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Kurzfassung

Content-Based Image Retrieval zielt darauf ab, relevante Bilder in einer Datenbank
anhand des visuellen Inhaltes eines Anfragebildes zu finden.

Ein häufig verwendeter Ansatz ist es, zwei Arten von erlernten Bildrepräsentationen
zu verwenden. Globale Repräsentationen erfassen die Semantik auf einer komplexen
Ebene, während lokale Repräsentationen die Semantik auf einer einfachen Ebene erfassen.
Re-ranking wird benutzt um den Suchraum einzuschränken. Zuerst werden Bilder anhand
der globalen Repräsentation vorgefiltert und dann mittels Geometric Verification der
lokaler Repräsentationen umgereiht. Geometric Verification funktioniert anhand der
räumlichen Position der lokalen Repräsentationen, lässt aber die Ähnlichkeit anhand
globaler Repräsentationen außer Acht. Bei aktuellen Methoden kommt es zu einer be-
trächtlichen Menge an Redundanz zwischen globalen und lokalen Repräsentationen. Die
Dimensionalität der Repräsentationen im latenten Raum ist begrenzt, weshalb diese
Redundanz die Ausdruckskraft der Repräsentationen beeinträchtigt. Eine Verringerung
der Redundanz sollte daher die Effizienz des Re-Rankings verbessern.

In dieser Arbeit wird vorgeschlagen, informationstheoretische Konzepte und Multi-View
Representation Learning zu nutzen, um die Redundanz zwischen globalen und lokalen Re-
präsentationen zu verringern. Zunächst untersuchen wir den Effekt von Transinformation
zwischen Repräsentationen auf Image Retrieval Systeme. Um Redundanz zu “bestra-
fen”, fügen wir die Schätzung von Transinformation als kontrollierbaren Faktor zum
Optimierungsziel des Netzwerkes hinzu. Das Modell ist durchgängig mittels image-level
supervision trainierbar.

Wir evaluieren unsere Methodik anhand zweier Ansätze der Schätzung von Transinforma-
tion und des Re-Rankings. Wir führen Experimente auf dem Revisited Oxford and Paris
sowie dem Stanford Online Products Datensatz durch. Unsere Ergebnisse zeigen, dass
die Reduktion von Redundanz durch Schätzung von Transinformation das Re-Ranking
deutlich verbessern kann.
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Abstract

Content-Based Image Retrieval aims to find relevant images in a database given the
visual content of a query image.

A common setup is using learned feature extractors to obtain two types of image
descriptors. Global features capture high-level semantics, while local features encode
low-level details. Re-ranking is used to reduce the search space. First, images are
matched using global feature similarity and then re-ranked using geometric verification
of local features. Geometric verification works based on the spatial location of local
features but ignores global feature similarity. However, current methods leave considerable
redundancy between global and local features. Since latent dimensions are finite, the
redundancy inhibits expressiveness. Therefore, reducing redundancy should improve
re-ranking performance.

This work proposes drawing from information-theoretic concepts and multi-view rep-
resentation learning to minimize redundancy between global and local features. We
first investigate the degree and effect of mutual information between representations in
image retrieval systems. Then, we apply (neural) mutual information estimation as a
controllable term that penalizes redundancy during training. The model is end-to-end
trainable using image-level supervision.

We evaluate our methodology using two approaches to mutual information estimation and
re-ranking. We perform experiments on the Revisited Oxford and Paris datasets and the
Stanford Online Products dataset. Our results demonstrate that reducing redundancy
with (neural) information estimation can significantly improve re-ranking.
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CHAPTER 1
Introduction

1.1 Motivation

The task of Content-Based Image Retrieval is to find relevant images out of a database
given the visual content of a query image. State-of-the-art methods use deep neural
networks to extract image feature representations (or “descriptors”). A typical setup
uses two feature representation types: global and local features [14].

Global features summarize the whole image into a single representation consisting of a
high dimensional vector. The representation captures high-level similarities and abstract
concepts but loses information about the spatial arrangement of the image contents [12].
Local Features are associated with specific regions of the image and describe keypoints for
the relevant object in the image. Modern approaches like DELG [12] can extract both
feature types simultaneously.

An ideal retrieval system would exploit the benefits of both feature types. Similarity of
the global feature is efficiently computable, e.g., using the L2 norm. However, calculating
image similarity by local features is computationally expensive. Matching all images in
the database against the query image is unfeasible. Re-ranking is commonly used to
cut down on the search space [14]. First, images are matched by their global descriptor,
and only the top-N results are re-ordered by the similarity of their local descriptors.
Geometric verification is one such approach to re-ranking. It considers matching local
features as the images’ keypoints and evaluates the best fit of a perspective transformation
to the location of these keypoints. The goal is to determine which parts of an image
correspond to which parts of another image, for example, to answer whether two images
of a building from different viewpoints depict the same building.
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1. Introduction

1.2 Problem Statement
Re-ranking using geometric verification [12] only considers the similarity based on local
features. Apart from selecting the top N images for re-ranking in the first place, the
initial ordering by global similarity is discarded. We observe the following:

• By calculating the global similarity, we gain information about the final order of
the retrieved images. Geometric verification as a re-ranking approach ignores this
information.

• Both global and local features contain sufficient information to decide the final
order. Therefore, local and global features should contain redundant information.
The information content of these representations is limited. Without this redundant
component, the local features could better use their finite latent dimension and
expressive power to encode auxiliary information not already present in the global
feature.

We adopt the information-theoretic concept of mutual information, a measure of statistical
dependence between two random variables to reason about redundant information.
Compared to correlation coefficients, mutual information can additionally capture non-
linear dependencies at the cost of being harder to compute.
A significant challenge of using mutual information for representation learning in modern
machine learning is its runtime complexity. Due to the high dimensionality of the input
data and target representations, the calculation is intractable in general. Variational
approximation and optimizing a bound on mutual information is commonly used in-
stead [47]. These methods require explicit knowledge about the distribution of one of the
random variables. In representation learning, this restriction is placed upon the learned
representation when the true underlying distribution of the input data is unknown.
Recently, several general purpose estimators of mutual information have been introduced,
such as MINE [8], NWJ [42], or NCE [65]. General purpose estimators do not rely on prior
knowledge of a particular distribution. Instead, they require an auxiliary neural network
that optimizes a lower bound by estimating expectations over sample distributions.
Another promising direction is using kernel-based methods based on Rényi’s α-order
entropy [52].
To demonstrate the existence of non-zero mutual information between global and local
descriptors, we trained a feature extractor similar to [12]. We used MINE [8] and Rényi’s
α-order matrix-based functional [53] to estimate mutual information. Global features were
extracted from the third layer, and local features from the second layer of a ResNet-18.
Figure 1.1 shows the mutual information between these feature types.

1.3 Solution Approach
Modern image retrieval is a form of representation learning. The representation should
contain as much relevant information about an image as possible while discarding irrelevant

2
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Figure 1.1: Mutual Information between Global and Local Descriptors. Results aver-
aged over three training runs on the CIFAR10 and CIFAR100 datasets. a) shows the
estimation using MINE [8]. b) shows the estimation using Rényi’s α-order matrix-based
functional [53]. The X-axis depicts the training progress in epochs. The Y-axis depicts
the estimated mutual information values by the two different methods. Note that MINE
gradually increases its lower bound during training, so the estimates of early training
steps do not represent the actual mutual information value.

information. Multi-view representation learning extends this concept to incorporate
information from multiple data views. The data can be heterogeneous, like image-text,
video-text, or audio-text. Alternatively, it can be homogeneous, like two images depicting
the same object from different viewpoints.

Reasoning what information is relevant and can be discarded is challenging. In supervised
learning, we can consider relevant information that allows the representation to predict
a target label. The Information Bottleneck (IB) method [63] formalizes the trade-off
between preservation and compression in representations using mutual information. In
multi-view representation learning, mutual information encourages or discourages shared
information between views and representations. We consider our image retrieval system’s
global and local descriptors to be two views on the same underlying image data in the
framework of multi-view representation learning.

Reranking Transformer (RRT) [62] is a re-ranking approach incorporating global and local
descriptors. This alleviates the issue of geometric verification ignoring global similarity.
RRT can be used with any feature extractor that produces global and local descriptors,
and we evaluate it as an alternative to geometric verification. The second issue remains,
and we hypothesize that reducing the redundant information between global and local
features increases retrieval performance.

3



1. Introduction

1.4 Research Questions

RQ1: How can we measure and minimize mutual information between global
and local features for image retrieval?
Directly measuring mutual information in a very high-dimensional setting is not
tractable. Several recent methods have been proposed to approximate or bound
mutual information.
Can we observe mutual information between global and local features?
To minimize, we first need to measure MI in a way that makes it possible to use
this measurement as part of a loss function for neural network training.
Can (neural) mutual information estimation adequately minimize mutual
information? In this work, we will investigate the usage of MINE [8] as a represen-
tative among similar methods and of Rényi’s α-order matrix-based functional [53]
for minimizing mutual information between feature types in the context of an
image retrieval system. Both methods have already been applied to the information
bottleneck method.

RQ2: How does minimizing mutual information between global and local
features affect the local features?
Mutual information is a high-level measure of statistical dependence and pro-
vides valuable additional insight into the random variables. Are there any other
measurable effects apart from a reduced mutual information estimation?

RQ3: How does minimizing mutual information between global and local
features affect re-ranking performance?
We experiment with two re-ranking approaches: Geometric verification and RRT [62].
Does minimizing mutual information improve re-ranking performance?
We hypothesize that penalizing mutual information between global and local features
forces the network to encode less redundant information in local features, leading
to improved re-ranking performance.
Does minimizing mutual information affect the two approaches differ-
ently? Geometric verification does not consider global feature similarity when
calculating the final retrieval rank. RRT uses global and local features to provide an
image similarity score directly. We hypothesize that reducing MI affects geometric
verification negatively as the missing global feature should contain the information
we consider as redundant. Conversely, RRT should not be negatively affected as it
includes the global feature in its input sequence.

4
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1.5 Aim of the Thesis
The main goal of this thesis is to develop a novel image retrieval system that improves
upon previous work by explicitly modeling the information-theoretic relationship between
global and local feature representations. We integrate two methods of estimating mutual
information into a feature extraction model and penalize the estimated value in the
training objective. We compare the quality of our learned features using two methods
for re-ranking. We evaluate our implementation on standard benchmark datasets and
perform experiments to answer the outlined research questions. Overall, our method
aims to improve the quality of the feature representations, leading to improved re-ranking
performance.

1.6 Structure
Chapter 2 explains some mandatory and preliminary knowledge for our work. Chapter 3
provides an overview of related and relevant literature for the fields of Multi-View
Representation Learning and Image Retrieval. Chapter 4 presents our solution approach
and details how we implement our model and perform the minimization of mutual
information. Chapter 5 details how we evaluate our model and which experiments we
perform. Chapter 6 presents the results of these experiments. Chapter 7 concludes this
thesis with a discussion of the research results in the context of the presented research
questions. We also outline future research directions and discuss our work’s limitations.
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CHAPTER 2
Background

2.1 Information Theory
Entropy describes the information content of a discrete random variable X ∼ p [54].
It provides a measure of uncertainty about the outcomes of the random variable: A
surprising result provides more information than an unsurprising one. The information
content is defined as the negative-log probability of an outcome and the entropy as the
expected value of the information content. The basis of the logarithm decides the unit of
information. For log2, the unit is bits.

H[X] = − E
x∼p

[log p(x)] = −
�
x∈X

p(x) log p(x) (2.1)

Joint Entropy describes the entropy of the joint probability distribution of a pair of
random variables (X, Y ).

H(X, Y ) = −
�
x∈X

�
y∈Y

p(x, y) log p(x, y) (2.2)

Conditional Entropy is defined analogously to the conditional expectation. It describes
the amount of information needed for the outcome of one random variable, given that
the outcome of another is known.

H(X|Y ) = −
�

x∈X ,y∈Y
p(x, y) log p(x, y)

p(x) (2.3)

Note that the chain rule of probability translates to the definitions of conditional and
joint entropy:

7



2. Background

H(X, Y ) = H(X) + H(Y |X) (2.4)

Mutual Information (MI) measures the shared information between two random
variables. It can be defined based on the (conditional) entropy or joint entropy of the
variables:

I(X; Y ) = H(X) − H(X|Y )
= H(Y ) − H(Y |X)
= H(X) + H(Y ) − H(X, Y )

(2.5)

Mutual Information is symmetric and non-negative. If the two random variables are
independent, then the mutual information is zero, as knowing one does not provide any
insight about the other. If both variables are in a deterministic relationship, then the
conditional entropy term is zero, and the mutual information is just the entropy of both
variables alone.

In the case of discrete random variables, the mutual information can be defined based on
their marginal (p(x), p(y)) and joint probability (p(x, y)) distributions:

I(X; Y ) =
�
x∈X

�
y∈Y

p(x, y) log p(x, y)
p(x)p(y) (2.6)

Alternatively, it can be expressed by the Kullback-Leibler (KL) divergence between the
product of the marginal distributions and their joint distribution:

I(X; Y ) = DKL(PXY ||PX × PY ) (2.7)

The KL divergence measures the dissimilarity between a probability distribution Q and
a reference distribution P . It is also commonly referred to as relative entropy. Encoding
samples of the reference distribution P with a code optimized for Q results in an average
information overhead of DKL(P ||Q) bits (compared to directly encoding it with a code
for P ).

DKL(P ||Q) =
�
x∈X

p(x) log p(x)
q(x) (2.8)

In contrast to MI, the KL divergence is not symmetric. The divergence is zero if
and only if Q and P are equal. For MI, this is the case when the product of the
marginal (p(x) × p(y)) and joint probability distributions (p(x, y)) are equal, which would
mean statistical independence of X and Y .

8



2.2. Representation Learning

2.2 Representation Learning
Representation learning aims at discovering representations (or features) suitable for ma-
chine learning tasks such as classification by uncovering underlying structures in raw data
[9]. Instead of manually engineering features, representation learning algorithms learn to
transform data into representations that capture relevant information for downstream
tasks. Modern Image Retrieval makes extensive use of learned representations. Good rep-
resentations can improve performance by improving generalization. They can also reduce
the computational complexity of downstream tasks by transforming high-dimensional
data into lower-dimensional data [25]. Discerning relevant information from irrelevant
information is challenging, and multiple definitions of effective representation exist.

2.2.1 Information Bottleneck
The Information Bottleneck (IB) [63] method extracts relevant information from a random
input variable X about a target variable Y . The core idea is to create a compressed
representation of X, denoted here as T , that retains as much information as possible
about Y while minimizing the information it carries about itself.

The data processing inequality states that processing data cannot increase the information
content about the target variable. The above-mentioned random variables form a Markov
chain Y ↔ X ↔ T , and for any such Markov chain, the data processing inequality
implies that:

I(X; Y ) ≥ I(T ; Y ) (2.9)

As the representation T can only lose information, the IB method provides a tradeoff
between compression and prediction formalized by the two mutual information terms
I(X; T ) and I(Y ; T ). Lagrangian relaxation with the parameter β is used to control the
tradeoff, and the overall goal is to minimize the following functional:

LIB = I(X; T ) − βI(T ; Y ) (2.10)

The first term aims to compress the representation T , while the second aims to preserve
information about the target Y . The target Y allows us to specify which information of
X is considered relevant and should be contained in T .

2.2.2 Deep Learning and the Information Bottleneck
Tishby and Zaslavsky [64] proposed that Deep Neural Networks (DNNs) implicitly
perform information bottleneck optimization. As such, the IB method provides a
framework for understanding neural networks, where the output of each layer is a
representation of the input data. This process can be interpreted as a Markov chain
Y ↔ X ↔ T1 ↔ T2 ↔ ... ↔ Tn where each intermediate representation Ti captures

9



2. Background

progressively more abstract features of X relevant to predicting Y . Again, the data
processing inequality implies that each layer of the neural network can only lose but not
gain more information about the target task than the input X.

I(X; Y ) ≥ I(T1; Y ) ≥ I(T2; Y ) ≥ ... ≥ I(Tn; Y ) (2.11)

Tishby and Zaslavsky argue that during training, DNNs undergo two distinct phases:
fitting and compression. In the fitting phase, the network extracts information from
the input, increasing I(X; T ). In the compression phase, the network refines its repre-
sentations to minimize I(X; T ) while maintaining or increasing I(T ; Y ) thus discarding
irrelevant details that do not aid in predicting Y [64].

2.2.3 Multi-View Representation Learning
Multi-view representation learning aims at integrating information from multiple views
of the same data to increase predictive performance. The data can be heterogeneous
across different modality pairs like image-text, video-text, or audio-text. Alternatively,
it can consist of multiple views on only one modality, like multiple augmented pictures
based on one original image in the case of self-supervised learning. As different views
usually contain complementary information, the goal is to learn better representations
than possible by only observing a single view [34]. [34] propose a taxonomy based on two
major categories: Multi-View representation alignment, where an embedding function
first maps each individual view input into a common representation space, then some
sort of alignment or distance loss between the obtained representations is optimized.
[1, 3, 5, 71] described in section 3.1 are examples of this group. Multi-view representation
fusion, where a single fused representation is obtained directly. [24, 39, 67, 70, 75, 81]
described in section 3.1 are examples of this group.

2.3 Image Retrieval
The task of Content-Based Image Retrieval is to find relevant images in a database, given
the visual content of a query image. Most image retrieval systems aim to recognize a
specific instance of an object, e.g., Schönbrunn Palace, the Eiffel Tower, or the Golden
Gate Bridge [14]. In contrast, image classification aims to recognize classes or categories
of objects, e.g., buildings, cats, or planes. As only the content of an image is relevant, the
distinction between instances or classes is not important for the system itself. In literature
the number of classes or instances dictates the framing: For few instances the problem
is referred to as classification and for many as (instance-level) retrieval/recognition 1.
Image retrieval has numerous applications, such as landmark retrieval [73], online product
search [60], remote sensing [35] or face retrieval [20].

1If not stated otherwise, this text uses the terms image retrieval, content-based image retrieval,
instance-level retrieval and instance-level recognition interchangeably.
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2.3. Image Retrieval

The image database is usually referred to as the image gallery or image index. In
real-world applications, the gallery can contain millions of images. Managing and
efficiently retrieving images thus requires highly efficient feature extraction and similarity
computation.

The core challenge of image retrieval is the development of feature representations that
fulfill the following requirements:

• Discriminative

Features must have discriminative power, being distinct enough to differentiate
between object instances and scenes while minimizing false matches.

• Compact

Features should be scalable, meaning they should be computationally efficient to
extract and compare, thus enabling rapid searches over vast datasets.

• Robust

Features must be invariant to geometric transformations (such as rotations, scaling,
and translation) and photometric changes (such as variations in brightness, contrast,
and color)

2.3.1 Feature Types

We consider the common image retrieval setup that fulfills the above-mentioned require-
ments [14]. It uses two types of feature representations: global and local features.

Global features summarize the whole image into a single representation, most commonly
an embedding vector. This representation of the visual content is compact and captures
high-level similarities well, requiring a level of abstraction invariant to a viewpoint
and photometric transformations [12]. Information about the spatial arrangement of
individual elements in an image is lost, and unrelated elements to the object instance
might influence the representation.

Local Features are associated with specific image regions and describe keypoints for
the depicted instance. They contain localized visual information as well as spatial
information, which allows the application of geometric consistency checks (also called
geometric verification) using techniques such as RANSAC [11]. This verification step
reflects image similarity more reliably than global feature similarity, making local features
especially suited for rigid objects [12].

Some recent work diverges from the classic feature types, e.g., [55, 76]. Section 3.2
elaborates on alternative approaches.
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2.3.2 Feature Extraction

The history of image retrieval can be roughly categorized into two periods: feature
engineering using hand-crafted techniques and feature learning using DNNs.

SIFT [36], SURF [7] and Bag-of-visual-Words [59] are examples of hand-crafted algorithms
that detect local features. The detected features were directly matched against a large
database of local descriptors or aggregated first to provide a global similarity score.

Learned representations are more effective than hand-crafted methods. A DNN learns to
extract features from raw pixel data during training. Convolutional Neural Networks
(CNNs) are the most common architecture for visual applications. They can learn features
with multiple levels of abstraction: Early network layers learn low-level features like edges,
corners, or textures and deeper layers capture high-level features such as objects, faces, or
buildings. Modern systems can jointly extract local and global features while only being
trained on a conceptually simple classification task [12]. Recently, transformer-based
architectures without convolutions have outperformed CNNs in the visual domain [22].

2.3.3 Two-Step Retrieval: Re-Ranking

Calculating the similarity between all local features of all images in the database is
inefficient. Re-ranking is a common approach to cut down the search space in retrieval
systems: First, images are ordered by the similarity of their global descriptor, and then
only the top-N results are re-ranked using some form of domain-specific refinement. For
image retrieval, this is often geometric verification based on the positions of the local
descriptors in the image.

While the global descriptor similarity calculation is fast (e.g., dot product, L2 distance,
or cosine similarity), geometric verification is computationally expensive. Re-ranking
allows the benefits of more complex calculations for important top retrieval results while
providing a good tradeoff for performance. Figure 2.1 depicts the overall re-ranking
process.

Random Sample Consensus (RANSAC) [11] is commonly used to implement geometric
verification. The goal is to determine whether two images depict the same keypoints
from different viewpoints. RANSAC is a general purpose and robust algorithm to fit a
mathematical model to data that contains outliers. It works by repeatedly evaluating
hypothesis models for random subsets. An affine transformation is usually used as the
model for the application in image retrieval. It acts as an approximation for the projective
transformation or homography and needs at least three point pairs in 2D space to fit.
Algorithm 2.1 shows the steps of the method. It requires the model, number of iterations,
and residual threshold as parameters.

RANSAC is repeated for all top-N gallery images. Point pairs are generated by matching
local features between query and gallery images based on L2 distance. Finally, Images
are ordered by their highest number of transformation inliers.
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Global Feature
[0.24, 0.01, … , 0.42]

[0.58, 0.01, … , 0.13]

Global Feature Index

[0.22, 0.02, … , 0.41]

[0.64, 0.12, … , 0.01]

[0.20, 0.03, … , 0.43]

[0.25, 0.01, … , 0.43]

Local Feature
Matching

Feature Extractor

Top N

1. 2. 3.

Feature Extractor

Local Features

Local
Features

Stage 1 Stage 2

Figure 2.1: The image retrieval re-ranking process

Algorithm 2.1: RANSAC
1 forall iterations do
2 randomly sample enough data points to calculate parameters of model ;
3 calculate parameters of the model ;
4 count number of data points (inliers) based on residual threshold to model;
5 if new best model by number of inliers then
6 record set of inliers ;
7 end
8 end
9 calculate final model using all data points of best inlier set ;

2.3.4 Learning Feature Extractors using Classification
Feature extractors can be trained using only image-level supervision by adding a simple
classifier on top of the feature extractor. This classifier typically comprises a linear
neural network layer (with bias) that maps the feature vector x to a logits vector z of
dimensionality equal to the number of classes in the training data. The logits are then
passed through a softmax function to obtain a probability distribution over the classes.
Finally, cross-entropy loss is computed between the predicted probability and the true
labels.

z = Wx + b

p = softmax(z)
(2.12)

To compare features during testing, three main similarity measures are used: Dot
product(eq. 2.13), cosine similarity(eq. 2.14) and euclidian distance(eq. 2.15). Compared
to the dot product, the cosine similarity is independent of the magnitude of the vectors
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as it is normalized by the product of the magnitudes, i.e. for already normalized vectors
the two measures are equal. While Euclidian distance applied to normalized vectors
becomes more similar to cosine similarity, they are not equal. Figure 2.2 shows the
different distance measures relative to a unit circle.

�
i

xi · yi (2.13)
�

i xi · yi��
i x2

i

��
i y2

i

(2.14) ��
i

(xi − yi)2 (2.15)

(a) Dot Product (b) Cosine Similarity (c) Euclidean Distance (L2)

Figure 2.2: Different similarity measures. x and y denote points in feature space while x̂
and ŷ denote their normalized vectors.

Normalization of features is generally accepted to boost performance during testing [69],
but the linear classifier described above uses an (unnormalized) dot product. This
influence of the vector magnitudes creates a discrepancy between training and test
objectives.

The classifier can be modified to optimize cosine similarity instead, sometimes referred to
as cosine classifer [69]. However, trivially applying normalization to the feature vector x
and weight vector w often fails to converge due to the limited range of the cosine function
(−1 to 1). This results in a loss that cannot effectively distinguish between well-separated
and non-separated samples. Consequently, a scale factor is introduced to increase the
range of the cosine similarity output before passing it to the softmax function. This helps
the model to better differentiate between classes during training. The scaling factor can
be automatically learned through back-propagation.

z = s · cos(θ) = s · w

||w|| · x

||x|| (2.16)

Margin penalties aim to improve intra-class compactness and inter-class distance by
improving the decision boundary. For example, ArcFace [18] can easily be applied to
the above cosine classifier. It adds a fixed margin penalty to the vector angle theta
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for the true class. The added penalty forces the model to further decrease the angle
between feature vectors and the class center further, leading to a less ambiguous decision
boundary.

2.4 Measuring Mutual Information
Calculating mutual information for two random variables X and Z is intractable in
general, and estimation based on samples is challenging [47]. Additionally, one also wants
to be able to optimize based on mutual information, e.g., maximize MI between learned
representations and task-specific information or to upper bound MI to limit the capacity
of a representation [47].

Special cases allow for the calculation of MI: If the random variables are discrete, like in
the original information bottleneck[63], or with explicit knowledge about their underlying
distributions.

Upper bounds on MI require knowledge of the conditional distribution p(y|x), which is
the case if y is a stochastic representation. Using a variational approximation q(y) of the
intractable marginal p(y) =

�
dx p(x)p(y|x) a tractable bound can be defined using the

KL divergence:

I(X; Y ) ≤ Ep(x)[KL(p(y|x)||q(y))]

For example, the Deep Variational Information Bottleneck [2] uses this upper bound
to reduce irrelevant information from input data about a target task in a learned
representation.

Lower bounds on MI are possible without knowledge of the conditional distributions.
Multiple estimators exist, such as NWJ [42] or NCE [65]. As a representative of similar
methods, we will discuss and analyze MINE [8] as it has already been applied to the
information bottleneck. Section 2.4.2 explains MINE in detail.

[53] propose a matrix-based functional based on Rényis α-order entropy. It has also been
applied to the information bottleneck and is described in section 2.4.3.

2.4.1 Relationship of Cross-Entropy and Mutual Information

Estimating MI with the goal of maximization is not always necessary. Consider a standard
supervised learning task with an input X, label information Y , and a prediction Ŷ . The
goal is to align Y and Ŷ . This can be achieved using a loss based on the KL divergence
(equation 2.8). In practice, the Cross-Entropy (CE) is used as a loss instead.

HCE(P, Q) = −
�
x∼X

p(x) log q(x) (2.17)
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The KL divergence can be defined based on CE. Note that the inherent entropy of the
label data H(Ŷ ) is not part of the optimization. Minimizing Cross-Entropy (CE) and
KL divergence are thus equal optimization objectives.

DKL(Ŷ ||Y ) = HCE(Ŷ , Y ) − H(Ŷ ) (2.18)

Additionally, consider an intermediary representation T like in the information bottleneck
(equation 2.10) that is trained using a classifier network q( ˆY |T ) and CE loss. The IB
objective requires the maximization of the MI between representation T and target Y .
[10] prove that minimizing the conditional cross-entropy loss HCE(Y ; Ŷ |T ) is equivalent
to maximizing I(T ; Y ). This implicit maximization of mutual information has been
commonly applied for the supervised information bottleneck [2, 81].

2.4.2 Mutual Information Neural Estimation (MINE)[8]
What makes MINE possible is the usage of the Donsker-Varadhan (DV) lower bound
[21] on the KL-divergence. Specifically, for two distributions px and qx over X with finite
KL divergence, the following holds over all bounded functions f : X → R :

DKL(px||py) ≥ E
x∼px

[f(x)] − ln E
x∼qx

[ef(x)] (2.19)

The DV bound can then be used to construct a bound on mutual information by using
its KL divergence-based definition:

I(X, Z) = DKL(PXZ ||PX × PZ)
I(X, Z) ≥ E

(x,y)∼pxy

[f(x, y)] − ln E
(x′,y′)∼px×py

[ef(x′,y′)] (2.20)

MINE [8] now introduce a function f : X × Y → R that is parameterized by a neural
network. The final objective of training the neural network f is to maximize:

sup
f

1
N

N�
i=1

f(xi, yi) − ln 1
N

N�
i=1

ef(x′
i,y

′
i) (2.21)

During training, the expectations in the above equation are evaluated using samples
(xi, yi) drawn from pxy and (x′

i, y′
i) drawn from px × py. In practice, only the joint

distribution, i.e., several pairs (x, z) ∼ pXZ in a mini-batch, are needed as the samples of
the marginals can be obtained from the joint distribution by dropping either side of the
pair and shuffling along the batch axis.

[8] also presents an alternative definition termed MINE-f. It is based on the f-divergence
representation proposed in [40, 42]. For the same conditions as in equation 2.19:
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DKL(px||py) ≥ E
x∼px

[f(x)] − E
x∼qx

[ef(x)−1] (2.22)

The right-hand side of the f-divergence bound is smaller than the Donsker-Varadhan
bound (eq. 2.19), which leads to a looser bound numerically, although both bounds are
tight asymptotically [8].

However, compared to MINE, MINE-f has the advantage that applying SGD in a mini-
batch setting produces unbiased estimates of the gradient of the full batch. For MINE,
the gradient estimate for fΘ (Θ being the parameters of the neural network) is as follows:

	GB = EB [∇θfθ] −
EB

�
∇θfθ efθ

�
EB [efθ ] (2.23)

The expectations of the second term are over samples of the minibatch B which leads to a
biased estimate of the gradient of the full batch. Replacing the denominator in the second
term with an exponential moving average reduces the bias and improves performance [8].

2.4.3 Matrix based Rényi’s α-order Entropy
Rényi’s α-order entropy [52] is a one-parameter generalization of Shannon entropy. Given
a discrete random variable X ∼ p, it is defined as:

Hα(X) = 1
1 − α

log



x∈X
fα(x)dx (2.24)

In the limit of α → 1 (from above), the α-order entropy is equal to the Shannon entropy.
The application of Rényi’s α-order entropy to machine learning is hindered by the
difficulty of estimating probability density functions for high-dimensional and continuous
cases.

[53] introduce a matrix-based functional that does not require probability density function
estimation while exhibiting similar properties to Rènyi’s α-order entropy. The data gets
projected to a reproducing kernel Hilbert space and the Gram matrix is calculated. The
functional is then defined in terms of the normalized Eigenspectrum of the matrix.

Given N samples of a random vector x, i.e. samples in a minibatch, the entropy of x can
be defined as:

Hα(Ax) = 1
1 − α

log2(tr(Aα
x)) = 1

1 − α
log2


N�

i=1
λi(Ax)α

�
(2.25)

‘tr’ denotes the trace of a matrix, i.e. the sum of its main diagonal. Ax is the normalized
version (Ax = Kx/tr(Kx)) of the gram matrix Kx ∈ RN×N with Gaussian kernel κ
(Kx(m, n) = κ(xm, xn)). λi(Ax) denotes the i-th eigenvalue of Ax.
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For N pairs of samples of random vectors x and y, given another corresponding normalized
Gram matrix Ay ∈ RN×N for y, the joint entropy can be defined as:

Hα(Ax, Ay) = Hα


Ax ◦ Ay

tr(Ax ◦ Ay)

�
(2.26)

where ◦ denotes the element-wise product and tr denotes the trace of the matrix, i.e.
the sum of its main diagonal. Analog to Shannon (see section 2.1), the Rényi’s α-order
mutual information can then be defined as:

Iα(X; Y ) = Hα(Ax) + Hα(Ay) − Hα(Ax, Ay) (2.27)

The kernel size σ is an important hyperparameter for the matrix-based functional. It
is commonly set heuristicly, for example, using Silverman’s rule of thumb [57] or based
on the distances between all pairwise data points. 10 − 20% of the total range of the
distances is commonly used [56]. [74] point out that unsupervised rules of thumbs often
fail for high dimensional data. They instead propose an optimality criterion based on
kernel alignment loss [17].

2.4.4 Limitations
As pointed out in [47], the estimates of MINE “are neither an upper or lower bound on
MI” [47], due to estimates being constructed from finite samples. Specifically, its high
variance can be traced back to the expectation of the exponential in the DV-bound in
equation 2.19.

E
x∼qx

[ef(x)]

The expectation can be overpowered by extremely rare events that are not observed
by sampling from qx. [65] point out that their bound becomes loose when the mutual
information is higher than ln(N). The results presented for MINE in [8] seemingly do not
suffer from this. However, [38] shows that the confidence claim in [8] is wrong due to an
invalid derivation of an equation. They formally prove further that “any distribution-free
high-confidence lower bound on mutual information cannot be larger than O(ln N) where
N is the number of samples” [38]. In support of the proof, [47] empirically tested multiple
MI estimators and found that none of their compared estimators exhibits both low
variance and good estimates.
The matrix-based Rényi α-order functional introduced in [53] is limited to the mutual
information calculation between two variables. This limits its usefulness for analyzing
CNN networks as they contain multiple filters per layer. Therefore, an input is represented
by many feature maps, which requires a multivariate measurement.
[79, 80] define an extension for multivariate Rényi alpha-order joint entropy and mutual
information. This approach does not scale well with the number of filters in a CNN. [74]
propose an approach based on tensor kernels better suited for large-scale CNNs.
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CHAPTER 3
Related Work

3.1 Multi-View Representation Learning

Canonical Correlation Analysis (CCA) [29] is an early and widely used method for multi-
view learning. Features are learned by maximizing the correlation between a weighted
linear combination of the original variables. This can be seen as projecting two sets of
random variables into a low-dimensional subspace, simplifying the statistical dependence
analysis process. The projected data points can then be used as representations for
various predictive modeling tasks [70].

Various kernel-based extensions [5, 1] have been proposed to capture nonlinear and
more complex relationships between the two views, e.g., by projecting the data to a
Hilbert space before maximizing the correlation between projected points. These methods
are hard to scale for large training data, and the resulting representations are kernel
dependent.

[3] improves kernel CCA by using deep neural networks to map the two data views
to new representations for which correlation is maximized. [71] replace the standard
fully connected neural network with an autoencoder. Their reconstruction objective
allows for a configurable trade-off between the information captured by the individual
representations and the information captured by the relationship between views.

[39] propose an approach using autoencoders without resorting to CCA for the creation
of correlated representations. Instead, the shared latent representation is extracted by a
single network while the reconstruction is performed by a separate network for each view.

CCA based methods have a critical flaw when used for (multi-view) representation
learning. Correlation maximization is a distinct step before predictive modeling, which
prohibits using label information for feature learning. [70].
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The information bottleneck principle has gained attention by explicitly modeling the trade-
off between predictive performance and the complexity of learned representations based
on information theory. [75] use it in the context of supervised multi-view representation
learning. They construct a joint latent representation using a linear combination of
individual views. The projection matrices are learned using the IB principle. This
approach is limited to linear relationships as with the traditional CCA based methods.

[70] employ deep neural networks to model non-linear relationships. Given two views X1
and X2 and label information Y , an individual representation for each view is learned.
Additionally, a second neural network fuses the individual representations into a joined
representation and the information bottleneck objective is defined as:

max
Z,Z1,Z2

I(Y, Z) − αI(X1, Z1) − βI(X2, Z2)

s.t. Z = fθ(Z1, Z2)
(3.1)

Z1 and Z2 denote the individual representations, fθ the neural network used to fuse the
representations, and α and β are regularization parameters used to control the level of
compression applied to the individual representations.

[24] apply the information bottleneck principle in an unsupervised multi-view setting.
Conceptually, an information bottleneck facilitates discarding information not shared
between the two views. Discarding non-shared information relies on the assumption
that each view is sufficient for potential downstream tasks and that this task-relevant
information is the same across each view [82].

More formally, given two images x1, x2, that represent the two views and a label y,
assuming the two views contain the same predictive information about the label, a
representation z also has the same predictive information about the label if it retains all
information shared between the two views. The two views are thus mutually redundant
for the prediction of y. Take a representation z1 of v1 for which the above property
holds, by factorizing the mutual information between v1 and z1, the authors identify two
components:

I (v1; z1) = I (v1; z1 | v2)� �� �
superfluous information

+ I (v2; z1)� �� �
predictive information for v2

(3.2)

The first term describes the information in v1 that is not also contained in v2 (which
means it is not predictable by observing v2). Since mutual redundancy is assumed, this
information can be discarded. The overall loss function for both views is1:

L = −I(z1; z2) + βDSKL(pθ(z1|v1)||pψ(z2|v2)) (3.3)
1DSKL(A||B) is the average of DKL(A||B) and DKL(B||A)

20



3.1. Multi-View Representation Learning

To maximize I(z1; z2) a lower bound like NCE [65] is used. Direct calculation of the
DSKL term is possible as a normal distribution model for both stochastic encoders.

[67] similarly presents an unsupervised multi-view representation learning method based
on the information bottleneck principle. Contrary to [24], they define three types of
representations: A view-specific representation S, a shared representation H, and the
resulting “multi-view IB representation” Z. A reconstruction-based method obtains
the representations S and H. For the shared representation, the method assumes that
there is an underlying latent representation from which the individual views originate.
All views are encoded into a shared space, yielding H, while the individual views are
then reconstructed from H using individual reconstruction networks. According to [67],
this "could reveal the common latent structure shared by different views” [67]. The
view-specific representation S aims to preserve complementary information. This is
different from the multi-view assumption used in [24] that the information not present
in all views (i.e. the complementary information) is excessive for a downstream task.
Deciding which information is complementary and which is shared is “difficult” [68],
instead a view-specific autoencoder (also optimized with reconstruction loss) is employed
to learn a representation for each view independently, guaranteeing that their private
information is contained. The overall S is constructed by concatenating the individual
representations, and the final objective is:

max
Z

I(Z, H) + I(Z, S) −
V�

v=1
βvI

�
Z, X(v)


(3.4)

[70, 24, 67] all use variational approximation to obtain an optimizable bound on the
information bottleneck objective. However, bound tightness is hard to guarantee.

[81] instead use Rényi’s α-order matrix-based entropy to directly optimize the IB objective.
The model architecture and objective are the same as in the original multi-view information
bottleneck using deep learning [70], but generalized to multiple views:

max
Z,Zi,...,Zk

I(Y, Z) −
k�

i=1
βiI(Xi; Zi)

s.t. Z = fθ(Z1, ..., Zk)
(3.5)
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3.2 Image Retrieval
Global features allow for efficient image matching but lose spatial information about the
image content. Without spatiality, performance-improving methods for retrieval, like
geometric verification, cannot be applied to these features. Local features are associated
with specific image regions and ideally, describe keypoints for an image. Multiple local
features exist per image, and a many-to-many matching is performed during retrieval.
Two paradigms for extracting local features exist [14]:

Detect-then-describe first proposes image regions (i.e. image patches), and then
extracts local features for these regions. For example, [50] use sliding windows, [83] a
spatial pyramid, and [51] use a neural network to propose image regions. The local
descriptors for a given image region are typically extracted by CNNs.

Describe-then-detect first applies a CNN and later detects which areas of the feature
maps are to be used as local descriptors. [58] use local maxima in the feature maps
as candidates for keypoints. [41, 12] use an auxiliary attention network to calculate
attention scores over the spatial extent of the CNN feature maps. Locations with high
scores are then used as keypoints. Similarly, (Visual)-Transformer-based architectures
implicitly calculate attention scores that can be used for detection [23, 72].

Using many local features per image is expensive for storage and matching computation.
Hence, re-ranking is used extensively for image retrieval [14]. It allows for local features
to be extracted on the fly and only for a small subset of images as determined by the
global feature similarity. E.g. [43, 45, 6, 41, 12] all use RANSAC[11] to perform geometric
verification on the local feature matches. A detailed description of this process can be
found in section 2.3.3. RANSAC is an iterative algorithm that requires random restarts,
which makes the re-ranking process computationally expensive, even on the smaller subset
of images.

RRT [62] propose an alternative based on transformer neural networks that directly
computes image similarity and is easily parallelizable. While RRT is faster than the
traditional geometric verification process, all re-ranking-based methods have the downside
of higher retrieval latency because they are inherently a two-step process. Several recent
works present an alternative to re-ranking using local features:

[72] propose using mid-level features called “Super-features”, which are constructed by
an iterative attention module. They note that local features are redundant as they are
directly constructed from CNN feature maps, which cover overlapping image patches.
Their attention module produces an ordered set of features, trained using a contrastive
loss that matches the features across positive image pairs. An additional decorrelation
loss encourages the feature set to be less redundant. Performance is competitive with
DELG [12], but the method does not address the problems that re-ranking solves: Re-
ranking using geometric verification is computationally more expensive, but storing all
“Super-features” requires considerably more storage.
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[55] propose a re-ranking process without using local features. Instead, re-ranking works
by iteratively refining global representations. This is similar to Query Expansion, which
also has been extensively applied to image retrieval [16, 27]. First, M candidate images
and K of their nearest neighbors are retrieved based on global similarity. For each
retrieved image, a refined descriptor is constructed using a weighted pooling of the
descriptors from the K nearest neighbors and the descriptor of the database image itself.
The global similarity score is used as the weight. Then, the refined descriptors of the
candidate images are matched against the original query descriptor. The top K closest
are used to construct a refined descriptor for the query image using max pooling. The
final similarity score between database images and the query is an average of two scores:
The similarity of the original query descriptor with the refined database images and
the similarity between the refined query descriptor with the refined database images.
Additionally, [55] also presents an improved pooling strategy when extracting global
descriptors, which, even without the above-described re-ranking process, can outperform
both DELG [12] and RRT [62] using only global descriptor retrieval.

[76] employ a single-stage retrieval process instead of re-ranking and focus on improving
the image representation. They do this by aggregating both global and local features
into a single descriptor. Local features are projected onto the global feature vector and
for each feature vector, an orthogonal vector (to the global feature vector) is calculated.
The orthogonal vector is the difference between the projected and original local feature
vectors. The global feature and all orthogonal points are concatenated, pooled, and
passed through a linear layer to produce a single final representation of the image. Using
orthogonal projection has two goals: Capturing critical complementary information from
the local features while removing redundant components to existing global information.
Removing redundant information between global and local features is similar to our
proposed method. However, we explicitly model the mutual information of global and local
features, aiming to improve local feature representations for re-ranking. In comparison,
[76] aims at providing a single improved representation.
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CHAPTER 4
Solution Approach

We propose a re-ranking Image Retrieval system that explicitly models the mutual informa-
tion relationship between global and local descriptors. Global (Zg) and local (Zla) descrip-
tors should be maximally informative about the target task Y (max I(Zg; Y ), max I(Zla; Y )).
We train our retrieval model using image-level supervision where Y represents the labels
of a classification task. Additionally, we penalize the mutual information between the
descriptors to reduce redundant information (min I(Zg; Zla)). A hyperparameter β con-
trols the degree of penalization. Figure 4.1 shows these relationships, and our overall
training objective is to maximize:

I(Zg; Y ) + I(Zla; Y ) − βI(Zg; Zla) (4.1)

Global
Descriptor

Feature
Extractor

Local
Descriptors

min I(Zg ; Zla)
Image-Level
Supervision

max I(Zg ; Y)

max I(Zla ; Y)

Figure 4.1: A schematic overview of the information-theoretic objectives for the proposed
feature extractor. A feature extraction model produces global and local descriptors (red).
During inference, these descriptors are used for image retrieval with re-ranking. During
training several mutual information-based objectives act on global and local descriptors.

Our approach is agnostic to the underlying feature extractor as long as the system follows
some basic requirements: It must (i) extract global and local descriptors for re-ranking
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use, (ii) be based on a neural network, (iii) and be trainable end-to-end using image-level
supervision.

We base our implementation on that of DELG [12], a popular image retrieval system that
fulfills our requirements. It extracts image descriptors using a CNN with two heads. Both
model heads are trained using a classification loss. The implementation of DELG[12]
is available on GitHub1 and written using TensorFlow [37]. For our experiments, we
have re-implemented the model in PyTorch [4]. Additionally, our experiments use the
implementation of RRT [62]. We use this model as an alternative to re-ranking based on
geometric verification.

We summarize these two methods and discuss the differences in our implementation
in section 4.1. Section 4.2 discusses the feature export for our experiments with RRT.
Section 4.3 details how we measure and minimize mutual information.

4.1 Underlying Methods

4.1.1 Unifying Deep Local and Global Features for Image Search
(DELG)

[12] introduces DELG, a model that simultaneously extracts both global and local features
from a CNN backbone for image retrieval. Additionally, it supports dimensionality
reduction of local features using an autoencoder and requires no post-processing steps.
It can be trained end-to-end using two classification losses and a reconstruction loss with
only image-level supervision. The complete model architecture is shown in figure 4.2.

ResNet-50 and ResNet-101 [28] are used as the CNN backbone in their experiments.
Global features are extracted from the final layer of the CNN (conv5 ) and aggregated
using Generalized Mean Pooling (GeM) [49].

gpooled =

 1
HW

�
h,w

gp
h,w

 1
p

(4.2)

H and W refer to the spatial dimensions of the feature map. GeM is a generalization
of average (p = 1) and max pooling (p → ∞). The parameter p can be learned during
training to effectively weight the contributions of features [12]. After pooling, whitening
is applied to down-weigh co-occurrences of features in the pooled feature map. Following
[26], this is implemented using a fully connected layer after pooling.

A cosine classifier with ArcFace margin is used to train the feature extractor (see section
2.3.4). Local features are extracted from the penultimate layer of the backbone (conv4 ).
An attention module selects relevant regions of the image.

1https://github.com/tensorflow/models/tree/master/research/delf
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Figure 4.2: Model architecture of DELG. The loss components, the decoder part from
the autoencoder, and the attention pooling component are only needed during training
(green). The global descriptor, attention scores, and local descriptors are the outputs of
the model during inference (red). The autoencoder is optional, so the local descriptors
are simply the output of the ResNet conv4 layer. Depending on whether the autoencoder
is used, the reconstructed local descriptors or the original local features are passed to the
Attention Module for pooling.

Attention Module

The attention module was introduced in earlier work [41], where it had to be separately
trained after training the feature extractor itself. In DELG, it can be jointly trained
with the global feature extractor. However, stopping the back-propagation of its corre-
sponding loss gradients into the network backbone is essential as it disturbs the feature
representations the CNN learns [12].

The attention module consists of two convolutional layers with 1 × 1 filters and stride = 1.
The first layer halves the channels and is followed by batchnorm [30] and a ReLu activation
function. The second layer has only a single output channel and is followed by a Softmax
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activation to produce a relevance score for each local feature. This score is later used
to select which local features are relevant to the depicted instance in the image. The
local features are pooled based on their score after normalization to train the attention
module. This is done by simply multiplying the feature vectors with the score and then
taking the mean value across the width and height of the feature map.

Autoencoder

The autoencoder is an optional component for dimensionality reduction of local features.
As with the attention module, it can be jointly trained, and the back-propagation of its
corresponding reconstruction loss should be stopped before the CNN backbone. The
autoencoder eliminates the need for post-processing steps to reduce dimensionality like
PCA.

Similarly to the attention module, the autoencoder consists of two convolutional layers
with 1 × 1 filters and stride = 1. The first layer has output channels equal to the desired
(reduced) local descriptor dimension. The second layer has output channels equal to the
original feature dimension taken from the CNN backbone and is followed by a ReLu
activation. The autoencoder is trained using MSE loss, and a hyperparameter controls
its contribution to the overall loss.

Retrieval

The global features are normalized for retrieval, and their similarity is calculated based on
their dot product (see section 2.3.4). The top 100 images are then selected for re-ranking.
The re-ranking process itself uses RANSAC [11] to perform geometric verification:

First, local features are paired by L2 distance, and their position in the feature map is
recorded . Second, an affine transformation is fitted on the spatial locations of all feature
pairs. Third, based on a threshold value, the fitted RANSAC model produces several
pairs of inliers. The number of inliers is then used as the final score of the re-ranking
process.

Geometric verification has several downsides: It requires rigid objects, e.g., a human
changing poses between images, would change the relative location of detected keypoints,
and is sensitive to significant viewpoint changes. It is also a computationally expensive
iterative process that requires many local features.
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4.1.2 Reranking Transformer
[62] propose Reranking Transformers (RRTs) as an alternative to the expensive geometric
verification step. It is based on the BERT [19] transformer architecture and directly
calculates a similarity score between image pairs. The input sequence to the trans-
former includes global and local descriptors of both images, along with special tokens to
distinguish between images and positional and segment embeddings.

RRTs are lightweight (2.2 million parameters), easily parallelizable, and can be optimized
jointly with a feature extractor to improve retrieval accuracy further. Figure 4.3 illustrates
an overview of the architecture. The authors provide their implementation on GitHub 2.

c
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Transformer Layer 1
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Input Sequence

Linear

Binary Classification

Descriptors
Image 1

Descriptors
Image 2

Transformer Layer

Multi-Head
Attention

Linear & ReLu

Add & LayerNorm

Linear & Layernorm

Output Sequence

Input Sequence

Reranking Transformer

Feature
Extractor

Feature
Extractor

Figure 4.3: Model architecture of RRT.

Input Sequence

Transformers convert an input sequence comprising of tokens to an output sequence
(‘sequence transduction model’). Following the overall architecture of BERT [19], the
input sequence in RRT for an image pair (I, I) is defined as follows:

X(I, I) := [⟨CLS⟩; fg (xg) ; fl (xl,1) ; · · · ; fl (xl,L) ;⟨SEP⟩; f̄g (xg) ; f̄l (xl,1) ; · · · ; f̄l (xl,L)]
(4.3)

2https://github.com/uvavision/RerankingTransformer
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The special token ⟨CLS⟩ is used to retrieve the output signal and ⟨SEP⟩ separates the
tokens of the two images.

To distinguish between global and local descriptors and which image the descriptors
belong to, the one-dimensional segment embeddings α, α, β, β are used.

For global descriptors, the final input representation is as follows:

fg (xg) := xg + α

f̄g (xg) := xg + ᾱ
(4.4)

Each local descriptor has an associated image scale and position. Two additional
embeddings are used to encode this information into the sequence:

The positional embedding φ from [13] is applied to the local descriptor positions pl,i

and pl,i. It is based on sinusoidal functions like in the original transformer [66] but
has been generalized to work on the two-dimensional case of images. d

2 sine and cosine
functions with different frequencies are concatenated for each spatial axis to construct a
d dimensional embedding.

The descriptor image scale uses a simple linear embedding ψ. As input, an integer
indexing pre-defined image scale is passed. In practice, the segment and linear embedding
for the scale behave the same: An integer indexes a learned embedding vector. The final
input representation for local descriptors is as follows:

fl (xl,i) := xl,i + φ (pl,i) + ψ (sl,i) + β

f̄l (xl,i) := xl,i + φ
�
pl,i


+ ψ (s̄l,i) + β̄

(4.5)

Model

RRT uses a multi-layer bi-directional transformer architecture based on the original
transformer architecture of [66]. Each transformer layer is comprised of Multi-Head
Attention (MHA), two linear layers with an activation function, and normalization
functions:

t0(Z) := Z + MHA(Z, Z, Z)
t1(Z) := LayerNorm(t0(Z))
t2(Z) := Linear(t1(Z))
t3(Z) := ReLU(t2(Z))
t4(Z) := Linear(t3(Z))
t5(Z) := LayerNorm(t4(Z))

(4.6)
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Note that for the multi-head attention Q = K = V , i.e., only a single set of vectors is
used. Applying a transformer layer to the input sequence produces a new sequence of
vectors of the same length:

Z0 = X(I, I)
Zi+1 = t5(Zi)

(4.7)

A final linear layer projects the ⟨CLS⟩ token of the last transformer layer to a single
dimension. After being passed through an activation function (sigmoid), it produces a
logit scalar. The model is trained using a Binary Cross-Entropy (BCE) loss function to
predict whether two images represent the same object or scene:

logit = Sigmoid(Linear(Z⟨CLS⟩
C ))

E(I, I) = BCE(logit, EQ(I, I))

EQ(I, I) :=
�

1, if I and I depict the same entity
0, otherwise

(4.8)

4.1.3 Implementation Differences
We simplify the implementation of DELG[12] to ease with the evaluation for our exper-
iments. We do not use an autoencoder to reduce the dimensionality of local features.
This simplifies the training procedure, as no reconstruction loss (and corresponding
hyperparameter) for the autoencoder is needed. Following the experimental setup in
RRT[62] for the SOP dataset, we instead use an additional convolutional layer to project
the conv4 output of ResNet to the desired number of dimensions. The reduced output is
then passed to the attention module. We do not use whitening for global features and
use average instead of GeM pooling.

DELG uses an image pyramid at inference time to produce multi-scale representations.
For global features, the scales are average-pooled; for local features, the top attention
scores are selected across the scales. Selecting the top scores is done greedily to avoid
selecting multiple features at the same image location across different scales. Depending
on the experiment, they use 3 or 7 image scales. For simplicity, we do not use an image
pyramid in our experiments.

Figure 4.4 shows an overview of our model architecture.
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Figure 4.4: Model architecture without MI estimation. It is a simplified version of the
architecture presented in [12] that is shown in figure 4.2. Instead of an autoencoder,
we use a single convolution with a 1 × 1 kernel and stride = 1 to (optionally) reduce
the dimension of local features. The rest of the implementation is identical. The loss
components, the decoder part from the autoencoder, and the attention pooling component
are only needed during training (green). The global descriptor, attention scores, and
local descriptors are the outputs of the model during inference (red).

4.2 Feature Export for Re-Ranking with RRT
[62] perform re-ranking experiments using RRT on pretrained descriptors extracted from
DELG. To be able to evaluate an alternative method to geometric verification, we built
a compatible feature export to reuse the publicly available RRT model3 with minor
modifications. Exporting descriptors prohibits the usage of data augmentation during the
training of RRT. This is a limitation of our experimental setup as we use the provided
implementation of RRT. As demonstrated by the experiments of [62] on SOP, a joint
model would perform better.

The export produces two folders, one for training and one for testing. Both contain a
descriptors folder and a file containing the nearest neighbors. The descriptors folder
contains two files for each image, one containing just the global descriptor and one
containing all local descriptors with corresponding positions, scales, and attention scores.
Descriptor related data is stored as NumPy4 arrays in pickle format5. Local descriptors

3https://github.com/uvavision/RerankingTransformer
4https://numpy.org/
5https://docs.python.org/3/library/pickle.html
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are exported in descending order by their attention scores. Index files for training, gallery,
and query contain the filenames of all descriptors, image labels, and size information.

The nearest neighbor files contain a matrix of image IDs (0 to N − 1 of the dataset split)
that indicate the closest K images by global descriptor similarity.

Each image in the training set contains the closest K = 100 images. The test set contains
the closest gallery images for each query image. For evaluation, the testing folder also
contains a ground truth file that maps query image IDs to gallery image IDs considered
positive instances.

4.3 Measurement and Minimization of Mutual Information
One core requirement for our work is the ability to measure mutual information between
various parts of the model. Subsequently, it has to be possible to minimize mutual
information between global and local features. We use the global descriptor after pooling
and the local features after averaging them based on their attention score (see section
4.1.1). Using the attention-pooled local descriptor circumvents having to estimate between
the global descriptor and all individual local descriptors. The overall loss function for
our DELG-like model is:

L = Lg + Ll + βI(Zg; Zla) (4.9)

Lg and Ll refer to the classification losses of the global and local feature paths, respectively.
Cross-Entropy (CE) is used as the loss function which implicitly maximizes mutual
information: min Lg ≡ max I(Zg; Y ) and min Ll ≡ max I(Zla; Y ). See 2.4.1 for details.

I(Zg; Zla) refers to the mutual information between the global feature (Zg) and the
attention-pooled version of the local features (Zla). The hyperparameter β controls the
degree of the penalization. Two methods measure and minimize I(Zg; Zla): Rényi’s
α-order matrix-based functional and MINE. The theoretical background of both methods
is described in detail in section 2.4.

4.3.1 MINE
Figure 4.5 gives an overview of the different components of model training and the
gradient paths. MINE requires an auxiliary network whose parameters must also be
trained. Its training can be unstable, and its estimates exhibit a high variance (see
section 2.4.4). Inspired by the approach in [31], we use a very low learning rate for more
stable training but train the auxiliary network for multiple epochs whenever a mutual
information estimate is required.

The overall procedure is shown in algorithm 4.1: First, the feature extraction model is
trained, followed by MINE using a second optimizer. The second optimizer uses a lower
learning rate, so the mutual information estimates can converge more slowly. During
this phase, only the weights of the mine network are updated. The back-propagation of
gradients into the feature extraction model is blocked. This prevents unstable mutual
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information estimates from disturbing the learning process. During the training of the
feature extraction model, the mutual information penalty as calculated by MINE is added
to its loss function. The gradient is then back-propagated through the auxiliary network
into the backbone.

Additionally, the gradients of MI estimation are never back-propagated via the global
feature path as we do not want to affect the results of global retrieval. Our method aims
to improve re-ranking performance and thus only affects the local features.
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Figure 4.5: Our model architecture using MINE for estimation

All operations required to calculate the MI bound of MINE (equation 2.20 in section 2.4.2)
are implemented in the autograd engine of PyTorch. This enables us to add the mutual
information estimate I(Zg; Zla) to the overall loss for minimization. The gradients of the
minimization objective will then correctly propagate back into the feature extractor. For
training the MINE model itself, we maximize the MI estimate instead. The optimizers
have the opposite goal regarding the mutual information estimates, which leads to a
zig-zag pattern during training.

MINE places no restrictions on the dimensionality of its input random variables. However,
we always use random variables of equal dimensions. If one has more, we use a linear
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Algorithm 4.1: Model Training with MINE estimation
1 forall feature extractor training epochs do
2 disable grad for feature extractor;
3 forall MINE training epochs do
4 forall batches do
5 run feature extractor ;
6 calculate MINE loss lMINE ;
7 backprop lMINE ;
8 step MINE specific optimizer (max) ;
9 end

10 end
11 enable grad for feature extractor ;
12 forall batches do
13 run feature extractor ;
14 calculate global arcface loss lg;
15 calculate classification loss for local features lla ;
16 estimate I(Zg; Zla) using mine network;
17 L = Lg + Lla + β ∗ I(Zg; Zla) ;
18 backprop l step feature extractor specific optimizer (min) ;
19 end
20 end

layer for projection before passing it to the MINE network.

Our setup with two optimizers allows us to add additional MINE networks to examine the
mutual information relationship between different model parts. For example, we add a
second network to measure I(Zg; Zlc) between the global feature and the local descriptors
before attention pooling as ablation to study the effects of the attention mechanism. In
this case, we first use an additional convolution layer to halve the spatial resolution while
doubling the number of dimensions of the local descriptors before pooling and passing
them to the linear encoder.

4.3.2 Matrix based Rényi’s α-order Functional
[78] derive the differentiability of the matrix-based Rényi’s α-order equations presented in
section 2.4.3. However, in practice, the automatic differentiation engines of deep-learning
frameworks make them directly applicable.

Following [81], we fixate the α-order hyperparameter to 1.01, and the kernel width σ is
calculated based on the mean distance (L2 in feature space) of the k (k = 10) nearest
samples. For each mini-batch, the average of the distance means is used. While the
authors provide an open source implementation6 of their work, please note that their σ

6https://github.com/archy666/MEIB
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calculation is erroneous.

We do not use our Rényi-based implementation for auxiliary MI measurements, such as
between the global descriptor and the local descriptors before attention pooling. CNNs
produce multiple feature maps that require a multi-variate method for measuring MI.
Extensions for multi-variante measurements exist (see section 2.4.4), but since MINE is
already capable of performing this, we did not implement them.

At the beginning of training, the magnitude of the local feature attention scores is small
(for details on the attention module, refer to section 4.1.1). Minimizing the mutual
information between global and local features can easily overpower the classification
signal and collapse the local features. To remedy the issue, we warm up the β parameter
by setting it to 0 for a definable number of training steps and then linearly increasing
it over a definable number of training steps until it has reached its target value. This
is seemingly not a problem for the MINE estimator as the initial estimates’ magnitude
starts small and increases during training.
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CHAPTER 5
Evaluation Methodology

We evaluate our model using standard benchmark datasets and standard metric definitions.
Section 5.1 defines the used metrics and gives details on the datasets. We train our model
with varying degrees for the mutual information penalty factor β between global and local
descriptors. We evaluate two methods for estimating and minimizing mutual information:
MINE [8] and Rényi’s α-order matrix-based functional [53]. During training, we record
additional MI measurements for ablations. Using the trained models, we evaluate two
methods for re-ranking: geometric verification [12] and RRT [62]. Section 5.2 details the
model hyperparameters and experiments performed. We log the results of experiments
using the Weights & Biases1 platform.

5.1 Evaluation

5.1.1 Metrics

Classification metrics like Precision, Accuracy and Recall do not take the position of
the retrieved image into account. Arguably, having more relevant images up front for
retrieval, recommender systems, and applications like search engines is crucial. Several
ranking metrics are commonly used:

Precision at rank k (P@k)

Analog to classification precision but with a cutoff at rank k.

P@k = # of recommended items @k that are relevant
# of recommended items @k (5.1)

1https://wandb.ai/site
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Recall at rank k (R@k)

Analog to classification recall but with a cutoff at rank k. This metric is monotonically
increasing with k.

R@k = # of recommended items @k that are relevant
# of relevant items in dataset (5.2)

Note that the metric learning community does not use the definition of equation 5.2 which
is used in nearly all other contexts. Instead, they chose to redefine it, but confusingly to
keep the same name (see equation 5.3).

R@k =
�

1, if any of the recommended items @k is relevant
0, if none are relevant

(5.3)

Average Precision at rank k (AP@k)

Summarizes both P@k and R@k for all ranks into a single metric. It is defined as the
average of P@k values of those ranks with a new relevant item, i.e., when the recall
increases, up to a cutoff at rank k. If no cutoff is provided, then k equals the position of
the last relevant item, often denoted as AP@all or simply AP.

AP@k = 1
# of relevant items @k

k�
i

P@i ∗ Ri (5.4)

Ri =
�

1, if document i is relevant
0, if document i is not relevant

During evaluation, the ranking metrics are calculated for each query image, and the
mean value for all queries is reported. For P@k and R@k the mean is typically referred
to by the same name. For AP@k the name mAP@k is used instead.

5.1.2 Datasets
We perform experiments on datasets also used by the baseline methods [12] and [62] that
we compare our work to. The definitions of the used metrics can be found in section
5.1.1. Additionally, we use CIFAR-10 & CIFAR-100 for preliminary experiments. Table
5.1 gives an overview of the scale of the used datasets.

CIFAR-10 & CIFAR-100

CIFAR-10 and CIFAR-100 [33] consist of 60k images initially provided as a training set
of 50k images and a test set of 10k images. Each class contains the same number of
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# Images
Dataset Total Training Query Gallery # Classes

CIFAR-10 60k 5k 1k 59k 10
CIFAR-100 60k 5k 1k 59k 100

SOP 120k 59k 61k 61k 22k
GLD ‘v2-clean‘ 1580k 1580k - - 81k

ROxf - - 70 4,9k -
RPar - - 70 6,3k -

Table 5.1: Overview of the used datasets

images, and the datasets contain 10 and 100 classes each. For retrieval, we follow the
standard setup of hash-based retrieval methods that test on this dataset (e.g., described
in [61]): 1k(100 per class for CIFAR-10/10 per class for CIFAR-100) images are used as
the query set and the rest are used as the gallery set. The training set is sampled from
the gallery set and contains 5k images (500/50 per class). Additionally, for reporting
metrics during training, we sample a validation set of 1k images from the gallery set that
does not overlap with the training set.

Google Landmarks Dataset v2 (GLDv2)

Google Landmarks Dataset v2 [73] is a large-scale benchmark for (landmark) image
retrieval, containing over five million images across 200k classes. The dataset is split
into a training, query (called ’test’), and gallery (called ’index’) subset. The training
subset contains 4,132,914 images with 203,094 classes. The query subset contains 117,577
images with ground truth annotations. The gallery subset contains 761,757 images. The
classes in the training and gallery subset are not disjoint, which makes the dataset a
closed-set classification problem.

[77] provide a cleaned version (‘v2-clean’) of the training split containing 1,580,470 images
with 81,313 classes. Figure 5.1a shows the distribution of the number of training images
per class. We use this split to train the feature extraction model, but for reporting
metrics during training, we perform an additional 95/5 split on the provided split. [62]
also uses GLDv2 in their experiments for RRT. The model is relatively lightweight, so
they train it with an even smaller subset. They sample 12k landmarks, each with at least
ten images. Each landmark is capped to at most 500 images, which results in about 20%
size of the ‘v2-clean’ split. As the authors provide the image IDs of the split, we use the
same split (‘v2-rrt’) to train RRT for a fair comparison.

Revisited Oxford / Paris

Revisited Oxford (ROxf) and Revisited Paris (RPar) [48] is a standard benchmark for
image retrieval and is an improved evaluation protocol for the Oxford [44] and Paris [46]
datasets. The datasets are only used for evaluation, and the model is trained on GLDv2.
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ROxf contains 4,993 gallery images and RPar contains 6,322. Both use 70 images
depicting landmarks of Oxford and Paris, respectively, as a query set.

The evaluation protocol allows for multiple difficulty levels (easy, medium, hard) in
retrieval by changing which gallery images are considered as ground truth. We use the
medium difficulty for all our experiments. Following this protocol, each query image is
cropped by a provided bounding box for retrieval, and mAP is used as a metric.

Note that the definition of equation 5.4 in section 5.1.1 is called the finite sum method,
which is commonly used in retrieval and recommender systems literature. However,
the ROxf and RPar benchmarks use a different definition based on the area under the
precision-recall curve. Here, two adjacent precision points on the curve are averaged and
then multiplied by the recall step. The authors provide a Github repository2 with code
for their evaluation protocol.

Stanford Online Products (SOP)

Stanford Online Products [60] consists of product images crawled from ebay.com and is
commonly used as a benchmark for metric learning. Evaluation is performed using R@K
as a metric. Note that the metric learning community uses a definition of R@K, which
differs from R@K in information retrieval and other contexts.

The dataset contains 120,053 images with 22,634 classes split into a training and testing
subset. On average, a class has 5.3 images. The training subset contains 59,51 images
with 11,318 classes, and the testing subset contains 60,502 images in 11,316 classes.
Figure 5.1b shows the distribution of the number of training images per class. The
classes between the two subsets are distinct, making the dataset an open-set classification
problem. We perform an additional 95/5 split of the training subset for reporting metrics
during training. For image retrieval, the testing split is used as both query and gallery set,
i.e., the similarity from each image in the testing split is compared to every other image
in the split. However, since geometric verification is a slow iterative process, instead of
using every image in the dataset as a query image, a random subset of 1000 images was
used instead.

2https://github.com/filipradenovic/revisitop
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Figure 5.1: Distribution of the number of training images per class in the datasets. Note
the log scale on the Y axis for GLDv2 as the distribution is extremely long-tailed.

5.2 Experiments
5.2.1 General Model Parameters
Following DELG, we train our feature extractor with the SGD optimizer with a momentum
of 0.9. We use an ArcFace margin of m = 0.1 and equally weigh the global and local
classification loss. The learnable cosine classifier scalar is initialized to the square root of
global feature dimensionality (see section 2.3.4).

For all experiments on SOP we fixate the learning rate to 0.02 and for GLDv2 to 0.05
For experiments on ResNet-18, we use a batch size of 256, and for ResNet-50, we use 240
due to memory constraints. Training on SOP is performed for 50 epochs and on GLDv2
for ten epochs.

Due to computational constraints, we use an image size of 224 × 224 instead of 512 × 512.
Due to the backbone’s layout, the last layer of the CNN produces a feature map of 7 × 7.
The penultimate layer produces a feature map of 14 × 14, so a maximum of 196 local
features are used. For all experiments, we use local descriptors with 128 dimensions as this
is the dimensionality used in RRT[62] for their experiments. We keep the dimensionality
of global descriptors dependent on the backbone (i.e., 512 for ResNet-18 and 2048 for
ResNet-50 ).

MI Estimation

For all experiments, we use Adam [32] with a learning rate of 10−6 for the MINE network
optimizer. For every epoch that we train the DELG based feature extractor, we train
the auxiliary MINE network for 20 epochs. Input dimensions for MINE are fixed to 64
for all experiments and measurements.
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Re-ranking using RRT

We keep all parameters the same as the official code repository suggests. As an exception,
we only train for five instead of 15 epochs on the exported features from the GLDv2
dataset when evaluating on ROxf/RPar as there is only a slight improvement after this
point.

5.2.2 Minimization of Mutual Information

We trained feature extractor models with varying degrees of the β penalty factor. Higher
β values increasingly penalize I(Zg; Zla) while β = 0 corresponds to DELG[12] as a
feature extractor model (keeping in mind the implementation details and differences
described in section 4.1.3). To perform the estimation of mutual information, we train
the feature extractor models twice for two methods: MINE [8] and Rényi’s α-order
matrix-based functional [53]. The results of this experiment are described in section 6.2
where we report on the estimated MI values between global (Zg) and local features (Zla).

We add several auxiliary measurement points (using additional mine networks) to our
model that are not part of the primary loss function. However, adding these auxiliary
components increases the total number of parameters in the model. Using these measure-
ments, we can investigate if MINE is actually able to minimize MI or only deteriorate
its estimation (results section 6.2.1). This measurement duplicates the ‘main’ MINE
network that estimates I(Zg; Zla). By comparing the mutual information before and
after attention pooling, we can gain insights into the attention mechanism of the feature
extraction model and how the minimization objective affects local features (results section
6.2.3). This measurement adds another CNN so the local features before attention pooling
can be processed. Adding these components slows training, so we did not use them for
our experiments on the large-scale datasets SOP and GLDv2. Instead, we performed
them on the much smaller Cifar100.

Hyperparameters

We performed training with minimization of mutual information using Rényi on the
SOP and GLDv2 datasets. On GLDv2, 5 different β values (0.0, 5 × 10−3, 1 × 10−2, 2 ×
10−2, 5 × 10−2) and on SOP 7, different β values (0.0, 5 × 10−3, 1 × 10−2, 2 × 10−2, 5 ×
10−2, 1 × 10−1, 2 × 10−1) were used.

We performed training with minimization of mutual information using MINE on the
SOP dataset. As training using MINE takes much longer, we did not evaluate on the
bigger GLDv2 dataset. We trained the feature extractor using 7 different β values (0.0,
5 × 10−3, 1 × 10−2, 2 × 10−2, 5 × 10−2, 1 × 10−1, 2 × 10−1) for ResNet-18 and 5 different
beta values (0.0, 1 × 10−2, 2 × 10−2, 5 × 10−2, 1 × 10−1) for ResNet-50.

42



5.2. Experiments

5.2.3 Performance Improvements of Re-Ranking
We take the trained feature extractors and perform re-ranking to determine whether the
minimization of mutual information between global and local features positively affects
retrieval performance.

We consider β = 0 to be our baseline and compare two different methods for re-ranking:
geometric verification as described in DELG and RRT [62]. The final retrieval rank for
geometric verification does not consider the global feature while RRT encodes both global
and local features in its input sequence. We chose to compare these two methods to
evaluate whether omitting global features for the final score calculation leads to reduced
performance when minimizing MI. The results of this experiment are described in section
6.3.

For models trained on GLDv2, retrieval evaluation was performed on the RPar and ROxf
benchmark datasets (as they are the most common in literature). For RPar, the seed for
RRT was always kept at 0 (as the feature extractor was already trained using varying
seeds). For ROxf, two seeds for each seed of the feature extractor were evaluated as the
initial results were particularly noisy. SOP provides its dataset split for evaluation.

Process

Figure 5.2 shows the overall process for our re-ranking experiment, which has to be
repeated for each hyperparameter choice. First, the feature extractor is trained using the
train and validation split with random data augmentations applied to the train split as
described above. The trained model is then used to extract all features of all images in
the query, gallery, and the second train set. For GLDv2, a smaller second train set is used
to train the RRT. The same dataset split as for the feature extractor is used for all other
datasets, but no random data augmentation is applied. Using the global descriptors,
a nearest neighbor index is calculated. Together with the dataset ground truth (label
information), the index can be used to calculate metrics for global-only retrieval. The
top K, closest neighbors, based on global feature similarity, is used in the geometric
verification process to match images based on local features and their location in the
image.

The nearest neighbors and the ground truth and features are saved to disk for usage with
RRT. Exported features can take up a lot of disk space, e.g., 19GB for the SOP dataset.
For comparison, the original images take up only around 3GB. RRT has to be trained
separately from the feature extractor on the second train set using the ground truth data
and the nearest neighbors for sampling. After training, retrieval metrics are calculated
based on the exported query and gallery features.
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Figure 5.2: Process of Re-Ranking Experiment
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CHAPTER 6
Results

6.1 Benchmark Comparison
The absolute mAP values presented for our work are not competitive with the state
of the art. Our goal is to improve the benefits of re-ranking. Therefore, we report the
relative improvement of re-ranking compared to global-only retrieval. The global-only
performance is not an essential benchmark for our work. We removed some components
of DELG[12] to simplify our implementation (see section 4.1.3). These components
positively affect retrieval performance, which explains this discrepancy. Additionally, a
simpler CNN backbone and smaller image size were used due to computational restraints.
Table 6.1 shows the absolute retrieval performance of our model when compared to the
results reported in [12]. The ResNet-18 variant with image size 224 × 224 was used in
nearly all experiments. For comparison, we performed a run with the same image size as
DELG (512 × 512) and using a ResNet-50 backbone but without multiple image sizes for
retrieval (image pyramid).

Image RPar ROxf
Impl. Backbone Size Pyramid Epochs Global GV Global GV
Ours ResNet-18 224 × 10 75.9 75.9 40.9 43.4
Ours ResNet-50 512 × 10 78.8 79.0 52.5 54.3

DELG[12] ResNet-50 512 ✓ ∼25 85.7 85.7 73.6 78.3
DELG[12] ResNet101 512 ✓ ∼25 86.6 87.2 76.3 81.2

Table 6.1: Benchmark Comparison between the official DELG results and our imple-
mentation. Results (mAP) are shown on the Medium evaluation protocols of ROxf and
RPar for global-only retrieval and re-ranking using geometric verification. DELG results
are taken as reported in table 7 of their work [12] (using ‘v2-clean’ dataset split). Our
results are from a single training run without any tuning of hyperparameters.
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Table 6.2 compares the retrieval performance for the SOP dataset between our experiments
and the results presented in [62] for RRT. [62] train their feature extractor using a
contrastive loss and re-rank based on local features from the last convolutional layer.
The global feature is a spatially averaged version of these descriptors and is used purely
for training. We stick to the approach of DELG for our experiments, which uses the
penultimate layer for local descriptors and train the backbone using ArcFace[18] loss.

Backbone Training R@1 R@10
Impl. Backbone Loss Epochs Global RRT Global RRT
Ours ResNet-18 ArcFace 10 72.3 73.5 85.6 88.0
Ours ResNet-50 ArcFace 10 79.0 77.7 90.1 90.4

RRT[62] ResNet-50 Contrastive 100 80.7 81.8 91.9 92.4

Table 6.2: Benchmark Comparison between the results presented in [62] for RRT and
our experiments for the SOP dataset. The R@K definition of metric learning is used.
Results for RRT are directly taken as reported in table 6 of their work. We compare
against their experiments using the frozen backbone as it more closely aligns with our
experimental setup.

6.2 Minimization of Mutual Information
The architecture of DELG[12] uses two classifiers to train the model: One for the CNN
backbone that produces the global descriptor (Zg) and one to train the local descriptors.
The local descriptors are trained by pooling them using a weighted average based on their
attention scores. This pooled version (Zla) of the local descriptors is passed to the second
classifier, which is for training the attention module and the dimensionality reducing
CNN layer (see section 4.1.1 and 4.1.3). We minimize mutual information between global
and local descriptors using a measurement of I(Zg; Zla).

Figure 6.1 shows the effect that the β penalty factor has on the measured MI values
between the global descriptor Zg and the attention pooled local descriptors Zla for both
methods of measuring mutual information. The numerical values between the different
methods do not agree, but their relative trend is similar. This is expected as Rényi’s
α-order matrix functional measures information theoretic quantities in the reproducing
kernel Hilbert space. While the measurement exhibits similar properties as Shannon
entropy, their numerical values differ [74].

Figure 6.2a further illustrates the numerical discrepancy between MINE and Rényi by
measuring both on the same training runs. The measured values shown exhibit a linear
correlation of r = 0.956 (Pearson). Figure 6.2b shows the influence of the minimization
method on mutual information. Both methods behave similarly for very small β values,
but for increasing β, Rényi can better minimize MI. This discrepancy is further discussed
in section 6.2.1.
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Figure 6.1: Effect of the β penalty factor on MI between global and local descriptors.
Subfigure a) shows the effect when minimizing and measuring mutual information using
Rényis α-order matrix for the datasets SOP and GLDv2. Subfigure b) shows the effect
when minimizing and measuring using MINE. As this approach is computationally more
expensive, evaluation has only been performed on the smaller SOP dataset.
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Figure 6.2: Further comparison of methods showing the effect of β on MI between global
and local descriptors on the SOP dataset. Subfigure a) shows the numerical discrepancy
of the measured MI values. Both measurements were done on a single training run
per β value. Minimization was performed using the MINE measurement. Subfigure b)
shows the influence of the method choice on mutual information minimization. MI was
measured using Rényi, but both methods were used for minimization.
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6. Results

6.2.1 Limitations of minimizing a lower bound
As described in section 2.4.4, MINE uses a lower bound on the KL-divergence to estimate
mutual information. By simply producing a worse lower bound with increasing β, MINE
could produce a lower MI value without affecting the actual information content of
the underlying random variables. We introduce a second MINE network to investigate
whether it can minimize mutual information and not just deteriorate its estimation. This
network is trained purely with the MI estimation maximization objective as with other
auxiliary MINE-based measurements (see section 4.3.1). This means the β penalty has
no direct effect on the second network but only on the underlying representations.

Figure 6.3 shows that using MINE for minimization is possible. While the main network’s
estimation for the minimization exhibits a greater reduction of the estimated MI values,
the second auxiliary network clearly shows reduced MI values with increasing β. This
suggests that MINE can successfully be used to minimize mutual information.

Figure 6.4 shows the same effect but for an increased range of β values. With increasing
β penalty, the main MINE network collapses as the minimization objective overpowers
the training objective of MINE itself. A small gradient can still pass through to the
feature extractor, but using high β values yields diminishing returns on minimization.
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Figure 6.3: Comparison between the MINE network used in the minimization objective
vs an auxiliary MINE network that is unaffected by the minimization. Graphs show the
effect of the β penalty factor on MI values of the validation set during training. Runs
performed on Cifar100 with a simplified version of ResNet-18 as the backbone.
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Figure 6.4: Comparison of the effect of the β penalty factor on the estimated MI values
between the MINE network that is used in the minimization objective vs an auxiliary
MINE network that is not affected by the minimization. Same experiment setup as figure
6.3, but with an increased range of β values.

6.2.2 Training Trajectory
Figure 6.5 compares the measurements of MI between MINE and Rényi on the same
runs. While both methods produce final measurements that show that MI is dependent
on β, their trajectories behave very differently. The measurements of MINE start at
(close to) 0 and approach the real value during training. As the objective of MINE is
to maximize a lower bound on MI, this is expected. For Rényi, the measurements start
high and then rapidly decrease in the early stages of training.

Figure 6.6 shows the individual components of the Rényi measurement (recall I(X; Y ) =
H(X) + H(Y ) − H(X; Y )) during training. Again, I(Zla; Zg) is sucessfully reduced
with increasing β. Note that the shown values for I(Zla; Zg) do not match those in
figure 6.5d as one was minimized using the MINE measurement and the other using
the Rényi measurement. In this case, Rényi produces a smoother training trajectory.
Since backpropagation to the global representation is stopped, H(Zg) stays the same
for all runs. This leaves H(Zla) and H(Zla; Zg) as the only factors where β can have an
influence: H(Zla) decreases, and H(Zla; ZG) increases with higher β.
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(c) Measurement of MINE (Train)
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Figure 6.5: Effect of the β penalty factor on MI between global and local descriptors
during training on SOP. Minimization was performed using MINE, and its measurement
can be seen in a). Additionally, the measurement by Rényi is shown in b). The X-axis
shows the training process in steps. A running average with a window size of 5 (logging
steps) was applied for visual clarity. The Y-axis shows the MI values of the validation
set. Values are averaged across different training seeds.
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Figure 6.6: Individual components of the Rényi estimation during training on SOP.
Minimization was performed using the measurement by Rényi.
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6.2.3 Relation to Local Feature Attention
Since the backpropagation of gradients from the local feature path is stopped before the
CNN backbone and the global descriptor, there are only two places in the model where
mutual information reduction can influence local features: The optional dimensionality
reduction convolution layer and in the attention module (recall figure 4.5).

Figure 6.7 shows measurements of mutual information before the attention module and
compares them with those after attention pooling. While measurements are noisy, they
essentially follow the data processing inequality. Both measurements decrease at about
the same rate with increasing β, indicating that neither the dimensionality reduction nor
the attention module is solely responsible for the reduction.
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Figure 6.7: Measurements of MI before Attention Pooling on CIFAR100. Subfigure
a) shows the training history of the measurement and can be compared to figure 6.3b.
Subfigure b) compares the measurement of the last epoch (depending on β) with the
measurements after attention pooling (aforementioned figure).

Figure 6.8 compares two histograms of local feature attention scores by the method
of mutual information minimization. Table 6.3 shows summary statistics for the same
data. Interestingly, MINE and Rényi have diverging effects: MINE increases the median
attention score and the standard deviation. Rényi strongly decreases the median score
and also the standard deviation. The difference of the two methods is especially apparent
in the histograms.

Figure 6.9 compares the median attention score of local features (as depicted in table 6.3)
with the parameter σ used in the calculation of Rényi entropy. Recall that matrix-based
Rényi’s α-order functional needs two hyperparameters: α and the kernel width σ. We
automatically calculate σ as the average of the mean L2 distances of the k = 10 nearest
neighbors in the local feature space. As such, it is directly proportional to the magnitude
of the local features after attention pooling. Since attention pooling is just a weighted
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Figure 6.8: Histograms of local feature attention scores depending on the β penalty
factor. Data from the experiments on SOP. a) shows the results when minimizing using
the measurement of MINE while b) shows the same for Rényi.

MINE Renyi
β Mean Median Std. Mean Median Std.

0.00 187.7 159.4 141.6 187.3 158.8 141.3
0.05 196.1 165.7 148.4 150.9 126.6 112.4
0.10 202.2 170.3 153.1 121.7 100.1 91.1
0.20 206.3 175.1 154.8 91.8 73.1 69.1
0.50 207.2 177.2 150.9 51.5 34.0 39.2

Table 6.3: Summary statistics for local feature attention scores on SOP

average based on the respective attention scores, it is directly captured by the median
attention score. Therefore, the minimization of mutual information directly impacts
the hyperparameter σ used to estimate mutual information. This feedback loop could
indicate that our heuristic method for σ is unsuitable and mutual information is not
reduced. However, [79] point out that mutual information increases monotonically as σ
decreases, which we do not observe.
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Figure 6.9: Comparison between the median attention score and σ used for calculating
the Rényi entropy
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6.3 Performance Improvements of Re-Ranking
The details of the experimental setup are described in section 5.2.3. Experiments were
repeated multiple times for different random seeds, and the re-ranking performance was
evaluated using the geometric verification process described in DELG as well as with
RRT[62]. The improvement of re-ranking is calculated by subtracting the mAP achieved
by re-ranking with the mAP from retrieval using only global features from the same
experimental run. Rényi was evaluated on SOP and ROxf/RPar (for which training was
performed on GLDv2). MINE was evaluated only on SOP. Appendix A contains the
retrieval performance of all individual runs. Note that β values across datasets do not
correspond exactly.
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Figure 6.10: Performance improvements of re-ranking with MI estimation using Rényi.
The Y-axis shows the mean improvement across different runs with a (non-parametric)
95% confidence interval. The X-axis shows the improvement depending on the mutual
information penalty factor β between global and local features.

Figure 6.10 shows the improvement of re-ranking on ROxf and RPar. For both evaluation
datasets β = 0.01 performs the best when re-ranking using RRT and β = 0.005 for
geometric verification. ROxf shows a far bigger improvement of re-ranking than RPar
which is consistent with results reported in [12].

Figure 6.11 compares the two MI estimation methods of estimating MI on SOP. Both
methods perform the best on β = 0.02 when re-ranking using RRT. For geometric
verification, β has no noticeable effect for smaller values.

RRT repeatedly performs better than geometric verification in all experiments indepen-
dently of the mi-penalty factor β, validating the result in [62]. An exception is on SOP
using MINE, which is the only experiment using ResNet-50 as the cnn backbone (figure
6.12), where geometric verification performs consistently better. For higher β values,
re-ranking actually decreases the performance (compared to only global retrieval). We
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Figure 6.11: Comparison of re-ranking performance improvements on SOP between Rényi
and MINE for MI estimation.

suspect this is due to the dimensionality of the feature types. All our experiments use
local descriptors of 128 dimensions but the global descriptor has 512 dimensions for
ResNet-18 and 2048 for ResNet-50. As such, the global descriptor for ResNet-50 can
contain a lot more information, which explains the comparatively good performance of
global-only retrieval. However, RRT exhibits a higher variance in its performance metrics,
with some runs exhibiting unsatisfactory performance.

Across all experiments, RRT performs best for a moderate (out of all tested) MI penalty-
factor β. However, the retrieval performance exhibits a high statistical uncertainty even
after repeated training runs. Only the evaluation on ROxf (figure 6.10b) exhibits a
significant increase in re-ranking performance for beta = 0.01.
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Figure 6.12: Re-ranking performance improvements on SOP using MINE for MI estimation
and ResNet-50 backbone, as opposed to ResNet-18 in figure 6.11b.
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6.3.1 Influence of RRT Sequence Length
Given the input image size of 224, the ResNet backbones used for our experiments always
produce 14 × 14 = 196 local features per image. We follow the approach in [12] and select
only features with an attention score greater than the median score of the last training
epoch. Since the median score is calculated over the whole training epoch, different
images will use a different number of local features (even when the overall number is
close to half of all possible features). Figure 6.13 shows that distribution.
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Figure 6.13: Distribution of the number of local features selected for re-ranking. For the
SOP dataset without any MI estimation.

Figure 6.14 shows how restricting the maximum sequence length (and thus the number
of local features) that RRT can use influences its retrieval performance. Unsurprisingly,
shorter sequences deteriorate performance as the model has less information to work
with. Note that local features are exported in decreasing order of their attention scores,
so the ‘most important’ features (as determined by the attention module of the feature
extractor) are kept the longest in this experiment. Restricting the sequence to 50 tokens
already leads to a re-ranking performance worse than global-only retrieval (for ResNet-18,
subfigure 6.14a). As the global feature is included in the sequence, this suggests that RRT
uses the information of the global feature very inefficiently since it encodes both feature
types with only 128 dimensions (down from 512 for the global feature from ResNet-18).
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6. Results
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Figure 6.14: Re-ranking performance improvements when re-ranking using RRT depend-
ing on the maximum usable sequence length. For the SOP dataset with minimization
using MINE.
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CHAPTER 7
Conclusion

A common image retrieval setup uses two types of representations for re-ranking: global
and local features. This thesis proposes a novel system that explicitly models the
information-theoretic relationship between these representations. This approach is related
to the information bottleneck and multi-view representation learning. We integrate
a mutual-information-based loss term into our model objective to reduce redundant
information between global and local features.

We demonstrated how a retrieval system can measure and minimize mutual information
between feature types. Two different methods of estimation MI and for re-ranking have
been evaluated. We performed experiments on standard image retrieval benchmarks and
showed that penalizing mutual information improves re-ranking performance on some
datasets.

7.1 Research Questions

RQ1: How can we measure and minimize mutual information between global
and local features for image retrieval?
Section 6.2 detailed the minimization of mutual information. We used MINE [8]
and Rényi’s α-order matrix-based functional [53] to estimate and minimize MI
between global and local features.
Can we observe mutual information between global and local features?
Yes, to validate the premise of this thesis, we already showed measurements of
mutual information with figure 1.1 in the introduction.
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7. Conclusion

Can (neural) mutual information estimation adequately minimize mutual
information?

Both methods are capable of minimizing mutual information. Since MINE optimizes
a lower bound, its training objective is opposed to our mi minimization objective.
While we showed that it is possible to use it for our application, increasing β values
makes the reduction less and less efficient. We discussed these caveats in section
6.2.1. This can also be observed in our direct comparison on the SOP dataset
(figure 6.2b) where Rényi is able to minimize MI more efficiently for higher β values.

A further downside of MINE is its far slower training time. Our implementation
requires multiple training epochs for the auxiliary network for each epoch of
the actual feature extractor. Training MINE can be unstable, and its estimates
exhibit a high variance. Additionally, since we use it for minimization and not for
maximization, we need multiple epochs for the signal to recover sufficiently. We
discussed this in our implementation section 4.3.1.

In section 6.3, we showed improvements in re-ranking with local descriptors that
have minimized mutual information with the global descriptor. A direct comparison
between the two methods was made on the SOP dataset (figure 6.11. The results are
inconclusive, and both methods perform at a similar level. However, our experiment
on ROxf and RPar when MI is estimated using Rényi showed promising results
(figure 6.10). Training for these benchmarks was performed on GLDv2, the largest
dataset we used. Due to computational restraints, we did not evaluate MINE on
this dataset.

In summary, Rényi’s α-order matrix-based functional is better able to minimize
mutual information, performs on par with MINE in terms of re-ranking performance,
and is able to do so with ∼ 20× faster training for our experiments.

RQ2: How does minimizing mutual information between global and local
features affect the local features?

In our implementation, we use the attention-pooled version of the local features
to minimize mutual information. Section 6.2.3 showed how the attention module
behaves with increasing MI penalty. MINE had a moderate, and Rényi strongly
affected the attention scores associated with local features.

RQ3: How does minimizing mutual information between global and local
features affect re-ranking performance?

We compared two approaches to re-ranking: Geometric verification, which calculates
the final ordering based solely on local features, and RRT [62], which also encodes
the global feature vector into its input sequence. We hypothesized that geometric
verification is affected negatively by minimizing MI since it does not use information
from the global descriptor. In section 6.3, we presented the results of our re-ranking
experiments.
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7.2. Limitations & Future Work

Does minimizing mutual information affect the two approaches differ-
ently?
RRT generally performs better than geometric verification (validating the results
of [62]) but exhibits more variance in its performance. However, both methods
exhibit similar behavior with an increasing β penalty factor: First, the re-ranking
improvement increases and then declines after a peak is reached. Figure 6.10 shows
this well for the ROxf and RPar benchmark datasets. For the SOP dataset, the
results are inconclusive. This invalidates our hypotheses about the importance of
the global descriptor for our tested re-ranking methods. Restricting the number
of local features usable for re-ranking with RRT suggests that RRT is not able to
efficiently use the information of the global descriptor either (discussed in section
6.3.1). This could additionally explain the similar behavior of both methods and
can be considered a limitation of our experimental setup.
Does minimizing mutual information improve re-ranking performance?
Figure 6.10 shows that a moderate penalty on mutual information improves re-
ranking performance. Increasing the penalty further deteriorates it.

7.2 Limitations & Future Work
Our experimental setup is easily extendable to other methods of mutual information
estimation. E.g., NWJ [42] or NCE [65] can be considered as drop-in replacements for
MINE [8] but were not evaluated due to computational restraints.

Using lower bounds to minimize MI works but is suboptimal. It requires multiple training
epochs of the auxiliary estimation networks not to overpower the estimation networks’
objective. [15] propose a promising upper bound instead, simplifying joint training with
our feature extractor.

Rényi’s α-order matrix-based functional [53] cannot be applied to CNNs in a meaningful
way [80]. As such, we only applied the method to the attention-pooled local features,
which is a single high-dimensional vector. While our general methodology is agnostic
to model architecture, the univariate Rényi’s estimation limits our implementation to
architectures similar to DELG [12]. [74] propose an approach based on tensor kernels that
can measure mutual information of CNN feature maps. This would allow removing the
attention module as an intermediary step and to gain further insights into the relationships
of mutual information inside the feature extractor. Instead of optimizing on pooled local
features, they could instead be selected by the objective I(Zlc; Y ) − βI(Zlc; Zg). [80]
propose something similar for the information bottleneck.

We follow the approach in DELG [12] and block the propagation of gradients from the
local feature path into the backbone. As a result, reducing mutual information can only
affect the attention module and the dimensionality reduction layer. We discussed this in
section 6.2.3. A more powerful model for the local feature head would allow for a greater
influence of our method on the local feature representations.
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7. Conclusion

While the re-ranking approach of RRT includes the global descriptor, it does not use this
information efficiently as it embeds the descriptor into a much smaller feature space. An
improved architecture could increase the re-ranking performance.

A limitation of our experimental setup is the exportation step between our feature
extractor and re-ranking with RRT. The features are fixed for training the re-ranking
model because data augmentation cannot be applied to the training data, which decreases
the performance and generalizability of the re-ranking model. A joint architecture would
further allow fine-tuning of the feature extractor, which has been shown to improve
performance [62].
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APPENDIX A
Retrieval Results for Individual

Runs

Table A.1: Retrieval results for individual runs on ROxf and RPar using Rényi.

Seed MAP ROxf MAP RPar
β Extractor RRT Global GV RRT Global GV RRT

0.0 0 0 40.90 43.49 48.63 75.92 75.92 76.62
0.0 0 1 40.90 43.49 35.23
0.0 1 0 47.00 47.93 52.43 77.79 77.62 78.32
0.0 1 1 47.00 47.93 37.93
0.0 2 0 40.19 47.53 48.68 75.99 76.32 77.22
0.0 2 1 40.19 47.53 34.00
0.0 3 0 42.65 45.29 54.96 74.29 74.29 75.37
0.0 3 1 42.65 45.29 38.83
0.0 4 0 43.94 45.97 52.08 75.10 75.38 75.81
0.0 4 1 43.94 45.97 36.64
0.005 0 0 39.53 46.66 49.08 75.18 75.48 75.75
0.005 0 1 39.53 46.66 50.57
0.005 1 0 42.07 46.29 48.91 75.16 75.32 76.04
0.005 1 1 42.07 46.29 51.93
0.005 2 0 40.51 47.76 32.79 74.97 75.28 75.96
0.005 2 1 40.51 47.76 50.28
0.005 3 0 40.51 45.44 53.63 74.51 74.56 75.54
0.005 3 1 40.51 45.44 54.06
0.005 4 0 41.92 46.20 51.07 74.33 74.72 75.31
0.005 4 1 41.92 46.20 52.09
0.01 0 0 44.86 48.33 50.69 75.51 75.77 76.03

63



A. Retrieval Results for Individual Runs

Table A.1: Retrieval results for individual runs on ROxf and RPar using Rényi.

Seed MAP ROxf MAP RPar
β Extractor RRT Global GV RRT Global GV RRT

0.01 0 1 44.86 48.33 53.97
0.01 1 0 43.29 45.81 52.93 74.43 74.63 75.64
0.01 1 1 43.29 45.81 52.08
0.01 2 0 42.52 45.30 54.10 75.69 75.91 77.00
0.01 2 1 42.52 45.30 50.70
0.01 3 0 42.82 47.22 54.20 74.17 74.43 75.13
0.01 3 1 42.82 47.22 53.33
0.01 4 0 39.46 45.62 53.44 75.49 75.32 76.52
0.01 4 1 39.46 45.62 52.19
0.02 0 0 41.58 46.71 50.68 74.64 75.00 75.93
0.02 0 1 41.58 46.71 47.84
0.02 1 0 42.29 47.57 52.72 73.45 73.66 74.42
0.02 1 1 42.29 47.57 54.79
0.02 2 0 42.01 45.42 52.64 75.24 75.32 75.79
0.02 2 1 42.01 45.42 46.64
0.02 3 0 41.20 45.20 52.51 75.56 75.47 76.22
0.02 3 1 41.20 45.20 48.60
0.02 4 0 43.75 45.60 52.53 74.76 74.83 75.52
0.02 4 1 43.75 45.60 52.49
0.05 0 0 44.04 48.99 54.80 75.22 75.22 75.94
0.05 0 1 44.04 48.99 35.72
0.05 1 0 40.57 48.02 50.76 74.54 74.42 75.36
0.05 1 1 40.57 48.02 53.88
0.05 2 0 43.57 46.23 51.60 76.57 76.73 77.62
0.05 2 1 43.57 46.23 43.66
0.05 3 0 39.75 44.75 52.38 73.14 73.10 73.97
0.05 3 1 39.75 44.75 49.35
0.05 4 0 41.83 46.70 33.88 77.94 77.83 76.51
0.05 4 1 41.83 46.70 52.37

Table A.2: Retrieval results for individual runs on SOP using Rényi

MAP@100 R@1 R@10
β Seed Global GV RRT Global GV RRT Global GV RRT
0.0 0 61.75 64.71 69.32 72.0 74.7 77.38 85.4 87.5 88.44
0.0 1 59.77 63.53 68.67 71.3 74.4 76.66 85.1 87.9 88.10
0.0 2 60.97 63.92 65.56 72.4 74.3 75.14 86.1 88.8 87.05
0.0 3 60.40 64.39 67.75 72.9 74.6 75.93 85.7 88.4 87.93
0.0 4 61.25 64.62 68.92 72.8 74.7 76.65 85.6 88.6 88.58
0.005 0 60.64 64.16 69.66 71.8 74.1 77.25 85.9 88.4 88.77
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Table A.2: Retrieval results for individual runs on SOP using Rényi

MAP@100 R@1 R@10
β Seed Global GV RRT Global GV RRT Global GV RRT
0.005 1 60.53 64.25 67.85 72.5 75.1 76.61 85.4 86.9 87.91
0.005 2 61.51 64.55 66.93 73.7 74.8 75.73 86.3 88.8 87.92
0.005 3 61.17 64.16 69.33 72.5 74.1 77.37 86.6 87.6 88.49
0.005 4 60.92 63.70 69.46 72.8 73.8 77.04 85.8 88.3 88.59
0.01 0 62.36 64.21 68.34 74.3 74.1 76.73 86.4 88.6 88.14
0.01 1 60.54 64.35 68.90 71.8 74.5 77.12 84.8 87.5 88.44
0.01 2 60.64 64.87 67.06 72.6 75.7 75.66 85.5 89.2 87.80
0.01 3 61.18 64.61 66.32 72.1 74.7 75.13 86.4 88.3 87.21
0.01 4 60.18 64.06 69.24 70.6 73.5 76.69 85.3 88.3 88.36
0.02 0 60.33 63.39 68.81 71.5 72.2 76.55 85.1 87.6 88.21
0.02 1 60.65 64.51 68.36 72.1 74.3 76.58 85.4 88.3 88.22
0.02 2 60.94 64.34 66.87 72.1 74.4 75.58 86.2 88.5 87.66
0.02 3 60.49 64.43 69.07 71.5 74.2 76.87 85.5 88.6 88.48
0.02 4 60.43 63.10 69.08 71.8 73.2 77.26 85.5 87.6 88.27
0.05 0 61.49 65.01 67.47 72.6 75.1 76.29 85.0 88.9 87.86
0.05 1 60.45 64.38 68.70 71.7 74.6 76.45 85.7 88.1 88.42
0.05 2 60.74 63.66 66.52 73.1 73.4 75.16 85.4 88.0 87.44
0.05 3 61.65 65.22 68.15 72.5 74.6 76.41 86.9 88.3 88.17
0.05 4 60.86 63.89 69.01 72.0 73.3 76.76 84.9 87.8 88.41
0.1 0 61.98 64.81 69.49 73.8 74.6 77.46 85.4 88.2 88.44
0.1 1 60.45 64.36 68.70 71.9 73.7 76.92 85.7 88.2 88.39
0.1 2 60.62 64.05 68.23 71.5 73.7 76.34 85.0 88.4 88.22
0.1 3 60.68 64.08 67.86 72.4 74.4 75.99 85.8 88.3 88.14
0.1 4 60.51 64.41 67.84 72.2 74.4 76.50 85.7 88.6 88.16
0.2 0 60.92 64.07 68.59 71.9 73.5 76.55 85.2 87.7 88.25
0.2 1 61.08 63.96 67.19 73.0 73.9 76.15 85.8 88.9 87.98
0.2 2 60.96 63.43 67.20 72.1 72.3 75.68 86.6 87.5 87.83
0.2 3 61.38 64.59 68.08 73.1 74.7 76.35 86.0 88.6 88.06
0.2 4 61.06 63.25 68.26 72.7 72.9 76.34 84.7 87.2 88.21

Table A.3: Retrieval results for individual runs on SOP using MINE

Seed MAP@100 R@1 R@10
β Extr. RRT Glob. GV RRT Glob. GV RRT Glob. GV RRT
0.0 0 0 61.60 64.60 69.95 72.6 74.0 77.72 85.9 88.6 88.76
0.0 0 1 61.60 64.60 68.15 72.6 74.0 77.00 85.9 88.6 88.25
0.0 0 2 61.60 64.60 70.81 72.6 74.0 78.50 85.9 88.6 89.08
0.0 1 0 60.95 64.55 67.08 71.9 75.0 76.12 86.2 88.2 87.84
0.0 1 1 60.95 64.55 68.56 71.9 75.0 76.88 86.2 88.2 88.42
0.0 1 2 60.95 64.55 69.24 71.9 75.0 77.39 86.2 88.2 88.63
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A. Retrieval Results for Individual Runs

Table A.3: Retrieval results for individual runs on SOP using MINE

Seed MAP@100 R@1 R@10
β Extr. RRT Glob. GV RRT Glob. GV RRT Glob. GV RRT
0.0 42 0 61.80 64.69 67.22 73.7 74.6 76.22 85.6 89.6 87.70
0.0 42 1 61.80 64.69 69.98 73.7 74.6 77.77 85.6 89.6 88.88
0.0 42 2 61.80 64.69 68.26 73.7 74.6 76.77 85.6 89.6 88.10
0.005 0 0 61.44 64.43 69.58 71.7 74.1 77.57 86.6 89.1 88.70
0.005 0 1 61.44 64.43 66.68 71.7 74.1 75.51 86.6 89.1 87.65
0.005 0 2 61.44 64.43 69.58 71.7 74.1 77.48 86.6 89.1 88.88
0.005 1 0 60.54 63.31 67.49 72.9 73.7 76.05 86.3 88.6 88.00
0.005 1 1 60.54 63.31 69.42 72.9 73.7 77.72 86.3 88.6 88.64
0.005 1 2 60.54 63.31 68.23 72.9 73.7 76.85 86.3 88.6 88.59
0.005 42 0 62.30 65.20 68.39 73.1 74.7 76.99 85.4 87.8 88.15
0.005 42 1 62.30 65.20 67.46 73.1 74.7 76.46 85.4 87.8 87.94
0.005 42 2 62.30 65.20 68.97 73.1 74.7 77.41 85.4 87.8 88.58
0.01 0 0 61.54 64.94 66.55 72.4 73.7 75.59 86.4 88.9 87.67
0.01 0 1 61.54 64.94 68.05 72.4 73.7 76.97 86.4 88.9 87.94
0.01 0 2 61.54 64.94 66.32 72.4 73.7 75.43 86.4 88.9 87.62
0.01 1 0 60.79 65.21 66.91 72.4 76.8 75.99 85.4 88.3 87.74
0.01 1 1 60.79 65.21 67.77 72.4 76.8 76.38 85.4 88.3 88.07
0.01 1 2 60.79 65.21 70.45 72.4 76.8 78.15 85.4 88.3 89.05
0.01 42 0 61.69 64.03 69.18 74.6 74.0 77.53 86.1 89.2 88.57
0.01 42 1 61.69 64.03 70.05 74.6 74.0 77.68 86.1 89.2 88.88
0.01 42 2 61.69 64.03 59.57 74.6 74.0 69.49 86.1 89.2 85.50
0.02 0 0 61.36 64.59 69.32 72.9 73.8 77.52 85.7 88.8 88.54
0.02 0 1 61.36 64.59 68.43 72.9 73.8 77.16 85.7 88.8 88.21
0.02 0 2 61.36 64.59 71.25 72.9 73.8 78.67 85.7 88.8 89.31
0.02 1 0 60.63 63.86 67.70 72.2 74.8 76.47 85.2 88.1 88.05
0.02 1 1 60.63 63.86 69.07 72.2 74.8 77.22 85.2 88.1 88.50
0.02 1 2 60.63 63.86 68.56 72.2 74.8 76.86 85.2 88.1 88.48
0.02 42 0 61.71 64.71 69.11 72.9 74.7 77.21 85.9 88.5 88.32
0.02 42 1 61.71 64.71 68.52 72.9 74.7 76.74 85.9 88.5 88.38
0.02 42 2 61.71 64.71 69.54 72.9 74.7 77.41 85.9 88.5 88.61
0.05 0 0 61.49 64.13 66.68 72.9 73.7 75.70 86.9 88.2 87.48
0.05 0 1 61.49 64.13 61.10 72.9 73.7 71.14 86.9 88.2 85.86
0.05 0 2 61.49 64.13 68.65 72.9 73.7 76.98 86.9 88.2 88.36
0.05 1 0 61.51 63.83 68.99 72.9 74.1 77.29 86.3 89.1 88.55
0.05 1 1 61.51 63.83 67.59 72.9 74.1 76.54 86.3 89.1 88.11
0.05 1 2 61.51 63.83 69.57 72.9 74.1 77.51 86.3 89.1 88.84
0.05 42 0 61.60 63.69 68.08 73.3 74.3 76.80 86.2 88.3 88.18
0.05 42 1 61.60 63.69 65.87 73.3 74.3 75.40 86.2 88.3 87.42
0.05 42 2 61.60 63.69 67.40 73.3 74.3 75.97 86.2 88.3 88.07
0.1 0 0 61.75 63.85 67.70 73.3 74.3 76.68 85.7 87.8 87.93
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Table A.3: Retrieval results for individual runs on SOP using MINE

Seed MAP@100 R@1 R@10
β Extr. RRT Glob. GV RRT Glob. GV RRT Glob. GV RRT
0.1 0 1 61.75 63.85 67.02 73.3 74.3 75.98 85.7 87.8 87.86
0.1 0 2 61.75 63.85 68.89 73.3 74.3 77.37 85.7 87.8 88.61
0.1 1 0 61.21 63.48 65.58 72.6 73.7 74.99 86.2 88.3 87.40
0.1 1 1 61.21 63.48 67.94 72.6 73.7 76.38 86.2 88.3 88.28
0.1 1 2 61.21 63.48 64.33 72.6 73.7 73.86 86.2 88.3 87.02
0.1 42 0 61.88 63.56 70.04 73.3 73.4 77.71 86.5 87.8 89.10
0.1 42 1 61.88 63.56 68.93 73.3 73.4 77.02 86.5 87.8 88.67
0.1 42 2 61.88 63.56 67.02 73.3 73.4 76.09 86.5 87.8 87.77
0.2 0 0 60.81 62.95 65.41 72.4 73.2 75.28 86.8 88.9 87.35
0.2 0 1 60.81 62.95 65.59 72.4 73.2 74.98 86.8 88.9 87.68
0.2 0 2 60.81 62.95 66.66 72.4 73.2 75.56 86.8 88.9 88.12
0.2 1 0 61.13 63.20 66.70 72.5 74.1 76.03 86.0 88.0 88.01
0.2 1 1 61.13 63.20 65.87 72.5 74.1 75.05 86.0 88.0 87.94
0.2 1 2 61.13 63.20 66.77 72.5 74.1 75.75 86.0 88.0 88.09
0.2 42 0 61.48 63.17 65.12 72.6 74.2 75.19 86.0 87.3 87.29
0.2 42 1 61.48 63.17 64.96 72.6 74.2 74.50 86.0 87.3 87.48
0.2 42 2 61.48 63.17 65.88 72.6 74.2 74.95 86.0 87.3 87.74
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Übersicht verwendeter Hilfsmittel

Während des Schreibprozesses habe ich die Anwendung ChatGPT1 in Form des GPT-4 KI
Modells verwendet. Die Verwendung fand in eingeschränkter Form als erste Orientierung
und Inspiration statt. Ich habe die Anwendung nicht für das Ausfindigmachen von
Literatur verwendet. Um das Problem von “Halluzinationen” und falschen Antworten
einzuschränken, habe ich zusätzlich zu textuellen Anfragen an die Anwendung die zu
verwendenden Quellen direkt als Datei hochgeladen. Mir nicht geläufige Fakten habe ich
stets mit diesen Quellen abgeglichen und im Einklang mit dem üblichen akademischen
Prozesses gekennzeichnet.

Des Weiteren habe ich zur Prüfung von Rechtschreibung und Grammatik die Anwendung
Grammarly2 verwendet. Da diese auch die Umformulierung von Sätzen unterstützt,
führe ich sie hier als Generative KI Anwendung an. Die explizit als “Generative AI”
gekennzeichnete Funktion der Anwendung habe ich jedoch nicht verwendet. Diese würde
das Generieren und Umschreiben von Textbausteinen basierend auf einer textuellen
Eingabe unterstützen.

1https://chatgpt.com/
2grammarly.com
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