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Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Anomaly Detection in Redundant
Sensor Systems

A Comparative Study Using Photovoltaic Power
Plant Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Alexander Stefitz, BSc
Registration Number 11817192

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Ivona Brandić
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Kurzfassung

In den letzten Jahren gab es weltweit erhebliche Fortschritte beim Ausbau der Ener-
gieerzeugung durch Photovoltaik (PV), und dieser Trend wird voraussichtlich auch in
Zukunft anhalten. Um den Betriebszustand und die Effizienz eines großen PV-Kraftwerks
zu überwachen, wird die Sonneneinstrahlung mithilfe redundanter Sensoren an verschie-
denen Standorten am Kraftwerksgelände gemessen. Diese Daten werden genutzt, um
festzustellen, ob die tatsächliche Leistung des Kraftwerks den Erwartungen entspricht
oder ob Probleme vorliegen, welche die Leistung beeinträchtigen. Allerdings können auch
die Messgeräte selbst fehlerhaft sein, was zu widersprüchlichen oder uneindeutigen Daten
führt, bei denen unklar ist, welche Messwerte der Realität entsprechen.

An diesem Punkt setzt diese Arbeit an. Es werden zwei Methoden zur Validierung und
Fehlererkennung in den Messdaten der Sensoren verglichen. Grundlage der Analyse sind
die Messdaten von zwei großen PV-Kraftwerken in Europa, die im Zeitraum von Jänner
2023 bis Juli 2024 erhoben wurden. Da die Anzahl der fehlerhaften Messdaten nicht
ausreichend war, wurde ein Framework mit künstlich erzeugten Anomalien eingesetzt,
die auf real auftretenden Problemen basieren, um die Methoden zu evaluieren.

Mit PRADA wird eine neue Methode zur Fehlererkennung in redundanten Sensorsyste-
men vorgestellt. Dabei wird eine Regression zwischen jeweils zwei Sensoren durchgeführt
und anhand des Regressionskoeffizienten das Verhalten der Sensoren bewertet. Dieses
Verhalten wird über mehrere Tage hinweg beobachtet, um festzustellen, ob ein Sensor
fehlerhaft ist. PRADA zeichnet sich durch Flexibilität, Transparenz und geringe Anforde-
rungen an die Hardware aus. Als Vergleichsverfahren dient ein LSTM-Autoencoder, eine
etablierte Methode zur Anomalieerkennung.

In verschiedenen Experimenten erzielt PRADA konstant hohe Erkennungsraten mit
einem F1-Score zwischen 0.94 und 0.975. Damit übertrifft PRADA in fünf von sechs
Experimenten das Ergebnis des LSTM-Autoencoders, welcher mit einem F1-Score zwi-
schen 0.84 und 0.97 weniger konsistente Ergebnisse liefert. Darüber hinaus kann PRADA
deutlich schneller trainiert werden. Bei der Anwendung befinden sich die Laufzeiten
beider Methoden in der gleichen Größenordnung, wenn für den LSTM-Autoencoder eine
GPU verwendet wird, ohne GPU zeigt PRADA signifikant kürzere Laufzeiten.
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Abstract

In recent years, there has been significant progress globally in the expansion of photovoltaic
(PV) energy generation, and this trend is expected to continue in the future. To monitor
the operational status and efficiency of an utility-scale PV power plant, solar irradiance
is measured using redundant sensors located at different locations on the site of the
plant. This data is used to determine whether the electric power of the plant meets
the expectations or if there are issues affecting its performance. However, the sensors
themselves can sometimes malfunction, leading to inconsistent or ambiguous data where
it is unclear which measurements reflect reality.

This is where this work comes in. It compares two methods for validating and detecting
anomalies in the sensor data. The analysis is based on irradiance data collected from
two utility-scale PV power plants in Europe between January 2023 and July 2024. Since
the number of occurrences of anomalies in the data was insufficient, a framework with
artificially generated anomalies, based on real-world anomalies, was used for evaluation.

With PRADA, a new method for anomaly detection in redundant sensor systems is
introduced. It performs regressions between pairs of sensors, and based on the regression
coefficient, evaluates the behaviour of the sensors. This behaviour is monitored over
several days to determine whether a sensor is faulty. PRADA is characterized by its
flexibility, transparency, and low hardware requirements. An LSTM Autoencoder is used
as the comparison method, which is an established method for anomaly detection.

In various experiments, PRADA consistently achieves high detection rates with an F1
score between 0.94 and 0.975. PRADA outperforms the LSTM Autoencoder in five out
of six experiments, where the LSTM Autoencoder produces less consistent results, with
an F1 score ranging from 0.84 to 0.97. Furthermore, PRADA can be trained significantly
faster than the LSTM Autoencoder. During execution, the runtimes of both methods are
comparable when a GPU is used for the LSTM Autoencoder. Without a GPU, PRADA
shows significantly shorter runtimes.
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CHAPTER 1
Introduction

In recent years, there has been considerable growth in the global expansion of electricity
generation through photovoltaics. Between 1998 and 2015, the global installed capacity
increased by an average of 38% per year [1]. This trend has accelerated even further in
recent years, with Austria seeing a 69% increase in total installed capacity from 2022 to
2023 [2]. It is expected that the global installed capacity will exceed 2 terawatts by 2024,
even though the 1 terawatt mark was only exceeded in 2022 [3]. This significant increase
can likely be attributed to two reasons:

On one hand, many industrialised nations worldwide have set ambitious goals to rely
more on renewable energy sources to reduce greenhouse gas emissions and combat climate
change. In some cases, there are even binding obligations or agreements, such as the Paris
Climate Agreement, which aims to limit the increase in the global average temperature to
well below 2°C. In this context, great hopes are placed on wind power and photovoltaics,
since these have more growth potential than other energy sources and are also cheaper and
faster to build [4]. There are also high growth rates and great potential for photovoltaics
in developing countries, where population growth, urbanisation and industrialisation
continue to drive a rapid increase in energy demand. This increase can be quickly and
easily satisfied with photovoltaics, especially since many of these countries are located in
geographical locations with a lot of potential for the use of solar energy [5].

The second crucial reason for this growth is the price drop of photovoltaic panels and
other required components such as inverters. The average cost of a PV power plant,
for example, has fallen from $5.12/Wp in 2010 to $0.88/Wp in 2022, both based on
2022 purchasing power [4]. In the years prior to 2010, prices were even higher. In
Germany, prices for rooftop-systems dropped by 90% from 1990 to 2023 [6]. In 2023, the
International Energy Agency stated that, under some circumstances, photovoltaic is the
cheapest source of electricity in history [7].
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1. Introduction

The energy crisis in the years 2021-2023 has further accelerated this trend: As a result,
the price of electricity also increased considerably [8], which has significantly reduced
the payback period of renewable energy sources and thus motivated investment in these
forms of energy.

However, as the number of PV power plants continues to grow, so does the need to
maintain them. For the power plant operator, this is essential to avoid a loss of income.
However, it also serves the general public, which benefits from a more stable power grid
when power plants do not experience failures.

The performance of photovoltaic power plants depends on the incoming irradiance, which
is converted into electricity by the photovoltaic cells. Compared to other power plants,
especially fossil fuel power plants, PV power plants are relatively simple in design. In
addition, PV power plants scale not by increasing the size of individual components,
as it is common with other power plants, but by increasing the number of components
[9]. Therefore, larger power plants typically use the same components, only in greater
quantities.

However, the ability of PV power plants to independently detect irregularities in operation
or to assess their own efficiency is limited. To do so, it is required to know environmental
variables, primarily irradiance. This knowledge can then be used to assess whether the
electricity production fits the given circumstances [10]. If the production is lower than
expected, this is a sign that some parts of the power plant are not working correctly.

Therefore, it is common to install sensors at different locations on site which measure
the irradiance and other environmental variables [11]. The number of sensors installed
depends on the size of the power plant. On the one hand, it is desirable to install as few
sensors as possible to save costs. On the other hand, multiple sensors are necessary to
be better protected against failures and to take different conditions within the power
plant (e.g. different orientations of the panels, shading) into account. In any case, the
expectation is that all sensors having the same orientation also measure the same values.
This is called redundant sensor setup. Furthermore, there are standards that recommend
a certain number of sensors depending on the size of the power plant [12].

However, this leads to a new problem: In order to use the measurement data of the
environmental variables to monitor the state of the power plant, these must be considered
to be correct. Otherwise, it is not clear whether a possible discrepancy between the
measurement data and the power produced occurs due to a problem with the power plant
or due to incorrect measurement data. Furthermore, it is possible that the redundant
sensor setup produces ambiguous values and it is not clear which of the measurements
can be trusted.

This is where this work steps in: It aims to develop and evaluate methods that verify and
validate the measurement data of the environmental variables by performing anomaly
detection so that their correctness can be assumed for further monitoring of the entire
power plant. Irradiance measurements are used as a use case within this work.
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Two methods have been explored in this thesis: PRADA is a novel method, an LSTM
Autoencoder serves as comparison method. PRADA focuses very strongly on the redun-
dancy of the sensors, implying that the measurements should be very similar. This is
verified by performing a regression between the measurements of each pair of sensors.
It also checks whether the behaviour of sensors has changed over time. PRADA is also
characterised by transparency and traceability as well as low hardware requirements. The
LSTM Autoencoder combines an Autoencoder, a proven method in the field of anomaly
detection in various applications [13, 14, 15, 16], with an LSTM network, a deep learning
model widely used for time series data [17]. It tries to learn the correct behaviour of
data by encoding it and then reconstructing it again. The size of the reconstruction error
can then be used to assess whether the data shows the usual behaviour or contains an
anomaly. In contrast to PRADA, it focuses less on the direct comparison of two sensors,
and more on the inspection of the general behaviour of the data. As a deep learning
model, the LSTM Autoencoder is a black box model and it can be difficult to understand
the behaviour in detail. Furthermore, the hardware requirements are usually higher.

The two proposed methods are evaluated using real-world data from two utility-scale
power plants in Europe. They both have a redundant sensor setup for measuring
irradiance, but differ in the number and orientation of sensors. Due to a scarcity of
anomalies in the real-world data, a framework of artificial anomalies is introduced in this
thesis. These artificial anomalies are based on the anomalies found in the real-world data,
as well as on reports from experts and literature [18, 19, 20]. They enable a significantly
more accurate evaluation compared to using only the few anomalies present in the data.

Generally, the evaluation is performed using the F1 score, but also other factors are taken
into account: Undetected anomalies are examined more closely to determine weaknesses
of the methods, and the runtimes for training and applying the methods are assessed.
Finally, an experiment with Transfer Learning is carried out to determine whether it is
necessary to operate a separate model for each power plant. Various experiments have
shown that the novel approach PRADA is superior for the given problem: In five out
of six situations, it was able to achieve a higher F1 score than the LSTM Autoencoder.
Furthermore, it proved to be more easily applicable. However, both methods have
different strengths and weaknesses and the exact situation must be taken into account.
Additionally, PRADA proved to be more stable against changes in hyperparameters, as
well as when applied to data from a new, previously unknown location.

This thesis is structured as follows: Chapter 2 presents and discusses the background of this
research, and also introduces the considered power plants and artificial anomalies. This is
followed by Chapter 3, where relevant and related literature is presented. Chapter 4 and
Chapter 5 present the considered approaches and all parts of their workflow. Chapter 6
presents the setup of the comparative study, which includes a descriptive analysis of the
data and its preprocessing steps, as well as the exact implementation of the artificial
anomalies. The results and relevant findings are presented in Chapter 7, where Section 7.6
provides a short summary of all numerical results. Chapter 8 concludes the work and
provides an outlook on further research that can be conducted based on this thesis.
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CHAPTER 2
Background and Motivation

Photovoltaics refers to the conversion of light energy in the form of sunlight into electrical
energy. This is achieved by using semiconductor materials that exhibit the photovoltaic
effect: Light irradiation releases electrons, creating an electrical current. The photovoltaic
cells used today are usually silicon-based, but materials research is constantly working
on other promising approaches that could lead to lower prices and greater efficiency [21].

2.1 Large-Scale Photovoltaic Power Plants
When it comes to generating electricity using photovoltaics, a distinction is made between
distributed solar and utility-scale solar [9, 10]:

• Distributed Solar refers to installations on the roofs of single-family homes,
apartment buildings, commercial buildings or factory halls. This category also
includes implementations such as parking lot canopies. This means that they are
often a desirable additional use or source of income alongside the main purpose
of the property. As a result, power plants of this type are very space-saving and
prevent the creation of further impervious surfaces.
However, the growth of distributed solar is limited because there are only a limited
number of suitable buildings, and not all theoretically available sites are economically
viable. The size of individual plants is therefore limited, so that the output is
usually between a few kWp and a few MWp. The p in kWp and MWp stands for
peak and refers to the nominal output that the plant can achieve under standard
test conditions. In practice, the actual output is almost always lower.

• Utility-Scale Solar refers to systems that are installed in open areas such as
fields, deserts or other large areas of land. Sometimes they can be combined with
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2. Background and Motivation

agriculture (e.g. animal farming) but usually they are characterised by power
generation as their main use.
Since there is no limitation due to roof space or similar, these can be designed to
be significantly larger than distributed solar systems. Even small power plants
of this type usually have an output of several MWp, and power plants with an
output of more than 1 GWp have been in existence for several years [22]. In 2024,
the currently largest plant, with a capacity of 3.5 GWp, was put into operation in
China [23].

In the US, it is estimated that in 2022 63% of the installed capacity was provided by
utility-scale solar, in this case defined as having more than 5 MWp and ground-mounted
modules [24]. In the future, this is expected to shift further in favour of utility-scale
solar, with an expected share of 73% by 2033.

Globally, however, the influence of distributed solar should not be underestimated: The
share of utility-scale solar in 2022 was 57%, which was the lowest value since 2012. This
is certainly also due to the many subsidies that governments have offered around this
time [25]. Given those numbers, it can be assumed that both types of photovoltaic power
plants will be relevant in the future.

Photovoltaic power plants are very simple compared to other types of power generation,
especially compared to fossil fuel power plants, and consist of relatively few different
components [26]. Figure 2.1 gives an overview about those: The lowest level shows single
panels, while the top represents the whole power plant.

PV Park

Transformer
...

Inverter
...

MPPT
...

String
...

...
PV Panels
in series

Figure 2.1: Typical structure of a PV power plant

Figure 2.1 should be read from bottom to the top: A low double-digit number of PV
panels are connected in series and form a string. One or more of these are connected
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2.2. Monitoring of Photovoltaic Power Plants

to an MPPT, which stands for Maximum Power Point Tracker. This device optimises
voltage and current so that the strings are operated at the Maximum Power Point (MPP),
i.e. the point with the highest power.

One or more MPPTs are then connected to an inverter, which converts the direct current
(DC) generated by the panels into alternating current (AC). However, the voltage is
usually still too low to be fed into the grid, which is why a transformer is needed to bring
the voltage up to the required level.

Even though different power plants can vary greatly in terms of power and size, the
structure is more or less always the same. Often, especially for small power plants, it is
common for certain components to be combined, for example MPPT and inverter [26].
Furthermore, it is possible to omit the transformer if the electricity is not fed into the
high-voltage grid but into the normal household grid.

It is also important to emphasise that photovoltaic power plants do not scale by increasing
the size or capacity of individual components, but rather by increasing their quantity. A
larger power plant will therefore have more panels, more strings, and more MPPTs, but
typically uses the same types of components found in smaller systems.

2.2 Monitoring of Photovoltaic Power Plants
The operator of a photovoltaic power plant not only has to build it, but is also responsible
for its maintenance. Compared to other power plants, PV power plants are relatively
low-maintenance [9]. Even large power plants are usually not staffed. Still, it may happen
that parts of the power plant do not operate correctly, especially after a few years of
operation. In such cases, the power plant must be inspected on site and parts of it may
need to be replaced. However, because the power plants are often located in remote
areas, as much monitoring as possible should be done remotely and an employee should
only travel to the power plant if there is a confirmed problem [26].

It is therefore common for larger power plants to continuously record and collect operating
data that can be used to draw conclusions about the condition of the power plant [11].
There are recommendations about how this monitoring process is implemented [12].
However, the exact implementation of this is arbitrary and varies depending on the
operator, size and time of construction.

For some components such as MPPT, inverters or transformers, monitoring procedures
based on operational values are available which allows the detection of failures such as
electronic defects or overheating parts without additional data or measurements: [27]
provides an exhaustive review about different possibilities. The components of some
manufacturers are capable of detecting certain problems on their own [28].

However, there is still a fundamental problem that cannot be detected in this way:
Without external information, a power plant can not know whether the power produced
corresponds to the meteorological conditions on site: The power plant is therefore not
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2. Background and Motivation

able to evaluate its current efficiency and it is therefore theoretically possible that on a
clear day in the middle of summer, the power plant only produces half of its theoretically
possible output, but is considered fully functional because it is not aware of this deviation
from the target value and all the observed operating parameters are within the normal
range.
Therefore, in order to be able to make a statement about the efficiency of the power plant,
environmental variables must be measured. Usually, a selection of different variables is
recorded [27], but irradiance is the most important one. These measurements can then be
used to calculate the theoretically achievable power output. If this deviates significantly
from the actual production, it is likely to indicate a problem.

2.3 Measuring Irradiance
Irradiance can be defined as the amount of radiant flux incident on a given surface area,
either real or imaginary, and is typically expressed in units of W

m2 [29]. Different devices
can be used to measure irradiance, the two most known ones being pyranometers (shown
in Figure 2.2) and silicon sensors. The first ones are considered to be more accurate, but
also having downsides like higher costs and longer response times [30].

Figure 2.2: Pyranometer of type Hukseflux SR20. Image credit: [31]

Irradiance can be measured not only by different types of devices, but also in different
ways [32], including:

• GHI (Global Horizontal Irradiance): Total solar irradiance on a horizontal
surface, including diffused light.

• DNI (Direct Normal Irradiance): Solar irradiance directly from the sun on a
perpendicular surface.

• DHI (Diffuse Horizontal Irradiance): Scattered solar irradiance from the sky
on a horizontal surface.

• POA (Plane of Array): Solar irradiance on a tilted surface, including reflected
and shadowed components.

8



2.4. Problem Description

Due to the different measurement techniques, the measured values can differ significantly,
but some of the variables are composed of others and there are methods to convert
measurements between them [33].

For photovoltaic power plants, the Plane of Array Irradiance (at the same angle as the
PV panels) is the most relevant, as this measures exactly the irradiance that reaches the
panels. On the right side of Figure 2.3 one can see a silicon sensor that was installed in
Plane of Array (POA).

Figure 2.3: Photovoltaic panels and a silicon sensor installed in the Plane of Array (POA).
Image credit: [34]

Utility-scale power plants typically feature a redundant sensor setup: This means that
several irradiance sensors are installed at various locations on the site. For each orientation,
there should be at least two sensors which are expected to report the same values, hence
the term redundant. Which irradiance sensors are installed and where they are positioned
on site must be considered during the planning of the power plant, as this is crucial
for reliable operation. Furthermore, these measuring instruments also regularly show
defects, which is why checking and maintaining the sensors is essential [35]. There are
also different norms and recommendations regarding the number of sensors and their
types.

2.4 Problem Description
In the previous sections, it was pointed out that measurements of environmental variables,
especially irradiance, are essential to determine the operating state and efficiency of a
PV power plant. Therefore, sensors are usually installed at the plant site in a redundant
setup to use this measurement data for monitoring.

9



2. Background and Motivation

However, this creates a new problem: How can certainty that the irradiance measurements
are correct be achieved? Only then, correct conclusions about the state of the power
plant can be made, because otherwise it is not known whether the cause of an anomaly is
a problem with the power plant or with the irradiance measurement data. In the worst
case, a problem of the power plant could be accompanied by false measurement data in
such a way that none of them is detected. It is also possible, for example, that several
sensors of the redundant setup measure ambiguous values and it is not clear which of
them are correct.

This thesis aims to solve this problem: Methods which validate the measurements
of the environmental variables and detect irregularities in them should be investigated
and compared. The focus should be on data-driven approaches, i.e. judgements should
be based on available historical and present data, without the use of physical models
or external data. As key variable for photovoltaics, irradiance should be used for the
experiments, but no assumptions should be taken to make methods work only with data
of this variable. The methods under consideration should work in such a way that at
the end of the day, they receive the measurement data from all sensors of the redundant
setup, and then make a statement as to whether all sensors are operating properly. If
this is not the case, the methods should indicate which sensors are anomalous.

To achieve this goal, this work presents the novel approach PRADA, which uses regression
methods to evaluate the behaviour of the sensors. An LSTM Autoencoder serves as
comparison method, which combines an Autoencoder, a proven method in the field of
anomaly detection, with an LSTM network, which is a neural network suitable for time
series data. For the comparative study, irradiance measurements of two power plants
operated by an Austrian energy provider are available. These power plants are located in
Austria and Spain and are both classified as utility-scale power plants. More relevant
information about the two considered power plants can be seen in Table 2.1.

Plant in Austria Plant in Spain
Short name p0 p1
Orientation East (o0) and West (o1) South (o0)
Irradiance sensors 10 (o0_s0-o0_s4, o1_s0-o1_s4) 21 (s0-s20)
Example sensor name p0_o1_s4 p1_o0_s17

Table 2.1: Comparison of the photovoltaic power plants considered in this study

The data availability for p0 ranges from January 2023 to July 2024, while the data for
p1 is only available from mid-April 2023. A descriptive data analysis is presented in
Section 6.1. For all sensors, the measured variable is Plane of Array (POA) irradiance.
The sensors are mainly silicon sensors, but at least one pyranometer per plant and
orientation was installed as well. In this thesis, there is no differentiation between those
two types of sensors, since this would be an additional assumption restricting the use of
the approaches. Also in daily operation, they are usually not handled differently.

With the help of the real data from these two power plants, it is evaluated which of
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the two approaches is better suitable for anomaly detection in the daily operation of a
power plant operator. Primarily, the performance in detecting anomalies is considered.
However, other factors are also included in the evaluation, for example, the simplicity
of implementation, the required computational effort or the applicability to new power
plants.

A major challenge of this work is a scarcity of true anomalies in the available data: The
number of irregularities in the data is low, certainly also due to the fact that both power
plants were only built a few years ago. The existing anomalies are not sufficient to
carry out an objective comparative study of the two methods. Therefore, an alternative
approach is taken, which resulted in the following methodology: After carefully analysing
the available data and performing a descriptive data analysis, all known true anomalies
are completely removed. The complete absence of anomalies can, of course, never be
entirely ruled out, especially if they are so weak that they don’t have a significant impact
and remain undetected. However, for the purposes of this thesis, the assumption of
anomaly-free data is applied from now on.

Afterwards, artificial anomalies are systematically added to the data. For this purpose,
based on the real detected anomalies and reports from literature and domain experts,
three different categories of errors were determined, which occurred or are plausible when
measuring irradiance. Each added anomaly belongs to one of these three categories.
However, a wide range of variation is also possible within the categories in order to be as
realistic as possible. The three error types considered are presented below, together with
the abbreviation used to refer to each type in the next chapters.

• Measurement is constant (const): Instead of delivering measurements repre-
senting the reality, a sensor just reports a constant value over a significant period of
time. This happens regularly in daily operation, since there are various possibilities
for this to happen: For example, a broken measuring element in an otherwise
(from an electronic point of view) functioning sensor, so that no irradiance can
be measured. Another possibility would be a mount breaking and therefore the
sensor lying on the floor facing down, which prevents any light from reaching the
sensor. However, it does not only happen that 0 W/m2 is constantly measured, but
domain experts also reported incidents in which sensors have constantly measured
very high or very low values. In one case, this value was the largest integer that
can be represented with a 32-bit register width (232 − 1 = 4, 294, 967, 295), which
suggests that an error occurred in an internal verification or correction process. In
another case, it was a very large negative value.

• Measurement is close to reality, but distorted (deter): The second type of
artificial anomalies is deterioration, meaning that the sensor measures data that is
correlated with the reality, but not completely representing it. A prime example
of this would be a layer of dust or snow covering the sensor, which reduces the
incoming irradiance, but does not block it completely (like for anomalies of type
const).
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However, there may be other, less temporary and easily explainable causes, such
as electronic defects or a calibration that has failed or not been carried out. This
behaviour also occurs in real world [19], as it has been observed by domain experts
multiple times. Also one of the few anomalies present in the data used in this thesis
was of this type, which is explained in more detail in Section 6.2.
When adding artificial errors in this work, a deterioration ratio between 0 and 1 is
chosen, as well as one of three further behaviours:

1. Constant deterioration: For the duration of the anomaly, the measured
value is a constant weakening of reality. On a sunny day with 1,000 W/m2 of
real irradiance, for example, only 500 W/m2 are measured, and a few days
later (cloudy) 200 instead of 400 W/m2. However, the ratio always remains
the same. An example of this would be a permanent error, such as a clouding
of the glass on the measuring element or humidity in the sensor [18].

2. Increasing deterioration: In this case, the weakening does not remain
constant, but becomes increasingly stronger. As in the previous case, the
anomaly begins with a certain deterioration, but then becomes stronger over
time until it reaches 100% and the sensor only measures a constant 0 W/m2.
An example of this would be a sensor next to construction work, where more
and more dust is deposited on the sensor due to the sand being stirred up, until
it no longer lets any light through. A similar situation was reported, where
the degradation increased over the first days, but then appeared constant [20].

3. Decreasing deterioration: In this third case, the opposite occurs: It starts
again with a certain weakening, but here it decreases until the sensor measures
values that correspond to reality again. In this case, the anomaly also ends.
This case occurs, for example, during heavy snowfall and a subsequent melt
due to sunshine in the following days.

• Measurement is random (rand): The third type of anomaly considered in this
thesis occurs when the sensor reports values that fluctuate but are not reflective of
actual conditions. In practice, this can happen, for instance, when the connection
(particularly in the case of analogue connections) is disrupted, resulting in the
sensor transmitting only noise instead of meaningful data.

Artificial errors are added with a certain probability that is chosen in advance. Generally,
the artificial errors are considered to be independent of each other. However, problems of
the sensors usually have an underlying cause, thus the probability for the occurrence of a
sensor experiencing an anomaly is generally increased if another anomaly is currently
active. Therefore, in this implementation, it is also more likely that a sensor fails if
another one already has an active anomaly. The exact implementation of this, as well as
all available and selected parameters, are described in detail in Section 6.3. Examples of
all the artificial anomalies considered are also provided there in the form of figures and
tables.
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It is possible, in theory, that additional types of errors exist beyond the three categories
introduced so far. However, these categories capture all the real errors identified in the
available data and relevant literature. Therefore, it can be assumed that they provide a
sufficiently accurate representation of the real situation. This concludes the background
and objectives of this thesis, allowing for the discussion of the considered approaches and
their implementation in the following chapters.
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CHAPTER 3
Related Work

This chapter presents relevant literature that is thematically linked to this thesis. Anomaly
detection has been a field of great interest for many years. Even though it is several years
old, [36] still provides a valuable overview of this field. It addresses various challenges and
also offers insights into different methods and their application. The rise of deep learning
enabled significantly more complex use cases and also accelerated further research in
this field: [37] introduces a taxonomy to differentiate them and also discusses future
opportunities. The applications are highly diverse, ranging from medical problems [38]
to data from the Internet of Things (IoT) [39]. Generally, a distinction is made between
supervised and unsupervised problems. The latter often better reflect real-world scenarios
but pose unique challenges for evaluation [40].
Another key application of anomaly detection is in time series, as it is the case in this
work. Time series data appears across various domains and is often of special interest
due to its complex, sequential nature. Significant research has been dedicated to this
area in recent years: In [41], a comprehensive study was conducted to explore various
methods and use cases. As for anomaly detection in general, recent developments have
increasingly focused on deep learning-based approaches [42]. Also here, it is differentiated
between supervised and unsupervised problems and methods, with [43] serving as an
example for an unsupervised deep learning based method. However, statements about
continuously improving methods must be viewed with caution in this case, since the
benchmarks often used for this purpose are considered to be unreliable [44].
There have also been advancements in anomaly detection concerning sensor data. [45]
provides an overview of this field. In this context, a distinction is made between model-
driven (also referred to as conventional) and data-driven methods. The former address
the problem from a physical perspective, by modelling the situation according to physical
models or checking for violation of known physical limits. With data-driven methods,
which are the focus of this work, the physical properties about the measured data move
into the background and the data is validated by only using past data and experience,
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or by comparing it with additional data. This might be other measurements of the
same variable (e.g. second sensor at different location at the plant), as well as possibly
correlated data of different variables (e.g. module temperature and irradiance).

The area of energy generation is also an important one: [46] introduces a data-driven
condition monitoring and anomaly detection of a wind turbine, in [47] data of nuclear
power plants is used. When considering PV power plants and irradiance data, some
literature is available about validation using additional data: In [48], a validation of
ground irradiance measurements only using satellite data is introduced, and extended
in [49]. [50] summarises different data-related problems regarding PV power plants and
attempts to predict or validate measurements using other available variables.

However, literature about irradiance validation primarily focused on GHI (Global Hori-
zontal Irradiance), while for PV power plants POA (Plane of Array) irradiance (sensor
tilted in the same angle as the solar panels) is relevant. Generally, the approach of only
using the past time series of the same variable for anomaly detection, as considered in
this work, has not gained a lot of attention in research in the context of PV power plants
or irradiance yet.

LSTM networks are already being used in combination with irradiance data, including in
connection with PV power plants. However, the focus here is not on detecting anomalies,
but on predicting measurements [51, 52]. If such an LSTM network is combined with an
autoencoder to an LSTM Autoencoder, it can be used for anomaly detection and has
proven itself in many other domains: [53] gives an overview about different use cases of
LSTM Autoencoders as an unsupervised anomaly detection method. In [54], it is used
to detect anomalies in an automotive context, while [55] uses it with energy data. This
method is also already being used in the field of transportation, for example with data
from metro vehicles [56] or in monitoring safety in networks of cars, including self-driving
ones [16]. [57] places a special focus on the application for multi-sensor time series, but
uses a different network structure instead of LSTM.

As a novel approach, there is no literature directly providing comparison values or use
cases of PRADA. However, it still relates to other, existing literature: [58] considers
a similar situation, also related to power plants, but without pairwise comparison. In
[59], quasi-redundant sensors are considered, so the expectation of identical measurement
values is less strong than in the case of this thesis. However, it also considers a linear
relationship. [60] describes a different initial situation, but shows another way in which
linear regression can be used for anomaly detection.

Model-driven monitoring approaches have also been used to validate irradiance mea-
surements. Those are usually based on Baseline Surface Radiation Network QC tests,
which have been introduced in [61] and expanded in [62]. They are easy to execute, but
show weaknesses because the intervals of accepted values are wide and irradiance as a
weather-dependent variable always shows a lot of fluctuation. There have been attempts
to narrow the intervals using statistical values [63] or other meteorological or environmen-
tal values [64, 65, 66], but the general problem of not detecting small measuring errors

16



persists, because slightly wrong measurements are still within the permitted interval.

Although not directly in the scope of this work, photovoltaic systems in general are of
central importance and related to the experiments and data considered in this work. In
recent years, a significant amount of literature has been published on this topic. [11], for
example, provides a comprehensive overview of various photovoltaic systems and different
monitoring aspects. [67] also provides a detailed overview and addresses possible faults
and their sources. What regards the monitoring of a photovoltaic power plant as a whole,
model-based approaches can provide reliable anomaly detection [68], if desired also on a
very low level, such as string [69] or MPPT [70]. A good overview is provided by [71],
where different models are compared. However, there have also been achievements with
data-driven approaches: [72] shows how to utilise the data recorded in daily operation to
detect anomalies on string-level. In [73] different machine learning models are used and
compared to detect an anomaly of the whole plant.
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CHAPTER 4
PRADA: Pairwise

Regression-based Anomaly
Detection Approach

PRADA is a novel method proposed in this work and the first of two approaches covered
in this thesis to detect anomalies in the situation described in Chapter 2. As the acronym
implies, the underlying idea is to use regression methods to detect anomalies in the
data. The data from all sensors is not used all at once, i.e. no multiple regression is
performed, but the various redundant sensors are compared in pairs. The method is
based on the assumption that the measurements of any two sensors that are aligned in
the same direction are equal or very similar, or mathematically expressed to be linearly
dependent. If the measurements of one sensor are regressed against those of the other
(always using regression without intercept), it is expected that the regression coefficient
β is 1 or close to 1. If the result deviates from this, it may be a sign of an anomaly.

However, simply comparing the coefficient with 1 is not sufficient for several reasons:
Firstly, it is possible that two sensors are aligned in the same way and both function
properly, but still do not measure exactly the same. An example of this would be a
sensor that is placed on the edge of the photovoltaic power plant next to a forest or
building and therefore suffers from shading at certain times of the day and year, which
then results in lower values. This would happen on several consecutive days and, if the
comparison was strict, would be recognised immediately as an anomaly, even though in
fact it is not. Another possibility would be if sensors of different types were used, which
have different recalibration frequencies and at some point deviate from each other by a
few percent or tenths of a percent.

Secondly, a strict decision based only on the coefficient would not allow any statement to
be made as to which of the two sensors considered in the regression is faulty, because if
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the two sensors were swapped in the regression (exchanging the explained and explaining
variables), the result would simply be the inverse of the previously obtained regression
coefficient and the proportional deviation from 1 would be equal.

The approach presented here, PRADA, attempts to solve all of the problems just discussed
and thus to offer a robust solution for anomaly detection in redundant sensor systems.
The core of the approach relies on well-tried and relatively non-computationally intensive
methods, enabling a use on low-performance devices, possibly directly at the control
unit of the power plant. Furthermore, every step and every decision in this approach
is transparent and reproducible, so that the basis for a decision that is not directly
comprehensible to the human observer can be found easily.

Compared to the previously mentioned simple check of the coefficient, improvements
have been made at various points in PRADA. The coefficient is not simply checked for
each day and for each sensor combination, but it is also monitored how the coefficient
has developed over the last few days. If the deviation between the sensors in the past
few days was as large as it is today, then this is less likely to be an anomaly than if the
deviation has suddenly occurred. Of course, it is taken into account that not all real
anomalies occur suddenly.

Although the use of regression might suggest it, PRADA does not include a learning
process. In an optimisation process, the best hyperparameters for given data must
be found, but for fixed hyperparameters, PRADA is applied directly to the data and
provides a result without the need for prior training. This is one fundamental difference
to the second approach presented in this work, LSTM Autoencoder, which is presented
in Chapter 5 and includes a training process.

Furthermore, PRADA can be used to make a statement about which sensor is faulty
by carefully tracking the comparisons, coefficients and their deviation from the target
values using error points. A value is also provided for each detected error, which can be
interpreted as error certainty. This is not used further in this work, but can be of great
benefit in real-world applications and can be used to implement further improvements in
the future.

Before going into detail on all aspects of PRADA and introducing the necessary theory,
a brief summary of the procedure: For each pair of sensors with the same orientation
and for each day, two regressions are performed. One with the values of the day under
consideration, and the other with the data from a certain number of past days (in this
thesis, a fixed duration between 3 days and 4 weeks). To keep track, accounts containing
error points are set up for each of the sensors, which will then be used to assess the status
of the sensors.

First, the coefficient of the day under consideration is checked, which is expected to
be approximately 1. If it deviates significantly, both sensors in question are given an
error point. In addition, the ratio of the coefficient to the coefficient of the previous
days is considered. This is to check whether any difference between the sensors was
already present in the last few days. This ratio is also expected to be 1 if the sensors
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are functioning properly, meaning that the behaviour today is the same as in the days
before. If this ratio deviates significantly, both sensors again receive an error point.

The error points received by the sensors are then divided by the theoretically achievable
number of error points. This results in values between 0 and 1 for each sensor and day,
with a high value indicating the existence of an error. If a certain limit value, which
was previously defined or determined, is exceeded, the sensor is declared faulty for that
day. One or more consecutive days of error then result in an anomaly. Depending on the
selected hyperparameters, these must have a certain minimum length and an anomaly is
not interrupted if a single day is recognised as not being faulty in the context of faulty
days.

Now that the basic concept is clear, the details of the implementation will be discussed.

4.1 Regression Methods
This section presents the two regression methods which are used in this implementation of
PRADA. In this case, these are the conventional OLS (Ordinary Least Square) regression
and a robust regression method, which should reduce the influence of outliers.

4.1.1 Ordinary Least Squares (OLS) Regression
OLS is the regression method that is usually referred to when linear regression is spoken
of. It attempts to establish a linear relationship between a dependent variable y and
one or more independent variables xi, i = 1, . . . , n, n ∈ N by minimising the sum of
squared residuals, which are the differences between observed and predicted values. The
description of this method is based on [74].

Having n observations and p independent variables, the model can be written as

y = Xβ + ε

with the following variables:

• y is the vector representing the dependent variable, having shape n × 1.

• X is the matrix of the independent variables. If the model contains an intercept, the
first column only consists of the values 1 and X has shape n × (p + 1). Otherwise,
the shape is n × p.

• β is the vector of regression coefficients, one for each independent variable. OLS
is used to obtain these values, which represent the linear relationship with the
smallest sum of the squared residuals. The shape of β depends on whether the
model contains an intercept, therefore it is either p × 1 or (p + 1) × 1.
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• ε is the vector representing the residual for every observation, therefore it has the
shape n × 1.

For given X and y, β can then be estimated as

β̂OLS = arg min
β

n�
i=1

(yi − Xiβ)2 (4.1)

where Xi represents the i-th row of X. Note that β represents the true, unknown
parameter, while β̂ represents the estimated parameter based on given data. This may
seem like a hard optimisation problem to solve, but the optimal solution can be derived
directly with the following matrix equation:

β̂OLS = (X⊤X)−1X⊤y (4.2)

To calculate β̂ using Equation 4.2, it is necessary to calculate the inverse of the Gram
matrix (X⊤X, shape n × n). This requires a certain amount of computing power, but
nowadays this is no longer a problem even with weak devices, so this is not a limitation.

Beside its simplicity, the OLS estimator has some statistical properties which can be
useful in some cases. One of those is the fact that it is BLUE, which stands for Best
Linear Unbiased Estimator. This means that, if some assumptions are fulfilled, it has
the smallest variance among all linear unbiased estimators. Another property would be
asymptotic normality, which makes the OLS estimates normally distributed when the
sample size is growing. Also OLS is consistent, which means that the estimator converges
to the true parameter for increasing sample size.

However, these properties do not apply in every case, but certain requirements must be
met. These vary slightly depending on the literature, but the most important ones are
shortly summarised below.

1. Linearity: The relationship between the dependent variable and the independent
variables must be linear.

2. Homoscedasticity: The residuals must be normally distributed with mean 0 and
constant variance σ2.

3. Independence of Residuals: The error terms of each observation must be
independent.

4. No perfect multicollinearity: No independent variable may be a linear combi-
nation of other independent variables.
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If the assumptions are not fulfilled, the positive properties of the OLS estimator cannot
be guaranteed. In the setting considered in this thesis, the Assumption 1 can be deemed
to be fulfilled, as this is the case by definition if the sensors are functioning properly and
also in many other cases. Assumption 4 is obsolete in the case considered here, as there
is always only a single independent variable under consideration.

The fulfilment of Assumption 2 and Assumption 3 is less obvious. These, especially the
independence of the residuals, are difficult to fulfil for data with a temporal relationship
(time series), as is the case here, and therefore cannot be guaranteed in this case either.

However, this does not create too much of a problem in the scope of this work. If the
assumptions are not met, the validity of the above-mentioned desirable properties of the
OLS estimator cannot be guaranteed, but this does not invalidate the entire model.

If the model is used for predictions of unknown data points and the highest possible model
quality is important, these properties are necessary and therefore great attention must be
paid to the fulfilment of the conditions. However, none of these properties are required in
this work, and the model is no longer used for further predictions once the coefficient has
been determined. Instead, the regression methods are only used as a tool to determine a
relationship between two data series once. Therefore, the fulfilment of the conditions is
not as essential as in other settings and is thus assumed. In addition, a further regression
method (robust regression) is investigated, which has weaker assumptions.

Connection to the Correlation

The problem statement and definition of PRADA raises the question whether this problem
can also be solved with correlation methods instead of regression methods. Indeed, there
is a close mathematical relationship between OLS regression and the Pearson correlation,
which measures the linear correlation between data points. The Pearson correlation
coefficient is defined as

ρx,y = Cov(x, y)
Var(x) · Var(y)

,

where Cov(x, y) stands for the covariance between x and y, while Var(x) represents the
variance of x. The OLS coefficient, when performing simple linear regression (only one
independent variable), can be expressed as

β = Cov(x, y)
Var(x) .

This results in

β = ρx,y ·
�

Var(y)
Var(x)
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being the relation between the regression and correlation coefficients. With the definition
range [−1, 1] and the relationship to regression just described, the correlation coefficient
can certainly be used in a similar way. However, there is significantly less methodical
diversity in calculating a correlation than there is in regression methods, where each
method, even if it was usually developed for other or complex applications, can be used.
Furthermore, the coefficient β with the domain R provides significantly more information
than the regression coefficient. Therefore, regression methods are used for PRADA.

4.1.2 Robust Regression (M-Estimator)
While the OLS estimator can be calculated very easily and quickly, it also has some
downsides, one of which is the vulnerability to outliers. This can be especially problematic
in the use case from this thesis, where it even occurred in the data considered in this thesis
(see Section 6.2, Figure 6.6) that there was a significant point outlier on an otherwise
normal day. In this case, one single outlier could falsify the results of the whole day.

To counteract this, the second regression method considered is robust, meaning it is less
sensitive to outliers and violations of assumptions, providing more reliable estimates in
challenging data conditions.

The estimator presented now is also referred to as M-Estimator and the following
description is based on [75]. It works by replacing the square function in Equation 4.1
with a generic loss function. This loss function can then be used to add different weights
to the observations, for example giving the possibility to use the square for small residuals,
but only the absolute values for large ones. This leads to the generic estimator

β̂L = arg min
β

n�
i=1

L(yi − Xiβ), (4.3)

where L is any loss function. There are countless different loss functions with different
strengths and weaknesses. In this work, the choice fell on Huber’s T-estimator, as it was
both widespread and easily available in the libraries used. The idea is to combine the
best features of OLS and LAD. LAD stands for Least Absolute Deviations and in this
case, the absolute value is used instead of the square. For Huber’s T-estimator, the loss
function is given by

L(z) =
�1

2z2 if |z| ≤ t,

t(|z| − 1
2 t) if |z| > t.

(4.4)

Using such a loss function leads to observation having different weights, which can be
determined with Equation 4.5

W (z) =

1 if |z| ≤ t,
t

|z| if |z| > t.
(4.5)
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Both functions have been depicted in Figure 4.1 to get a better idea how they look and
what the effects are. In this case, t = 1.345 has been chosen as threshold. When looking
at the loss function, one can clearly see that the function is quadratic around 0. For
small residuals, the loss therefore corresponds to that of OLS. Above the threshold t
(into the positive and negative), the loss function becomes linear, so the influence of such
a large residual decreases in comparison to OLS.

The question may arise why Equation 4.4 is not simply the square function and the
absolute value function, but instead these are also provided with factors and constant
terms. This is necessary so that the loss function is continuous around the threshold t
and the loss function remains consistent with other losses. However, as none of this is
dependent on the residual, these terms have no influence on the behaviour.

This is also reflected in the weights function. For z ≤ |t| the weight is constantly 1, so
all residuals have the same importance. However, the larger the residual becomes, the
smaller the weight and thus the influence.
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Figure 4.1: Huber’s T loss and weight functions with t = 1.345

The optimal value for t depends on the data considered, or more precisely on the
magnitude of the expected errors, and should therefore be chosen appropriately.

However, using robust regression is not without its drawbacks. While the OLS estimator
can be calculated relatively easily, this is often more complicated with robust regression.
This is usually solved using IRLS (Iteratively Reweighted Least Squares). With this
method, the robust estimator β̂L is determined by repeatedly weighting the residuals
and then calculating the OLS estimator on them. This makes it necessary to calculate a
large number of OLS estimators to determine a single robust estimator, which can cause
problems on low-performance systems or take a relatively long time.

Until now, all definitions have referred to multiple regression, i.e. a dependent variable is
explained by several independent variables, possibly also an intercept. However, this is
not necessary in this case. As described above, the data is always considered in pairs
and one sensor is arbitrarily chosen as the independent variable and the other as the
dependent variable. This also does not require an intercept. Therefore, the univariate
case without intercept is always used in the following, so p = 1 applies here. This means
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that X and y have the same shape (n × 1), and with shape 1 × 1, β becomes a number
from R. This is also known as simple linear regression.

Although the focus of this work is on comparing PRADA with the LSTM Autoencoder,
the decision was made at this point to use and evaluate two different regression methods
(OLS and robust regression with Huber’s T-Loss), as this highlights the flexibility of
PRADA. There is no restriction to these two regression methods, and although it was
not explicitly tested in the course of this work, it can be assumed that it will work with
any other method, whether similar or very different, as long as it has a single coefficient
as a result.

4.2 Calculating Error Probabilities
This section goes more into detail how PRADA uses the results of the regressions to
decide whether an anomaly is taking place for a specific day and sensor. The first step is
to determine the pairs to be considered. All sensors of one orientation are compared with
each other, but sensors of different orientations are not in the current implementation.
In this case, the regression is inverse symmetrical, so the coefficient of regressing sensor
s0 with sensor s1 is the inverse of the coefficient when regressing s1 with sensor s0.
However, the percentage deviation of the coefficient from 1 is the same in both cases,
so only one of the two comparisons needs to be made. If norientations is the number
of different orientations and ni is the number of sensors of the orientation i, the total
number of comparisons to be carried out is described by Equation 4.6:

npairs =
norientations�

i=1


ni

2

�
(4.6)

The number of comparisons to be made is therefore determined by the binomial coefficient
and corresponds to the sum of the possible pairs of each orientation. It also applies that
each sensor of orientation i is compared with ni − 1 sensors.

For a given day and all sensors, it should now be checked whether anomalies are present.
To do this, the pairs to be compared are first specified and noted. The regressions are
then carried out: For each of the pairs, two regressions are performed, on the one hand
the measurements of the day in question and on the other hand the measurements of the
previous days, also known as lookback days. The hyperparameter nlookback determines
the number of days that are looked back into the past. It is also possible that different
methods are used for the two regressions. This is discussed in more detail in Section 4.4.

The fixed number of days that are looked back into the past results in a rolling window
so that comparisons are always made with the most recent past while the older past is
discarded. However, there is also the option of using an expanding window. In this case,
nlookback only determines how many days should be used at the start of the data basis
(e.g. if nlookback = 14 and the start date is January 1st, the analysis can be started on
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January 15th). However, all available data from the past is used for the regression of the
days before. δexpanding is used as hyperparameter defining whether the window is rolling
or expanding.

Both variants have different strengths: The expanding window naturally has the advantage
that more data and therefore more information is used, but the ever-increasing amount
of data also increases the computing time for the regression. It is also possible that
certain effects are drowned out by the long duration or that PRADA does not become
accustomed to a certain trend in the behaviour. The rolling window with a fixed length
has the advantage of a constant calculation duration, as exactly the same amount of data
is always used. Also, it can get used to a trend better, as it is always compared with
the days directly before. However, if a certain behaviour has already occurred exactly
one year ago, for example, this information cannot be accessed. In this paper, both
possibilities are analysed, more details are given in Section 4.4 and Section 4.5.

Regardless of the variant selected, the result for each pair is two coefficients: βday and
βbase, which describe the relationship of the pair on the considered day and on the previous
days, respectively. This is then used to determine the relationship to the previous days:

βratio = βday
βbase

(4.7)

The values βday and βratio are now used further: The expectation is that both values are
1, which is why the proportional deviation from 1 is considered. The hyperparameters
αday and αratio define what the maximum permitted deviation of the coefficients is in
order to be considered to be functioning normally. Using the function

fthr(x, α) =

0 if x ∈


1
1+α , 1 + α


1 otherwise,

(4.8)

it can then be determined whether the deviation is acceptable (0 is returned) or not (1 is
returned). The denominator in the lower interval limit was deliberately chosen due to
the inverse symmetry of the regression.

Once all the calculations are available, the next step is to draw conclusions. To do this,
an error account is set up for each sensor and fthr(βday, αday) and fthr(βratio, αratio) are
calculated for all pairs.

For filling the error accounts, there are three possible cases for every pair:

• fthr(βday, αday) = fthr(βratio, αratio) = 0: In this case, everything seems to be in
order and no error points are given.

• fthr(βday, αday) = 1, fthr(βratio, αratio) = 0 The regression of the considered day
detected a problem, but the comparison with the days before did not notice unusual
behaviour. Therefore only one error point is assigned to both sensors.

27



4. PRADA: Pairwise Regression-based Anomaly Detection Approach

• fthr(βday, αday) = 0, fthr(βratio, αratio) = 1: The regression of the day under
consideration gave normal results, so the two sensors measured approximately the
same, but the behaviour changed compared to the lookback days. As before, one
point is assigned to each of the two sensors.

• fthr(βday, αday) = fthr(βratio, αratio) = 1: Both regressions detected unusual be-
haviour and therefore both sensors receive two error points each.

This is repeated for all pairs. Each error account then has a value between 0 and 2(ni −1).
The value is then divided by 2(ni − 1), resulting in [0, 1] as the definition range. This
value in this interval is the final result for a sensor on a day and can be interpreted as
the error probability.

Since both sensors of a pair always receive error points when a limit value is exceeded
(it is not possible to determine which of the two sensors is affected), this naturally also
means that sensors that are functioning correctly receive error points and therefore also
have an error probability greater than 0.

However, this is not a problem, it is intentional and this is precisely how the affected
sensor can ultimately be determined with a high degree of reliability: If a sensor is
defective, this is noticeable in every or at least almost every pair, and this affected sensor
gets error points with every comparison. However, a functioning sensor only scores
points in the comparisons with the defective sensor. It does not receive any points in the
comparisons with the other functioning sensors, so the points account remains relatively
low and the probability of error is close to 0.

The question naturally arises if including βratio in PRADA is necessary or if the approach
just presented with the error points and βday alone is not sufficient. This was investigated
in more detail, and in fact βday is more indicative of the condition of the sensor, but
looking at the previous days still adds value: It allows more error points to be scored,
enabling a finer distinction (clearer separation between sensors with high and low scores)
to be made. This also makes it easier to recognise the beginning and end of an anomaly,
as at the end both coefficients usually do not change to the normal state at the same
time, but first βday, then βratio.

Almost all steps of PRADA have now been defined. What has been presented so far can
be applied to all data in the past, up to the latest available day, and an error probability
in the interval [0, 1] is given for each day and for each sensor. Only the first nlookback
days are excluded from this, as there is not yet enough data for the calculation of βbase
and thus also βratio. If an error probability is also necessarily required in these days, the
regression can be carried out with less than nlookback days. Only on the first day can the
calculation not be performed.

There are various ways to implement PRADA. Which method is the best depends on
the requirements, e.g. the available computing power and how important efficiency is.
Section 6.6 provides details on the programming and execution of the implementation in
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this work, while Algorithm 4.1 outlines how PRADA was conceptually implemented and
successfully applied in the experiments.

Algorithm 4.1: PRADA: Efficient implementation
Input: Data matrix D with dimension (ndays · ndaily) × nsensors,

Regression functions Rday, Rbase
Parameters : αday, αratio and nlookback

Functions: fthr(x, α) =

0 if x ∈


1
1+α , 1 + α


1 otherwise

Output: Matrix E with error probabilities
with dimension (ndays − nlookback) × nsensors

1 c = 0 (dimension nsensors × 1)
2 for d = (nlookback + 1) to ndays do
3 βday = βbase = βratio = 1 (dimension nsensors × nsensors)
4 vday = D[d, :]
5 vbase = D[(d − nlookback) : (d − 1), :]
6 for s1 = 1 to nsensors do
7 for s2 = (s1 + 1) to nsensors do
8 if orientation of s1 and s2 is different then
9 break for

10 βday[s1, s2] = Rday(vday[s1], vday[s2])
11 βbase[s1, s2] = Rbase(vday[s1], vbase[s2])
12 c[s1] = c[s1] + 2
13 c[s2] = c[s2] + 2
14 βday = βday + β⊤

day
15 βbase = βbase + β⊤

base
16 βratio = βday/βbase
17 E[d, :] = (�nsensors

s=1 (fthr(βday, αday) + fthr(βratio, αratio))[:, s])/c[s]
18 return E[nlookback :, :]

In the first lines of code (1-5) the coefficients and data is initialised. The variable c is a
counter for the maximum number of error points that a sensor can receive. As mentioned
earlier, this is 2(ni − 1), where ni is the number of sensors in alignment i. Then (6-9)
the pairs are chosen. In this implementation, this works by looping over the sensors. For
the first sensor (s1), it is iterated over all sensors, while for the second (s2) only the ones
coming after s1 are chosen. This covers all pairs of interest, while discarding the ones
with different orientation or pairs that already occurred in different order.

In lines 10 and 11, the regression takes place and the coefficients are stored in a matrix.
Due to the strategy, this results in an upper triangular matrix, with 1 on the diagonal.
The counter is increased in lines 12 and 13. The number 2 is added because of the two
executed regressions (behaviour today and behaviour today compared to the days before)
and therefore 2 possible error points to be assigned.
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4. PRADA: Pairwise Regression-based Anomaly Detection Approach

This matrices already contain all required data, but it is added with the transposed
version of itself in lines 14 and 15 in order to simplify further calculations: Now all
information about one sensor can be accessed by selecting one row or column, not both.
Also, due to the inverse symmetry it is possible to add the transposed version without
inverting its entries, since the result of fthr is the same. In line 16, βratio is calculated
and in line 17, the error probabilities are calculated by dividing the error points by the
count. At the end, the final result is a matrix containing error probabilities for each
sensor and all days except the first nlookback.

4.3 Defining Anomalies
The procedure described so far is already sufficient in many situations. In this work,
however, the requirement is to obtain a list of detected anomalies (start, duration) in
order to compare the performance of PRADA and the LSTM Autoencoder. This works
according to the following simple logic:

A certain minimum length dmin for detected anomalies is defined. In this work, this is
one, two or three days, but it can be set higher if required. Furthermore, a limit value
αanomaly is defined, above which a sensor is considered defective. This must naturally be
in the interval (0, 1), values above 0.6 were typical in preliminary experiments.

All sequences of days that exceed the limit value and fulfil the minimum length are then
defined as an anomaly. An additional rule applies to make the procedure more robust: It
is permitted within an anomaly for the error probability to be below the threshold value
on one day if the limit value is exceeded again on the following day. This prevents an
anomaly from being recognised as two separate anomalies due to a downward outlier.
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Figure 4.2: Example of different error probabilities and the resulting anomalies
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Figure 4.2 gives examples how anomalies are defined given different error probabilities.
The upper plot shows error probabilities over time for three sensors. The red line stands
for the threshold αanomaly. Sensor 1 has an error probability above the threshold for the
whole observation period, so an anomaly is defined for the whole observation period.
Sensor 2 shows more fluctuating behaviour: On two days, the error probability falls
below the threshold. However, in both cases the threshold is exceeded again on the next
day, which results in an continuous anomaly. This can not be said about Sensor 3: The
error probability falls below the threshold for two consecutive days, resulting in two
independent anomalies being defined.

Again, there are various options of implementation, the one of this work is visible in
Algorithm 4.2. For reasons of simplicity and clarity, it is looped over the sensors and the
days. If efficiency is the most important priority, it is also possible to solve this using
vector operations (for example by adding shifted time series), but this has a negative
impact on comprehensibility. In addition, no computationally complex calculations, only
value checks, are carried out here, which keeps the influence of the loops low.

Algorithm 4.2: Defining anomalies from error probabilities
Input: Error probabilities matrix E with dimension (ndays − nlookback) × nsensors
Parameters : Threshold αanomaly, Minimum days dmin

Output: List of anomalies: start day, duration and average error probability
1 for s = 1 to nsensors do
2 count = 0
3 for t = nlookback to ndays do
4 if E[t, s] > αanomaly then
5 if anomaly not active then
6 begin anomaly at t

7 else if E[t, s] ≤ αanomaly then
8 if E[t + 1, s] > αanomaly then
9 continue

10 if anomaly is active then
11 if duration of anomaly ≥ dmin then
12 end anomaly, save with start day, duration and average error

probability
13 count = count + 1
14 else
15 end anomaly, discard
16 if anomaly is active then
17 if duration of anomaly ≥ dmin then
18 end anomaly, save with start day, duration and average error

probability
19 count = count + 1
20 return List of anomalies
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The algorithm can be summarised as follows: It is looped over the sensors and days.
If the threshold value for a sensor is exceeded on a day, the system checks whether an
anomaly is already active. If not, one is started, otherwise the loop simply continues. If
a day is reached on which the limit value is not exceeded, it is checked what the value is
on the following day. If this is not exceeded either, the anomaly is ended and saved if
longer than dmin, otherwise discarded. If there is an exceedance again on the next day,
the loop continues to run normally and the anomaly is still active.

The algorithm is designed for the case that data of a longer period of time is checked
collectively. This is the reason for the query at the end, which takes care of anomalies
still active at the end of the time series. If PRADA is used live, i.e. every day new data
will arrive and PRADA is executed for the day before, this query can be omitted.

4.4 Hyperparameters
The aim of this chapter is to summarise and clearly present the hyperparameters and
options for varying PRADA, in particular for the following explanations of the optimisation
process. When PRADA is used, the following decisions can be made:

• Regression models Rday and Rbase: Regression models which are used to
calculate the coefficients βday and βbase, on which PRADA is based on. It is also
possible to use different models for βday and βbase. In this work, OLS and robust
regression is considered, but generally the choice is arbitrary.

• Thresholds tday and tbase: Those hyperparameters are only relevant if the
corresponding model (Rday and Rbase) is a robust regression model. In this case,
tday and tbase describe the threshold above which residuals have less weight compared
to the OLS estimator, as presented in Subsection 4.1.2. In this work, thresholds in
the interval (0.5, 5) have been considered since residuals have typically been in this
magnitude or smaller in preliminary experiments.

• Thresholds αday and αratio: Those thresholds define the maximum percentage
deviation of βday and βbase from 1. Therefore, they must be from the interval (0, 1).
The coefficient is then expected to be in the interval


1

1+α , 1 + α

.

• Window type δexpanding: The default version of PRADA has a fixed size window
which it looks in the back to calculate βbase. However, there is also the possibility
to always use all available past data, in which it is an expanding window.

• Size of window nlookback: When using a fixed size window, nlookback defines the
size of it. If using an expanding window, it defines the size of the first windows, in
other words after how many days the analysis starts. In this work, integer values
from [3, 28] days were considered, but generally it can be any positive integer.
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• Minimum anomaly length dmin: This variable defines the minimum length of
a detected anomaly. In this work, integer values from [1, 3] days were considered.
Generally it can be any positive integer, but it should not be too long to avoid false
negatives.

• Threshold αanomaly: If this value is exceeded for a sensor on a day, it counts as
anomalous. Must be in (0, 1), also this whole interval has been considered in this
work.

4.5 Optimisation Procedure
To obtain the best possible hyperparameters for the underlying problem and not just
for a certain set of data, it is important to ensure that the model is generalising during
optimisation. For this reason, this work uses a train-validation-test split, as common in
related problems. There are three disjoint data sets that are used for different purposes:

• The training set is used to train the model. The optimiser aims to maximise the
performance of the model on this data.

• The validation set is used to compare the performance of different models using
previously unseen data within an optimisation run. Therefore, the model never
receives this data for training, but is only evaluated on it after training.

• The test set is used to compare the model that was determined to be the best
using the validation set with other methods or approaches (in this case the LSTM
Autoencoder, see Chapter 5).

How the division into those three sets is executed in this work for the experiments is
explained in Section 6.5, where the exact implementation of the optimisation process in
this work is also discussed.

One important thing must be noted again at this point: Even though the optimisation
process of PRADA is often referred to as training, there is no training process in the
classical sense as known from many other machine learning methods. The optimisation
process attempts to select the best possible hyperparameters described in Section 4.4.
However, if PRADA is then applied to a dataset with chosen hyperparameters, the
result is unambiguous and deterministic. There is no process in which further weights or
parameters are determined.

Not all hyperparameters are relevant at the same time in PRADA. The hyperparameters
Rday, Rbase, αday, αratio, nlookback and δexpanding must be set at the beginning, as they
define the regression models and therefore have an influence on the process from the very
start. However, the remaining hyperparameters dmin and αanomaly only have an influence
at a later point in time.
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Therefore, it makes sense to optimise the hyperparameters that only become relevant at a
later stage separately. This avoids having to consider multiple hyperparameter combina-
tions that only differ in dmin and αanomaly, thus repeating many identical computationally
expensive steps.

The optimisation of the hyperparameters described in Section 4.4 therefore takes place in
two stages: At the beginning of an optimisation run, Rday, Rbase, αday, αratio, nlookback
and δexpanding are defined. These are then used to determine the error probabilities per
sensor and day on the training set.

Hyperparameters dmin and αanomaly only become relevant at this point. Now, the optimal
values of these two hyperparameters given the others are determined and stored with the
help of the already available error probabilities.

The entire process is repeated as long as possible in order to find the hyperparameters
yielding the best results. Afterwards, the model with the best performance on the
validation set is selected.
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CHAPTER 5
LSTM Autoencoder

While PRADA is a conceptually new approach to solving the problem of anomaly
detection for redundant sensor systems, the LSTM Autoencoder is a proven method in
the field of anomaly detection and consists of two parts: One of them is the autoencoder,
which consists of an encoder and a decoder. The former is intended to compress the
input data into a representation of different dimension, while the latter is supposed to
restore it. The goal is for the restored data to be as close as possible to the original data.

Which model is used as the encoder and decoder is generally arbitrary and depends on
the data. In this case, an LSTM model is used. This stands for Long Short-term Memory
and is a type of Recurrent Neural Network (RNN) that specialises in learning long-term
dependencies in sequential data and is therefore particularly suitable for time series.

Together, these form the LSTM Autoencoder and can be used for anomaly detection.
The model is trained with data that do not contain errors or anomalies, so the model
learns patterns in the data and is able to reconstruct the data well, which means that
the input and output are very similar.

To apply the model, is provided with data that it does not yet know. If the model is able
to reconstruct this data, this indicates that the data follows the usual pattern and does
not contain any anomalies. However, if the difference between input and output is large,
i.e. the model is not yet familiar with this behaviour, then this indicates that the input
data contains anomalies.

In this implementation, the model is not applied directly to the data from all sensors
simultaneously, but rather, as in PRADA, they are compared in pairs. After that, a
reconstruction error is determined for each sensor and day, and that is used to define the
anomalies.
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5.1 LSTM: Long Short-term Memory
Long Short-term Memory networks are a specialised version of Recurrent Neural Networks
(RNN). Their development was a major step in the development of deep learning methods.
They process sequential data by maintaining a hidden state that captures information
from previous time steps. This makes them effective for tasks involving temporal patterns,
but they often struggle with vanishing gradients which results in them having difficulty
retaining long-term dependencies. LSTM was developed in 1997 [76] and tries to overcome
this problem with a gating mechanism, which allows to keep information over many time
steps.

Generally, a LSTM cell (also referred to as unit) has three key components [15]:

• Cell State (Ct): This acts as the memory of the network and keeps the information
over the numerous time steps. Therefore, it takes care of the long-term dependencies.

• Hidden State (ht): This is the current output of the cell at a specific point in
time and handles the short-term memory.

• Gating mechanism: This regulates the flow of information and is explained
below.

Another important component when creating an LSTM network is the input data xt,
although this is not part of the cell. The gating mechanism controls how information is
updated and maintained within a memory cell over time. It consists of three gates:

1. Forget Gate: This gate controls how much of the previous cell state Ct−1 is
relevant and should be therefore be kept. Mathematically, this can be expressed as

ft = σ(Wf · [ht−1, xt] + bf ).

In the following, W always stands for weight matrices belonging to different steps
or gates, while the different b represent biases. [ht−1, xt] represents the previous
hidden state concatenated with the input data of the current time step. σ is the
sigmoid function, so σ(x) = 1

1+e−x . It ensures that the value of ft is in the interval
[0, 1], where 0 means that everything should be forgotten and 1 that all information
should be retained.

2. Input Gate: The input gate has two purposes: Firstly, it checks how much new
information (previous hidden state and current input data) should be kept in the
cell state. This is also called called candidate cell state and can be expressed as

C̃t = tanh(WC · [ht−1, xt] + bC).
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The tangens hyperbolicus is used as activation function since its values are in [−1, 1],
and the negative values are used to reduce the impact. C̃t is also called candidate
cell state.
Secondly, it checks which new information should be added. This can be expressed
as

it = σ(Wi · [ht−1, xt] + bi).

The new cell state Ct is then determined by

Ct = ft · Ct−1 + it · C̃t.

3. Output Gate: This gate determines the next hidden state ht. First, the gate
activation ot is calculated by

ot = σ(Wo · [ht−1, xt] + bo).

The new hidden state can then be calculated by

ht = ot · tanh(Ct).

For a better understanding, the whole process has been depicted in Figure 5.1. When
fitting the model, all input data must be processed by all LSTM cells, so the process
of going through the three gates is repeated (Ct is becoming Ct−1, same for ht and xt)
until this is fulfilled.

Forget Gate Input Gate Output Gate

×

×
+Ct-1

Ht-1

Xt

×

tanh σ
σσ

Ct

Ht

Figure 5.1: Structure of an LSTM cell

However, to form a functional network, more than one LSTM cell is necessary. For this
reason, a specific number of LSTM cells are grouped together to form a layer. Within
this layer, the cells act independently: Each has its own weights, cell state, and hidden
state, but they receive the same input values xt at each time step t.

It is not only possible to group multiple cells into one layer, but typically a network
consists of multiple layers. This structure creates a flow from input to output. The first
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layer processes the original input values xt, while the second layer receives the hidden
states ht from the cells of the first layer as input. It’s important to note that each cell
in the second layer receives the hidden states of all cells from the previous layer. This
layered architecture allows for the stacking of an arbitrary number of layers, potentially
with a different number of cells each.

In this structure, the different layers often take over distinct roles. While the first
layer might focus on extracting basic features or short-term dependencies, the following
layers refine this information and capture more abstract representations or longer-term
relationships. This hierarchy of layers allows the network to learn complex temporal
dynamics.

It is also possible to add extra layers between the LSTM layers that serve additional
functions, such as normalisation or regularisation. A commonly used method, which is
also applied in this work, is dropout. There, a certain percentage of the data passed from
one layer to the next one is set to zero. This helps to prevent the model from overfitting
to the input data, and therefore improves generalisation. In this work, a dropout layer
with a rate of 20% was added between all LSTM layers.

5.2 Autoencoder
Autoencoders are an unsupervised learning method suitable for different tasks, among
them dimensionality reduction or anomaly detection [77]. They first compress the input
data to a space with different dimension, also called latent space or bottleneck. This step
is called encoding. Often, this latent space has a lower dimension than the original data,
but this is not a requirement and depends on the use case. Then, in the decoding step, it
is reconstructed back to the original input dimensions.

When training an autoencoder, the model tries to adjust all possible parameters so that
the difference between input and output is as small as possible. This should help the
model to learn which features of the data are necessary and which can be discarded
during encoding. It is also possible that additional features and patterns which have
been hidden in the data can be extracted. Since no ground truth or other labels are
available, but the input and output data are the same, autoencoders fall into the category
of unsupervised learning models.

In general, an autoencoder therefore consists of the following parts [13]:

1. Input Layer: This layer represents the values x that the autoencoder receives as
an input. This depends on the use case and can be multidimensional.

2. Encoder: In this layer, x gets encoded by an encoder function e to a different-
dimensional space. The function e is generally arbitrary and depends on the type
of data and use case. In this work, LSTM models are used as encoders.
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3. Latent Space: This space contains the encoded representation of x, z = e(x). Even
if z has a smaller dimension than x, it should still contain all relevant information.

4. Decoder: Here, z gets decoded back to the original dimension by the decoder
function d. As for the encoder, also the function d is arbitrary. However, usually
the same functions (with different parameters) are used for encoder and decoder.
Therefore, in this work, LSTM models are also used as decoders.

5. Output Layer: This final layer represents the result of the autoencoder, x̂ =
d(z) = d(e(x)).

The difference between x and x̂ is called reconstruction error. How exactly this difference
is defined depends again on the data and its format. In the typical case that input and
output are vectors or matrices, the element-wise difference is often used together with
a norm, e.g. the Euclidean norm. In the case that x and thus also x̂ are vectors with
length n, the reconstruction error is then given by �n

i=1(xi − x̂i)2.

When training an autoencoder, it is the goal to change the parameters of the encoder and
decoder functions e(x) and d(z) so that the total reconstruction error gets minimised.

After completing the training, the autoencoder can be used: Which part of the autoencoder
is then used in the downstream task depends on the use case. If it is used for dimensionality
reduction, the representation in the latent space is relevant. In the case of this work,
where the goal is anomaly detection, the reconstruction error is of interest.

Figure 5.2 illustrates the structure of the autoencoder again, in this case LSTM is also
used as the encoder and decoder, corresponding to the use in this work.
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Figure 5.2: Structure of an LSTM Autoencoder

5.3 Calculating Reconstruction Errors
This section explains how the LSTM Autoencoder was implemented in this work. As
already mentioned in the introduction to this chapter, the model is not applied directly
to the data or slices of it, but the sensors are again considered in pairs. There are several
reasons for this:
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Firstly, an LSTM Autoencoder model is not flexible in the dimensions of the data after
it has been defined. This means that if the model was defined and trained with the 10
sensors of the power plant p0, then the model only accepts data with 10 columns as
input. This is very restrictive if sensors are added or removed. Furthermore, it makes
it impossible to use a model across different power plants, as it is also examined in
Section 6.5, Experiment 3.

Secondly, experiments with such an implementation have shown that the model is able to
detect anomalies, but is poorly able to link them to a sensor. However, this is essential
for the problem in this work. In cases where two or more anomalies are active at the same
time, such an implementation was no longer able to distinguish between the different
anomalies.

Thirdly, it is much more important to have a large amount of training data for the LSTM
Autoencoder, since, in contrast to PRADA, a real training of the model takes place here.
Especially with neural networks as LSTM, there is the problem that there is a very large
number of parameters, but the available data may be insufficient to determine all of
them. Splitting the data into pairs increases the amount of data: Assuming there are
10 sensors of the same orientation, a data set with 10 columns becomes

�10
2

	
= 45 data

sets with two columns each, which is nine times the amount of individual measurements.
This is very helpful for training large deep learning models like this one.

Before the data is divided into pairs, it is scaled since many machine learning methods,
especially neural networks, benefit from it [78]. Usually one of the intervals [0, 1] or
[−1, 1] is used. Generally, it is common practice to scale each variable individually for
multi-dimensional data sets. However, since it is assumed that all sensors usually measure
the same, in this case the decision has been made in favour of global scaling. This
also serves the purpose of simplicity. Experiments with scaling on a variable basis were
carried out and led to almost identical results. Furthermore, [0, 1] was selected as the
new interval, as this is much more obvious, since the irradiance can only be positive.

At this point, it should also be noted that the parameters for scaling (minimum and
maximum) must not be determined on the entire data set, but only on the training set.
Then, the same parameters must also be used for the validation and test sets. This is the
only way to prevent information from the validation and test sets from being included in
the training process.

The next step is to break the time series down into sequences of a certain length. The
length of these sequences is defined by the hyperparameter ntimesteps, which is also
optimised at a later stage. This step also massively increases the number of data points
available for the LSTM Autoencoder again, since the measurements of all timestamps,
except for those at the very beginning and end, occur in ntimesteps different sequences.
Figure 5.3 gives an example how the data is split into sequences.

These sequences can then be passed to the LSTM Autoencoder, which always receives
data in the shape ntimesteps ×2 as input. During training, the reconstruction error between
the input and output sequence is calculated directly and the model is adapted to minimise
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5.3. Calculating Reconstruction Errors

t s0 s1 t s0 s1 t s0 s1 t s0 s1
1 0 0.5 1 0 0.5 2 1 1.5 3 2 2.5
2 1 1.5 2 1 1.5 3 2 2.5 4 3 3.5
3 2 2.5 3 2 2.5 4 3 3.5 5 4 4.5
4 3 3.5
5 4 4.5 t s0 s1 t s0 s1 t s0 s1
6 5 5.5 4 3 3.5 5 4 4.5 6 5 5.5
7 6 6.5 5 4 4.5 6 5 5.5 7 6 6.5
8 7 7.5 6 5 5.5 7 6 6.5 8 7 7.5

(1) Original Time Series (2) Time Series as Sequences

(Cutting)

Figure 5.3: Example of converting a single time series into sequences

it. The applied library normally handles this automatically and the optimisation process
is described in more detail in Section 5.6 and Section 6.6.

After successful training and optimisation, the LSTM Autoencoder is then used for
anomaly detection. For this purpose, the model receives the sequences with two sensors
each (i.e. shape ntimesteps × 2) as input, encodes and decodes them, and returns data in
the same shape as the input as a result. For anomaly detection, the reconstruction error
is required. For an analysis of which sensor has a problem, however, these must first be
aggregated. So the data in pairwise sequence format must be converted back into the
table format, so that only 1 value (instead of (ni − 1) · ntimesteps) is available per sensor
and timestamp. This is a multi-step process and works as follows:

First, the corresponding output from the LSTM Autoencoder is taken for each indi-
vidual input and the absolute error is calculated for each element. From now on, the
reconstruction errors are used instead of irradiance measurements.

Next, the sequences are converted back into a long time series so that only one value
per pairwise comparison is available for each sensor at each point in time. The mean is
used for this, i.e. the average over all reconstruction errors of a measurement across the
sequences is calculated. There are various options for the exact technical implementation
of this. In the case of this work, the sequences are stored as a three-dimensional array.
This allows the mean to be calculated very efficiently by shifting along an axis and then
calculating the mean along that axis. However, the exact implementation is arbitrary.

Now the data is in the format of a single time series again instead of many short sequences,
but it is still separated into pairs. The next step is therefore to aggregate the values
from each pair into one value for each sensor. Various methods were evaluated for this
and it was found to be advantageous to use the minimum function. This is because the
reconstruction error is often increased for both sensors in a pair, even if only one of them
is affected by an anomaly. Similar to the procedure for PRADA, it can be assumed that
all pairs of the sensor are affected by an error. The minimum function takes this into
account: a sensor only has a high reconstruction error if that is the case in all pairwise
comparisons.

After this step, the data has the original format again, so there is one value per sensor
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5. LSTM Autoencoder

and timestamp, in this case a reconstruction error. Figure 5.4 illustrates this process
again for a better understanding using example values.

t s0 s1 t s1 s2 t s0 s2 t s0 s1 t s1 s2 t s0 s2
1 0 0.4 1 0.4 0.8 1 0 0.8 1 0.2 0.2 1 0.2 0.2 1 0.5 0.5
2 1 1.4 2 1.4 1.8 2 1 1.8 2 0.2 0.2 2 0.2 0.2 2 0.5 0.5
3 2 2.4 3 2.4 2.8 3 2 2.8 3 0.2 0.2 3 0.2 0.2 3 0.5 0.5

t s0 s1 t s1 s2 t s0 s2 t s0 s1 t s1 s2 t s0 s2
2 1 1.4 2 1.4 1.8 2 1 1.8 2 0.3 0.3 2 0.1 0.1 2 0 0
3 2 2.4 3 2.4 2.8 3 2 2.8 3 0.3 0.3 3 0.1 0.1 3 0 0
4 3 3.4 4 3.4 3.8 4 3 3.8 4 0.3 0.3 4 0.1 0.1 4 0 0

(Absolute
Difference)

t s0 s1 t s1 s2 t s0 s2 t s0 s1 t s1 s2 t s0 s2
1 -0.2 0.2 1 0.6 1 1 0.5 1.3 1 0.2 0.2 1 0.2 0.2 1 0.5 0.5
2 0.8 1.2 2 1.6 2 2 1.5 2.3 2 0.25 0.25 2 0.15 0.15 2 0.25 0.25
3 1.8 2.2 3 2.6 3 3 2.5 3.3 3 0.25 0.25 3 0.15 0.15 3 0.25 0.25

4 0.3 0.3 4 0.1 0.1 4 0 0
t s0 s1 t s1 s2 t s0 s2
2 0.7 1.1 2 1.5 1.9 2 1 1.8
3 1.7 2.1 3 2.5 2.9 3 2 2.8
4 2.7 3.1 4 3.5 3.9 4 3 3.8

t s0 s1 s2
1 0.2 0.2 0.2
2 0.25 0.15 0.15
3 0.25 0.15 0.15
4 0 0.1 0

(5) Final Reconstruction Errors

(3) Reconstruction Errors as Pairs and Sequences(1) Time Series as Pairs and Sequences

(2) Autoencoded Values as Pairs and Sequences (4) Reconstruction Errors as Pairs

(mean)

(min)

(LSTM
Autoencoder)

a

b

c

d

Figure 5.4: Example of calculating the reconstruction error from sequences and converting
them back into a single time series

First, in step (a), the sequences are fed to the autoencoder which returns the reconstructed
values with the same shape. Then, the original sequences and the reconstructed values
are used to calculate the absolute reconstruction error in step (b). Afterwards, in step
(c), the sequences can be merged by taking the mean of all timestamps which occur in
multiple sequences. As a last step (d), the pairs are merged by taking the minimum
reconstruction error of each combination of sensor and timestamp, which results in the
final reconstruction errors on a timestamp basis.

As with PRADA, a statement is to be made on a daily basis in the course of this work.
The reconstruction errors just obtained per sensor and timestamp must therefore be
aggregated again. This work considers two strategies for doing this:

• mean: In this case, the aggregated daily value is calculated as the mean of all
individual reconstruction errors of a day. No relation to the other sensors is taken.

42



5.4. Defining Anomalies

The reconstruction error at day d of sensor s is thus defined by

rds = 1
|Td|

�
t∈Td

rts,

where |.| denotes the cardinality of a set, Td the set of all timestamps on day d and
rts the reconstruction error of sensor s at timestamp t.

• normalised_mean: When using this strategy, the mean reconstruction error of
one sensor is related to the mean error of all other sensors. This is to prevent days
being declared as erroneous on which all sensors have increased reconstruction errors
due to external circumstances. In the case of this work, the external circumstances
might be, for example, a day with a rarely occurring weather phenomenon which
the model therefore has never seen. The daily reconstruction error is then given by

rds =
1

|Td|
�

t∈Td
rts

1
|S|−1

�
s̃∈S\s

1
|Td|

�
t∈Td

rts̃
, (5.1)

where S denotes the set of all sensors. The numerator in Equation 5.1 therefore
describes the average reconstruction error of the sensor s, and the denominator
that of all other sensors.

As desired, a reconstruction error is now provided for each sensor and day and the next
step can be taken, the definition of anomalies.

5.4 Defining Anomalies
The procedure for defining anomalies in the LSTM Autoencoder is very similar to that
of PRADA, which is described in Section 4.3. Again, a minimum length dmin and a limit
value αanomaly need to be defined.

However, there is a difference here: Since the LSTM Autoencoder considers reconstruction
errors and instead of error probabilities, there is no upper bound. Nevertheless, they are
always positive, as always the absolute error is considered.

Which values are typical for the reconstruction errors depends on the selected aggregation
strategy: With the strategy mean, values between 0 and 0.3 are common, while with the
strategy normalised_mean they are usually between 1 and 3. Accordingly, a suitable
αanomaly must also be in this interval.

The further procedure for defining anomalies with the help of reconstruction errors is
identical to the procedure for PRADA with the error probability, which is why at this
point it is again referred to Figure 4.2 and Algorithm 4.2.
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5. LSTM Autoencoder

5.5 Hyperparameters
This section intends to present a clear overview of all hyperparameters that can be
adjusted in this work for the LSTM Autoencoder, to provide more context and to justify
any related decisions. With LSTM networks in particular, the exact hyperparameters
available also depend on the implementation used (in this work, see Section 6.6), but the
most important ones are mentioned here:

• Aggregation method δaggregate: This hyperparameter defines which of the two
methods presented at the end of Section 5.3 should be used to aggregate the
reconstruction values by day.

• LSTM layers nlayers: This hyperparameter defines how many layers the LSTM
encoder and decoder models should have. In this work, encoder and decoder always
use the same architecture, therefore they have the same amount of layers and units.
nlayers refers to both encoder and decoder, so the LSTM Autoencoder model as
a whole has 2 · nlayers LSTM layers. Generally, this can be any positive integer
number, in this work 2 to 6 layers have been considered to allow for a great variety
of models. More layers would yield too complicated models for the given data
availability.

• LSTM units nunits: This hyperparameter defines how much cells/units each of
the LSTM layers has. While every positive integer is possible theoretically, it is
common to use powers of 2, so the values [16, 32, 64, 128] have been considered in
this work.

• Learning Rate η: During optimisation, the learning rate controls the size of the
steps taken to minimise the loss function. It can be any real value between 0 and 1,
but small values are common. In this work the interval [0.00001, 0.1] was chosen.

• Time Steps ntimesteps: This defines how long the sequences that the LSTM
Autoencoder takes as input should be. In theory, it can be any positive integer, but
the amount of available timestamps must be considered. In this work, the values
[4, 8, 16, 24, 32, 48] were considered. These are all multiples of 4, since the data used
in this work is given at 15-minute intervals and the sequences are therefore always
full hours.

• Minimum anomaly length dmin: This defines the minimal length of an anomaly.
As for PRADA, 1, 2 or 3 days have been considered, but it is generally arbitrary.

• Threshold αanomaly: A sensor counts as anomalous if the reconstruction error
exceeds this threshold on a given day. In the case of the LSTM Autoencoder,
αanomaly can be any positive real value.
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5.6 Optimisation Procedure
As for the definition of anomalies, the optimisation procedure of the LSTM Autoencoder
is very similar to the one of PRADA, introduced in Section 4.5. Again, it’s very important
to ensure generalisation of the model: Therefore, the data is split into training, validation
and test set. Special care is taken that no data is spilled from validation or test set into
the training data.

However, remember that real training process takes place in the LSTM Autoencoder. Even
after the hyperparameters mentioned in Section 5.5 have been selected, the training process
is only initiated afterwards, which can be different depending on the implementation.
Often, this also includes a stochastic component, whereby the result can differ slightly
for different runs.

Also for the LSTM Autoencoder, not all hyperparameters are relevant at the same
time. The hyperparameters δaggregate, factivation, nlayers, nunits, η and ntimesteps need to be
defined before any training of the model starts, because they define very basic properties
of the underlying model. The two remaining hyperparameters however, dmin and αanomaly,
only become relevant when the aggregated reconstruction error is already available and
the only task left is defining anomalies.

Therefore, equivalent to PRADA, a two-stage optimisation of the hyperparameters
presented in Section 5.5 is used here as well, to prevent multiple identical calculations
and to make the optimisation process more efficient.

Also here, the optimisation process is carried out again as long as possible to try a wide
variety of hyperparameter combinations. Afterwards, the model with the best performance
on the validation set is selected for further comparisons with other approaches.
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CHAPTER 6
Experimental Setup

This chapter presents all necessary details of the experiments comparing the two different
approaches from Chapter 4 and Chapter 5 performed in the thesis. As a first step, the
considered data is explained in detail, followed by the executed preprocessing steps. To
ensure objectivity and allow for sensible comparisons, artificial errors are added after
data cleaning. Those have already been mentioned in Section 2.4 from a technical
perspective, while the exact implementation is described in this chapter. This is followed
by a description of the evaluation methods and a precise formulation of the experiments
carried out.

6.1 Characteristics of Data
This work presents and evaluates the anomaly detection approaches with the help of
data from two photovoltaic power plants. As introduced in Section 2.4, they are located
in Austria and Spain. Some characteristics about the power plants have already been
shown in Table 2.1, while this chapter focuses on the available data.

Generally, the expected shape of irradiance data is highly dependent of the geographic
location, which influences all aspects like length of the day (period of non-zero irradiance),
difference between the seasons, maximum possible irradiance level and so on. In any case,
the expected irradiance level is 0 W/m2 during the night (between sunset and sunrise),
and positive during the day. Note that there are also regions on the earth where the sun
does not set or rise at some time of the year - in this case, the expected behaviour is
accordingly.

This thesis considers data from a power plant in Austria (abbreviated as p0) and one
in Spain (p1). For the plant in Austria, data is available from January 2023 until July
2024, while for the plant in Spain, data coverage begins mid-April 2023. Figure 6.1 shows
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the mean irradiance (averaged across all sensors of one plant) for the two existing power
plants.
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Figure 6.1: Average irradiance measurements over the entire observation period for power
plants p0 and p1

The graph shows clear differences between the two time series. Throughout the whole
year, the power plant in Spain measures more irradiance than the one in Austria. In
summer, more than 1,000 W/m2 are measured in Spain, while Austria lags behind by
about 10% with around 900 W/m2.
The difference between the seasons can be clearly observed. In Spain, the measured
irradiance drops from about 1,000 to 800 W/m2 on days with good weather, which
represents a reduction of 20%. In Austria, on the other hand, the measured values drop
to about 300 W/m2 in winter, which represents a drop of 67% compared to the summer
value. The differences between the seasons are therefore much more distinct in Austria
than in Spain, which can be explained by the geographical location.
These statements are also confirmed by Table 6.1. This shows the average measured
irradiance values for the two power plants across all sensors and time points. The
significantly lower values are therefore due to the fact that these also include measurements
from the night. Here again, the general advantage of the power plant in Spain can be
seen, as well as the different behaviour between the seasons.
When looking closer at single days more interesting behaviour can be noticed. Figure 6.2
shows the irradiance levels for all sensors of the Austrian plant for four different days. It
is immediately visible that they are significantly different: Day 1 is a clear-sky day in
summer, showing high irradiance levels and a steady rise and fall during the day. Day 2
also features a lot of sunshine (comparable irradiance levels with day 1), but much more
unstable, which is a sign of light cloud cover. On Day 3, the day begins with sunshine,
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6.1. Characteristics of Data

Plant in Austria (p0) Plant in Spain (p1)
Whole period 145.33 232.13
Spring 171.90 251.33
Summer 236.43 289.48
Autumn 103.43 203.31
Winter 49.36 152.29

Table 6.1: Average irradiance measurements by season of power plants p0 and p1

but around noon it changes rapidly and the remaining day is very unstable. On Day 4,
the whole day has very low irradiance levels, which indicates a constant strong cloud
cover. It should be noted that the time on the x-axes of Figure 6.2 (and also all the
following graphs) is given in UTC and not in local time.
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Figure 6.2: Various weather conditions and corresponding irradiance measurements of
the Austrian power plant p0

Another interesting fact to notice is the difference between sensor orientations. Especially
visible on Day 1, the peak in irradiance of the sensors facing to the east (sensor names
containing o0) is reached about 2-3 hours earlier than of the sensors facing west (sensor
names containing o1). On days with low irradiance levels (like Day 4), this effect can
not be seen because the irradiance mainly comes from the diffuse light due to the lack of
direct sun.

Note that even though all days in Figure 6.2 show completely different behaviour, this is
expected and none of those records feature an anomaly: All sensors of one orientation
measure approximately the same, also the relationship between the different orientations
is coherent. On Day 4, which was a very cloudy day, there is not even a difference

49



6. Experimental Setup

between the two orientations.

The data set has a granularity of 15 minutes, which equals 96 data points per sensor and
day. As for most real-world data sets, the data set is not complete, but contains some
missing values. The number and proportion of missing values can be seen in Table 6.2.

Plant in Austria (p0) Plant in Spain (p1)
Full data set 553,230 952,203
Existing data points 528,900 893,484
Missing values (absolute) 24,330 58,719
Missing values (ratio) 4.40% 6.17%

Table 6.2: Overview of the data quantity and missing values before data preparation

6.2 Data Preparation
As a first step of data preparation, a visual inspection by the author of this work together
with domain experts from the operator of the two power plants was performed. This is
necessary to ensure good data quality and fair conditions for the comparative study.

Starting with the power plant in Austria, p0, the number of data points showing unusual
behaviour is low, but there are some points in time or intervals that could show an
anomaly and need to be looked at more closely.
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Figure 6.3: Unexpected behaviour due to snowfall at the Austrian power plant p0

From December 2nd, 2023 until December 6th, 2023, the data does not show the expected
behaviour. As visible on Figure 6.3, the irradiance levels of the sensors facing east
(o0) tend to be much lower, but also sensors facing the same direction show significant
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variances. Together with domain experts and historical weather records [79], this was
due to heavy snowfall, and the data of the affected days was removed.

On February 7th, 2023 and January 10th, 11th and 21st, 2024, anomalous behaviour
of the sensors p0_o0_s1 and p0_o1_s1 was observed. Two of the affected days are
depicted in Figure 6.4. The cause could not be clearly determined, but to ensure good
data quality, the affected days were also removed completely.
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Figure 6.4: Unexpected behaviour on two specific days at the Austrian power plant p0

When looking at the power plant in Spain, p1, in more detail, there are a few very
obvious anomalies. Firstly, irradiance sensor p1_o0_s20 constantly measured 0 W/m2

throughout the whole time series and all data of it was removed as a consequence.

Another interesting behaviour was shown by the sensors p1_o0_s1 and p1_o0_s9 and
is depicted on Figure 6.5. From autumn 2023 until summer 2024, the measured irradiance
is always 30-50% lower than all other sensors of the same orientation. While this is
generally possible due to shadowing or different terrains [80], the magnitude, duration
and period of this deterioration is unexpected, especially since it also occurred on days
with heavy clouds and thus no direct sunlight. No exact cause could be determined,
but due to the uncertain data quality, it was decided to remove all data from these two
sensors, which reduces the total number of sensors of p1 to 18.

Even though the focus of this work lies on anomalies that span across a longer period
of time (both methods make their statements about whole days), the data should also
be free of very short anomalies (called point anomalies, if they are only visible in one
measurement, or very short subsequence anomalies [81]).

For the plant p0 in Austria, the visual check could not detect such anomalies, but for
the Spanish plant p1 three anomalies of this type could be found. In these cases, the
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Figure 6.5: Unexpected behaviour over an extended period at the Spanish power plant
p1

measured values are physically impossible to achieve, since they massively exceed the
highest possible energy arriving at the atmosphere [82]:

1. August 11th, 2023 05:15-05:30: p1_o0_s0 and p1_o0_s3 measured up to
1,584.05 W/m2 before sunrise

2. December 8th, 2023 22:00-22:15: p1_o0_s3 measured up to 2,740.51W/m2

after sunset

3. January 10th, 2024 21:30-22:00: p1_o0_s10 measured up to 3,276.70 W/m2

after sunset

Anomaly 2 can also be seen in Figure 6.6. Since those anomalies seem to appear very
randomly, no direct cause could be determined by the domain experts, and all affected
data points have been removed from the data.

The complete absence of further anomalies naturally can never be guaranteed, but all
reasonable measures for this have now been taken and the next step of data preprocessing
can be carried out.

While PRADA has no problem with missing data, as long as each combination of same-
oriented sensor has at least one measurement at the same time, the LSTM Autoencoder
can not handle missing data. In daily operation, this prerequisite can be achieved with a
simple check before applying the method and depending on the extent, imputation of
values or removal of timestamps or sensors, while taking note of the missing values, since
repeated occurrences can also be a sign of a defect.
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Figure 6.6: Unexpected behaviour at a specific timestamp at the Spanish power plant p1

However, in order to ensure a fair comparative study of the two approaches, the assumption
of complete data must be established for both algorithms. To achieve a complete data
set, while still having a data set representative of the reality and being reasonably sized,
the structure of missing values in the data set is studied in greater detail.

The first row of Figure 6.7 shows the number of anomalies during the observation period
for both power plants. It is evident that there are a few hotspots of missing values, but
aside from that, the missing values are distributed fairly evenly. Interestingly, there was
a significant increase in missing values in the spring and summer of 2024 for both power
plants. In Austria, missing values became more frequent, while there were still regular
instances of all sensors functioning with zero missing values at some timestamps. In
Spain, however, five sensors (p1_o0_s2 through p1_o0_s6) failed completely in May
2024, raising the minimum number of missing values per timestamp to five from that
point onward. Due to the nearly simultaneous emergence of the increase in missing values,
it is also possible that the cause lies not with the power plants themselves, but rather
with the data collection process. However, this could not be determined with certainty.

The second row of Figure 6.7 shows the distribution of missing values across the different
sensors. In Austria, there are quite significant differences: Sensors p0_o0_s2 and
p0_o1_s2 failed to report values much more frequently than the others. Compared to
these two, the values of the remaining sensors are significantly lower, but there are still
substantial differences among them.

The situation in Spain is more balanced: The five sensors, which have not been reporting
data since May 2024, are of course clearly at the top of the statistics with around 7,500
missing data points each, but they are quite similar to each other. The remaining sensors
are well below that with around 1,500 missing values and are also quite balanced.
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Figure 6.7: Structure of missing data of both power plants p0 and p1

Note that the assumption of complete data was introduced, meaning that all considered
sensors should have data for all timestamps of a day (e.g. for the Austrian plant p0, a
full day consists of 10 · 96 = 960 data points per day). A simple and obvious way to
achieve this goal would be to remove all entire days for which at least one data point is
missing. This would guarantee data completeness without having to perform imputations
and thus making further assumptions.

However, in this case only 324 and 331 of the originally available 568.60 (p0) and 462.52
(p1) days would remain. This is too restrictive, which is why a more liberal strategy
must be adopted, which also requires the careful use of imputation.

The next step was to try removing all days that exceed a certain ratio of missing data
points. This makes imputation necessary, but by limiting the maximum ratio of missing
data points, the influence on the results should be kept as low as possible.

Various minimum quotas for the available data between 70% and 95% were tested. The
difference between the various levels turned out to be smaller than expected: For example,
a reduction in the quota from 90% to 85% for the power plant in Austria added about 22
days, while in Spain the difference was even smaller and only 4 days were added.

In the end, a minimum availability of 90% was the best compromise between as many
data points as possible for the comparative study and as little missing data as possible,
and was therefore set at this level. The resulting missing and available data points used
for the experiments can be seen in Table 6.3. Note that the data of p1 now ends in May
2024 due to the failure of 5 sensors, as described above and visible in Figure 6.7.

Now that only days with at least 90% data availability remain, the only thing missing
for a complete data set that meets our requirements is imputation.
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6.2. Data Preparation

Plant in Austria (p0) Plant in Spain (p1)
Possible data points after
preprocessing

460,800 667,008

Existing data points 457,724 664,262
Missing values (absolute) 3,076 2,746
Missing values (ratio) 0.67% 0.41%

Table 6.3: Overview of the data quantity and missing values after data preparation

In general, there are many different ways to impute missing data points. A very simple
option is to simply fill the missing value with the mean value of the respective variable or
with another value that is determined to be plausible [83]. More complicated examples
would be using different machine learning approaches [84] or bootstrapping [85] to replace
missing values. There is also a trend towards multiple imputation, in which missing values
are replaced by multiple plausible estimates in order to better reflect the uncertainty
caused by the missing data and to achieve more robust results [86].

If the underlying data is a time series, this brings new possibilities on the one hand,
but on the other hand, some methods may no longer be applicable. New possibilities
could be back-fill/front-fill (in which a gap is filled with the closest available data point
in the past/future) or interpolation [87]. This involves determining a plausible value to
be inserted on the basis of the existing data points around the gap. Typically, a linear
interpolation is used, but there are many other possibilities depending on the application,
e.g. polynomial or spline interpolation. Also methods like an LSTM networks, which is
used for anomaly detection in this work, can be used for imputing [88].

Often back-fill or front-fill are the natural choices for time series, but they are not in
this case. As also visible in Figure 6.2, the irradiance is expected to steadily rise from
sunrise until about noon, then start to decrease again until sunset. Only during the night,
the value is expected to be constantly around 0 W/m2, which is therefore the only time
where those method provide realistic data.

Hence interpolating is the much better choice in this case, since it considers both values
before and after the gap and can therefore imitate the increase and decrease during
the day, while still staying constantly 0 during the night (assuming the points before
and after the gap also did so). Due to those properties, interpolating was chosen as
imputation method. Different interpolation functions were considered. However, due
to both simplicity and the following key reason, linear interpolation was chosen: On
days where the irradiance graph has a steady shape (like Day 1 in Figure 6.2) it can
be considered approximately linear for short time periods because the data granularity
(15 minutes), while on days with unstable weather, interpolating might produce results
further away from reality, but still does not perform worse than other methods.

However, this is rarely necessary due to another measure: Remember that this work
considers a redundant sensor setup, which yields the assumption of all sensors having the
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same orientation measuring approximately the same value. Therefore, it is reasonable to
fill data gaps based on the measurements of the other sensors. To put this into practice,
it is achieved by calculating the mean of all sensors with available data of the same
orientation and using this value for imputing.

For example, if the sensor p0_o1_s0 of the power plant in Austria has a missing data
point, the average of the sensors p0_o1_s1-p0_o1_s4 is used for imputing. Since the
power plant p1 in Spain only has one orientation, all available sensors are used for the
calculation. This ensures that the imputed data is much closer to reality compared other
methods and at the same time also prevents the introduction of new anomalies.

Interpolation is then only used if all the sensors of an orientation (i.e. all the sensors in
Spain) have failed simultaneously at a certain point in time. For the data used in this
thesis, after removing the days with more than 10% missing data, this is never the case
in Spain (there is at least one measurement at every timestamp), while in Austria there
are two events of all sensors failing, in total affecting 7 timestamps. Due to the negligible
number of points affected and the fact that most of them are located at night, it can
be assumed that interpolation has no influence on the results and can be carried out as
described.

This concludes the data preprocessing and leaves the following data for the next steps:
For the plant p0, data of 482 days is available (which equals 46272 observations of 10
sensors each), while for the p1 the data comprises 386 days (37056 observations and 18
sensors).

6.3 Adding Artificial Anomalies
With the preprocessing presented in Section 6.2, the assumptions of complete and
anomaly-free data can now be considered fulfilled. However, in order to carry out the
comparative study and compare the performance of the two algorithms, anomalies in the
data are required. For this purpose, domain experts and past experience (see also the
errors found in Section 6.2, or [18, 89]) were used to discuss which errors can occur in th
redundant sensor setup of the considered type.

As part of this work, a framework was developed that adds artificial errors to a given
data set. While this is optimised for the conditions of this thesis and their experiments,
it is generally very modular in design and can be extended as desired (e.g. by adding
further error types). Also the occurrence and variation of the individual errors can be
controlled very precisely. To define the anomalies that should be added to the data, a
dictionary (referred to as ERROR_CONFIG) must be provided. The key-value pairs of
this dictionary define all parameters and provide, assuming the data does not change
and a seed is set, a unique and reproducible error setup.

The most important key in the ERROR_CONFIG dictionary is ERROR_PROB, which
controls the probability that an anomaly occurs. If no anomaly is currently active at
one sensor, one is generally beginning with the probability provided by ERROR_PROB.
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6.3. Adding Artificial Anomalies

However, experience has shown that different anomalies do not tend to be completely
independent, so if one sensor is currently experiencing a failure, chances are increased
that another one also does so as well because of external reasons. For this reason, the
following formula was implemented which determines the probability of an anomaly
starting. In this case pbase represents the base probability provided in the dictionary, nt

stands for the number of currently active anomalies and pt for the actual error probability
at timestamp t.

pt = pbase · 2nt

In other words, the probability of an error occurring is doubled with each additional
sensor that is currently faulty.

An artificial error always has a specified duration, which is determined by the key
ERROR_DAYS_INTERV in the ERROR_CONFIG dictionary. The corresponding key has
the shape {"low": min_dur, "high": max_dur}, defining the minimum and
maximum duration of the anomaly. For each added anomaly, the duration is then
uniformly distributed from the interval (min_dur, max_dur).

There is one special case in which this does not apply: The assumption of complete days
was introduced, which made it necessary to remove data of some days and therefore
create gaps between days. This raises the issue how to handle the combination of errors
and data gaps. Several options were considered, but it was concluded that it is best
to simply avoid having artificial anomalies overlapping with data gaps. This works as
follows:

Before adding an error, it is checked how far the next data gap is in the future. If
it is further away than max_dur, the error can be added in any case without special
attention. If the next data gap is closer than max_dur, but further away than min_dur,
the random duration must be shorter than the duration until the gap. If this is not the
case, the random draw for the duration is repeated until the condition is met. Only if
the next data gap is closer than min_dur, the insertion of the error be cancelled.

This naturally raises the concern if the knowledge that an anomaly cannot extend beyond
a data gap might also be learned by the algorithms and thus distort the results. However,
at least in all the cases considered in this work, this can be ruled out because neither of
the two algorithms has access to data that lies in the future, and in both cases the date
information is removed before the calculations, so the algorithms do not know if there is
a gap between the days under consideration or if they were consecutive.

Another very important entry in the ERROR_CONFIG dictionary defines the different
types of errors that can be added and their distribution. For the key ERROR_TYPE_PROB,
the value should be another dictionary which has the different types of anomalies (as
string) as keys, and their corresponding distribution (must sum up to 1) as values.
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In this work, three different types of artificial errors are considered. Those have been
presented from an operators perspective in Section 2.4, in the following the implementation
and possible variations of the errors are discussed.

6.3.1 Measurement is Constant (const)
This type of anomaly occurs, for example, when the measuring element of a sensor is
defective or the sensor has fallen from its mounting to the floor. Another possibility would
be a problem with the electronics of the sensor. This artificial anomaly is characterised
by the fact that the sensor reports only one constant value during the entire duration of
the anomaly. In many cases, this is 0, but it can also be a different value.

Figure 6.8 gives two examples how an artificial anomaly of type const looks like: Example
1 shows an average cloudy day, where the weather gets worse as the day progresses. In
the morning, one can see the difference between the two orientations, but in general the
measurements are very similar. However, one sensor (p0_o0_s0) clearly deviates from
this, as it constantly measures 0. While this is generally a plausible value, it is not at
this time of day and given the results of the other sensors. In Example 2, the defective
sensor is p0_o1_s1, which constantly measures -1,175.85 W/m2, which is physically
impossible in any situation.
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Figure 6.8: Examples for artificial error of type const

In a later chapter, more details will be given on how information about the artificial
errors is stored. For this purpose, the two example errors just discussed were used, among
others, and are therefore visible with IDs 60 and 61 in Table 6.7.

For this anomaly type, another key-value pair is added to the configuration dictionary
ERROR_CONFIG: The record CONST_VALUE_PROB defines which values are feasible to
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6.3. Adding Artificial Anomalies

be added as constant errors and their corresponding probabilities. The value is again
a dictionary with the format {0: prob_0, (low, up): prob_interv}, where
the probabilities should add up to 1. In this case, there are two possibilities: With
probability prob_0, the constant value is 0 W/m2, while with probability prob_interv
it is a random value from the interval (low, up), drawn using an uniform distribution.

However, since the framework is modular, the keys of the dictionary are arbitrary and can
be any number or interval (as a tuple), also multiple times. Thus it is possible to define very
specific mathematical sets, using a combination of (disjoint or overlapping) intervals and
single numbers. To give an example, a dictionary including all of the possibilities would
be {0: 0.1, 1: 0.1, (4,5): 0.3, (4.5,5.5): 0.2, (5,6): 0.3},
which in mathematical representation equals

const_value =

��������������

0 with probability 0.10,

1 with probability 0.10,

U [4, 4.5] with probability 0.15,

U [4.5, 5.5] with probability 0.50,

U [5.5, 6] with probability 0.15.

6.3.2 Measurement is Close to Reality, but Distorted (deter)
This type of anomaly is characterised by the fact that the measurements correlate with
reality, but do not represent it correctly. An example of this would be a sensor that is
covered with a layer of dust and therefore measures less irradiance than actually arrives.
This means there is a proportional deterioration of reality.

Each anomaly of this type falls into one of three categories, which differ in the development
of the deterioration:

1. Constant deterioration: The deterioration remains constant throughout the
entire duration of the anomaly, so the measured value and the true value are always
in the same ratio to each other.

2. Increasing deterioration: In this case, the deterioration becomes more and more
severe until the sensor eventually always measures 0 W/m2.

3. Decreasing deterioration: This case is the opposite of the one just described.
The deterioration becomes weaker over time, i.e. the measured value approaches
the true value. When the anomaly ends, the sensor again measures values that
correspond to reality.

Figure 6.9 gives examples how those three types of deterioration anomalies can look like:
The first graph shows p0_o1_s3 having an anomaly with constant deterioration. While
it is active, it reports 33% of the real value. On November 28th, the error ended and
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the sensor operates again as intended. The second example in the plot shows two more
of those anomalies: On April 29th, an anomaly starts for sensor p0_o1_s2 (13% of
original value). On May 2nd, p0_o1_s0 starts to fail with deterioration to 39%.
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Figure 6.9: Examples for artificial error of type deter

Until now, only examples with constant deterioration have been considered. Example 3
covers those two remaining types: On March 22nd, p0_o1_s0 begins an anomaly with
decreasing deterioration. It starts with deterioration to about 11%, but then steadily gets
closer to the original value which it reaches after 4.5 days. On March 23rd, p0_o0_s1
starts to experience an anomaly with increasing deterioration. It first falls to 63% of the
original value, then starts to decrease and reaches 0 after a bit more than a day (45% of
the total time), and stays like this for about 27 more hours. The just described anomalies
can be also be found in Table 6.7 with the IDs 45 (Example 1), 10 (Example 2), 8 and 9
(Example 3).

Table 6.4 shows which key-value pairs need to be added to the ERROR_CONFIG dictionary
and describes their use.

6.3.3 Measurement is Random (rand)
This type of artificial anomaly causes the values measured by the sensor to be random,
so they have no relation to the actual irradiance value, but they are also not constant.
This can occur if there is a problem during the transmission of the measurement data
and the actual measurements are replaced by noise.

In this thesis, this was implemented using a random walk [90]. Starting from 0, a random
number drawn from an uniform distribution is added or subtracted in each timestep.
Mathematically, this can be expressed as follows:
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6.3. Adding Artificial Anomalies

Key Value Description
DETER_INTERV {"low": min_deter,

"high": max_deter}
Deterioration ratio is chosen uni-
formly distributed from provided
interval

DETER_CHANGE {None: prob_none,
"up": prob_up,
"down": prob_down}

Probabilities that decide if the
deterioration stays constant or in-
creases/decreases

DETER_DOWN_RATE {"low":
min_deter_down,
"high":
max_deter_down}

For increasing deterioration, ratio
(uniformly distributed from pro-
vided interval) of the total time
after which 100% deterioration
should be reached

Table 6.4: Entries in the ERROR_CONFIG dictionary for the anomaly type deter

Xt = Xt−1 + xt where xt ∼ U(l, u), X0 = 0 and t ≥ 1 (6.1)

This raises the need for another entry in the ERROR_CONFIG dictionary: The value
provided for the key RANDOM_BASE is a dictionary, defines the parameters for the random
walk, denoted as l and u in Equation 6.1, and has the format (analogous to entries made
before) {"low": rand_walk_min, "high": rand_walk_max}.
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Figure 6.10: Examples for artificial error of type rand

As for the previous anomaly types, examples how those artificial anomalies can look
like are provided in Figure 6.10. As the name suggests, this method yields very unique
paths of the time series: Sensor p0_o0_s2 in example 1 and sensors p0_o1_s1 and
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p0_o1_s3 all look different. Also other paths are possible, walks reaching over 1,000
W/m2 have also been observed, while others stay close to 0.

Also those artificial errors can be found in Table 6.7 with the IDs 16, 12 and 13.

6.3.4 Choice of Parameters
In the previous pages, a large number of parameters were introduced that must be
selected for the experiments in this work. The selection of these is not trivial, it was
tried to create as realistic conditions as possible. Another goal was to allow as much
diversity in errors as possible in order to better evaluate the strengths and weaknesses of
the algorithms.

The following shows the standard configuration of ERROR_CONFIG used in this work.
Some experiments presented in Section 6.5 deviate from this, but unless otherwise stated,
these parameters were used. This also serves as an overview and summary of all the
configuration parameters introduced in Section 6.3.

ERROR_CONFIG =
{"ERROR_PROB": 0.01/96,
"ERROR_DAYS_INTERV": {"low": 1, "high": 14},
"ERROR_TYPE_PROB": {"const": 0.25,

"deter": 0.5,
"rand": 0.25},

"CONST_VALUE_PROB": {0: 0.5, (-10000, 10000): 0.5},
"DETER_INTERV": {"low": 0.1, "high": 0.9},
"DETER_CHANGE": {None: 0.5, "up": 0.3, "down": 0.2},
"DETER_DOWN_RATE": {"low": 0.1, "high": 0.7},
"RANDOM_BASE": {"low": -10, "high": 10}}

The following reasons were key to the choice of parameters:

• ERROR_PROB: Various error probabilities were examined in order to obtain as many
anomalies as possible for a good comparative study, while still remaining realistic.
An error rate of 0.5% to 1.5% per sensor and day turned out to be optimal, so
the middle of this interval was chosen. Domain experts have confirmed that, when
considering all types of failures and problems together, this value is realistic, albeit
rather high. Given that this work benefits from a larger dataset to evaluate the
proposed approaches, this is considered acceptable. The value is then divided by
96 (number of timestamps per day), since the probability here does not refer to a
day, but to a timestamp.

• ERROR_DAYS_INTERV: The lower limit (1 day) was chosen because this work
focuses exclusively on longer anomalies, as described in Chapter 2, and not on point
anomalies.
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The upper limit was chosen so that, on the one hand, a relatively large number
of different error lengths would arise, but on the other hand, there would also be
a clear differentiation from permanent malfunctions. It can also be assumed that
most problems will be resolved by the operator of such a power plant within 14
days.

• ERROR_TYPE_PROB: For this parameter, the focus was on creating the greatest
possible variety of different errors. Since the error type deter has 3 different
characteristics, the probability of this error was set at 50%, with the other types
sharing the rest equally. This also makes sense in view of the real circumstances,
since this type of error is to be expected several times a year (snowfall in winter,
no rain for a longer period and therefore soiling in summer).

• CONST_VALUE_PROB: For the error type const, the value 0 or any other value
(determined by an equal distribution) in the interval [−104, 104] is chosen with
equal probability. The value 0 W/m2 was explicitly picked out because it is the
most common in reality, as described in Section 2.4. The interval was chosen to
often remain in the same order of magnitude as the real measured values and thus
to be a greater hurdle for the algorithms, but sometimes also provide impossible
values, which should be easier to detect.

• DETER_INTERV: For the values of the possible deterioration, an attempt was again
made to leave all possibilities open. Only deteriorations to less than 10% or more
than 90% of the original value were excluded, as these are too close to a constant 0
or to the real measurement data.

• DETER_CHANGE: These parameters were chosen as a compromise between a wide
range of error selection and reality. The neutral case, in which the deterioration
remains constant, was therefore chosen as the highest at 50%, with the rest was
distributed with a slight tendency towards a smaller weakening, as this case is more
regularly expected due to snowfall in winter.

• DETER_DOWN_RATE: The aim here was to introduce as wide a range of different
errors as possible, and the interval was therefore deliberately chosen to be large.
Values below 0.1 were excluded because this would correspond to an unrealistically
fast degradation process. Values above 0.7 were not considered because it is unlikely
that the error would reach 100% deterioration exactly at the end of the error, rather
it should end with a constant phase in any case.

• RANDOM_BASE: For the random walk, various parameters for the change in each
timestamp were examined. The aim here was for most of the curves to be in the
same order of magnitude as the real irradiance measurements, but also to go above
and beyond them at times. This was achieved very well with the interval [−10, 10].

To conclude this section, Figure 6.11 shows the distribution of errors over the first 7
months of the data when the parameters just described are chosen and 10 is used as the
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seed. These are also the same errors that have been used as examples in this chapter,
and some of which are listed in Table 6.7 and detected in Table 6.8. It is visible that
the anomalies are definitely present and there should be enough of them to carry out
reasonable experiments, but on the other hand (it should be remembered that a line in
Figure 6.11 always refers to only one sensor) the sensors are operating in the normal
state for most of the time.
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Figure 6.11: Timeline of artificial anomalies using parameters described in Section 6.3

6.4 Evaluation Metrics
Before the peculiarities of the evaluation in this work are discussed, a basic overview
of classification and its evaluation methods is given. Generally, a distinction is made
between binary, multi-class, multi-labelled and hierarchical classification [91]. In the
following, only binary classification is discussed, as this is the only relevant case for the
given problem.

In this case, each data point belongs to exactly one group, and in the classification, each
data point (using external information, without using the real group membership) is
predicted to belong to one of the two groups. In this case, it is assumed that the two
groups are positive and negative, although this is arbitrary. Each of the data points then
falls into one of the following 4 categories:

• TP (True Positive): Points that are positive and were also predicted as such.

• TN (True Negative): Points that are negative and were also predicted as such.

• FP (False Positive): Points that are negative, but were predicted as positive.

• FN (False Negative): Points that are positive, but were predicted as negative.

The quantities of these 4 categories are usually represented by a confusion matrix. Ta-
ble 6.5 shows one possible way how a confusion matrix is often shown, also a representation
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Actual
Positive Negative

Predicted Positive TP FP
Negative FN TN

Table 6.5: Definition of a confusion matrix for binary classification

as figure or list is possible. In some literature, the transposed version is preferred, so
that FP and FN are also swapped.

The quantities of the four categories (TP, TN, FP and FN) can then be used to calculate
various evaluation metrics [92], some of them shown in Table 6.6. Again, the information
is limited to what is relevant for this work.

Evaluation Metric Definition Description
Accuracy TP+TN

TP+FP+TN+FN Proportion of correct predictions out of
all predictions

Precision (P) TP
TP+FP Proportion of true positives among pre-

dicted positives
Recall (R) TP

TP+TN Proportion of true positives among ac-
tual positives

F1-Score 2·P·R
P+R = 2·TP

2·TP + FP + FN Harmonic mean of precision and recall

Table 6.6: Selected evaluation metrics for binary classification

The various metrics are all based on the values from the confusion matrix, but they have
different implications and different metrics are appropriate depending on the situation.
For example, accuracy is a commonly used metric when the focus is on the total number
of correct classifications. However, it can quickly become misleading, especially when
dealing with imbalanced groups of different sizes. For example, it is possible that a
classifier has 98% accuracy, but fails to detect any relevant data point [93].

Precision is particularly relevant when false-positive classifications have serious conse-
quences, while false-negative classifications are less problematic (e.g. recognising spam
emails). In contrast, recall is more important when avoiding false-negative classifications
is more important than minimising false-positive classifications (e.g. cancer screening)
[94]. F1 score is a good choice when it is unclear whether precision or recall is more
important, as it balances both metrics.

Now that all the general requirements for the evaluation have been met, the focus is
once again on the problem considered in this work. When artificial anomalies are added,
not only the modified time series is stored, but also information about the added errors.
These are, in any case, the affected sensor, the start time, the duration and the type
of error. In addition, there are the characteristics of the respective error type, e.g. for
an error const the value that is assumed to be constant, or for the type deter the
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deterioration level and whether this remains constant or not. All this information is
referred to in the following as ground truth.

If PRADA or the LSTM Autoencoder is applied, the result is very similar: The affected
sensor, the start time and the length in days are reported for the detected errors. In
this case, the start time is always midnight and the length is always an integer, because
the algorithms both work on a daily basis, but this assumption is not necessary in the
following. Depending on the algorithm, further values such as the reconstruction error
are reported, but not used further in this work.

Table 6.7 gives an example how the table containing information about the artificially
added errors looks like. Those were added with seed 10, and have also been used to give
examples for the different error types considered in this work: Anomalies with ID 60 and
61 can be seen in Figure 6.8, 45, 10, 8 and 9 can be seen in Figure 6.9, and 16, 12 and 13
can be seen in Figure 6.10.

ID Sensor Type Begin Days const_
value

deter_
base

deter_
change

deter_
down_
value

60 p0_
o1_s1

const 2024-03-19
02:45

4.56 -1,175.85 - - -

61 p0_
o0_s0

const 2024-03-26
04:45

7.47 0.00 - - -

45 p0_
o1_s3

deter 2023-11-24
01:15

3.84 - 0.33 - -

10 p0_
o1_s2

deter 2023-04-29
21:45

6.78 - 0.14 - -

8 p0_
o1_s0

deter 2023-03-22
11:45

4.45 - 0.11 up -

9 p0_
o0_s1

deter 2023-03-23
07:30

2.48 - 0.63 down 0.45

16 p0_
o0_s2

rand 2023-06-06
21:00

7.35 - - - -

12 p0_
o1_s1

rand 2023-05-12
01:00

13.77 - - - -

13 p0_
o1_s3

rand 2023-05-15
02:30

13.94 - - - -

68 p0_
o1_s0

deter 2024-05-14
10:30

5.38 - 0.56 up -

Table 6.7: Example of artificially added errors

The result received after applying one of the two algorithms considered in this work looks
very similar. One example is given in Table 6.8, where PRADA has been applied to the
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data just described. As for the added errors, this shows only the relevant part of the
result.

ID Sensor Begin Days Error probability
67 p0_o1_s1 2024-03-19 00:00 5 1.00
69 p0_o0_s0 2024-03-27 00:00 6 1.00
49 p0_o1_s3 2023-11-24 00:00 4 1.00
6 p0_o1_s2 2023-04-30 00:00 7 0.98
4 p0_o1_s0 2023-03-23 00:00 2 1.00
5 p0_o0_s1 2023-03-23 00:00 3 1.00

16 p0_o0_s2 2023-06-10 00:00 4 0.97
10 p0_o1_s1 2023-05-15 00:00 11 0.90
9 p0_o1_s3 2023-05-15 00:00 15 0.84

60 p0_o1_s4 2024-02-08 00:00 5 0.62

Table 6.8: Example of detected errors after applying PRADA or the LSTM Autoencoder

This raises the question of how the evaluation is carried out after or during an experiment
having those two tables. The theory just presented cannot be used directly, since here
not every data point/timestamp is classified, but rather errors that extend over a certain
period of time. However, with a little adaptation, the introduced evaluation metrics can
still be used.

All entries in both tables are checked and assigned to one of the following three cases:

• TP (True Positive): This applies to all errors that occur in both tables, i.e. those
that have been added artificially and those that have been found. This raises the
question of how the matching between added and found errors works, since these
are not normally completely identical (the added ones have an arbitrary start time
and duration, while the found ones always have midnight or integer, respectively).
This was solved as follows: First, a check is made to see whether there is a suitable
pair of entries at all, i.e. which concerns the same sensor and for which the affected
periods (start + duration) overlap. If this is not the case, one of the other two cases
applies. If such a pair exists, the system checks how large the overlap between the
added and found error is. A minimum overlap of 25% was defined, which means
that the overlapping period must account for at least 25% of the total duration of
both the added and found error.
This prevents errors from being classified as identified even though they only overlap
in a very small area by chance. If this is the case and the overlap is less than 25%,
the points fall into the other categories (FN or FP). If there is at least 25% overlap,
the pair is counted as a correctly identified error (TP).
Figure 6.12 shows some examples of added and detected errors: In Example 1, the
anomaly is detected one day after its start, but is considered active two days longer

67



6. Experimental Setup

than it really is. However, there is still a huge overlap (87.5% for the ground truth
and 75% for the detected error, so the overlap is definitely sufficient to consider the
anomaly as detected. In Example 2, the detected error is much shorter than the
ground truth, but still completely within its duration. Even though the duration
is not correct, it is still enough to clearly detect that the sensor is not working
as expected, which is the goal in this thesis. In Example 3 however, the overlap
between the true anomaly and the detected error is very short. Here it is not
possible to say whether the error was detected or this was just a random occurrence,
so in this case, the anomaly would not be considered detected.

2024-01-01 2024-01-03 2024-01-05 2024-01-07 2024-01-09

Detected
Anomaly

True
Anomaly

(1) Overlaps 87.5% and 75%

2024-01-01 2024-01-03 2024-01-05 2024-01-07 2024-01-09

Detected
Anomaly

True
Anomaly

(2) Overlaps 50% and 100%

2024-01-01 2024-01-03 2024-01-05 2024-01-07 2024-01-09 2024-01-11

Detected
Anomaly

True
Anomaly

(3) Overlaps 50% and 10%

Figure 6.12: Examples of error pairs (ground truth and detected) with different overlaps

The minimum overlap of 25% was deliberately chosen because in the setting of this
work, it does not depend on a single day. It is much more important that the error
is reliably detected than the exact start and end time. However, this procedure
ensures that no pairs are identified as correct in which the added and detected
error have no connection.

In the example tables Table 6.7 and Table 6.8, the first 9 entries of each table form
pairs (e.g. ID 60 from Table 6.7 forms a pair with ID 67 from Table 6.8) and are
therefore considered TP. The overlap is not specified explicitly, but can be checked
easily: For the first pair, the true anomaly is completely covered by the detected
anomaly (100% overlap), which is only about 11 hours longer in total than the
real error (∼ 90% overlap). This therefore clearly fulfils the condition of minimum
overlap.

• FN (False Negative): This category describes errors that were added artificially
but could not be detected, or not with sufficient overlap. This class therefore
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includes entries from the ground truth. In Table 6.7, ID 68 would be an example of
this case, since it does not have a counterpart in the table of detected errors.

• FP (False Positive): This category contains time periods that were detected as
anomalous, but for which there is no counterpart that was added artificially. This
therefore includes entries from the set of detected errors, and in Table 6.8 ID 60
would be an example.

The evaluation situation at hand resembles the general case, but there are notable
differences: Not every data point or timestamp is classified, but a connected unit (errors
that span a sensor and at least 96 timestamps). For this very reason, the class of true
negatives (TN) does not exist, which prevents the use of certain metrics such as accuracy.

In the situation at hand, there is no clear tendency whether the consequences of false
positives or negatives are more serious: False negatives are problematic because they
lead to lost revenue, and the failure to recognise a problem might make it more serious
and expensive to resolve. However, false positives are just as problematic, as they tie up
valuable personnel resources that could be better used elsewhere. Since there is no clear
trend here, the F1 score was chosen as evaluation method for the following experiments,
as it does not require the number of false negatives and creates a good balance between
the two types of errors and therefore ensures a fair comparative study.

6.5 Experimental Plan
The fundamental question of this work is which of the two algorithms, PRADA and the
LSTM Autoencoder, is better suited for the use case presented in Chapter 2. The aim is
to provide an overall assessment, as well as to look at individual aspects in more detail
in order to be able to better justify the decision and to be prepared for any changes
that may occur. Since it is not possible to carry out all experiments in parallel for both
power plants, efforts have been made to design the experiments in order to maximize the
advantages offered by the existence of two datasets, including the application of Transfer
Learning.

Overall, the focus of the experiments is on the power plant in Austria, p0. Although
it has fewer sensors than p1, it is also sufficiently large. In addition, it covers a longer
period of time, adds additional challenges with the two different orientations, and its
data was available at an earlier stage in the development process of this work. This also
makes the calculations less complex, as the algorithms scale much better in terms of the
time considered than in terms of the number of sensors due to the pairwise comparison.

Another difficulty is the question of the train-validation-test split. As described in Chap-
ter 4, PRADA does not actually train a model, but only a selection of hyperparameters
has to be determined. For this, very small training and validation sets would be sufficient,
which would create a lot of room for a test set that is as large as possible and thus contains
more anomalies. In contrast, the LSTM Autoencoder learns the correct behaviour using
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an error-free training set. In this case, the process benefits from having more training
data, so the split should favour the training set as much as possible. The problem of
those two diametrically opposed tendencies can be resolved by the fact that the validation
and the test set can be used multiple times with different artificial errors generated
through different seeds. Consequently, the dataset split can prioritize the training set
while still ensuring adequate evaluation on the validation and test sets. Table 6.9 shows
the resulting threshold dates used for the split of the dataset and the corresponding
ratios for both power plants p0 and p1.

Plant Training Validation Test
Period Austria (p0) 01/2023-12/2023 01/2024-03/2024 04/2024-07/2024

Spain (p1) 04/2023-12/2023 01/2024-02/2024 03/2024-05/2024
Ratio Austria (p0) 60.63% 18.33% 21.04%

Spain (p1) 65.80% 15.03% 19.17%

Table 6.9: Threshold dates for splitting data into training, validation and test sets, with
resulting ratios

In all of the following experiments, the validation and test sets are considered eight times
with different anomalies by setting a different seed. After a detailed assessment of the
situation and the performance of diverse intermediate experiments, the decision was
taken to set up the comparative study as follows:

1. Training and Evaluation on Heterogeneous Anomalies: This experiment
should assess the general anomaly detection capabilities of the two approaches. For
doing so, artificial errors of all three types are added to the data with the parameters
introduced in Section 6.3. A detailed search for the best hyperparameters is then
carried out on the training data and the best model is selected based on the
performance on the validation set. The score for comparison with other methods
or experiments is determined on the test set. This experiment is executed on both
datasets, p0 and p1, whereby the focus is on p0 due to the significantly shorter
durations of training and application.

2. Evaluation on Homogeneous Anomalies: This experiment is intended to test
whether one of the approaches is particularly suitable for one or more of the three
error types. For this purpose, the best models of Experiment 1 are evaluated on a
test set which only contains anomalies of one of the types const, deter or rand.

3. Transfer Learning: Cross-Dataset Evaluation: Both Experiment 1 and
Experiment 2 consider the two power plants separately, so the models are only
applied to data of the same power plant on which they were trained on. This raises
the question of whether this separation of models by power plant or at least region
with the same irradiance is necessary, or whether the models obtained generalise
well enough to be used at any power plant.
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To assess this, the models that performed best on p0 are applied on data of p1, and
the performance is compared to the one of the native model, meaning the model
that was trained on and performed best on p1. The findings are essential for the
application of the approaches in real-world scenarios, as they attempt to answer the
question of whether an operator should try to achieve the best possible model, but
then use it centrally and without any adjustments, or whether a training process
for each power plant is more sensible.

6.6 Implementation
All programs and experiments described in this work were implemented with Python
3.10.14 on a machine running Ubuntu 20.04.6 LTS. It has 2 AMD EPYC 7452 processors
with 32 cores each and 1 TB RAM. Two GPUs are available for tasks that can make use
of CUDA (in the case of this work only the LSTM Autoencoder): An NVIDIA Quadro
RTX 8000 with 50GB memory and an NVIDIA Quadro RTX 5000 with 16GB memory.

Optuna [95] 3.6.1 was used to optimise the hyperparameters for both PRADA and the
LSTM Autoencoder. TPESampler was used as the sampler because it is suitable for
the combination of numerical and categorical variables in this case. TPE stands for
Tree-structured Parzen Estimator and works by fitting two Gaussian Mixture Models in
each trial and for each hyperparameter and then selecting the most promising value [96].

In both algorithms, the optimisation takes place in two stages, so certain hyperparameters
are not determined by Optuna, but are only optimised when the error probabilities
(for PRADA) or reconstruction errors (LSTM Autoencoder) are available. This was
implemented using a grid search. A grid is defined for all relevant hyperparameters. To
do this, approximately 100 equidistant values are selected in the definition range. After
that, the best value is determined and the process is repeated four times in the closer
range of the previously best hyperparameter (about 10% of the previous range).

PRADA was largely implemented from scratch, with the exception of the OLS and RLM
functions used for regression, which were provided by the Statsmodels library [97] 0.14.2.
While most of the detection logic of the LSTM Autoencoder was also programmed directly,
Keras [98] 3.4.1 and Tensorflow [99] 2.17.0 were used for the underlying models.
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CHAPTER 7
Results and Discussion

In this chapter, the results of the experimental part of this thesis are presented. First,
it follows the structure of the three experiments presented in Section 6.5. Afterwards,
findings about the practicability of the approaches such as the run or training times are
discussed in Section 7.4 and possible limitations in Section 7.5. It is concluded with
Section 7.6, where an overview of all numerical results is provided.

7.1 Training and Evaluation on Heterogeneous Anomalies
For the experiments described in this section, both methods, PRADA and the LSTM
Autoencoder, were trained on both available data sets (power plants p0 and p1) before
being applied and evaluated. In this case, the two power plants were considered inde-
pendently of each other, so training and evaluation were carried out on the data from
the same power plant (but separated into training, validation and test sets, as described
in Section 6.5). The resulting outcomes represent the main message of the comparative
study, as this experiment tries to represent reality as close as possible. Despite the
limitations in terms of time and computing resources, the focus was therefore placed on
conducting these experiments.

p0 p1
PRADA 1009 241
LSTM Autoencoder 286 26

Table 7.1: Number of hyperparameter combinations considered to find the best-performing
model on the validation set

The number of hyperparameter combinations, which were considered in order to find
the best model, can be found in Table 7.1. The relatively small number of considered
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combinations of the LSTM Autoencoder on the data from power plant p1 can be
attributed to the long runtime, which is discussed in more detail in Section 7.4.

Out of these considered hyperparameter combinations, the model that performed best on
the validation set was then selected. The highest-ranked combinations were considered
and some combinations were excluded, because they showed irregularities (e.g., high
validation F1 but very low training F1, which indicates a poorly generalising model).
The F1 value on the test set was then calculated from the selected best hyperparameter
combination. For the power plant p0, the results are shown in Table 7.2.

Training Validation
F1 TP FP FN F1 TP FP FN

PRADA 0.9778 44 2 0 0.9099 101 0 20
LSTM Autoencoder 0.9524 40 0 4 0.8649 96 5 25

Test
F1 TP FP FN

PRADA 0.9416 121 0 15
LSTM Autoencoder 0.9004 113 2 23

Table 7.2: F1 scores and confusion matrices of the best models for power plant p0

It can be seen that both methods generally perform well and detect a majority of the
added artificial anomalies: On the test set, PRADA detects eight more anomalies than
the LSTM Autoencoder and produces no false positives, whereas the LSTM Autoencoder
generates two.

The false negatives were examined more closely: Of the 15 false negatives from PRADA
and the 23 from the LSTM Autoencoder, eight overlap, indicating that these anomalies
were missed by both methods. Seven anomalies could only be detected by the LSTM
Autoencoder, 15 only by PRADA.

Furthermore, there are differences in the detection rates between the three different error
types. As can be seen in Figure 7.1, the detection rate for anomalies of type const and
rand is significantly higher than for errors of type deter for both approaches.

For the errors of type deter, it was found that the undetected errors often either had a
short duration or only a slight deterioration: Across all deter errors in this test set, the
average duration is 5.54 days and on average it is deteriorated to 50.77% of the original
value (described by the parameter deter_base). However, the ones not detected by
PRADA are only deteriorated to 71.54% on average (while having approximately the
same average duration). For the LSTM Autoencoder, it seems to be the opposite: With
an average deterioration to 57.32% there is only a slight difference, but the false negatives
only have an average duration of 4.18 days. The two approaches therefore seem to have
different strengths and weaknesses: In this case, PRADA is worse at recognising errors
with low deterioration, while the LSTM Autoencoder struggles with shorter anomalies.
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Figure 7.1: Distribution of anomalies in the test data of p0 and their detection rates

These experiments were repeated with the data from the power plant p1 and the results
are shown in Table 7.3. Regarding the performance, the results are comparable to the
ones of p0: Both approaches detect the majority of anomalies, again PRADA detects
six more than the LSTM Autoencoder on the test set. However, it is noticeable that in
this case, PRADA generates more false positives. Regarding the F1 value, the difference
between the two methods is smaller than for p0, but PRADA can still show a slightly
higher value.

Training Validation
F1 TP FP FN F1 TP FP FN

PRADA 0.9778 44 2 0 0.9886 87 1 1
LSTM Autoencoder 0.9535 41 1 3 0.9708 83 0 5

Test
F1 TP FP FN

PRADA 0.9435 117 12 2
LSTM Autoencoder 0.9367 111 7 8

Table 7.3: F1 scores and confusion matrices of the best models for power plant p1

Again, the undetected anomalies were examined more closely: In this case, there is one
anomaly that is not recognized by either approach, one is only recognized by the LSTM
Autoencoder and seven only by PRADA. Figure 7.2 shows the distribution of the three
anomaly types and their detection rates for the p1 dataset. In this case, the detection
rate is very high for both methods for all types of anomalies. In some cases, even all
anomalies were detected: PRADA detects all anomalies of type const, and the LSTM
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Autoencoder all of the type rand.
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Figure 7.2: Distribution of anomalies in the test data of p1 and their detection rates

Interestingly, the tendency observed with p0 that deter-type anomalies tend to be
detected worse than the other types is much less prominent here. However, the hypothesis
that undetected deter-type anomalies are characterised by a short duration or low
deteriorations can be confirmed: Of the four different false negatives of type deter,
three have only very weak deteriorations (deter_base of 85% or higher), while the
fourth is relatively short, with a duration of only 2.78 days. However, the number of false
negatives is too small to confirm the statement that PRADA and the LSTM Autoencoder
have different strengths and weaknesses in detecting deter anomalies.

Due to the unusually high number of false positives compared to other experiments, these
were also examined more closely: It was found that the 19 false positives in total extend
to only four different day-sensor combinations (remember that the test set is repeated
eight times with different anomalies). This indicates that at the affected points in time,
there is a behaviour that is not entirely normal, but shows only very slight deviations and
no clear signs of an anomaly, and was therefore not recognised during data preprocessing.
This is also supported by the fact that it was not recognised in all, but only in some of
the eight runs for both methods. In any case, it does not limit the validity of this result,
since it affects both PRADA and the LSTM Autoencoder equally.

In summary, PRADA demonstrates higher detection rates and better F1 scores for both
power plants, though the margin of improvement over the LSTM Autoencoder is relatively
small. There is no clear tendency that one of the two methods is less susceptible to
the generation of false positives, but their number is small compared to the number of
detected anomalies in any case.
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The hyperparameters which were considered best and have therefore been used for the
experiments in this section can be seen in Table 7.4.

Method Hyperparameter p0 p1
PRADA Rday OLS Robust Regression

tday - 0.53
αday 0.1 0.04
Rbase Robust Regression Robust Regression
tbase 4.89 0.53
αratio 0.18 0.04
δexpanding True True
nlookback 3 3
dmin 1 1
αanomaly 0.88 0.98

LSTM Autoencoder δaggregate normalised_mean mean
nlayers 4 5
nunits 128 128
η 0.00106148 0.00073712
ntimesteps 8 8
dmin 2 1
αanomaly 1.53 0.009

Table 7.4: Hyperparameters of the best models for both approaches and both power
plants

7.2 Evaluation on Homogeneous Anomalies
In contrast to the experiments carried out so far, where all three anomaly types were
always present at the same time, data with homogeneous artificially added errors is
considered here. This means that all errors added in an experiment are of the same type.
This is done for all three types const, deter and rand. This may not correspond as
closely to reality, but it can provide further information about which of the two methods
is better suited for which situations and where possible weaknesses lie. Due to resource
constraints, these experiments were only carried out on the data from the power plant
p0, using the same hyperparameters as before, presented in Table 7.4.

F1 TP FP FN
PRADA 0.9565 132 0 12
LSTM Autoencoder 0.8425 107 3 37

Table 7.5: F1 scores and confusion matrices for anomalies of type const only

Table 7.5 shows the results for anomalies of type const. It can be seen clearly that
PRADA performs significantly better than the LSTM Autoencoder: It detects 25 more
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anomalies without generating any false positives, while the LSTM Autoencoder falsely
detects three of those. This is also visible in the F1 score, where the LSTM Autoencoder
therefore has a significantly lower value.

A closer look at the false negatives of the two methods shows that they are almost
disjoint: Only a single anomaly is not recognised by either of the two approaches. 11 are
detected by the LSTM Autoencoder but not by PRADA. On the other hand, there are
36 anomalies that are detected by PRADA but not by the LSTM Autoencoder.

Interesting behaviour can also be observed when considering which value is constantly
reported during the anomaly. As can be seen in Figure 7.3, the LSTM Autoencoder
is significantly worse at detecting anomalies whose const_value is 0. A possible
explanation for this is that the LSTM Autoencoder not only considers the behaviour of
sensors in relation to each other, but also the fundamental behaviour of the time series.
Since it is normal for irradiance data to be constantly 0 during the night, it is more
difficult for the LSTM Autoencoder to detect this type of anomaly.
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Figure 7.3: Detection rates by constant value for both approaches

Summarising, it can be said that PRADA has a higher detection rate and a better F1
score than the LSTM Autoencoder, and that it does not show any particular weakness
for a certain variant of constant anomalies.

The results of the evaluation of a data set containing only anomalies of type deter can
be found in Table 7.6. In this case, the difference between the two methods is smaller
than with const: PRADA detects four more anomalies than the LSTM Autoencoder,
in addition the LSTM Autoencoder detects five false positives. Considering the F1 score,
therefore, PRADA also performs better in this case.

The overlap between the false negatives is relatively small in this case, at only five.
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F1 TP FP FN
PRADA 0.9485 129 0 14
LSTM Autoencoder 0.9157 125 5 18

Table 7.6: F1 scores and confusion matrices for anomalies of type deter only

However, the false negatives can be used to confirm the theory proposed in Section 7.1
that the two methods have different strengths when it comes to detecting errors of type
deter: Across all 143 anomalies, the average duration is 4.98 days, and on average, the
measured value is deteriorated to 49.44%.

Considering the 14 anomalies not detected by PRADA, the average duration is very
similar to that of all anomalies, at 4.76 days, but on average it is only deteriorated to
70.16%. On the other hand, for the LSTM Autoencoder, the 18 undetected anomalies
have an average deter_base of 46.26%, which represents more deterioration compared
to the overall average. However, the undetected anomalies are only 1.86 days long on
average.

This confirms that the strength of PRADA lies in detecting short anomalies, but it is
prone to not detecting errors with only weak deterioration. For the LSTM Autoencoder,
it is the other way around, so the detection of short anomalies of type deter is its
weakness.

In summary, it can be said that PRADA performs better as it detects more anomalies
and at the same time does not generate any false positives. However, the two methods
have different strengths for errors of the type deter, so that in special situations the
LSTM Autoencoder might be preferable.

Finally, a dataset is considered that only contains anomalies of type rand. The results
of this can be seen in Table 7.7.

F1 TP FP FN
PRADA 0.9591 129 0 11
LSTM Autoencoder 0.9603 133 4 7

Table 7.7: F1 scores and confusion matrices for anomalies of type rand only

When only considering anomalies of type rand, both methods perform very well, with the
LSTM Autoencoder outperforming PRADA by detecting four more anomalies. Although
it generates four false positives, it still has a small advantage in terms of the F1 score.

The overlap between the 11 false negatives of PRADA and the seven of the LSTM Au-
toencoder is very small: Only two errors are not detected by either method. Furthermore,
it is noticeable that the undetected anomalies of both methods are characterised by a
short duration: Across all 140 anomalies, the average duration is 5.39 days. However, for
the undetected errors, the average duration is only 2.43 days for PRADA and 2.13 days
for the LSTM Autoencoder. Not a single undetected error has a duration of five days or
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longer. Both methods are thus significantly worse at detecting short errors than longer
ones.

Summarising across all three error types, PRADA consistently offers good results, detects
most of the anomalies, and does not generate false positives. The performance of the
LSTM Autoencoder is more inconsistent: For const anomalies, it performs significantly
worse, for deter the difference to PRADA is smaller and it even shows particular
strength with one variant of this error. For rand it even performs slightly better than
PRADA. In all cases, however, it is prone to generating false positives.

7.3 Transfer Learning: Cross-Dataset Evaluation
This experiment is designed to assess whether the optimal hyperparameters of the models
depend on the data they are trained on, and if so, to what extent. In practice, this
determines whether it makes sense to train and set up a separate model for each power
plant or whether this can be done centrally with a single high-quality model.

To examine this, the models from PRADA and the LSTM Autoencoder are used, which
performed best on p0 (Table 7.4, first column). These are then evaluated on the validation
and test set of p1. As before, the test set serves as the basis for decision-making. The
validation set is also considered, because the exact hyperparameter combination that
performed best on p0 was not necessarily also considered in the course of optimising p1.
By looking at the F1 scores on the validation set, it can therefore be determined whether
the hyperparameters would also have been considered as the best hyperparameters for
p1.

The results of the experiment are shown in Table 7.8.

Validation Test
F1 TP FP FN F1 TP FP FN

PRADA 0.9708 83 0 5 0.9741 113 0 6
LSTM Autoencoder 0.9136 74 0 14 0.8679 92 1 27

Table 7.8: F1 scores and confusion matrices of the best models for p0, evaluated on p1

Generally, it can be seen PRADA performs significantly better than the LSTM Autoen-
coder: On the test set, PRADA detects 21 more anomalies, and the LSTM Autoencoder
also creates one false positive.

The overlap between the false negatives of the two approaches is six in this case: This
means that all six anomalies that PRADA does not detect are also not detected by the
LSTM Autoencoder. Additionally, there are 21 anomalies that are detected by PRADA
but not by the LSTM Autoencoder.

Figure 7.4 shows the detection rates of the two methods categorised by error type. It can
be seen that for all three error types, PRADA is better at detecting anomalies than the
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LSTM Autoencoder. For errors of the type deter, the detection rate is the lowest and
the difference between the two methods is the highest. Once again, the weaknesses of
the two methods in detecting deter errors, which have been mentioned repeatedly, are
evident: For PRADA, the false positives are characterised by a very low deterioration
(on average only to 84.89%), while those of the LSTM Autoencoder are more than two
days shorter than the overall average in this experiment.
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Figure 7.4: Distribution of anomalies in the test data of p1 and their detection rates
using the model trained on p0

Finally, it is important to see how the two models compare to those that were trained
natively on the p1 data. Those results were already presented in Section 7.1. For a better
overview, they are now shown together with the results from Table 7.8 in Figure 7.5.

It can be seen that on the validation set, both Transfer Learning models perform slightly
worse than the native models. This means that the hyperparameters would not have been
selected as best models, since there were better performing hyperparameter combinations.
However, when looking at the test set, interesting behaviour can be observed: For the
LSTM Autoencoder, the Transfer Learning model performs significantly worse than the
model, which has been natively trained on this data. For PRADA however, the F1 score
of the Transfer Learning model is even higher than of the native one.

The results suggest that the problem at hand is generally well suited for Transfer Learning
and that the methods also work well with the hyperparameters or models of other power
plants. However, there are also differences between the methods. For example, PRADA
is more tolerant of hyperparameter changes and better suited for Transfer Learning than
the LSTM Autoencoder. This also showed during optimisation, where there have been
many models performing equally good with very different hyperparameters. At this
point, however, it should also be noted that in these experiments the Transfer Learning
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Figure 7.5: F1 scores on validation and test set of native p1 models compared to Transfer
Learning

models were trained only with the data from one power plant. In the case of real-world
application of the methods by an operator, a model can be trained using the data of
multiple existing power plants, so that the model already has more knowledge about the
possible behaviour of different power plants and thus performs better on the new power
plant.

7.4 Operational Efficiency and Runtime Evaluation
For a final judgement on which of the two methods is better suited for use in anomaly
detection for irradiance data at an operator, not only the detection performance is
important, but also the duration of implementing the approach and the detection
duration. For this reason, this is discussed in detail in this chapter.

First, the duration required to put one of the two methods into operation is considered.
To do this, a large number of hyperparameter combinations must be tested to determine
the best one. Table 7.9 indicates the average duration of a run. The specified time refers
to both training and evaluating of a hyperparameter combination. The number of runs
performed in this work has already been presented in Table 7.1.

p0 p1
PRADA 00:16:00 01:12:20
LSTM Autoencoder (GPU) 00:57:04 06:51:14

Table 7.9: Average duration of one optimisation run
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It can be seen that PRADA is significantly faster than the LSTM Autoencoder for both
power plants: The LSTM Autoencoder takes almost four times as long for p0 and almost
six times as long for p1. The GPUs presented in Section 6.6 were used for all runs of
the LSTM Autoencoder. Training with the CPU is much slower and was rejected after
some preliminary attempts. For training and evaluation with PRADA, generally only
the CPU is used.

When fixing one of the two methods and looking at the difference between p0 and p1,
PRADA takes about 4.5 times longer, while the run time of the LSTM Autoencoder
increases by a factor greater than seven. However, these results are consistent with the
differences in size between the data sets: p0 has two orientations of five sensors each,
which results in 20 pairwise comparisons, while p1 has 18 sensors after data preprocessing,
resulting in 153 pairwise comparisons.

In conclusion, while all run times remain within a manageable range, they should still be
considered carefully when planning to implement either method in a power plant.

After the successful implementation of one of the two methods, these are used daily to
validate the measured data from the previous day and to detect anomalies. Also here,
the runtime is relevant, especially if these calculations are not carried out centrally in a
data center of the operator, but possibly locally with low-performance hardware directly
at the power plant. For this reason, this was also tested when using the CPU instead
of the GPU. Table 7.10 shows the average duration of validating the data of one day in
seconds.

p0 p1
PRADA 1.89 26.73
LSTM Autoencoder (GPU) 2.31 20.41
LSTM Autoencoder (CPU) 9.64 93.00

Table 7.10: Average duration (in seconds) for anomaly detection per sensor and day

When looking at the run times for validating the data of one day for the p0 power
plant, it is noticeable that PRADA is the fastest method. However, when the LSTM
Autoencoder is run on a GPU, it is only about 20% slower. For a power plant with more
sensors, like p1, the situation is reversed, with the LSTM Autoencoder being 30% faster.
This can be explained by the fact that using a GPU introduces some overhead, which
only pays off with larger datasets. If the LSTM Autoencoder is used without a GPU,
the computation time is significantly higher compared to both PRADA and the LSTM
Autoencoder with a GPU. However, since the run times, even in the worst-case scenario,
are still in the range of minutes, this should not pose a significant issue in any practical
application.
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7.5 Limitations
Despite the contributions of this work to the field of anomaly detection in PV power
plants and irradiance data, a number of limitations must be acknowledged. First, the
evaluation was conducted using artificial anomalies. Those were designed to mimic
real-world situations and are based on multiple reports of true anomalies, but it is not
guaranteed that they perfectly represent real operational anomalies. Another limitation
relates to the selection of hyperparameters: In this study, hyperparameters were optimized
based on the F1 score, but the influence of different hyperparameter configurations on
the performance of the model was not deeply explored.

Additionally, both regression techniques considered for PRADA, OLS and Robust Re-
gression, currently do not account for temporal dependencies within the data of one
day. While PRADA can detect even small discrepancies between the measurements of
two sensors, completely atypical behaviour of the irradiance data within one day could
go unnoticed if both sensors show it. Another critical point of PRADA is the reliance
on fixed intervals for evaluating whether the regression coefficient is within the normal
range, without incorporating statistical tests or more dynamic approaches. This lack of
flexibility could affect the ability to adapt to changes that occur over time.

These current limitations highlight areas where improvements may be necessary. Ad-
dressing these issues in future research could significantly improve the applicability of
PRADA and the LSTM Autoencoder in the situation considered in this work as well as
similar scenarios.

7.6 Overview of Experimental Results
All relevant results described in more detail in the sections above are summarized again in
Table 7.11. The first two columns show the power plant used for training and evaluation
of the model, while the third column specifies the configuration of artificial anomalies on
which the model was tested.

Optimized on Tested on Anomaly setup PRADA LSTM
Autoencoder

p0 p0 Heterogeneous 0.9416 0.9004
p1 p1 Heterogeneous 0.9435 0.9367
p0 p0 Homogeneous const 0.9565 0.8425
p0 p0 Homogeneous deter 0.9485 0.9157
p0 p0 Homogeneous rand 0.9591 0.9603
p0 p1 Heterogeneous 0.9741 0.8679

Table 7.11: Overview of the results from all evaluations conducted on test sets
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CHAPTER 8
Conclusion and Outlook

The work presented in this thesis addresses the issue of anomaly detection in redundant
sensor systems, with irradiance measurements from photovoltaic power plants as an
example use case. This is becoming more and more necessary due to the constantly
growing power generation from photovoltaics, both to avoid loss of income for the operator
due to undetected or late detection of faults, as well as to ensure a stable power supply in
the future. This thesis introduced a new method, PRADA, and conducted a comparative
study with a second method, an LSTM Autoencoder, which is a deep-learning based
method and proven in the field of anomaly detection.

To conduct the comparative study, measurement data from two power plants in Europe
was used: One in Austria, which features sensors with two different orientations and has
a high data availability of over 1.5 years, the other one in Spain, which has more sensors
of only one orientation, but only slightly more than a year of data. The available data
contains a few irregularities that indicate anomalies, but clearly not enough to evaluate
the detection performance of the two approaches.

To overcome this problem, a framework making use of artificial anomalies was developed:
The data was first cleaned to meet the assumption of being free of anomalies. Then,
artificial anomalies of the types const, deter and rand were added. They represent
different real-world problems and are based on the few irregularities originally present in
the data as well as on reports from literature and domain experts. With the addition of
artificial errors, detailed information (such as exact start and end dates) is available for
each error, transforming the problem into a supervised one.

The optimisation framework Optuna was used to find the best possible hyperparameters.
The F1 score is used to determine the best model, and the data was divided into training,
validation, and test sets. To boost data availability and allow for more variation between
different models, the validation and test sets were used multiple times with different
artificial anomalies. This is possible since the model never learns any information from
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those. The best model was then selected on the validation set and evaluated on the test
set for further comparisons.

In terms of performance metrics, PRADA showed a higher F1 score than the LSTM
Autoencoder in five out of six scenarios. It demonstrated consistent performance with an
F1 score between 0.94 and 0.975 across all considered scenarios. The LSTM Autoencoder
was significantly less consistent with an F1 score between 0.84 and 0.97. Only in the
case where only anomalies of type rand are considered, the LSTM Autoencoder was
able to detect more anomalies than PRADA. Furthermore, experiments with Transfer
Learning were carried out, i.e. models were applied to data from power plants that were
completely new to them and may show different behaviour. Also in this case PRADA
performed significantly better: The transferred model was even able to outperform
the native one. For the LSTM Autoencoder, the transferred model could not keep up
with the performance of the native model, which supports the finding that the LSTM
Autoencoder places more emphasis on the behaviour of the time series itself rather than
on the comparison among the redundant sensors.

The empirical evaluation also showed that overall PRADA is less susceptible to producing
false positives, making it more reliable in environments where false alarms could result
in unnecessary costs or interventions. The runtimes required for training and applying
the approaches were also examined. Finding the optimal hyperparameters is significantly
faster with PRADA and no GPU is required, while the training of the LSTM Autoencoder
requires one to achieve justifiable run times. When it comes to applying the methods,
PRADA is on the same order of magnitude as the LSTM Autoencoder when a GPU is
used. An application of the LSTM Autoencoder without a GPU, for example directly at
the power plant location, is possible, but it takes significantly longer. This means that
PRADA can be used more flexibly, possibly also in less conventional settings such as
edge-based systems.

In summary, PRADA has proven to be the superior method in the scenario of this thesis,
as it delivers consistently good results and also has advantages in terms of applicability.
However, in some situations the LSTM Autoencoder performed better and was also able
to highlight certain strengths, so it should also be considered in a real application.

While the methods presented in this thesis offer valuable insights to the field of anomaly
detection in redundant sensor systems, there are still several promising avenues for future
research. One of the most important next steps would be to obtain more data containing
real-world anomalies. These can then be used, on the one hand, to test PRADA and
the LSTM Autoencoder in a completely real-world scenario. On the other hand, the
findings about the additional anomalies can be used to refine the definition of the artificial
anomalies and repeat the experiments of this work with them.

Another key area for future research is a comprehensive sensitivity analysis of the
hyperparameters of both methods. In this work, the selection of hyperparameters was
based on optimizing the F1 score. Exploring how different hyperparameter choices affect
the performance could provide valuable insights. This could go hand in hand with
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expanding the regression methodology of PRADA, which currently does not consider the
temporal relationships between individual measurements. Using regression techniques
which take these temporal dependencies into account could improve the performance of
PRADA by placing more focus on the behaviour of the time series itself, not only the
pairwise comparison. Another possibility for improvement would be to use a statistical
test to determine whether the coefficient significantly deviates from 1, instead of using a
fixed interval. This could provide more robustness and, at the same time, reduce the
number of hyperparameters to be optimised, which facilitates finding the best model.

To make both methods even more applicable in real-world scenarios, further work could
be done to develop a measure of the certainty of an anomaly. PRADA already calculates
an error probability and the LSTM Autoencoder an average reconstruction error. At
the moment, however, these are only compared with a threshold and not used further.
In the future, they could be used to calculate a degree of certainty that an error is
occurring. This could allow for more adaptive and context-aware detection systems and
thus help operators to decide whether an intervention or a more detailed investigation is
appropriate.

In summary, the methods introduced and experiments conducted in this thesis represent
significant progress in anomaly detection in redundant sensor systems. While the
novel method PRADA generally outperforms the LSTM Autoencoder, both methods
demonstrate strengths in different areas, and future research should aim to further
refine these approaches, particularly by incorporating real-world data and more adaptive
detection mechanisms. This will help enhance the practical implementation of these
methods and improve their reliability and robustness.
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