
Entwicklung von
Geschäftsapplikationen mit
Low-Code-Ansatz - ER2CDS

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Gallus Huber, BSc
Matrikelnummer 51905700

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork

Wien, 13. September 2024
Gallus Huber Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Towards Low Code Business App
Development - ER2CDS

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Gallus Huber, BSc
Registration Number 51905700

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Wirtsch.Inf.Univ. Dr.rer.pol. Dominik Bork

Vienna, 13th September, 2024
Gallus Huber Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Gallus Huber, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. September 2024
Gallus Huber

v

Kurzfassung

Diese Arbeit präsentiert ER2CDS, einen neuartigen Ansatz für modellgetriebene Entwick-
lung von SAP Core Data Services (CDS). ER2CDS adressiert die Notwendigkeit einer
höheren Abstraktionsebene in der CDS-Entwicklung und ermöglicht, mit Hilfe einer domä-
nenspezifische Sprache, textuelles, sowie grafisches Modellieren von CDS-Views. Basierend
auf Webtechnologien und dem Language Server Protocol (LSP) unterstützt ER2CDS das
hybride Modellieren von CDS, sowie den Import bestehender SAP CDS-View-Entities.
Dieser modellgetriebene Ansatz zielt darauf ab, Domänenexperten einzubeziehen und
diesen zu ermöglichen CDS-View-Entities selbstständig zu entwickeln. Diese Arbeit be-
schreibt die Entwicklung der domänenspezifischen Sprache (DSL) von ER2CDS, sowie
die Implementierung von ER2CDS. ER2CDS wird in Form eines Experiments und einer
Fallstudie mit Domänenexperten und CDS-Entwicklern evaluiert. Die Ergebnisse zeigen
eine hohe Benutzerfreundlichkeit des Tools, sowie die Bereitschaft von Domänenexperten
und CDS-Entwicklern dieses produktiv zu nutzen.

vii

Abstract

This thesis introduces ER2CDS, a novel approach and tool support for the model-driven
engineering of SAP Core Data Services (CDS). ER2CDS addresses the need for a higher
abstraction level in CDS development, enabling blended, i.e., textual and graphical
modeling of CDS Views through a domain-specific language. Based on web technologies
and the Language Server Protocol (LSP) modeling tool support for ER2CDS is realized.
The tool supports the hybrid modeling of CDS and the import of existing SAP CDS
view entities for analysis and development support. This model-driven approach aims
to broaden the target audience of CDS development by including and enabling domain
experts to develop CDS views, mitigating the need for extensive programming skills.
We report on the development of the ER2CDS domain-specific language (DSL) and
the implementation of the corresponding ER2CDS modeling tool. Finally, ER2CDS is
evaluated in the form of a controlled experiment and a case study with domain experts
and CDS developers. The results show a high usability score for our tool and a willingness
by domain experts and CDS developers to use it.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of Work . 2
1.3 Methodology . 3
1.4 Structure . 4

2 Background 7
2.1 Model Engineering . 7
2.2 Web-based Modeling . 12
2.3 SAP Environment . 22
2.4 ABAP Core Data Services . 23
2.5 Entity Relationship . 29

3 Related Work 33
3.1 Web-based modeling tools . 33
3.2 Core Data Services . 35

4 Requirements Analysis 37
4.1 Main idea and general approach . 37
4.2 Modeling Requirements . 38
4.3 Tool Requirements . 40

5 Conceptualization 41
5.1 Textual Language Specification . 41
5.2 Graphical Language Specification . 45
5.3 LSP Extension . 47
5.4 Hybrid Modeling . 47
5.5 SAP Integration . 49

xi

5.6 Model-to-Text Transformation . 50
5.7 Import of Existing CDS View Entities 51

6 ER2CDS 53
6.1 Architecture . 53
6.2 Visual Studio Code Extension . 53
6.3 SAP S/4HANA Web Service . 60
6.4 Language Server . 61
6.5 Webview . 76

7 Evaluation 89
7.1 Controlled Experiment . 89
7.2 Case Study . 94
7.3 Discussion . 99

8 Conclusion 101
8.1 Summary . 101
8.2 Outlook . 102

List of Figures 105

List of Tables 107

Bibliography 109

A Implementation 117
A.1 CDS view entity generation . 117
A.2 Import CDS view entity . 131

B Evaluation 157
B.1 Experiment Results - Create . 157
B.2 Experiment Results - Import . 159
B.3 Case Study - Task Description . 162
B.4 Case Study - Survey . 164
B.5 Case Study - Responses . 168

CHAPTER 1
Introduction

This chapter addresses the thesis’s motivation and problem. It also outlines the work’s
aim and concrete research questions. Then, the methodological approach is described,
and an overview of the structure is given.

1.1 Motivation and Problem Statement
Compared to code, models allow different stakeholders to get a technical understanding
of an application without prior programming knowledge. Furthermore, models are a
critical tool in managing the complexity of applications [MBWM23]. Combined with
model-to-text transformations, a model-driven engineering process allows the creation of
all different kinds of applications [HRW11].

Especially in the context of business informatics, business experts drive the development
process. Allowing them to create applications independently by applying a model-driven
engineering process would provide a significant business impact. On the one hand, business
experts can quickly create domain-specific applications without extensive preparation,
and on the other hand, a reduced complexity for developers. Furthermore, maintaining
applications with a graphical user interface leads to a better understanding and fewer
errors [CTVW19, DLP+23].

One of the most used enterprise solutions is the Enterprise Resource Planning (ERP)
solution by SAP SE (SAP) [Sta]. It allows developers to create database views with
enhanced access functions, so-called Core Data Services (CDS) [SEa]. Furthermore,
it already allows the generation of a front-end application for an existing CDS [SEo].
However, CDS are currently developed in a textual editor, requiring skills in SQL and
additional CDS-specific syntax [SEa]. It is, therefore, impossible for users with no
programming background to create CDS themselves. Currently, the development process
of CDS is twofold. First, the business expert states the needs and the data that should

1

1. Introduction

be retrieved. Then, a developer has to implement the CDS accordingly. One of the
significant problems with this approach is to get a shared understanding of the problem
domain. This leads to unsatisfactory results, as well as long development times.

1.2 Aim of Work
This work aims to create a new modeling tool based on the Language Server Protocol
(LSP) [BL23, Micf] for Entity-Relationship (ER) diagrams [Che76a], which allow users
to transform ER models into CDS. Furthermore, the goal is to assess the business value
of such a low-code framework on a real-world application. Our evaluation is twofold
and composes a controlled experiment—focusing on the import/export features and
the SAP integration—and a case study with practitioners—focusing on the usability of
the ER2CDS tool. ER2CDS should contribute to embracing model-driven engineering
processes in the SAP ecosystem. The main goal is to provide a tool that allows business
experts and developers to create CDS more efficiently.

First, we will develop a hybrid tool to model ER diagrams in a textual and graphical
manner similar to the one proposed in [GB21]. The main focus is extending the ER
modeling language [Che76a] to cover all aspects of CDS and the integration into the
SAP ecosystem. In more detail, CDS supports specific features, e.g., associations, join
relationships executed on demand, which should be represented in the modeling tool, as
this information is necessary for the transformation step. Additionally, the modeling
extension should represent the data model of the SAP ERP solution and allow users to
select existing entities to build their models. In particular, the SAP system’s database
schema, consisting of tables and the corresponding columns, should be represented in the
tool to ensure ease of use and the correctness of the models.

Furthermore, the resulting ER model will be transformed. The focus is hereby on a text
output, following best practices of CDS development. The correctness and quality of
code are some of the most important factors in ensuring user acceptance.

Concretely, the following research questions will drive the research and development
efforts of the new ER2CDS tool and need to be answered.

• RQ1: To what extent does a model-driven engineering process improve
the development of Core Data Services?

– ER2CDS should provide an alternative to the text-based development pro-
cess of Core Data Services and simplify the process by using models as an
abstraction mechanism.

• RQ2: What is an appropriate means to model Core Data Services?

– To support the modeling of Core Data Services, a novel modeling language
has to be developed.

2

1.3. Methodology

• RQ3: Which extensions to the Language Server Protocol are necessary to
support hybrid textual and graphical modeling for Core Data Services?

– ER2CDS should provide a textual as well as a graphical editor. The Language
Server Protocol was originally designed for textual editors [NN22] and must
therefore be extended.

• RQ4: What are the advantages and disadvantages of the integration of
external data sources to a web-based modeling tool?

– To improve the modeling process and extend the validation methods, an
existing data model should be integrated into ER2CDS.

• RQ5: To what extent can a Core Data Service be generated from a
model which is based on the novel Core Data Service modeling language?

– ER2CDS should allow generating a valid Core Data Service from a given
model. Therefore, a model-to-text transformation has to be designed and
implemented.

1.3 Methodology
This thesis will follow the methodological approach of Design Science Research (DSR)
[HMPR04]. Adhering to the seven guidelines of DSR, Design an Artifact, Problem
Relevance, Design Evaluation, Research Contribution, Research Rigor, Design as a Search
Process, and Communication of Research, the following steps are derived:

1. Existing Tools Evaluation & Requirements Analysis
CDS is constantly evolving, and the current state-of-the-art for developing CDS
has to be explored. Furthermore, requirements can be directly derived from the
features of existing tools. Additionally, best practices regarding the textual syntax
of CDS have to be gathered. This step is necessary to answer RQ1 and serves as a
basis for the next steps.

2. Conceptualization
Based on the results from the previous step, a concept for ER2CDS is developed.
First, the modeling and tool requirements are elaborated. Then, the extended
ER-modeling language’s concrete textual and graphical syntax is defined (RQ2).
The concept should also include a specification of the LSP extension (RQ3).
Furthermore, a strategy to handle hybrid modeling and the synchronization between
textual and graphical editors is determined. Also, the integration of an external
data model is defined in this step (RQ4). Finally, the model-to-text transformation
for ER-diagrams to CDS is defined (RQ5).

3. Artifact Implementation
A novel modeling tool, ER2CDS, will be created based on the conceptualization.

3

1. Introduction

4. Artifact Evaluation
To evaluate ER2CDS an observational and experimental method will be used
[HMPR04]:

a) Controlled Experiment
The experiment will evaluate the text output (CDS) resulting from the model-
to-text transformation. Existing CDS will be modelled with ER2CDS. After-
ward, a CDS will be generated with the tool, which will then be checked for
syntactical correctness and the correctness of the query output.

b) Case Study
A case study will be used to evaluate the artifact in a business environment.
Participants are asked to implement three different CDS with ER2CDS. After-
ward, the group of participants are surveyed to gather feedback and insights.

In combination with the first step, both methods contribute to answer RQ1.

1.4 Structure
This thesis is organized into the following chapters:

Chapter 2 presents all the necessary background information that the thesis will build
upon. Model-Driven Engineering (MDE) and Web-based modeling will be introduced.
Furthermore, an overview of the SAP environment will be given. Finally, Entity Rela-
tionship and SAP Core Data Services are explained in detail.

Chapter 3 discusses related work of this thesis. First, other existing web-based modeling
tools are analyzed, and the results are discussed, in particular the contributions of two
existing solutions, bigER [GB21] and bigUML [MB23]. Furthermore, the latest findings
in the Graphical Language Server Protocol (GLSP) [Foub] are analyzed. At the end of
Chapter 3, the latest development projects regarding Core Data Services are presented.

Chapter 4 will elaborate requirements for ER2CDS. Currently, CDS are developed
using ABAP Development Tools (ADT) in Eclipse [SEa]. The requirements for ER2CDS
will be directly derived from this. Furthermore, additional modeling requirements and
special tool requirements are presented.

In Chapter 5, the main concepts for ER2CDS are developed. The specifications for the
textual and graphical syntax, as well as for the LSP extension, are presented. Furthermore,
details regarding hybrid modeling and the synchronization of the textual and graphical
model can be found in Chapter 5. Also, an overview of the integration of external data
models is given. Finally, the resulting model-to-text transformation for ER to CDS will
be discussed in this section.

Chapter 6 discusses the artifact’s implementation details. It presents the overall
architecture, the used technologies, and the main components of ER2CDS. Finally, it
showcases the realization of specific components and the tool’s behavior.

4

1.4. Structure

Chapter 7 evaluates the developed artifact. The main methods for evaluating ER2CDS
are described, and the results are presented.

Chapter 8 summarizes the thesis and the contributions. The research questions are
answered, and an outlook for future research is given.

5

CHAPTER 2
Background

In this chapter, the terminology and background of this thesis is introduced. First, model
engineering, model-driven software engineering, and model-to-text transformations are
presented. Then, the theoretical foundation for web-based modeling is introduced. An
overview of the Language Server Protocol will be given, as well as Langium and Sprotty
as frameworks for the implementation of ER2CDS and the characteristics of Visual
Studio Code as the targeted editor for ER2CDS. The following section will present all
necessary background regarding the SAP environment. This includes an introduction to
SAP Enterprise Resource Planning, SAP HANA, and Business Application Studio. SAP
Core Data Services and Entity Relationship will be introduced at the end of this chapter
since these concepts are the building blocks of the novel modeling tool developed in this
thesis.

2.1 Model Engineering

While the human mind is continuously reworking reality, the abstraction mechanism
is one of the most essential processes among them [BCW12]. As humans, we create
a mental representation by finding commonalities in different observations [BCW12].
We can generalize specific features of natural objects (generalization), classify the
objects into coherent clusters (classification), and aggregate objects into more complex
ones (aggregation) to generate this mental representation [BCW12]. Furthermore,
abstraction is widely used in science. For example, from the early days of computing,
different languages and platforms helped developers to understand applications and
manage their complexity without programming with machine code or directly on hardware
[S+06]. We often refer to this abstraction mechanism as modeling [BCW12].

7

2. Background

2.1.1 Models
Models are critical tools for humans to manage complexity, especially in developing
software and data-intensive systems [MBWM23]. In software engineering, a model
represents a running system by abstracting details [WHR14]. Informally defined, one can
say that models are a simplified and partial representation of reality [BCW12]. However,
there are also multiple, more formal definitions of models, e.g.,

A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system.[BG01]

A model is a description of a (part of) systems written in a well-defined lan-
guage. A well-defined language is a language with well-defined form (syntax),
and meaning (semantics), which is suitable for automated interpretation by a
computer.[KWB03]

However, by all these definitions, a model will only describe some of the details of reality.
More detailed models implement three features by applying abstraction:

• Mapping Feature: Models are based on an original system, which is abstracted
and generalized.

• Reduction Feature: Models focus on aspects of interest and reflect only the
relevant selection of the properties from the modeled system.

• Pragmatic Feature: Models can be used in place of an original concerning some
purpose.

Additionally, each model can have a different purpose. In [BCW12], models are classified
into having descriptive purpose, to represent the reality of a system or prescriptive
purpose, to define the scope of a system or the depth of detail a problem shall be studied.
Additionally, with the increasing importance of data analysis, the predictive purpose of
models to predict and generate yet-to-be-seen data, as described in [KJ+13], became
more and more critical.

In this work, we will use models as the primary abstraction mechanism to handle the
complexity of low-level applications, such as Core Data Services, which will be introduced
in Section 2.4.

2.1.2 Model-Driven Software Engineering
Since software is becoming exponentially more complex, it is generally agreed that in order
to handle this, software should be developed by using appropriate abstraction mechanisms
[WHR14]. The current state-of-the-art establishes Model-Driven Engineering (MDE)

8

2.1. Model Engineering

and especially Model-Driven Software Engineering (MDSE) as the primary abstraction
methodology [WHR14]. In the context of this work, we will further focus on MDSE, as
one of the main contributions is a tool for software development. In MDSE, “everything
is a model” is one of the most important statements, and therefore, models are used as
the central artifact of software development [BCW12]. In other words, models are used
as first-class citizens [BCW12].

The two main concepts of MDSE are models and transformations. While we already
defined models, transformations can be seen as operations performed on a model. To
further illustrate the importance of these two concepts, the authors in [BCW12] use them
to recreate the famous equation of Niklaus Wirth:

Algorithms + Data Structures = Programs

Using the two main concepts of MDSE:

Models + Transformations = Software

The models and transformations are expressed in some notation, called modeling language
[BCW12]. Applying the core statement “everything is a model”, the definition of such
modeling languages, so-called meta-modeling language, can be again seen as a model,
creating a hierarchical pattern [BCW12].

In Fig. 2.1, the resulting architecture of MDSE is presented. It can be divided into
conceptualization (columns), dealing with the definition of models that describe the
reality and implementation (rows), dealing with the creation of running components from
models [BCW12]. The layers are briefly described in the following:

Conceptualization

• Application: Models are created and transformed, resulting in running compo-
nents.

• Application domain: Modeling language, transformations, and implementation
platforms are defined.

• Meta-Level: Meta-modeling language and transformation language are defined.

Implementation

• Modeling: Definition of models.

• Automation: Mapping of models to artifacts.

• Realization: Running artifacts.

9

2. Background

Figure 2.1: Model-Driven Software Engineering Architecture [BCW12].

This work will contribute to MDSE by creating a domain-specific modeling language
(DSML) and a transformation on the application domain level. The transformation will
be implemented as a model-to-text transformation, further introduced in Section 2.1.3.

2.1.3 Model-to-Text Transformations
As stated above, transformations can be seen as operations performed on models. One
can also interpret transformations as a mapping between different models [BCW12].
In Fig. 2.2, the architecture of such a transformation is presented. The model Ma
confirms to the meta-model MMa, which furthermore confirms to the meta-meta-model
MMM. In order to create a transformation from model Ma to Mb, one needs to
define a transformation MT which uses the meta-model MMa and meta-model MMb
to map the model Ma to model Mb. The transformation itself is again defined in a
meta-transformation language MT, which also conforms to MMM and is executed by
the MT Execution Engine, which reads the source model, applies the transformation
and writes the target model.

In the context of MDSE, model transformations are used to either map one model to
another or to generate code as illustrated in Fig. 2.1. We can, therefore, divide model
transformations into two top-level categories: model-to-model transformations and model-
to-text transformations [BCW12, CH+03]. In this work, we will focus on model-to-text
transformation, as this will be one of the contributions of this thesis and a part of the
novel modeling tool. Furthermore we can differentiate model-to-text by the approach
used to generate the text output [BCW12, CH+03]:

10

2.1. Model Engineering

Figure 2.2: Architecture of a model transformation[BCW12].

• Visitor-Based Approach: A generic approach in which the model is traversed
and the code is written to a text stream.

• Template-Based Approach: Use templates with code snippets enriched with
model information.

While both approaches can be used to generate text from a given model, most of the
existing transformation tools use the template-based approach, e.g., Xtend1, JET2, MOF-
Script3, Acceleo4. In [HKGV10], another approach to generate code from models is
presented. The authors propose a novel technique of code generation by model transfor-
mation, where a first-order term target model is created, which then can be serialized by
term rewriting. In addition, the authors of [BCD10] propose a graph-based transformation
approach, which can also be used to generate text output from models.

In this work, we will use the template-based approach. Therefore, a more detailed
definition is presented below. A template consists of text fragments and meta-markers,
where text fragments are static text that is used in the output as is, and meta-markers are

1https://eclipse.dev/Xtext/xtend/, last accessed: 04.08.2024
2https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=

extensions-creating-jet-transformations, last accessed: 04.08.2024
3https://umt-qvt.sourceforge.net/mofscript/docs/MOFScript-User-Guide.pdf,

last accessed: 04.08.2024
4https://wiki.eclipse.org/Acceleo/User_Guide , last accessed: 04.08.2024

11

https://eclipse.dev/Xtext/xtend/
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=extensions-creating-jet-transformations
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=extensions-creating-jet-transformations
https://umt-qvt.sourceforge.net/mofscript/docs/MOFScript-User-Guide.pdf
https://wiki.eclipse.org/Acceleo/User_Guide

2. Background

Figure 2.3: Architecture of a template-based model-to-text transformation[BCW12].

used to query additional data sources, in our case the source model of the transformation
[BCW12]. The template engine is then responsible for replacing the meta-markers with
the actual data of the data source and producing the output. The architecture of the
template-based model-to-text transformation is shown in Fig. 2.3

2.2 Web-based Modeling
In recent years, web-based modeling tools emerged to create more flexible and richer graph-
ical user interfaces using the web technology stack [MBWM23, DCLB22]. Furthermore,
one of the most essential advantages of web-based modeling tools is the browser-based
client, which results in platform independence. Moreover, mainstream editors, e.g., Visual
Studio Code, allow the integration of HTML components into the editor, allowing for
even more seamless integration of web-based modeling tools [Micg].

2.2.1 Language Server Protocol
One of the most crucial building blocks of web-based modeling is the Language Server
Protocol (LSP), created by Microsoft [BL23, Micf]. A language server can be defined as a
server that can provide language-specific smarts [Mich]. LSP was created to standardize
a language-neutral communication between a language server and specific development
tools to enable the reuse of the language server for multiple development tools [Mich]. The
language server and the development tool run in different processes and communicate over
JSON-RPC, which makes this architecture highly flexible and enables diverse deployment
opportunities [BLO23, RIWC18, Mich]. The basic concepts of LSP are presented in the
following[Micf]:

12

2.2. Web-based Modeling

• Request Message: A request between client and server. A response must be sent
back to the sender for each request.

• Response Message: Sent to the client as a result of a request. The response
must always be sent, even if a request does not have a result. The result property
of the response message is then set to null.

• Notification Message: A message where no response message needs to be sent
after processing.

• Cancellation Support: A message allowing cancellation of a request. Still, a
response message must be returned, but partial results can be returned.

• Progress Support: A message that can report progress and return partial results.

Since not all features are supported by each development tool or language server, LSP
uses so-called capabilities to determine the set of supported features [Micf]. The client
and server exchange its capabilities during the initialize life-cycle message [Micf]. A
further definition of life-cycle messages is provided next.

Life-cycle messages allow the client to handle the language server life-cycle [Micf]. A list
of all life-cycle messages is provided below:

• Initialize Request: First request sent from the client to the server. The server
responds with an InitializeResult response.

• Initialized Notification: Sent once to the server after the client receives the
InitializeResult.

• Register Capability Request: Sent to the client to dynamically register capabil-
ities.

• Unregister Capability Request: This is sent from the server to the client to
unregister a previously registered capability.

• Set trace Notification: This can be sent from the client to the server to modify
the server’s trace setting.

• Log trace Notification: Sent from the server to the client to log the server’s
trace.

• Shutdown Request: Sent from the client to the server to ask the server to shut
down. The server does not exit so that the response can be delivered correctly.
Afterward, the client sends an Exit notification.

• Exit Notification: Sent from the client, asking the server to exit the process. Exit
successfully if a Shutdown request was received prior; otherwise, exit with an error.

13

2. Background

Furthermore, LSP specifies a set of messages to handle document synchronization. A list
of all messages can be found in [Micf]. In the following, the three mandatory notifications
of the protocol are presented [Micf]:

• Did Open Text Document Notification: Sent from the client to the server to
signal a newly opened text document. Afterward, the tool manages the document’s
truth, not the file system. An opened document does not necessarily be visible in
the editor.

• Did Change Text Document Notification: Sent from the client to the server
to signal changes to the document. It can only be sent after the Did Open Text
Document notification.

• Did Close Text Document Notification : Sent from the client to the server to
signal the closing of a document. The truth is not handled in the tool anymore.

Additionally to the life-cycle and document synchronization messages, LSP defines even
more messages for different types of language, workspace, and window features, for which
a detailed specification can be found in [Micf].

To further illustrate the usage of LSP Fig. 2.4 presents an example of the communication
between the language server and a development tool. This example provides insights
into the process of a user opening and editing the file, executing the "Goto definition"
functionality, and eventually closing the file. The process of Fig. 2.4 starts with the
development tool sending a textDocument/didOpen notification to the language server.
It is important to note that from there on, the truth of the file is stored in the internal
memory of the tool and not on the file system anymore [Mich]. In the next step, the user
edits the document, and a textDocument/didChange notification is sent to the language
server, with the changes as parameters. The language server uses these modifications
to update the internal representation of the document. Furthermore, the current state
is analyzed, and errors and warnings are emitted to the development tool using the
textDocument/publishDiagnostics notification. In the next step, the user executes the
"Goto definition" functionality of the development tool. In order to resolve the location of
the requested definition, the development tool sends a textDocument/definition request
to the language server, which responds with textDocument/definition and the result. The
user closes the document at the end, and a textDocument/didClose notification is sent to
the language server.

As an example, Listing 2.1 presents the payload for the textDocument/didOpen notifica-
tion.

14

2.2. Web-based Modeling

Figure 2.4: Example of the communication between language server and development
tool[Mich].

1 {
2 "jsonrpc": "2.0",
3 "id" : 1,
4 "method": "textDocument/didOpen",
5 "params": {
6 "textDocument": {
7 "uri": "file:///example/example.er2cds"
8 }
9 }

10 }

Listing 2.1: Payload of textDocument/didOpen notification.

LSP also allows the definition of custom messages, which will be used in this thesis to
extend the standard protocol in order to support hybrid modeling of Core Data Services
[Micf].

2.2.2 Langium
Langium5 is a open source framework “with first-class support for the Language Server
Protocol, written in Typescript and running in Node.js.” [Typd]. Langium provides the
possibility to create domain-specific languages together with an out-of-the-box Typescript-
based language server that can be easily integrated into VS Code as an extension or
other web applications and can be arbitrarily customized to meet the language creators’
needs. With its pre-built implementations, Langium simplifies language tasks such as
parsing, Abstract Syntax Tree (AST) generation, validation, scoping, cross-referencing,

5https://langium.org/, last accessed: 30.07.2024

15

https://langium.org/

2. Background

and more. The effectiveness of creating Langium-based modeling tools has been shown in
several recent works [BLRB24, GGC22, Pet22, PKvH23, PLV23]. The broad spectrum
of features will be analyzed in the following.

Langium allows to define a custom language using the Langium Grammar language
[Typb]. Furthermore, it can generate a parser for the defined language, transforming
an input string into an abstract syntax tree (AST) [Typb]. Additionally, the framework
generates type definitions in TypeScript, which allow to traverse the AST in a type-safe
manner [Typb]. The language declaration starts with a header, declaring the name of
the language as shown in Listing 2.2 for the language named MyLanguage [Typc].

1 grammar MyLanguage

Listing 2.2: Langium grammar language declaration.

Lexing defines the first step of the parsing process, in which the input string is transformed
into a stream of tokens, each matching a terminal rule as shown in the first two lines of
Listing 2.3 [Typc]. Langium supports defining these rules using the Extended Backus-
Naur Form (EBNF) Expressions and Regular Expressions [Typc]. These tokens are
atomic and have to return a primitive TypeScript type such as string, number, boolean,
bigint or Date [Typc]. Due to the lexer trying to match each character in the input
string to a terminal rule, one can define hidden terminal rules, which are ignored during
processing [Typc]. An example of these can be found in the last three lines of Listing 2.3.

1 terminal ID returns string: /[_a-zA-Z][\w_]*/;
2 terminal INT returns number: /[0-9]+/;
3
4 hidden terminal WS: /\s+/;
5 hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;
6 hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

Listing 2.3: Langium grammar terminal rules.

In the next processing step, the parser creates the AST using defined sequences of
tokens [Typc]. These valid sequences of tokens are defined using parser rules, which are
written using EBNF [Typc]. A simple parser rule is shown in lines 1 and 2 of Listing
2.4. This rule will create an object of type Person with an attribute name that matches
the terminal rule ID. It is important to note that ’person’ is a keyword of the defined
language and interpreted as an inline terminal rule [Typc].

Furthermore, the langium grammar allows to define an entry rule, as shown in lines 4
and 5 of Listing 2.4, which serves as the starting point for the parser [Typc]. For this
example, the parser will try to parse objects of type Person or Greeting and add them to
the persons and greetings array. Moreover, the grammar allows using cardinalities, such
as ? for zero or one, * for zero or many and + for one or many, as well as alternatives
using the | operator in these parser rules [Typc].

16

2.2. Web-based Modeling

1 Person:
2 ’person’ name=ID;
3
4 entry Model:
5 (persons+=Person | greetings+=Greeting)*;

Listing 2.4: Langium grammar parser rules.

In addition, Langium supports to define cross-referencing directly in the grammar [Typc].
In Listing 2.5, an example is given for such a cross-reference. The Greeting parser rule
expects the keyword ’Hello’ followed by a string, which is equivalent to the name of an
existing Person object and eventually followed by the keyword ’!’.

1 Person:
2 ’person’ name=ID;
3 Greeting:
4 ’Hello’ person=[Person:ID] ’!’;

Listing 2.5: Langium grammar cross-referencing.

By definition the following example in Listing 2.6 will be parsed successfully:

1 person Bob
2 Hello Bob !

Listing 2.6: Example for a valid cross-reference.

While the example in Listing 2.7 will produce an error, since there is no Person object
with the name ’Laura’ defined, even though ’Laura’ is a valid token of type ID.

1 person Bob
2 Hello Laura !

Listing 2.7: Example for an invalid cross-reference.

An exhaustive list of features supported by the Langium grammar can be found in [Typc].

Another feature of Langium is the scoping mechanism [Typb]. Scoping eases the process
of linking, which is used to resolve references between elements within the language
[Typb]. One only needs to define the scoping behavior of the defined language, and the
linking process will be done by the framework [Typb].

In order to get a deeper understanding of how the framework works, the document life
cycle is presented below. The LangiumDocument serves as the central data structure
of the framework with the primary purpose of holding the AST [Typa]. However, the
LangiumDocument has to be built further after the input is parsed, which happens
depending on the state of the LangiumDocument [Typa]. The possible states are listed

17

2. Background

Figure 2.5: Build stages of a LangiumDocument [Typa].

below, with the first one being the initial state after the parsing process and the last one
used to mark documents as invalid after a source text modification [Typa]:

1. Parsed AST has been created from the input string.

2. IndexedContent IndexManager has processed the AST nodes.

3. ComputedScopes ScopeComputation has created the local scopes.

4. Linked Cross-references were resolved by the Linker.

5. IndexedReferences IndexManager has indexed the references.

6. Validated DocumentValidator has validated the document.

7. Changed Document has been modified.

The build stages of a LangiumDocument depending on the state of the document is
furthermore illustrated in Fig. 2.5.

Finally, Langium has first-class support for LSP [Typb]. This allows us to easily create
a language server that can then be used by multiple development tools [Typb]. The
framework supports multiple features of LSP out of the box but also allows the extension
or implementation of custom capabilities of the language server.

This thesis will use the Langium framework to implement the language server of ER2CDS.
Furthermore, the modeling tool’s textual syntax will be defined using the Langium
grammar.

2.2.3 Sprotty
Sprotty6 is a framework designed for diagramming within web technologies [Fouc]. The
framework is implemented in TypeScript and uses SVG renderings, supporting compati-
bility with all modern browsers [Fouc]. Furthermore, Sprotty supports integration with
Langium and LSP, as well as Visual Studio Code [Fouc].

6https://sprotty.org/, last accessed: 04.08.2024

18

https://sprotty.org/

2.2. Web-based Modeling

Figure 2.6: Tree structure of the Sprotty SModel[Foud].

The architecture of Sprotty consists of three main components: the ActionDispatcher,
the CommandStack, and the Viewer [Foud]. In the following, a short overview of each
component will be given.

The primary purpose of the ActionDispatcher is to receive an Action, a JSON structure
that describes what should happen without defining any behavior, transform it to a Com-
mand, and transmit the resulting Command to the CommandStack [Foud]. Furthermore,
the ActionDispatcher can communicate with the ModelSource, which represents either a
local model or delegates to a remote model [Foud]. The Action can also be serialized
and serve as an LSP message [Foud].

The CommandStack is responsible for executing a Command received by the ActionDis-
patcher [Foud]. A Command defines the behavior of the corresponding Action by
implementing the methods execute, undo and redo and modifying the model respectively
[Foud]. The CommandStack itself is responsible for keeping an undo/redo stack and
producing a graph model, which is then forwarded to the Viewer for rendering [Foud].
The internal model used by Sprotty is called SModel and is organized in a tree structure,
derived from the parent and children properties of each element [Foud]. The base tree
structure of such a model can be seen in Fig. 2.6. This also illustrates the possibility of
introducing domain-specific elements to the SModel [Foud].

The responsibility of the Viewer is to render the SModel it receives by the CommandStack
[Foud]. To optimize the number of modifications to the Document Object Model (DOM),
the translation is not performed directly, but by first creating a VirtualDOM and then
patching the actual DOM [Foud]. The VirtualDOM is created by traversing the SModel
and applying the corresponding View for each element, defined by the ViewRegistry

19

2. Background

Figure 2.7: Architecture and information flow of the Sprotty framework [Foud].

[Foud]. Furthermore, the Viewer is responsible for attaching event listeners to the DOM,
transforming the received events to Actions and eventually communicating them to the
ActionDispatcher [Foud].

The resulting architecture and information flow of Sprotty is illustrated in Fig. 2.7.

This work will use Sprotty as a framework for the graphical modeling part of ER2CDS.

2.2.4 Visual Studio Code
Visual Studio Code (VS Code)7 is a source code editor that offers built-in support for
JavaScirpt8, TypeScript9 and Node.js10 [Micc]. More importantly, VS Code offers an
extension application programming interface (API) that allows customization of the
editor itself [Micb]. The two capabilities this work will exhaustively use are its language
extension [Micd] and webview API [Micg].

One of the main concepts in VS Code is commands, which can interact with the editor
[Mica]. It also allows users to interact with functionality exposed by the extension
[Mica]. For VS Code to expose extension commands in the editors Command Palette, the
extension registers the Command as a contribution [Mica]. It is then possible to react on
executed commands accordingly [Mica].

The language extension of VS Code offers declarative language features and programmatic
language features [Micd]. The declarative language features offer support for the following
language-specific features using configuration files [Micd]:

• Syntax highlighting
7https://code.visualstudio.com/, last accessed: 04.08.2024
8https://js.org/, last accessed: 04.08.2024
9https://www.typescriptlang.org/, last accessed: 04.08.2024

10https://nodejs.org/, last accessed: 04.08.2024

20

https://code.visualstudio.com/
https://js.org/
https://www.typescriptlang.org/
https://nodejs.org/

2.2. Web-based Modeling

Figure 2.8: VS Code extension with two different language clients and language servers
[Mice].

• Snippet completion

• Bracket matching

• Bracket autoclosing

• Bracket auto surrounding

• Comment toggling

• Auto indentation

• Folding (by markers)

For the programmatic language features, it is either possible to implement it using the
language API directly or by utilizing a language server and LSP [Mice]. For the latter, VS
Code will serve as the language client, which communicates to the language server using
LSP, while the language server will run in a separate process [Mice]. Furthermore, it is
possible to run multiple language servers simultaneously [Mice]. Due to the separation in
processes, it is also possible to use different technologies for the specific language servers
[Mice]. Fig. 2.8 illustrates an example of an extension with one HTML language client
communicating with an HTML language server, both written in TypeScript, as well as a
PHP language client communication with a PHP language server, where the language
server is written using a different technology stack, in specific PHP.

Another feature of VS Code extensions is the webview API, which can be used to create
custom views within VS Code [Micg]. Webviews can render HTML content and can
be compared to an iframe [Micg]. Webviews can either be used as custom editors, for

21

2. Background

custom visualization or user interfaces, or as views rendered in the sidebar or panel areas
of VS Code [Micg]. The possibility to render almost every HTML element enables the
creation of highly customized views with web technologies, e.g., for diagramming [Micg].

In this thesis, ER2CDS will be developed as a VS Code extension, utilizing the language
server extension for the textual modeling interface and the webview API to create a
graphical modeling interface.

2.3 SAP Environment
SAP SE was founded in 1972 by five former IBM employees and specialized in developing
programs for materials management, financial accounting, and auditing [O’R15]. Since
1980, the company has been based in Walldorf, Baden-Württemberg. By developing a
standardized software solution, SAP SE is regarded as one of the inventors of standard
software [O’R15].

The first standard solution was presented in 1973 as SAP R/98. In 1979, R/2 replaced its
predecessor with improvements in material management and production planning [O’R15].
In 1992, R/3, based on a client-server architecture for the first time, was introduced.
SAP ERP later replaced R/3 [O’R15]. Since 2015, SAP SE’s main product line has been
SAP Business Suite 4 SAP HANA (S/4HANA) [SEr]. In 2024, SAP SE will be one of
the largest software companies, with a turnover of 31.2 billion euros in 2023 [SEq].

2.3.1 SAP S/4HANA
In 2015, SAP Business Suite 4 SAP HANA, or S/4HANA for short, was introduced,
replacing SAP ERP. The switch to the new software generation includes the mandatory
introduction of the HANA database, an in-memory database developed by SAP SE,
which will be introduced in the next section, and a new user interface, SAP Fiori [Sch16].
Similar to its predecessor, S/4HANA is a standardized enterprise resource planning (ERP)
system, which allows for customization as well as extension of the standard software
[SEs]. Furthermore, it is possible to develop custom applications using the integrated
technologies, e.g., Core Data Services, which will be introduced in Section 2.4. In this
thesis, we will need S/4HANA as the targeted system for the ER2CDS output and an
optional backend component for ER2CDS.

2.3.2 SAP HANA
SAP HANA (High-performance Analytic Appliance) is an in-memory database designed
for online analytical processing (OLAP), as well as online transactional processing (OLTP)
[FML+12]. The in-memory design of SAP HANA allows for much faster queries while
still complying with Atomicity, Consistency, Isolation, and Durability (ACID) standards
[FCP+12]. However, the database still uses persistent storage supporting system restart
and recovery [FCP+12]. The database provides standard interfaces and supports extended
SQL [FCP+12]. An overview of the architecture is illustrated in Fig. 2.9.

22

2.4. ABAP Core Data Services

Figure 2.9: Architecture of the SAP HANA database [FCP+12].

SAP HANA supports CDS natively [Sar23]. This thesis will use SAP HANA indirectly
by creating a novel modeling language for CDS and using CDS to expose the data model
of an existing S/4HANA system for ER2CDS.

2.4 ABAP Core Data Services
A virtual data model (VDM) can provide a semantically rich, reusable, and stable data
model while abstracting technical details and reducing complexity [Sar23]. Furthermore,
in business informatics, a VDM can provide a business-oriented view of the underlying
database [Sar23]. In the SAP S/4HANA, the VDM is implemented using Core Data
Services (CDS) [SEc]. One of the main ideas behind CDS is to support a data-centric
approach, pushing down computations to the database layer [SEc]. In detail, CDS
consists of the following languages, enabling one to create these semantically enriched
data models [Sar23]:

• Data Definition Language (DDL): Allows to create domain-specific data models,
CDS entities.

• Query Language (QL): Allows to read data from defines models.

• Date Control Language (DCL): Allows to control access to the data model.

• Data Manipulation Language (DML): Allows to write data.

Furthermore, the CDS DDL allows to build hierarchies, which serves as a building block
of the SAP VDM [SEp]. The VDM is presented in Fig. 2.10 and can be divided into
three layers [SEt]:

23

2. Background

Figure 2.10: Layers of the VDM [SEt].

• Consumption view layer:

– Consumption views: Placed on top of reuse views and built for a particular
purpose and specific requirements. Database access is only provided indirectly
through the reuse view layer.

• Reuse view layer:

– Basic interface views: The only views that directly access the database and
are therefore placed on top of the database.

– Composite interface views: Placed on top of basic interface views and can also
have associations with other composite views.

– Restricted reuse views: Similar to basic and composite interface views, but
not intended for reuse.

• Database Layer: VDM is built on top of these database tables.

In the remainder of this work, we will focus on CDS’s DDL since ER2CDS aims to
generate views adhering to this DDL.

Technically, CDS DDL is an enhancement of the SQL DDL [Kel]. In addition to the
standard SQL DDL, CDS supports entities with structured and custom-defined types,
associations for joins with simple path expression, calculated fields that can be predefined

24

2.4. ABAP Core Data Services

in the data model and annotations to enrich the data model with metadata [SEp]. In
the remainder of this section, we introduce the CDS DDL, particularly CDS entities and
CDS view entities.

One can use the syntax presented in Listing 2.8 [SEm] to define a CDS view entity in
CDS DDL. Lines 1 to 6 describe the possibility of specifying additional metadata using
annotations. In line 7, the DEFINE VIEW ENTITY keywords are used to specify a new
CDS view entity, followed by the name of the view entity. The optional ROOT can be
used in the ABAP RESTful Application Programming Model context to specify a root
entity of a RAP business object [SEm]. The CDS view entity is eventually implemented
by the select_statement, of which the syntax will be described afterward.

1 [@entity_annot1]
2 [@entity_annot2]
3 ...
4 [@view_entity_annot1]
5 [@view_entity_annot2]
6 ...
7 [DEFINE] [ROOT] VIEW ENTITY view_entity
8 AS select_statement [;]...

Listing 2.8: CDS view entity syntax.

As part of a CDS view entity, the select statement used to query a data source follows the
syntax illustrated in Listing 2.9 [SEh]. The query begins with the SELECT keyword and
is performed on the data sources defined in data_source, which can either be database
tables, CDS view entities, CDS table functions, CDS hierarchies or the obsolete CDS
DDIC-based views [SEh]. The DISTINCT keyword allows the removal of duplicate entries
in the result set [SEh]. Association1 and association2 further define CDS associations
for the current SELECT statement. In the select_list, the components of the view entity
are listed. It is possible to access components of the data_source and components of
the defined associations using path expressions [SEh]. Furthermore, the clauses in line 4
allows to define conditions, groupings, or set operators [SEh].

1 SELECT [DISTINCT] FROM data_source
2 [association1 association2 ...]
3 {select_list}
4 [clauses]

Listing 2.9: CDS select syntax.

For the data_source the syntax is presented in Listing 2.10 [SEk]. It is used to define
the data source directly using the entity name or via a SQL path expression [SEk].
Furthermore, one can define an alias for the data source [SEk]. Also, it is possible to
define joins (inner join, left outer join, right outer join), combining multiple data sources
[SEk].

25

2. Background

1 ... entity | path_expr [AS alias] [join] ...

Listing 2.10: CDS data source syntax.

CDS associations are used to define relationships between CDS entities [SEi]. It allows
to include fields of the association target in the current CDS view entity or expose these
fields for reuse in other CDS entities [SEi]. In contrast to a classical join relationship,
these associations are transformed internally to join expressions with the association
source as the left-hand side and the association target as the right-hand side, but only on
demand, [SEi]. In detail, the join is instantiated if, e.g., a field of the association target
is used in the element_list of the CDS view entity [SEi]. Furthermore, it allows reusing
these relationships [SEi]. A particular type of CDS association is the composition, which
consists of a to-child association and a to-parent association [SEi]. The composition
association can state an existential relationship between the composition child and the
composition parent [SEi]. For associations, we distinguish three primary use cases [SEf]:

• Exposing a CDS association: An association is defined in the element_list of the
CDS view entity. This exposes the association and allows the reuse in other CDS
view entities without instantiating the join to the association target or selecting
data from it. Therefore, it is also not part of the output.

• Using a field from the association target: All fields of the association target
can be used either in the FROM clause, the WHERE clause, or the element_list
of the current CDS view entity. The generated SQL statement thus includes the
association target and the specified fields can be used accordingly.

• Using an exposed association: Similar to the previous use case, a CDS view
entity can also use the fields of associations that are exposed by the data_source of
the current CDS view entity.

The syntax of CDS associations is presented in Listing 2.11 [SEd, SEg, SEe]. The first
two lines present the syntax of a simple association [SEd]. The statement begins with
the ASSOCIATION keyword followed by the cardinality of the relationship, which can
be expressed either in words (e.g., one to many) or using numbers in square brackets
(e.g. [0..1]) while the latter is being used in the context of this thesis [SEd]. After
the cardinality, the TO keyword is used to specify the association target [SEd]. It
is also possible to introduce an alias using the AS keyword [SEd]. What follows are
the conditions of the relationship, specified after the ON keyword [SEd]. Furthermore,
associations allow extending conditions on a join using specific filter conditions on path
expressions using the WITH DEFAULT FILTER keyword [SEd]. In line 4, the syntax
for a composition to-child association is shown [SEg]. The statement starts with the
COMPOSITION keyword followed by the cardinality and the target of the relationship
[SEg]. It also allows introducing an alias for the relationship [SEg]. The ON condition
can be automatically derived from the mandatory to-parent association of the composition

26

2.4. ABAP Core Data Services

child, and it is therefore not necessary to define it manually [SEg]. Finally, line 6 and
line 7 present the syntax for an to-parent association [SEe]. One needs to define the
association target of the relationship as well as the ON condition of the relationship,
which requires the fields of the association source to be prefixed with $projection [SEe].
We can and will also use this $projection prefix in the simple association to define the
ON clause. Similar to the other associations, the to-parent association also allows the
introduction of an alias with the AS keyword [SEe]. It is important to note that the
to-parent association needs to be defined first, and only afterward a to-child association
can be introduced [SEe].

1 ... ASSOCIATION [cardinality] [TO] target [AS _assoc]
2 ON cds_cond [WITH DEFAULT FILTER cds_cond] ...
3
4 ... COMPOSITION [cardinality] [OF] target [AS _compos] ...
5
6 ... ASSOCIATION TO PARENT target [AS _assoc]
7 ON $projection.cds_cond ...

Listing 2.11: CDS association syntax.

The select_list is defined as a separated list of elements that can furthermore consist of
an optional KEY keyword, defining a key element of the current CDS view entity, the
field itself, and an optional alias, which can be defined with the AS keyword, followed by
the alias [SEl]. Listing 2.12 shows the syntax of the select_list in line 1, followed by the
syntax of a specific element in line 3 to line 22 [SEl].

1 ... element1, element2, ...
2
3 ... { [@element_annot1]
4 [@element_annot2]
5 ...
6 [KEY] { field [AS alias] }
7 | { expose_assoc [AS alias] }
8 | { path_expr.element [AS alias] }
9 | { literal AS alias }

10 | { parameter AS alias }
11 | { session_variable AS alias }
12 | { aggr_expr AS alias }
13 | { arith_expr AS alias }
14 | { builtin_func AS alias }
15 | { SQL-based scalar function
16 AS alias }
17 | { reuse_exp AS alias }
18 | { case_expr AS alias }
19 | { cast_expr AS alias }

27

2. Background

20 | { EnumConstant AS alias }
21 ...
22 }

Listing 2.12: CDS select list syntax.

The clauses of the CDS DDL closely follow the standard SQL DDL and are presented in
Listing 2.13 [SEj]. We will, therefore, not introduce the usage of each further.

1 ... [WHERE cds_cond]
2 [GROUP BY field1, field2, ...]
3 [HAVING cds_cond]
4 [EXCEPT SELECT ...]
5 [INTERSECT SELECT ...]
6 [UNION [ALL] SELECT ...] ...

Listing 2.13: CDS clauses syntax.

Now, we will present some examples of CDS view entities to give further insight into the
CDS DDL. In Listing 2.14, a CDS view entity with the name DEMO_CDS_SCARR_SPFLI
is defined. The data_source is defined as an inner join between the tables SPFLI and
SCARR. In lines 8 to 12, the element_list of the CDS view entity is defined, with ID,
CARRIER and FLIGHT as the key of the resulting view.

1 @AccessControl.authorizationCheck: #NOT_REQUIRED
2 @EndUserText.label: ’CDS example 1’
3 define view entity DEMO_CDS_SCARR_SPFLI
4 as select from
5 spfli
6 inner join scarr on scarr.carrid = spfli.carrid
7 {
8 key spfli.carrid as id,
9 key scarr.carrname as carrier,

10 key spfli.connid as flight,
11 spfli.cityfrom as departure,
12 spfli.cityto as destination
13 }

Listing 2.14: CDS view entity example 1.

In Listing 2.15, a CDS view entity with the name DEMO_SALES_CDS_SO_I_VE is
defined. The view defines DEMO_SALES_SO_I as the data_source and defines an
association to the DEMO_SALES_CDS_MATERIAL_VE view to enrich a sales order
item with material information. The field material from this association target is used in
the element_list in line 18. This CDS view entity also defines a to-parent association to
the DEMO_SALES_CDS_SO_VE in line 9 to line 11, which is then exposed in line

28

2.5. Entity Relationship

19. In other words, we define an existential relationship from the sales order item to a
sales order. Also, a to-child association is defined in line 12 to line 13 to the view entity
DEMO_SALES_CDS_SO_I_SL_VE, which is again exposed in the element_list of the
current view in line 20. This can be interpreted as each sales order item having one or
more schedule lines; the information about schedule lines is contained in the composition
child.

1 @AccessControl.authorizationCheck: #NOT_REQUIRED
2 @EndUserText.label: ’CDS example 2’
3 define view entity DEMO_SALES_CDS_SO_I_VE
4 as select from
5 demo_sales_so_i
6 association [0..1] to DEMO_SALES_CDS_MATERIAL_VE
7 as _Material
8 on $projection.material = _Material.material
9 association to parent DEMO_SALES_CDS_SO_VE

10 as _SalesOrder
11 on $projection.parent_key = _SalesOrder.so_key
12 composition [0..*] of DEMO_SALES_CDS_SO_I_SL_VE
13 as _ScheduleLine
14 {
15 key so_item_key,
16 parent_key,
17 posnr,
18 _Material.material as mat,
19 _SalesOrder,
20 _ScheduleLine
21 }

Listing 2.15: CDS view entity example 2.

We will omit further details of the CDS DDL as they will not be relevant to the scope of
this thesis. Detailed documentation of the CDS DDL can be found in [SEb].

2.5 Entity Relationship
The entity-relationship (ER) model was first introduced in [Che76b] and is designed to
represent crucial semantic information of the real world. Initially, it was designed to
unify different data views, particularly the network, relational, and entity set model
[Che76b]. The main concepts of the ER model are entities that [Che76b] describes as
things that can be distinctly identified and contain attributes, as well as relationships,
which the authors of [Che76b] describe as associations among entities. These ER models
can visually be represented as ER diagrams, consisting of various shapes and labels. In
the remainder of this section, we will introduce the ER models and their corresponding

29

2. Background

Figure 2.11: Entity with attributes and primary key.

representation in ER diagrams backed by [Che76b], [EN16] and [BE03] as it serves as
the basis for the novel domain-specific language introduced by this thesis.

As already defined above, a entity is the representation of a real-world object that can
be distinctly identified, while the object can be of physical (e.g., person, vehicle) or
conceptual nature (e.g., company, job) [Che76b, EN16]. Furthermore, each entity has
attributes which describe its properties [EN16]. For example, an entity PERSON may
be described by the person’s name, social security number, and address. A particular
instance p1 will have a value for all attributes defined by entity PERSON [EN16]. The
minimal set of attributes that can be used to distinctly identify an entity is referred to
as primary key [Che76b]. In case the primary key consists of multiple attributes, it is
referred to as composite key [EN16]. Attributes can be further classified as presented
in [EN16], but we will not introduce these concepts, as they will not be used in the
scope of this thesis. In Fig. 2.11, the example mentioned above is modeled using the
Chen-Notation, with the social security number as the primary key [Che76b].

Relationships define associations between entities referred to by a name and can contain
descriptive attributes [Che76b]. Furthermore, a relationship defines a set of entities that
are associated with this relationship [Che76b]. Formally, a relationship can be defined as
the Cartesian product of E1, E2, ..., En such that R ⊆ E1 × E2 × ... × En, with n denoted
as the degree of the relationship [EN16]. In Fig. 2.12 a binary relationship (i.e. n =
2) and in Fig. 2.14 a ternary relationship (i.e. n = 3) is presented. Furthermore, a
recursive relationship is presented in Fig. 2.13, as a binary relationship with E1 = E2
and additional role names to indicate the role within a relationship [BE03, EN16].

In addition to the degree of the relationship, one can define constraints on such, limiting
the possible combinations of entities [EN16]. For these constraints, we distinguish between
the cardinality ratio and the participation constraint [EN16].

The cardinality ratio defines the maximum a specific entity can participate in a relation-

30

2.5. Entity Relationship

Figure 2.12: Binary relationship.

Figure 2.13: Recursive re-
lationship with roles.

Figure 2.14: Ternary relationship.

ship [EN16]. Possible cardinality ratios are defined as 1:1, 1:N and M:N, with N and M
as a unlimited maximum [EN16]. Revisiting the example of Fig. 2.12, one can constrain
the relationship as 1:N, meaning an employee works for at most one department (1). In
contrast, a department can be related to any number of employees (N). If we further
constrain the relationship as 1:1, this would indicate that an employee works for at most
one department (1) and a department has at most one employee assigned (1). In the case
of an M:N relationship, the meaning of the relationship would change to an employee
working for zero or more departments (M), and a department is related to zero or more
employees (N).

On the other hand, the participation constraint defines the minimum number of
relationship instances an entity can participate [EN16]. A total participation denotes
that each entity has to participate in at least one relationship instance. In contrast, a
partial participation states that some entities participate in relationship instances but
not necessarily all [EN16]. For the example in Fig. 2.12, we can use total participation
to define that each employee has to work for a department. We could further ease the
relationship constraints by using partial participation, meaning that employees do not
necessarily have to work for a department, but some of the employees do.

Multiplicity defines the combination of cardinality ratio and participation constraint
[EN16]. We can use this notation to define the cardinality constraints on relationships.
In Fig. 2.15, an example of a relationship with multiplicity is given. The model describes
a relationship of zero or more employees (0..N) that work for exactly one department

31

2. Background

Figure 2.15: Relationship defined with multiplicity.

(1..1).

We will emit further ER details since they are irrelevant to this work’s scope. It is
important to note that the representation of ER greatly varies in different literature
and notations. The remainder of this work will use a graphical syntax similar to the
Chen-Notation. However, this thesis will use ER as a basis for the novel modeling
language and will not cohere fully with the standard ER modeling language.

32

CHAPTER 3
Related Work

This chapter introduces related work. First, existing web-based modeling tools will be
presented. In more detail, bigER, a modeling tool for entity relationship diagrams,
the Graphical Language Server Protocol, and bigUML, an example of a tool using the
Graphical Language Server Protocol, are analyzed. The following section focuses on
related work in Core Data Services. The current development tool for Core Data Services,
Eclipse ADT, and existing Visual Studio Code extensions will be presented.

3.1 Web-based modeling tools
In the following section, two web-based modeling tools will be presented. bigER was
first introduced in [GB21] and is available as a VS Code extension for modeling entity
relationship diagrams. bigUML was presented in [MB23]. Again, this tool is available
as a VS Code extension and allows the modeling of UML. bigUML was developed using
the Graphical Language Server Protocol, a framework following the pattern of LSP, with
support for graphical modeling [Foua].

3.1.1 bigER
The bigER tool was introduced in 2021 by [GB21] and is the first of its kind [GHHB22].
The tool allows hybrid modeling of ER in a textual or graphical manner within VS Code1.
The implementation is based on LSP with a client-server architecture. For the client
side, Sprotty2 is used for the graphical interface, while VS Code provides the textual
interface. bigER introduced a domain-specific language implemented in Xtext3 that also

1https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.
erdiagram, last accessed: 30.07.2024

2https://sprotty.org/, last accessed: 30.07.2024
3https://eclipse.dev/Xtext/, last accessed: 30.07.2024

33

https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
https://sprotty.org/
https://eclipse.dev/Xtext/

3. Related Work

Figure 3.1: Overview of the GLSP architecture [BLO23].

serves as the basis for the Java-based language server. Another feature of bigER is the
generation of SQL statements. In particular, it is possible to generate SQL statements to
create the database schema based on the model artifact. One issue with the bigER tool
is the need for a Java runtime due to the language server being implemented in Java. It
is, therefore, not possible to run bigER in a browser-only scenario. The tool developed
in this thesis will use a similar architecture as the bigER tool, with the difference of a
TypeScript-based language server, to support such browser-only scenarios.

3.1.2 Graphical Language Server Protocol
The Graphical Language Server Protocol (GLSP)4 is a framework for creating diagram
editors based on web technologies, developed by EclipseSource [Foub]. GLSP is built using
a client-server architecture with the client being responsible for rendering diagrams and
handling user interactions and the server being responsible for managing the underlying
source model as well as additional business logic [Lan]. In Fig. 3.1, the architecture of
GLSP is illustrated.

The server-side is responsible for managing the source model and handling client requests
or diagram states. Furthermore, the server exposes services to read or maintain the
source model. The source model represents the diagram’s underlying data structure.
The client and server communicate using the GLSP protocol, similar to LSP, a set of
messages that can be used to exchange information between the two components. For
the implementation of the server-side GLSP supports TypeScript and Java. Additionally,
multiple technologies are supported for the model source, e.g., EMF5 and JSON6.

The primary responsibility of the client-side is to present the diagram elements received
by the language server visually. The rendering is based on web technologies, including
HTML, CSS, TypeScript, and Scalable Vector Graphics (SVG). Additionally, the client

4https://eclipse.dev/glsp/, last accessed: 04.08.2024
5https://eclipse.dev/modeling/emf/, last accessed: 04.08.2024
6https://www.json.org/, last accessed: 04.08.2024

34

https://eclipse.dev/glsp/
https://eclipse.dev/modeling/emf/
https://www.json.org/

3.2. Core Data Services

side provides a user interface to modify and interact with the diagram. GLSP supports
different browser-like platforms. The framework provides integrations for Eclipse IDE7,
Eclipse Theia8, VS Code9, or browsers in general.

GLSP is built for graphical modeling only and is, therefore, not suitable for hybrid
modeling. However, the advanced user interfaces and experience gained with graphical
modeling will be used to create the novel modeling tool ER2CDS. Also, the GLSP
protocol, as an example of an LSP-based protocol that supports graphical modeling, will
significantly influence the extension of LSP used by ER2CDS.

3.1.3 bigUML
bigUML10 is a modeling tool for different Unified Modeling Language (UML) diagram
types, which was first reported on in [MB23]. bigUML is based on GLSP and supports
VS Code and Eclipse Theia integration. The architecture of the bigUML tool is
separated into a core module, diagram features, and tool features. It uses a Java-based
implementation for the GLSP server; therefore, it is impossible to employ a browser-
only environment. Furthermore, due to the restriction of GLSP, bigUML does not
support hybrid modeling; it only supports graphical modeling. However, we will use the
insights gained from this reference implementation using GLSP, as reported in [MB23],
to implement ER2CDS.

3.2 Core Data Services
Core Data Services are the key technology of the VDM in the SAP environment, as
introduced in Section 2.4. In this section, we will introduce existing tools for CDS
development.

3.2.1 Eclipse ADT
ABAP Development Tools (ADT) for Eclipse is the recommended development tool for
CDS [SEb]. ADT offers an editor for the DDL, SDL, and DCL. The DDL editor supports
the CDS DDL syntax and offers code completion, validation, and other features that
are tightly integrated with the SAP environment. Furthermore, in a previous version of
ADT, it was possible to display existing CDS entities graphically. However, this feature
was discontinued, and ADT only offers a textual editor to create or modify CDS entities.
The textual editor does not support a model-driven engineering process, and users are
forced to implement CDS entities on the textual level. This establishes a high entry
barrier for domain experts, rendering it unfeasible for them to understand and maintain

7https://eclipseide.org/, last accessed: 04.08.2024
8https://theia-ide.org/, last accessed: 04.08.2024
9https://code.visualstudio.com/, last accessed: 04.08.2024

10https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.
umldiagram, last accessed: 04.08.2024

35

https://eclipseide.org/
https://theia-ide.org/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram
https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.umldiagram

3. Related Work

Figure 3.2: Illustrative example for the usage of ADT within the Eclipse IDE.

the CDS directly and without the support of developers. Fig. 3.2 illustrates the usage of
ADT within the Eclipse IDE. It becomes clear that domain experts are not ready to use
such a notation.

3.2.2 Existing VS Code extensions
Several VS Code extensions for CDS development exist. On the one hand, the ABAP
CDS Language Support11 provides syntax support for CDS in VS Code. However, it does
not offer advanced functionality, e.g., validation and auto-completion. Furthermore, the
extension is not maintained anymore, and therefore, it lacks the latest CDS updates. On
the other hand, SAP CDS Language Support12 and core data services graphical modeler
for VS Code13 provide full language support, as well as graphical modeling support,
but for SAP Cloud Application Programming (CAP), therefore not supporting SAP
S/4HANA CDS [SEn, fS].

11https://marketplace.visualstudio.com/items?itemName=hudakf.cds
12https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-cds
13https://marketplace.visualstudio.com/items?itemName=SAPSE.

vscode-wing-cds-editor-vsc

36

https://marketplace.visualstudio.com/items?itemName=hudakf.cds
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-cds
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-wing-cds-editor-vsc
https://marketplace.visualstudio.com/items?itemName=SAPSE.vscode-wing-cds-editor-vsc

CHAPTER 4
Requirements Analysis

This chapter describes the main idea and the requirements for ER2CDS. These are
derived directly from industry, particularly the current development cycle for CDS view
entities, as well as the learnings of the presented work in Chapter 3. First, the main idea
and general approach of ER2CDS are presented. Then, we will analyze the requirements
for the modeling part. Afterwards, the general requirements for the tool are described.
The resulting requirements will then serve as a basis for the implementation of ER2CDS
and will be further presented in Chapter 5 and Chapter 6.

4.1 Main idea and general approach

ER2CDS is designed to serve as the primary tool for a model-driven engineering process
in CDS development. The tool shall support graphical and textual modeling of a domain-
specific modeling language. The resulting model can then be transformed into a CDS view
entity using a model-to-text transformation. To further ensure high usability, ER2CDS
should allow users to connect SAP S/4HANA systems to the tool. However, ER2CDS
should be usable with or without a connection to a SAP S/4HANA system. This will
enable additional validation and modeling support for the user. Furthermore, existing
CDS view entities can be imported into ER2CDS for analysis or to extend existing models
further.

ER2CDS is intended to be used within VS Code and Business Application Studio (BAS),
a browser-based development environment in the SAP environment. Both have access
to the Visual Studio Marketplace and support the installation of extensions. Therefore,
ER2CDS should be distributed as an extension in the Visual Studio Marketplace. No
further dependencies should be required to run the extension for ease of use. In general,
ER2CDS will be developed using web technologies only.

37

4. Requirements Analysis

The following two sections describe a non-exhaustive list of the main requirements that
ER2CDS should meet.

4.2 Modeling Requirements
We will now present the modeling requirements for the artifact of this thesis. First, we
require a domain-specific language that enables graphical and textual modeling. The
grammar for the modeling language has to support these concepts:

• Root element definition: The grammar needs to define a notation that indicates
the root element of the model, which furthermore allows naming the model.

• Entity definition: The grammar needs to support the concept of entities. This
includes the name of an entity, as well as an alias. Additionally, it should be
possible to assign attributes to entities.

• Attribute definition: The grammar must support attributes defined with a name,
a data type, and an optional alias. Furthermore, it should provide a notion of
defining key attributes and attributes that should not appear in the output of the
generated CDS view entity.

• Relationship definition: The grammar needs to support relationships between
entities. They shall be defined with a source entity, a target entity, and conditions of
the relationship, so-called join clauses. Furthermore, it must support a distinction
between join-, association-, association-to-parent-, and composition-relationships,
which is directly derived from the CDS DDL. Finally, the grammar should support
different cardinalities in relationships.

• Join clause definition: The grammar must support the definition of join clauses
for relationships. These are necessary to define conditions in relationships.

ER2CDS will support a textual and graphical user interface for modeling. Both interfaces
should support all functionality for creating and modifying ER2CDS models. Addition-
ally, ER2CDS should enable hybrid modeling. Therefore, the graphical and textual
representation should be synchronized accordingly.

In order to ensure the quality of the models, an extended validation shall be implemented.
The validation has to ensure the correctness of the model according to the defined
grammar and, if connected to an SAP S/4HANA system, the correctness of the used
entities and attributes.

In order to create a CDS view entity for an ER2CDS model, a model-to-text transforma-
tion must be implemented. For this transformation, the following requirements shall be
met:

38

4.2. Modeling Requirements

• Validity: The generated CDS view entity should adhere to the CDS DDL and,
therefore, not contain any syntactical errors.

• Correctness: The output should represent the intentions of the ER2CDS model.
In more detail, the entities and relationships should be correctly mapped to the
CDS syntax, creating a CDS view entity that corresponds to the model.

• Readability: The generated CDS view entity should contain readable code that
follows best practices used in the industry.

To import existing CDS view entities, a parser that extracts the entity’s information
from a serialized schema stored within a SAP S/4HANA system’s database must be
implemented. We expect the following requirements to hold:

• Validity: The parser should produce a valid ER2CDS model from the input data
with no syntactical errors.

• Correctness: The resulting ER2CDS model should represent the entities and
relationships of the input CDS view entity. It should not represent additional,
automatically generated entities but only the ones present in the source code of the
input CDS view entity.

To ensure usability, ER2CDS should also implement features widely common in textual
and graphical modeling. These features include:

• Syntax support: The textual editor should provide completions and keyword
support. Additional keywords should be visually highlighted in the textual editor.

• Rename provider: The rename feature should be implemented on a model level
rather than on the textual level. This ensures correctness while renaming.

• Layout support: The graphical editor should support automatic layout and helper
lines as alignment help.

• Auto-completion/Value Help: If an SAP S/4HANA system is connected to
the tool, a value help should be presented for entities and attributes based on the
system-specific data model. In addition, the tool should support the import of all
attributes of an entity when connected to an SAP S/4HANA system.

• Tool integration: User interactions beyond modeling should be implemented
within the native features of VS Code and BAS, namely the command palette.

39

4. Requirements Analysis

4.3 Tool Requirements
We will now discuss further requirements for ER2CDS. These will primarily be technical
considerations and requirements necessary to support optimal integration into the SAP
environment.

Firstly, as already mentioned, ER2CDS should be distributed using the Visual Studio
Marketplace. Therefore, the tool has to be implemented as a VS Code extension. This
implicitly allows the integration in BAS as well. Furthermore, no additional dependencies
should be needed. Only then can the tool be used within BAS, which runs in the
browser. Compared to bigER and bigUML, both presented in Chapter 3, which use
the Java-based EMF technology and a language server implemented in Java, ER2CDS
should only use web technologies. For this, the language server has to be implemented in
JavaScript (or, in this case, TypeScript). We will use the Langium framework, which is
also implemented in TypeScript and supports browser-only deployment. Sprotty, again
a framework based on web technologies, will be used for the diagramming part, so no
further dependencies are introduced.

As mentioned in the previous section, the tool should support connecting to an SAP
S/4HANA system. Due to the restrictions of a browser-only deployment, the commu-
nication shall be implemented using the Hypertext Transfer Protocol (HTTP). The
SAP S/4HANA system exposes a web service that can be used by the tool to retrieve
information about the data model. In order to define a system connection, ER2CDS
needs to provide the possibility to maintain and store system information. Furthermore,
secrets used for authentication in the web service should be managed securely.

Finally, the tool should be usable with or without an SAP S/4HANA system. All features
that require an active system connection, e.g., import, validation, and value help, have
to be implemented so that the tool still fully works in case no system connection is
maintained or the system is not reachable.

40

CHAPTER 5
Conceptualization

In this chapter, we will define the concepts of the novel modeling tool ER2CDS. First,
the textual language specification will be presented. In particular, the grammar for the
domain-specific language is defined. Then, a concrete graphical syntax for the DSL is
introduced. First, we will define the graphical elements of the DSL. Then, the modeling
interactions for ER2CDS will be described. The following section will present an extension
for LSP, including additional actions. Afterward, the hybrid modeling approach and
the synchronization between textual and graphical models will be explained. Then, the
integration of ER2CDS in the SAP ecosystem will be analyzed. Finally, the model-to-text
transformation and the concept behind the import of existing CDS view entities will be
presented.

5.1 Textual Language Specification
This section will focus on the definition of the domain-specific syntax and the textual
concrete syntax, which can be directly derived from the grammar definition of the DSL.
The grammar will be defined using the Langium grammar, as presented in Section 2.2.2.
In Listing 5.1, the final grammar definition of the ER2CDS DSL is presented.
The grammar’s root element is described in Lines 3 to 5. It starts with the keyword
er2cds followed by the model’s name. Afterward, multiple entities and relationships can
be defined (line 5).
The definition of an entity starts with the keyword entity followed by the entity’s name
(line 7). Furthermore, an alias, using the alias keyword followed by the alias value (line
9), as well as multiple attributes (line 10), can be defined within the curly braces to
complete the entity definition.
Attributes consist of an attribute type, either key for key attributes of the resulting CDS
view entity or no-out, for attributes used while modeling, that should not appear in the

41

5. Conceptualization

output of the CDS view entity, the attribute name, a data type, and an optional alias,
again using the alias keyword (line 14).

Lines 16 to 17 describe the definition of a data type. The grammar describes a data type
matching the ID terminal rule defined in line 67. We will further restrict data types on
the SAP predefined data types during the implementation phase.

In lines 19 to 24, the notion of a relationship is defined. It starts with an optional rela-
tionship type, association, association-to-parent, or composition, defining the relationship
kind (line 20). If not defined, the relationship is interpreted as a join. Then, the keyword
relationship followed by the name has to be stated (line 20). In between curly braces
follow the source entity and the target entity of the relationship, separated by the ->
keyword (line 21). A relationship entity is defined in lines 26 to 29. It consists of the
entity (line 27), in particular, the name of the entity (cross-referenced by the ID), and
the cardinality type, 1 or 0..N (line 54), between brackets. Both source and target are
defined as optional to support the incremental creation of the relationship, even though
a relationship is only valid if the source entity and target entity are given. Furthermore,
the keyword join order allows us to define the join order of the resulting CDS view entity
(line 22). Finally, the join clauses are defined, consisting of an attribute of the source
entity and an attribute of the target entity, separated by the = keyword (line 32). Both
attributes are cross-references to an existing attribute identified by the ID (attribute
name). However, additional scoping needs to be implemented to further restrict the
attributes to attributes of the source entity or target entity. This will be presented in
detail in Chapter 6.

Line 67 and line 68 define terminals. In line 67, the ID terminal is defined, which is
used for the name and alias. It, therefore, defines valid names for entities, relationships,
attributes, and the model itself. The terminal INT matches all whole numbers and defines
the join order of the relationships.

The hidden terminal in line 70 is necessary since the Langium parser needs all characters
of the input string to be matched, as described in Section 2.2.2. The ones in lines 71 to
72 define comments over multiple lines (line 71) or a single line (line 72).

42

5.1. Textual Language Specification

1 grammar ER2CDS
2
3 entry ER2CDS:
4 ’er2cds’ name=ID
5 (entities+=Entity | relationships+=Relationship)*;
6
7 Entity:
8 ’entity’ name=ID ’{’
9 (’alias’ alias=ID)?

10 (attributes+=Attribute)*
11 ’}’;
12
13 Attribute:
14 (type=AttributeType)? name=ID (’:’ datatype=DataType)?

(’as’ alias=ID)?;
15
16 DataType:
17 type=ID;
18
19 Relationship:
20 (type=RelationshipType)? ’relationship’ name=ID ’{’
21 ((source=RelationshipEntity)? ((’->’ target=

RelationshipEntity))?)?
22 (’join’ ’order’ joinOrder=JoinOrderType)?
23 (joinClauses+=RelationshipJoinClause)*
24 ’}’;
25
26 RelationshipEntity:
27 target=[Entity] (’[’
28 cardinality=CardinalityType
29 ’]’)?;
30
31 RelationshipJoinClause:
32 (firstAttribute=[Attribute:ID] ’=’ secondAttribute=[

Attribute:ID]);
33
34 type AttributeType = ’key’ | ’no-out’;
35 AttributeType returns AttributeType:
36 KEY | NO_OUT
37 ;
38 KEY returns string:
39 ’key’;
40 NO_OUT returns string:

43

5. Conceptualization

41 ’no-out’;
42
43 type RelationshipType = ’association’ | ’association-to-parent’

| ’composition’;
44 RelationshipType returns RelationshipType:
45 ASSOCIATION | ASSOCIATION_TO_PARENT | COMPOSITION
46 ;
47 ASSOCIATION returns string:
48 ’association’;
49 ASSOCIATION_TO_PARENT returns string:
50 ’association-to-parent’;
51 COMPOSITION returns string:
52 ’composition’;
53
54 type CardinalityType = ’1’ | ’0..N’;
55 CardinalityType returns CardinalityType:
56 ONE | ZERO_MANY
57 ;
58 ONE returns string:
59 ’1’;
60 ZERO_MANY returns string:
61 ’0..N’;
62
63 JoinOrderType returns number:
64 INT | ONE
65 ;
66
67 terminal ID: /[_/a-zA-Z][\w_/]*/;
68 terminal INT returns number: /[0-9]+/;
69
70 hidden terminal WS: /\s+/;
71 hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;
72 hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

Listing 5.1: ER2CDS DSL grammar implemented using the Langium grammar.

44

5.2. Graphical Language Specification

In Listing 5.2, we present an example containing an entity Employee and Department,
which are related through the manages relationship. Furthermore, it illustrates the usage
of the key and no-out keywords and the use of an alias and cardinalities. Additionally,
the manages relationship is defined as the first relationship, using the join order keyword.

1 er2cds EmployeeManagesDepartment
2
3 entity Employee {
4 key PERNR : NUMC
5 FNAME : CHAR as FirstName
6 LNAME : CHAR as LastName
7 DEPARTMENT_ID : NUMC
8 }
9

10 entity Deparment {
11 no-out DEPARTMENT_ID : NUMC
12 NAME : CHAR as Name
13 }
14
15 relationship manages {
16 Employee[1] -> Deparment[1]
17 join order 1
18 DEPARTMENT_ID = DEPARTMENT_ID
19 }

Listing 5.2: An example for the usage of the textual ER2CDS DSL

5.2 Graphical Language Specification
We will now focus on the graphical language specification. In the following sections, the
elements of the graphical concrete syntax will be introduced. Furthermore, the required
modeling interactions are defined.

5.2.1 Element Definition
The graphical concrete syntax of ER2CDS is based on the Chen-Notation of entity
relationship diagrams. The main elements are entities, represented as rectangulars, and
relationships, represented as diamonds.

Entities are represented by the entity’s name in the component’s header, followed by the
attributes, separated by a line. Each attribute is displayed using its name, the datatype,
and, if present, the alias. A colon separates the name from the datatype. Furthermore,
key attributes are underlined, and no-out attributes are displayed and crossed out. The
example presented in Fig. 5.1 describes an entity named Employee, with the field PERNR
as key. The attributes FNAME and LNAME show the use of an alias. In contrast, the

45

5. Conceptualization

Figure 5.1: Entity in the ER2CDS graphical
concrete syntax.

Figure 5.2: Relationship in the ER2CDS
graphical concrete syntax.

Figure 5.3: A relationship between two entities in the ER2CDS graphical concrete syntax.

SALARY attribute is defined as a no-out attribute and will therefore not be presented in
the element_list of the generated CDS view entity. Relationships are represented by their
names only. Fig. 5.2 illustrates an example of an relationship with the name works_for.

An undirected edge illustrates the associations between elements. Since we require
a source and a target entity to form the only valid relationship, we further restrict
relationships to binary relationships. A relationship can also define cardinalities for the
source and the target entity. These are represented as a label above the corresponding
edge. An example of a relationship is presented in Fig. 5.3. For this Employee acts as the
source entity, which is related to Department via the manages relationship. In this case,
the cardinalities are both one and can be interpreted as exactly one employee managing
one department.

5.2.2 Modeling Interactions

We will focus on graphical modeling for the modeling interactions since the textual mod-
eling uses the native functionality of VS Code. Specifically, we separate the requirements
presented in Chapter 4 into four different kinds of interactions that need to be supported
by ER2CDS.

46

5.3. LSP Extension

• Creation of elements: The tool should support the creation of all model elements
in specific entities, relationships, attributes, and join clauses. This includes the
creation of the edges between entities and relationships.

• Deletion of elements: The tool should support deleting all model elements.

• Maintaining attributes of elements: The tool should support creating and
updating attributes of different model elements.

• Additional layout support: The tool should support further assistance for
creating models. This includes layout support, helper lines, and multi-selecting of
elements.

In order to implement these requirements, the tool exposes two main interaction compo-
nents, the tool palette and the property palette. The tool palette allows the user to select
and use tools for general modeling, like selection, deletion, or validation, as well as tools
used to create different elements of the model. The property palette is responsible for
modifying the attributes of existing elements. The tool palette supports specific features
that do not change during runtime. On the other hand, the property palette adapts to
the selected element and allows for editing of the related attributes.

5.3 LSP Extension
LSP has to be extended to support the graphical and textual creation of ER2CDS. More
detailed, additional actions are explicitly defined for graphical modeling. For the textual
part, ER2CDS relies on the standard actions of LSP. Table 5.1 describes the custom
actions defined by ER2CDS.

More details about implementing these extensions can be found in Chapter 6.

5.4 Hybrid Modeling
ER2CDS supports graphical as well as textual modeling. Therefore, it is necessary to
synchronize these models accordingly to enable hybrid modeling. To overcome this,
we must define a leading system that holds the only truth in case of discrepancy. As
presented in Section 2.2.2, the Langium framework holds an internal model, which acts
as the single source of truth. Therefore, all updates should be committed to this model.

We distinguish between two use cases: the update through the textual representation
of the model and the one through the graphical modeler of ER2CDS. For the first use
case, the framework addresses all main issues. Upon editing, the model is updated using
standard LSP messages. Furthermore, the graphical model is re-rendered after the update
is completed. The latter use case relies on the custom-defined LSP actions. The language
server handles the create, update or delete actions by modifying the current Langium

47

5. Conceptualization

N
am

e
T

ype
P

aram
eter

U
sage

C
reateElem

entA
ction

A
ction

elem
entType:

string
U

sed
to

create
a

specific
elem

ent
type.

T
he

elem
entType

param
eter

contains
the

inform
ation

on
w

hich
kind

ofelem
ent

should
be

created.

C
reateEdgeA

ction
A

ction
sourceElem

entId:
string

targetElem
entId:

string
U

sed
to

create
an

edge
from

the
source

elem
ent,identified

by
sourceElem

entId,and
the

target
elem

ent,identified
by

the
targetElem

entId.
O

ne
ofthe

elem
ents

has
to

be
an

entity,the
other

one
a

relationship.

C
reateA

ttributeA
ction

A
ction

elem
entId:

string
C

reates
an

attribute
for

an
entity,defined

by
the

elem
entId.

T
his

action
can

only
be

successfully
executed

ifthe
elem

entId
corresponds

to
an

entity.

C
reateJoinC

lauseA
ction

A
ction

elem
entId:

string
C

reates
a

join
clause

on
a

relationship,w
hich

is
identified

by
elem

entId.
T

he
action

can
be

successfully
executed

ifand
only

ifelem
entId

identifies
a

relationship.

U
pdateElem

entPropertyA
ction

A
ction

sourceElem
entId:

string
propertyId:

string
value:

string

U
sed

to
update

a
property

ofan
elem

ent,corresponding
to

the
elem

entId.
T

he
property

is
identified

by
the

propertyId.
Furtherm

ore,the
value

param
eter

defines
the

new
value

ofthe
property.

D
eleteElem

entA
ction

A
ction

elem
entIds:

string[]
D

eletes
allelem

ents
identified

by
elem

entIds.
It

allow
s

to
delete

m
ultiple

elem
ents

at
the

sam
e

tim
e.

R
equestA

utoC
om

pleteA
ction

R
equestA

ction
elem

entId:
string

type:
string

search:
string

A
llow

s
to

retrieve
value

suggestions
from

the
backend.

T
he

elem
entId

identifies
the

selected
elem

ent.
T

he
type

defines
the

type
ofthe

autocom
plete

request.
In

m
ore

detail,two
types

ofauto-com
plete

requests
are

defined.
First,to

retrieve
suggestions

for
entity

nam
es,w

here
the

selection
is

restricted
by

the
search

value.
A

nd
secondly,to

retrieve
attribute

suggestions
for

a
specific

entity.
T

he
request

is
therefore

restricted
to

the
attributes

ofthe
specific

entity,as
wellas

the
search

value
T

he
server

responds
w

ith
a

SetA
utoC

om
pleteA

ction

.

SetA
utoC

om
pleteA

ction
R

esponseA
ction

elem
entId:

string
values:

A
utoC

om
pleteValue[]

Sent
in

response
to

R
equestA

utoC
om

pleteA
ction.

T
he

elem
entId

identifies
the

elem
ent

to
w

hich
it

corresponds.
T

he
values

is
defined

as
an

array
ofAutoC

om
pleteValue,a

type
w

hich
contains

a
label.

R
equestPopupC

onfirm
M

odelA
ction

R
equestA

ction
elem

entId:
string

bounds:
Bounds

Sent
to

request
a

popup
from

the
server.

U
sed

to
confirm

the
creation

ofan
entity

from
the

externaldata
source,identified

by
elem

entId.
T

he
bounds

correspond
to

a
default

LSP
type,defining

the
location

ofthe
popup.

T
he

server
responds

w
ith

a
SetPopupM

odelA
ction

predefined
in

LSP.

C
reateElem

entExternalA
ction

A
ction

elem
entId:

string
Is

sent
after

the
m

anualpopup
confirm

ation,as
a

result
ofR

equestPopupC
onfirm

M
odelA

ction,to
load

an
entity

from
the

externaldata
source.

R
equestM

arkersA
ction

R
equestA

ction
Sent

to
validate

the
m

odel.
T

he
server

responds
w

ith
a

SetM
arkersA

ction.

SetM
arkersA

ction
R

esponseA
ction

m
arkers:

M
arker[]

Sent
as

a
response

to
the

R
equestM

arkersA
ction.

It
triggers

a
validation

ofthe
m

odeland
contains

the
validation

result
in

the
form

ofm
arkers.

T
hese

are
defined

w
ith

a
elem

entId
to

identify
the

elem
ent,kind,defining

the
severity

(info,warning,error),and
a

description,a
textualexplanation.

Table
5.1:

C
ustom

LSP
actions

defined
by

ER
2C

D
S

for
graphicalm

odeling.

48

5.5. SAP Integration

model. In order to synchronize the textual representation, the model is serialized and
written to the file system afterward. The subsequent save triggers the framework to start
the same process as modifying the textual representation.

Using this process allows us to rely heavily on the framework. We only need to imple-
ment the serialization of the Langium model to a textual representation, which can be
implemented straight-forward. In Chapter 6, the serialization will be presented in more
detail.

5.5 SAP Integration
As presented in Chapter 4, ER2CDS should integrate into the SAP environment to
further improve the modeling experience. We will now define the concrete integration
possibilities. In particular, a SAP S/4HANA system can be connected to ER2CDS. For
this, the system needs to expose a custom web service that can then be used to access
the data model. This service is implemented as a CDS view entity, which is then exposed
as a web service using the SAP S/4HANA infrastructure. A more detailed insight into
the implementation can be found in Chapter 6. The following two sections describe the
application areas for this access to the external data model within ER2CDS.

5.5.1 Value Helps

First, we can use the external data model to enable user value-helps. More specifically,
the value-helps are presented for input fields, particularly the name of an entity or
attributes. For example, to model a CDS view entity, all existing and valid data sources
or associations are retrieved from the connected SAP S/4HANA system and used as
possible entity names, as these are the only valid names in this context. This not only
improves the usability of ER2CDS but also helps to ensure the quality of the models. As
stated above, this will be used for the names and attributes of specific entities. Additional
information, such as the datatype, can be retrieved from the system and used accordingly.
It is important to note that we do not rely on the value-help for the join clauses, as they
can be computed from cross-referencing.

5.5.2 Validation

Another use case for connecting to an SAP S/4HANA system is during the validation
process. Access to an external data model allows the validation of the entities and
attributes against it. The validations are closely related to the value help integration.
Namely, all entities’ names are checked for existence in the corresponding system, and
all attributes are checked for existence within an entity. For example, if the entity
corresponds to a database table, we check if a corresponding field exists on the database
table for each attribute of the entity. This enables an advanced validation mechanism,
which helps to ensure the validity of the final generated CDS view entity.

49

5. Conceptualization

5.6 Model-to-Text Transformation
The model-to-text transformation is one of the central parts of ER2CDS. It allows the
transformation of an ER2CDS model into a CDS view entity. We will use a template-
based approach to generate the textual output. As already defined in Chapter 2, the
template-based approach uses code snippets enriched with model information. The
generation of a CDS view entity can be divided into five steps, which are directly derived
from the syntax of CDS.

• Generation of header annotations: Each CDS view entity can define optional
annotations applied to the entire view. This includes authorizations, metadata,
and even end-user labels. For ER2CDS, we define the following default annota-
tions. @AccessControl.authorizationCheck: #CHECK ensures that the result of
the CDS view entity can only be accessed with suitable authorization. @Meta-
data.ignorePropagatedAnnotations: true is used that the derivation of metadata is
performed on the current view, and @EndUserText.label: ’Generated by ER2CDS’
adds a semantic label for the view.

• Generation of header: The header of the CDS view entity defines the name of
the generated CDS view entity. The name results from the name of the ER2CDS
model.

• Generation of from clause: In Chapter 2 the data_source is defined as an entity
or path_expression that can consist of joins. For the transformation, we analyze
the model for relationships with no defined association type. Since the join order
is important, the relationships must be sorted according to the join order in the
ER2CDS model. Furthermore, the join type is defined resulting from the specified
cardinalities of the relationship, as presented in Table 5.2. The join clauses are
again directly derived from the ER2CDS model.

• Generation of associations: The associations are generated similarly to the
from_clause, with the difference that an association type has to be defined for the
relationship. Again, the cardinalities of the relationship define the cardinality of
the relationship. The concrete mapping is illustrated in Table 5.2. It is important
to note that cardinalities are only applied for association and composition, but not
for association-to-parent since the CDS syntax does not require them.

• Generation of attributes: Attributes are generated as defined by the entities of
the ER2CDS model. First, the key attributes are generated with the appropriate
key keyword of CDS. Then, the rest of the attributes follow, keeping in mind that
no-out attributes of the ER2CDS are not added to the CDS view entity. Finally,
the CDS view entity exposes the associations defined by the relationships.

50

5.7. Import of Existing CDS View Entities

Source Cardinality Target Cardinality Join Type Association Type

1 1 Inner Join [1..1]

1 0..N Left Join [1..*]

0..N 1 Right Join [0..1]

0..N 0..N Left Join [0..*]

n.d n.d. Inner Join [0..1]

Table 5.2: Mapping of cardinalities to the respective join/association type.

5.7 Import of Existing CDS View Entities
The import of existing CDS view entities to ER2CDS is implemented indirectly, using the
serialized data of the view instead of the CDS view entity directly. SAP parses and stores
all data related to a CDS view entity in the following tables: DDCDS_FROMCLAUSE,
DDCDS_SELECTLIST, DDCDS_ASSOC_DEF and DDCDS_CONDITION. Like the
value-help and validation, the web service defines and exposes a CDS view entity for each
table. When importing an existing CDS view entity, the data of all entities is requested
and used to create an ER2CDS model. After converting the SAP representation to an
ER2CDS model, the resulting model is serialized and written in the file system. This
also triggers the creation of a graphical model, as described in the update process.

DDCDS_CONDITION is the main table that stores the structure of the view entity. It
is used to create the ER2CDS entities and the ER2CDS relationships. For all entries
with CONDITION_TYPE ’FROM’ or ’ASSOC_DEFINITION’ and EXPR_TYPE
’TABLE_DATASOURCE’ an entity is generated. The relationships are created using
again CONDITION_TYPE ’FROM’ for relationships defined using joins, and CON-
DITION_TYPE ’ASSOC_DEFINITION’ for association relationships. The remaining
properties are created by extracting information of entries with EXPR_TYPE ’ATOMIC’,
’COMPARISON’ or ’JOIN_DATASOURCE’ for join relationships and EXPR_TYPE
’ASSOC_ELEMENT’, ’COMPARISON’, ’ASSOCIATION’, ’TO_PARENT_ASSO’ or
’COMPOSITION’ for association relationships.

The data stored in DDCDS_FROMCLAUSE describe the data_source of the CDS view
entity. It defines the join order of relationships in the ER2CDS model.

DDCDS_SELECTLIST holds information used to create entities’ attributes. Further-
more, it generates the join clauses for relationships, respecting aliases.

The DDCDS_ASSOC_DEF database table stores data regarding associations of a CDS
view entity. For the import, we can use it to extract a possible alias of the association
and the cardinalities of the association relationship.

Finally, we can emit details about attributes handled internally by SAP S/4HANA. We
will remove attributes that hold information about the SAP client, which separates the

51

5. Conceptualization

system into self-contained units. More implementation-specific details will be presented
in the following chapter.

52

CHAPTER 6
ER2CDS

This chapter will present the details of the implementation of ER2CDS. We will use
the knowledge and the gathered requirements of the previous chapter to design and
implement the artifact. First, an overview of the architecture is presented. A detailed
analysis of the three main components follows the VS Code extension for the integration
into VS Code, the language server as the backbone of the domain-specific language, and
the webview for the diagramming.

6.1 Architecture
The architecture of ER2CDS is closely related to the standard LSP architecture. Fig.
6.1 illustrates a high-level view of the architecture, on the one hand, VS Code and the
extension host, that includes the ER2CDS language client, as well as the webview used for
diagramming and on the other hand, the ER2CDS language server. The SAP S/4HANA
system is illustrated as an optional component. It is important to note that the language
server runs in a different process, and the communication between the language client
and the language server is based on LSP. In general, the language client orchestrates
all communication to the language server. This includes the Sprotty integration, which
sends and receives messages through the language client. The communication to the SAP
S/4HANA system is based on HTTP.

The following sections will provide insights into the implementation of these three
components.

6.2 Visual Studio Code Extension
First, we will present the configuration files needed for the VS Code extension. Since
ER2CDS is built using Node.js, the most important configuration file is the package.json.

53

6. ER2CDS

Figure 6.1: Architecture of ER2CDS with all three main components.

Moreover, for VS Code extensions, the package.json file also allows defining so-called
contributions and other dependencies. It defines the language and grammar for the
textual editor and the specific editors and views used by the extension. Additionally,
commands that are then available in the command palette of VS Code can be defined.
In Listing 6.1, the definition of four commands to generate a CDS view entity, import a
CDS view entity, and add or remove an SAP system connection is presented (line 18 - line
40). These are the main actions supported by the ER2CDS. The start of the extension
and creation of a model itself is done implicitly by creating a file with the .er2cds file
extension. This behavior is defined in the languages section, as in lines 11 to 13.

1 {
2 ...
3 "contributes": {
4 "languages": [
5 {
6 "id": "er2cds",
7 "aliases": [
8 "er2cds",
9 "er2cds"

10],
11 "extensions": [
12 ".er2cds"
13],
14 "configuration": "./language-configuration.json"

54

6.2. Visual Studio Code Extension

15 }
16],
17 ...
18 "commands": [
19 ...,
20 {
21 "command": "er2cds.generate.cds.proxy",
22 "title": "Generate CDS",
23 "category": "ER2CDS Diagram"
24 },
25 {
26 "command": "er2cds.import.cds.proxy",
27 "title": "Import CDS",
28 "category": "ER2CDS Diagram"
29 },
30 {
31 "command": "er2cds.add.system.proxy",
32 "title": "Add SAP System",
33 "category": "ER2CDS Diagram"
34 },
35 {
36 "command": "er2cds.remove.system.proxy",
37 "title": "Remove SAP System",
38 "category": "ER2CDS Diagram"
39 }
40],
41 ...
42 },
43 ...
44 }

Listing 6.1: Contributions in the package.json

In addition to the contributions presented above, the package.json also references other
configuration files that can be used for customizing the textual representation of the
language. The language-configuration.json is used for comments and bracket behavior. It
defines symbols for comments, supported brackets, auto-closing, and surrounding pairs.
For ER2CDS, we define // as line comments and /* respectively */ as block comments.
Furthermore, { and } act as brackets that can be used to surround a selection and shall
be auto-closed by the editor.

Furthermore, the package.json references er2cds.tmLanguage.json for a grammar definition.
The Langium grammar generates this file and defines keywords for the ER2CDS language.
The text editor of VS Code then highlights these accordingly. Similar to the definition in
language-configuration.json, this file also includes a definition for comments. In contrast,

55

6. ER2CDS

only the symbols can be defined. Therefore, ER2CDS uses both but with identical
symbols for obvious reasons.

We will now focus on the implementation of the VS Code extension, starting with the
entry point. Each VS Code extension is triggered using an activate function, presented
in Listing 6.2. On activation, the language client is created in line 3. Then, the webview
is created using the context and language client. Additionally, for the webview, we
register default commands for opening a diagram, fitting it to the screen, centering and
exporting the diagram in line 16. Furthermore, in line 17, a text editor synchronization
is registered. This indicates that the tool automatically opens the diagram each time the
text editor’s document is switched. In lines 19 - 20, handlers for the commands defined
in the package.json are registered. Finally, in lines 22 - 29, we check if an SAP S/4HANA
connection is maintained, and if so, send the credentials to the language server. This is
crucial for the features requiring the external system, e.g., validation.

1 export async function activate(context: vscode.ExtensionContext
) {

2 ...
3 languageClient = await createLanguageClient(context);
4
5 const webviewPanelManager = new ER2CDSWebViewPanelManager(
6 context,
7 {
8 extensionUri: context.extensionUri,
9 languageClient,

10 supportedFileExtensions: [’.er2cds’],
11 singleton: true,
12 messenger: new Messenger({ ignoreHiddenViews: false

}),
13 }
14);
15
16 registerDefaultCommands(webviewPanelManager, context, {

extensionPrefix: ’er2cds’ });
17 registerTextEditorSync(webviewPanelManager, context);
18
19 context.subscriptions.push(vscode.commands.registerCommand(

’er2cds.generate.cds.proxy’, generateCDSHandler));
20 ...
21
22 const sapUrl = await context.secrets.get(’sapUrl’);
23 const sapClient = await context.secrets.get(’sapClient’);
24 const sapUsername = await context.secrets.get(’sapUsername’

);

56

6.2. Visual Studio Code Extension

25 const sapPassword = await context.secrets.get(’sapPassword’
);

26 if (sapUrl && sapClient && sapUsername && sapPassword) {
27 await sendToServer(addSystemCommand, [sapUrl, sapClient

, sapUsername, sapPassword]);
28 ...
29 }
30 }

Listing 6.2: Contributions in the package.json

The creation of the language client is implemented straightforwardly using the vscode-
languageclient library by first defining server options, containing the location of the
language server and client options, containing information regarding the VS Code inte-
gration. Then, the language client is instantiated and started.

To handle webviews, Sprotty defines two classes, the WebviewPanelManager and the
WebviewEndpoint. The WebviewPanelManager handles all opened webviews and keeps
track of the currently active webview. Furthermore, it is responsible for creating new
webviews. The WebviewEndpoint is a wrapper class around a webview, which takes
care of the communication between the webview and the extension host. Specifically
for the language server protocol, Sprotty defines th LspWebviewPanelManager and the
LspWebviewEndpoint. We further extend these two classes to tailor them to our needs.
In more detail, the ER2CDSWebViewPanelManager overrides the createWebview method
to define the location of the webview implementation, as presented in Listing 6.3.

1 protected override createWebview(identifier:
SprottyDiagramIdentifier): vscode.WebviewPanel {

2 const extensionPath = this.options.extensionUri.fsPath;
3 return this.createWebviewPanel(identifier, {
4 localResourceRoots: [createFileUri(extensionPath, ’.’)

],
5 scriptUri: createFileUri(extensionPath, ’.’, ’out’, ’

webview.js’)
6 });
7 }

Listing 6.3: Implementation of the createWebview method within the
ER2CDSWebViewPanelManager

Also, we override the createEndpoint method to create a ER2CDSWebViewPanelManager
instead of the default LspWebviewEndpoint and to intercept the workspace edit actions
emitted from the diagram to save the documents. This is part of the synchronization
between graphical and textual models as described in Chapter 5. In Listing 6.4, the
implementation of the method is presented (lines 1 - 19) with the creation of the

57

6. ER2CDS

webview (lines 5 - 14) and the registration of the action handler (line 16), as well as the
implementation of the handler for the workspace edit actions (line 21 - 30).

1 protected override createEndpoint(identifier:
SprottyDiagramIdentifier): LspWebviewEndpoint {

2 const webviewContainer = this.createWebview(identifier);
3 const participant = this.messenger.registerWebviewPanel(

webviewContainer);
4
5 const webview = new ER2CDSWebviewEndpoint(
6 this.context,
7 {
8 languageClient: this.languageClient,
9 webviewContainer,

10 messenger: this.messenger,
11 messageParticipant: participant,
12 identifier
13 }
14);
15
16 webview.addActionHandler(WorkspaceEditAction.KIND, this.

handleWorkspaceEditAction);
17
18 return webview;
19 }
20
21 protected async handleWorkspaceEditAction(action:

WorkspaceEditAction) {
22 await vscode.workspace.applyEdit(convertWorkspaceEdit(

action.workspaceEdit));
23
24 const changes = action.workspaceEdit.changes;
25 if (changes) {
26 for (const uri in changes) {
27 await vscode.workspace.save(vscode.Uri.parse(uri));
28 }
29 }
30 }

Listing 6.4: Implementation of the createEndpoint method within the
ER2CDSWebViewPanelManager

ER2CDSWebviewEndpoint acts as an additional wrapper class for the LspWebviewEnd-
point. This allows for further interception of messages from the language server or sending

58

6.2. Visual Studio Code Extension

messages to the language server. Currently, the implementation serves as an entry point
for future implementations.

Finally, we will present how commands are handled within the extension. As presented
above, the commands are defined in the package.json file and can be used with the VS
Code command palette. All ER2CDS commands are defined with the postfix .proxy,
which already gives a hint regarding the implementation. In the activate function pre-
sented in Listing 6.2, an example of the registration of a handler is shown. In more detail,
the generateCDSHandler function is registered for the er2cds.generate.cds.proxy.
This function subsequently executes the command er2cds.generate.cds with additional
arguments, which is then handled by the language server. In Listing 6.5, the imple-
mentation of generateCDSHandler is presented, as well as the sendToServer function,
which furthermore triggers the execution of the command with the parameters. The
implementation of the other commands follows roughly the same pattern.

1 export const generateCDSHandler = async () => {
2 const activeEditor = vscode.window.activeTextEditor;
3
4 if (activeEditor?.document?.languageId === ’er2cds’) {
5 sendToServer(generateCdsCommand, [vscode.window.

activeTextEditor?.document.uri.toString()]);
6 } else {
7 vscode.window.showErrorMessage(’Error! Invalid file’);
8 }
9 };

10
11 export const sendToServer = async (command: string, args?: any)

=> {
12 const response: string | undefined = await vscode.commands.

executeCommand(command, ...args);
13 if (response) {
14 if (response.startsWith(’Error’)) {
15 vscode.window.showErrorMessage(response);
16 } else {
17 vscode.window.showInformationMessage(response);
18 }
19 }
20 };

Listing 6.5: Generate CDS command implementation with the proxy pattern and
additional arguments.

A special case is the er2cds.add.system.proxy command. In order to connect a SAP
S/4HANA system to ER2CDS, the following information is necessary:

59

6. ER2CDS

• System Uniform Resource Locator (URL): The location of system gateway.

• SAP Client: The client for which the connection is created.

• SAP Username: A valid user within the specified client of the system.

• SAP Password: A valid password for the user.

In order to request this information, ER2CDS uses the vscode.window.showInputBox
function, which prompts the user to an input field. After the input, the system URL is
validated by sending a request to the specified URL. Also, the username and password
are validated by sending a request directly to the ER2CDS service, which checks for
the existence of the web service as well. To securely store this information, we use the
vscode.ExtensionContext.secrets.store. Additionally, while running, the language server
stores the information as well. Further details are described in the following sections.

6.3 SAP S/4HANA Web Service
The ER2CDS web service itself is implemented as a CDS view entity. It exposes five
entity sets for the modeling and import function and is used by the language server to
request additional information about the system-specific data model:

• Entities: Existing entities of the data model.

• Attributes: Attributes of entities in the data model.

• ImportSelectList: Exposes the DDCDS_SELECTLIST table enriched with the
datatype of the fields.

• ImportCondition: Exposes the DDCDS_CONDITION table enriched with the
datatype of the fields.

• ImportAssocDef : Exposes the DDCDS_ASSOC_DEF table.

• ImportFromClause: Exposes the DDCDS_FROMCLAUSE table.

Implementing the web service as a CDS view entity, functionality for filtering, searching,
or pagination is handled automatically by the SAP S/4HANA system. The authentication
is based on the standard user management of SAP. The username and password can be
maintained within ER2CDS and are used to authenticate the client.

60

6.4. Language Server

6.4 Language Server
The language server is implemented using the Langium framework and relies on depen-
dency injection. This section will give an overview of the implementation.

The entry point is the server.ts file, where the connection to the client is built, the
services and language-specific services are injected, and the language server is started
accordingly. Furthermore, a diagram handler for DiagramActionNotification and Dia-
gramDidCloseNotification messages is added to the language server. The implementation
is presented in Listing 6.6.

1 // Create a connection to the client
2 export const connection = createConnection(ProposedFeatures.all

);
3
4 // Inject the shared services and language-specific services
5 export const { shared } = createER2CDSServices({ connection,

...ER2CDSFileSystem });
6
7 // Start the language server with the shared services
8 startLanguageServer(shared);
9

10 // Add a diagram handler
11 addDiagramHandler(connection, shared);

Listing 6.6: Entry point of the ER2CDS language server.

In line 5 of Listing 6.6, the createER2CDSServices function is called, which is responsible
for defining the services and capabilities of the language server, for this Langium separates
between language independent, so-called shared services and language-specific services.
The function is illustrated in Listing 6.7.

1 export function createER2CDSServices(context:
DefaultSharedModuleContext): {

2 shared: LangiumSprottySharedServices,
3 ER2CDS: ER2CDSServices
4 } {
5 const shared = inject(
6 createDefaultSharedModule(context),
7 ER2CDSGeneratedSharedModule,
8 ER2CDSSprottySharedModule
9);

10 shared.lsp.ExecuteCommandHandler = new ER2CDSCommandHandler
();

11
12 const ER2CDS = inject(

61

6. ER2CDS

13 createDefaultModule({ shared }),
14 ER2CDSGeneratedModule,
15 ER2CDSModule
16);
17 shared.ServiceRegistry.register(ER2CDS);
18
19 registerValidationChecks(ER2CDS);
20
21 return { shared, ER2CDS };
22 }

Listing 6.7: Dependency injection of the shared and language-specific services.

It first defines the shared services by injecting the default shared module, which is
predefined by the framework, the ER2CDSGeneratedSharedModule and the ER2CDS-
SprottySharedModule. The ER2CDSGeneratedSharedModule is generated by the frame-
work using the defined language. It includes an object which provides generic access
to the structure of the AST. The ER2CDSSprottySharedModule, on the other hand,
is implemented by ER2CDS and defines the diagram services. In Listing 6.8, the
implementation of ER2CDSSprottySharedModule, as well as the implementation of the
ER2CDSDiagramServerFactory is presented. In line 3, the ER2CDSDiagramServerFactory
is used as the diagramServerFactory. Furthermore, the factory instantiates a custom
diagram server ER2CDSDiagramServer, which will serve as the primary communication
point between the diagramming module and the language server.

1 const ER2CDSSprottySharedModule: Module<
LangiumSprottySharedServices, SprottySharedServices> = {

2 diagram: {
3 diagramServerFactory: ER2CDSDiagramServerFactory,
4 DiagramServerManager: (services) => new

DefaultDiagramServerManager(services),
5 }
6 };
7
8 const ER2CDSDiagramServerFactory = (services:

LangiumSprottySharedServices): ((clientId: string, options?:
DiagramOptions) => ER2CDSDiagramServer) => {

9 const connection = services.lsp.Connection;
10 const serviceRegistry = services.ServiceRegistry;
11
12 return (clientId, options) => {
13 const sourceUri = options?.sourceUri;
14
15 if (!sourceUri)

62

6.4. Language Server

16 throw new Error("Missing ’sourceUri’ option in
request.");

17
18 const language = serviceRegistry.getServices(URI.parse(

sourceUri as string)) as ER2CDSServices;
19
20 if (!language.diagram)
21 throw new Error(‘The ’${language.LanguageMetaData.

languageId}’ language does not support diagrams
.‘);

22
23 return new ER2CDSDiagramServer(async action => {

connection?.sendNotification(
DiagramActionNotification.type, { clientId, action
}); }, language);

24 };
25 };

Listing 6.8: Injection of the custom diagram server of ER2CDS.

Furthermore, in line 10 of Listing 6.7, we define a custom command handler for the VS
Code commands sent by the client. As shown in Listing 6.9, the command handler accepts
commands defined in the extension implementation and executes functions accordingly.
For the er2cds.add.system and er2cds.remove.system command, the implementation
modifies attributes of a global namespace, allowing all language server modules to access
the system information when needed.

1 export class ER2CDSCommandHandler extends
AbstractExecuteCommandHandler {

2 registerCommands(acceptor: ExecuteCommandAcceptor): void {
3 acceptor(’er2cds.generate.cds’, args => {
4 generateCDS(args[0]);
5 });
6
7 acceptor(’er2cds.import.cds’, args => {
8 importCDS(args[0], args[1]);
9 })

10
11 acceptor(’er2cds.add.system’, args => {
12 ER2CDSGlobal.sapUrl = args[0];
13 ER2CDSGlobal.sapClient = args[1];
14 ER2CDSGlobal.sapUsername = args[2];
15 ER2CDSGlobal.sapPassword = args[3];
16 });
17

63

6. ER2CDS

18 acceptor(’er2cds.remove.system’, args => {
19 ER2CDSGlobal.sapUrl = undefined!;
20 ER2CDSGlobal.sapClient = undefined!;
21 ER2CDSGlobal.sapUsername = undefined!;
22 ER2CDSGlobal.sapPassword = undefined!;
23 });
24 }
25 }

Listing 6.9: The command handler of ER2CDS language server, used to handle VS Code
commands.

Finally, the createER2CDSServices, presented in Listing 6.7, defines the language-
specific services. Again, the default module is defined by the framework, and the
ER2CDSGeneratedModule is generated using the DSL. For the ER2CDSModule, the
implementation is presented in Listing 6.10. It defines a custom module for validation,
ER2CDSValidator, and a custom scope provider, ER2CDSScopeProvider. Furthermore,
a diagram generator is injected for diagramming, ER2CDSDiagramGenerator, which is
responsible for creating the diagram elements using the language server model. Also, we
define a layout engine for the diagram. For this, we rely on the Eclipse Layout Kernel
(ELK), using an external library (elkjs).

1 export const ER2CDSModule: Module<ER2CDSServices,
PartialLangiumServices & SprottyDiagramServices &
ER2CDSAddedServices> = {

2 validation: {
3 ER2CDSValidator: (services) => new ER2CDSValidator(

services)
4 },
5 references: {
6 ScopeProvider: (services) => new ER2CDSScopeProvider(

services),
7 },
8 diagram: {
9 DiagramGenerator: (services: any) => new

ER2CDSDiagramGenerator(services),
10 ModelLayoutEngine: (services: any) => new

ElkLayoutEngine(services.layout.ElkFactory, services
.layout.ElementFilter, services.layout.
LayoutConfigurator) as any

11 },
12 layout: {
13 ElkFactory: () => () => new ElkConstructor({ algorithms

: [’layered’] }),
14 ElementFilter: () => new DefaultElementFilter,

64

6.4. Language Server

15 LayoutConfigurator: () => new DefaultLayoutConfigurator
16 }
17 };

Listing 6.10: Definition of the language-specific services.

After presenting the main modules, we will now introduce them in more detail. First,
the diagram generator is responsible for creating the diagram elements for a given model.
The entry point of the ER2CDSDiagramGenerator class is the generateRoot method,
which is passed a LangiumDocument as an argument. The contained parsing result, an
AST, is then used to create the diagram elements. In Listing 6.11, the generateRoot
method is presented.

1 protected generateRoot(args: GeneratorContext<ER2CDS>):
ER2CDSRoot {

2 const { document } = args;
3 const sm = document.parseResult.value;
4
5 const graph: ER2CDSRoot = {
6 type: GRAPH,
7 id: sm.name ? args.idCache.uniqueId(sm.name) : args

.idCache.uniqueId(’root’),
8 name: sm.name,
9 children: []

10 };
11
12 graph.children?.push(...sm.entities.map(e => this.

generateEntity(e, args)));
13 ...
14 return graph;
15 }

Listing 6.11: The entry point for the diagram generator, creating the diagram elements.

Furthermore, the generateEntity method is illustrated in Listing 6.12 as an example of
creating such a diagram element. One can easily see that the information stored in the
AST is used to create Sprotty elements. Also, it is important to note that each element
is identified using a unique identification. The information defined in these elements can
then be used in the webview to render the diagram visually. In this example, an entity
of ER2CDS is used to create a EntityNode, which is a subclass of the Sprotty SNode.
Also, a SCompartment with the entity’s attributes is created and added as a child to the
EntityNode.

1 protected generateEntity(entity: Entity, { idCache }:
GeneratorContext<ER2CDS>): EntityNode {

2 const entityId = idCache.uniqueId(entity.name, entity);

65

6. ER2CDS

3 const node = <EntityNode>{
4 type: NODE_ENTITY,
5 id: entityId,
6 layout: ’vbox’,
7 layoutOptions: {
8 VGap: 10.0,
9 },

10 children: []
11 };
12 ...
13 const attributesCompartment = <SCompartment>{
14 type: COMP_ATTRIBUTES,
15 id: idCache.uniqueId(entityId + ’.attributes’),
16 layout: ’vbox’,
17 layoutOptions: <LayoutOptions>{
18 HAlign: ’left’,
19 VGap: ’1.0’
20 },
21 children: entity.attributes.map(a => this.

generateAttributeLabels(a, entityId, idCache))
22 };
23 node.children?.push(attributesCompartment);
24
25 return node;
26 }

Listing 6.12: An example for the creation of a diagram element.

We emit further details of the diagram generation since it follows the same principles
presented above. However, it is again important to note that only the information defined
in these elements will be available in the webview. Therefore, the generation has to
consider all aspects of the ER2CDS language.

The diagram server is the communication gateway between the language server and
the webview. The primary method implemented in the ER2CDSDiagramServer is the
handleAction method. It takes an LSP action as an argument and handles the action
accordingly. A handler is defined for each of the custom messages defined by ER2CDS.
The action is propagated to the corresponding handler, which then implements the
behavior of the action. The implementation of handleAction is shown in Listing 6.13.
The handleAction method determines the type of the action before calling the correct
handler accordingly.

66

6.4. Language Server

1 export class ER2CDSDiagramServer extends DiagramServer {
2 ...
3 protected override handleAction(action: Action): Promise<

void> {
4 switch (action.kind) {
5 case CreateElementAction.KIND:
6 new CreateElementActionHandler().handle(action

as CreateElementAction, this, this.services)
;

7 break;
8
9 ...

10 }
11
12 return super.handleAction(action);
13 }
14 }

Listing 6.13: The handleAction method of the diagram server, responsible to call the
correct handler depending on the action kind.

An example of a handler implementation, the CreateElementActionHandler, is presented
in Listing 6.14. In the handle method of the CreateElementActionHandler, the current
model is retrieved using the server state. Then, a new entity is created and added to
the entities in the current model. In order to trigger the synchronization between the
graphical and textual model, the resulting model is then serialized and written to the
document.

1 export class CreateElementActionHandler {
2 public handle(action: CreateElementAction, server:

ER2CDSDiagramServer, services: ER2CDSServices): Promise<
void> {

3 const sourceUriString = server.state.options?.sourceUri
?.toString();

4 if (!sourceUriString)
5 return Promise.resolve();
6
7 const sourceUri = URI.parse(sourceUriString);
8 if (!sourceUri)
9 return Promise.resolve();

10
11 const document = services.shared.workspace.

LangiumDocuments.getOrCreateDocument(sourceUri);
12 if (!document)
13 return Promise.resolve();

67

6. ER2CDS

14
15 const model = document.parseResult.value as ER2CDS;
16
17 switch (action.elementType) {
18 case NODE_ENTITY:
19 const newEntity: Entity = {
20 $type: ’Entity’,
21 $container: model,
22 name: this.getNewEntityName(’Entity’, model

.entities),
23 attributes: []
24 }
25
26 model.entities.push(newEntity);
27 ...
28 }
29
30 return synchronizeModelToText(model, sourceUri, server,

services);
31 }
32 ...
33 }

Listing 6.14: An example for the handler implementation of custom LSP actions sent by
the graphical editor.

All handlers for actions modifying the model are implemented similarly. For the request
actions, instead of modifying the model and serializing it to the document, the language
server responds with an action using the ER2CDSDiagramServer ’s dispatch method. The
definition of all custom messages can be found in Chapter 5.

As part of synchronizing the graphical and textual representation, the model is serialized by
the language server and written to the document. The synchronizeModelToText function
implements this logic accordingly. As presented in Listing 6.15, first, the model is serialized.
Then, the resulting source code is written to the document using a WorkspaceEditAction,
which can be dispatched using the DiagramServer. As presented in Section 6.2, the
WorkspaceEditAction is intercepted in the ER2CDSWebViewPanelManager, and the edits
are applied and saved accordingly.

1 export function synchronizeModelToText(model: ER2CDS, sourceUri
: URI, server: ER2CDSDiagramServer, services: ER2CDSServices
): Promise<void> {

2 const source = serialize(model);
3 ...
4 const workspaceEdit = {

68

6.4. Language Server

5 changes: {
6 [sourceUri.toString()]:
7 [
8 {
9 range: Range.create(Position.create(0,

0), Position.create(document.
textDocument.lineCount + 1, 0)),

10 newText: source
11 }
12]
13 }
14 }
15
16 const workspaceEditAction: WorkspaceEditAction = {
17 kind: WorkspaceEditAction.KIND,
18 workspaceEdit: workspaceEdit
19 }
20
21 server.dispatch(workspaceEditAction);
22
23 return Promise.resolve();
24 }

Listing 6.15: The serializeModelToText function as part of the synchronization strategy
used by ER2CDS.

The serialization of the model follows a template-driven approach. To further illustrate
this, Listing 6.16 presents the entry point, the serialize function, as well as the seri-
alizeEntity function as an example for the implementation of the serialization. Both
methods use static code snippets, e.g., ’er2cds’, ’entity’, ’alias’, and information of the
ER2CDS model to generate the textual representation of the model.

1 export function serialize(model: ER2CDS): string {
2 return expandToString‘
3 er2cds ${model.name}
4
5 ${serializeEntities(model.entities)}
6
7 ${serializeRelationships(model.relationships)}
8 ‘;
9 }

10
11 export function serializeEntity(entity: Entity): string {
12 return expandToString‘
13 entity ${entity.name} {

69

6. ER2CDS

14 ${entity.alias ? ‘alias ${entity.alias}‘ :
undefined}

15 ${entity.attributes.length > 0 ? entity.attributes.
map(a => serializeAttribute(a)).join(’\n’) :
undefined}

16 }
17 ‘;
18 }

Listing 6.16: The serialization of a ER2CDS model to the textual representation of the
model.

We follow a similar approach to the serialization for the generation of the CDS view
entities. A template-driven model-to-text serialization transforms an ER2CDS model
into a CDS view entity. The generation is triggered by a VS Code command, handled
by the ER2CDSCommandHandler as presented in Listing 6.9. The VS Code command
takes the URI of the currently opened document as an argument, which is furthermore
propagated to the generateCDS function within the ER2CDSCommandHandler. The
generateCDS function can be divided into the following steps:

1. Extract model of document

2. Validate model

3. Generate CDS view entity source code

4. Write source code to file system

The entry point of the source code generation is presented in Listing 6.17. All remaining
functions follow the template-driven model-to-text transformation approach, similar to
the serializeEntity function presented in Listing 6.16. The complete implementation of
the generateCDS function can be found in Appendix A.

1 function generateSourceCode(model: ER2CDS): string | undefined
{

2 ...
3 return expandToString‘
4 ${generateHeaderAnnotations(model)}
5 ${generateHeader(model)}
6 ${generateFromClause(model)}
7 ${generateJoins(model)}
8 ${generateAssociations(model)}
9 ${generateAssociationsToParent(model)}

10 ${generateCompositions(model)}
11 {

70

6.4. Language Server

12 ${generateKeyAttributes(model)}${model.entities.
find(e => e.attributes.find(a => a.type === ’key
’)) && model.entities.find(e => e.attributes.
find(a => a.type !== ’key’)) ? ’,’ : ’’}

13 ${generateAttributes(model)}${model.entities.find(e
=> e.attributes.find(a => a.type !== ’key’)) &&
model.relationships.find(r => r.type === ’

association’ || r.type === ’association-to-
parent’ || r.type === ’composition’) ? ’,’ : ’’}

14 ${generateAssociationAttributes(model)}
15 }
16 ‘;
17 }

Listing 6.17: Generation of a CDS view entity using a template driven model-to-text
transformation.

Another key feature of ER2CDS is the import of existing CDS view entities. For this,
we use the web service as presented in Section 6.3. The function is again triggered by
a VS Code command, which is handled and propagated to the importCDS function in
the ER2CDSCommandHandler. The command takes the name of the CDS view entity
and the currently opened document as arguments. The latter is used to generate the
output path of the imported entity. The CDS view entity name is required to request the
information from the backend. On a high level, the importCDS function works as follows:

1. Request CDS view entity information from web service

2. Transform response to ER2CDS model

3. Serialize the ER2CDS model to textual representation

4. Write ER2CDS source code to file system

The transformation of the web service response to an ER2CDS model is based on the four
entity sets ImportSelectList, ImportCondition, ImportAssocDef, and ImportFromClause
presented in Section 6.3. The transformation can furthermore be divided into two steps:
the transformation of the from-clause and the transformation of the associations. For
both, we first create the entities of ER2CDS. This information is stored and retrieved
using the ImportCondition. The entity set describes the structure of the CDS view entity,
using the attribute ExprType to define each entry. To create the entities, we use ExprType
equals ’TABLE_DATASOURCE’. Furthermore, for entities of the from-clause, we can
create the attributes of an entity using the ImportSelectList entity set, again filtering
entries on ExprType, in this case, ’ATOMIC’. The transformation of relationships is more
complex and differs between from-clause and associations. In a nutshell, we again use

71

6. ER2CDS

the ImportCondition entity set to create a relationship incrementally. Depending on
the ExprType, specific information about the relationship is extracted and added before
finally adding the complete relationship to the model. For the from-clause relationships,
we additionally use the ImportFromClause to define the join order; for the associations,
we need to use the ImportAssocDef entity set in order to resolve aliases correctly. The
full implementation of the importCDS is given in Appendix A.

To ensure the correctness of the models, we defined custom validation checks. As presented
in line 19 of Listing 6.7 during the initial creation of the services, the registerValida-
tionChecks function is called. The implementation of it can be found in Listing 6.18. We
define and assign a method of the ER2CDSValidator class for each language construct.

1 export function registerValidationChecks(services:
ER2CDSServices) {

2 const registry = services.validation.ValidationRegistry;
3 const validator = services.validation.ER2CDSValidator;
4
5 const checks: ValidationChecks<ER2CDSAstType> = {
6 ER2CDS: validator.checkER2CDS,
7 Entity: validator.checkEntity,
8 Attribute: validator.checkAttribute,
9 DataType: validator.checkDataType,

10 Relationship: validator.checkRelationship,
11 RelationshipEntity: validator.checkRelationshipEntity,
12 RelationshipJoinClause: validator.

checkRelationshipJoinClause
13 };
14
15 registry.register(checks, validator);
16 }

Listing 6.18: Registration of validation checks.

These methods are then responsible for validating the given instance. In the most simple
case, the validation of the ER2CDS root node is presented in Listing 6.19. It checks
for the existence of the name of the node and, in case of an error, reports an error,
including an error message. The remaining checks are implemented similarly. If a system
is connected to ER2CDS, these validations also include checks against the data model of
the SAP S/4HANA system. By default, the Langium framework publishes the validation
result in the VS Code problems view.

72

6.4. Language Server

1 export class ER2CDSValidator {
2 ...
3 async checkER2CDS(er2cds: ER2CDS, accept:

ValidationAcceptor): Promise<void> {
4 if (!er2cds.name) {
5 accept(’error’, ’Name for ER2CDS missing’, { node:

er2cds, property: ’name’ });
6 }
7 }
8 ...
9 }

Listing 6.19: Validation on the root node of a ER2CDS model.

We also define a function for the graphical modeling interface to create so-called markers.
Sprotty can display these markers accordingly. For the creation, the function analyzes the
validation result of the language server and identifies the unique element identification
of each. Furthermore, the severity of each diagnostic is mapped to the corresponding
marker kind. The implementation is presented in Listing 6.20.

1 export function createMarkersForDocument(document:
LangiumDocument): Marker[] | undefined {

2 return document.diagnostics?.map(diagnostic => {
3 const model = document.parseResult.value as ER2CDS;
4 const elementId = findElementIdByRange(model,

diagnostic.range);
5
6 let kind: string;
7 switch (diagnostic.severity) {
8 case 1:
9 kind = MarkerKind.ERROR;

10 break;
11
12 case 2:
13 kind = MarkerKind.WARNING;
14 break;
15
16 case 3:
17 kind = MarkerKind.INFO;
18 break;
19
20 default:
21 kind = MarkerKind.INFO;
22 break;
23 }

73

6. ER2CDS

24
25 return <Marker>{
26 kind: kind,
27 elementId: elementId,
28 description: diagnostic.message,
29 }
30 });
31 }

Listing 6.20: Creation of markers for the graphical modeling interface.

Finally, the ER2CDS language server implements a custom scope provider. This is
primarily relevant for the textual modeling interface, as well as the validation of the model.
In more detail, we define a custom behavior for the firstAttribute and secondAttribute
properties of relationships. For the firstAttribute property of the relationship, the scope
differs between relationships and associations; for associations, all attributes of all entities
within the model are valid, while for relationships, only the attributes of the source entity
of the relationship are within the scope. This follows the semantics of CDS. On the other
hand, for the secondAttribute property, the scope is within the attributes of the target
entity of the relationship. In all other cases, we rely on the default implementation of
the Langium framework, which is furthermore based on the specified Langium grammar.
The implementation of the ER2CDSScopeProvider is presented in Listing 6.21.

1 export class ER2CDSScopeProvider extends DefaultScopeProvider {
2 ...
3 public override getScope(context: ReferenceInfo): Scope {
4 if (context.property === ’firstAttribute’) {
5 const relationship = context.container.$container

as Relationship;
6 let scope: Scope = null!;
7
8 if (relationship.type === ’association’ ||

relationship.type === ’association-to-parent’) {
9 let attributeStreams: Stream<AstNodeDescription

> | undefined;
10
11 relationship.$container.entities.forEach(e => {
12 const attributeStream = stream(e.attributes

.map(attr => this.services.workspace.
AstNodeDescriptionProvider.
createDescription(attr, attr.name)));

13
14 if (!attributeStreams) {
15 attributeStreams = attributeStream;
16 } else {

74

6.4. Language Server

17 attributeStreams = attributeStreams.
concat(attributeStream);

18 }
19 })
20
21 if (attributeStreams) {
22 scope = this.createScope(attributeStreams);
23 }
24 } else {
25 const entity = relationship.source?.target.ref;
26 if (entity)
27 scope = this.createScope(stream(entity.

attributes.map(attr => this.services.
workspace.AstNodeDescriptionProvider.
createDescription(attr, attr.name))));

28 }
29
30 return scope;
31 }
32
33 if (context.property === ’secondAttribute’) {
34 const entity = (context.container.$container as

Relationship).target?.target.ref;
35
36 if (entity)
37 return this.createScope(stream(entity.

attributes.map(attr => this.services.
workspace.AstNodeDescriptionProvider.
createDescription(attr, attr.name))));

38 }
39
40 return super.getScope(context);
41 }
42 }

Listing 6.21: Custom scope provider of ER2CDS, overriding the default behavior for
relationship properties.

We rely on VS Code as an editor for the textual modeling interface and the Langium
interface with the presented enhancements. The graphical modeling interface, on the
other hand, has to be built from scratch using web development tools. The following
section focuses on the implementation of this graphical modeling interface.

75

6. ER2CDS

6.5 Webview

The webview is implemented using the Sprotty framework. The entry point is defined
in the webview.ts file, which defines the ER2CDSSprottyStarter class. The ER2CDS-
SprottyStarter implements two methods createDiagramContainer, which defines the model
elements and injects the different modules of the webview and addVscodeBindings to rebind
default implementations to custom extensions. Furthermore, the ER2CDSSprottyStarter
is used to start Sprotty eventually. In more detail, the createDiagramContainer is
defined in a di.config.ts class used throughout the module for dependency injection. The
implementation is illustrated in Listing 6.22. First, all model elements are bound to
a specific view. Then, the default Sprotty modules are injected, following all custom
modules used within the webview, e.g., DiagramModule. Finally, the base element and
additional options are specified, and the resulting container is returned.

1 export default (containerId: string) => {
2 const DiagramModule = new ContainerModule((bind, unbind,

isBound, rebind) => {
3 rebind(TYPES.ILogger).to(ConsoleLogger).

inSingletonScope();
4 rebind(TYPES.LogLevel).toConstantValue(LogLevel.info);
5
6 const context = { bind, unbind, isBound, rebind };
7
8 // Graph
9 configureModelElement(context, GRAPH, ER2CDSRoot,

ER2CDSRootView);
10
11 // Nodes
12 configureModelElement(context, NODE_ENTITY, EntityNode,

EntityNodeView, { enable: [expandFeature] });
13 configureModelElement(context, NODE_RELATIONSHIP,

RelationshipNode, RelationshipNodeView);
14 ...
15 });
16
17 const container = new Container();
18
19 loadDefaultModules(container);
20
21 container.load(DiagramModule);
22 ...
23
24 overrideViewerOptions(container, {
25 needsClientLayout: true,

76

6.5. Webview

26 needsServerLayout: true,
27 baseDiv: containerId,
28 hiddenDiv: containerId + ’_hidden’
29 });
30
31 return container;
32 }

Listing 6.22: Dependency injection of the webview entry point, defining all model elements
and modules.

The views themselves are implemented using Scalable Vector Graphics (SVG). Each view
class implements a render method for displaying the element. In Listing 6.23, an example
of such an implementation is given. The EntityNodeView is responsible for displaying an
ER2CDS entity. It is rendered as a rectangle, as specified in Chapter 5.

1 @injectable()
2 export class EntityNodeView extends RectangularNodeView {
3 override render(node: Readonly<EntityNode>, context:

RenderingContext): VNode | undefined {
4 if (!this.isVisible(node, context))
5 return undefined;
6
7 const height = 35;
8 const rhombStr = ’M 0,’ + height + ’ L ’ + node.bounds

.width + ’,’ + height;
9

10 return (
11 <g>
12 <rect class-sprotty-node={true} class-mouseover

={node.hoverFeedback} class-selected={node.
selected} x=’0’ y=’0’ rx=’5’ ry=’5’ width={
Math.max(node.bounds.width, 0)} height={Math
.max(node.bounds.height, 0)} />

13 {context.renderChildren(node)}
14 {(node.children[1] && node.children[1].children

.length > 0) ? <path class-comp-separator={
true} d={rhombStr} /> : ’’}

15 </g>
16);
17
18 }
19 }

Listing 6.23: The view implementation for an ER2CDS entity using SVG.

77

6. ER2CDS

For the ER2CDS webview we define a custom ER2CDSDiagramServer, handling the com-
munication to the language server, a custom ER2CDSDiagramWidget to add custom logic
on initialization and ER2CDSKeyTool, ER2CDSMouseTool and ER2CDSScrollMouse-
Listener for custom behavior on user input. The Sprotty VS Code integration already
defines all these; therefore, we have to rebind them in the addVscodeBindings method.
However, not all defaults are suitable for our use case. In the following section, we specify
the usage of these custom implementations.

The ER2CDSDiagramServer is necessary to define the extension of the LSP messages.
All custom messages must be registered at the ER2CDSDiagramServer. Furthermore,
it allows us to define the handling of these messages. Since Sprotty is also based on
communicating with Actions, one has to define which messages are handled locally and
which are sent to the language server. Listing 6.24 exemplifies the implementation of the
ER2CDSDiagramServer. The initialize method defines the custom messages. In contrast,
the handleLocally method defines which Action is handled locally or by the language
server. It is important to note that true corresponds unintentionally to handling by the
language server rather than locally.

1 @injectable()
2 export class ER2CDSDiagramServer extends

VscodeLspEditDiagramServer {
3 public override initialize(registry: ActionHandlerRegistry)

: void {
4 super.initialize(registry);
5
6 registry.register(CreateElementAction.KIND, this);
7 ...
8 }
9

10 public override handleLocally(action: Action): boolean {
11 switch (action.kind) {
12 case CreateElementAction.KIND:
13 return true;
14 ...
15 default:
16 return super.handleLocally(action);
17 }
18 }
19 }

Listing 6.24: Implementation of the ER2CDSDiagramServer within the Sprotty webview.

The ER2CDSDiagramWidget is used to dispatch custom actions on initialization. In
particular, the EnableToolPaletteAction and EnableEditorPanelAction are dispatched to
extend the user interface. Furthermore, the method is responsible for initially requesting

78

6.5. Webview

the current model from the language server. Additionally, it executes a FitToScreenAction
after the model is returned. The implementation itself is straightforward and shown in
Listing 6.25.

1 @injectable()
2 export class ER2CDSDiagramWidget extends VscodeDiagramWidget {
3 @postConstruct()
4 override initialize(): void {
5 super.initialize();
6 }
7
8 protected override initializeSprotty(): void {
9 if (this.modelSource instanceof DiagramServerProxy)

10 this.modelSource.clientId = this.diagramIdentifier.
clientId;

11
12 this.requestModel().then(() => this.actionDispatcher.

dispatch(FitToScreenAction.create([])));
13
14 this.actionDispatcher.dispatch(EnableToolPaletteAction.

create());
15 this.actionDispatcher.dispatch(EnableEditorPanelAction.

create());
16 }
17 }

Listing 6.25: Implementation of the ER2CDSDiagramWidget within the Sprotty webview.

The ER2CDSKeyTool and ER2CDSMouseTool both extend the default KeyTool/Mouse-
Tool implementation without overriding anything. However, it is necessary in particular
for the ER2CDSKeyTool, since the default addVscodeBindings implementation uses a
DisabledKeyTool, which does not allow any key input. Therefore, it is not possible to
intercept any keyboard events. Also, the implementation serves as a placeholder for
future work.

Finally, the ER2CDSScrollMouseListener is implemented to prevent scrolling while the
marquee tool is enabled. This allows the user to select multiple elements. The remainder
of this section presents a more detailed overview of all implemented tools.

ER2CDS also implements central services, which can be used throughout the module.
Specifically, to notify different modules about model changes from the language server,
we implemented a custom ER2CDSCommandStack, as well as DiagramEditorService, as
the central model service.

The ER2CDSCommandStack overrides the default Sprotty CommandStack. The Com-
mandStack is responsible for executing all commands, as presented in Chapter 2. For our

79

6. ER2CDS

purposes, we intercept the SetModelCommand and UpdateModelCommand and notify
the DiagramEditorService about the new model root, as presented in Listing 6.26. One
can also see the usage of the lazy injector, which handles circular dependencies.

1 @injectable()
2 export class ER2CDSCommandStack extends CommandStack {
3 @inject(LazyInjector)
4 protected lazyInjector: LazyInjector;
5
6 override execute(command: ICommand): Promise<SModelRootImpl

> {
7 const result = super.execute(command);
8
9 if (command instanceof SetModelCommand || command

instanceof UpdateModelCommand)
10 result.then(root => this.diagramEditor.

notifyModelRootChanged(root, this));
11
12 return result;
13 }
14
15 get diagramEditor(): DiagramEditorService {
16 return this.lazyInjector.get(DiagramEditorService);
17 }
18 }

Listing 6.26: Custom Sprotty CommandStack notifying the DiagramEditorService about
changes on the model.

The DiagramEditorService then exposes methods to access the current model root.
Furthermore, it can inform subscribers of any model changes using events. Additionally,
the DiagramEditorService is responsible for keeping track of all currently selected elements
within the diagram. In Listing 6.27, the most essential methods are shown. Lines 4 - 19
illustrate methods to inform about model changes and the current model, while lines 21 -
27 concern currently selected elements within the model.

1 @injectable()
2 export class DiagramEditorService {
3 ...
4 notifyModelRootChanged(root: Readonly<SModelRootImpl>,

notifier: object): void {
5 if (!(notifier instanceof CommandStack)) {
6 throw new Error(’Invalid model root change

notification. Notifier is not an instance of ‘
CommandStack‘.’);

80

6.5. Webview

7 }
8
9 this.root = root;

10 this.onModelRootChangedEmitter.fire(root);
11 }
12
13 getModelRoot(): Readonly<SModelRootImpl> {
14 return this.root;
15 }
16
17 get onModelRootChanged(): Event<Readonly<SModelRootImpl>> {
18 return this.onModelRootChangedEmitter.event;
19 }
20
21 updateSelection(newRoot: Readonly<SModelRootImpl>, select:

string[], deselect: string[]): void {
22 ...
23 }
24 ...
25 getSelectedElementIDs(): string[] {
26 return [...this.selectedElementIDs];
27 }
28 ...
29 }

Listing 6.27: DiagramEditorService as the central service for handling the model changes
and current selections.

These central services, especially the DiagramEditorService, are available throughout the
module using dependency injection.

We will now focus on the user interface. First, the main elements, the editor panel and
tool palette, are presented. Then, additional elements concerning the user interface are
introduced.

The EditorPanel serves as the main container for the diagram. It is divided into two parts,
the main modeling container, and the property panel at the bottom of the screen. The
modeling container itself is an empty container in which the current model is rendered.
On the other hand, the property palette contains different elements depending on the
currently selected element. For this, the palette gets refreshed on each model change,
using the DiagramEditorService and the SelectAction propagated by Sprotty. A custom
implementation for all different element types exposes input elements within the property
palette. Currently, the property palette supports an input element with value help,
requesting the values from the language server, a checkbox for boolean values, a select
option for predefined choices, an input without any value help, and a reference element

81

6. ER2CDS

Figure 6.2: Property palette for a ER2CDS entity.

Figure 6.3: Property palette for a ER2CDS entity attribute.

for multiple attributes and navigation purposes. An example of a property palette with
two inputs and a reference component, allowing to add, delete, and navigate to the detail
view, is presented in Fig. 6.2. Fig. 6.3 then shows the detailed view of one attribute,
with two more input fields and two select options. In Fig. 6.4, an example of using the
value-help with values requested from the language server is presented.

The tool palette is yet another user interface element that hosts the model editing tools
for ER2CDS. It is shown in Fig. 6.5. The tool palette is separated into two parts: the
header bar for element-independent tools; the tool palette body for element-dependent
tools. For the header bar, the following tools are available starting from the left:

• Default tools: Tools that are enabled by default. ER2CDS defines the Mar-
queeKeyTool and DeleteKeyTool as default tools. The first allows to enable the
MarqueeMouseTool using ’Shift’, the latter allows to delete elements using the
’Delete’ or ’Backspace’ key.

82

6.5. Webview

Figure 6.4: Property palette with an input field and value help.

Figure 6.5: Tool palette hosting the modeling tools of ER2CDS.

• DeleteMouseTool: Deletion of an element on mouse click.

• MarqueeMouseTool: Selection of multiple elements by dragging the mouse.

• Validation: Triggers a validation request to the language server.

• Search: Allows to search within the tool palette.

For the body of the tool palette, the tools are separated by the corresponding elements.
All of the buttons trigger the enabling of the corresponding tool, except Add Entity
and Add Relationship, which directly create a CreateElementAction. Generally, the
tools are managed by the ToolManagerActionHandler, which injects all available tools,
intercepts all enable-actions, and calls the enable or disable method of the tool accordingly.

83

6. ER2CDS

An example implementation for such a tool is presented in Listing 6.28. First, the
ToolManagerActionHandler intercepts the EnableDeleteMouseToolAction and calls the
enable method on the DeleteMouseTool (line 9 - line 19). On enable, the DeleteMouseTool
registers a custom mouse listener on the central ER2CDSMouseTool (line 30 - line 32),
which listens for mouseUp events and triggers a DeleteElementAction with the selected
element (line 38 - line 48).

1 @injectable()
2 export class ToolManagerActionHandler implements IActionHandler

{
3 ...
4 @inject(DeleteMouseTool)
5 private deleteMouseTool: DeleteMouseTool;
6 ...
7
8 handle(action: Action): void | ICommand | Action {
9 this.disableAllTools();

10
11 switch (action.kind) {
12 ...
13 case EnableDeleteMouseToolAction.KIND:
14 this.deleteMouseTool.enable();
15 break;
16 ...
17 }
18 }
19 ...
20 }
21
22 @injectable()
23 export class DeleteMouseTool {
24 @inject(ER2CDSMouseTool)
25 protected mouseTool: ER2CDSMouseTool;
26
27 protected deleteMouseToolListener: DeleteMouseToolListener

= new DeleteMouseToolListener();
28
29 enable(): void {
30 this.mouseTool.register(this.deleteMouseToolListener);
31 }
32 ...
33 }
34
35

84

6.5. Webview

36 @injectable()
37 export class DeleteMouseToolListener extends MouseListener {
38 override mouseUp(target: SModelElementImpl, event:

MouseEvent): Action[] {
39 const deletableParent = findParentByFeature(target,

isDeletable);
40 if (deletableParent === undefined) {
41 return [];
42 }
43
44 const result: Action[] = [];
45 result.push(DeleteElementAction.create([deletableParent

.id]));
46
47 return result;
48 }
49 }

Listing 6.28: Implementation of the DeleteMouseTool as an example for the tool
implementations.

All remaining tools are implemented similarly. The mapping between the tool palette
description and tool implementation is presented in Table 6.1.

Tool palette description Tool implementation

Add Entity -

Add Relationship -

Add Edge EdgeCreateTool

Add Attribute AttributeCreateMouseTool

Add Join Clause JoinClauseCreateMouseTool

Table 6.1: Mapping between the tool palette descriptions and the tool implementation.

Another user interface component is the popup to confirm the retrieval of all attributes
of an entity from the SAP S/4HANA system. The popup is created using the SetPopup-
ModelAction sent from the language server. Within the webview, we rebind the default
PopupMouseTool to the custom ER2CDSPopupMouseTool, which intercepts the user
decision and sends CreateElementExternalAction message to the language server in case
of a positive decision. Fig. 6.6 shows the rendering of the popup, while Listing 6.29
illustrates the implementation of the ER2CDSPopupMouseTool. It is important to note
that the language server creates and returns the popup elements in the form of the

85

6. ER2CDS

Figure 6.6: Popup to confirm the loading of all attributes of an entity.

SetPopupModelAction. For this particular use case, the SetPopupModelAction is returned
for the custom RequestPopupConfirmModelAction message.

1 @injectable()
2 export class ER2CDSPopupMouseTool extends PopupMouseTool {
3 constructor(@inject(TYPES.IActionDispatcher) protected

actionDispatcher: IActionDispatcher, @multiInject(TYPES.
PopupMouseListener) @optional() protected override
mouseListeners: MouseListener[] = []

4) {
5 mouseListeners.push(new PopupButtonListener(

actionDispatcher));
6 super(mouseListeners);
7 }
8 }
9

10 @injectable()
11 export class PopupButtonListener extends MouseListener {
12 ...
13 override mouseDown(target: SModelElementImpl, event:

MouseEvent): (Action | Promise<Action>)[] {
14 if (!(target instanceof PopupButton)) return [];
15
16 if (target.type === ’button:yes’) {
17 this.actionDispatcher.dispatch(

CreateElementExternalAction.create(target.target
));

18 }
19
20 const actions: Action[] = [];
21 actions.push(SetPopupModelAction.create(EMPTY_ROOT));
22 return actions;
23 }
24 }

Listing 6.29: Implementation of the ER2CDSPopupMouseTool handling the user decision
for loading attributes from the SAP S/4HANA system for an entity.

86

6.5. Webview

Figure 6.7: Validation markers for warnings and errors.

Figure 6.8: Helper lines to support the alignment of model elements.

The validation is displayed in the webview using markers. For this, a custom SetMark-
ersActionHandler is implemented, which intercepts all SetMarkersAction issued by the
language server, as presented in Section 6.4. First, all previous markers are deleted
from the elements using the DeleteMarkersAction, which corresponds to a Sprotty action
and is handled locally. Then, the ApplyMarkersAction with all markers received by
the language server is dispatched. This creates an issue marker on each corresponding
element. Furthermore, the SetMarkersActionHandler is responsible for requesting the
markers on each model change using the custom RequestMarkersAction. In Fig. 6.7,
an example of an error marker on the Employee entity and a warning marker on the
manages relationship is shown.

Finally, ER2CDS implements a helper line tool, which improves the graphical modeling
experience. It renders additional lines, which help to align the model elements. For this,
the HelperLineManager intercepts all Sprotty MoveAction and SetBoundsAction. For the
MoveAction, the finished attribute decides whether the current helper lines are removed or
new helper lines should be created. Both behaviors again correspond to a Sprotty action,
RemoveHelperLinesAction and DrawHelperLinesAction. For the latter, the corresponding
DrawHelperLinesCommand calculates the helper line positions and adds them to the
model root. On the other hand, the RemoveHelperLinesCommand removes all elements
of the helper line type. The result of the helper line tool is illustrated in Fig. 6.8. The
red helper lines should support the alignment of the selected Employee entity.

Finally, Fig. 6.9 presents a complete overview of the ER2CDS modeling tool, integrated
into VS Code with the textual and graphical editor, as presented in this chapter.

87

6. ER2CDS

Figure
6.9:

T
he

ER
2C

D
S

m
odeling

toolintegrated
in

V
S

C
ode.

88

CHAPTER 7
Evaluation

This chapter focuses on the evaluation of ER2CDS. The evaluation itself is twofold. First,
a controlled experiment is conducted. The creation and import of CDS view entities are
evaluated. For the creation, 20 existing entities are modeled, and the corresponding CDS
view entity is generated. The result is then compared to the existing implementation. For
the import, 100 view entities are imported to ER2CDS and evaluated. The second part
of the evaluation is a case study. The main focus is hereby on the usability of the tool.
The users are presented with three different tasks that shall be modeled using ER2CDS.
Afterward, a survey is conducted to collect feedback regarding the modeling experience.
Finally, the last section of this chapter discusses the experiment and case study results.

7.1 Controlled Experiment
This section presents the controlled experiment, focusing on creating CDS view entities
using ER2CDS and importing existing CDS view entities to ER2CDS. First, the experi-
ment setup is described, and then the results are presented. The discussion of the results
can be found in the last section of this chapter.

7.1.1 Setup
For the experiment, we focus on the two main functionalities: the creation and modeling
feature and the import feature of ER2CDS.

For the first part of the experiment, regarding the creation of CDS view entities, 20 existing
view entities are analyzed and modeled using ER2CDS (see Table 7.1 for descriptive
statistics of the dataset). Afterward, the model is used to generate a CDS view entity. The
textual output is then compared to the original view entity. Furthermore, the resulting
output is imported to the SAP S/4HANA system of the original view and evaluated
regarding the correctness of syntax and the output of the CDS view entity compared to

89

7. Evaluation

Metric Modeled/Exported Models Imported Models Case Studies
Min. Max. Avg. Std.

Dev.
Min. Max. Avg. Std.

Dev.
Task1 Task2 Task3

Relations 0 23 5.55 6.12 0 30 3.89 5.00 0 2 6

Elements 3 128 31.05 30.79 2 325 34.38 49.35 5 8 13

Lines of Code 16 221 65.30 53.51 31 1115 116.76 132.40 16 20 27

Table 7.1: Descriptive statistics of the models in our evaluations

Figure 7.1: Dataset for creating CDS view entities.

the original. The dataset for this part of the experiment consists of 10 standard CDS view
entities created by SAP and ten custom CDS view entities implemented by companies
using an SAP S/4HANA system. The dataset is additionally described using relations
corresponding to a CDS view entity’s count of relations. Fig. 7.1 presents an overview
of the dataset used. Within the first part of the diagram, the customer-specific CDS
view entities are described concerning the count of the relations of each. The second part
presents the standard CDS view entities, each with the count of relations.

The second part of this experiment focuses on the import of existing CDS view entities
to ER2CDS. One hundred randomly selected standard CDS view entities are imported

90

7.1. Controlled Experiment

Figure 7.2: Dataset for the import of CDS view entities.

to ER2CDS and evaluated for this (see Table 7.1 for descriptive statistics of the dataset).
The evaluation focuses on the capability to import and display the CDS view entity.
Furthermore, the errors and warnings issued by ER2CDS are documented. Finally, the
correctness of the imported CDS view entity is checked, and the resulting model is
compared to the original representation and intention. The dataset again is categorized
using the count of relations. Additionally, the count of elements a CDS view entity
has is used to classify the import. The count of elements results in the attributes and
the associations that are reexported. In Fig. 7.2, the dataset is presented. The x-axis
describes the count of relations, while the y-axis corresponds to the count of elements.

7.1.2 Results
The results are again presented separately. First, we focus on the creation of CDS view
entities. The results are presented in Fig. 7.3 and Fig. 7.4. As one can easily see, all
modeled CDS view entities output a syntactically correct CDS view entity. However,
compared to the original view, only 15 of 20 are evaluated positively regarding the
correctness of the output itself. ER2CDS can model and generate all the customer-
specific view entities but only 5 of 10 standard view entities.

The main reason for the incorrect output for some of the standard CDS view entities is
the lack of support for specific, less commonly used, language constructs. These issues,

91

7. Evaluation

Figure 7.3: Correctness of syntax for the created CDS view entities using ER2CDS.

Figure 7.4: Correctness of output for the created CDS view entities using ER2CDS.

92

7.1. Controlled Experiment

Figure 7.5: Results of the import of existing CDS view entities to ER2CDS.

or even full support of all language features of CDS, should be addressed in future work.
Firstly, ER2CDS currently does not support WHERE-Clauses. In the next version of the
tool this will be supported by an additional attribute on the root element level. Secondly,
the reexport of sub-associations, as well as the usage of specific attributes of associations
is currently not supported. Again, this will be supported in a future version of the
tool, by allowing explicit definition of attributes and association from associated views
instead of exporting the association completely. Thirdly, no join clause with fixed value
is allowed in ER2CDS. This can be fixed by allowing literals for join clauses, instead of
attributes only. Finally, multiple associations to the same table are not resolved correctly
in ER2CDS, due to faulty handling of aliases. A table with the detailed results and
descriptions of the encountered problems can be found in Appendix B.

Regarding the import of existing CDS view entities, the full result is presented in Fig. 7.5.
ER2CDS was able to import all view entities of the dataset successfully. Furthermore,
all of the evaluated examples could also be rendered. However, the import was incorrect
for 13 of 100 CDS view entities. The reasons, as well as possible fixes, are listed below:

• Join clause with fix value not supported: As discussed before, join clauses
should support literals, instead of attributes only. If supported the import feature
can be adapted straight forward.

• Join clause with fix value not supported: As discussed before, join clauses
should support literals, instead of attributes only. The import can then

93

7. Evaluation

• Join clause on association attribute not supported: Similar to the ele-
ment_list, attributes of association are supported in join clauses. The import needs
to resolve the origin of the attribute correctly and add it to the corresponding
entity subsequently.

• Upper-/Lowercase of alias in from clause: Currently, the aliases provided
from the SAP service are case-insensitive. In the future the web service shall provide
these case-sensitive.

• Hierarchical associations not supported: Due to the faulty handling of
aliases discussed before, hierarchical structures in associations can not be modelled.
However, the import does resolve them correctly. By addressing the issue within
the modeling language itself, this problem is also resolved.

• Multiple Relations to the same entity-name. Alias is not resolved
correctly: Similar problem, as well as solution, to the previous point.

• Self-associations not supported: Similar problem, as well as solution, to the
previous two points.

• Only Equal-Sign is supported in Join Clause: Currently, the ER2CDS join
clause only supports equal-signs. The fix can be addressed straight forward, by
adding other possibilities to the language.

• Union is not supported: This issue has to be addressed on modeling language
level first. Currently, there is no syntax supporting a UNION. This feature will be
supported in a future release of ER2CDS.

It is easy to see that some of the problems occur on multiple occasions. Furthermore,
most problems result from a lack of support for this version of ER2CDS. These shall be
addressed in future work, striving for full language support for CDS. Moreover, due to
the incorrect import of some CDS view entities, ER2CDS also reports errors for seven
models and warnings for two of the models. Regarding the errors ER2CDS reports
Relationship has no join clauses for seven models, which can be directly traced back to
the issues with join clauses discussed above. Additionally, ER2CDS reports incompatible
attributes, based on their datatype, used within join clauses for two models as a warning.
The detailed report of the results can be again found in Appendix B.

7.2 Case Study
In this section, the case study conducted within this thesis will be presented. First, the
setting of the case study is introduced. Then, the survey to obtain the users’ feedback is
presented. Finally, we analyze the results of the case study.

94

7.2. Case Study

7.2.1 Setting
For the case study, the participants are presented and asked to model three tasks with
increasing difficulty with ER2CDS. Afterward, we surveyed the group of participants to
gather feedback and insights. The task description for the case study is presented in
Appendix B. The survey can be divided into three parts. After the consent to participate,
the first question asks for the participant’s role, which is either developer or business
expert. Then, six questions regarding the three tasks of the case study, for each, if
the participant could implement the given task using ER2CDS and if the participant
could implement the given task using the standard textual syntax of CDS. Each question
provides possible answers using the Likert scale [JKCP15]. Following are the questions
of the system usability score (SUS) as introduced in [B+96]. This enables us to quantify
the usability of ER2CDS. Afterward, the participant is asked for a preference regarding
ER2CDS or the standard textual syntax of CDS. Finally, the survey ends with three
open questions for positive or negative feedback and suggestions for future improvement
of ER2CDS. The complete survey can be found in Appendix B.

7.2.2 Results
The case study was conducted with eight participants: four CDS developers (three with
three to five years relevant experience, one with 10+ years of relevant experience) and
four business experts (one with up to three years relevant experience, one with five to
ten years of relevant experience, and two with more than 10 years of relevant experience).
As introduced above, each participant implemented three different tasks using ER2CDS
and then took part in the survey. We will now analyze the survey results.

First, the responses regarding the three tasks are presented in Fig. 7.6 and Fig. 7.7. As
one can easily see, all of the participants were able to create the CDS view entity for
Task 1 and Task 2 using ER2CDS, while only five of the participants thought they could
implement the same tasks using the textual syntax of CDS. Even fewer participants (2)
assessed themselves as being able to implement Task 3 using the textual syntax of CDS.
In contrast, seven out of eight participants could still implement it using ER2CDS.

Next, we will calculate SUS using the survey responses. The calculation follows the
scheme presented below and results directly from the structure of questions, with odd
numbered question being formulated positively and even numbered questions being
formulated negatively[B+96]:

1. Calculate each score contribution:

• Odd numbered questions: Scale position - 1
• Even numbered questions: 5 - scale position

2. Sum up score contributions

3. Multiply sum of scores by 2,5

95

7. Evaluation

Figure 7.6: I was able to create Task 1/2/3 using ER2CDS.

Figure 7.7: I would be able to create Task 1/2/3 by using only the textual syntax of
CDS.

96

7.2. Case Study

The SUS for each participant is presented in Table 7.2. In order to get an overall SUS,
we calculate the average over these eight values, resulting in an overall SUS of 86,25.
Classifying this score with respect to the studies analyzed in [BKM08], this refers to an
above-average SUS.

Participant SUS

1 95

2 82,5

3 95

4 95

5 87,5

6 100

7 70

8 65

Table 7.2: SUS calculated from the responses of the participants

Next, Fig. 7.8 presents the response for the preference between ER2CDS and the textual
syntax of CDS. It is significant to note that all of the business experts who participated
in the case study prefer to use ER2CDS over the textual syntax of CDS in the future.
Also, two of the developers participating are in favor of ER2CDS.

Finally, we will present an unordered list of the responses to the open questions regarding
the positive and negative feedback and suggestions for future improvements.

Positive feedback

• Simple to use

• Enables the creation of CDS Views without the need for the technical background
and coding knowledge

• The offer of a textual and visual editor

• The visual editor with the input fields to define entities/attributes/relationships /
...

• I was able to intuitively create CDS views, without any further instructions.

• Textual and graphical editor. Integration of SAP data model.

• Creation of CDS views on a higher abstraction level. Easy and fast to create simple
CDS views.

97

7. Evaluation

Figure 7.8: In the future I will use ER2CDS over the textual syntax to create CDS view
entities.

Negative feedback

• No explanation for relationship types

• All attributes can only be added once (workaround possible)

• Missing integration in BAS.

• Still technical knowledge is required.

Suggestions for improvement

• Automatic scrolling when adding and editing attributes

• SAP Tool integration

• List the attributes in the visual editor to select them

• Support for all language features of CDS.

• Add a beginner’s guide or documentation.

The full dataset from the conducted survey can be found in Appendix B. In the next
section, we will discuss the experiment’s findings and the case study further.

98

7.3. Discussion

7.3 Discussion
The evaluation of ER2CDS has shown the effectiveness and usefulness of the tool within
the context. However, it also pointed out some of the tool’s weaknesses in this early stage
of development. The experiment for creating and importing existing CDS view entities
presented the capabilities the tool already has but also the ones still missing. However,
no findings indicated the unfeasibility of such a modeling tool for CDS view entities.

Furthermore, the case study results support the business need for ER2CDS. One of
the significant findings is that ER2CDS allows developers and business experts to
create CDS view entities. Also, the SUS indicates high usability of the tool, making
it accessible to an even broader audience. Another critical finding is users’ preference
regarding the use of ER2CDS and the textual syntax of CDS. Especially for business
experts, ER2CDS offers a valuable alternative for creating CDS view entities, again
indicating the value of such a tool, which is also reflected in the open question concerning
positive feedback from the survey. However, developers are also eager to use the tool
as an alternative to the textual syntax of CDS. Regarding the feedback, the hybrid
modeling of CDS and the higher level of abstraction are the predominant advantages
of ER2CDS. The negative suggestions and suggestions for improvement should serve
as the basis for further development and future work within the context of low-code
business app development and, specifically, ER2CDS. However, not all suggestions
are of relevance. "SAP Tool integration" is already supported using BAS, as soon as
the extension is published within the VS Code marketplace. A documentation of the
tool, addressing the suggestion "Add a beginner’s guide or documentation", is currently
available via https://github.com/borkdominik/ER2CDS/wiki. On the other
hand "Automatic scrolling when adding and editing attributes" and "List the attributes
in the visual editor to select them" are usability improvements that can be addressed
straight forwardly. For the "Support for all language features of CDS" ER2CDS aims
to fully supports CDS language features in upcoming versions. The most significant
features ER2CDS lacks are discussed in Section 7.1.2 and shall be addressed first. Due to
the multitude of CDS features, supporting all may not be feasible. Future work should
evaluate the importance of any feature and consequently implement it in ER2CDS.

In the next chapter, we will conclude and summarize the results of this thesis, revisit the
research questions, and give an outlook on future work.

99

https://github.com/borkdominik/ER2CDS/wiki

CHAPTER 8
Conclusion

In this chapter, the thesis is finalized. First, a summary of the contributions is presented.
Then, the research questions are revisited and answered within the context of this thesis.
Finally, an outlook on future work is presented.

8.1 Summary
This thesis contributes to the model-driven engineering process for CDS view entities
within the SAP context. On the one hand, a domain-specific language, the ER2CDS
modeling language, for textual and graphical modeling acts as a basis for a model-driven
creation of CDS view entities. The novel ER2CDS tool presented in this thesis is a
modeling tool supporting the ER2CDS language. The hybrid approach, supported by
ER2CDS, allows for textual and graphical modeling and the creation of CDS view entities
within a modern editor, in this case, VS Code. Furthermore, the import feature of
ER2CDS enables users to work with existing CDS view entities. All in all, ER2CDS
provides a higher level of abstraction for CDS. This implicitly broadens the target
audience for CDS development.

In the following, the research questions presented in Chapter 1 will be answered using
the approaches presented by this thesis:

RQ1: To what extent does a model-driven engineering process improve the
development of Core Data Services?
ER2CDS, as presented in this thesis, is a development tool supporting the model-driven
engineering process for CDS. Furthermore, this thesis has shown that business experts
especially prefer ER2CDS, therefore a model-driven engineering process, over standard
textual CDS development. However, developers are also keen to explore the capabilities
of such a tool.

101

8. Conclusion

RQ2: What is an appropriate means to model Core Data Services?
The novel ER2CDS domain-specific language supports the modeling of CDS. The textual
and graphical concrete syntax enable modeling in two different ways. Moreover, a hybrid
approach is supported within the ER2CDS tool. This thesis also proved the validity of
this approach by implementing existing CDS view entities using the ER2CDS language.

RQ3: Which extensions to the Language Server Protocol are necessary to
support hybrid textual and graphical modeling for Core Data Services?
This question can be answered using the extension to LSP, as presented in Chapter 5.
Combined with the synchronization, also illustrated in Chapter 5, and the implementation
of ER2CDS, as presented in Chapter 6, allows for hybrid modeling of CDS.

RQ4: What are the advantages and disadvantages of the integration of
external data sources to a web-based modeling tool?
First, data sources are integrated within ER2CDS for value-helps. This improves the
usability of the tool, as well as the efficiency of modeling CDS. Secondly, the external
data sources are used for advanced validation against the existing data model, improving
the models’ quality. The effectiveness of this integration is reflected in the high SUS, as
presented as a part of the case study in Chapter 7.

RQ5: To what extent can a Core Data Service be generated from a model
which is based on the novel Core Data Service modeling language?
The ER2CDS tool developed within this thesis uses a template-driven approach to
generate a CDS view entity from a given ER2CDS model. The effectiveness and validity
of this approach are proven in the experiment, presented in Chapter 7. The experiment
conducted in this thesis has shown that 15 of 20 existing CDS view entities can already be
implemented using ER2CDS. Moreover, the problems are not related to an inappropriate
approach but to the lack of full support for all CDS language features.

8.2 Outlook
This section will present an outlook on future work within the context of this thesis.
First and foremost, ER2CDS should be extended to support all CDS language features.
This includes the missing functionality, as shown in Chapter 7, as well as annotations, a
mechanism to add metadata to the source code of any CDS view entity.

Another important step left open by this thesis for future work is publishing the VS
Code extension in the VS Code marketplace. This implicitly integrates ER2CDS within
the SAP environment since SAP BAS supports the installation of VS Code extensions
published in the marketplace. Currently, the tool is available open-source via https:
//github.com/borkdominik/ER2CDS/.

Finally, integrating a beginner’s guide could improve CDS modeling and make it more
accessible. In a more advanced extension, a modeling guide or modeling assistant using
artificial intelligence [Bor21, GBE+23, MCK+20, SOFS23] would also increase users’

102

https://github.com/borkdominik/ER2CDS/
https://github.com/borkdominik/ER2CDS/

8.2. Outlook

productivity. All of these would improve the model-driven engineering process for CDS
and, furthermore, the development of business applications [BCC22].

103

List of Figures

2.1 Model-Driven Software Engineering Architecture [BCW12]. 10
2.2 Architecture of a model transformation[BCW12]. 11
2.3 Architecture of a template-based model-to-text transformation[BCW12]. . 12
2.4 Example of the communication between language server and development

tool[Mich]. 15
2.5 Build stages of a LangiumDocument [Typa]. 18
2.6 Tree structure of the Sprotty SModel[Foud]. 19
2.7 Architecture and information flow of the Sprotty framework [Foud]. . . . 20
2.8 VS Code extension with two different language clients and language servers

[Mice]. 21
2.9 Architecture of the SAP HANA database [FCP+12]. 23
2.10 Layers of the VDM [SEt]. 24
2.11 Entity with attributes and primary key. 30
2.12 Binary relationship. 31
2.13 Recursive relationship with roles. 31
2.14 Ternary relationship. 31
2.15 Relationship defined with multiplicity. 32

3.1 Overview of the GLSP architecture [BLO23]. 34
3.2 Illustrative example for the usage of ADT within the Eclipse IDE. 36

5.1 Entity in the ER2CDS graphical concrete syntax. 46
5.2 Relationship in the ER2CDS graphical concrete syntax. 46
5.3 A relationship between two entities in the ER2CDS graphical concrete syntax.

. 46

6.1 Architecture of ER2CDS with all three main components. 54
6.2 Property palette for a ER2CDS entity. 82
6.3 Property palette for a ER2CDS entity attribute. 82
6.4 Property palette with an input field and value help. 83
6.5 Tool palette hosting the modeling tools of ER2CDS. 83
6.6 Popup to confirm the loading of all attributes of an entity. 86
6.7 Validation markers for warnings and errors. 87
6.8 Helper lines to support the alignment of model elements. 87

105

List of Figures

6.9 The ER2CDS modeling tool integrated in VS Code. 88

7.1 Dataset for creating CDS view entities. 90
7.2 Dataset for the import of CDS view entities. 91
7.3 Correctness of syntax for the created CDS view entities using ER2CDS. . 92
7.4 Correctness of output for the created CDS view entities using ER2CDS. . 92
7.5 Results of the import of existing CDS view entities to ER2CDS. 93
7.6 I was able to create Task 1/2/3 using ER2CDS. 96
7.7 I would be able to create Task 1/2/3 by using only the textual syntax of CDS. 96
7.8 In the future I will use ER2CDS over the textual syntax to create CDS view

entities. 98

106

List of Tables

5.1 Custom LSP actions defined by ER2CDS for graphical modeling. 48
5.2 Mapping of cardinalities to the respective join/association type. 51

6.1 Mapping between the tool palette descriptions and the tool implementation. 85

7.1 Descriptive statistics of the models in our evaluations 90
7.2 SUS calculated from the responses of the participants 97

107

Bibliography

[B+96] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[BCC22] Alessio Bucaioni, Antonio Cicchetti, and Federico Ciccozzi. Modelling in
low-code development: a multi-vocal systematic review. Softw. Syst. Model.,
21(5):1959–1981, 2022.

[BCD10] Jeannette Bennett, Kendra Cooper, and Lirong Dai. Aspect-oriented model-
driven skeleton code generation: A graph-based transformation approach.
Science of Computer Programming, 75(8):689–725, 2010. Designing high
quality system/software architectures.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software
engineering in practice. Morgan & Claypool Publishers, 2012.

[BE03] Sikha Bagui and Richard Earp. Database design using entity-relationship
diagrams. Auerbach Publications, 2003.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda
framework. Automated Software Engineering, pages 273– 280, 12 2001.

[BKM08] Aaron Bangor, Philip T Kortum, and James T Miller. An empirical eval-
uation of the system usability scale. Intl. Journal of Human–Computer
Interaction, 24(6):574–594, 2008.

[BL23] Dominik Bork and Philip Langer. Language server protocol: An introduction
to the protocol, its use, and adoption for web modeling tools. Enterp. Model.
Inf. Syst. Archit. Int. J. Concept. Model., 18:9:1–16, 2023.

[BLO23] Dominik Bork, Philip Langer, and Tobias Ortmayr. A vision for flexible glsp-
based web modeling tools. In João Paulo A. Almeida, Monika Kaczmarek-
Heß, Agnes Koschmider, and Henderik A. Proper, editors, The Practice of
Enterprise Modeling - 16th IFIP Working Conference, PoEM 2023, Vienna,
Austria, November 28 - December 1, 2023, Proceedings, volume 497 of
Lecture Notes in Business Information Processing, pages 109–124. Springer,
2023.

109

Bibliography

[BLRB24] Chiara Braghin, Mario Lilli, Elvinia Riccobene, and Marian Baba. Kant:
A domain-specific language for modeling security protocols. In Francisco
José Domínguez Mayo, Luís Ferreira Pires, and Edwin Seidewitz, editors,
Proceedings of the 12th International Conference on Model-Based Software
and Systems Engineering, MODELSWARD 2024, Rome, Italy, February
21-23, 2024, pages 62–73. SCITEPRESS, 2024.

[Bor21] Dominik Bork. Conceptual modeling and artificial intelligence: Challenges
and opportunities for enterprise engineering - keynote presentation at the
11th enterprise engineering working conference (EEWC 2021). In David
Aveiro, Henderik A. Proper, Sérgio Guerreiro, and Marné de Vries, editors,
Advances in Enterprise Engineering XV - 11th Enterprise Engineering
Working Conference, EEWC 2021, Revised Selected Papers, volume 441
of Lecture Notes in Business Information Processing, pages 3–9. Springer,
2021.

[CH+03] Krzysztof Czarnecki, Simon Helsen, et al. Classification of model trans-
formation approaches. In Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Architecture,
volume 45, pages 1–17. USA, 2003.

[Che76a] Peter P. Chen. The entity-relationship model - toward a unified view of
data. ACM Trans. Database Syst., 1(1):9–36, 1976.

[Che76b] Peter Pin-Shan Chen. The entity-relationship model—toward a unified view
of data. ACM Trans. Database Syst., 1(1):9–36, mar 1976.

[CTVW19] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns.
Blended modelling - what, why and how. In Loli Burgueño, Alexander
Pretschner, Sebastian Voss, Michel Chaudron, Jörg Kienzle, Markus Völter,
Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse, Arend Rensink, Fiona
Polack, Gregor Engels, and Gerti Kappel, editors, 22nd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems
Companion, MODELS Companion 2019, Munich, Germany, September
15-20, 2019, pages 425–430. IEEE, 2019.

[DCLB22] Giuliano De Carlo, Philip Langer, and Dominik Bork. Advanced visualization
and interaction in glsp-based web modeling: realizing semantic zoom and
off-screen elements. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’22, page
221–231, New York, NY, USA, 2022. Association for Computing Machinery.

[DLP+23] Istvan David, Malvina Latifaj, Jakob Pietron, Weixing Zhang, Federico
Ciccozzi, Ivano Malavolta, Alexander Raschke, Jan-Philipp Steghöfer, and
Regina Hebig. Blended modeling in commercial and open-source model-
driven software engineering tools: A systematic study. Softw. Syst. Model.,
22(1):415–447, 2023.

110

Bibliography

[EN16] Ramez Elmasri and Shamkant B Navathe. Fundamentals of Database
Systems. Pearson, 2016.

[FCP+12] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan
Sigg, and Wolfgang Lehner. Sap hana database: data management for
modern business applications. SIGMOD Rec., 40(4):45–51, jan 2012.

[FML+12] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller,
Hannes Rauhe, and Jonathan Dees. The sap hana database–an architecture
overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[Foua] Eclipse Foundation. Documentation. https://eclipse.dev/glsp/
documentation/. Accessed: 2024-6-15.

[Foub] Eclipse Foundation. The eclipse graphical language server platform (glsp).
https://eclipse.dev/glsp/. Accessed: 2024-5-5.

[Fouc] Eclipse Foundation. Introduction. https://sprotty.org/docs/
introduction/. Accessed: 2024-6-8.

[Foud] Eclipse Foundation. Overview. https://sprotty.org/docs/
overview/. Accessed: 2024-6-8.

[fS] Xiao fei Song. An introduction to cds graphical mod-
eler for sap business application studio. https://
community.sap.com/t5/technology-blogs-by-sap/
an-introduction-to-cds-graphical-modeler-for-sap-business-application/
ba-p/13504103. Accessed: 2024-6-15.

[GB21] Philipp-Lorenz Glaser and Dominik Bork. The biger tool - hybrid textual
and graphical modeling of entity relationships in vs code. In 2021 IEEE 25th
International Enterprise Distributed Object Computing Workshop (EDOCW),
pages 337–340, 2021.

[GBE+23] Antonio Garmendia, Dominik Bork, Martin Eisenberg, Thiago do Nasci-
mento Ferreira, Marouane Kessentini, and Manuel Wimmer. Leveraging arti-
ficial intelligence for model-based software analysis and design. In José Raúl
Romero, Inmaculada Medina-Bulo, and Francisco Chicano, editors, Optimis-
ing the Software Development Process with Artificial Intelligence, Natural
Computing Series, pages 93–117. Springer, 2023.

[GGC22] Joan Giner-Miguelez, Abel Gómez, and Jordi Cabot. Describeml: a tool for
describing machine learning datasets. In Thomas Kühn and Vasco Sousa,
editors, Proceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, MODELS
2022, Montreal, Quebec, Canada, October 23-28, 2022, pages 22–26. ACM,
2022.

111

https://eclipse.dev/glsp/documentation/
https://eclipse.dev/glsp/documentation/
https://eclipse.dev/glsp/
https://sprotty.org/docs/introduction/
https://sprotty.org/docs/introduction/
https://sprotty.org/docs/overview/
https://sprotty.org/docs/overview/
https://community.sap.com/t5/technology-blogs-by-sap/an-introduction-to-cds-graphical-modeler-for-sap-business-application/ba-p/13504103
https://community.sap.com/t5/technology-blogs-by-sap/an-introduction-to-cds-graphical-modeler-for-sap-business-application/ba-p/13504103
https://community.sap.com/t5/technology-blogs-by-sap/an-introduction-to-cds-graphical-modeler-for-sap-business-application/ba-p/13504103
https://community.sap.com/t5/technology-blogs-by-sap/an-introduction-to-cds-graphical-modeler-for-sap-business-application/ba-p/13504103

Bibliography

[GHHB22] Philipp-Lorenz Glaser, Georg Hammerschmied, Vladyslav Hnatiuk, and
Dominik Bork. The biger modeling tool. In Sebastian Link, Iris Reinhartz-
Berger, Jelena Zdravkovic, Dominik Bork, and Srinath Srinivasa, editors,
Proceedings of the ER Forum and PhD Symposium 2022 co-located with
41st International Conference on Conceptual Modeling (ER 2022), Virtual
Event, Hyderabad, India, October 17, 2022, volume 3211 of CEUR Workshop
Proceedings. CEUR-WS.org, 2022.

[HKGV10] Zef Hemel, Lennart CL Kats, Danny M Groenewegen, and Eelco Visser.
Code generation by model transformation: a case study in transformation
modularity. Software & Systems Modeling, 9:375–402, 2010.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28(1):75–105, 2004.

[HRW11] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven en-
gineering practices in industry. In Proceedings of the 33rd International
Conference on Software Engineering, pages 633–642, 2011.

[JKCP15] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. Likert scale:
Explored and explained. British journal of applied science & technology,
7(4):396–403, 2015.

[Kel] Horst Keller. Cds - one concept, two flavors. https:
//community.sap.com/t5/technology-blogs-by-sap/
cds-one-concept-two-flavors/ba-p/13168795. Accessed:
2024-6-14.

[KJ+13] Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26.
Springer, 2013.

[KWB03] Anneke G Kleppe, Jos B Warmer, and Wim Bast. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional,
2003.

[Lan] Philip Langer. Diagram editors with glsp: Why flexibility is key. https:
//www.youtube.com/watch?v=mSTXgUZCBVE. Accessed: 2024-6-15.

[MB23] H. Metin and D. Bork. On developing and operating glsp-based web modeling
tools: Lessons learned from biguml. In 2023 ACM/IEEE 26th International
Conference on Model Driven Engineering Languages and Systems (MOD-
ELS), pages 129–139, Los Alamitos, CA, USA, oct 2023. IEEE Computer
Society.

[MBWM23] Judith Michael, Dominik Bork, Manuel Wimmer, and Heinrich C. Mayr.
Quo vadis modeling? Software and Systems Modeling, Oct 2023.

112

https://community.sap.com/t5/technology-blogs-by-sap/cds-one-concept-two-flavors/ba-p/13168795
https://community.sap.com/t5/technology-blogs-by-sap/cds-one-concept-two-flavors/ba-p/13168795
https://community.sap.com/t5/technology-blogs-by-sap/cds-one-concept-two-flavors/ba-p/13168795
https://www.youtube.com/watch?v=mSTXgUZCBVE
https://www.youtube.com/watch?v=mSTXgUZCBVE

Bibliography

[MCK+20] Gunter Mussbacher, Benoît Combemale, Jörg Kienzle, Silvia Abrahão,
Hyacinth Ali, Nelly Bencomo, Márton Búr, Loli Burgueño, Gregor En-
gels, Pierre Jeanjean, Jean-Marc Jézéquel, Thomas Kühn, Sébastien Mosser,
Houari A. Sahraoui, Eugene Syriani, Dániel Varró, and Martin Weyssow. Op-
portunities in intelligent modeling assistance. Softw. Syst. Model., 19(5):1045–
1053, 2020.

[Mica] Microsoft. Commands. https://code.visualstudio.com/api/
extension-guides/command. Accessed: 2024-6-8.

[Micb] Microsoft. Extension api. https://code.visualstudio.com/api.
Accessed: 2024-6-8.

[Micc] Microsoft. Getting started. https://code.visualstudio.com/docs.
Accessed: 2024-6-8.

[Micd] Microsoft. Language extensions overview. https://code.
visualstudio.com/api/language-extensions/overview. Ac-
cessed: 2024-6-8.

[Mice] Microsoft. Language server extension guide. https://
code.visualstudio.com/api/language-extensions/
language-server-extension-guide. Accessed: 2024-6-8.

[Micf] Microsoft. Language server protocol specification. https:
//microsoft.github.io/language-server-protocol/
specifications/lsp/3.17/specification/. Accessed: 2024-
5-5.

[Micg] Microsoft. Webview api. https://code.visualstudio.com/api/
extension-guides/webview. Accessed: 2024-6-7.

[Mich] Microsoft. What is the language server protocol? https:
//microsoft.github.io/language-server-protocol/
overviews/lsp/overview/. Accessed: 2024-6-7.

[NN22] Gunasinghe Nadeeshaan and Marcus Nipuna. Language Server Protocol and
Implementation. Apress, 2022.

[O’R15] Gerard O’Regan. Pillars of computing. Springer, 2015.

[Pet22] Jette Petzold. A Textual Domain Specific Language for System-Theoretic
Process Analysis. PhD thesis, Kiel University, 2022.

[PKvH23] Jette Petzold, Jana Kreiß, and Reinhard von Hanxleden. PASTA: pragmatic
automated system-theoretic process analysis. In 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Network, DSN 2023,
Porto, Portugal, June 27-30, 2023, pages 559–567. IEEE, 2023.

113

https://code.visualstudio.com/api/extension-guides/command
https://code.visualstudio.com/api/extension-guides/command
https://code.visualstudio.com/api
https://code.visualstudio.com/docs
https://code.visualstudio.com/api/language-extensions/overview
https://code.visualstudio.com/api/language-extensions/overview
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/
https://microsoft.github.io/language-server-protocol/overviews/lsp/overview/

Bibliography

[PLV23] Gregory Popov, Joan Lu, and Vladimir Vishnyakov. Toward extensible
low-code development platforms. In International Conference on Innovation
of Emerging Information and Communication Technology, pages 487–497.
Springer, 2023.

[RIWC18] Roberto Rodríguez-Echeverría, Javier Luis Cánovas Izquierdo, Manuel Wim-
mer, and Jordi Cabot. Towards a language server protocol infrastructure for
graphical modeling. In Andrzej Wasowski, Richard F. Paige, and Øystein
Haugen, editors, Proceedings of the 21th ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS 2018,
Copenhagen, Denmark, October 14-19, 2018, pages 370–380. ACM, 2018.

[S+06] Douglas C Schmidt et al. Model-driven engineering. Computer-IEEE
Computer Society-, 39(2):25, 2006.

[Sar23] Siar Sarferaz. Virtuelles Datenmodell, pages 349–360. Springer Fachmedien
Wiesbaden, Wiesbaden, 2023.

[Sch16] Olaf Schulz. Der SAP-Grundkurs für Einsteiger und Anwender. Rheinwerk
Verlag, 2016.

[SEa] SAP SE. Abap - core data services (abap cds). https:
//help.sap.com/doc/abapdocu_latest_index_htm/latest/
en-US/index.htm?file=abencds.htm. Accessed: 2024-5-5.

[SEb] SAP SE. Abap - core data services (abap cds). https:
//help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/
index.htm?file=abencds.htm. Accessed: 2024-6-14.

[SEc] SAP SE. Abap core data services | s/4hana - best prac-
tice guide. https://www.sap.com/documents/2019/01/
0e6d5904-367d-0010-87a3-c30de2ffd8ff.html. Accessed:
2024-6-14.

[SEd] SAP SE. Cds ddl - cds view entity, association. https:
//help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/
index.htm?file=abencds_simple_association_v2.htm. Ac-
cessed: 2024-6-14.

[SEe] SAP SE. Cds ddl - cds view entity, association to parent.
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/
en-US/index.htm?file=abencds_to_parent_assoc_v2.htm.
Accessed: 2024-6-14.

[SEf] SAP SE. Cds ddl - cds view entity, associations and joins.
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/
en-US/index.htm?file=abencds_assoc_join_v2.htm. Accessed:
2024-6-14.

114

https://help.sap.com/doc/abapdocu_latest_index_htm/latest/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_latest_index_htm/latest/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_latest_index_htm/latest/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds.htm
https://www.sap.com/documents/2019/01/0e6d5904-367d-0010-87a3-c30de2ffd8ff.html
https://www.sap.com/documents/2019/01/0e6d5904-367d-0010-87a3-c30de2ffd8ff.html
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_simple_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_to_parent_assoc_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_to_parent_assoc_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_assoc_join_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_assoc_join_v2.htm

Bibliography

[SEg] SAP SE. Cds ddl - cds view entity, composition. https:
//help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/
index.htm?file=abencds_composition_v2.htm. Accessed:
2024-6-14.

[SEh] SAP SE. Cds ddl - cds view entity, select. https://help.sap.com/
doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=
abencds_select_statement_v2.htm. Accessed: 2024-6-14.

[SEi] SAP SE. Cds ddl - cds view entity, select, associations.
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/
en-US/index.htm?file=abencds_association_v2.htm. Ac-
cessed: 2024-6-14.

[SEj] SAP SE. Cds ddl - cds view entity, select, clauses. https:
//help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/
index.htm?file=abencds_select_clauses_v2.htm. Accessed:
2024-6-14.

[SEk] SAP SE. Cds ddl - cds view entity, select, data_source.
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/
en-US/index.htm?file=abencds_joined_data_source_v2.htm.
Accessed: 2024-6-14.

[SEl] SAP SE. Cds ddl - cds view entity, select, select_list. https:
//help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/
index.htm?file=abencds_select_list_entry_v2.htm. Ac-
cessed: 2024-6-14.

[SEm] SAP SE. Cds ddl - define view entity. https://help.sap.com/
doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=
abencds_define_view_entity.htm. Accessed: 2024-6-14.

[SEn] SAP SE. Definition language (cdl). https://cap.cloud.sap/docs/
cds/cdl. Accessed: 2024-6-15.

[SEo] SAP SE. Developing apps with sap fiori elements.
https://sapui5.hana.ondemand.com/sdk/#/topic/
03265b0408e2432c9571d6b3feb6b1fd. Accessed: 2024-5-5.

[SEp] SAP SE. Introduction to abap core data services
(cds). https://www.sap.com/documents/2022/01/
96489f20-157e-0010-bca6-c68f7e60039b.html. Accessed:
2024-6-14.

[SEq] SAP SE. Sap announces q4 and fy 2023. https://news.sap.com/2024/
01/sap-announces-q4-and-fy-2023-results/. Accessed: 2024-6-
9.

115

https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_composition_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_composition_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_composition_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_statement_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_statement_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_statement_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_association_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_clauses_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_clauses_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_clauses_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_joined_data_source_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_joined_data_source_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_select_list_entry_v2.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_define_view_entity.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_define_view_entity.htm
https://help.sap.com/doc/abapdocu_cp_index_htm/CLOUD/en-US/index.htm?file=abencds_define_view_entity.htm
https://cap.cloud.sap/docs/cds/cdl
https://cap.cloud.sap/docs/cds/cdl
https://sapui5.hana.ondemand.com/sdk/#/topic/03265b0408e2432c9571d6b3feb6b1fd
https://sapui5.hana.ondemand.com/sdk/#/topic/03265b0408e2432c9571d6b3feb6b1fd
https://www.sap.com/documents/2022/01/96489f20-157e-0010-bca6-c68f7e60039b.html
https://www.sap.com/documents/2022/01/96489f20-157e-0010-bca6-c68f7e60039b.html
https://news.sap.com/2024/01/sap-announces-q4-and-fy-2023-results/
https://news.sap.com/2024/01/sap-announces-q4-and-fy-2023-results/

Bibliography

[SEr] SAP SE. Sap s/4hana. https://help.sap.com/docs/SAP_S4HANA_
ON-PREMISE. Accessed: 2024-6-9.

[SEs] SAP SE. Sap s/4hana 2023. https://help.sap.com/doc/
e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_
OP2023_latest.pdf. Accessed: 2024-6-9.

[SEt] SAP SE. Vdm layers and view types.
https://help.sap.com/docs/SAP_S4HANA_
ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/
0a875bc7a005465aad92c08becc11776.html. Accessed: 2024-6-
14.

[SOFS23] Nikolay Shilov, Walaa Othman, Michael Fellmann, and Kurt Sandkuhl.
Machine learning for enterprise modeling assistance: an investigation of the
potential and proof of concept. Softw. Syst. Model., 22(2):619–646, 2023.

[Sta] Statista. Top ERP software market share by company
2023. https://www.statista.com/statistics/249637/
erp-software-market-share-by-company/. Accessed: 2024-
5-5.

[Typa] TypeFox. Document lifecycle. https://langium.org/docs/
reference/document-lifecycle/. Accessed: 2024-6-8.

[Typb] TypeFox. Features. https://langium.org/docs/features/. Ac-
cessed: 2024-6-8.

[Typc] TypeFox. Grammar language. https://langium.org/docs/
reference/grammar-language/. Accessed: 2024-6-8.

[Typd] TypeFox. What is langium? https://langium.org/docs/
introduction/. Accessed: 2024-6-8.

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice
in model-driven engineering. IEEE Software, 31(3):79–85, 2014.

116

https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/doc/e2048712f0ab45e791e6d15ba5e20c68/2023/en-US/FSD_OP2023_latest.pdf
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://help.sap.com/docs/SAP_S4HANA_ON-PREMISE/ee6ff9b281d8448f96b4fe6c89f2bdc8/0a875bc7a005465aad92c08becc11776.html
https://www.statista.com/statistics/249637/erp-software-market-share-by-company/
https://www.statista.com/statistics/249637/erp-software-market-share-by-company/
https://langium.org/docs/reference/document-lifecycle/
https://langium.org/docs/reference/document-lifecycle/
https://langium.org/docs/features/
https://langium.org/docs/reference/grammar-language/
https://langium.org/docs/reference/grammar-language/
https://langium.org/docs/introduction/
https://langium.org/docs/introduction/

APPENDIX A
Implementation

A.1 CDS view entity generation
1 import { URI, expandToString } from ’langium’;
2 import { createER2CDSServices } from ’../er2cds-module.js’;
3 import { Attribute, ER2CDS, Entity, Relationship,

RelationshipJoinClause } from ’../generated/ast.js’;
4 import { ER2CDSFileSystem } from ’../er2cds-file-system-

provider.js’;
5 import { MessageType } from ’vscode-languageserver-protocol’;
6 import { connection } from ’../server.js’;
7
8 export async function generateCDS(fileName: string | undefined)

: Promise<void> {
9 if (!fileName) {

10 connection.sendNotification(’window/showMessage’, {
11 type: MessageType.Error,
12 message: ’No valid ER2CDS file opened.’
13 });
14 return;
15 }
16
17 const services = createER2CDSServices(ER2CDSFileSystem).

ER2CDS;
18
19 const fileUri = URI.parse(fileName);
20 const document = services.shared.workspace.

LangiumDocumentFactory.create(fileUri);

117

A. Implementation

21 await services.shared.workspace.DocumentBuilder.build([
document], { validation: true })

22
23 const parseResult = document.parseResult;
24 if ((parseResult.parserErrors && parseResult.parserErrors.

length > 0) || (parseResult.lexerErrors && parseResult.
lexerErrors.length > 0)) {

25 connection.sendNotification(’window/showMessage’, {
26 type: MessageType.Error,
27 message: ’Model contains errors. CDS cannot be

generated.’
28 });
29 return;
30 }
31
32 const diagnostics = await services.validation.

DocumentValidator.validateDocument(document);
33 if (diagnostics.some(d => d.severity === 1)) {
34 connection.sendNotification(’window/showMessage’, {
35 type: MessageType.Error,
36 message: ’Model contains errors. CDS cannot be

generated.’
37 });
38 return;
39 }
40
41 const sourceCode = generateSourceCode(parseResult.value as

ER2CDS);
42 if (!sourceCode) {
43 connection.sendNotification(’window/showMessage’, {
44 type: MessageType.Error,
45 message: ’CDS-Generation failed.’
46 });
47 return;
48 }
49
50 const fileNameWithExtension = fileUri.fsPath.substring(

fileUri.fsPath.lastIndexOf(’/’) + 1, fileUri.fsPath.
length);

51 const fileNameWithoutExtension = fileNameWithExtension.
substring(0, fileNameWithExtension.lastIndexOf(’.’));

52
53 const generatedFileName = fileNameWithoutExtension + ’-

118

A.1. CDS view entity generation

generated.abapcds’;
54 const generatedFilePath = fileUri.fsPath.substring(0,

fileUri.fsPath.lastIndexOf(’/’)) + ’/’ +
generatedFileName;

55
56 ER2CDSFileSystem.fileSystemProvider().writeFile(URI.parse(

generatedFilePath), sourceCode);
57
58 return Promise.resolve();
59 }
60
61 function generateSourceCode(model: ER2CDS): string | undefined

{
62 model.relationships.sort((r1, r2) => {
63 if (r1.joinOrder && r2.joinOrder)
64 return r1.joinOrder - r2.joinOrder;
65
66 if (r1.joinOrder)
67 return -1;
68
69 if (r2.joinOrder)
70 return 1;
71
72 return 0;
73 });
74
75 return expandToString‘
76 ${generateHeaderAnnotations(model)}
77 ${generateHeader(model)}
78 ${generateFromClause(model)}
79 ${generateJoins(model)}
80 ${generateAssociations(model)}
81 ${generateAssociationsToParent(model)}
82 ${generateCompositions(model)}
83 {
84 ${generateKeyAttributes(model)}${model.entities.

find(e => e.attributes.find(a => a.type === ’key
’)) && model.entities.find(e => e.attributes.
find(a => a.type !== ’key’)) ? ’,’ : ’’}

85 ${generateAttributes(model)}${model.entities.find(e
=> e.attributes.find(a => a.type !== ’key’)) &&
model.relationships.find(r => r.type === ’

association’ || r.type === ’association-to-

119

A. Implementation

parent’ || r.type === ’composition’) ? ’,’ : ’’}
86 ${generateAssociationAttributes(model)}
87 }
88 ‘;
89 }
90
91 function generateHeaderAnnotations(model: ER2CDS): string |

undefined {
92 return expandToString‘
93 @AccessControl.authorizationCheck: #CHECK
94 @Metadata.ignorePropagatedAnnotations: true
95 @EndUserText.label: ’Generated by ER2CDS’
96 ‘;
97 }
98
99 function generateHeader(model: ER2CDS): string | undefined {

100 return expandToString‘
101 define view entity ${model.name} as select
102 ‘;
103 }
104
105 function generateFromClause(model: ER2CDS): string | undefined

{
106 if (model.relationships && model.relationships.length > 0)

{
107 return expandToString‘
108 from ${model.relationships[0].source?.target.ref?.

name} ${model.relationships[0].source?.target.
ref?.alias ? ‘as ${model.relationships[0].source
?.target.ref?.alias}‘ : undefined}

109 ‘;
110 } else {
111 return expandToString‘
112 from ${model.entities[0].name} ${model.entities[0].

alias ? ‘as ${model.entities[0].alias}‘ :
undefined}

113 ‘;
114 }
115 }
116
117 function generateJoins(model: ER2CDS): string | undefined {
118 if (model.relationships) {
119 return model.relationships.filter(r => !r.type).map(r

120

A.1. CDS view entity generation

=> {
120 let join;
121
122 if (r.source?.cardinality === ’1’ && r.target?.

cardinality === ’1’) {
123 join = generateInnerJoin(model, r);
124
125 } else if (r.source?.cardinality === ’1’ && r.

target?.cardinality === ’0..N’) {
126 join = generateLeftJoin(model, r);
127
128 } else if (r.source?.cardinality === ’0..N’ && r.

target?.cardinality === ’1’) {
129 join = generateRightJoin(model, r);
130
131 } else if (r.source?.cardinality === ’0..N’ && r.

target?.cardinality === ’0..N’) {
132 join = generateLeftJoin(model, r);
133
134 } else {
135 join = generateInnerJoin(model, r);
136
137 }
138
139 return join;
140 }).filter(Boolean).join(’\n’);
141 }
142
143 return undefined;
144 }
145
146 function generateInnerJoin(model: ER2CDS, relationship:

Relationship): string | undefined {
147 if (model.entities && model.entities.length > 0) {
148 return expandToString‘
149 inner join ${relationship.target?.target.ref?.name}

${relationship.target?.target.ref?.alias ? ‘ as
${relationship.target?.target.ref?.alias}‘ :
undefined} on ${generateJoinClause(relationship,
relationship.joinClauses)}

150 ‘;
151 }
152

121

A. Implementation

153 return undefined;
154 }
155
156 function generateLeftJoin(model: ER2CDS, relationship:

Relationship): string | undefined {
157 if (model.entities && model.entities.length > 0) {
158 return expandToString‘
159 left outer join ${relationship.target?.target.ref?.

name}${relationship.target?.target.ref?.alias ?
‘ as ${relationship.target?.target.ref?.alias}‘
: undefined} on ${generateJoinClause(
relationship, relationship.joinClauses)}

160 ‘;
161 }
162
163 return undefined;
164 }
165
166 function generateRightJoin(model: ER2CDS, relationship:

Relationship): string | undefined {
167 if (model.entities && model.entities.length > 0) {
168 return expandToString‘
169 right outer join ${relationship.target?.target.ref

?.name}${relationship.target?.target.ref?.alias
? ‘ as ${relationship.target?.target.ref?.alias
}‘ : undefined} on ${generateJoinClause(
relationship, relationship.joinClauses)}

170 ‘;
171 }
172
173 return undefined;
174 }
175
176 function generateJoinClause(relationship: Relationship,

joinClauses: RelationshipJoinClause[]): string | undefined {
177 let joinClause;
178
179 joinClause = joinClauses.map(jc => {
180 return expandToString‘
181 ${relationship.source?.target.ref?.alias ?

relationship.source?.target.ref?.alias :
relationship.source?.target.ref?.name}.${jc.
firstAttribute.ref?.name} = ${relationship.

122

A.1. CDS view entity generation

target?.target.ref?.alias ? relationship.target
?.target.ref?.alias : relationship.target?.
target.ref?.name}.${jc.secondAttribute.ref?.name
}

182 ‘
183 }).filter(Boolean).join(’ and ’);
184
185 return joinClause;
186 }
187
188 function generateAssociations(model: ER2CDS): string |

undefined {
189 if (model.relationships) {
190 return model.relationships.filter(r => r.type === ’

association’).map(r => {
191 let association;
192
193 if (r.source?.cardinality === ’1’ && r.target?.

cardinality === ’1’) {
194 association = generateOneOneAssociation(model,

r);
195
196 } else if (r.source?.cardinality === ’1’ && r.

target?.cardinality === ’0..N’) {
197 association = generateOneManyAssociation(model,

r);
198
199 } else if (r.source?.cardinality === ’0..N’ && r.

target?.cardinality === ’1’) {
200 association = generateZeroOneAssociation(model,

r);
201
202 } else if (r.source?.cardinality === ’0..N’ && r.

target?.cardinality === ’0..N’) {
203 association = generateZeroManyAssociation(model

, r);
204
205 } else {
206 association = generateZeroOneAssociation(model,

r);
207
208 }
209

123

A. Implementation

210 return association;
211 }).filter(Boolean).join(’\n’);
212 }
213
214 return undefined;
215 }
216
217 function generateOneOneAssociation(model: ER2CDS, relationship:

Relationship): string | undefined {
218 if (model.entities && model.entities.length > 0) {
219 return expandToString‘
220 association[1..1] to ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined} on ${
generateAssociationClause(relationship,
relationship.joinClauses)}

221 ‘;
222 }
223
224 return undefined;
225 }
226
227 function generateOneManyAssociation(model: ER2CDS, relationship

: Relationship): string | undefined {
228 if (model.entities && model.entities.length > 0) {
229 return expandToString‘
230 association[1..*] to ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined} on ${
generateAssociationClause(relationship,
relationship.joinClauses)}

231 ‘;
232 }
233
234 return undefined;
235 }
236
237 function generateZeroOneAssociation(model: ER2CDS, relationship

: Relationship): string | undefined {
238 if (model.entities && model.entities.length > 0) {
239 return expandToString‘

124

A.1. CDS view entity generation

240 association[0..1] to ${relationship.target?.target.
ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined} on ${
generateAssociationClause(relationship,
relationship.joinClauses)}

241 ‘;
242 }
243
244 return undefined;
245 }
246
247 function generateZeroManyAssociation(model: ER2CDS,

relationship: Relationship): string | undefined {
248 if (model.entities && model.entities.length > 0) {
249 return expandToString‘
250 association[0..*] to ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined} on ${
generateAssociationClause(relationship,
relationship.joinClauses)}

251 ‘;
252 }
253
254 return undefined;
255 }
256
257 function generateAssociationClause(relationship: Relationship,

joinClauses: RelationshipJoinClause[]): string | undefined {
258 let associationClause;
259
260 associationClause = joinClauses.map(jc => {
261 return expandToString‘
262 $projection.${jc.firstAttribute.ref?.alias ? jc.

firstAttribute.ref?.alias : jc.firstAttribute.
ref?.name} = ${relationship.target?.target.ref?.
alias ? relationship.target?.target.ref?.alias :
relationship.target?.target.ref?.name}.${jc.

secondAttribute.ref?.name}
263 ‘
264 }).filter(Boolean).join(’ and ’);
265

125

A. Implementation

266 return associationClause;
267 }
268
269 function generateAssociationsToParent(model: ER2CDS): string |

undefined {
270 if (model.relationships) {
271 return model.relationships.filter(r => r.type === ’

association-to-parent’).map(r =>
generateAssociationToParent(model, r)).filter(
Boolean).join(’\n’);

272 }
273
274 return undefined;
275 }
276
277 function generateAssociationToParent(model: ER2CDS,

relationship: Relationship): string | undefined {
278 if (model.entities && model.entities.length > 0) {
279 return expandToString‘
280 association to parent ${relationship.target?.target

.ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined} on ${
generateAssociationClause(relationship,
relationship.joinClauses)}

281 ‘;
282 }
283
284 return undefined;
285 }
286
287 function generateCompositions(model: ER2CDS): string |

undefined {
288 if (model.relationships) {
289 return model.relationships.filter(r => r.type === ’

composition’).map(r => {
290 let association;
291
292 if (r.source?.cardinality === ’1’ && r.target?.

cardinality === ’1’) {
293 association = generateOneOneComposition(model,

r);
294

126

A.1. CDS view entity generation

295 } else if (r.source?.cardinality === ’1’ && r.
target?.cardinality === ’0..N’) {

296 association = generateOneManyComposition(model,
r);

297
298 } else if (r.source?.cardinality === ’0..N’ && r.

target?.cardinality === ’1’) {
299 association = generateZeroOneComposition(model,

r);
300
301 } else if (r.source?.cardinality === ’0..N’ && r.

target?.cardinality === ’0..N’) {
302 association = generateZeroManyComposition(model

, r);
303
304 } else {
305 association = generateZeroManyComposition(model

, r);
306
307 }
308
309 return association;
310 }).filter(Boolean).join(’\n’);
311 }
312
313 return undefined;
314 }
315
316 function generateOneOneComposition(model: ER2CDS, relationship:

Relationship): string | undefined {
317 if (model.entities && model.entities.length > 0) {
318 return expandToString‘
319 composition[1..1] of ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined}

320 ‘;
321 }
322
323 return undefined;
324 }
325
326 function generateOneManyComposition(model: ER2CDS, relationship

127

A. Implementation

: Relationship): string | undefined {
327 if (model.entities && model.entities.length > 0) {
328 return expandToString‘
329 composition[0..*] of ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined}

330 ‘;
331 }
332
333 return undefined;
334 }
335
336 function generateZeroOneComposition(model: ER2CDS, relationship

: Relationship): string | undefined {
337 if (model.entities && model.entities.length > 0) {
338 return expandToString‘
339 composition[0..1] of ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined}

340 ‘;
341 }
342
343 return undefined;
344 }
345
346 function generateZeroManyComposition(model: ER2CDS,

relationship: Relationship): string | undefined {
347 if (model.entities && model.entities.length > 0) {
348 return expandToString‘
349 composition[0..*] of ${relationship.target?.target.

ref?.name}${relationship.target?.target.ref?.
alias ? ‘ as ${relationship.target?.target.ref?.
alias}‘ : undefined}

350 ‘;
351 }
352
353 return undefined;
354 }
355
356 function generateKeyAttributes(model: ER2CDS): string |

undefined {

128

A.1. CDS view entity generation

357 if (model.entities) {
358 let attributes: string[] = [];
359
360 model.entities.forEach(e => {
361 const keyFields = e.attributes.filter(a => a.type

=== ’key’);
362
363 if (keyFields.length > 0)
364 attributes.push(keyFields.map(a =>

generateAttribute(e, a)).filter(Boolean).
join(’,\n’));

365 });
366
367 return attributes.filter(Boolean).join(’,\n’);
368 }
369
370 return undefined;
371 }
372
373 function generateAttributes(model: ER2CDS): string | undefined

{
374 if (model.entities) {
375 let attributes: string[] = [];
376
377 model.entities.forEach(e => {
378 const nonKeyFields = e.attributes.filter(a => a.

type !== ’key’);
379
380 if (nonKeyFields.length > 0) {
381 attributes.push(nonKeyFields.map(a =>

generateAttribute(e, a)).filter(Boolean).
join(’,\n’));

382 }
383 });
384
385 return attributes.filter(Boolean).join(’,\n’);
386 }
387
388 return undefined;
389 }
390
391 function generateAttribute(entity: Entity, attribute: Attribute

): string | undefined {

129

A. Implementation

392 if (attribute.type !== ’no-out’) {
393 return expandToString‘
394 ${attribute.type === ’key’ ? ’key’ : ’’} ${entity.

alias ? entity.alias : entity.name}.${attribute.
name} ${generateAttributeLabel(entity, attribute
)}

395 ‘;
396 }
397
398 return undefined;
399 }
400
401 function generateAttributeLabel(entity: Entity, attribute:

Attribute): string | undefined {
402 if (attribute.alias) {
403 return expandToString‘
404 as ${attribute.alias}
405 ‘;
406 }
407
408 return undefined;
409 }
410
411 function generateAssociationAttributes(model: ER2CDS): string |

undefined {
412 if (model.relationships) {
413 let associationAttributes: string[] = [];
414
415 model.relationships.filter(r => r.type === ’association

’ || r.type === ’association-to-parent’ || r.type
=== ’composition’).forEach(r => {

416 associationAttributes.push(expandToString‘${r.
target?.target.ref?.alias ? r.target?.target.ref
?.alias : r.target?.target.ref?.name}‘);

417 });
418
419 return associationAttributes.filter(Boolean).join(’,\n’

);
420 }
421
422 return undefined;
423 }

Listing A.1: Generation of a CDS view entity.

130

A.2. Import CDS view entity

A.2 Import CDS view entity

1 import { Agent } from ’https’;
2 import { ER2CDSGlobal } from ’../er2cds-module.js’;
3 import fetch from ’node-fetch’;
4 import { connection } from ’../server.js’;
5 import { MessageType } from ’vscode-languageserver-protocol’;
6 import { Attribute, ER2CDS, Entity, Relationship,

RelationshipJoinClause } from ’../generated/ast.js’;
7 import { serialize } from ’../serializer/serializer.js’;
8 import { URI } from ’langium’;
9 import { ER2CDSFileSystem } from ’../er2cds-file-system-

provider.js’;
10
11 export async function importCds(entityName: string, fileName:

string): Promise<void> {
12 const agent = new Agent({ rejectUnauthorized: false });
13
14 entityName = entityName.toUpperCase();
15
16 const urlFromClause = encodeURI(ER2CDSGlobal.sapUrl + "sap/

opu/odata/sap/ZER2CDS/ImportFromClause?$filter=
EntityName eq ’" + entityName + "’&$format=json&$top
=9999&sap-client=" + ER2CDSGlobal.sapClient);

17 const urlSelectList = encodeURI(ER2CDSGlobal.sapUrl + "sap/
opu/odata/sap/ZER2CDS/ImportSelectList?$filter=
EntityName eq ’" + entityName + "’&$format=json&$top
=9999&sap-client=" + ER2CDSGlobal.sapClient);

18 const urlCondition = encodeURI(ER2CDSGlobal.sapUrl + "sap/
opu/odata/sap/ZER2CDS/ImportCondition?$filter=EntityName
eq’" + entityName + "’&$format=json&$top=9999&sap-

client=" + ER2CDSGlobal.sapClient);
19 const urlAssocDef = encodeURI(ER2CDSGlobal.sapUrl + "sap/

opu/odata/sap/ZER2CDS/ImportAssocDef?$filter=EntityName
eq’" + entityName + "’&$format=json&$top=9999&sap-client
=" + ER2CDSGlobal.sapClient);

20
21 const fromClause: IImportFromClause[] = await fetch(
22 urlFromClause,
23 {
24 agent: agent,
25 method: ’GET’,
26 headers: {

131

A. Implementation

27 ’Authorization’: ’Basic ’ + btoa(ER2CDSGlobal.
sapUsername + ’:’ + ER2CDSGlobal.sapPassword
)

28 }
29 }
30).then(
31 (response: any) => response.json()
32).then(
33 (response: any) => {
34 return response.d.results.map((r: any) => r as

IImportFromClause);
35 }
36).catch(
37 (error: any) => {
38 connection.sendNotification(’window/showMessage’, {
39 type: MessageType.Error,
40 message: ‘CDS View Entity cannot be imported. $

{error}‘
41 });
42
43 return Promise.resolve();
44 }
45)
46
47 const selectionList: IImportSelectionList[] = await fetch(
48 urlSelectList,
49 {
50 agent: agent,
51 method: ’GET’,
52 headers: {
53 ’Authorization’: ’Basic ’ + btoa(ER2CDSGlobal.

sapUsername + ’:’ + ER2CDSGlobal.sapPassword
)

54 }
55 }
56).then(
57 (response: any) => response.json()
58).then(
59 (response: any) => {
60 return response.d.results.map((r: any) => r as

IImportSelectionList)
61 .sort((r1: IImportSelectionList, r2:

IImportSelectionList) => r1.ElementPos - r2.

132

A.2. Import CDS view entity

ElementPos);
62 }
63).catch(
64 (error: any) => {
65 connection.sendNotification(’window/showMessage’, {
66 type: MessageType.Error,
67 message: ‘CDS View Entity cannot be imported. $

{error}‘
68 });
69
70 return Promise.resolve();
71 }
72)
73
74 const condition: IImportCondition[] = await fetch(
75 urlCondition,
76 {
77 agent: agent,
78 method: ’GET’,
79 headers: {
80 ’Authorization’: ’Basic ’ + btoa(ER2CDSGlobal.

sapUsername + ’:’ + ER2CDSGlobal.sapPassword
)

81 }
82 }
83).then(
84 (response: any) => response.json()
85).then(
86 (response: any) => {
87 return response.d.results.map((r: any) => r as

IImportCondition)
88 .sort((r1: IImportCondition, r2:

IImportCondition) => r1.Pos !== r2.Pos ? r1.
Pos - r2.Pos : r1.StackLine - r1.StackLine);

89 }
90).catch(
91 (error: any) => {
92 connection.sendNotification(’window/showMessage’, {
93 type: MessageType.Error,
94 message: ‘CDS View Entity cannot be imported. $

{error}‘
95 });
96

133

A. Implementation

97 return Promise.resolve();
98 }
99)

100
101 const assocDef: IImportAssocDef[] = await fetch(
102 urlAssocDef,
103 {
104 agent: agent,
105 method: ’GET’,
106 headers: {
107 ’Authorization’: ’Basic ’ + btoa(ER2CDSGlobal.

sapUsername + ’:’ + ER2CDSGlobal.sapPassword
)

108 }
109 }
110).then(
111 (response: any) => response.json()
112).then(
113 (response: any) => {
114 return response.d.results.map((r: any) => r as

IImportAssocDef);
115 }
116).catch(
117 (error: any) => {
118 connection.sendNotification(’window/showMessage’, {
119 type: MessageType.Error,
120 message: ‘CDS View Entity cannot be imported. $

{error}‘
121 });
122
123 return Promise.resolve();
124 }
125)
126
127 if (!condition || condition.length <= 0) {
128 connection.sendNotification(’window/showMessage’, {
129 type: MessageType.Error,
130 message: ‘CDS View Entity cannot be imported. CDS

View Entity not found.‘
131 });
132
133 return Promise.resolve();
134 }

134

A.2. Import CDS view entity

135
136 const er2cds = convertToER2CDS(entityName, fromClause,

selectionList, condition, assocDef);
137 const source = serialize(er2cds);
138
139 let cleanedEntityName = entityName.replace(’/’, ’’);
140 cleanedEntityName = cleanedEntityName.replaceAll(’/’, ’_’);
141
142 const fileUri = URI.parse(fileName);
143 const generatedFileName = cleanedEntityName + ’-imported.

er2cds’;
144 const generatedFilePath = fileUri.fsPath.substring(0,

fileUri.fsPath.lastIndexOf(’/’)) + ’/’ +
generatedFileName;

145
146 ER2CDSFileSystem.fileSystemProvider().writeFile(URI.parse(

generatedFilePath), source);
147
148 connection.sendNotification(’window/showMessage’, {
149 type: MessageType.Info,
150 message: ‘CDS View Entity imported successfully.‘
151 });
152 }
153
154 export function convertToER2CDS(entityName: string, fromClause:

IImportFromClause[], selectionList: IImportSelectionList[],
condition: IImportCondition[], assocDef: IImportAssocDef[])

: ER2CDS {
155 let er2cds: ER2CDS = {
156 $type: ’ER2CDS’,
157 name: entityName,
158 entities: [],
159 relationships: []
160 };
161
162 convertFromToER2CDS(er2cds, fromClause, selectionList,

assocDef, condition);
163 convertAssociationToER2CDS(er2cds, selectionList, assocDef,

condition);
164
165 er2cds.entities.map(e => e.attributes = e.attributes.filter

(a => a.name !== ’MANDT’ && a.name !== ’CLIENT’));
166

135

A. Implementation

167 return er2cds;
168 }
169
170 export function convertFromToER2CDS(er2cds: ER2CDS, fromClause:

IImportFromClause[], selectionList: IImportSelectionList[],
assocDef: IImportAssocDef[], condition: IImportCondition[])

: void {
171 convertFromToER2CDSEntity(er2cds, selectionList, assocDef,

condition);
172 convertFromToER2CDSRelationship(er2cds, fromClause,

condition);
173 }
174
175 export function convertFromToER2CDSEntity(er2cds: ER2CDS,

selectionList: IImportSelectionList[], assocDef:
IImportAssocDef[], condition: IImportCondition[]): void {

176 condition.filter(c => c.ConditionType === ’FROM’ && c.
ExprType === ’TABLE_DATASOURCE’).forEach(c => {

177 let entityName = c.BaseobjName;
178 let entityAlias = c.BaseobjAlias;
179
180 if (c.BaseobjAlias) {
181 const assocAlias = condition.find(sc => sc.

ConditionType === ’ASSOC_DEFINITION’ && sc.
ExprType === ’TABLE_DATASOURCE’ && sc.
BaseobjAlias === c.BaseobjAlias)

182 const association = assocDef.find(a => a.AssocName
=== assocAlias?.AssocName);

183 if (assocAlias && association) {
184 entityName = assocAlias.BaseobjName;
185 entityAlias = association.AssocNameRaw;
186 }
187 }
188
189 let entity: Entity = {
190 $type: ’Entity’,
191 $container: er2cds,
192 name: entityName,
193 alias: entityAlias,
194 attributes: []
195 };
196
197 let attributes = selectionList.filter(s => s.

136

A.2. Import CDS view entity

BaseObjName === c.BaseobjName && s.ExprType === ’
ATOMIC’).map(s => {

198 const ss = selectionList.find(ss => ss.ElementPos
=== s.ElementPos && ss.ExprType === ’
STDSELECTLIST_ENTRY’);

199 return <Attribute>{
200 $type: ’Attribute’,
201 $container: entity,
202 name: s.BaseElementName,
203 type: ss?.Keyflag ? ’key’ : ’’,
204 alias: ss?.FieldNameRaw,
205 datatype: {
206 $type: ’DataType’,
207 $container: null!,
208 type: s.Datatype ? s.Datatype : ss?.

Datatype
209 }
210 }
211 });
212 entity.attributes = attributes;
213 er2cds.entities.push(entity);
214 });
215 }
216
217 export function convertFromToER2CDSRelationship(er2cds: ER2CDS,

fromClause: IImportFromClause[], condition:
IImportCondition[]): void {

218 let relationship: Relationship = {
219 $type: ’Relationship’,
220 $container: er2cds,
221 name: null!,
222 joinClauses: []
223 };
224
225 let joinClause: RelationshipJoinClause = {
226 $type: ’RelationshipJoinClause’,
227 $container: null!,
228 firstAttribute: null!,
229 secondAttribute: null!
230 };
231
232 condition.filter(c => c.ConditionType === ’FROM’).forEach(c

=> {

137

A. Implementation

233 if (c.ExprType === ’TABLE_DATASOURCE’) {
234 if (!relationship?.source) {
235 relationship.source = {
236 $type: ’RelationshipEntity’,
237 $container: relationship,
238 target: {
239 ref: er2cds.entities.find(e => e.name

=== c.BaseobjName && e.alias === c.
BaseobjAlias)!,

240 $refText: c.BaseobjName
241 }
242 }
243 } else if (!relationship.target) {
244 relationship.target = {
245 $type: ’RelationshipEntity’,
246 $container: relationship,
247 target: {
248 ref: er2cds.entities.find(e => e.name

=== c.BaseobjName && e.alias === c.
BaseobjAlias)!,

249 $refText: c.BaseobjName
250 }
251 }
252 }
253 }
254
255 if (c.ExprType === ’ATOMIC’) {
256 if (!joinClause.firstAttribute) {
257 if ((relationship.source?.target.ref?.name !==

c.BaseobjName || relationship.source.target.
ref.alias !== c.BaseobjAlias) && (!
relationship.joinClauses || relationship.
joinClauses.length <= 0)) {

258 if (er2cds.entities.some(e => e.name === c.
BaseobjName && e.alias === c.
BaseobjAlias)) {

259 relationship.source = {
260 $type: ’RelationshipEntity’,
261 $container: relationship,
262 target: {
263 ref: er2cds.entities.find(e =>

e.name === c.BaseobjName &&
e.alias === c.BaseobjAlias)

138

A.2. Import CDS view entity

!,
264 $refText: c.BaseobjName
265 }
266 }
267 }
268 }
269
270 joinClause.firstAttribute = {
271 ref: er2cds.entities.find(e => e.name === c

.BaseobjName && e.alias === c.
BaseobjAlias)?.attributes.find(a => a.
name === c.FieldName),

272 $refText: c.FieldName
273 };
274 } else if (!joinClause.secondAttribute) {
275 if ((relationship.target?.target.ref?.name !==

c.BaseobjName || relationship.target.target.
ref.alias !== c.BaseobjAlias) && (!
relationship.joinClauses || relationship.
joinClauses.length <= 0)) {

276 if (er2cds.entities.some(e => e.name === c.
BaseobjName && e.alias === c.
BaseobjAlias)) {

277 relationship.target = {
278 $type: ’RelationshipEntity’,
279 $container: relationship,
280 target: {
281 ref: er2cds.entities.find(e =>

e.name === c.BaseobjName &&
e.alias === c.BaseobjAlias)
!,

282 $refText: c.BaseobjName
283 }
284 }
285 }
286 }
287
288 joinClause.secondAttribute = {
289 ref: er2cds.entities.find(e => e.name === c

.BaseobjName && e.alias === c.
BaseobjAlias)?.attributes.find(a => a.
name === c.FieldName),

290 $refText: c.FieldName

139

A. Implementation

291 };
292 }
293 }
294
295 if (c.ExprType === ’COMPARISON’) {
296 if (joinClause.firstAttribute && joinClause.

secondAttribute) {
297 const sourceEntity = er2cds.entities.find(e =>

e.name === relationship.source?.target.ref?.
name && e.alias === relationship.source?.
target.ref?.alias);

298 if (sourceEntity && !sourceEntity.attributes.
some(a => a.name === joinClause.
firstAttribute.$refText)) {

299 const attribute = condition.find(sc => sc.
ConditionType === ’FROM’ && sc.ExprType
=== ’ATOMIC’ &&

300 sc.BaseobjName === sourceEntity.name &&
sc.FieldName === joinClause.

firstAttribute.$refText);
301
302 if (attribute) {
303 sourceEntity.attributes.push({
304 $type: ’Attribute’,
305 $container: sourceEntity,
306 name: attribute?.FieldName,
307 type: ’no-out’,
308 datatype: {
309 $type: ’DataType’,
310 $container: null!,
311 type: attribute?.Datatype
312 }
313 });
314 } else {
315 joinClause.firstAttribute = undefined!;
316 }
317 }
318
319 const targetEntity = er2cds.entities.find(e =>

e.name === relationship.target?.target.ref?.
name && e.alias === relationship.target?.
target.ref?.alias);

320 if (targetEntity && !targetEntity.attributes.

140

A.2. Import CDS view entity

some(a => a.name === joinClause.
secondAttribute.$refText)) {

321 const attribute = condition.find(sc => sc.
ConditionType === ’FROM’ && sc.ExprType
=== ’ATOMIC’ &&

322 sc.BaseobjName === targetEntity.name &&
sc.FieldName === joinClause.

secondAttribute.$refText);
323
324 if (attribute) {
325 targetEntity.attributes.push({
326 $type: ’Attribute’,
327 $container: targetEntity,
328 name: attribute.FieldName,
329 type: ’no-out’,
330 datatype: {
331 $type: ’DataType’,
332 $container: null!,
333 type: attribute.Datatype
334 }
335 });
336 } else {
337 joinClause.secondAttribute = undefined

!;
338 }
339 }
340
341 if (joinClause.firstAttribute && joinClause.

secondAttribute) {
342 relationship.joinClauses.push(joinClause);
343 }
344 }
345
346 joinClause = {
347 $type: ’RelationshipJoinClause’,
348 $container: null!,
349 firstAttribute: undefined!,
350 secondAttribute: undefined!
351 };
352 }
353
354 if (c.ExprType === ’JOIN_DATASOURCE’) {
355 if (relationship.source && relationship.target &&

141

A. Implementation

relationship.joinClauses && relationship.
joinClauses.length > 0) {

356 if (c.JoinOperation === ’INNER’) {
357 relationship.source.cardinality = ’1’;
358 relationship.target.cardinality = ’1’;
359 } else if (c.JoinOperation === ’LEFT’) {
360 relationship.source.cardinality = ’1’;
361 relationship.target.cardinality = ’0..N’;
362 } else if (c.JoinOperation === ’RIGHT’) {
363 relationship.source.cardinality = ’0..N’;
364 relationship.target.cardinality = ’1’;
365 }
366
367 const fc = fromClause.find(f => f.BaseObjName

=== relationship.target?.target.$refText);
368 if (fc && fc.BaseObjPos - 1 > 0) {
369 relationship.joinOrder = fc.BaseObjPos - 1;
370 } else {
371 relationship.joinOrder = 1;
372 }
373
374 er2cds.relationships.push(relationship);
375
376 const nextSourceEntity = relationship.source?.

target.ref;
377
378 relationship = {
379 $type: ’Relationship’,
380 $container: er2cds,
381 name: null!,
382 joinClauses: []
383 };
384
385 if (nextSourceEntity) {
386 relationship.source = {
387 $type: ’RelationshipEntity’,
388 $container: relationship,
389 target: {
390 ref: nextSourceEntity,
391 $refText: nextSourceEntity.name
392 }
393 }
394 }

142

A.2. Import CDS view entity

395 }
396 }
397 });
398 }
399
400 export function convertAssociationToER2CDS(er2cds: ER2CDS,

selectionList: IImportSelectionList[], assocDef:
IImportAssocDef[], condition: IImportCondition[]): void {

401 convertAssociationToER2CDSEntity(er2cds, assocDef,
condition);

402 convertAssociationToER2CDSRelationship(er2cds,
selectionList, assocDef, condition);

403 }
404
405 export function convertAssociationToER2CDSEntity(er2cds: ER2CDS

, assocDef: IImportAssocDef[], condition: IImportCondition
[]): void {

406 condition.filter(c => c.ConditionType === ’ASSOC_DEFINITION
’ && c.ExprType === ’TABLE_DATASOURCE’).forEach(c => {

407 if (!condition.some(sc => sc.ConditionType === ’FROM’
&& sc.ExprType === ’TABLE_DATASOURCE’ && sc.
BaseobjName === c.BaseobjName) &&

408 !er2cds.entities.some(e => e.name === c.BaseobjName
&& e.alias === c.AssocName)) {

409 const association = assocDef.find(a => a.AssocName
=== c.AssocName);

410
411 er2cds.entities.push({
412 $type: ’Entity’,
413 $container: er2cds,
414 name: c.BaseobjName,
415 alias: association?.AssocNameRaw ? association.

AssocNameRaw : c.BaseobjAlias,
416 attributes: []
417 });
418 }
419 });
420 }
421
422 export function convertAssociationToER2CDSRelationship(er2cds:

ER2CDS, selectionList: IImportSelectionList[], assocDef:
IImportAssocDef[], condition: IImportCondition[]): void {

423 let relationship: Relationship = {

143

A. Implementation

424 $type: ’Relationship’,
425 $container: er2cds,
426 name: null!,
427 joinClauses: []
428 };
429
430 let joinClause: RelationshipJoinClause = {
431 $type: ’RelationshipJoinClause’,
432 $container: null!,
433 firstAttribute: null!,
434 secondAttribute: null!
435 };
436
437 condition.filter(c => c.ConditionType === ’ASSOC_DEFINITION

’).forEach(c => {
438 if (c.ExprType === ’ASSOC_ELEMENT’) {
439 if (!relationship?.source) {
440 const association = assocDef.find(a => a.

AssocName === c.AssocName);
441
442 if (association) {
443 relationship.source = {
444 $type: ’RelationshipEntity’,
445 $container: relationship,
446 target: {
447 ref: er2cds.entities.find(e => e.

name === c.BaseobjName && e.
alias === association.
AssocNameRaw)!,

448 $refText: c.BaseobjName
449 }
450 }
451 } else {
452 relationship.source = {
453 $type: ’RelationshipEntity’,
454 $container: relationship,
455 target: {
456 ref: er2cds.entities.find(e => e.

name === c.BaseobjName && e.
alias === c.BaseobjAlias)!,

457 $refText: c.BaseobjName
458 }
459 }

144

A.2. Import CDS view entity

460 }
461 } else if (!relationship.target) {
462 const association = assocDef.find(a => a.

AssocName === c.AssocName);
463
464 if (association) {
465 relationship.target = {
466 $type: ’RelationshipEntity’,
467 $container: relationship,
468 target: {
469 ref: er2cds.entities.find(e => e.

name === c.BaseobjName && e.
alias === association?.
AssocNameRaw)!,

470 $refText: c.BaseobjName
471 }
472 }
473 } else {
474 relationship.target = {
475 $type: ’RelationshipEntity’,
476 $container: relationship,
477 target: {
478 ref: er2cds.entities.find(e => e.

name === c.BaseobjName && e.
alias === c.BaseobjAlias)!,

479 $refText: c.BaseobjName
480 }
481 }
482 }
483 }
484
485 if (c.BaseobjName === er2cds.name) {
486 let sourceEntity: Entity | undefined;
487 let sourceAttribute: Attribute | undefined;
488
489 let ss = selectionList.find(s => s.ElementAlias

=== c.FieldName);
490 if (ss) {
491 const sss = selectionList.find(s => s.

ElementPos === ss?.ElementPos && s.
ExprType === ’ATOMIC’);

492 const association = assocDef.find(a => a.
AssocName === sss?.AssocName);

145

A. Implementation

493
494 if (association) {
495 sourceEntity = er2cds.entities.find(e

=> e.name === sss?.BaseObjName && e.
alias === association?.AssocNameRaw)
;

496 } else {
497 sourceEntity = er2cds.entities.find(e

=> e.name === sss?.BaseObjName && e.
alias === sss?.BaseObjAlias);

498 }
499
500 sourceAttribute = sourceEntity?.attributes.

find(a => a.name === sss?.
BaseElementName);

501 } else {
502 ss = selectionList.find(s => (s.ExprType

=== ’ATOMIC’ || s.ExprType === ’
ATOMIC_VIA_PATH’) && s.BaseElementName
=== c.FieldName);

503 const association = assocDef.find(a => a.
AssocTarget === ss?.BaseObjName);

504
505 if (association) {
506 sourceEntity = er2cds.entities.find(e

=> e.name === ss?.BaseObjName && e.
alias === association?.AssocNameRaw)
;

507 } else {
508 sourceEntity = er2cds.entities.find(e

=> e.name === ss?.BaseObjName && e.
alias === ss?.BaseObjAlias);

509 }
510
511 sourceAttribute = sourceEntity?.attributes.

find(a => a.name === ss?.BaseElementName
);

512
513 if (!sourceAttribute) {
514 let attribute: IImportCondition |

undefined;
515 const association = assocDef.find(a =>

a.AssocNameRaw === sourceEntity?.

146

A.2. Import CDS view entity

alias);
516
517 if (association) {
518 attribute = condition.find(sc => sc

.ConditionType === ’
ASSOC_DEFINITION’ && sc.ExprType
=== ’ASSOC_ELEMENT’ &&

519 sc.BaseobjName === sourceEntity
?.name && sc.AssocName ===
association?.AssocName && sc
.FieldName === c.FieldName);

520 } else {
521 attribute = condition.find(sc => sc

.ConditionType === ’FROM’ && sc.
ExprType === ’ATOMIC’ &&

522 sc.BaseobjName === sourceEntity
?.name && sc.BaseobjAlias
=== sourceEntity?.alias &&
sc.FieldName === c.FieldName
);

523 }
524
525 if (attribute) {
526 sourceEntity?.attributes.push({
527 $type: ’Attribute’,
528 $container: sourceEntity,
529 name: attribute?.FieldName,
530 type: ’key’,
531 datatype: {
532 $type: ’DataType’,
533 $container: null!,
534 type: attribute.Datatype
535 }
536 });
537 }
538
539 sourceAttribute = sourceEntity?.

attributes.find(a => a.name === ss?.
BaseElementName);

540 }
541 }
542
543 if (sourceEntity && sourceAttribute) {

147

A. Implementation

544 if (relationship.source?.target.$refText
=== er2cds.name || relationship.source?.
target.$refText === relationship.target
?.target.$refText) {

545 relationship.source = {
546 $type: ’RelationshipEntity’,
547 $container: relationship,
548 target: {
549 ref: sourceEntity,
550 $refText: sourceEntity.name
551 }
552 };
553 }
554
555 joinClause.firstAttribute = {
556 ref: sourceAttribute,
557 $refText: sourceAttribute.name
558 };
559 }
560 } else {
561 let targetEntity: Entity | undefined;
562 const association = assocDef.find(a => a.

AssocName === c?.AssocName);
563
564 if (association) {
565 targetEntity = er2cds.entities.find(e => e.

name === c.BaseobjName && e.alias ===
association?.AssocNameRaw);

566 } else {
567 targetEntity = er2cds.entities.find(e => e.

name === c.BaseobjName && e.alias === c.
BaseobjAlias);

568 }
569
570 const targetAttribute = targetEntity?.

attributes.find(a => a.name === c.FieldName)
;

571
572 if (!targetAttribute) {
573 let attribute: IImportCondition | undefined

;
574 const association = assocDef.find(a => a.

AssocNameRaw === targetEntity?.alias);

148

A.2. Import CDS view entity

575
576 if (association) {
577 attribute = condition.find(sc => sc.

ConditionType === ’ASSOC_DEFINITION’
&& sc.ExprType === ’ASSOC_ELEMENT’

&&
578 sc.BaseobjName === targetEntity?.

name && sc.AssocName ===
association?.AssocName && sc.
FieldName === c.FieldName);

579 } else {
580 attribute = condition.find(sc => sc.

ConditionType === ’FROM’ && sc.
ExprType === ’ATOMIC’ &&

581 sc.BaseobjName === targetEntity?.
name && sc.BaseobjAlias ===
targetEntity?.alias && sc.
FieldName === c.FieldName);

582 }
583
584 if (attribute) {
585 targetEntity?.attributes.push({
586 $type: ’Attribute’,
587 $container: targetEntity,
588 name: attribute?.FieldName,
589 type: ’no-out’,
590 datatype: {
591 $type: ’DataType’,
592 $container: null!,
593 type: attribute.Datatype
594 }
595 });
596 }
597 }
598
599 relationship.target = {
600 $type: ’RelationshipEntity’,
601 $container: relationship,
602 target: {
603 ref: targetEntity,
604 $refText: c.BaseobjName
605 }
606 };

149

A. Implementation

607
608 joinClause.secondAttribute = {
609 ref: targetAttribute,
610 $refText: c.FieldName
611 };
612 }
613 }
614
615 if (c.ExprType === ’COMPARISON’ && joinClause.

firstAttribute && joinClause.secondAttribute) {
616 const sourceEntity = er2cds.entities.find(e => e.

name === relationship.source?.target.ref?.name
&& e.alias === relationship.source?.target.ref?.
alias);

617 if (sourceEntity && !sourceEntity.attributes.some(a
=> a.name === joinClause.firstAttribute.

$refText)) {
618 const attribute = condition.find(sc => sc.

ConditionType === ’ASSOC_DEFINITION’ && sc.
ExprType === ’ASSOC_ELEMENT’ && sc.
BaseobjName === sourceEntity.name && sc.
FieldName === joinClause.firstAttribute.
$refText);

619
620 if (attribute) {
621 sourceEntity.attributes.push({
622 $type: ’Attribute’,
623 $container: sourceEntity,
624 name: joinClause.firstAttribute.

$refText,
625 type: ’no-out’,
626 datatype: {
627 $type: ’DataType’,
628 $container: null!,
629 type: attribute.Datatype
630 }
631 });
632 }
633 }
634
635 const targetEntity = er2cds.entities.find(e => e.

name === relationship.target?.target.ref?.name
&& e.alias === relationship.source?.target.ref?.

150

A.2. Import CDS view entity

alias);
636 if (targetEntity && !targetEntity.attributes.some(a

=> a.name === joinClause.secondAttribute.
$refText)) {

637 const attribute = condition.find(sc => sc.
ConditionType === ’ASSOC_DEFINITION’ && sc.
ExprType === ’ASSOC_ELEMENT’ &&

638 sc.BaseobjName === targetEntity.name && sc.
FieldName === joinClause.secondAttribute
.$refText);

639
640 if (attribute) {
641 targetEntity.attributes.push({
642 $type: ’Attribute’,
643 $container: targetEntity,
644 name: attribute?.FieldName,
645 type: ’no-out’,
646 datatype: {
647 $type: ’DataType’,
648 $container: null!,
649 type: attribute.Datatype
650 }
651 });
652 }
653 }
654
655 relationship.joinClauses.push(joinClause);
656 joinClause = {
657 $type: ’RelationshipJoinClause’,
658 $container: null!,
659 firstAttribute: null!,
660 secondAttribute: null!
661 };
662 }
663
664 if (c.ExprType === ’ASSOCIATION’ && relationship.source

&& relationship.target) {
665 const association = assocDef.find(a => a.AssocName

=== c.AssocName);
666
667 if (association) {
668 if (association?.CardMin === 1) {
669 relationship.source.cardinality = ’1’;

151

A. Implementation

670 } else {
671 relationship.source.cardinality = ’0..N’;
672 }
673
674 if (association?.CardMax === 1) {
675 relationship.target.cardinality = ’1’;
676 } else {
677 relationship.target.cardinality = ’0..N’;
678 }
679
680 relationship.type = ’association’;
681 er2cds.relationships.push(relationship);
682 }
683
684 relationship = {
685 $type: ’Relationship’,
686 $container: er2cds,
687 name: null!,
688 joinClauses: []
689 };
690 }
691
692 if (c.ExprType === ’TO_PARENT_ASSO’ && relationship.

source && relationship.target) {
693 const associationToParent = assocDef.find(a => a.

AssocName === c.AssocName);
694 if (associationToParent?.CardMin === 1) {
695 relationship.source.cardinality = ’1’;
696 } else {
697 relationship.source.cardinality = ’0..N’;
698 }
699
700 if (associationToParent?.CardMax === 1) {
701 relationship.target.cardinality = ’1’;
702 } else {
703 relationship.target.cardinality = ’0..N’;
704 }
705
706 relationship.type = ’association-to-parent’;
707 er2cds.relationships.push(relationship);
708
709 relationship = {
710 $type: ’Relationship’,

152

A.2. Import CDS view entity

711 $container: er2cds,
712 name: null!,
713 joinClauses: []
714 };
715 }
716
717 if (c.ExprType === ’COMPOSITION’ && relationship.source

&& relationship.target) {
718 const composition = assocDef.find(a => a.AssocName

=== c.AssocName);
719 if (composition?.CardMin === 1) {
720 relationship.source.cardinality = ’1’;
721 } else {
722 relationship.source.cardinality = ’0..N’;
723 }
724
725 if (composition?.CardMax === 1) {
726 relationship.target.cardinality = ’1’;
727 } else {
728 relationship.target.cardinality = ’0..N’;
729 }
730
731 relationship.type = ’composition’;
732 relationship.joinClauses = [];
733 er2cds.relationships.push(relationship);
734
735 relationship = {
736 $type: ’Relationship’,
737 $container: er2cds,
738 name: null!,
739 joinClauses: []
740 };
741 }
742 });
743 }
744
745 interface IImportFromClause {
746 EntityName: string,
747 UnionNumber: string,
748 BaseObjAlias: string,
749 BaseObjPos: number,
750 ParameterName: string,
751 ParameterComponent: string,

153

A. Implementation

752 As4local: string,
753 ParameterValue: string,
754 BaseObjName: string,
755 BaseObjType: string,
756 ParameterComponentName: string
757 }
758
759 interface IImportSelectionList {
760 EntityName: string,
761 UnionNumber: string,
762 ElementAlias: string,
763 ElementPos: number,
764 StackLine: string,
765 As4local: string,
766 ExprType: string,
767 ExprSubtype: string,
768 ExprParamCount: string,
769 BaseObjAlias: string,
770 BaseObjName: string,
771 BaseObjType: string,
772 BaseElementName: string,
773 BaseElementNameRaw: string,
774 FunctionName: string,
775 IsTypePreserving: string,
776 Operator: string,
777 LiteralValue: string,
778 ParameterName: string,
779 SessionVarExpr: string,
780 DataElement: string,
781 Keyflag: string,
782 IsVirtual: string,
783 IsGenerated: string,
784 IsGeneratedLocalized: string,
785 AssocName: string,
786 AssocBaseType: string,
787 Datatype: string,
788 Leng: string,
789 Decimals: string,
790 AnnoName: string,
791 AnnoQualifier: string,
792 AnnoValue: string,
793 AnnoValueUnescaped: string,
794 AnnoType: string,

154

A.2. Import CDS view entity

795 IsPathField: string,
796 FieldNameRaw: string
797 }
798
799 interface IImportCondition {
800 EntityName: string,
801 UnionNumber: string,
802 Pos: number,
803 AssocName: string,
804 StackLine: number,
805 ConditionType: string,
806 As4local: string,
807 ExprType: string,
808 ExprParacount: string,
809 BaseobjAlias: string,
810 BaseobjName: string,
811 BaseobjType: string,
812 FieldName: string,
813 FieldIndex: string,
814 Function: string,
815 Operator: string,
816 Literal: string,
817 ParameterName: string,
818 AssocBaseType: string,
819 JoinOperation: string,
820 SessionVarExpr: string,
821 Rollname: string,
822 Datatype: string,
823 Leng: string,
824 Decimals: string,
825 AssocIsDefinedLocally: string,
826 AssocIsDerivedLocally: string,
827 AssocIsExposed: string,
828 IsGenerated: string,
829 AssocIsManage: string
830 }
831
832 interface IImportAssocDef {
833 EntityName: string,
834 UnionNumber: string,
835 AssocName: string,
836 As4local: string,
837 AssocType: string,

155

A. Implementation

838 AssocTarget: string,
839 AssocTargetType: string,
840 CardMin: number,
841 CardMax: number,
842 ExtendName: string,
843 AssocNameRaw: string,
844 RedefinedFromEntity: string,
845 RedefinedFromAssocNam: string
846 }

Listing A.2: Import of an exisitng CDS view entity.

156

APPENDIX B
Evaluation

B.1 Experiment Results - Create

157

B. Evaluation

N
am

e
R

elations
Syntax

O
utput

Text

Z_
I_

M
K

PF
0

X
X

Z_
I_

BEST
ELLA

N
FO

R
D

ER
U

N
G

1
X

X
Inner

join
instead

ofJoin
(equivalent).

Join
C

lause
different

order
(equivalent).

Z_
I_

SER
IA

LN
M

BR
D

ELIV
ERY

2
X

X
Table-prefix

on
attributes

(equivalent).

Z_
I_

C
H

A
N

G
ED

O
C

U
M

EN
T

IT
EM

3
X

X

Z_
I_

D
ELIVA

N
A

LY
SIS

4
X

X

Z_
I_

PRO
D

U
C

T
IO

N
4

X
X

Inner
join

instead
ofJoin

(equivalent).

Z_
I_

PU
RC

H
D

O
C

BA
SE

4
X

X
A

ssociation
w

ith
explicit

m
in,m

ax
and

$projection
(equivalent).

Z_
I_

A
U

SSEN
LA

G
ER

8
X

X
Inner

join
instead

ofJoin
(equivalent).

Join
C

lause
in

different
order

(equivalent).

Z_
I_

SD
SER

IA
LN

U
M

BER
12

X
X

Inner
join

instead
ofJoin

(equivalent).
A

ssociation
w

ith
m

in,m
ax

and
$projection

(equivalent).

Z_
I_

N
otification

19
X

X

I_
A

C
M

Settlm
tC

tnH
drC

ostR
evC

kpt
1

X
X

Join
C

lause
in

different
order

(equivalent).

I_
M

obileU
serSession

1
X

X
Join

C
lause

in
different

order
(equivalent).

Tableprefix
on

attributes
(equivalent).

I_
M

D
O

FIELD
2

X
X

A
ssociation

in
different

order
(equivalent).

Table-prefix
on

attributes
(equivalent).

I_
FinSubstitutionRuleSubstnT

P
2

X
X

Table-prefix
on

attributes
(equivalent).

I_
FieldLogisticsSupplier

3
X

A
ttributes

ofsubassociation
m

issing.
W

here-C
lause

m
issing.

I_
BkPO

A
BankA

ccount
4

X
X

Table-prefix
on

attributes
(equivalent).

I_
BusPartM

obileN
um

berG
ovT

P
4

X
Table-prefix

on
attributes

(equivalent).
R

eexport
ofsubassociation

m
issing.

W
here-C

lause
m

issing.

I_
BPR

elshpC
ntctPersnEm

lA
ddrT

P
4

X
A

ttributes
ofsubassociation

m
issing.

R
eexport

ofsubassociation
m

issing.

I_
ProdnRtgO

perationT
P

10
X

Join
C

lause
only

equals.
W

here-C
lause

m
issing.

Join
C

lause
on

fix
values

not
supported.

I_
SourcingProject

23
X

M
ultiple

association
to

sam
e

table
not

working.
C

ast/C
oncat

not
supported.

Specific
export

ofassociations.

158

B.2. Experiment Results - Import

B.2 Experiment Results - Import

159

B. Evaluation
N

am
e

R
elations

E
lem

ents
Im

ported
D

isplay
Text

W
arnings

E
rrors

/D
M

O
/I_

A
gency

1
10

X
X

/D
M

O
/I_

A
irport

1
5

X
X

/D
M

O
/I_

Booking_
D

6
18

X
X

/D
M

O
/I_

Booking_
Status_

V
H

1
2

X
X

/D
M

O
/I_

Booking_
Status_

V
H

_
Text

1
4

X
X

/D
M

O
/I_

BookingSupplem
ent_

D
4

12
X

X

/D
M

O
/I_

C
arrier

1
9

X
X

/D
M

O
/I_

C
onnection

1
9

X
X

/D
M

O
/I_

C
ustom

er
1

11
X

X

/D
M

O
/I_

Flight
3

11
X

X

/D
M

O
/I_

O
verall_

Status_
V

H
1

2
X

X

/D
M

O
/I_

O
verall_

Status_
V

H
_

Text
1

4
X

X

/D
M

O
/I_

Supplem
entC

ategory_
V

H
1

2
X

X

/D
M

O
/I_

Supplem
entC

ategory_
V

H
_

T
1

4
X

X

/D
M

O
/I_

Supplem
entText

2
6

X
X

/D
M

O
/I_

Travel_
D

5
21

X
X

/D
M

O
/I_

Travel_
Status_

V
H

1
2

X
X

/D
M

O
/I_

Travel_
Status_

V
H

_
Text

1
4

X
X

A
_

A
C

M
A

PPD
O

C
O

V
ERV

IEW
0

53
X

X

A
_

A
C

M
SET

T
LEM

EN
T

U
N

IT
D

ETA
ILS

0
40

X
X

A
_

A
C

M
T

R
D

G
C

O
N

T
R

IT
M

D
ET

0
22

X
X

A
_

BAT
C

H
0

25
X

X

A
_

C
A

BU
SPA

RT
IN

V
O

IC
EIT

EM
2

66
X

X

A
_

C
A

BU
SPA

RT
PAY

M
EN

T
IT

EM
2

29
X

X

A
_

C
A

D
O

C
U

M
EN

T
BPIT

EM
3

143
X

X

A
_

C
FIN

R
PLD

PU
RC

H
A

SEO
R

D
ER

IT
EM

0
49

X
X

A
_

C
FIN

R
PLD

SA
LESD

O
C

U
M

EN
T

IT
EM

4
34

X
X

A
_

C
FIN

R
PLD

SU
PLR

IN
V

C
IT

M
PO

R
EF

3
22

X
X

A
_

C
H

A
N

G
EM

A
ST

ER
_

1
12

28
X

X
Join

C
lause

w
ith

fix
value

not
supported.

R
elationship

has
no

join
clauses.

A
_

C
H

A
N

G
ER

EC
O

R
D

13
26

X
X

A
_

C
H

A
N

G
ER

EC
O

R
D

R
EFER

EN
C

ED
O

C
3

15
X

X

A
_

C
N

D
N

C
O

N
T

RC
N

D
N

R
EC

O
R

D
0

53
X

X

C
_

D
FS_

R
ELO

C
PRO

JW
BSELM

N
T

H
IERT

P
2

20
X

X

C
_

FLD
LO

G
SO

V
R

D
IT

EM
SBY

IT
EM

T
Y

PE
2

12
X

X
D

atatype
ofattributes

FLD
LO

G
SO

V
ER

D
U

EBY
VA

LU
E

and
FLD

LO
G

SO
V

ER
D

U
EBY

VA
LU

E
incom

patible

C
_

FLD
LO

G
SRC

PT
SR

ET
SAT

R
EM

O
T

E
2

10
X

X

C
_

FLD
LO

G
SR

EC
EIPT

SBY
STAT

U
ST

P
2

15
X

X
Join

C
lause

on
A

ssociation
attribute

not
supported

R
elationship

has
no

join
clauses.

C
_

IN
SPLO

T
O

PC
H

A
RC

R
SLT

R
EC

G
19

140
X

X
U

pper/Lowercase
ofalias

in
from

clause.

C
_

IN
SPLO

T
R

ESU
LT

VA
LU

ER
SLT

R
EC

G
6

30
X

X

C
_

IN
SU

R
PLC

Y
C

O
N

T
R

A
C

T
8

79
X

X

C
_

IN
SU

R
PLC

Y
PO

LIC
Y

9
42

X
X

C
_

IN
T

C
O

VA
LU

EC
H

A
IN

D
O

C
U

M
EN

T
IT

M
T

P
5

21
X

X
H

ierarchicalassociations
not

supported.
R

elationship
has

no
join

clauses.

C
_

M
A

IN
T

JO
BW

R
K

IT
M

C
O

M
PH

IST
PRO

D
V

H
6

22
X

X

C
_

M
SPR

M
O

V
EM

EN
T

2
11

X
X

C
_

PRO
JEC

T
BILLIN

G
ELEM

EN
T

T
P

2
66

X
X

C
_

SO
U

RC
IN

G
PR

O
JEC

T
C

O
M

PA
R

E
6

32
X

X

C
_

SRC
G

PR
O

JD
M

N
D

D
IST

R
SU

M
M

A
RY

4
16

X
X

C
_

SRC
G

PR
O

JQ
T

N
IT

EM
C

O
M

PA
R

E
8

36
X

X
Join

C
lause

w
ith

fix
value

not
supported.

R
elationship

has
no

join
clauses.

C
_

SRC
G

PR
O

JQ
U

O
TAT

IO
N

C
O

M
PA

R
E

6
38

X
X

Join
C

lause
w

ith
fix

value
not

supported.
R

elationship
has

no
join

clauses.

C
_

VA
RC

O
N

FIG
N

A
SSIG

N
ED

VA
LU

E
2

16
X

X

C
_

VA
RC

O
N

FIG
N

C
H

A
R

A
C

T
ER

IST
IC

4
14

X
X

C
_

VA
RC

O
N

FIG
N

IN
C

O
N

ST
C

Y
C

H
A

RC
2

8
X

X

C
_

VA
RC

O
N

FIG
N

IN
ST

C
EC

H
A

RC
G

R
O

U
P

2
9

X
X

C
_

VA
RC

O
N

FIG
N

PO
SSIBLEVA

LU
E

2
17

X
X

C
_

VA
RC

O
N

FIG
N

VA
R

IA
N

T
C

O
N

D
IT

IO
N

2
8

X
X

D
EM

O
_

C
D

S_
C

U
R

R
EN

C
Y

0
4

X
X

D
EM

O
_

C
D

S_
FLIG

H
T

S
2

11
X

X

160

B.2. Experiment Results - Import

I_
A

BA
PP

A
C

K
A

G
E

3
14

X
X

I_
A

BA
PP

A
C

K
A

G
ET

EX
T

2
5

X
X

I_
BP

R
EL

SH
PC

N
T

C
T

PE
R

SN
A

D
D

R
ES

ST
P

8
38

X
X

I_
BP

R
EL

SH
PC

N
T

C
T

PE
R

SN
EM

LA
D

D
RT

P
4

17
X

X

I_
BU

SI
N

ES
SP

A
RT

N
ER

A
D

D
R

ES
SP

RO
C

T
P

8
70

X
X

I_
BU

SI
N

ES
SP

A
RT

N
ER

G
O

V
T

P
30

12
2

X
X

M
ul

tip
le

R
el

at
io

ns
to

sa
m

e
en

tit
y

na
m

e.
A

lia
s

no
t

re
so

lv
ed

co
rr

ec
tly

.
D

at
at

yp
e

of
at

tr
ib

ut
es

BU
SI

N
ES

SP
A

RT
N

ER
C

AT
EG

O
RY

an
d

BU
SI

N
ES

SP
A

RT
N

ER
C

AT
EG

O
RY

in
co

m
pa

tib
le

I_
EW

M
_

H
A

N
D

LI
N

G
U

N
IT

H
D

R
LO

G
V

H
1

5
X

X

I_
EW

M
_

IN
BO

U
N

D
D

EL
IV

ER
Y

T
Y

PE
_

2
0

4
X

X

I_
EW

M
_

O
U

T
BD

EL
IV

D
O

C
T

Y
PE

V
H

_
2

0
4

X
X

I_
EW

M
_

O
U

T
BO

U
N

D
D

EL
IV

O
R

D
ER

T
Y

PE
_

2
0

4
X

X

I_
EW

M
_

ST
O

R
A

G
EB

IN
V

H
3

12
X

X

I_
EW

M
_

ST
O

R
A

G
ET

Y
PE

V
H

0
3

X
X

I_
EW

M
_

W
A

R
EH

O
U

SE
N

U
M

BE
RV

H
0

5
X

X

I_
EW

M
_

W
A

R
EH

O
U

SE
O

R
D

ER
T

_
2

1
37

X
X

I_
FL

D
LO

G
SE

W
M

H
N

D
LG

U
N

IT
H

D
R

1
8

X
X

I_
FL

D
LO

G
SS

H
PT

C
T

N
C

ER
T

EX
PI

RY
D

AT
E

0
2

X
X

I_
IN

SU
RC

LM
C

LS
R

EA
SO

N
2

10
X

X

I_
IN

SU
RC

LM
FN

O
LD

A
M

A
G

ED
O

BJ
EC

T
T

P
12

89
X

X

I_
IN

SU
RC

LM
FN

O
LT

P
15

52
X

X

I_
IN

SU
R

PL
C

Y
IN

Q
RY

O
PN

A
PP

LC
N

T
0

2
X

X

I_
PR

O
D

N
RT

G
O

PE
R

AT
IO

N
T

P
10

13
2

X
X

I_
PR

O
D

U
C

T
SP

EC
IF

IC
AT

IO
N

T
P

10
29

X
X

O
nl

y
Eq

ua
l-S

ig
n

is
su

pp
or

te
d

in
Jo

in
C

la
us

e.

P_
EW

M
_

IN
BO

U
N

D
D

LV
H

EA
D

ER
01

_
2

2
13

X
X

Jo
in

C
la

us
e

on
A

ss
oc

ia
tio

n
at

tr
ib

ut
e

no
t

su
pp

or
te

d
R

el
at

io
ns

hi
p

nu
ll

ha
s

no
jo

in
cl

au
se

s

P_
EW

M
_

O
U

T
BD

LV
O

R
D

D
O

C
A

D
D

R
01

_
2

2
20

X
X

P_
EW

M
_

W
A

R
EH

O
U

SE
TA

SK
IT

EM
_

2
9

16
7

X
X

M
ul

tip
le

R
el

at
io

ns
to

sa
m

e
en

tit
yn

am
e.

A
lia

s
no

t
re

so
lv

ed
co

rr
ec

tly
.

P_
EW

M
_

W
H

SE
D

O
C

U
M

EN
T

IT
EM

26
92

X
X

M
ul

tip
le

R
el

at
io

ns
to

sa
m

e
en

tit
y

na
m

e.
A

lia
s

no
t

re
so

lv
ed

co
rr

ec
tly

.

P_
IN

SU
RO

PE
N

A
PP

LC
O

N
T

R
A

C
T

1
6

X
X

U
ni

on
is

no
t

su
pp

or
te

d.

P_
M

A
IN

T
EN

A
N

C
EO

R
D

ER
O

BJ
EC

T
LI

ST
6

12
X

X

P_
M

A
IN

T
O

R
D

ER
PU

RO
R

D
LI

N
K

2
10

X
X

P_
M

ST
R

RC
PO

PD
O

C
PR

TA
SS

G
M

T
1

29
X

X

P_
R

A
A

N
LY

T
SS

SP
R

IC
ET

ES
T

D
IS

TA
N

C
E

1
19

X
X

P_
R

A
A

N
LY

T
SU

N
IT

SS
PR

IC
EB

Y
N

A
M

E
1

5
X

X

P_
R

EI
N

T
EG

O
BJ

M
SM

T
H

IE
RC

A
LC

5
2

7
X

X

R
_

BI
LL

IN
G

D
O

C
U

M
EN

T
IT

EM
T

P
3

22
3

X
X

R
_

SR
C

G
PR

O
JQ

T
N

IT
M

C
M

M
D

T
Y

T
ER

M
T

P
4

94
X

X

R
_

T
R

D
G

D
O

C
3

32
5

X
X

R
_

W
A

ST
ES

T
R

EA
M

D
SP

LC
H

N
LT

P
3

26
X

X

R
_

W
A

ST
ES

T
R

EA
M

T
P

3
21

X
X

R
_

W
BS

EL
EM

EN
T

T
P_

2
7

12
1

X
X

Se
lf-

as
so

ci
at

io
ns

no
t

su
pp

or
te

d.
R

el
at

io
ns

hi
p

ha
s

no
jo

in
cl

au
se

s.

R
_

W
O

R
K

C
EN

T
ER

C
O

ST
C

EN
T

ER
T

P
1

21
X

X

R
_

W
O

R
K

C
EN

T
ER

T
P

5
60

X
X

R
_

W
O

R
K

C
T

R
PO

O
LE

D
C

A
PA

C
IT

Y
T

EX
T

T
P

2
5

X
X

R
_

W
R

N
T

Y
C

LA
IM

IT
EM

T
P

8
44

X
X

R
_

W
R

N
T

Y
C

LA
IM

V
ER

SI
O

N
T

P
7

36
X

X

161

B. Evaluation

B.3 Case Study - Task Description
ZER2CDS_AIRPORT Create a CDS view entity with the name ZER2CDS_AIRPORT.
The view should contain all attributes of /DMO/I_AIRPORT. For better readability
the following aliases shall be used:

• /DMO/I_AIRPORT as Airport

• AIRPORTID as AirportId (keyfield)

• CITY as City

• COUNTRYCODE as CountryCode

• NAME as Name

ZER2CDS_FLIGHT Create a CDS view entity with the name ZER2CDS_FLIGHT.
The view should join /DMO/FLIGHT (alias Flight) with /DMO/I_CARRIER
(alias Carrier) and /DMO/I_CONNECTION (alias Connection). The following
attributes shall be included in the resulting view:

• /DMO/FLIGHT-CARRIER_ID as CarrierId (keyfield)

• /DMO/FLIGHT-CONNECTION_ID as ConnectionId (keyfield)

• /DMO/FLIGHT-FLIGHT_DATE as FlightDate (keyfield)

• /DMO/FLIGHT-SEATS_OCCUPIED as SeatsOccupied

• /DMO/I_CARRIER-NAME as AirlineName

• /DMO/I_CONNECTION-DEPARTUREAIRPORT as DepatureAirport

• /DMO/I_CONNECTION-DESTINATIONAIRPORT as DestinationAirport

The relationship between /DMO/FLIGHT and /DMO/I_CARRIER shall be repre-
sented as an inner join on CARRIER_ID = AIRLINEID. For the relationship between
/DMO/FLIGHT and /DMO/I_CONNECTION a left outer join on CARRIER_ID =
AIRLINEID and CONNECTION_ID = CONNECTIONID shall be used. Keep in mind,
that the no more attributes than stated above should appear in the resulting view.

ZER2CDS_BOOKING Create a CDS view entity with the name ZER2CDS_BOOKING.
The view should be based on /DMO/A_BOOKING_D and contain the following
attributes:

• /DMO/A_BOOKING_D-BOOKING_UUID as BookingUUID (keyfield)

162

B.3. Case Study - Task Description

• /DMO/A_BOOKING_D-PARENT_UUID as TravelUUID

• /DMO/A_BOOKING_D-BOOKING_DATE as BookingDate

• /DMO/A_BOOKING_D-CUSTOMER_ID as CustomerId

• /DMO/A_BOOKING_D-CARRIER_ID as AirlineId

• /DMO/A_BOOKING_D-CONNECTION_ID as ConnectionId

• /DMO/A_BOOKING_D-BOOKING_STATUS as BookingStatus

Furthermore relationships to the following entities shall be realized. They should be
accessed only on demand:

• /DMO/I_CUSTOMER on CUSTOMER_ID = CUSTOMERID

– Alias _Customer
– Cardinality [1..1]

• /DMO/I_CARRIER on CARRIER_ID = AIRLINEID

– Alias _Carrier
– Cardinality [1..1]

• /DMO/I_CONNECTION on CARRIER_ID = AIRLINEID and CONNECTION_ID
= CONNECTIONID

– Alias _Connection
– Cardinality [1..1]

• /DMO/I_BOOKING_STATUS_VH on BOOKING_STATUS = BOOKINGSTA-
TUS

– Alias _BookingStatus
– Cardinality [1..1]

• /DMO/I_TRAVEL_D on PARENT_UUID = TRAVELUUID

– Alias _Travel
– Parent relationship

• /DMO/I_BOOKINGSUPPLEMENT_D

– Alias _BookingSupplement
– Composition relationship
– Cardinality [0..*]

163

B. Evaluation

B.4 Case Study - Survey

1. Consent to participate in the study to evaluate ER2CDS. All information we collect
in this study will be treated confidentially and used for scientific purposes only.
Any information you provide will be evaluated anonymously, i.e. will not be linked
to you personally. I agree that my data will be stored and analyzed exclusively for
scientific purposes at the Institute for Information Systems. After completion of
the research project, all data that can be linked to my person will be deleted. I
can cancel my participation in this study at any time without giving reasons and
withdraw my consent. This will not result in any disadvantages for me. I agree to
participate in the study. Furthermore, I authorize the processing of the collected
data for scientific purposes.

a) Yes
b) No

2. I am a

a) Business expert
b) Developer

3. I was able to create ZER2CDS_AIRPORT using ER2CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

4. I would be able to create ZER2CDS_AIRPORT by using only the textual syntax
of CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

5. I was able to create ZER2CDS_FLIGHT using ER2CDS.

a) Strongly disagree
b) Disagree

164

B.4. Case Study - Survey

c) Neutral
d) Agree
e) Strongly agree

6. I would be able to create ZER2CDS_FLIGHT by using only the textual syntax of
CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

7. I was able to create ZER2CDS_BOOKING using ER2CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

8. I would be able to create ZER2CDS_BOOKING by using only the textual syntax
of CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

9. I think that I would like to use ER2CDS frequently.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

10. I found ER2CDS unnecessarily complex.

a) Strongly disagree

165

B. Evaluation

b) Disagree
c) Neutral
d) Agree
e) Strongly agree

11. I thought ER2CDS was easy to use.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

12. I think that I would need the support of a technical person to be able to use
ER2CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

13. I found the various functions in ER2CDS were well integrated.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

14. I thought there was too much inconsistency in ER2CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

15. I would imagine that most people would learn to use ER2CDS very quickly.

a) Strongly disagree

166

B.4. Case Study - Survey

b) Disagree
c) Neutral
d) Agree
e) Strongly agree

16. I found ER2CDS very cumbersome to use.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

17. I felt very confident using ER2CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

18. I needed to learn a lot of things before I could get going with ER2CDS.

a) Strongly disagree
b) Disagree
c) Neutral
d) Agree
e) Strongly agree

19. In the future I will use ER2CDS over the textual syntax to create CDS view entities.

a) Yes
b) No

20. What do you like most about ER2CDS?

21. What do you like least about ER2CDS?

22. What suggestions do you have for improving ER2CDS?

167

B. Evaluation

B.5 Case Study - Responses

168

B.5. Case Study - Responses

ID
1

2
3

4
5

6
7

8
9

10
11

1
Ye

s
D

ev
el

op
er

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

3
N

eu
tr

al
1

St
ro

ng
ly

di
sa

gr
ee

5
St

ro
ng

ly
ag

re
e

2
Ye

s
Bu

sin
es

s
ex

pe
rt

5
St

ro
ng

ly
ag

re
e

3
N

eu
tr

al
5

St
ro

ng
ly

ag
re

e
3

N
eu

tr
al

5
St

ro
ng

ly
ag

re
e

2
D

isa
gr

ee
4

A
gr

ee
1

St
ro

ng
ly

di
sa

gr
ee

5
St

ro
ng

ly
ag

re
e

3
Ye

s
D

ev
el

op
er

5
St

ro
ng

ly
ag

re
e

4
A

gr
ee

5
St

ro
ng

ly
ag

re
e

4
A

gr
ee

5
St

ro
ng

ly
ag

re
e

4
A

gr
ee

4
A

gr
ee

1
St

ro
ng

ly
di

sa
gr

ee
5

St
ro

ng
ly

ag
re

e

4
Ye

s
Bu

sin
es

s
ex

pe
rt

5
St

ro
ng

ly
ag

re
e

2
D

isa
gr

ee
5

St
ro

ng
ly

ag
re

e
2

D
isa

gr
ee

5
St

ro
ng

ly
ag

re
e

2
D

isa
gr

ee
5

St
ro

ng
ly

ag
re

e
1

St
ro

ng
ly

di
sa

gr
ee

5
St

ro
ng

ly
ag

re
e

5
Ye

s
Bu

sin
es

s
ex

pe
rt

5
St

ro
ng

ly
ag

re
e

2
D

isa
gr

ee
5

St
ro

ng
ly

ag
re

e
2

D
isa

gr
ee

5
St

ro
ng

ly
ag

re
e

2
D

isa
gr

ee
5

St
ro

ng
ly

ag
re

e
1

St
ro

ng
ly

di
sa

gr
ee

4
A

gr
ee

6
Ye

s
D

ev
el

op
er

5
St

ro
ng

ly
ag

re
e

4
A

gr
ee

5
St

ro
ng

ly
ag

re
e

4
A

gr
ee

5
St

ro
ng

ly
ag

re
e

3
N

eu
tr

al
5

St
ro

ng
ly

ag
re

e
1

St
ro

ng
ly

di
sa

gr
ee

5
St

ro
ng

ly
ag

re
e

7
Ye

s
D

ev
el

op
er

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

5
St

ro
ng

ly
ag

re
e

2
D

isa
gr

ee
2

D
isa

gr
ee

5
St

ro
ng

ly
ag

re
e

8
Ye

s
Bu

sin
es

s
ex

pe
rt

5
St

ro
ng

ly
ag

re
e

1
St

ro
ng

ly
di

sa
gr

ee
4

A
gr

ee
2

D
isa

gr
ee

1
St

ro
ng

ly
di

sa
gr

ee
1

St
ro

ng
ly

di
sa

gr
ee

4
A

gr
ee

3
N

eu
tr

al
3

N
eu

tr
al

169

B. Evaluation

12
13

14
15

16
17

18
19

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
N

o

4
A

gree
5

Strongly
agree

1
Strongly

disagree
4

A
gree

1
Strongly

disagree
5

Strongly
agree

3
N

eutral
Yes

2
D

isagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
Yes

2
D

isagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

2
D

isagree
Yes

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
1

Strongly
disagree

1
Strongly

disagree
Yes

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
5

Strongly
agree

1
Strongly

disagree
Yes

1
Strongly

disagree
3

N
eutral

2
D

isagree
3

N
eutral

4
A

gree
5

Strongly
agree

1
Strongly

disagree
N

o

4
A

gree
5

Strongly
agree

2
D

isagree
4

A
gree

1
Strongly

disagree
3

N
eutral

3
N

eutral
Yes

170

B.5. Case Study - Responses

20
21

22

Si
m

pl
e

to
us

e
-

A
ut

om
at

ic
sc

ro
lli

ng
w

he
n

ad
di

ng
an

d
ed

iti
ng

at
tr

ib
ut

es

En
ab

le
s

th
e

cr
ea

tio
n

of
C

D
S

V
ie

w
s

w
ith

ou
t

th
e

ne
ed

fo
r

th
e

te
ch

ni
ca

lb
ac

kg
ro

un
d

an
d

co
di

ng
kn

ow
le

dg
e

N
o

ex
pl

an
at

io
n

fo
r

re
la

tio
ns

hi
p

ty
pe

s
SA

P
To

ol
in

te
gr

at
io

n

T
he

off
er

of
a

te
xt

ua
la

nd
vi

su
al

ed
ito

r
A

ll
at

tr
ib

ut
es

ca
n

on
ly

be
ad

de
d

on
ce

(w
or

ka
ro

un
d

po
ss

ib
le

)
Li

st
th

e
at

tr
ib

ut
es

in
th

e
vi

su
al

ed
ito

r
to

se
le

ct
th

em

T
he

vi
su

al
ed

ito
r

w
ith

th
e

in
pu

t
fie

ld
s

to
de

fin
e

en
tit

ie
s

/
at

tr
ib

ut
es

/
re

la
tio

ns
hi

ps
/

...
-

-

Iw
as

ab
le

to
in

tu
iti

ve
ly

cr
ea

te
C

D
S

vi
ew

s,
w

ith
ou

t
an

y
fu

rt
he

r
in

st
ru

ct
io

ns
.

-
-

-
-

-

Te
xt

ua
la

nd
gr

ap
hi

ca
le

di
to

r.
In

te
gr

at
io

n
of

SA
P

da
ta

m
od

el
.

M
iss

in
g

in
te

gr
at

io
n

in
BA

S.
Su

pp
or

t
fo

r
al

ll
an

gu
ag

e
fe

at
ur

es
of

C
D

S.

C
re

at
io

n
of

C
D

S
vi

ew
s

on
a

hi
gh

er
ab

st
ra

ct
io

n
le

ve
l.

Ea
sy

an
d

fa
st

to
cr

ea
te

sim
pl

e
C

D
S

vi
ew

s.
St

ill
te

ch
ni

ca
lk

no
w

le
dg

e
is

re
qu

ire
d.

A
dd

a
be

gi
nn

er
s

gu
id

e
or

do
cu

m
en

ta
tio

n.

171

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of Work
	Methodology
	Structure

	Background
	Model Engineering
	Web-based Modeling
	SAP Environment
	ABAP Core Data Services
	Entity Relationship

	Related Work
	Web-based modeling tools
	Core Data Services

	Requirements Analysis
	Main idea and general approach
	Modeling Requirements
	Tool Requirements

	Conceptualization
	Textual Language Specification
	Graphical Language Specification
	LSP Extension
	Hybrid Modeling
	SAP Integration
	Model-to-Text Transformation
	Import of Existing CDS View Entities

	ER2CDS
	Architecture
	Visual Studio Code Extension
	SAP S/4HANA Web Service
	Language Server
	Webview

	Evaluation
	Controlled Experiment
	Case Study
	Discussion

	Conclusion
	Summary
	Outlook

	List of Figures
	List of Tables
	Bibliography
	Implementation
	CDS view entity generation
	Import CDS view entity

	Evaluation
	Experiment Results - Create
	Experiment Results - Import
	Case Study - Task Description
	Case Study - Survey
	Case Study - Responses

