.
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Abstract

In the last years (or rather decades), neural networks as the core of many modern-day
machine learning approaches are becoming more influential, not only in computer science
related research, but also in real world applications. Graph Neural Networks (GNNs),
while less known in the public, are not only used in popular fields like natural language
processing or visual computing, but are also applied to classical graph problems such as
the Travelling Salesman Problem (TSP).

In so-called end-to-end learning approaches, a neural network is trained with the goal
to find approximate solutions for combinatoric optimization problems with minimal
additional algorithmic help. Despite sophisticated techniques, the quality of such solutions
often falls far behind those from classical optimization algorithms. In this work, we
investigate the possibilities of using the output to improve a metaheuristical approach,
the Adaptive Large Neighborhood Search (ALNS). An ALNS consists of destroy- and
repair-methods that act on intermediate solutions. We first develop and test traditional
methods, and afterwards use a set of destroy-methods that utilize the output of the GNN
for each vertex. Both approaches are experimentally compared.

This demonstrated on the Weighted Total Domination Problem (WTDP), an extension
of the well-known Dominating Set Problem, which introduces an objective function based
on vertex and edge weights. For this problem, we also present preprocessing rules, a
novel “voting-based” ALNS method, and custom feature computations for GNN training.

Our results show that the mix of the traditional ALNS methods, together with the
GNN-supported methods, are in general performing better than the traditional methods
alone.
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CHAPTER 1
Introduction

1.1 Overview
Graph Neural Networks (GNNs) have been on the rise of attention in recent years (see
e.g. Wu et al. [WPC+20]), and have been used for a large variety of graph problems.
Applications range from problems in microbiology [GDJ+21] to social network related
problems [NLL+21], but also include well-known classical graph problems such as the
Travelling Salesman Problem (TSP) [KvHW19], to which many traditional approaches
exist. However, most of the time these GNNs are applied directly to a problem, such
that the output is either used to directly indicate a solution set (as in [NLL+21]), classify
nodes or subgraphs, or to sequentially build a solution (as in [KvHW19]). In this work,
the focus is not on directly solving the problem with a GNN, but to extend a classical
metaheuristical approach with a GNN.
This is done on a relatively new problem, the Weighted Total Domination Problem
(WTDP), which was introduced by Ma et al. [MCY19]. It builds upon other well-known
Dominating Set problems, and introduces an objective function using both vertex and
edge weights. Practical usage is, at the moment, still limited, as Ma et al. did not
provide a real-world application for that problem. However, it could have appliances
in the domain of social networks, and has also been used related to that context by
Kapunac et al. [KKD23].
The problem was chosen, because it is a classical graph problem that, to the best of
our knowledge, was only tackled with traditional heuristic and exact methods. Many
problems for which GNNs are utilized, are classification or clustering problems that are
more similar to neural network classification problems with the addition of the graph
aspect, see for example the well-known CORA dataset [SNB+08]. The WTDP still
provides at least the vertex- and edge-weights as potential additional input features to
the graph neural network, as opposed to the more simple variants like the Minimum
Total Dominating Set problem.
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1. Introduction

Based on work on similar problems, we also derive preprocessing methods for the WTDP to
simplify problem instances before actually solving them. Unfortunately, on the synthetic
and generally quite dense graphs that we tested our approaches on (the instances were
taken from Alvarez et al. [AMS21]), these preprocessing rules could not be applied.
Nevertheless, they could be more useful on graphs with a larger number of nodes with a
low degree.

The metaheuristic we first implement as a baseline, and then try to improve using a GNN,
is the Adaptive Large Neighborhood Search (ALNS). The general idea is that on the
current incumbent solution, first a “destroy”-method is applied, which modifies a rather
large portion of the solution without respecting feasibility or optimality. Afterwards,
using a “repair”-method, this is restored to a feasible and locally optimal solution, which
may become the new incumbent, if its objective value is good enough.

We first implement traditional destroy- and repair-methods as part of the ALNS. Most of
these methods are simple random selection of vertices to be modified, together with local
search based repair methods. However, we also experiment with destroy methods based
on the graph structure as well as a “voting”-based destroy method, which introduces a
different kind of random selection viewing the nodes as “voters” acting based on their
local neighborhood.

Afterwards, we implement similar methods, which take a nodewise GNN-output as the
random weights, instead of some input feature (such as the direct effect on the objective
value, or the weight of the node). The comparison between these two variants of the
ALNS – with and without using GNN-outputs – is the main interest of this work. Leaving
the rest of the parameters untouched, we aim to detect the impact of these methods.

For the Graph Neural Network, different structures are experimented with. As a baseline,
we use a traditional neural network (with no message-passing, i.e. no information from
the hidden neurons of neighboring vertices is used). For the actual GNNs, we are using
existing implementations of “transformer-like” layers (as used, for example, in [KvHW19]),
which combine graph attention networks with feed-forward layers, and use them in two
variants.

Also, for training the models we experimented with two different loss functions. On one
hand, we use the typical binary crossentropy loss, which is usually used for classification
problems in neural network training, with the target values being determined by the
best solutions found using the ALNS without GNN-outputs. On the other hand, we
also adapt an “energy-based loss function” from Nair et al. [NBG+20] to the WTDP,
which estimates the expected cost for taking a node based on a large sample of solutions,
instead of taking only the best (known) solutions and taking them as the only ground
truth.

The results are compared on the same instances as previously used by Alvarez et al.
[AMS21], which are divided into classes based on instance size, density, and weight
structure (whether there is more emphasis on vertex- or edge-weights). Although Ma
et al. [MCY19] experimented with smaller instance sizes, and Kapunac et al. [KKD23]
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1.2. Outline

extended this set also to larger instances after the start of our experiments, we focus on
those instances with a vertex count between 75 and 125.

1.2 Outline
First, we define the WTDP and its related problems, and discuss related work with
respect to the WTDP and other similar problems in Chapter 2. In Chapter 3 we present
the various methods we applied to the problem, starting from the adapted preprocessing
rules, the ALNS-methods, the GNN-based ALNS-methods, and the GNN structures used,
together with the necessary details (such as input features and targets). Afterwards, in
Chapter 4 we explain in detail how the problem instances were generated, and describe
our experiments with several parameters, both for the ALNS runs and the GNN training.
Finally, in Chapter 5 we present the final results of the ALNS runs, compare the different
methods, and give a short interpretation.
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CHAPTER 2
Problem Definition and Related

Work

In this chapter, we are first providing the definitions of the Weighted Total Domination
Problem and the problems it was derived from, starting with the Dominating Set Problem.
Afterwards, an overview of related work is given, containing both the state-of-the-art
of the WTDP, and details on recent work (as well as a short theoretical introduction)
related to the methods that we use to approach it.

2.1 Notation
Unless specified otherwise (for example for describing related works), we are concerned
with simple, undirected graphs with weights on both vertices and edges. An undirected
graph G = (V, E) is a collection of vertices V together with the set of edges E where
E ⊆ {{u, v} | u, v ∈ V }. If there is an edge between two vertices u and v, i.e. {u, v} ∈ E,
the vertices are called adjacent or neighbors. A simple graph does not contain self-loops,
meaning no edges {v, v} of a vertex to itself, and at most one edge between each pair of
vertices. As opposed to directed graphs, the edges in undirected graphs are bidirectional.

Within a graph, the distance d(v, u) between two vertices v, u is the length of the shortest
path from v to u. The neighborhood N(v) of a vertex v consists of all vertices that are
adjacent to it, i.e. N(v) := {u | {u, v} ∈ E}. Note that the vertex itself is not included
in its own neighborhood by this definition (in a simple graph). The degree deg(v) of a
vertex is defined as the number of incident edges, which in the simple case is equal to
the number of neighbors |N(v)|. Let us also denote the k-hop-neighborhood by Nk(v),
which includes all vertices u that can be reached in at most k steps from v, i.e. the
vertices with d(v, u) ≤ k. This means, that N0(v) = {v} only contains the vertex itself,
and N1(v) = {v} ∪ N(v), which is also sometimes denoted as the “closed neighborhood”
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2. Problem Definition and Related Work

of v (for example in [KKD23]). For convenience, we can also expand the notion of the
neighborhood for a set of vertices: N(S) := 	

v∈S N(v), for S ⊆ V .

We can define a weight-function on the vertices and the edges to obtain a weighted
graph. Such functions are of the form w : V → R+ or c : E → R+ respectively, and
the shorthand notations wv := w(v) and ce := c(e) or cu,v := c({u, v}) for v ∈ V and
e = {u, v} ∈ E will be used for more concise definitions. Since the main focus of this
work is on graphs with weights on both vertices and edges, we only denote such graphs as
weighted graphs, although in the literature this term is often used for graphs without edge
weights as well. To differentiate between these cases, graphs that have weights on only
the vertices or only the edges are referred to as vertex-weighted graphs and edge-weighted
graphs, respectively, in this work. The presence of weights does not have an influence on
the property of a (total) dominating set.

In our figures, we usually show the vertex weights directly on the vertex, and the edge
weights near the edge. In some cases, to simplify referencing the vertices, we display an
identifier like u or v on the vertex itself, and the weight next to the vertex, for example
in Section 3.1.

2.2 Problem Definition
Now, we can give the problem definitions, starting with the most basic variant of
Dominating Set Problems, then advancing to the actual problem addressed in this work,
the Weighted Total Domination Problem (WTDP).

2.2.1 Minimum (Weighted) Dominating Set problem

(a) An instance for the MDSP

2

4

8

3

1 2

5

3

(b) An instance for the MWDS

Figure 2.1: Two structurally identical graphs (left unweighted, right weighted), with the
optimal solution for the respective problem marked in green

Given an undirected simple graph G = {V, E}, a set D ⊆ V of vertices is called a
dominating set, if every vertex v ∈ V either is in D, or has a neighbor u in D, i.e.
N1(v) ∩ D ̸= ∅. The most basic problem of the dominating set problem family is the
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2.2. Problem Definition

Minimum Dominating Set Problem (MDSP): Given an undirected, simple graph G, find
a minimum cardinality dominating set. A simple generalization is the Minimum Weight
Dominating Set (MWDS) problem: For an undirected vertex-weighted graph G with
weights w, find a dominating set D that minimizes �

v∈D wv. Intuitively, each vertex
has a (possibly non-uniform) cost associated to selecting it for the dominating set. The
MDSP can be obtained from this by setting all vertex weights to 1. Example instances,
together with optimal solutions, are given in Figure 2.1.

2.2.2 Minimum (Weighted) Total Dominating Set problem

A dominating set D ⊆ V is called a total dominating set, if every vertex v ∈ V —including
those in D—has a neighbor in D. Therefore, a total dominating set has to fulfill
N(v) ∩ D ̸= ∅, ∀v ∈ V . The Minimum Total Dominating Set problem (MTDS) and
the Minimum Weight Total Domination problem can be defined exactly as above, but
requiring D to be a total dominating set. Here, the objective stays the same – minimizing
either the cardinality (MTDS) or the sum of the weights – but every vertex has to have
a neighbor in D, including the vertices selected.

2.2.3 Weighted Total Domination Problem

(a) An instance for the MTDS (the solution
from 2.2b would also be optimal)

2

4

8

3

1 2

5

3
5

24

2

1

3

3

3

5

(b) An instance for the WTDP, with possible
solution in green (objective value: 35)

Figure 2.2: Examples for the MTDS and the WTDP.

The problem this thesis focuses on is the Weighted Total Domination Problem (WTDP).
It was first stated by Ma et al. in 2019 [MCY19]. The WTDP is defined on a weighted
graph G = (V, E) with vertex weights wv and edge weights ce = ci,j ≥ 0 for e = {i, j} ∈ E.
The goal is to find a total dominating set D ⊆ V while minimizing the objective function

obj(D) =
�
i∈D

wi +
�

e∈E(D)
ce +

�
i∈V \D

min
{i,j}∈E∧j∈D

ci,j (2.1)

where E(D) := {{i, j} ∈ E | i, j ∈ D} is the set of edges within the subgraph induced
by D.
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2. Problem Definition and Related Work

Here, the objective function consists of three parts, referenced in the literature as follows
[AMS21, KKD23]:

• vertex selection cost: The vertex weights of each selected vertex v ∈ D.

• internal edge cost: The edge weights of every edge {i, j} within D, i.e. where
i, j ∈ D.

• external edge cost: For each not selected vertex v /∈ D, the edge weight of the
cheapest edge to a vertex in D.

As [MCY19] pointed out, this is an extension of other well-known domination problems,
which can be obtained by setting the edge weights to 0 (yielding the classical, vertex-
weighted Minimum Weight Total Domination problem), additionally setting the vertex
weights to 1 (yielding the Minimum Total Dominating Set problem), and / or relaxing
the constraint to accept ordinary dominating sets instead of total dominating sets. Note
that already the TDS problem (in the formulation as decision-problem) without any
weights is NP-complete [LPHH84], therefore the WTDP is as well [MCY19, AMS21].

Motivation

The choice of the edge-weights‘ contribution to the objective function is quite interest-
ing, since a more trivial extension of the previous problems by edge weights could be
accomplished without internal edge costs or by using a less complicated external edge
cost function. For example, one could include edge weights by just summing the cheapest
edge costs into D for all vertices. This definition may result in counting the costs of
an edge twice, which may not be desirable. However, since the problem was defined
this way by Ma et al. in [MCY19] and was already followed up by other researchers in
[AMS21, KKD23], we will focus on the same problem.

Ma et al. have not given a particular application or motivation for this problem when
introducing it in [MCY19], other than it being an extension to other well-known dominat-
ing set problems. However, total dominating problems in general can have applications in
communication networks and committee forming [AMS21, Hen04]. A particular example
from Henning [Hen04] can be extended by the weights: Suppose a group of people
has to form a committee, where every person must know at least one member of the
committee, including the committee members themselves. Now, we can model the weights
accordingly:

• Set the weights of the vertices to represent the suitability of the person to be a
committee member in general (the lower the weight, the better)

• Let the weights of the edges indicate conflicts between people (the higher the weight,
the more likely a disagreement would be)

8



2.3. Existing Approaches to the WTDP

Then, by solving the WTDP, a committee is found consisting of the most competent
people, while minimizing the conflicts within the committee as well as between the
committee and the rest of the group (as each person would choose their “favourite”
committee member as their contact).

Another application is proposed by Kapunac et al in [KKD23]. They model the spread
of information within a social network, and show that by solving the WTDP, a better
starting set for the spread of information is found than by random selection.

2.3 Existing Approaches to the WTDP
At the time of writing this thesis, there are three publications that we know of that focus
on the Weighted Total Domination Problem. We will review their main contributions in
the following.

2.3.1 Ma et al. [MCY19]
The first definition of this problem is found in “Integer linear programming models for
the weighted total domination problem” by Ma et al. in 2019. They provide three integer
linear programs to model the problem, which are step-by-step improvements aiming to
achieve better performance on the solver. While the first formulation has a decision
variable for each vertex and edge, and additionally a helper variable for each edge to
determine whether it is about an external edge, the second formulation gets rid of the
helper and the final program uses a more sophisticated approach, directly modelling the
cost of each vertex using a helper variable for edge related costs instead. The main idea
is that every vertex v ∈ D in the solution contributes its vertex weight as well as half the
costs of each edge to adjacent vertices, that are in D as well, to the objective function,
while every other vertex u /∈ D contributes the external edge costs as usual.

These models were evaluated using randomly generated graphs (in the same way as in
this work, see Section 4) with up to 100 vertices.

2.3.2 Álvarez and Sinnl [AMS21]
In 2021, Álvarez and Sinnl provided “Exact and heuristic algorithms for the weighted
total domination problem”, improving the integer linear programs of Ma et al. and
additionally introducing a metaheuristic approach, namely a genetic algorithm, for the
WTDP.

The improvements to the mixed integer linear programs are on one hand achieved through
reformulating it, such that similarities to uncapacitated facility location problem (UFL)
become clear, which enables strategies designed for that problem to be adapted to the
WTDP (through valid inequalities and resulting optimizations within the branch-and-cut
algorithm). On the other hand, the authors have made further progress by implementing
a starting heuristic, which is used for an initial solution to the branch-and-cut-algorithm,

9



2. Problem Definition and Related Work

as well as a primal heuristic, that assists during the execution. Both their heuristics
work on the basis of a local search algorithm: The starting heuristic begins with having
all vertices in the dominating set, and greedily removing them according to the score
improvement it would bring, until no vertex can be removed without leaving a vertex
without a neighbor in D. The primal heuristic starts with an empty solution and adds
vertices according to the value of their decision variable in the LP-relaxed version of
the problem (vertices with larger values are added first, ties are broken by the degree
of the vertex). Vertices are only added if they cover at least one additional vertex that
the solution did not cover yet, and the process is stopped once a total dominating set
is obtained. A local search trying to improve the score by adding or removing single
vertices from the current solution is applied to each of the heuristics afterwards.

The genetic algorithm uses these heuristics as well to some degree. Let us first recapitulate
how a genetic algorithm in general works. A genetic algorithm keeps a (usually fixed)
number of solutions in memory, called the population. Multiple operators that are
inspired by the biological genetics in the real world are defined and then applied to
the population: a crossover operator that takes two solutions and merges them into
one “offspring” solution, a mutation operator that alters a solution randomly, and a
selection operator that decides which solutions are kept in the population are the most
common ones.

Álvarez and Sinnl first generate the initial population by using their starting heuristic
described before, but modified it to add a random element and not end up with the same
solution everytime. In particular, the removal of a vertex is skipped with a probability of
30%. This way the procedure is turned into a GRASP-based (generalized randomized
adaptive search procedure) starting heuristic, which is described in detail in [RR16]. The
crossover operator is simply defined as the union of the two solutions, i.e. all vertices
that are selected in either of the solutions, followed by the same GRASP procedure
that removes vertices greedily with a random chance to skip a greedy decision, until no
improvement was found in one iteration. The mutation is done by randomly removing
1-4 vertices from the solution, followed by a local search, and the selection is proportional
to the objective value, but no two solutions with the same size and the same objective
value are allowed to keep the population diverse. This decision may be connected to the
small population size of only 40, which enables them to apply the crossover operator over
each combination of solutions within the population.

Their evalutation expanded the instance set by larger instances and also including different
weight structures. While Ma et al. only generated graphs with vertex weights as well as
edge weights between 1 and 5, Álvarez and Sinnl introduced the instance-classes that we
use in this work as well, with different weight-ranges for vertices and edges and integer
weights up to 50. Also, instances with 75, 100 and 125 vertices were generated. Their
MIP-based approaces outperform Ma et al., and the genetic algorithm also found the
optimal (or at least best known) solution for almost all of the instances.

10



2.3. Existing Approaches to the WTDP

2.3.3 Kapunac et al. [KKD23]
The most recent work, published in 2023, completely focuses on the metaheuristic
approach and provides a variable neighborhood search (VNS) algorithm, evaluating
it on even larger artificial graphs with up to 1000 nodes. They also apply the same
algorithm to real-world social network graphs, and compare the performance of the total
dominating set to a randomly selected set of the same size with regard to a problem
about information spreading in social networks.

One interesting detail is that for their local search, they use a custom fitness function
that is defined as fit(D) = viol(D) + obj(D)

Wtot+1 . Here, viol(D) is the number of vertices
that are not covered by any vertex in the solution D, and Wtot is the sum of all weights
w and c of the graph. Therefore, this fitness function can even be used for infeasible
solutions to compare the number of vertices that are not covered, while the objective
value functions as a tiebreaker (and is the only component, if the solution is feasible).

Their local search then uses this fitness function to find better solutions - solutions that
cover more vertices if they are infeasible, and solutions with a better objective value
in general. This contrasts the local search algorithm by Álvarez and Sinnl, which only
operates on already feasible solutions. The second difference is that Kapunac et al. iterate
over the vertices in a random order, while Álvarez and Sinnl first try to add vertices not
in D, then try to remove vertices from D, but without random permutation. Apart from
that, a second, slower local search algorithm is used if no improvement was accomplished
for too long. Even then, it is only used on every tenth iteration. This second algorithm,
in addition to adding or removing single vertices, also explores solutions obtained by
swapping two vertices, i.e. adding a vertex to D while removing another one at the same
time.

To sum up the approach of the VNS: Given a solution, an improvement is sought by
first shaking the solution—in this case randomly removing a number of vertices from
D, where this number is varied within a range between iterations—and then employing
the local search algorithm(s) explained above, to find a new local optimum. The initial
solution is obtained randomly in this case.

Similar to our approach, to more efficiently compute the change of the objective value
when adding or removing a vertex, information about the external edges of each vertex
is stored. The similarities and differences will be discussed in Section 3.1.

Their VNS was directly compared to the genetic algorithm by Álvarez and Sinnl on the
same instances they used, as well as on larger instances with 250, 500 and 1000 vertices.
As they showed improvement compared to the genetic algorithm, this will be regarded as
the state-of-the-art and will be compared to our own solution in Chapter 4.

Additionally, they used the same algorithm in the context of an information spreading
problem. In this kind of problem, the task is usually to find a good starting set of
vertices within a (social) network, such that information reaches the maximum amount
of people (in the minimum amount of time). They solved a WTDP on real-life social
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2. Problem Definition and Related Work

network graphs from the SNAP dataset [LK14], and compared the performance of the
solutions (the total dominating sets) to the performance of a random set of vertices of
the same size. They describe no change in the number of reached vertices, but a much
faster convergence (i.e. the same number is reached with less iterations). Unfortunately,
it is not explained which weights are used when using the graphs in the WTDP setting,
and whether the weights have any impact in the information spreading model, although
the latter seems unlikely since the model is explained in detail in the paper. Also, a
comparison to another baseline would have been interesting, namely taking high-degree
vertices instead of completely random ones. In conclusion, we acknowledge the search
for a practical use-case of the WTDP, but in our opinion, the usefulness in this context
(information spreading in social networks) still has to be explored more.

2.4 Relevant Work for Similar Problems

In this section, we discuss some recent work on other problems related to the WTDP,
such that the presented techniques can in principle be adapted to be used for the WTDP
as well.

2.4.1 Wang et al. on the MWDS [WCY17, WCCY18]

Wang et al. [WCY17] have employed a kind of tabu search to find a Minimum Weight
Dominating Set (MWDS) on vertex-weighted graphs. They use configuration checking
(CC) to avoid revisiting the same solutions, by setting a flag for neighboring, possibly
impacted vertices when the local search makes a move. Wang et al. [WCCY18] later
improved this approach by using three values instead of a simple flag, to additionally
store information on whether a vertex could still be covered by the dominating set. This
was also done on larger datasets than used by Álvarez and Sinnl in [AMS21].

The local search algorithm FastMWDS used in [WCCY18], from which some elements
were used and adapted to the WTDP in this thesis as well, will now be explained in
greater detail. First, the graph is simplified through a procedure called ConstructDS
that consists of a set of rules that detect simple patterns. This includes isolated vertices,
vertices (or groups of vertices) with only one neighbor who has lower weight than itself, or
triangles where two vertices have higher weight and no other neighbors than the third one.
As long as such vertices are found, they are removed, and the procedure repeats until no
such patterns are present anymore. A more detailed description is given in Section 3.1.
Afterwards, an initial feasible solution is formed by randomly selecting vertices from the
remaining graph.
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The search itself is based on a score function already introduced in [WCY17]. It is defined
there as follows (using our notation):

scoref (u) =

����
1

wu
· �

v∈C1(u)
fv for u /∈ D

− 1
wu

· �
v∈C2(u)

fv for u ∈ D

where C1(u) := N(u) \ N(D) and C2(u) := N(u) \ N(D \ {u}). The fv value (in the
original paper denoted as freq[v]) is an additional value that is stored and updated
during the algorithm for each vertex. It intuitively indicates, how often the vertex was
uncovered during the execution of the algorithm so far.

For each vertex u that would be added to D, the fv values of the vertices that would be
additionally covered are added up for the score and divided by the cost wu of adding the
vertex to D. Inversely, if the vertex u is already in D, fv values of the vertices are taken
that would become uncovered, should u be removed from D.

In each step of the algorithm, at first two vertices are removed from D according to their
score (one greedily with the highest scoref , and in [WCCY18] an additional one with
the highest scoref from a randomly selected sample). Then, vertices are added until
D is a total dominating set again, preferring vertices with a high score. During this
phase, after a new vertex u was added to D, fv is increased by one for all remaining
vertices v that are not yet covered. The motivation behind this is that vertices, which
are frequently uncovered, should have a higher priority to be covered, as they then have
a greater weight in the scoref function of their neighbors.

The tabu mechanism referred to as “Configuration Checking” will not be described in
detail here, as such a strategy was not adapted to the WTDP in this thesis. In Section
3.1, we discuss how we adapted the other parts from this paper to the WTDP.

2.4.2 Dijkstra et al. on the MWDS [DGZ22]
On the same problem, Dijkstra et al. formulated probabilistic equations to estimate the
objective value under the assumption, that the vertices of the dominating set D are
randomly selected. Three theorems are built that assign those probabilities in different
ways. Their algorithm to provide a dominating set is then simply to execute those
probabilities – to decide for each vertex randomly, with a given probability depending
on the theorem, whether to include it in the vertex or not. Since it is about “normal”
domination, any non-covered vertices can simply be added to the dominating set as well,
and in a local search manner, any unnecessary vertices can be removed as long as the set
remains a dominating set.

This work is interesting in the context of this thesis especially due to the simlarity to
the “energy-based loss function” described in Section 3.3. This shows that the goal is
similar, that we aim to produce a sort of “probability” or score with a GNN, instead of
with manually crafted equations based on assumptions on the problems. However, this
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would not be possible for the WTDP or at least much more complicated, since the edge
weights make up a crucial part of the objective function in this case.

2.4.3 Bohan Li et al. on the MWCDS [LWWC21]
The Minimum Weighted Connected Dominating Set Problem (MWCDS) is defined
similarly to the MWDS, however, the solution dominating set D is required to be
connected, i.e. every vertex in D has to be reachable by every other vertex in D using
only edges within D. Li et al. adapted the local search of Wang et al. [WCCY18] to this
problem in 2021, by imposing additional constraints when choosing vertices to add or
remove (to keep D connected), and stating a search algorithm that makes use of the
connectedness. Also, a restart mechanism was added, that is triggered after a configurable
number of non-improving iterations. This restart mechanism does not only restart the
search from a newly generated initial solution, but also smoothes down the fv values
to prevent that single vertices accumulate too much fv over time (e.g. when stuck in a
specific local optimum) and distort the scores.

2.4.4 Ruizhi Li et al. on the MWCDS [LWL+21]
The same problem was tackled earlier in 2021 by Ruizhi Li et al., who did not use the
frequency based score function, but instead used the weights of the uncovered vertices in
the same place. Also, a restart mechanism was already used in this paper, which started
the search from a new random initial solution after a certain amount of iterations. An
interesting mechanism was used to select the vertices during the local search: with a
certain probability, the vertices were chosen greedily according to the scoring function,
otherwise the chosen vertex was determined randomly. In their evaluations, a probability
of 60-80% of greedy selection yielded the best results.

2.4.5 Hu et al. on the MTDS [HLW+21]
A simililar approach (local search including a tabu mechanism) was used by Hu et al. on
a total dominating set problem without any weights, i.e. the problem to find a minimum
cardinality total dominating set. They also keep track of how many iterations a vertex
has been uncovered, i.e. has not had a neighbor in D, similar to the fv value from Wang
et al. in [WCY17, WCCY18]. However, since there are no weights on the vertices, this is
the only factor in this case that determines the vertices to be chosen next.
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CHAPTER 3
Methodology

In this chapter, we will describe our approach in detail. First, the preprocessing rules
presented by Wang et al. in [WCCY18] are adapted to the WTDP, i.e., the edge weights
and their role in the objective function is taken into consideration. We will also discuss
the data structure that we use, and the methods at the core that are used within our
different Large Neighborhood Search (LNS) operators to add or remove vertices, and to
compute the score-difference that such an action would bring, since this is used commonly
within our operators.

Afterwards, the LNS will be described. After a short introduction about (Adaptive)
Large Neighborhood Search in general, we present the different destroy and repair
operators that were implemented.

Then, we summarize the functionality of Graph Neural Networks (GNNs), elaborate on
our feature-selection and training process and present an alternative loss function, which
is an “energy-based loss function” based on Nair et al. [NBG+20]. Finally, we bring those
two approaches together and present LNS-operators that are based on the results that
the GNN delivers.

3.1 Preprocessing and Data Structure
The preprocessing is based on the preprocessing for the MWDS proposed in [WCCY18],
although the different problem definition has some implications.

3.1.1 Preprocessing
In the original paper [WCCY18], there were four reduction rules used to simplify the
instance through preprocessing (while the rest of the construction of the initial solution
used the same heuristic as during the local improvement). In short these are:
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3. Methodology

• Weighted-Degree-0 Rule: isolated vertices have to be included in D

• Weighted-Degree-1 Rule-1: If there is a vertex u with only one neighbor v, who has
less weight than itself, this neighbor v is fixed to be in D and u is removed from G

• Weighted-Degree-1 Rule-2: If there are multiple vertices ui with degree one and
the only common neighbor v, then v can even be fixed if its weight is only smaller
than the sum of the weights of ui

• Weighted-Degree-2 Rule: If there are u1 and u2 with their only neighbors being
each other and a common neighbor v, and both have larger weight than v, then v
can be fixed in D and u1 and u2 be removed from G

For the total dominating set problem (hence also for WTDP), instances with an isolated
node are not solvable. Therefore, the Weighted-Degree-0 Rule has no counterpart for the
WTDP. In this work, we will only consider problem instances without any isolated nodes.
We verified that the instances of Álvarez et al. [AMS21] and Kapunac et al. [KKD23],
which we will also use to compare our solution against their approaches, are all connected.

4

2 3

1

23

4 2

2

5

1

3

Figure 3.1: Example instance: The green nodes must be included independently of any
weights

The two Weighted-Degree-1 rules from [WCCY18] are actually even simpler for WTDP:
Since for total domination, every vertex has to have a neighbor in D, for every vertex u
with only one neighbor v, we have to put v in our solution D – independently from any
weights. An example can be seen in Figure 3.1. However, we cannot just remove u from
the graph, since it may still be optimal to be selected to provide v with a neighbor in D.

To address this problem, one part is to look at the situation of Weighted-Degree-1 Rule-2:
If there are multiple degree-1 vertices ui ∈ N(v), i = 1, ..., k, we only need to keep the
cheapest one, i.e., uj , s.t. wuj = min{wui | N(ui) = {v}}. The edge costs are irrelevant
here, since they are included anyway in the objective function, regardless of whether ui

is selected or not: Either as the cheapest (because only) edge from the uis into D, or
as an edge inside D. And clearly a vertex ui that costs more than another, when both
can only serve the same one purpose (fulfilling the total domination constraint for v),
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3.1. Preprocessing and Data Structure

cannot be part of an optimal dominating set D. Here, the edge costs of deleted vertices
can simply be added to the vertex costs of v, to retain the correct objective value.

Even for the cheapest (or only) one of such vertices, u ∈ V with N(u) = {v}, we can
still try to remove it. We can generalize the approach from above: If there is another
vertex u∗ ∈ N(v), regardless of its degree, that will always be cheaper to include than u
(independent of the rest of the solution), then we can safely delete u, handling its edge
cost as above. To check this, we can compute the upper bound of the cost of such a u∗

being in D by summing the weight of all edges incident to u∗, as well as its own weight
wu∗ , because in the worst case all other neighbors of u∗ have to be in D as well. If there
is a u∗ ∈ N(v) such that wu∗ + �

e:u∗∈e ce ≤ wu, then u can be removed. Note that this
also covers the case described above, when u∗ has degree one as well. One might be
tempted to apply this approach in general – but remember that this simplification can
only be applied, because v is a fixed member of the dominating set D, and that the only
reason to select u would be to fulfill the total dominating set constraint – both of which
is not the case if u has more than one neighbor.

u1

v u2

Figure 3.2: Base “triangle” constellation to check for degree 2 nodes

The Weighted-Degree-2 Rule for the MWDS problem looks at triangles {v, u1, u2} with
only one connecting vertex v to the rest of the graph. Here, it is harder to justify fixing
v in D, since u1 and u2 can be perfectly valid choices to be in D. However, we can make
a similar argument as before: If selecting u1 and u2 is never viable due to the weights,
we can fix v, since even if one of u1 and u2 will be selected, it needs a neighbor in D,
which has to be v if taking u1 and u2 was ruled out. Also note that selecting all three
vertices is never optimal, since once v is selected, the cost of one edge and one vertex can
be omitted by removing either u1 or u2 from D without impacting the covered-ness of
any other node. Following those two observations, we are left with four possible options
to cover all three nodes, which we can analyze and compare their costs to possibly rule
some out:

1. u1 and u2 are selected – the cost is wu1 + wu2 + cu1,u2 + xD, where xD is the cost
of the cheapest edge from v into D

2. Only v is selected from the three and it has to have another neighbor in D – the
cost would be wv + cv,u1 + cv,u2 + yD
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3. a) v and u1 are selected – the cost is wv + wu2 + cv,u2 + min{cv,u1 , cu2,u1} + yD

b) v and u2 are selected – the cost is wv + wu1 + cv,u1 + min{cv,u2 , cu1,u2} + yD

Where yD denotes the “effective” costs from other edges (not to u1 or u2), that are
directly or indirectly caused by selecting v. Note that

yD ≤
�

u′∈N(v)∩D
u′ /∈{u1,u2}

cv,u′

since costs can only be added from incident edges within D. Edges to other vertices not
in D may also contribute to the objective value since it may be their cheapest edge into
D. However, if that is the case, selecting v did not cause the costs to increase, but to
decrease (or it only made the solution feasible), hence they are not considered in the sum
and the term above only constitutes an upper bound.

The first observation is that since the last term yD is equal for the cases 3(a) and 3(b), and
v’s state is identical (selected and covered) for both, we can immediately rule the more
expensive one out, because the other terms are independent of the candidate solution D.
For the sake of simplicity, let us denote the remaining possibility as option 3 with cost
B + yD, where

B := wv + min
�

wu1 + cv,u1 + min{cv,u2 , cu1,u2},
wu2 + cv,u2 + min{cv,u1 , cu2,u1}

�

Furthermore, denote the cost of the first option as A + xD for A := wu1 + wu2 + cu1,u2 .
Note that B + yD is an upper bound for the costs in the case that v is selected. Now we
can compare the worst possible case for when v is selected and the best case for when u1
and u2 are. The worst case for when v is selected, would be that every other neighbor of
v also has to be in D – then we would have to count every edge incident to D. Therefore

yD ≤
�

u′∈N(v)\{u1,u2}
cv,u′

If instead, u1 and u2 are both selected, the best case would be that xD is actually the
cost of the cheapest edge incident to v – we get

xD ≥ min{cu′,v | u′ ∈ N(v)}

With those estimates, we can check whether the following inequality always holds,
independently from D:

A + xD ≥ A + min{cu′,v | u′ ∈ N(v)} ?
> B +

�
u′∈N(v)\{u1,u2}

cv,u′ ≥ B + yD (3.1)
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u1

v u2

xD

Option 1, where u1 and u2 are selected and v
is not. xD, the cheapest edge into D, could of
course also be one of the edges to u1 or u2.

u1

v u2

Option 2, where only v is selected and is covered
by some other node.

u1

v u2

Option 3, v together with the cheaper one from
u1 and u2 is selected. Only the cheaper edge from
cv,u1 and cu1,u2 is counted towards the objective
function.

Figure 3.3: The three options where all three nodes are covered, with the used edges
colored.

If it does, then we can rule out the first option, since its cost will always be higher than
the alternative, while covering less vertices than if v and all its neighbors were selected. In
that case, we can fix v to be selected, and possibly u1 or u2 in case B ≤ wv + cv,u1 + cv,u2,
with the same argument that option 3 covers more vertices and is cheaper than option 2.
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Otherwise, it could still be that u1 and u2 turn out to be the best choice. But we can
nevertheless try to fix the cheaper option from u1 and u2, with the same argument as
above.

When there are multiple such pairs {ui
1, ui

2} with i ∈ 1, 2, ...k for the same v, we can still
improve the approach: not taking v in the dominating set would require all of them to be
in D. So in this case, we can compute A in the inequality (3.1) as A = �k

i=1 Ai, where
Ai := wui

1
+ wui

2
+ cui

1,ui
2
. Also, since once v is covered, there would not be any need to

select another u (with an exception explained below), we can actually use the minimal
Bi, i.e. let B in (3.1) be B := min(Bi).

u1

v u2

10

1010

1

100

1

Figure 3.4: Example where the edge {v, u2} can be removed

There is another easy reduction for these triangles, that should even be checked beforehand.
Consider the case that cv,u2 ≥ cv,u1 + wu1 + cu1,u2 . Then, we can delete the edge {v, u2}
and, in consequence, fix u1 to be in D. This can be seen when looking at the possibilities
to cover u2: if u1 /∈ D, then u2 needs to be covered by v, and therefore the edge {v, u2}
has to be included in the costs. But if covering it via u1 is cheaper because that edge is
so expensive, even if both of u1’s edges are included, then selecting u1 is always better,
since additionally v will be covered by u1. An example is given in Figure 3.4.

After applying these reductions, that fix vertices to be in D and possibly remove vertices
or edges, we can take another step: For each fixed vertex v, we can check whether they
already have another neighboring fixed vertex. If that is the case, there is great potential
for further improvements: First, we can actually remove any vertex that only has v as
neighbor, as selecting them would only add their weight and not improve the solution,
since v already has a neighbor in D.

More generally, we can also look for vertices u, where N(u) \ {v} ⊆ N(v) \ {u} holds.
Adding it to D cannot cover additional vertices (since they are all already covered by v),
so the only reason to do so would be if it reduces the costs. Also, if adding it to D would
not reduce the costs overall, then it never can (since if other neighbors are added as well,
it can only become more expensive since there are more D-internal edges) – in which
case it can be removed.

Summarizing the reduction rules for WTDP For the following rules, let mv :=
wv + �

e:v∈e ce, so mv is the maximal cost that taking v could cause.
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• TDOM-deg-1 For all vertices u with N(u) = {v}, fix v to be in D.

• WTDP-deg-1-weights From all such vertices u1, u2, ..., uk with N(ui) = {v}, ∀i =
1, ..., k for the same v, fix all vertices ui not to be in D, except for uj , where j
is the index of the node with the lowest muj . If there is another u∗ ∈ N(v) with
deg(u∗) > 1 and mu∗ ≤ muj , or a neighbor of v that is already fixed in D, uj can
also be fixed not to be in D.

• WTDP-deg-2-expensive-edge For each triple of vertices {v, u1, u2}, where
N(u1) = {v, u2} and N(u2) = {v, u1}: if cv,u2 ≥ cv,u1 + wu1 + cu1,u2 = mu1 , fix u1
to be in D (and the edge {v, u2} can be removed from the graph).

• WTDP-deg-2-triangles For each such triple t as above, compute At := wu1 +
wu2 + cu1,u2 , and Bt := wv + mini=1,2(wui + cv,ui + min(cv,uj , cui,uj )), with j being
the other index (j = 3 − i).
Now, for each v (with deg(v) > 2), let Tv be the set of the triples it is part of, and
Uv := 	

t∈Tv
t \ {v}. If

min
u′∈N(v)

cv,u′ +
�
t∈Tv

At >
�

u′∈N(v)\Uv

cv,u′ + min
t∈Tv

Bt

then fix v to be in D. Also, if WTDP-deg-2-expensive-edge was already executed,
all remaining u ∈ Uv except for the one with minimal wu + cu,v can be fixed to be
not in D.

• WTDP-already-fixed If a vertex v is already fixed in D and also has a neighbor
that is fixed in D, look for any u ∈ N(v) with N(u) \ {v} ⊆ N(v) \ {u}: If adding
u to D does not bring an improvement to the objective function, fix u not to be
in D.

Possibilities for further improvement After applying these rules, we can remove
vertices completely from the graph if their decision is fixed and all neighboring vertices
are also fixed. If such a vertex is to be included in D, we just need to make sure that the
information about the vertices it covered is stored somehow else, including the information
about cheapest edges for its neighbors.

Finally, if removing all vertices that are fixed and covered results in the graph being
disconnected, we can split the instance up into multiple, smaller instances: For each such
connected component, include the vertices of the component as well as the fixed and
covered vertices adjacent to them. Note that if we would allow fixed but uncovered vertices,
this approach would not be optimal because both subproblems (of both components that
this vertex was connecting) would need to find a neighbor of that vertex to cover it, while
actually one is sufficient. It is important to keep the information about which vertices
are already covered. The advantage of splitting an instance can be quite big, since the
two subproblems can not interfere with each other. For example, if there would be one
subproblem with k un-fixed vertices, and another with l, instead of having 2k+l possible
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solutions, we only need to check 2k + 2l, since finding an optimum for both subinstances
would also be optimal for the whole instance. However, it remains to be seen how often
such a cut can be made.

It may even be beneficial to try to detect such vertices, that could split up the instance
if they become fixed and covered. Artificially doing so, checking the “fixed in D” state
and the “fixed not in D” state separately, would still only need 2 · (2k + 2l) instead of
2k+l possibilities to check (if one would use an exact, naive approach) - provided that it
is already covered by another fixed vertex, otherwise this covering vertex would have to
be fixed similarly.

However, these approaches are a rather general topic, not restricted to the WTDP, and
could be done in general on graph problems where the decision variables only have local
influence. Therefore, such preprocessing steps were not performed in the course of this
work, and remain open for future investigation.

3.1.2 Data structure
The data structure, especially the helper variables that we use during our computation,
was chosen mostly with the following considerations:

• The algorithm (i.e., a destroy or repair operator) regularly needs to know the
effect of adding or removing a single vertex on the objective value.

• Most of the time, single vertices are added or removed one after another (especially
for repair methods)

• The contribution to the objective value only changes for vertices in N2(u), if u is
added to or removed from D (see explanation later).

• In the case that multiple vertices are added or removed at the same time, the
overhead should be limited (i.e. it must be possible to recompute all helpers at
once after such a change)

Our data structure for a solution of an instance contains the following information for
each vertex u, although for some techniques (e.g., a frequency based scoring function),
additional helper variables are stored:

• xu: The decision variable for vertex u, indicating whether u ∈ D or not. Note that
in the rest of this work, including the algorithms, we use D with set operations
instead of this variable for clarity.

• fixedu: A helper variable that is only set during preprocessing, to mark a decision
as fixed with respect to the preprocessing rules explained above.
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• coveredu: Indicates coveredness of a vertex, by storing the number of neighbors
that are in D. Therefore, a vertex with coveredu = 0 is not covered and violates the
total dominating set constraint, while a solution with coveredu ≥ 1 for all u ∈ V is
valid (feasible).

• δu: The amount by which the objective function would change in case variable xu

changes. This can also be set to a special value NaN (Not a Number) to indicate
that this value is invalid and has to be recomputed.

• eu: The cost of the cheapest edge into D, i.e. min
e∈{{u,v}|v∈N(u)∩D}

ce. If there is no

such edge, 0 is stored instead. (Note that all weights have to be strictly positive,
so 0 is an indicator that the vertex is not covered).

For any given solution, these values can be easily computed. The computation of δu may
be done lazily, i.e. only when one of the other algorithms needs the value. The procedure
is listed in detail in Algorithm 3.1. If the vertex is currently in D, it would be removed,
then the following changes in the objective function:

• The vertex weight wu is subtracted

• The internal edge costs to other vertices of D are all subtracted, except for the
cheapest one

• If the u was part of the cheapest edge of another v ∈ N(u), the new cheapest edge
(if any) has to be found and the difference added.

In the opposite direction, when the vertex is currently not in D, it would be added, and
the following changes:

• The vertex weight wu is added

• The internal edge costs to all other vertices of D are added, while the cost for the
cheapest edge eu is subtracted (so it is not included twice)

• For each neighbor v, if the edge cost cu,v is smaller than the cost of the currently
cheapest edge ev, the difference ev − cu,v is subtracted

The main methods to add or remove a vertex u from D then are quite straightforward.
The possibly precomputed δu can be added to the current objective value, δu can then
be set to −δu, and the helpers coveredv and ev have to be updated for all v ∈ N(u).
Furthermore, δv has to be invalidated or recomputed for all v ∈ N2(u), as was also
pointed out by Álvarez et al in [AMS21]. The reason is, that for all vertices in N(u), the
cheapest or second cheapest external edge could be the one to u, which could in both
cases affect δv of their neighbors. For an example, see Figure 3.5.
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Figure 3.5: Example solutions, with δu in red next to each vertex. On the right, the
vertex with weight 5 was added to D, and the δvs that changed were highlighted. Note
that the vertex on the bottom right is affected, although it is not a direct neighbor to
the changed vertex.

Note an interesting property of the WTDP compared to other dominating set problems:
Adding a vertex to a solution D can in some cases even improve the objective value.
This is possible, since the vertex might provide a better external edge to one or more
neighboring vertices not in D. For an example, see Figure 3.6. It follows, that an optimal
solution does not necessarily have to be as small as possible in the sense, that there
can still be vertices that could be removed without violating the total dominating set
constraint, but would worsen the objective value as a result of doing so.
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Figure 3.6: Example solution on another instance, with δu in red. Note that the
improvement in external edge costs would outweigh the cost of taking the vertex on the
bottom left, resulting in a negative δu.

The main difference to [KKD23] in the data structure seems to be, that we do not
store all edges into D for all vertices, but only the cost of the cheapest one. This
approach vastly simplifies the adding and removing of vertices compared to Kapunac
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et al. However, it leads to a more complicated compute_δu procedure and limits the
possible precomputation of δu, since it is invalidated for a large neighborhood on each
action, which could be avoided if a list of external edges is kept. Another difference is the
behaviour in case of infeasible solutions - we stick to the definition and do not account for
uncovered vertices in the objective function during computation (therefore, an infeasible
solution usually has a lower objective value since additional vertices have to be added for
the solution to be feasible), while Kapunac et al. extend the objective function such that
an infeasible solution always has a worse score than a feasible one.

Algorithm 3.1: compute_δu

Input: A WTDP instance G = (V, E) with vertex weights w and edge weights c,
current solution D ⊆ V , vector e with cost of the cheapest edge into D, a
vertex u for which δu should be computed.

Output: δu, the change in the objective function if xu would change.
1 if u ∈ D then /* vertex would be removed */
2 δu = −wu

3 mincost = ∞
4 for v ∈ N(u) do
5 if v ∈ D then /* remove internal edge */
6 δu = δu − cu,v

7 mincost = min(mincost, cu,v)
8 else if cu,v = eu then
9 e′ = second cheapest edge cost from v into D, 0 if there is none

10 δu = δu + e′ − eu

11 end
12 end
13 if mincost < ∞ then
14 δu = δu + mincost
15 end
16 else /* vertex would be added */
17 δu = wu − eu

18 for v ∈ N(u) do
19 if v ∈ D then /* add internal edge */
20 δu = δu + cu,v

21 else if cu,v < ev then/* better external edge for v */
22 δu = δu + cu,v − ev

23 else if ev = 0 then /* only external edge for v */
24 δu = δu + cu,v

25 end
26 end
27 end
28 return δu
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3.2 Large Neighborhood Search
Shaw introduced the term “Large Neighborhood Search” (LNS) for a family of local
search based methods in [Sha98]. We provide a short overview mostly based on the
summaries in surveys [AEOP02] and [WNJ+22].

First, we have to understand what “Neighborhood” means in this context. In local search
based metaheuristics in general, the solution space is searched by applying changes to the
current solution, and then checking the objective value and feasability of the new solution
– starting the next step from there, if it is a better solution. By the neighborhood of
a solution we mean all other solutions, that can be reached by such a change. These
neighborhoods are always problem-specific, since the solution representation can differ.
While in a routing problem, a neighboring solution can be defined by a single swap within
the permutation of destinations, in our case this can simply be achieved by removing or
adding a single vertex to D. The LNS is characterized by the larger amount of solutions
that are considered to be neighbors to a given, current solution, accomplished through
changes affecting larger parts of the solution that are applied in one step.

In LNS, these changes are split up into two parts: First, a destroy operator is applied,
which alters the solution by changing decision variables in a random way and/or guided
by some heuristic. This does not necessarily pay attention to the problems constraints
or objective function, but is only responsible for exploring solutions that are far away
from the current solution. Therefore, after this step, the result is expected to have a
considerably worse objective value or to be infeasible (so the solution was “destroyed”).
The second operator is a repair method, that usually uses local search to guide this
intermediate solution into a feasible local optimum, much like in other local search based
metaheuristics. Here we have to carefully distinguish the neighborhood implicated by the
terms “local optimum” and “local search” from the neighborhood in the LNS. The local
optimum is not necessarily the best solution from the whole neighborhood as described
before, but rather the best solution of its immediate neighbors, found by a local search
with a much smaller neighborhood relationship.

3.2.1 Adaptive Large Neighborhood Search
A very common extension of the LNS also used in this work is the Adaptive Large
Neighborhood Search (ALNS) introduced in [RP06]. Windras Mara et al. give an
overview of recent applications of this framework in [WNJ+22]. In an ALNS, multiple
different destroy and repair methods can be defined and used simultaneously. Before each
iteration, a pair of one destroy and one repair method to be used is selected randomly.
The algorithm usually keeps track of the performance of the individual methods and uses
this information to regularly update the probabilities, with which each method is chosen.

Another addition to the usual LNS is that there is a random check, that may accept
slightly worse solutions than the current one as the new starting point for the next
iteration. A metropolis criterion check is applied, which is computing e

−|obj(D′)−obj(D)|
T
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and comparing it to a random number in [0, 1], where D is the solution before and D′ the
solution after applying the methods. If the random number is lower than this expression,
the new solution is accepted although being worse. The factor T is a parameter that
brings a form of simulated annealing into this method, and is lowered after each iteration.

The procedure is summarized in pseudocode in Algorithm 3.2, which was adapted from
[WNJ+22]. The accept function in our case just returns obj(D′) ≤ obj(D).

Algorithm 3.2: Standard structure of ALNS, adapted from [WNJ+22]
Input: A current feasible solution D, destroy operators Ω−, repair operators Ω+,

initial temperature T0, cooloff parameter α, probability update frequency
η

Output: The best found solution D∗ before stopping criteria were met
1 T = T0; D∗ = D; D′ = D; i = 1
2 Initialize probabilities p for operator selection
3 repeat
4 Select destroy from Ω−, repair from Ω+ using p
5 D′ = repair(destroy(D))
6 if accept(D′, D) ∨ rand(0, 1) < e

−|obj(D′)−obj(D)|
T then

7 D = D′

8 end
9 if obj(D′) < obj(D∗) then

10 D∗ = D′

11 end
12 if i = η then
13 Update probabilities p of each operator, depending on tracked performance
14 i = 0
15 end
16 i = i + 1; T = αT
17 improving the integer linear
18 until stopping criterion met
19 return D∗

3.2.2 Destroy operators

We first introduce a categorization of destroy methods, to make further explanations
easier and to be able to focus on the more subtle differences between different operators
later. Then, the basic algorithm is provided that is behind most destroy operators that
we use. Its behaviour differs by core procedures that make the actual decisions. Lastly,
we provide a table with all our destroy methods, as well as a more detailed description
for our voting-based destroy algorithm.
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Categorization

Our destroy methods will be categorized in three ways: based on whether vertices are
added or removed, how the vertices are selected, and whether the method adapts to the
intermediate solutions or not.

If we compare this categorization with the overview given in Table 8 in [WNJ+22], we
find that they greatly differ. The most apparent difference is that there are no adding
destroy methods: as in the original papers for LNS and ALNS, the destroy operators
only remove vertices, and the repair operators only add vertices to the solution. One
reason for this is, that they mostly analyze Routing and Scheduling problems, where
the solutions are most likely permutations of the vertices to be traversed, instead of a
subset of all vertices to be chosen – adding vertices does not make sense in this case for
a feasible solution. Although an argument could be made that adding vertices is not
actually “destroying” the solution, since it remains feasible, it fits well into the framework
and turned out to provide a substantial boost to the performance of our ALNS approach.

Adding / Removing vertices For simplicity, all of the destroy-methods either only
add vertices, or only remove them from the dominating set. If vertices are removed, the
intermediate solution is not feasible, if vertices are added then it is simply not optimal.
This also limits the candidate vertices that can be selected, either to the Dominating
Set D or to the vertices not in D. All of them take a parameter that determines how
many vertices should be affected. Besides absolute values, a percentage is also accepted,
which is interpreted as the percentage of the candidate vertices that should be added or
removed. In contrast, the repair methods can do both, as they have to be able to repair
any destroyed solution (as will be explained in more detail in Section 3.2.3).

Selection of vertices Most methods employ one of the following principles to select
the vertices to add or remove.

• Random: The simplest form is to just randomly select the vertices from the
candidates (uniformly, i.e. with the same probability for each vertex).

• Weighted Random: We can also select the vertices randomly, but with weights
associated with each vertex, with the goal that promising vertices are more likely
to be chosen.

• Greedy: The greedy methods follow some heuristic to estimate the value of a
vertex to be chosen, and always select the best one.

• Structural: Some methods select the vertices according to structural properties,
such as selecting vertices close to each other.
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Adaptiveness After a vertex is added or removed, some of the methods adapt to the
new intermediate solution – for example, they recompute the estimates for a greedy
approach. This comes at the cost of more computation time. Other methods are oblivious
to that and only compute the such scores for the initial solution, or do not adapt to the
concrete solution at all (like uniformly random approaches).

Basic algorithm

As stated before, most of the approaches share the same basis. Notably, the Structural
methods are excluded from this because there is more logic involved in choosing the
vertices. However, all Random, Weighted Random and Greedy methods can be
described with this common algorithm. Differences still emerge from the other categories
(e.g., different types of adaptiveness slightly changes how this core has to work), but this
will be indicated with conditional expressions. Note that the actual implementation might
be optimized in some cases, but produces the same results as the algorithm described
here.

At the core of each operator, there is a score function. Given the current instance and
solution, it returns a data structure that maps each candidate vertex to a score, which in
turn guides the selection of vertices: In a Greedy operator, the vertex with the highest
score will be selected. In a Weighted Random algorithm, the higher the score, the
higher the chance will be that the vertex is selected, but the selection will be carried out
randomly. The score directly relates to the weight that is given to that vertex during
random selection, meaning, a vertex with twice the score of another one will also be
selected with a probability twice as high. This effectively delegates the implementation
of more sophisticated random selection methods (for example, weights based on rank, or
cut-off probabilities) to the score function itself. In this case, due to the usage as weights,
all used scores must be positive. Finally, the Random operators do not compute a score
at all, but select each vertex with the same probability. It can also simply be seen as
the special case in which score(v) = 1 for all v ∈ V . Note that the score function has
different meanings depending on whether the operator is adding or removing vertices: In
an adding method, a higher score should be given to vertices that seem to be promising
candidates to be in D, while in removing methods, the same vertices should have low
values to avoid being removed.

The general process is as follows: First, determine the candidate set C for the operation –
this is either D or V \D, depending on whether it removes or adds vertices to D. Naturally,
vertices that were fixed during preprocessing are excluded. Afterwards, compute and
store the score for each candidate v ∈ C, and repeatedly add or remove a vertex chosen by
the given selection method, considering score(v). This is done until the desired number
of vertices were added or removed. In case the operator is adaptive not only to the
initial solution, but to each intermediate solution, the scores have to be recomputed every
time D is altered. We provide a pseudocode description in Algorithm 3.3. Note that
adaptive, adding and selection as well as score are constant “meta”-variables that are
pre-determined by the concrete destroy method.
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The desired number of vertices to add or remove to D can be given via the input parameter
par in two ways: either the absolute value of vertices to be altered, or a percentage (given
as a number between zero and one), which is interpreted as the fraction of vertices in C
that should be affected. Therefore, in a first step the actual count of affected vertices is
determined as follows:

count =
�

⌈|C| · par⌉ for par ∈ (0, 1)
min(|C|, par) for par ∈ N+

This, together with the determination of C as written above, is hidden in the subroutine
getCandidatesAndCount (see Algorithm A.1 in the Appendix) for better readability in
Algorithm 3.3.

Algorithm 3.3: The basic destroy algorithm
Input: A WTDP instance inst = (G = (V, E), w, c) with vertex weights w and

edge weights c, the current solution sol = (D, h) with h holding helper
variables as described in Section 3.1.2, par ∈ (0, 1) ∪ N+ for the desired
number of vertices to be altered

Output: Destroyed solution D′

1 (C, count) = getCandidatesAndCount(V, par, adding)
2 scores = score(C, inst, sol)
3 sol′ = (D′ = D, h′ = h)
4 while count > 0 do
5 Select c from C according to selection method and scores
6 if adding then D′ = D′ ∪ {c}
7 else D′ = D′ \ {c}
8 C = C \ {c}
9 if adaptive (not only initial) then

10 Recompute h′

11 scores = score(C, inst, sol′)
12 end
13 count = count − 1
14 end
15 return D′

Voting-based heuristic

As it is probably the most unusual of the proposed destroy methods and, to the best
of our knowledge, is a novel method at least in the class of domination problems, we
explain the scoring function of the voting destroy method in greater detail.

One possibility for selecting the vertices to be removed or added, is viewing the vertices
as voters. Each vertex v has its neighbors as candidates for the dominating set, to
be covered by it. Their preferences can then be modeled by the cost of selecting the
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candidate, i.e., the weight of the edge to it, and possibly the weight of the vertex as well.
In case a candidate is already in D, its vertex weight would have to be omitted since it
would not be added again to the current objective function. Based on this score, different
voting schemes can be used to determine a winner to be added to the dominating set
- the simplest would be to just give one vote to the most preferred candidate, but this
could be expanded by veto rules or other schemes. Vertex removal could then be based
on the same score, to measure “popularity” – possibly enhanced by additional “voting”
from the vertices in D. However, in this work we focus on the adding variant.

As described so far, the heuristic would be pretty static and probably very similar to just
computing the δu-scores, since the only thing that changes with the current solution is
the score of the vertices newly selected into D – preferring them also in the future. To
counter this, we propose to add weight or probability to the votes. One possibility is
for each voter to have a probability to skip voting, that increases with each round the
current favorite is already in D. This would hopefully have the effect that after some
iterations, new vertices are elected into D, where they can actually compete with the
previous vertices. A similar effect could be achieved by adding weight to those voters,
whose favorite currently isn’t in the dominating set. Another approach would be to
directly manipulate the score – i.e., by gradually adding cost to vertices already in D
when calculating the preferences.

As a simple way to introduce such randomness, we decided to include a mechanism to
skip voting, and apply it to each neighbor that would be a better candidate for the voter.
By traversing those candidates in a random order for each voter, but making the skip
more probable for vertices providing only a small improvement, we hope to get some
variation in the votes while still adhering to the modeled preferences. In the current
version, the voting destroy method is as follows: For each vertex u /∈ D, check the vertices
v ∈ N(u) with cu,v < eu – i.e. its neighbors in D that would provide a cheaper edge into
D for that vertex (remember that eu is the cost of the cheapest edge from u into D). In
a random order, check whether v fulfills the condition and whether cu,v

eu
is smaller than a

random number rand ∈ [0, b]. Finally, the first such vertex, if any, gets a vote.

The upper bound b of the random number range is a parameter that can be chosen
arbitrarily, with larger numbers making a skip less likely. Larger values lead to the ran-
domness laying more emphasis on the random permutation, and less on the improvement
the candidate would bring. In our experiments, we found 1.5 to be a good value for b.
As an example, suppose a vertex u currently has the cheapest edge into D with weight
eu = 4, but has neighbors with edge weights 2 and 3 to it, so cu,v

eu
= 2

4 resp. 3
4 . This

means, the first neighbor has a chance of 0.5
1.5 = 33.3% to skip the vote and go to the

next candidate, while the next neighbor has a chance of 0.75
1.5 = 50% to skip the vote.

Therefore, if the neighbors are traversed in this order, there would be a 66.6% chance
for the first candidate to get a vote, a 16.6% for the second candidate to get a vote,
and also a 16.6% chance for no vertex getting the vote from this voter. Considering all
possible permutations, the chances would be 50%, 33.3% and 16.6% respectively. The
lower bound of the interval could also be changed, for example, to disable skipping at
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all for large improvements (if the bound is raised) or to add a chance of unconditional
skipping (if choosing a negative lower bound). In this work, however, we did not change
this parameter from 0.

In the end, vertices are added according to who received the most votes. Therefore, in the
scheme within the methods derived from the basic destroy function as described before,
it can be classified as a Greedy method with the score function assigning the number of
votes to each vertex. Note, however, that it is not greedy in the classical sense since the
voting itself contains randomness. Also, in terms of our Adaptive classification, it only
computes the scores (does the voting) for the initial solution, since on one hand repeating
the vote after each selection would somehow contradict the intuition of an election, and
on the other hand it would incur much more computation. The runtime complexity for
computing the scores alone is O(m), not accounting for the randomness (shuffling the
neighbors of each vertex as well as the random number for the skip-check).

We describe the obtained score function in detail in Algorithm 3.4.

Algorithm 3.4: score function using the voting heuristic
Input: The candidate set C, a WTDP instance inst = (G = (V, E), w, c) with

vertex weights w and edge weights c, the current solution sol = (D, h)
with h holding helper variables as described in Section 3.1.2

Output: votes, the number of votes for each vertex in C
1 votesc = 0 for all c ∈ C
2 for u ∈ V do
3 for v in random permutation of N(u) ∩ C do
4 change = cu,v

h.eu

5 if change < 1 ∧ change < 1.5 · rand() then
6 votesv = votesv + 1
7 break for v

8 end
9 end

10 end
11 return votes

Destroy methods

In Table 3.1, we summarize all destroy methods not using GNN-scores that were imple-
mented in the course of this thesis.

Frequency-based destroy Inspired by [WCCY18, WCY17], we also implemented a
destroy method based on a similar mechanism as described in Section 2.4.1, using an
additional helper variable fv, storing how often a vertex was not covered during the
destroy phase. Then, a similar (greedy) approach to the cost operator was applied,
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Table 3.1: Summary of destroy methods.

Name Mode Selection Adaptive Description
random remove remove random no Randomly remove vertices from D

random add add random no Randomly add vertices to D

voting add greedy only initial As described in 15: Each vertex “votes” for
one neighbor that is not in D, if it has a
cheaper edge than the one it has currently
into D. One neighbor is checked after an-
other, and if the conditions are met and a
random check is also passed, that neighbor
gets a vote. Then, vertices are added accord-
ing to most votes.

cost remove greedy adaptive Greedily removes vertex after vertex, each
time selecting the one lowering the objective
value the most (scoreu = −δu)

weighted remove weighted no Randomly removes vertices, with the vertex
weights being the weights for random selec-
tion. This does not take edge weights or the
current solution into account.

pairs remove structural
(greedy)

adaptive Tries to select pairs of vertices in D: Vertices
that have only each other as neighbors in D
are preferred, if there are no such pairs, then
the vertex in D with the least neighbors in
D is taken. Actually equivalent to a greedy
method with scoreu = −coveredu

region remove structural no Selects a vertex in D randomly, and using
BFS removes it and the nearest neighbors
from D until the desired number was re-
moved.

with a score function equal to the one from Wang et al., only replacing the weight of
the vertex wu by δu, since in the WTDP the cost of adding a vertex to D is not only
determined by the weight, but also by internal and external edge costs. However, the
method brought did not perform well in comparison to the other, less greedy methods,
and was therefore excluded from the table above. It had similar performance to cost,
which was kept for comparison purposes.

3.2.3 Repair operators

As mentioned before, the repair methods have to be able to restore an infeasible solution
to a feasible one, as well as optimize a solution where vertices can still be removed. For
all our repair methods, both is done in a two-phase-approach, since there is no real
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drawback: If the solution is already feasible, it can quickly be determined and there is no
need to restore it. Also, after being restored, the solution may still have to be improved
by the optimization step to become an actual local optimum. In most cases, this will
be the case if a vertex added during the “restoring” phase can now be removed again,
because other vertices (that were added afterwards) now cover its neighbors anyway.

Restoring

To restore the destroyed solution to be feasible again, we use a greedy approach: We
add one vertex after another to the solution, each time selecting the one with the least
effect on the objective function (i.e., the smallest δu), until every vertex has a neighbor
in D again. In this selection, vertices that would only cover vertices already covered, are
excluded. Afterwards, if any vertices added would lower the objective function even more
(negative δu although adding), we add them as well.

Optimizing

For the optimizing step, we have two different approaches. One is again greedy, and
is similar to the greedy local search in [AMS21] (however, GRASP is not used in our
approach). It simply removes the vertex which would most improve the objective value
(lowest δu), until no vertex can be removed anymore without making the solution infeasible
or increasing the objective value.

The other approach is similar, but instead of the greedy local search, the weighted random
approach is applied: The vertex to be removed is randomly selected, but weighted by
the cost gain, such that vertices with greater immediate impact are more likely to be
removed first.

Another, quite costly approach would be an exhaustive search: We can iterate over all
possible combinations of removing vertices, while the solution stays feasible. The result
is the optimal solution D′ of all solutions that are a subset of D. As mentioned, this is
computationally not feasible since it basically is a bruteforce search, especially if there
are a lot more vertices than needed. Therefore, it was excluded in this work. For future
work, however, it would be interesting to adapt the approach to search a smaller space,
e.g. by limiting the “depth” k: We can start with a greedy search, and then add the last
k removed vertices again. Now, the expectation would be that only around k vertices can
be removed without making the solution infeasible again, effectively limiting the search
space. However, there is no guarantee that this is the case, so there has to be another
mechanism limiting the search, ensuring that the method does not take too long. Other
possibilities to improve on these repair methods would be beam-search methods.

3.3 Graph Neural Networks
In this section, a brief overview over Graph Neural Networks (GNNs) is given, followed
by examples of recent applications in graph problems similar to the WTDP to some
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extent. Afterwards, we explain how we use a (Graph) Neural Network for helping to
solve the WTDP. In particular, the input and expected output of the neural network is
explained. Then, we describe the different architectures that were implemented, as well
as training details. Finally, we present how the output of the GNN is used in the ALNS.

3.3.1 Relevant literature

In this section, we will give a few examples where GNNs were used either for problems
similar to the WTDP, or inspired some of the architectural choices in this work. A
comprehensive overview of recent applications can be found e.g. in [WPC+20].

At the core of the GNNs we are focusing on is a concept called Message Passing, introduced
by Gilmer et al. [GSR+17]. To take account of the structural information of a graph
in a neural network, the idea is that for each vertex, the information of all neighboring
nodes (“messages”) is processed by a trainable neural network, then aggregated (since
there can be a variable number of neighbors in a general graph, in contrast to classical
convolutional neural networks (CNNs) as used e.g. in visual computing), and finally used
to compute the next embedding (“hidden state”) of the vertex.

A concrete graph problem that is somewhat similar to the WTDP is the Multi-Hop
Influence Maximization problem with the goal to find good starting vertices in a (e.g.
social) network to maximize information spread from the selected vertices. Ni et al.
[NLL+21] utilized an Attention-based GNN in 2021 for improved results especially on
larger graphs for this problem. Parallels to the WTDP can be seen in that the problem is
also about selecting nodes to “dominate” the other nodes (although less concise, and the
influence is not restricted to the direct neighbors). GNN layers that employ an attention
mechanism, so-called graph attention networks (GATs), were introduced by Veličković et
al. [VCC+18]. In short, they use an additional matrix of trainable weights that enables
the network to learn which of the neighboring vertices are more important and will have
greater weight during message passing.

Another example of a GAT presented by Kool et al. in [KvHW19] has largely influenced
our network architecture (see Section 3.3.3) and will therefore be explained in greater
detail. They implement an “encoder-decoder model” similar to the transformer model
presented in [VSP+17]. Within the network, the first layers are used to produce node
embeddings, which is the “encoder” part. This is then used as an input to the “decoder”
layers to produce a solution, which in this case is a route in the Travelling Salesman
Problem (TSP). Their encoder layers consist of two sub-layers: first, a graph convolutional
layer using multi-head attention, followed by a node-wise feed-forward layer. The final
encoder consists of a single dense layer, to get from the input features to a first node
embedding, which are then fed into a chain of the aforementioned encoder layers. An
additional “graph embedding” is computed as the average over all node embeddings.
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3.3.2 Using Machine Learning for the WTDP

To be able to use the GNN within the ALNS, we first have to specify, how such a GNN
can be trained on a given WTDP instance. On one hand, a target of the GNN must be
defined, that can be later used by the ALNS. On the other hand, we propose methods of
input preprocessing to convert the input instances, i.e. the graphs together with vertex
and edge weights, to features that can be used by a neural network as an input.

Target output

The goal in the WTDP is, to choose a dominating set D with a minimal objective value
obj(D). In terms of decision variables, this means we have to decide for each vertex in
an instance graph, whether it should be in D or not. The most straightforward target
output of the GNN therefore is (in our opinion), to predict for each vertex, whether it
will be in an optimal solution D. For each instance, the graph is given as an input, and
the target data for training the model is simply the best solution that we have available
from the ALNS with classical operators. This is a binary classification task - for each
vertex, the GNN has to decide whether the vertex is likely in the optimal solution or not.

There are drawbacks to this approach – for example, for most of the instances we do not
know whether the found solution is actually optimal. Furthermore, instances can have
multiple different solutions with the same objective value. We could include all known
optimal solutions in the training data, however, then there are samples with the same
input features, but a different output class – which usually should not be the case. One
possibility is to classify a node as “good”, if it is part of any optimal solution, another
would be to include a third class that indicates that the node is in some optimal solutions.
That would also be interesting from the point of view that these could even be the more
important kind of nodes, since the vertices selected in all optimal dominating sets could
be more “obvious” and therefore already be found by the traditional heuristics. As the
most intuitive solution to this problem, and the availability of quite a lot of solutions due
to their demand for the energy-based loss function introduced below, we set the target of
a node to true if it is part of any of the known solutions with the best objective value.

It was considered to include the edges in the target as well – i.e., to train a neural network
to identify, which edges are likely to be used in the optimal solution (as an internal or
external edge), and use this information as well within the ALNS. However, since the
decisions are still done regarding the vertices, we found no trivial way to include such
information in destroy or repair methods without aggregating them first in some way.
Since such aggregation can still be done within the neural network, we decided to do
that for network architectures supporting edge features, and refrain from implementing
custom aggregation methods on such edge outputs as well as additional, more complex
ALNS methods, in this work.
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3.3. Graph Neural Networks

Energy-based loss function

In the setup described so far, the output is mapped to be between [0, 1] using a sigmoid
activation layer, and as a loss function, binary crossentropy loss (also called logarithmic
loss) is used, as is usual for binary classification problems. Nair et al. proposed a different
loss function in [NBG+20], that overcomes some of the issues of computing scores for
each vertex based on a single best known solution. The core idea is to first use the
objective function to define a probability distribution, that favors better solutions over
worse ones, and to then train a neural network to approximate this distribution using a
sample of known solutions.

First, we define an energy function similar to equation 8 in [NBG+20], with the only
difference being that the objective function of the WTDP is used.

E(D; inst) =
�

obj(D) if D is feasible
∞ otherwise

The probability distribution can then be defined in the same way as in the original paper,
using our notation:

p(D|inst) = exp(−E(D; inst))
Z(inst)

Where Z(inst) = �
D exp(−E(D; inst)) normalizes the distribution to a sum of 1 over

all possible dominating sets D. This is the desirable distribution that our network will
then aim to approximate, with higher probabilities attributed to better solutions.

As explained by Nair et al., training is then done using a sample of solutions (not
necessarily optimal ones), that were collected using our ALNS algorithm with traditional
destroy and repair methods. Let us describe the loss function with regard to a single
instance I, where DI are the sampled, feasible solutions for that instance and pθ(D = S|I)
is the probability, that solution S is produced under the distribution approximated with
model parameters θ.

LI(θ) = −
�

S∈DI

wS,I log pθ(D = S|I)

The core part, wS,I , provides weights for the logloss function that results in preferring
better solutions. Since solutions with a better objective value will improve the loss more,
a higher probabilty for those solutions results in a better loss improvement than for worse
solutions. Normalization is added to avoid giving more weight to instances with better
objective values in general, when the loss is finally computed over mutliple instances.

wS,I = exp(−E(S; I ))�
S′∈DI

exp(−E(S′; I ))
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With the actual loss used being L(θ) = �
I∈J LI(θ), summed over all sampled instances

J in the current batch, we arrive at the same loss function as presented in [NBG+20]
in equations 11 and 12, where we refer the reader for a more detailed discussion. The
model to compute pθ(D = S|I) from the output for each vertex is also taken from there,
multiplying the individual probabilities for taking each vertex as if the choices were
independent from each other, and using Bernoulli distribution for each such decision.

Note that the data collection for the training data only has to be done once per instance,
and can be done “along the way” when running the ALNS for obtaining a best known
solution for the classical binary crossentropy loss.

Input preprocessing

The question, which input features should be used, is not trivial for this problem. The
weight and the degree of the node are naturally included. However, the most pressing
question is how to include the edge weights, as for the simplest approaches, the network
architecture does not necessarily support edge features, but the edge weights are a
substantial part of the problem. To tackle this problem, for each node, we precompute
the minimum, maximum, mean and median of the weights of the incident edges. Also, to
provide these measures also in a normalized form, we compute the same measures for
the edge weights rescaled to [0, 1] using the minimum and maximum of the other node
(simply by subtracting the minimum, then dividing by the span) – see the description of
Figure 3.7 for an example. This is also intuitively useful, since for this problem, the cost
of an edge is especially relevant in relation to the other edges incident to that same vertex
(since at least for vertices not in D, we want to find the cheapest such edge into D).

u v
2

1

2

5

2

3

Figure 3.7: Normalisation for weights: for the left node u, the weight of the center edge
is scaled to 0 since it is one of the cheapest edges incident to v, while for the right node
v, it is 2−1

5−1 = 0.25.

The pre-computation of measures to be used as input features was also used, for example,
by Almasan et al. [ASVR+22], who trained a reinforcement learning agent to determine
the best action on edges in a network based on a routing optimization problem, and
computed the “betweenness” of a link as an input feature. Other approaches to include
the edge weights would be to use or develop graph neural network layers, that simply
accept the weight as an additional input during message passing. For example, Liyu
Gong et al. proposed a framework to use edge features even for problems that do not have
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3.3. Graph Neural Networks

edge features initially, to enhance the performance of GNNs [GC19]. These improvements
could also be done additionally to the existing solution of aggregating the incident edges
per node.

An approach that is left for future work is to include the current solution of the LNS
as an input, and try to let the GNN decide not only which vertices would be good to
add in general, but specifically how to possibly improve the given solution. Although
it may provide better, more precise output with regard to the solution, it would also
require to run a forward-pass of the network not only once, but in each iteration of the
LNS. Also, in a classical supervised training setting, the training data would be much
more ambiguous and hard to justify, since the problem of multiple solutions being correct
applies even more when we are only looking for operations that lead to better solutions
than the current one, instead of looking for vertices in one of the few optimal solutions
overall. Therefore, we propose that a reinforcement learning setting would be much more
fitting for this kind of task, but leave this question for future research.

3.3.3 GNN Architecture
We propose multiple architectures with slight differences that are mainly inspired by
Kool et al. [KvHW19]. The basic structure is the same for all of them:

• First, a single dense layer, to “upscale” the input features to initial node embeddings
to be used in the following layers.

• Then, we experiment with a number of different kinds of graph convolutional
layers (GCN). In one network, we use a chain of only one kind of layer here. We
compare the performance in preliminary experimentation, as is explained in detail
in Section 4.2, and only use the best architectures in further experiments with the
ALNS. The layers experimented with contain:

– Classical graph convolutional layers (GCN)
– Graph convolutional layers with attention (GAT)
– Transformer-like layers, combining GAT-layers with feed-forward layers in

between, like described in Section 3.3.1
– Alternating layers training node embeddings with ones that train edge embed-

dings, as described below.
– No convolutional layer at all as a baseline (i.e., the network has no message

passing and is therefore not actually a GNN)

• In the place of the “decoder” in the work of Kool et al., since we do not have to
generate a sequence but just want to output a single value per node, we simply
use a chain of dense layers with ReLu activation, using a sigmoid activation to get
values between 0 and 1 in the last layer.
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Dropout layers are used after the final dense layers (with the dropout rate being a tuned
parameter, but in general around 0.5), as well as skip-connections and batch-normalization
(for the convolutional layers).

inv

scale

dense1

densen

dropout

scale

outv

... ×ndense

(a) Structure “plain”
(without any GNN layers)

inv
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transformer1

transformern

dense1

densen
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outv

ine

... ×nconv

..
. ×ndense

(b) Structure “trans”
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. .
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... ×nconv

(c) Structure “edges”
hu are the node embeddings
of another node u.

Figure 3.8: Overview of the three neural network structures which were evaluated

Edge embeddings In the WTDP, the edge weights are an important part of the
problem, so only considering them as part of the input features precomputed per vertex
could leave some of the potential of GNNs. Therefore, we additionally experiment with
two variants of edge features to be used in the graph convolutional layers (that support it):
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• The (normalized) weights of the edges

• Edge embeddings that are trained alongside the node embeddings

Training edge embeddings alongside the node embeddings is inspired by Jiang et al. [JJL19,
JZLJ20]. We use a simple approach, where we first compute initial edge embeddings in a
similar manner as for the node embeddings, using the input features of both endpoints
of the vertex as the input for a dense layer. Then, before each “transformer” layer that
supports concatenating edge features, we use another dense layer, with the input being
the current edge embedding as well as the two node embeddings of the incident vertices,
to receive the new edge embedding (that is used in the next step to compute the next
node embeddings).

Summary of structures Finally, after some preliminary experiments, three structures
were chosen to be evaluated and compared in more detail. They are shown in Figure
3.8. As a baseline and evaluation of our input processing method, the “plain” structure
does not use a graph convolutional layer and can therefore not really be classified as a
GNN (as the graph structure is not considered at all during training). For the other two
structures, we decided to use a transformer-like layer as the convolutional layers, using
the two variants of edge features respectively. The used parameters will be explained in
more detail in Section 4.2.

3.3.4 Combining the GNN with the ALNS

Since the goal of the work is to improve the existing ALNS approach using the results
from a GNN, we introduce LNS operators with the same basis as presented in Section
3.2, but using the output of the GNN. The output scores from the GNNs are obtained
once per instance and model before the ALNS run, and then used as an additional input.

It would also be possible to include the GNN output to introduce bias towards more
promising vertices during the restoring or optimizing phases, however, we decided to
focus on the destroy methods. One reason for this is that repair methods have to “react”
to the intermediate solution to be able to find a local optimum, for example in a greedy
local search, while the GNN will only return scores for vertices that are considered to be
generally good.

GNN-based destroy methods

Using the same basic destroy algorithm outlined in Algorithm 3.3, we can very easily
use the scores obtained by the GNN as the score function within our destroy operators.
An overview is given in Table 3.2. For adding methods, the output itself can be used.
However, for the removing destroy methods, we need to invert the scores to put a larger
weight on vertices with a lower score.
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Table 3.2: Summary of destroy methods based on the GNN scores

Name Mode Selection Adaptive Description
gnnremove (keep) remove weighted no Randomly select vertices

in D to be kept, with the
GNN scores outv being the
weights for random selec-
tion for vertex v.

gnnremove (inv) remove weighted no Randomly remove ver-
tices, with out−1

v being
the weight for random
selection.

gnnadd add weighted no Randomly add vertices,
with outv being the
weights for random selec-
tion.

Inverting the GNN-scores for removal We propose three different variants to
accomplish the inversion of the output of the GNN for removing destroy methods. First,
we can simply use out−1

v . This works for all scores and preserves the proportionality of
the scores, meaning that a vertex with half the score will have double the probability to
be removed. Another possibility, since the output of our GNN is already mapped to [0, 1],
we can use 1 − outv as the weights, interpreting the output as percentages. However, this
does not have the same property, and can lead to very similar probabilities for vertices
that have low, but still very different values. For example, consider two outputs from the
GNN being outv1 = 0.01 and outv2 = 0.1. With this conversion, the weights for random
selection would be 0.99 and 0.9, respectively – resulting in v1 only having a probability
of 0.99

0.99+0.9 ≈ 52.4% to be removed instead of v2, altough having a score ten times lower.
This effect also gains importance due to the fact, that for our experiments, the average
output for the scores was usually very small. Our third way to use the GNN output
for removal of vertices from D is actually reversing the selection of vertices: instead of
choosing the vertices to remove, we select the vertices to keep, based on the original
scores.

Preliminary evaluation showed very similar results for the first and third methods, while
the second one had little difference to completely random methods with equal weights.
We attribute this to the aforementioned low average of scores from the GNN, as well
as an additional averaging effect caused by the larger number of removals within one
iteration. Therefore, we omit the second method in the further experiments, and will
show in chapter 4.3.2 that the other two are similar enough to just keep comparing one
of them to the baselines.
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CHAPTER 4
Experiments & Evaluation

4.1 Training and Evaluation Data
The training data was obtained by randomly generating new instances in the same way as
the testing instances. The baseline approach (ALNS) was applied to these instances, and
the best found solution was taken as the target for training the network. Additionally,
the intermediate solutions were tracked to be used by the energy-based loss function
described in Section 3.3.2 during those runs.

4.1.1 Random graph generation
The graphs used for final evaluation were taken from [AMS21] and [KKD23] as provided.
For training and preliminary evaluation of different approaches, we used the same random
generation as for the existing instances, the Erdős Rényi model [AMS21, KKD23, MCY19]
together with random weight assignments. Given a number of nodes, and a probability
p, a graph with that number of nodes and initially no edges is created. Then, each
possible edge is added with a probability of p. Therefore, the parameter p affects the
density of the graph [AMS21]. Note that we only accept connected graphs, and generated
another one if it was not connected. Finally, for each vertex and each edge, the weight is
determined uniformly randomly from the ranges [1, wmax] or [1, cmax], where wmax and
cmax are parameters for the maximum weight of vertices or edges, respectively.

4.1.2 Parameters of the generated graphs
Directly taken from Alvarez et al. [AMS21], the following parameter values for the random
graphs were used:

• Number of vertices n: 75, 100, 126
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• Edge probability p: 20%, 50%, 80%

• Weight distribution W (wmax, cmax): (10, 50), (25, 25), (50, 10)

This amounts to a total of 27 instance classes. For each class, 1000 train + 250 validation
graphs were generated for training the GNN. Note that we may use the term “class” in the
further sections for the 9 classes which are indifferent regarding instance size, containing
for example the class of graphs with 80% edge probability and (25, 25) weight structure.
In general, we denote the classes with a term in the form “<n>-<p>-<wmax>-<cmax>”,
where the edge probability p is displayed as a fraction (0.8 instead of 80%) and unfiltered
parts are omitted (i.e., 0.8 as a class contains all graphs with edge probability 0.8,
regardless of instance size or weight structure).

4.2 GNN Training and Parameterization
The implementation of the GNN was done in Julia using the Flux.jl [ISF+18, Inn18]
and GraphNeuralNetworks.jl [Loc21] libraries, which provided the “dense” and
“transformer” layers used in Section 3.3.3. In this section, we discuss how the GNNs
were trained, which parameters were experimented with, and how the different GNN
structures were evaluated before using their output in the ALNS.

4.2.1 Training
The models were trained on the 1000 generated training instances, with a limit of 300
epochs and an early-stopping criterion if the loss on the 250 validation instances did not
improve in the last 20 epochs.

For the optimizer, ADAM [KB14] was used (Flux.jl implementation [ISF+18]) with a
learning rate of η = 0.0013, which was determined in manual experiments and experi-
mentation with automated tuning, see below.

Due to the large amount of data, especially for the energy loss function (since here,
solutions have to be additionally stored), mini-batching was used for training, batching
50 instances, resulting in 20 updates per epoch. This also leads to faster convergence,
however, the weights are never updated on the full dataset.

Still, the energy loss function introduced some other problems: models would often
randomly diverge from the beginning of training, and in general the training time (per
epoch) significantly increased. Adapting the learning rate manually did not bring a
sufficient improvement to justify tuning the models with this method (which includes
a lot of training runs). Therefore, the classical binary cross-entropy loss (logloss) was
used for all experiments, and we only train an additional model with the energy-based
loss function using the tuned parameters, comparing their performance directly in the
ALNS. For these models, if the model diverged from the beginning, the process was
simply restarted until a converging model was found.
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Training the models was done with GPU support (NVIDIA GeForce RTX 3070Ti 8GB).
The time to train the models was not measured exactly, but was around 1-3 minutes per
model (with pre-computed features and targets for the graphs), mostly depending on
the early stopping, the structure used, and the instance class (especially for the “edges”
structure, with noticeable longer times on denser graphs).

4.2.2 Parameter tuning
In the beginning, extensive manual experiments were done in order to get a feeling
for suitable parameters, and to test the implementation of the different structures and
overcome initial problems. Afterwards, we used the hyperparameter optimization package
SMAC3 [LEF+22] to try and automatically tune the parameters in question, with a
one hour time limit for each structure and class. However, analyzing the resulting
configurations, it became clear that some of those runs were clearly not converged, and
provided suboptimal configurations for some of the classes. We attribute this to the long
running time for each model in relation to the time limit, the small effect the parameters
have on the target (here the PRG-AUC, see Section 4.2.3), and possibly too largely
chosen search-spaces for certain parameters.

To provide a solid configuration for each model (in each class and structure), we adapted
our approach to scanning a very limited search-space, using one baseline configuration
which then is only adapted in a single parameter per experiment. The baseline config-
uration was determined from the better-performing models from SMAC and manual
experiments. Some of the parameters were fixed from this data, like the learning-rate
η = 0.0013 (from SMAC) and the batch size 50 (from manual experiments).

All experiments were done separately for each of the 9 instance classes, and each structure,
to observe potentially different effects of the parameters under these circumstances.

Tested parameter values

The parameter values tested are presented in Table 4.1, with the middle one being
the value in the baseline configuration, and one tested variant each for increasing and
decreasing the value. In total, there were 10 configurations other than the baseline tested
this way, two for each parameter.

Tested additional features

The baseline input features used were the weight, the degree, and the average normalized
edge weight (as described in Section 3.3.2), all normalized. These were determined during
preliminary experiments. However, experiments were done by adding additional input
features. The following variants of the edge values were experimented with:

• r_min: the minimum normalized edge weight

• r_max: the maximum normalized edge weight
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Table 4.1: Summary of the GNN parameter values tested.

Parameter dec. baseline inc. Description
nConv 2 3 4 Number of convolutional layers (not used in struc-

ture “plain”)
nDense 2 3 4 Number of dense layers (*)
nhidden 4 8 16 Number of hidden neurons for the transformer

layers (not used in structure “plain”)
nh_dense 8 16 32 Number of hidden neurons for the dense layers

(*)
dropout 0.3 0.5 0.7 Dropout rate for the dropout layer
* Dense layer parameters were also used for the dense layers to compute the
edge embeddings he in structure “edges”

• max: the maximum edge weight (not normalized)

The last feature was added due to some promising results where the normalization was
not needed, and to compare the results against its normalized counterpart. However, it
did not bring any improvement, and was omitted in the result plots in order to keep
them more readable.

Additionally, egonet features for 1-hop and 2-hop (N ∈ {1, 2}) neighborhoods for each
node were available:

• egoN_n: the number of nodes in the N -hop neighborhood

• egoN_m: the number of internal edges within the N -hop neighborhood

• egoN_o: the number of outgoing edges adjacent to the N -hop neighborhood

For the trans and edges structures, the edge cost ce was always passed as the single edge
input feature for ine.

4.2.3 Precision Recall Gain curves
A central element in our method to compare different models is the little-known Precision-
Recall-Gain area-under-curve metric (PRG-AUC). In general, area-under-curve metrics
like ROC-AUC (Receiver Operator Characteristic), PR-AUC (Precision-Recall) or PRG-
AUC are not dependent on a single threshold (in contrast to Accuracy or Fβ-score metrics).
Instead, they are defined by the area under a curve obtained by computing a point for
each possible threshold. This fits our scenario well, since we are not using the output
in a classifier (where one threshold would be needed), but to skew random selection in
our ALNS-methods towards the better vertices. ROC-curves are in general considered a
suboptimal metric for imbalanced datasets [DG06, JCDLT13, BDA13], especially when
compared to PR-curves.
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Flach and Kull however make a point that PR-curves have some shortcomings with
respect to interpretability and may lead to worse model selection, and propose the
Precision-Recall-Gain curve. Here, the precision gain is plotted against the recall gain,
which are harmonically scaled equivalents of the precision and recall respectively. For
example, precG = prec−π

(1−π)prec for π being the true ratio of positive samples. [FK15]

The advantages include (also summarized from [FK15]):

• Linear interpolation of the curve can be reasoned

• The area under the curve can be put in relation to the expected F1 score

• The comparison to the baseline is easier (since in PR-curves, the baseline perfor-
mance is dependent on π, which is already factored in in PRG-curves - a classifier
with baseline F1 score ends up on the minor diagonal)

One important caveat is, that due to the nature of the curve computation, the magnitude
of the outputs as well as the magnitude of the differences between two outputs does not
have any influence on these curves. Only the rank of the outputs matter, with respect
to their ground truth target value. For example, the following three predictions (where
each output is shown underlined if the ground truth is “true”) would result in the same
PRG-curve:

• [0.1, 0.2, 0.5, 0.5, 0.6]

• [0.01, 0.02, 0.05, 0.05, 0.06]

• [0.01, 0.2, 0.3, 0.3, 0.99]

When using those outputs as weights for random selection (as we do in our ALNS-
methods), the first and the second set of predictions result in the same probabilities.
However, the last one would heavily favor the last vertex with a weight of 0.99. If
the outputs would be directly used as probabilities (e.g. by randomly permutating the
candidate vertices and then selecting each vertex v with probability outv, until the
desired number was selected), the second (scaled-down) prediction would also have a
different effect.

Under this perspective, using the PRG-AUC values to tune and select models might lead
to selecting a model, whose outputs have less practical use in the adapted ALNS-methods.
However, the magnitude of the outputs have shown to be similar between models, and
additional experiments will be done with transforming the outputs before using them to
mitigate this.
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4.2.4 Method of comparison

For the final evaluations presented here, we always trained 5 models with the same
parameters (to account for outliers) on the 1000 training instances for a single class (with
n = 75 vertices), and evaluated them on the 750 validation instances of the same class
(250 each for n ∈ {75, 100, 125}). The 250 validation instances for n = 75 are the same as
were used for early stopping during training, but the models were not trained on them.
Note that this means that the model was trained on 75000 nodes each epoch. For each
model, we compute the PRG-AUC for all evaluated instances at once (as if it was a single
not-connected graph).

To compare different configurations, we initially planned to determine a “median” model
based on this PRG-AUC within each configuration, and compare those against each
other. However, when inspecting the results we came to the assumption that the random
variation between different trained models often had a larger effect than changing the
parameter itself, and that 5 runs are too small of a sample size to make up for that effect.
For some classes, for example, the comparison would have concluded that every tested
parameter change would beat the baseline (no matter which parameter, no matter if it
was increased or decreased), which was then explained by the situation that two of the
baseline models were keeping up with the other models, but three were slightly worse.
See the comparison in Table 4.2 and Figure 4.1.

Configuration PRG-AUC
baseline 0.98317
nConv=2 0.98356
nConv=4 0.98360
nDense=2 0.98833
nDense=4 0.98740
nhidden=4 0.98382
nhidden=16 0.98673
nh_dense=8 0.95524
nh_dense=32 0.98663
dropout=0.3 0.98793
dropout=0.7 0.98775

Table 4.2: Results according to the pre-
vious method using the median model.
Values better than the baseline are
shown in green. Figure 4.1: Comparison of all models of

the same structure (“edges”) and class,
showing quite similar results

Other measures tested were the average PRG-AUC per instance, and performing a sign-
test on the PRG-AUCs per instance. However, these methods still compare two models
(and not parameter configurations), so they suffer from the same problem. Generating a
merged model by using, for each vertex, the maximum of its scores across the five models,
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was an attempt to mitigate the problem by generating a single model to be compared.
This process introduced some randomness as well, with the model sometimes performing
even better than the best model, sometimes much worse, so the problem with randomly
worse baseline models would still have applied using this. For these reasons, we compare
all models of a parameter configuration against each other in a dot-plot as shown in
Figure 4.1, and decide on this basis where improvements seem likely to actually come
from the parameter change. Since the differences are quite small in general, it seems
reasonable to assume that no large improvements could be done by further parameter
experimentation, and that we can select good models from those experiments to be used
in the ALNS.

4.2.5 Results of parameter tuning
We see two cases where the parameters seem to make a consistent, although small
difference. First, the models of the “plain” structure seem to profit from additional
egonet features as well as “r_min”, see Figure 4.2. And second, for the “trans” models
we can see better results for more convolutional layers (better for nConv=4 and worse
for nConv=2), see Figure 4.3.

The effects are more visible on the classes with edge-heavy weight structures, which seem
to be more difficult in general, based on these results. For the “edges” structure, no
parameter configuration seems to consistently bring a (noticable) advantage, which could
mean that the more complex neural network is enough to offset some of the problems
that the other structures have. We included figures for all structures and parameters
in Appendix B. It also makes sense that the “plain” structure profits from the egonet
features, while the other ones, utilizing graph convolutional layers, can more easily induce
the role of a vertex in the graph without that information.

Final tuned models

For the models to be used in the ALNS runs, we therefore use:

• plain: The baseline parameters with all egonet features and the r_min feature

• trans: nConv=4, otherwise baseline parameters

• edges: unmodified baseline parameters

With these parameters, we again train 5 models per class, and choose the best for each
structure according to the PRG-AUC to use their outputs in the further experiments.

4.3 Results of ALNS Runs
In this section, we present the results on the test instances, that we obtained using our
ALNS methods with and without using GNN scores, presented in Sections 3.2 and 3.3.4.
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Figure 4.2: Additional feature tuning results for structure “plain”, on different instance
classes.

We also provide a comparison to the reported results of the genetic algorithm (GA) by
Alvarez et al.[AMS21], since they were obtained on the same instances.

Both repair methods, the greedy and the weighted random optimization together with
the greedy restoring phase, were used for all of the experiments. In addition, various
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Figure 4.3: Parameter tuning results for structure “trans”, on different instance classes.

combinations of the described destroy operators are used. All of the listed destroy
operators for one set of results are picked with the same probability (per parameter).

For the initial solutions, we use greedy approaches. We try both, starting with an empty
dominating set, as well as starting with the full vertex set, and greedily add resp. remove
vertices as in the greedy repair approach.
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The time reported is the time that was needed to find the presented solution. All methods
were run for 90 seconds per instance on a Intel Xeon E5540, 2.53 GHz Quad Core. For
the GNN-supported methods, neither the time to train the GNN nor the time to generate
the scores for vertices on the test graphs is included. However, the latter is insignificant:
computing the scores took about 8 seconds for all 135 test instances, implying an average
of about 0.06s for scoring a single instance.

For each of the reported method combinations, 10 runs were done per instance. All
of them are taken into account in the plots, unless stated otherwise. For the ablation
studies, where only one of the methods were used (with different parameters), only 5
runs were done per instance.

4.3.1 ALNS with traditional operators only
To determine a baseline performance of our ALNS algorithm, we compared different
combinations of the traditional destroy operators described in Section 3.2. The following
parameters are used (amount of vertices to be added or removed, either absolute or
relative to the number of candidate vertices).

• voting: 20%, 5

• weighted random remove 30%, 5

• random add: 30%

• cost: 5

• For runs with only one method, the parameters 20%, 40% and 5 were used.

Some of the proposed methods proved not to be very effective, for example the “pair-” or
“region-” based ones. A possible explanation would be the graph structure - especially for
the more dense graphs, it is probably no longer the case that the graph is most efficiently
covered by pairs, and the two-step-neighborhood (or a similar region) almost makes up
the whole graph, so it makes little difference to distinguish the near vertices from the far
ones.

On the following figures, on the x-axis the primal gap is shown, ie. obj−opt
opt , where obj

is the objective value of the solution, and opt is the best known objective value from
the baseline [AMS21] (even if not proven optimal). On the y-axis we see, how many of
the runs have achieved a primal gap of at most that much percent. Since this is also
given as a percentage, we can compare the performance although the methods were run a
different number of times (and we have only one result for each instance for the baseline),
although there remains some uncertainty.

As seen in Figure 4.4, the combination of our voting heuristic, together with weighted
random removal of vertices, performed best in our tests, although not by much. Adding
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Figure 4.4: Different combinations of the destroy methods.

some of the other methods seem to even worsen the average performance – probably
because they are taking computation time, or lead to non-optimal local optima too fast.

We also conducted an ablation study, to see whether one of the two destroy methods
can be omitted. However, it is clear in Figure 4.5, that these methods alone have much
worse results.

Figure 4.5: Comparison to each of the two methods alone.
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4.3.2 ALNS with methods using the scores from GNNs

For the destroy operators using the scores from a GNN, there are a few variants that
have to be considered before comparing the results to the baseline. In order to keep the
experiments to a feasible number of combinations, one aspect is tested after another. For
the first tests, we make an educated guess on which of the untested variants brings the
best results, and for later runs, we use the variants that performed best previously. Note
that the energy-based loss function was only evalutated on the best model because of
difficulties during training: The models failed to converge more often than for logloss,
and in general the training process took a lot longer due to the complicated computation
of the loss (taking 1000 solutions for each instance).

Table 4.3 contains a summary of which variants were tested. The results and the details
of the tested variants are described below.

Table 4.3: Summary of the variants tested.

Aspect Tested Variants Guess Best Comment
ALNS
methods

• gnn only: GNN methods only
• trad+gnn: GNN + traditional

methods
• gnnadd+weighted: GNN add +

trad. remove
• voting+gnnremove: GNN remove

+ trad. add

- trad+gnn

Removing
submethod

• keep: Picks vertices to be kept,
weighted by outv

• inv: Picks vertices to remove,
weighted by 1

outv

inv keep We also com-
pare the gnn-
only methods
in both vari-
ants.

Model
structures

• edges: Transformer layers with edge
embeddings

• trans: Transformer layers with edge
weights as the only edge input

• plain: Only dense layers

edges edges Pre-selection
based on the
PRG-AUC-
Scores on
validation
instances

Training in-
stance size

• 75: Models are only trained on in-
stances with n = 75 vertices

• 100: n = 100
• 125: n = 125
• MIX: Individual models trained for

each instance size

MIX MIX To study gen-
eralization ca-
pabilities

Loss func-
tion

• logloss: Classical binary cross-
entropy loss

• energy: Energy based loss function
(see Section 3.3.2)

logloss logloss Due to prob-
lems during
training, only
checked for
the best
model.
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In the following figures and tables we always compare the results of 1350 ALNS runs: 10
runs on each of the 5 test instances in each of the 27 classes.

ALNS method combinations

The first question is, which combination of destroy methods should be applied. For this,
we used the scores of the “edges” models, as they showed the most promise with regard to
their precision-recall-gain area-under-curve scores (on the generated validation instances),
as well as the “inv” algorithm for removing vertices.

In these variants “trad” refers to all of the traditional methods from the best configuration
found above (see Section 4.3.1), i.e. the voting add method and the weighted remove
method. “gnn” refers to the combination of the “gnnadd weighted” and the “gnnremove
weighted” methods described in Table 3.2. The other variants combine the traditional
adding method (voting) with the GNN-based removal, and vice versa. All GNN-based
methods are used with the same parameters as their traditional counterpart with the
same role: the gnnadd method with two variants that add 20% of the candidates or 5
vertices (like for voting), and the gnnremove with two variants that remove 30% of the
candidates or 5 vertices respectively.

(a) Comparison of different combinations of
ALNS methods

(b) Comparison of different submethods for
removing vertices

Figure 4.6: Overall performance for different combinations of used gnn-assisted ALNS
methods. “trad” (runs using only the traditional methods without using gnn scores) is
included as a baseline.

In Figure 4.6, the results are shown for different ALNS-method combinations and removing
submethod variants. It can be seen that the combination of both traditional and gnn-
supported methods yields the best results in our experiments, with around 84% of runs
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finding the best known solution. Also, using just gnn-based destroy methods already
performs better than using only the traditional methods. The difference however is quite
small. Looking at the detailed results per instance class in Table 4.4, the classes where
the differences are most noticeable are the denser classes (0.5-25-25 and 0.8-10-50).

The performance of the different removing submethods is very similar, with the “keeping”
algorithm performing slightly better. We therefore use the mixed variant with the voting,
weighted, gnnadd and gnnremove (keep) methods for the further experiments.

Table 4.4: Detailed comparison of method combinations (including removing submethods)
by instance class. opt% is the percentage of runs that found the best known solution, and
gap is the average gap (w.r.t. the best known solution). For each variant and instance
class, 50 runs were performed (10 runs on the 5 test instances each).

instance class gnn (inv) gnnadd
+weighted

gnnremove
+voting trad+gnn (inv) trad+gnn (keep)

opt% gap opt% gap opt% gap opt% gap opt% gap
75-0.2-10-50 76% 0.4% 80% 0.4% 72% 0.5% 80% 0.4% 74% 0.5%
100-0.2-10-50 70% 0.5% 72% 0.4% 68% 0.4% 74% 0.3% 74% 0.4%
125-0.2-10-50 76% 0.1% 70% 0.2% 70% 0.2% 70% 0.1% 74% 0.1%
75-0.5-10-50 98% 0.0% 90% 0.0% 100% 0% 96% 0.0% 98% 0.0%
100-0.5-10-50 66% 0.4% 70% 0.2% 74% 0.2% 70% 0.2% 64% 0.3%
125-0.5-10-50 64% 0.2% 80% 0.1% 76% 0.1% 74% 0.1% 76% 0.1%
75-0.8-10-50 80% 0.2% 82% 0.2% 92% 0.2% 100% 0% 100% 0%
100-0.8-10-50 50% 0.4% 48% 0.6% 36% 0.6% 52% 0.5% 48% 0.5%
125-0.8-10-50 100% 0% 94% 0.1% 82% 0.3% 88% 0.2% 94% 0.1%
75-0.2-25-25 60% 0.4% 66% 0.4% 52% 0.5% 58% 0.4% 62% 0.4%
100-0.2-25-25 68% 0.2% 68% 0.2% 64% 0.3% 68% 0.2% 66% 0.2%
125-0.2-25-25 20% 0.8% 36% 0.7% 36% 0.6% 34% 0.7% 36% 0.8%
75-0.5-25-25 84% 0.2% 82% 0.2% 96% 0.1% 84% 0.2% 92% 0.1%
100-0.5-25-25 100% 0% 100% 0% 96% 0.0% 100% 0% 100% 0%
125-0.5-25-25 78% 0.2% 86% 0.1% 88% 0.1% 90% 0.1% 92% 0.1%
75-0.8-25-25 100% 0% 100% 0% 96% 0.0% 100% 0% 100% 0%
100-0.8-25-25 80% 0.1% 72% 0.1% 72% 0.2% 80% 0.1% 90% 0.0%
125-0.8-25-25 40% 0.6% 46% 0.5% 62% 0.5% 52% 0.5% 54% 0.4%
75-0.2-50-10 98% 0.0% 98% 0.0% 100% 0% 100% 0% 100% 0%
100-0.2-50-10 100% 0% 98% 0.0% 80% 0.3% 96% 0.0% 98% 0.0%
125-0.2-50-10 98% 0.0% 100% 0% 100% 0% 100% 0% 98% 0.0%
75-0.5-50-10 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-50-10 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10 100% 0% 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10 100% 0% 100% 0% 98% 0.0% 100% 0% 100% 0%
125-0.8-50-10 100% 0% 100% 0% 96% 0.0% 100% 0% 100% 0%

Comparison of GNN structures

Next, we compare the results when using different models to provide the scores for
the vertices to our ALNS methods. First, we trained models for each of the 27 classes
individually, and computed the scores on the test instances for the corresponding class
that the models were trained on. This corresponds to the variants with the suffix “MIX”
in the following figures.
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Second, we also experimented with scores only taken from the models trained on instances
with n = 75, n = 100 or n = 125 nodes (but still with respect to the 9 remaining classes,
i.e. only the scores for the instance classes 75-0.2-10-50, 100-0.2-10-50 and 125-0.2-10-50
were provided by the same model), to investigate how well the models can generalize
w.r.t. instance size. This is only done for the “edges” structure.

(a) Comparison of different model structures (b) Comparison of models trained on different
instance sizes

Figure 4.7: Comparisons of ALNS runs using scores from different GNN-models. “baseline”
refers to the ALNS runs without any GNN-based destroy methods.

In Figure 4.7a we see somewhat surprisingly, that the “trans” structure performed slightly
better than the “edges” structure in our experiments, which still outperforms the “plain”
structure. We attribute this mostly to random variance of the ALNS runs, since the exact
same parameters and model outputs were used as in the previous comparison (“trad+gnn
(keep)” in Figure 4.6b), where the same configuration also found the best known solution
in 85% of the runs. It is difficult to then interpret the results in any meaningful way, since
it seems that the same configuration has a larger variance than what the effect between
tested variants is. Detailed tables on the performance of different models are given in
Appendix C. The difference is even smaller between models with the same structure,
trained on different instance sizes. However, this can also be seen as a positive sign that
it does not seem necessary to perform additional training on different instance sizes.

We also manually analyzed the outputs of those models, in order to understand what the
differences e.g. between the edges125 and the edges75 models were. In the samples we
took, we observed a clear correlation between the predictions, i.e. a node with a high
prediction value according to one model most likely also has a higher value according
to the other, although outliers exist and the absolute values of the outputs vary. See
Figure 4.8 for the comparison on one (arbitrarily chosen) instance.
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Figure 4.8: The predictions of two models
plotted against each other, for all nodes of
instance “NEW-75-0.2-10-50-1.wtdp”

Figure 4.9: Performance of the ALNS us-
ing gnn-methods with random scores, in
comparison with using the edges model, or
no gnn-methods at all (baseline)

Another interesting aspect is seen when comparing different models trained with exactly
the same parameters and input data on different instances. In Figure 4.10, the PRG-AUC
scores of five models are shown for all validation instances of the same class. Here, we
can see that within the same class, there still seem to be instances that are easier for all
of the models, and some that are harder for most.

Figure 4.10: Comparison of the PRG-AUC values of five models trained on the same
parameters and input data, on validation instances of the same instance class.
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Due to the very similar results of different models, we also conducted an experiment
where we used the GNN-based destroy methods with completely random outputs for the
vertices, to investigate whether there is an influence of the concrete vertex scores at all.
However, in our experiments, the results of using the random scores for the gnn-based
methods basically matched the baseline (of not using them at all, and only relying on the
traditional methods), see Figure 4.9. This indicates that the GNN outputs do matter,
and that the cause of the similar results is more likely to be the similarity between the
predictions themselves. Note how here again, using the edgesMIX scores had better
results than in the previous experiments in Figure 4.7, showcasing the variance of the
ALNS runs even when using the exact same inputs (apart from the random seed).

Still, this is a somewhat surprising result, since the PRG-AUC scores (and other considered
measures such as validation loss and PR-AUC) varied much more between the different
model structures, especially on the classes with a larger value-range on the edge weights
(class 10-50). Compare for example the result value ranges on the y-axis of Figures 4.3
and Figure 4.2, where the PRG-AUC values of the individual models are plotted.

Model trained using the energy-based loss function

Finally, we also performed the runs with scores from a model that was trained using the
energy-based loss function introduced in Section 3.3.2. We used the “edges” structure
and the same parameters as before, but only trained on instances with n = 75 vertices to
reduce the required number of models to be trained. As seen in Figure 4.11, there is not
much of a difference to the model trained with the classical, binary cross-entropy loss
(logloss).

Figure 4.11: Performance of the ALNS using scores from a model trained with the
energy-based loss function.
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4.3.3 Capability of models to generalize
Until now, the used models were always trained on randomly generated graphs with
the same properties (density and weight structures) as the target graphs. In order
to investigate whether the models can be used on different classes as well (effectively
reducing the required training effort), we compared their PRG-AUC scores with the
results of the models trained on the target class. The goal was to find a smaller set of
models, which could be expected to perform similarily on the whole dataset as the 27
individual models for each class. Then, we let the ALNS run with the outputs from just
this set of models.

Figure 4.12: The PRG-AUC scores on validation instances, of models trained on different
instance classes. The models which were trained on the same instance class are marked
with a star.

In Figure 4.12 we can observe that the strongest contenders are always the models, that
were at least trained on graphs with the same weight structure. Out of these, we chose to
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use models trained on the “0.5”-instances, both as the middle option and the seemingly
best variant on average. For a single model, the central instance class 0.5-25-25 would
seem like the best compromise, but especially on the vertex-weight-heavy graphs (50-10),
it looks like they perform significantly worse than their counterpart trained on 0.5-50-10.
Note that the models we observed here were all trained on instances with 100 vertices,
which was mainly selected as the middle option.

Results of ALNS-runs using the output of those models are shown in Figure 4.13. Although
there is still some improvement in relation to the traditional methods only, the quality of
the solutions was generally worse than when using models trained on same instance class
as the target.

Figure 4.13: Comparison of ALNS runs using models trained on the same instance class
as the target, against models that were trained on instances with only the same weight
structure W .

4.3.4 Proportion of new solutions

One concern about the GNN-based destroy methods was, that based on the scores there
could be a strong preference for a few vertices, which could actually hinder the discovery
of new solutions and therefore of new optima. To investigate this possibility, we analyzed
the variety of discovered solutions after a large number of iterations.

After training the first models, but before the final parameter tuning, the ALNS using
only GNN-based methods was run on all 1250 train- and validation instances of a single
instance class (100-0.8-25-25). The class was chosen for the preliminary experiments due
to the comparatively bad performance of the ALNS with traditional methods, and the
medium size. The parameters used were slightly different parameters than above (20%
of candidates, or 5 vertices flat for both the adding and the removing variant). During
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these runs, all intermediate solutions were collected, i.e. the new candidate solution after
both the destroy and the repair method were applied.

Figure 4.14: Violin plots showing the distribution (across runs) of the fraction of 1.
unique and 2. new solutions among the last 100 iterations, after 500, 1000, etc. iterations.

The results are presented in Figure 4.14. It can be seen that after 1500 iterations (or
even earlier, see Figure 4.16), the distribution stabilizes to be approximately normally
distributed around µ = 0.2 for new solutions. In other words, among the 100 solutions in
iterations 1400-1500, there are on average 38 different (unique) solutions, of which on
average 20 were not seen in this run before. This is clearly less than the almost 60% on
average in the beginning (after 500 iterations). Nevertheless, it also means that we are
nowhere near a situation where no new solutions are discovered at all.

Figure 4.15 shows how many iterations the runs had in total on average. The limit of
3000 for this analysis was chosen on this basis.

Note that those runs were done on different hardware, so this is not an indication for
the number of iterations in the “real” runs (which most of the time did not reach 3000
iterations). Other factors limiting the applicability of these insights include the different
model scores used (from an intermediate, only manually optimized model), and especially
the single instance class for which this data is available. But still, it is at least an
indication that there is no problem with being stuck on the same solutions over and over
again.
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Figure 4.15: Histogram of the number
of iterations on one run each on 1250
generated instances for 100-0.8-25-25.

Figure 4.16: The fraction of the new and
unique solutions found in the last 100
iterations, after the given number

4.3.5 Comparison to the baseline

In comparison to the genetic algorithm by Alvarez and Sinnl [AMS21], our approach
with traditional methods mostly has similar results – it also reaches optimality in about
80% of the runs, and seems to have a slightly lower primal gap for the harder instance
on average (see Figure 4.17). While the traditional methods only can keep up with the
performance of the genetic algorithm, using the gnn-based methods in addition seems to
bring a more noticeable advantage.

4.3.6 Analysis of the effect of instance size and structure

If we consider the results on the different sizes, weight structures and densities of the
input graph, we can also make some interesting observations. For example, for the larger
instances, it seems that the primal gap of our approach was slightly bigger, and for the
smaller ones, it was the other way around (Figure 4.18).

A similar image, but a bit clearer, can be seen for the graph density. Here, the GA finds
the best known solution for almost all of the most dense instances, while our approach
only does so for 80% (“trad”) resp. 85% (“trad+gnn”) of the runs. For the less dense
graphs, however, our approach seems to be a bit better, see Figure 4.19.

The most interesting pattern is seen for the different weight structure. It seems that for
the cases where either vertex or edge weights have a larger maximum than the other, the
average achieved primal gap is smaller with our approach, and especially when vertex
weights are more important, it is significantly better. However, for the instances with
the same weight range for both, this is no longer the case.
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Figure 4.17: Comparison to baseline (genetic algorithm (GA), results reported by Alvarez
et al.[AMS21]).

Figure 4.18: Comparison on all instances grouped by their size (number of vertices).

4.4 Discussion
After extensive experiments for training a GNN and optimizing the models backing the
new ALNS methods, we can actually see a small improvement to our baseline approach.
This basically is true across all different instance classes, although the exact numbers
vary. The most significant improvement seems to be for the class of instances, where the
vertices have a larger range of weights than the edges (50-10).

There are several caveats of these results. First and foremost, during training and tuning
the models as well as for the final results of the ALNS runs, we observed a high variance
of the results. Even though we did 10 runs per instance, this effect can still be easily
observed between two sets of runs with the exact same inputs.
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Figure 4.19: Comparison on all instances grouped by their density, where p is the edge
probability in the randomly generated graphs.

Figure 4.20: Comparison on all instances grouped by their weight structure W . The first
number denots the maximal vertex weight, and the second the maximal edge weight.

Important to note here is that only a few instances are affected at all. There are a lot
of instances that are (almost) always solved optimally by all our approaches (as well
as the baseline), and these instances can be found in almost all instance classes. The
differences mostly arise in a few, seemingly more difficult instances, where, for example,
one approach finds the optimal solution in around 20% of the cases, and the other one in
around 50% of the cases.

We did not conduct any further investigation on what makes these specific instances
more difficult than others. The class of the instances definitely seems to have an influence
on it, but it cannot be said that all instances of one class are strictly more difficult than
another. Especially in the comparison with the genetic algorithm by Alvarez and Sinnl,
we can still see that the type of algorithm has an impact on which classes are more likely
to be solved optimally. One possible explanation for the GA to be better on denser
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graphs, and worse on less dense graphs, would be that the high number of incumbent
solution prevents being stuck in a local optimum for longer. Even though we showed
that after thousands of iterations, we still discover a new solution in around every fifth
iteration for the ALNS approach, those are always searched from a single incumbent
solution. A stepping stone to the optimal solution might have been discarded before,
whereas in the genetic algorithm there is a higher chance that it is kept in the population.

An interesting effect to observe is also that although the different model structures had
very different results on the validation graphs with respect to the PRG-AUC scores
(which were used for pre-selection and tuning of models), the result of using them in
the ALNS was almost the same. Two explanations for this come to mind: It could
be, that the essential information for the improvements are already found with the less
sophisticated models, and the further improvements of the PRG-AUC scores are caused
by smaller, irrelevant changes in the outputs, that are covered up by the randomness of
the vertex selection in the gnn-based ALNS methods. Another explanation would be,
that there is something about the ALNS-based destroy methods themselves, that brings
the improvement, and that the model outputs are not that relevant after all. However, we
at least conducted the experiment with only random vertex outputs, which showed that
the model outputs have at least some significance and can not be disregarded completely.

All in all, there seems to be more space for improvement with regard to the ALNS-
methods using the outputs of GNN models, rather than improving the GNN models
themselves. Also, investigation on the few more difficult instances might be worth looking
into, however, for a purely artificial dataset such as this it may not bring any benefits.
The current results are enough to observe at least a trend. Finally, it might also be
worth it to improve the ALNS algorithm itself by hyperparameterization, allowing more
deviation from the current incumbent, finding new ALNS-methods altogether, or trying
restart approaches (since only for a very small number of instances, none of the runs
have found the best known solution).
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CHAPTER 5
Conclusion

On the example of the Weighted Total Domination Problem, we investigated the possibility
to improve the performance of a traditional metaheuristic, in our case the Adaptive
Large Neighborhood Search, by using the output of a Graph Neural Network. We have
experimented with new approaches on different points of that problem – preprocessing,
ALNS-methods, and model-training – and found small, but visible improvements.

There were five preprocessing rules introduced, which are adaptions of the ones for the
MWDS by Wang et al. [WCCY18]. Although they could not be applied on the instances
we ran our final experiments on, they could be useful to reduce the number of decisions
on graphs with a number of nodes with a degree of only 1 or 2. Some of these decisions
are probably trivial to find with other methods, but it would still effectively be an
instance-size reduction in those cases.

For the ALNS-methods, we presented the “voting-based” destroy method, viewing each
node as a “voter” that will vote for a node in its neighborhood to be added to the solution,
in case it brings an improvement to the objective function in a local sense – that is, if
the nodes external cost is reduced. Together with a random aspect that introduces some
variance in this “behaviour”, it is better than just adding nodes randomly, and works
well together with the destroy method that removes vertices based on the vertex weight
alone, being part of the best configuration for our experiments with traditional destroy
operators only.

Also, the GNN-supported destroy-methods were introduced. These methods utilize the
GNN output as the weight for random selection of vertices to be removed or added to
the solution. The runs using those methods in addition to the traditional methods found
the best known solution in approximately four percentage points more of the runs (85%
instead of 81%, roughly).

Interestingly, the different model structures, parameters and training instance sizes did
not seem to have a noticeable impact on the performance of the ALNS, as long as
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they were reasonably chosen. This was unexpected, since when comparing the models‘
performances on the validation set (using measures like the Precision Recall Gain AUC),
there was indeed a significant difference at least between the different model structures.
However, the same methods using random scores instead of the output of a model only
performed on baseline level, so our explanation is that the model outputs are just quite
similar, regardless of the model structure. Also, the random nature of the GNN methods
make such small differences even more unlikely to show up in the end.
Here, we definitely see the possibility for future work to investigate, where exactly the
model complexity and size has to be in order to make an impact. We extensively tested
parameter configurations for training the GNN models, in order to be sure that for each
of the structures, we have a good model (resp. good outputs) for a fair comparison.
Also, we trained those models on 1000 randomly generated training instances per class,
used further 250 validation instances, for which we had to find reasonably good solutions
beforehand to refer to as the “close to optimal” solutions. We suspect that this could
be drastically reduced, and furthermore that a generalized model can be learned for
multiple classes, especially with regards to instance size and weight structure. The worst
performance for a different class was measured on models that were trained on graphs
with a different density. All in all, it would be interesting to see how much these training
efforts can be reduced without impacting the quality of the model too much.
In order to further improve the performance of the ALNS, different ALNS-methods
seem to be more promising to be looked into. This work only utilizes the vertex-scores
obtained by the GNN in the most basic variants of destroy-methods. There could be
potential in using them in repair-methods as well, and in general there could be other,
more sophisticated repair-methods that could bring an improvement even without the
help of GNN-outputs. An example would be beam-search methods, or limited-depth
exhaustive searches on each repair iteration, as was outlined in Section 3.2.3.
Other interesting directions include different variants of the voting-based destroy operator,
since the voting mode as well as the modeled preferences can be done in a multitude
of alternative ways. For example, instead of a single vote with random influence, each
node could have multiple votes, perhaps with different weights attached, or a single
transferable vote could be implemented. Also, our destroy method only adds new vertices
to the solution D, but in a similar fashion it could make sense for the vertices in D
to vote for vertices to be removed. In general, it is interesting to investigate how such
methods relate to more “traditional” destroy methods. For example, imagine a system
where each node votes for a neighbor proportional to the advantage it would bring on
the objective function, and those votes were normalized in addition by the degree of the
nodes. This would at least be close to just computing δu, the effect of taking u into D,
and it remains to be seen whether this “voting” mechanism in some cases just provides a
different way to compute the same scores. Finally, it would be interesting to see simliar
appliances in different problems than the WTDP.
One problem that has occured on multiple occasions during our experiments was the
randomness of runs or model trainings that were performed with exactly the same
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parameters. Having performed 10 runs on each instance, for some of them it seems that
this is enough to show the randomness between the runs, but too little to be sure whether
this randomness has a larger influence than the configurations itself. With this insight,
future work should include more runs per instance or at least per instance class (with
more generated test instances). It is also hard to justify any argumentation without a
practical use case behind it, since the observed differences are, for any real application,
quite small: A few percent of runs more find the best known solution, while the rest
often only has an optimality gap of 1% or less.

A bit of research should also be done in the direction of those instances that are not
always solved optimally. In the ALNS runs as well as when training the GNNs, some of
the instances seem to be easier than others, accross multiple different models and ALNS
runs. Although this form of randomly generating graphs for the WTDP makes sure to
include graphs of different forms and structural properties, it would be interesting to find
out what makes these instances difficult in particular, and to be able to extract them in
a separate class.

Finally, another idea on using a GNN in combination with an ALNS (or local search
based metaheuristics in general) would be to use the current solution as an input to the
neural network as well, to compute possible moves instead of just a general estimate on
vertices regardless of the current situation. Although this would need a forward-pass in
each iteration, it could still be worth the efforts. However, this would probably already
fit better into a Reinforcement Learning setting, when thinking about obtaining training
data for classical neural network training: How would the target even be defined for a
given instance and incumbent solution, when there are most likely multiple intermediate
solutions that are valid stepping stones to a new optimum?
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APPENDIX A
Additional Algorithms

Algorithm A.1: getCandidatesAndCount
Input: The vertex set V , amount ∈ (0, 1) ∪ N+ for the desired number of

vertices to be altered, adding ∈ {true, false}
Output: A tuple (C, count), where C is the candidate set and count is the

number of vertices to be removed or added
1 if adding then C = V \ D
2 else C = D
3 C = C \ {u|fixedu = true}
4 if amount ∈ (0, 1) then count = ⌈|C| ∗ amount⌉
5 else count = min(amount, |C|)
6 return (C, count)
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APPENDIX B
Detailed Tuning Results

All results from parameter tuning for the GNN are shown here. Only graphs with more
interesting effects are shown in the main work.
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B. Detailed Tuning Results

Figure B.1: Parameter tuning results for structure “plain”.
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Figure B.2: Additional feature tuning results for structure “plain”.
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B. Detailed Tuning Results

Figure B.3: Parameter tuning results for structure “trans”.
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Figure B.4: Additional feature tuning results for structure “trans”.
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B. Detailed Tuning Results

Figure B.5: Parameter tuning results for structure “edges”.
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Figure B.6: Additional feature tuning results for structure “edges”.

79





APPENDIX C
Detailed Result Tables

The following tables contain the more detailed data, averaged over all runs on instance-
class resp. instance level. If not specified differently, there are 10 runs per instance, and
therefore 50 runs per instance class, for each row. gap contains the average gap to the
best known solution, and opt% is the percentage of runs that have a gap of 0.

Table C.1: Comparison of model structures on the different instance classes
instance class baseline edgesMIX transMIX plainMIX

opt% gap opt% gap opt% gap opt% gap
75-0.2-10-50 80% 0.5% 78% 0.4% 74% 0.6% 70% 0.6%
100-0.2-10-50 58% 0.7% 78% 0.4% 68% 0.3% 60% 0.6%
125-0.2-10-50 66% 0.3% 72% 0.1% 76% 0.1% 64% 0.3%
75-0.5-10-50 86% 0.1% 100% 0% 100% 0% 90% 0.0%
100-0.5-10-50 78% 0.1% 70% 0.3% 74% 0.2% 84% 0.2%
125-0.5-10-50 74% 0.2% 76% 0.1% 72% 0.1% 70% 0.2%
75-0.8-10-50 100% 0% 98% 0.1% 100% 0% 98% 0.1%
100-0.8-10-50 40% 0.6% 40% 0.5% 52% 0.5% 56% 0.4%
125-0.8-10-50 80% 0.3% 90% 0.2% 94% 0.1% 84% 0.3%
75-0.2-25-25 66% 0.4% 64% 0.5% 62% 0.3% 52% 0.6%
100-0.2-25-25 58% 0.4% 62% 0.3% 70% 0.2% 70% 0.2%
125-0.2-25-25 30% 0.7% 42% 0.6% 50% 0.4% 38% 0.7%
75-0.5-25-25 94% 0.1% 88% 0.2% 86% 0.2% 96% 0.1%
100-0.5-25-25 100% 0% 100% 0% 98% 0.0% 100% 0%
125-0.5-25-25 92% 0.1% 94% 0.0% 90% 0.1% 98% 0.0%
75-0.8-25-25 92% 0.1% 100% 0% 100% 0% 100% 0%
100-0.8-25-25 66% 0.2% 76% 0.1% 80% 0.2% 76% 0.2%
125-0.8-25-25 50% 0.8% 54% 0.4% 54% 0.4% 70% 0.3%
75-0.2-50-10 100% 0% 100% 0% 100% 0% 96% 0.0%
100-0.2-50-10 74% 0.4% 94% 0.1% 98% 0.0% 80% 0.2%
125-0.2-50-10 100% 0% 98% 0.0% 100% 0% 98% 0.0%
75-0.5-50-10 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-50-10 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-50-10 88% 0.1% 96% 0.0% 100% 0% 100% 0%
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C. Detailed Result Tables

Table C.2: Comparison of model structures on the instances with 75 vertices
instance baseline edgesMIX transMIX plainMIX

opt% gap opt% gap opt% gap opt% gap
75-0.2-10-50-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-10-50-2.wtdp 100% 0% 90% 0.2% 90% 0.1% 100% 0%
75-0.2-10-50-3.wtdp 90% 0.3% 100% 0% 90% 0.2% 60% 0.7%
75-0.2-10-50-4.wtdp 100% 0% 80% 0.3% 90% 0.0% 90% 0.0%
75-0.2-10-50-5.wtdp 10% 2.0% 20% 1.7% 0% 2.5% 0% 2.3%
75-0.5-10-50-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-10-50-2.wtdp 80% 0.1% 100% 0% 100% 0% 90% 0.0%
75-0.5-10-50-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-10-50-4.wtdp 60% 0.1% 100% 0% 100% 0% 90% 0.0%
75-0.5-10-50-5.wtdp 90% 0.0% 100% 0% 100% 0% 70% 0.1%
75-0.8-10-50-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-10-50-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-10-50-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-10-50-4.wtdp 100% 0% 90% 0.4% 100% 0% 90% 0.4%
75-0.8-10-50-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-25-25-1.wtdp 0% 1.2% 10% 1.5% 30% 0.8% 10% 1.0%
75-0.2-25-25-2.wtdp 70% 0.3% 90% 0.3% 70% 0.1% 30% 1.3%
75-0.2-25-25-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-25-25-4.wtdp 60% 0.4% 20% 0.6% 10% 0.8% 20% 0.6%
75-0.2-25-25-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-25-25-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-25-25-2.wtdp 80% 0.1% 100% 0% 100% 0% 100% 0%
75-0.5-25-25-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-25-25-4.wtdp 90% 0.1% 40% 0.8% 30% 1.0% 80% 0.3%
75-0.5-25-25-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-25-25-1.wtdp 90% 0.1% 100% 0% 100% 0% 100% 0%
75-0.8-25-25-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-25-25-3.wtdp 70% 0.3% 100% 0% 100% 0% 100% 0%
75-0.8-25-25-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-25-25-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 80% 0.1%
75-0.2-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.2-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.5-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
75-0.8-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
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Table C.3: Comparison of model structures on the instances with 100 vertices
instance baseline edgesMIX transMIX plainMIX

opt% gap opt% gap opt% gap opt% gap
100-0.2-10-50-1.wtdp 90% 0.2% 100% 0% 90% 0.2% 100% 0%
100-0.2-10-50-2.wtdp 100% 0% 100% 0% 100% 0% 90% 0.1%
100-0.2-10-50-3.wtdp 20% 1.4% 70% 0.5% 30% 1.0% 60% 0.7%
100-0.2-10-50-4.wtdp 40% 0.3% 80% 0.0% 60% 0.1% 30% 0.3%
100-0.2-10-50-5.wtdp 40% 1.6% 40% 1.3% 60% 0.4% 20% 2.1%
100-0.5-10-50-1.wtdp 50% 0.4% 20% 0.6% 0% 0.8% 50% 0.4%
100-0.5-10-50-2.wtdp 40% 0.2% 70% 0.1% 80% 0.1% 90% 0.0%
100-0.5-10-50-3.wtdp 100% 0% 60% 0.8% 90% 0.3% 80% 0.4%
100-0.5-10-50-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-10-50-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-10-50-1.wtdp 30% 0.5% 50% 0.3% 100% 0% 80% 0.1%
100-0.8-10-50-2.wtdp 20% 0.6% 0% 0.7% 0% 0.7% 10% 0.7%
100-0.8-10-50-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-10-50-4.wtdp 40% 0.8% 50% 0.7% 50% 0.8% 70% 0.5%
100-0.8-10-50-5.wtdp 10% 1.0% 0% 0.9% 10% 1.0% 20% 0.6%
100-0.2-25-25-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.2-25-25-2.wtdp 20% 0.8% 40% 0.2% 10% 0.5% 10% 0.4%
100-0.2-25-25-3.wtdp 80% 0.1% 20% 0.4% 70% 0.1% 100% 0%
100-0.2-25-25-4.wtdp 90% 0.4% 80% 0.5% 100% 0% 100% 0%
100-0.2-25-25-5.wtdp 0% 0.7% 70% 0.1% 70% 0.2% 40% 0.5%
100-0.5-25-25-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-25-25-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-25-25-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-25-25-4.wtdp 100% 0% 100% 0% 90% 0.1% 100% 0%
100-0.5-25-25-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-25-25-1.wtdp 30% 0.3% 30% 0.3% 50% 0.2% 20% 0.4%
100-0.8-25-25-2.wtdp 70% 0.1% 70% 0.1% 100% 0% 100% 0%
100-0.8-25-25-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-25-25-4.wtdp 30% 0.7% 80% 0.2% 50% 0.6% 60% 0.5%
100-0.8-25-25-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.2-50-10-1.wtdp 70% 0.1% 100% 0% 90% 0.0% 70% 0.2%
100-0.2-50-10-2.wtdp 20% 1.5% 70% 0.4% 100% 0% 40% 0.7%
100-0.2-50-10-3.wtdp 90% 0.0% 100% 0% 100% 0% 90% 0.0%
100-0.2-50-10-4.wtdp 90% 0.1% 100% 0% 100% 0% 100% 0%
100-0.2-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.5-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
100-0.8-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
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C. Detailed Result Tables

Table C.4: Comparison of model structures on the instances with 125 vertices
instance baseline edgesMIX transMIX plainMIX

opt% gap opt% gap opt% gap opt% gap
125-0.2-10-50-1.wtdp 50% 0.9% 60% 0.4% 50% 0.5% 30% 0.9%
125-0.2-10-50-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.2-10-50-3.wtdp 70% 0.4% 90% 0.0% 100% 0% 90% 0.1%
125-0.2-10-50-4.wtdp 30% 0.1% 10% 0.1% 30% 0.1% 20% 0.2%
125-0.2-10-50-5.wtdp 80% 0.1% 100% 0% 100% 0% 80% 0.1%
125-0.5-10-50-1.wtdp 90% 0.2% 100% 0% 100% 0% 100% 0%
125-0.5-10-50-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-10-50-3.wtdp 90% 0.3% 100% 0% 100% 0% 100% 0%
125-0.5-10-50-4.wtdp 90% 0.0% 70% 0.1% 40% 0.3% 30% 0.5%
125-0.5-10-50-5.wtdp 0% 0.5% 10% 0.4% 20% 0.4% 20% 0.5%
125-0.8-10-50-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-10-50-2.wtdp 100% 0% 100% 0% 100% 0% 90% 0.1%
125-0.8-10-50-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-10-50-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-10-50-5.wtdp 0% 1.6% 50% 0.8% 70% 0.3% 30% 1.2%
125-0.2-25-25-1.wtdp 20% 1.8% 30% 1.6% 80% 0.5% 30% 1.6%
125-0.2-25-25-2.wtdp 20% 0.3% 20% 0.3% 10% 0.4% 10% 0.3%
125-0.2-25-25-3.wtdp 70% 0.4% 90% 0.1% 80% 0.2% 70% 0.6%
125-0.2-25-25-4.wtdp 40% 0.4% 60% 0.2% 80% 0.1% 70% 0.3%
125-0.2-25-25-5.wtdp 0% 0.8% 10% 0.5% 0% 0.6% 10% 0.7%
125-0.5-25-25-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-25-25-2.wtdp 100% 0% 100% 0% 90% 0.1% 100% 0%
125-0.5-25-25-3.wtdp 90% 0.1% 100% 0% 100% 0% 100% 0%
125-0.5-25-25-4.wtdp 80% 0.1% 80% 0.1% 80% 0.1% 90% 0.0%
125-0.5-25-25-5.wtdp 90% 0.1% 90% 0.1% 80% 0.1% 100% 0%
125-0.8-25-25-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-25-25-2.wtdp 60% 0.4% 30% 0.8% 30% 0.8% 90% 0.1%
125-0.8-25-25-3.wtdp 50% 2.2% 100% 0% 90% 0.2% 100% 0%
125-0.8-25-25-4.wtdp 20% 0.3% 40% 0.2% 50% 0.2% 50% 0.2%
125-0.8-25-25-5.wtdp 20% 1.3% 0% 1.0% 0% 1.0% 10% 1.1%
125-0.2-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.2-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.2-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.2-50-10-4.wtdp 100% 0% 90% 0.0% 100% 0% 100% 0%
125-0.2-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 90% 0.0%
125-0.5-50-10-1.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.5-50-10-5.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-50-10-1.wtdp 80% 0.2% 80% 0.2% 100% 0% 100% 0%
125-0.8-50-10-2.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-50-10-3.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-50-10-4.wtdp 100% 0% 100% 0% 100% 0% 100% 0%
125-0.8-50-10-5.wtdp 60% 0.1% 100% 0% 100% 0% 100% 0%
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Overview of Generative AI Tools
Used

No generative AI tools were used in writing this thesis.
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